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Autobiographical Postscript

My research career follows closely the development of Biomedical Engineering
(BME) in Israel, a goal to which I devoted a significant portion of my time and
efforts. This turn of events was not planned ahead. Growing up during the first years
of the State of Israel, like many youngsters at that time I was a member of a youth
movement whose goal was to prepare us for life in the Kibbutz, with the mission
to settle and build the country. These personal plans had to be changed due to a
sport accident. I decided to go for higher education related to agriculture, so that my
education could be of use to my future Kibbutz. Since my inclination was towards
exact sciences, I chose agricultural engineering at the Technion in Haifa, the only
engineering school in Israel at that time. In the third year of study, I added civil
engineering to my curriculum. It was during these Technion years that I realized I
had a great deal of curiosity, often asking myself “why” or “what is the underlying
mechanistic reason”? It was then that I first entertained the thought of a possible
research career.

Upon graduation in 1962, I joined a Kibbutz in the dry southern part of Israel—
the Negev. It soon became clear that the small Kibbutz at that time could not benefit
from my engineering skills, so I took a job as a water system engineer in the nearby
town of Beer Sheba. My responsibility was to design and oversee construction of
water supply networks to the new farms in the dry southern Negev area which
occupies nearly half of the area of Israel and extends from Beer Sheva down south
to the Red Sea, and to the Dead Sea in the east. Although the job provided me
with a great deal of practical engineering experience, it required little of advanced
engineering skills.

In 1964 I accepted an offer to work in Benin City, Nigeria, on a large-scale project
aimed to supply treated fresh water to each village and town in the mid-eastern
region of that country. In addition to satisfying my professional curiosity, the work
was an opportunity to get to know Nigeria, its people and culture. I was attracted
by the importance of the job which sought to reduce the rate of infectious diseases,
especially the rate of infant mortality, estimated at that time to be above 80 %. This
was caused primarily by consumption of untreated water from nearby rivers. The
project was completed a couple of years after I left Nigeria. I was proud to learn
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that it achieved its goal: infant mortality dropped down to 10–15 %, still too high,
but nonetheless a significant improvement.

After 1 year in Nigeria I was recruited by my Kibbutz to take the position
of R&D engineer in the newly established drip irrigation factory—Netafim. Drip
irrigation was conceived by an Israeli water expert and proved to be well suited
for dry areas due to the substantial saving in water and the significant increase in
yields compared to other methods such as sprinkle irrigation. It faced, however, a
number of technological problems which I had to attend to. Today, drip irrigation
is well established. Netafim is a highly successful multinational consortium, well
known in countries using irrigation. The work was interesting and involved some
research work. It became however clear that serious research can be done only in a
well-equipped facility of an academic institution. Hence, after 2 years in the job I
returned to the Technion in 1968 and took a job in the Hydraulics Laboratory as an
R&D engineer. The renewed interaction with an academic environment was highly
fulfilling, and just a few weeks into the job, I decided to pursue an academic career.

M.Sc. training at the Technion required a full research thesis. While searching
for a suitable topic, I was informed of a new research field, Biomedical Engineering
(BME). New, interdisciplinary, and with endless perspective, it seemed like an
attractive field. In the late 1960s, one of the hottest topics in BME research was
the pulsatile blood flow in arteries. Research in that topic flourished after the
breakthrough work of John Womersley, who showed that for an oscillatory flow
of a Newtonian fluid in an elastic tube, the flow is characterized by a parameter,
which today bears his name (the Womersley number). In looking for a specific
thesis topic, I browsed the literature and discussed various possibilities with Uri
Dinnar and Hillel Rubin. The question came up on how the flow would be affected
if one considered the blood vessels’ viscoelasticity and the non-Newtonian nature
of blood. It seemed an interesting extension of the Womersley theory and one
that could be experimentally tested in the laboratory. While developing the theory,
it turned out that Womersley analysis can be generalized to Maxwellian fluids
(Holzinger and Rubin 1970) and to general linear viscoelastic fluids in elastic-
viscous tubes (Lanir and Rubin 1971, 1972), by replacing the Newtonian Womersley
number with a complex viscoelastic one, and the tube elastic parameters with its
complex, elastico-viscous counterpart. In the experimental investigation, I used
viscoelastic CMC polymer solutions of various concentrations. The theory and
experiments were in good agreement and showed an unexpected result: unlike
in Newtonian fluids in which the wave velocity increases monotonically with
frequency, in viscoelastic fluids, it attains a maximum level at a low frequency and
decreases thereafter.

I submitted my M.Sc. thesis in the summer of 1970. Two weeks later I was
surprisingly notified that since my work was of a level and scope of a Ph.D. research,
the Technion decided to grant me a Ph.D. degree. Although satisfying and exciting,
this rather unusual and unexpected development presented a problem: I was just
accepted for Ph.D. training at the University of California at San Diego (UCSD)
under the supervision of Prof. Y.C. Fung. Determined to work with Dr. Fung, I
decided to take my chance. My wife Suzi and I landed in San Diego shortly after
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my Ph.D. defense, with the intention to embark on postdoctoral training. Dr. Fung,
after reading my Ph.D. papers, was satisfied with my credentials. However, due to
severe recent cuts in his NASA research funding, he could not support me. In the
face of this news, I decided to wait for 1 month before looking for another job.
Luckily, a small leftover of a US Air Force research budget was found. I embarked
on a work on fiber composite materials.

Fiber composites were extensively studied under tension and shear loading. The
question at hand was how they would respond to compression in the fiber direction,
especially when the matrix Poisson’s ratio exceeded that of the fibers, a situation
which could lead to de-bonding and fiber buckling. My analysis showed that
although fibers may indeed buckle in a mode which increases with compression, in
the range of infinitesimal deformations, this has insignificant effect on the composite
response (Lanir and Fung 1972). For a while, I believed that this research and its
results would be of no special significance, only to discover much later that the
work is of interest in nanotubes research (Lourie et al. 1998).

My next project was in tissue biomechanics. This research occupied me for
the rest of my postdoctoral training and shaped much of my future research. In
this I could not have wished for a better mentor than Dr. Fung—“the father of
modern biomechanics” (Kassab 2004). I was asked by Dr. Fung to develop the first
biaxial large deformation tissue tester and apply it to study the properties of flat
tissues, specifically the skin. Three criteria directed the setup design. For reliable
characterization, the stretched specimen should be under uniform deformation; the
strain measurement should be a no-contact one so as not to affect the soft tissue
response; in view of tissue viscoelasticity, the rate of loading should be adjustable
and controlled. The developed setup fulfilled all three criteria (Lanir and Fung
1974a). The test protocols included biaxial stress relaxation tests, constant rate
of stretch tests at different rates, and tests of temperature effects (Lanir and Fung
1974b). The data clearly demonstrated the skin’s anisotropy, nonlinearity, time
dependence, and preconditioning adaptation. The effects of temperature were found
to depend on the imposed rate of temperature change and on the tissue stretch: at
low stretch levels the skin has a negative thermoelastic response (it contracts with
increasing temperature, as rubber-like materials), while at high stretch levels it is
positive (expanding with temperature, as in crystallized materials such as metals).
Later, I learned that this is due to the transition from the amorphic, elastin-dominated
low stretch range to the high stretch one dominated mainly by the structured
collagen.

In 1972, I joined the Technion as the first full-time BME faculty (also first
in Israel). The BME unit was an interdisciplinary program which offered solely
graduate courses but no research facilities. Courses were conducted by secondary
affiliated faculty members who lectured on their field of expertise. Yet the cur-
riculum lacked a clear plan or structure. I was asked to head this unit with the
mission to develop the research activity and introduce coherence and clear tracking
to the graduate program. This was a challenging task for a newly appointed faculty
member. After 1 year in the job I realized that although I was able to move the
department in the right direction and recruited new faculty members, the job was
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too time consuming and thus unsuitable for a new, young faculty and could risk my
academic progress towards tenure. After 1 year as department head, I resigned to
resume my research work.

In Fung’s laboratory at UCSD, I enjoyed experimental research in a well-
equipped and properly staffed setting. These conditions were unavailable in the
Technion BME laboratory at that time. I opted to invest my efforts in theoretical
research. My first project was aimed at characterizing the skin mechanical properties
based on the data collected at UCSD. Tissue characterization was up to that time
exclusively phenomenological, culminating in Fung’s exponential law (Fung 1967,
1972) and in the material laws of polymers such as the Mooney–Rivlin one. It turned
out, however, that none of these hyper-elastic phenomenological laws adequately fit
the skin’s biaxial response. In looking for a better representation, I wondered if
something can be learned from looking at the internal processes which give rise to
the global tissue response. In searching for the relevant information, I was fortunate
to come across a few histological studies which were published around that time
on the response of tissue microstructure to uniaxial and biaxial stretch (Gibson et
al. 1965; Viidik 1969, 1972; Millington and Brown 1970; Chu et al. 1972; Brown
1973). Three distinct processes could be identified from the published images: First,
in the uniaxially stretched tendon, there is a gradual straightening (recruitment) of
collagen fibers with stretch (Viidik 1972, 1978) and this is accompanied by an
increase in the tissue rigidity. Second, in addition to collagen, flat tissues such as
the skin and the mesentery consist also of elastin fibers which become straight
at lower stretch levels than the collagen (Gibson et al. 1965; Chu et al. 1972;
Evans et al. 1980). Third, in addition to straightening, in flat tissues there is a
process of fiber rotation towards the direction of highest stretch (Brown 1973;
Evans et al. 1980). The challenge was to find a way by which these processes
could be incorporated into a general hyper-elastic constitutive formulation. After
testing a number of possibilities, the most promising one proved to be the stochastic
approach—to assign distribution functions to the fibers’ straightening strains and
orientations, for both the collagen and elastin fibers, and sum up all the fibers’
contributions. The formulation is based on four assumptions: (a) affine deformation
field, i.e., each embedded fiber responds kinematically as if it were an element in
the tissue continuum; (b) the tissue’s total strain energy equals the algebraic sum
of its fibers’ strain energies; (c) the strain energy of a slender fiber is solely due
to its axial stretch and vanishes under compression due to buckling; and (d) the
fluid-like ground substance matrix renders the tissue incompressible and contributes
hydrostatic pressure to the global tissue response. The natural outcomes of these
ideas were that the observed nonlinear and anisotropic properties of tissues result
from the fibers’ gradual recruitment (straightening) and their nonuniform orientation
distributions.

This is how the microstructural approach to tissue constitutive modeling was
born. If I have to identify a common trait to my research work since then, including
studies unrelated to tissue mechanics, it is the strong inclination to look at the micro
and to link the micro to the macro function. My experience has shown this to be a
rewarding approach.
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Today, the structural approach is widely used in tissue mechanics and applied in
a variety of tissues (e.g., Belkoff and Haut 1991; Billiar and Sacks 2000; Chandran
and Barocas 2006; Cortes et al. 2010; Crabb et al. 2006; Dahl et al. 2008; Driessen et
al. 2005; Engelmayr and Sacks 2006; Federico et al. 2005; Gasser et al. 2006; Grytz
and Meschke 2009; Hansen et al. 2002; Hollander et al. 2011a; Holzapfel et al. 2004;
Horowitz et al. 1988a; Jhun et al. 2009; Lake et al. 2011; Lokshin and Lanir 2009a;
Martufi and Gasser 2011; Nevo and Lanir 1989; Raz and Lanir 2009; Sacks et al.
2004; Sverdlik and Lanir 2002; Zulliger et al. 2004). Comparison with data of 1D
(Raz and Lanir 2009; Sverdlik and Lanir 2002), 2D (Billiar and Sacks 2000; Lokshin
and Lanir 2009a; Sacks et al. 2004) and 3D (Horowitz et al. 1988a; Hollander
et al. 2011b) responses showed excellent agreement. The case of the arterial wall
(Hollander et al. 2011a) is a recent example of the power of microstructural
modeling. The arterial media is a 3D layered structure consisting of concentric
lamellae, interlamellar thin elastin struts, and smooth muscle cells. The lamellae are
composed of helical-oriented elastin and collagen fibers (Clark and Glagov 1985;
Rhodin 1980; Wasano and Yamamoto 1983). Based on these structural features,
together with David Durban and our student Yaniv Hollander and in collaboration
with Ghassan Kassab we developed a microstructural constitutive model for the
coronary media and validated it against 3D data of inflation/extension/twist tests
carried out in Ghassan laboratory. By sensitivity analysis it was found that a reduced
form of the model having only four parameters provided excellent fit to the entire
3D database (the model descriptive power). The model predictive power (fit to
data not used in estimating the model constitutive parameters) was validated as
well. In particular, characterization based on just inflation/extension data provides
reliable estimates of the model parameters (thus saving the need to perform the
more difficult twist test) and very good fit to the entire 3D data. Previous models of
the media were either phenomenological or phenomenological–structural hybrids.
Comparison of the structural with these models against the 3D data demonstrated the
superior reliability of the structural approach in both its descriptive and predictive
performances (Hollander et al. 2011b).

The theory of constitutive characterization imposes restrictions on material
laws. One of these requires that the constitutive law must be convex under any
deformation scheme. In essence, this restriction guarantees the existence and
stability of the material response (Holzapfel et al. 2004; Truesdell and Noll 1965).
I was able to prove that the structural constitutive formulation automatically
satisfies the convexity conditions under any deformation (Lanir 1996). This distinct
advantage stems from the convexity of the fibers’ stress–strain relationships. Hence,
in structural characterization there is no need to check the plausibility restrictions.

A daunting problem in tissue mechanics is the difficulty of finding a hyper-
elastic law that is valid under any deformation scheme, i.e., while the response
under a single protocol can be adequately represented by a variety of constitutive
models, when attempting to fit data of multiple protocols with a single set of
material parameters, no model proved to be adequate (Tong and Fung 1976).
In studying this problem, I realized from the onset that since soft tissues are
inelastic, it is unrealistic to expect that any hyper-elastic model can fit their inelastic
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response. An inelastic constitutive formulation was needed. In looking for a suitable
inelastic formulation, it turned out that the stochastic structural approach is well
suited for such generalization. Since the inelastic properties of tissues derive from
the inelastic properties of their fibers, generalization to inelastic cases (such as
viscoelasticity and pre-conditioning) can be readily achieved by replacing the fibers’
elastic stress–strain laws with their viscoelastic and viscoplastic counterparts. The
resulting nonlinear inelastic structural constitutive models provided excellent fit to
both 1D (tendon and skin (Raz and Lanir 2009; Sverdlik and Lanir 2002; Lokshin
and Lanir 2009b)) and 2D (skin (Lokshin and Lanir 2009a)) data under multiple
and different protocols. For example, with my student Einat Raz we found that
in the structural formulation for the viscoelastic case, the predicted responses of
the tendon under creep and stress relaxation tests are mutually compatible and
interlinked by a relationship that depends on the protocol and constitutive law (Raz
and Lanir 2009). Moreover, both the 1D and 2D investigations found that for reliable
tissue representation, preconditioning must be included as an integral part of the
constitutive formulation, in addition to viscoelasticity.

During my sabbatical leave at Michigan in 1979 I met a young undergradu-
ate student who showed a keen interest in Biomechanics. We had a couple of
discussions on the experimental and theoretical aspects of tissue characterization.
Our discussions may have impressed him enough to embark on a career in Tissue
Biomechanics. He is Michael Sacks, a prominent researcher in the field and former
editor of the ASME Journal of Biomechanical Engineering. Mike “blames” me for
recruiting him to Biomechanics, a charge which I do not deny.

In the early 1980s I initiated the recruitment of Alice Maroudas to our BME
department at the Technion. Alice’s well-known experimental work on the articular
cartilage and on intervertebral disc showed that in these tissues, due to the high
concentration of their interstitial negatively charged proteoglycans, a major support
against compressive loading is due to the osmotic-induced hydrostatic pressure of
the ground substance (Maroudas and Bannon 1981). My own interest in this topic
developed following a meeting with Richard Skalak of Columbia University who
encountered a theoretical dilemma relating to the number of equations needed to
solve a boundary value problem in biphasic materials. Two modeling approaches
were known at that time: poroelasticity (McCutchen 1982) and biphasic theory
(Armstrong et al. 1984; Kwan et al. 1984). Both considered elastic and viscous
forces due to fluid filtration relative to the solid phase, but ignored the osmotic
effects. Hence, both theories predicted that under equilibrium with external com-
pression, it is the collagen fibers which bear the compressive load, while the fluid
pressure vanishes, predictions which are in obvious contradiction to Alice and
coworkers’ experimental results. There was a need for a new constitutive approach.
The challenge in developing a constitutive swelling theory for these tissues was to
incorporate osmotic effects into a mechanical model. The solution which emerged
following a discussion with Alex Silberberg of the Weizmann Institute was to
integrate mixture theory (Truesdell 1962) with nonequilibrium thermodynamics
(Silberberg 1982). The developed bi-component theory (Lanir 1987) extended
the previous biphasic theories by introducing concentration (osmotic) forces into
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the chemical potentials of the solid and fluid components, subject to the Gibbs–
Duhem condition. Three important new results emerged: First, a self-consistent
bi-component constitutive theory was developed for swelling tissues. Second, the
new theory was in agreement with experimental observations as to both the role
of hydrostatic pressure in bearing compressive loadings and the stiffening effect of
osmotic forces on the tissue response. Third, the driving force for fluid filtration
was identified as the “swelling stress” (the difference between the solid stress and
osmotic pressure).

Although proteoglycan concentrations in soft tissues such as skin, blood vessels,
and muscle are lower than in cartilage and disc, osmotic swelling still has significant
functional and biological importance in these tissues as well. Since osmotic swelling
is counterbalanced by tension in the tissue fibers, it follows that the unloaded tissue
is not stress free, but is internally loaded by residual stress. In an earlier study
by Skalak and coworkers (1996), it was proposed that residual stress stems from
incompatible growth of tissue elements which is balanced by incompatible elastic
strain, to produce a combined compatible deformation. It is that elastic strain which
produces residual stress. It turns out, however, that growth is not the only mechanism
of residual stress. Based on our combined experimental and theoretical studies
involving controlled manipulation of the tissue osmotic pressure, my coworkers and
I were able to show that in the left ventricle (Lanir et al. 1996b) and in the aorta
(Guo et al. 2007), osmotic loading may have a dramatic effect on the residual stress.
A parallel microstructural stress analysis in the left ventricle (Lanir et al. 1996b)
supported this notion, indicating that a significant portion of the tissue’s residual
stress stems from its osmotic swelling. In two recent publications, this link between
osmotic swelling and residual stress was explored in detail and shown to be valid in
the cartilage and the disc as well (Lanir 2009, 2012).

The cardiovascular system (CVS) was of special interest to me since my Ph.D.
training. It presents unique and interesting challenges: it is subjected to periodic
loading by the beating heart; its function is primarily mechanical (to pump the
blood, transport it to the periphery, and collect it); it is constructed of hollow
organs; its tissues have 3D microstructure; and most CVS tissues contain muscle
cells which render them active properties. In addition, CVS research is of important
clinical value due to the major impact of vascular diseases (in particular, coronary
arterial diseases) on health in the western world. The coronary circulation functions
within the myocardium and is substantially affected by the cyclic contraction of
the heart, resulting in a unique dynamic flow features. Progress in this field of
research is impeded by the difficulties in measurements within the moving heart.
Thus, modeling simulation is an attractive research alternative and is widely applied.
Simulation of the coronary flow requires knowledge of the input loading conditions
imposed by the myocardium on the coronary vessels.

Since the coronary vessels are externally loaded by stress in the surrounding
myocardium, a first step in the research is to establish the dynamic stress field
within the contracting heart. Stress analysis in the heart is a special challenge due to
its irregular shape, the complex passive and active properties of the myocardium,
the effects of the dynamic volume changes due to blood sloshing in and out
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of the embedded coronary vessels, and its loading by the papillary-mitral valve
system during systole. The myocardium constitutive properties derive from its
two major constituents, the collagen network and the myocytes. Following the
success of the structural approach in other tissues, it was only natural to apply
micromechanical analysis in the myocardium as well. My work was carried out
in three stages. First, based on the histological data on the collagen network of
the heart which became available at that time (Borg and Caulfield 1979, 1981;
Borg et al. 1981; Caulfield and Borg 1979; Robinson et al. 1983; Streeter et
al. 1969), a 3D structural constitutive equation for the passive myocardium was
developed and validated against mechanical data (Horowitz et al. 1988a), and then
implemented in constructing a 2D finite element for myocardial strips (Horowitz et
al. 1988b) and a 3D one for the full thickness LV wall (Horowitz et al. 1988c). In
the second stage, together with my student Erez Nevo we developed a 3D passive
and active constitutive law for the myocardium and applied it in stress analysis of
the cylindrically shaped equatorial region of the beating LV along the entire cardiac
cycle, first without (Nevo and Lanir 1989) and then with (Nevo and Lanir 1994)
the effect of residual stress. In the third stage, a full 3D structural passive and
active myocardial finite element was developed and implemented in dynamic stress
analysis in a truncated ellipsoid-shaped LV (Imanuel 1996).

A major determinant of the coronary flow is the network structure. The network
consists of millions of vessel segments. The network flow and the myocardium
loading on the vessels within it are inhomogeneous. Hence reliable flow analysis
can only be carried out based on realistic model of the network structure. Up to
the early 1990s, pertinent information was scarce and insufficient. As a result, most
flow modeling studies were based on lumped concepts in which the whole network
or large portions of it were represented as compartments. Unfortunately, such an
approach does not consider the effect of the network structure on the flow, nor does
it account for the local nature of the myocardium–vessel interaction (MVI) and for
its variation across the heart wall. It was obvious that detailed structural information
was in pressing need and that no significant progress can be achieved without it.
Fortunately, this need was met in the early 1990s.

In 1990, Y.C. Fung initiated and chaired the First World Congress in Biome-
chanics held on the UCSD in La-Jolla, CA. The last presentation in the last day
of the congress was by Fung’s Ph.D. student Ghassan Kassab. The title related
to the detailed morphometry of the coronary network. In his work, Ghassan was
able to provide detailed statistics of the network morphometry. Our meeting marked
the beginning of a long collaboration and friendship. Ghassan’s data relate to the
coronary arterial, venous, and capillary networks (Kassab and Fung 1994; Kassab et
al. 1993, 1994, 1997). These data have served several investigators in reconstructing
portions of the coronary arterial network based on some simplifications. Our
collaboration, together with my student Benny Kaimovitz, resulted in reconstruction
of the entire arterial system and embedding it within a prolate spheroid heart model
(Kaimovitz et al. 2005). This was achieved by solving the network geometry as
a large-scale multistep optimization problem. We then continued to the venous
system, which was reconstructed as an optimization problem subject to a boundary
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restriction that arterial and venous capillaries must be joined (Kaimovitz et al.
2010). The resulting network consists of close to ten million vessels. Its rendering
(Wischgoll et al. 2007) highly resembles images of the native network.

Following the progress in the network reconstruction, it was possible to embark
on realistic distributive coronary flow analysis. Three “mysteries” have perplexed
the research community for many years, being subjects of confusion and debates.
The first related to the question of the true nature of the dynamic myocardium–
vessel interaction (MVI) in the beating heart (Westerhof et al. 2006). Together
with my student Dotan Algranati and in collaboration with Ghassan Kassab, we
developed an analytic/numeric platform which incorporated the coronary network
structure and included a module for analyzing the in situ vessel nonlinear pressure–
diameter relationship (PDR) and a module for network flow analysis based on our
previously validated single vessel nonlinear flow model (Jacobs et al. 2008). With
this platform, five MVI mechanisms were tested against published dynamic flow
and diameter data of endocardial and epicardial microvessels. The results revealed
(Algranati et al. 2010) that the only interaction mechanism which fits all the data
consists of the combined effects of interstitial pressure (derived by the left ventricle
pressure) and intramyocyte pressure (which develops as the myocytes contract).
The second mystery related to the underlying reasons for the sub-endocardium
higher vulnerability to hypo-perfusion ischemia, in spite of the fact that stenosis
which induces ischemia occurs exclusively in epicardial vessels (Hoffman 1987). A
detailed sensitivity analysis revealed (Algranati et al. 2011) that the basic reason for
subendocardium vulnerability is the nonlinear nature of the vessels’ PDR, coupled
with the differences in the pressure work points between vessels in these two
layers. From the clinical aspects, the analysis revealed that this vulnerability of
subendocardial vessels can be moderated by lowering the heart rate and the left
ventricle pressure. A third mystery was a clinical question relating to the reliability
of indices used during catheterization in assessing functional stenosis severity, or
its functional reciprocal—the predicted post treatment flow improvement (Spaan et
al. 2006). Our analysis (Algranati 2010) focused on three commonly used indices,
fractional flow reserve (FFR), percent stenosis area (%AS), and hyperemic stenosis
resistance (HSR). In particular, the investigation related to the extent by which the
predictive performance of these indices was affected by interpersonal variability
in coronary hemodynamic and by mechanical factors. The results showed that
while predictions of the true flow improvement of %AS and HSR are significantly
affected by aortic blood pressure, hematocrit, and vessels’ stiffness, FFR predictions
are robust to changes in heart rate, hematocrit, and variability in aortic, venous,
and left ventricle pressures. FFR predictions are, however, sensitive to changes in
the vessels’ stiffness, which may be affected by age and by pathological vessel
remodeling due to smoking, diabetics, and hypertension.

During the years since my first administrative experience as a young department
head, I was assigned a number of administrative duties which were associated with
developing of the BME academic activities in the Technion and outside of it. I
declined, however, requests to accept major administrative responsibilities knowing
that it would seriously distract from and impede my research. There was one
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important exception: starting in 1995, I initiated and led the efforts to establish the
BME undergraduate program, the first in Israel. In 1999 our department opened
its gate to the first class of undergraduate BME students. Within a few years other
universities and colleges followed suit.

My recent research focuses on two main topics. The first relates to soft tissues
growth and remodeling (G&R). In contrast to inert materials, biological tissues have
the unique ability to grow and remodel. Soft tissues adapt to altered mechanical
environment by changing their size, structure, and mechanical properties. G&R
occurs since in order to survive and proliferate, tissue cells strive for a homeostatic
mechanical environment. They do so by adapting their extracellular matrix (ECM)
via turnover (production and/or degradation) of ECM constituents. Modeling G&R
can be of great value by unifying a collection of seemingly unrelated facts into
a general scientific framework, thus providing insight into the processes involved.
In practice, models serve for quantitative prediction and design (e.g., tissue engi-
neering) where mechanical conditioning stimulates matrix production and plays
a key role in the evolution of the constructs towards targeted microstructure
and mechanical properties. Previous G&R models relate mostly to cardiovascular
tissues. Earlier models focused mainly on the manifestation of G&R assuming that
tissue dimension and structure adapt to the global stress or strain. For example,
in blood vessels, the diameter and wall thickness remodel to maintain the luminal
shear stress and wall hoop stress at their homeostatic range. However, since tissues
G&R derives from loading-dependent local turnover events in the fiber level, a
microstructural mechanistic G&R theory can mimic real adaptation events with
high realism. To materialize this idea I developed the theory which incorporates
the specific mechanical properties and turnover kinetics of each constituent, thereby
establishing a general framework which can serve for integration of additional
constituents and processes involved in G&R (Lanir 2015). The theory predictions
show qualitative agreement with a number of well-known features of tissues
including the fiber’s nonuniform recruitment density distribution, the associated
tissue convex nonlinear stress–stretch relationship, and the development of tissue
pre-stretch and pre-stress states. In my ongoing research I attempt to extend the
theory to multi-dimension tissues and to tissues with multiple fiber types, each
characterized by its own turnover kinetics and mechanical response.

Another topic of my current research is the control of the coronary circulation.
It is a natural extension of our previous coronary circulation research. In collabo-
ration with Ghassan Kassab, we emphasize the combined modeling/experimental
investigation of the detailed manner by which the coronaries regulate the flow
to meet metabolic demand under a wide range of physical activity (the coronary
reserve). Flow regulation is achieved through local control of the vessel’s diameter
(and associate resistance) by contraction/relaxation of smooth muscle cells in the
vessel wall. Of particular interest are the yet unresolved questions on the effects
of activation on the vessel/myocardium dynamic interaction, and of the mutual
interactions between the three independent control mechanisms known to regulate
the flow (pressure-induced myogenic control, shear control, and metabolic one).
There are important clinical questions relating to the consequences of acute cardiac
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changes (such as heart rate and perfusion pressure) on the spatial distribution of
ischemic regions, and why and which conditions cause hypo-perfusion-associated
failure of subendocardial tone regulation before subepicardial one, and the failure
of profound ischemia to maximally dilate the vessels. In the first phase of the
work, together with Jon Young and based on micromechanical modeling of the
vessel interaction with its surrounding myocardium, we were able to show that
effective flow regulation requires both an interstitial gap between vessel and tissue
and slackness in their tethering, so that the vessel can easily contract requiring little
energy. In parallel to the theoretical analysis, experimental work by Kassab group
verified the existence of a gap and tethering slackness (Young et al. 2012).

In closing, I wish to reflect on possible future directions of research in tissue and
organ biomechanics, with emphasis on the microstructural approach:

Experimental tissue-structure characterization: Tissue morphometry is the cor-
nerstone of the structural approach. Previous structural characterization was for
the most part indirect: general forms of orientation and waviness distributions
were assigned based on qualitative histological observations, and parameters of
these distributions were subsequently estimated to best fit given response data.
Attempts to directly determine the distribution functions based on morphological
observations have been impeded by computational difficulties in reliable extraction
of the 3D complex structural features of tissues and by the inherent experimental
inaccuracies due to the need to process the specimen, or by the use of differential
digestions which likely distorts the tissue’s microstructure. Recent developments in
nonlinear optics (such as multiphoton microscopy and coherent anti-Stokes Raman
scattering microscopy), when coupled with computer-interfaced sequential optical
sectioning, hold great promise for 3D structural characterization. The advantage
of these methodologies is that tissue samples are maintained in their native state
(i.e., unstained and unprocessed). In addition, the application of two types of
nonlinear laser/tissue interactions—two photon excited fluorescence (TPEF) and
second-harmonic generation (SHG), allows retrieval of distinct structural data for
the elastin and collagen type I fibers (Chen et al. 2011, 2013; Rezakhaniha et al.
2012; Zoumi et al. 2004), respectively.

Efficient microstructure representation: Implementation of the structural
approach in finite element stress analysis presents a heavy computational load
due to the need to integrate the contributions of fibers over all their 3D orientation
distribution function. Although modern fast computing facilities render this task
tractable (e.g., in the case of the left ventricle (Imanuel 1996)), attempts are
being made to develop a computationally more efficient representation. Although
promising first steps have been achieved, a methodology which is general enough
for any tissue structure and fibers’ material law is still in need. The quest for
such representation is a challenging theoretical/numerical undertaking. One current
approach relies on the application of the generalized structural tensor (Gasser et al.
2006; Freed et al. 2005) which represents the tissue’s 3D structure. In application,
this tensor is multiplied by a weighted average of the fibers strain. Comparison with
the exact solution revealed, however, that this method is valid only when all the
fibers are in tension and when the fiber distribution span is small (Cortes et al. 2010;
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Federico and Herzog 2008). Moreover, I have recently shown that the structure
tensor is a reliable descriptor of tissue structure only under very limited cases (Lanir
and Namani 2015). A second class of methodologies attempts to represent the
tissue properties by a discrete set of fiber bundles. There are three variants: One
was developed for amorphous polymers and represents the tissue properties by an
eight-chain 3D rectangle unit cell whose shape determines the tissue orthotropy
(Bischoff et al. 2002). While this unit cell is a structure, it is unrelated to the
real tissue structure. The two other variants represent the tissue’s continuous 3D
orientation distribution by a discrete set of fibers. In the first, the fibers in the set
have fixed orientations, and weight is assigned to each of them to optimize the fit to
the tissue response (Elata and Rubin 1994). This approach was shown, however, to
introduce undesirable anisotropy to an isotropic material (Bazant 1986; Ehret et al.
2010). The other variant applies the spherical t-design (Delsarte et al. 1977; Hardin
and Sloane 1996). The latter is a set of N points on a sphere (or their equivalent
fiber orientations) such that the average value of any polynomial f of degree t or
less on this set equals the integral of f over the sphere. Hence, integration over the
3D orientation distribution is replaced by a sum of discrete values of that function.
The design degree t depends on the orientation distribution function and on the
fiber material law (Federico and Gasser 2010). Hence, t must be established for
each case (Martufi and Gasser 2011) and may change as parameter estimates evolve
during iterative search for optimal parameters during the process of tissue material
characterization. In summary, it is seen that this challenge of efficient representation
is yet to be met.
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Dr. Lanir: A Personal Perspective

In 1979 as a very impressionable undergraduate in the Engineering Mechanics
Program (now part of the Department of Mechanical Engineering) at Michigan
State University, I was seeking some type of research experience and was very
interested in the then new field of biomedical engineering that applied mechanics
in some fashion. I was awarded a summer undergraduate research scholarship
from the Program to work in the Department of Biomechanics located in East Fee
Hall in the School of Osteopathic Medicine. There, I was exposed to all kinds of
interesting and novel things: what living tissues are, how mechanics played a role in
the understanding of their function, advanced computer-controlled equipment, and
mathematical modeling. Heady stuff for a mere Junior. At that time the Department
Chair, Dr. Robert Soutas-Little, would invite both domestic and international visitors
to work for a time in the then new labs. One day Dr. Lanir showed up for what
turned out to be a 2-year sabbatical. I recall his very friendly demeanor, and that
he had a box of 3 � 5 cards for manuscript references that was very small when he
arrived and that expanded to several large boxes before he left (there was no Google
Scholar way back then). I often worked with Dr. Lanir, assisting in several projects
and engaging in various discussions. Sometime later we were awarded an NSF
summer undergraduate student research grant where, as part of a dedicated group of
undergraduate students, we worked on the mechanics of skin grafts. Dr. Lanir was
our faculty advisor and was very helpful in so many ways. He was never averse to
meeting with us and was incredibly patient. The project was quite a success (at least
to us), and we owed much to Dr. Lanir’s detailed knowledge of skin biomechanics.

During his time at Michigan State University, I was introduced to Dr. Lanir’s
focus on tissue microstructure as a means to understand its function. I recall
doing several things, including analyzing biomechanical data of spinal ligaments,
measuring fiber crimp during carefully controlled uniaxial experiments on tendons.
It should be noted that, at that time, there was an emphasis on developing
phenomenological constitutive models of soft tissues based on related approaches to
polymeric materials, which were the closest known material to soft tissues behavior.
Most approaches were based on the pseudo-hyperelastic approach pioneered by
Y.C. Fung. While very powerful in terms of relating the stress and strain behaviors,
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these approaches were limited to the ranges in which their parameters were
obtained. Moreover, there were major challenges in understanding how to interpret
the complex, often highly coupled behaviors. One thing that I recall vividly was
a growing appreciation for the incredible diversity of functions that soft tissues
exhibit, even though they were built upon a comparatively limited set of materials
(collagens, elastin, proteoglycans, glycosaminoglycans, etc.). Such diversity was
built upon variations in the underlying structure rather than intrinsic changes in
underlying materials. To me, this was the essence of Dr. Lanir’s approach. After 2
years, Dr. Lanir headed back to the Department of Biomedical Engineering at the
Technion and I went on to complete my degrees and pursued an academic career.

Yet, in the time since I realized that it was during my 2-year experience with Dr.
Lanir that he had taught me so many things, both biomechanical and otherwise,
that have stayed with me. I have retained a strong scientific interest in biosolid
micromechanics and continue to be strongly influenced by his substantial oeuvre.
For example, when Kristen Billiar and I were first observing the complex biaxial
mechanical responses of the aortic heart valve, my first approach for constitutive
model development was to develop a complex complimentary strain energy density
function, since we were utilizing stress-controlled experiments. However, I then
performed some basic inverse simulations based on a variation of Dr. Lanir’s struc-
tural model, and we discovered how subtle changes in fiber alignment completely
captured the observed responses with only three model parameters. Observations
like this made us feel that we were on the right track. Above all, Dr. Lanir showed
me what it meant to do sophisticated scientific research, with all its ups and downs,
at a level that I had not seen before as an undergraduate and rarely since.

It is thus with great pleasure, on behalf of my co-Editor Dr. Ghassan Kassab and
all the contributing authors, to present this book as an expression of our affections
and gratitude for all of Dr. Lanir’s contributions to our field.

Austin, TX Michael S. Sacks



Dr. Lanir: A Personal Perspective xxiii

Sari Lanir, Michael Sacks, and Yoram Lanir in younger days (circa. 1996)





Happy Birthday to Yoram: Professional
and Personal Reflections

The first World Congress of Biomechanics in 1990 was Chaired by Dr. Y.C. Fung
and held in San Diego. It was then and there that I first met Dr. Yoram Lanir. I had
just completed my Ph.D. training with Dr. Fung and I was thrilled to meet Yoram
who had previously been a postdoctoral fellow with Dr. Fung. I had read many of
Yoram’s publications on biomechanics of blood flow and solid mechanics of soft
tissue with great interest. The depth of his focus and the mystery of biomechanics
was obvious and his conclusions rigorous. His works were unhurried, systematic,
and definitive. He had the talent to capture the heart of the subject and simplify the
analysis without loss of realism. Yoram embodied the character of a great engineer
who captured the essence of a problem. He was clearly a master modeler who
believed in structure-based analysis.

The first meeting with Yoram in 1990 was very memorable both academically
and personally. He was extremely approachable and very humble. Despite my junior
status, Yoram treated me as a colleague and was very interested in my Ph.D. thesis
work on morphometry of coronary vasculature. Given his interest in structure-
based analysis, he recognized the utility of the morphometric data we had labored
over for several years. He advocated the use of measured geometry (anatomy,
microstructure, etc.), and mechanical properties as a foundation for realistic analysis
of organ function based on laws of physics with as few ad hoc assumptions as
possible. The imprints of the structural-based analysis approach can be found
throughout his contributions to the mechanics literature on skin, lung, tendon, heart,
and vessels. He is clearly a pioneer in microstructure-based biomechanical analysis.
Yoram’s early work on skin mechanics and its relation to microstructure (i.e., elastin
and collagen) have set the stage for similar analysis on many other organs.

The early encouragement and support I received from Yoram were long lasting.
He exemplifies a great citizen of science. He is open armed and encouraging of
younger scientists. Yoram has a mentoring character and draws great affection
and respect from all who work with him. Our groups have reaped the rewards of
numerous collaborations and friendship over the years.

In the Fall of 2010, I had the pleasure of visiting Yoram in Haifa to serve in
Dr. Benjamin Kaimovitz’s (one of Yoram’s Ph.D. students) thesis defense. I very
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xxvi Happy Birthday to Yoram: Professional and Personal Reflections

Left to right: Hanna
Kaimovitz (Benjamin
Kaimovitz’s wife), Yoram,
Sari Lanir (Yoram’s wife),
Jawhara Kassab (Ghassan’s
sister), and Ghassan.

much enjoyed Yoram’s hospitality and tour of Jerusalem. He managed to show me
Jerusalem in a day. I was not surprised by his depth of knowledge in history, religion,
and cultures nor his high energy as a nonstop tour guide. This exemplifies his
character as an energetic doer with both depth and breadth. Yoram does everything
with passion and completeness. As seen in the picture, the intensity wore us out and
we finally rested (only for a few minutes) under an olive tree.

On behalf of my coeditor, Dr. Michael Sacks, and all the contributing authors,
I wish Dr. Yoram Lanir a wonderful 70th birthday. This book is composed of our
affections and gratitude for all of Yoram’s contribution to our field.
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Chapter 1
The Influence of Microstructure on Neural
Tissue Mechanics

Lynne E. Bilston

Abstract Neural tissues have a complex microstructure, and this is reflected in
their mechanical properties. Both brain and spinal cord tissues are heterogeneous,
with white and grey matter regions having different constituents and structural
arrangements. This gives rise to the complex, non-linearly viscoelastic mechanical
behaviour of these tissues.

1.1 Introduction

The link between microstructure and mechanical behaviour of soft biological tissues
has been the subject of much research over recent decades, led by the pioneering
work of Yoram Lanir and his colleagues. Their work has laid out how, particularly
in collagenous tissues, the non-linear stress–strain response, whereby soft tissues
become stiffer as they are loaded, arises from progressive straightening and recruit-
ment of fibres under stretch. Viscoelastic responses of the tissues, including stress-
relaxation, preconditioning and creep can be described by constitutive models that
are based on microstructural considerations. Some of these models have included
mechanical anisotropy arising from structural anisotropy. Such models have been
developed for skin, tendons, lung tissue, passive myocardium, brainstem, and
arteries (e.g. Hollander et al. 2011a, b; Horowitz et al. 1988; Lanir 1976, 1978, 1979,
1980, 1983a, b, 1996; Lokshin and Lanir 2009; Ning et al. 2006; Wang et al. 2006).

1.2 Microstructure of Neural Tissues

The tissues of the nervous system are structurally heterogeneous. The tissues of
the central nervous system (CNS), encompassing the brain and spinal cord are
anatomically and mechanically distinct from those of the peripheral nervous system,
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2 L.E. Bilston

which we define here as the nerve roots, ganglia, and peripheral nerves. The CNS
tissues are bathed in cerebrospinal fluid, and are protected by a series of collagenous
membranes, the meninges, made up of the pia mater, arachnoid mater, and dura
mater. The peripheral neural tissues are also protected by an external collagenous
membrane, known as a nerve sheath. We consider here only the mechanics of the
neural tissues themselves, excluding the meninges and neural sheaths.

1.3 CNS Tissues

1.3.1 Macrostructure of the Brain

The human brain is a highly complex structure, with structure adapted to function.
The bulk of the brain is divided into two cerebral hemispheres, which sit above
the brainstem and the cerebellum (Fig. 1.1). The cerebral hemispheres have a
characteristic undulating surface (the gyri and sulci). The two cerebral hemispheres
are joined by the corpus callosum, a highly aligned band of neurons. The brainstem
connects the brain to the spinal cord, relaying efferent and afferent signals. It is

Ventricles

Cerebrum

Cerebellum

Brain stem

Midbrain

Pons

Medulla

Corpus callosum

Fig. 1.1 The human brain in the mid-sagittal plane, showing the major structures. © L. Bilston,
used by permission
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made up of the midbrain, pons, and medulla. As well as being a major relay station,
several key bodily functions reside in the brainstem, including regulation of cardiac
and respiratory function. The cerebellum sits posteriorly at the base of the skull, and
plays a major role in motor control.

1.3.2 Macrostructure of the Spinal Cord

The spinal cord is an elongated structure, from which two pairs of nerve roots exit
at each spinal level. At the caudal end, the spinal cord tapers and a bundle of nerve
roots, the cauda equina, continue to the lumbar and sacral levels.

1.3.3 Microstructure of the CNS Tissues

Brain tissue consists of neurons, glia, and other cells. The tissues of the brain are
typically classified as either white or grey matter. White matter gets its colour from
the white myelin sheaths (oligodendrocytes) around the axons that make it up, while
grey matter neurons are largely unmyelinated. Most neural cell bodies reside in the
grey matter. Both contain axons, but the grey matter axons tend to be shorter. Grey
matter is more vascularised, and contains the dense dendritic networks that join
neurons together and make up the functional connections of the brain.

White matter is often structurally anisotropic, due to aligned axons within
specific fibre tracts, but it is not homogeneous, and many white matter regions
contain multiple tracts, including crossing fibre tracts. Diffusion tensor imaging
(DTI) is often used to map the detailed microstructure of the white matter in
humans (e.g. Assaf and Pasternak 2008; Tsuchiya et al. 2003). DTI can measure how
water molecules diffuse within the tissue in vivo, allowing directions of preferential
diffusion to be identified, which are associated with white matter tracts with aligned
axons.

Grey matter is also inhomogeneous, and can be either structurally isotropic or
anisotropic. The grey matter of the cerebral cortex contains layers, some of which
have aligned unmyelinated axons, and others which are more randomly oriented.

The brain is a mixture of white and grey matter, with the bulk of the deeper
structures made up of white matter, with smaller grey matter subregions. The surface
of the cerebral hemispheres (cerebral cortex) is made up of grey matter. The spinal
cord consists of grey matter core, arranged in a ‘H-shaped’ cross section, surrounded
by white matter (Fig. 1.2).

All of these structural and microstructural features are thought to influence the
mechanical behaviour of neural tissue.
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Fig. 1.2 Cross section of the
spinal cord, showing grey
matter ‘core’ surrounded by
white matter

1.4 Peripheral Nervous System Tissues

Peripheral nerves leave the spinal cord through a nerve root. Pairs of nerve roots
join to form a nerve at the exit from the spine, from whence they divide into smaller
nerves in the periphery of the body. Each nerve is a hierarchical structure, made
up of nerve fascicles, surrounded by a perineurial membrane, which are themselves
made up of axons. Nerves may be either myelinated or unmyelinated. In peripheral
nerves, Schwann cells are the principal support cell, and form the insulating myelin
sheath in myelinated axons.

Nerve roots are also made up of a collection of axons, and the cell bodies of
these axons are contained in an enlargement of the exiting nerve, called the dorsal
root ganglion.

The key tissues of the peripheral nervous system are structurally anisotropic, due
to the alignment of axons within nerve fascicles, and fascicles within the nerves.

1.5 Mechanical Behaviour of Neural Tissues

The mechanical behaviour of the tissues of the brain have been extensively studied
at a macroscopic level over the last half-century, although their heterogeneous,
non-linear viscoelastic behaviour and substantial changes to tissue behaviour post-
mortem has made such studies difficult to perform reliably and data difficult
to interpret. The spinal cord and peripheral nerves have been less well studied,
although more recently their mechanical behaviour has begun to be elucidated.

1.5.1 CNS Tissues

Brain Tissue

Brain tissue is a non-linearly viscoelastic, multiphase tissue. Its complex mechan-
ical behaviour arises from the inherently non-linearly viscoelastic components
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(neurons, glia) and also from interactions between extracellular fluid and these
components. Since brain tissue behaves non-linearly at strains above 0.1–0.3 %
(Bilston et al. 1997, 2001), for most practical purposes, non-linear viscoelastic
approaches must be used. One exception to this are in vivo measurements of
brain tissue properties performed using wave propagation methods, such as during
magnetic resonance elastography (MRE), where the displacements are exceedingly
small (<10 �m) and linear viscoelasticity can be used (Green et al. 2008; Sack et al.
2008). Few studies have carefully tested the principle of strain-time separability for
brain tissue, but one study suggests that it is not valid for brain tissue because the
shape of the relaxation modulus varies with strain (Bilston et al. 2001), although this
has often been ignored in constitutive modelling studies (see below). Once the linear
viscoelastic limit is exceeded, brain exhibits shear thinning in oscillatory studies,
with the shear modulus decreasing with increasing strain (Bilston et al. 1997;
Nicolle et al. 2005). No studies have directly addressed the underlying structural
rearrangements during such loading, and thus the microstructural mechanisms of
shear thinning in brain tissue are not well understood. The observed effect is similar
to that observed in polymer melts and some suspensions, however, where this has
been attributed to rearrangement of the microstructure by the flow in a manner that
provides less resistance to shear, including aggregation of particles and alignment
of long chain polymers (Ferry 1980). In relaxation tests, brain tissue typically
exhibits a power-law relaxation (e.g. Bilston et al. 2001) with no clear plateau
modulus observed within the time scale of most experiments (typically hundreds
of seconds). The relaxation behaviour is thought to be due to a combination of
physical rearrangement of the cells and their processes, and also from interstitial
fluid flow in this highly hydrated tissue. In tension, brain tissue has been shown
to increase in stiffness with increasing strain, similar to many other soft biological
tissues (Miller and Chinzei 2002; Miller et al. 2000). At a microstructural level, this
has been assumed to be due to progressive recruitment of crimped fibres and their
cross-links.

Brain white matter has typically been found to be slightly softer than grey matter
(Green et al. 2008; Prange and Margulies 2002), but the microstructural reasons for
this are not clear. It may relate to the presence of myelin, and fewer neural cell bodies
and dendrites. The latter may act as ‘cross-links’ between cellular structures. Little is
known about precisely how the interconnections affect tissue mechanics. Neuronal
kinematics during elongation suggest that non-linear elasticity arises from similar
mechanisms as in collagenous tissues—progressive straightening and recruitment
of fibres (Bain et al. 2003). There is considerable heterogeneity in the mechanical
behaviour of neurons and glial cells, cell bodies have been found to be stiffer
than neural processes, and glial cells are softer than neurons (Lu et al. 2006).
Selective removal of myelin and glial cells in embryonic spinal cords resulted in
a reduction in tensile stiffness, confirming their mechanical contribution to overall
CNS tissue behaviour (Shreiber et al. 2009). Studies have also shown that brain
tissue mechanical behaviour is heterogeneous across the brain, with differences
between the corpus callosum and corona radiata in white matter, and in different
grey matter regions (Coats and Margulies 2006), between the mean behaviour of the
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cerebral hemispheres and the cerebellum (Zhang et al. 2011), and even within local
structures such as the hippocampus (Elkin et al. 2007). These differences have been
attributed to differences in the local microstructure of the tissue. The cerebellum, for
example, has a much finer microstructure than the cerebrum, with delicate branching
structures and lower proportion of glial cells than the cerebrum, which may explain
its less stiff mechanical behaviour (Zhang et al. 2011).

The spinal cord has been much less well studied than the brain, but has also
been shown to be a non-linear viscoelastic material (Bilston and Thibault 1996;
Clarke et al. 2009; Fiford and Bilston 2005; Ichihara et al. 2001). Comprehensive
rheological studies of shear properties have not been done due to the difficulties of
sample preparation, and most reported data relies on tensile tests or compression
(Bilston and Thibault 1996; Clarke et al. 2009; Fiford and Bilston 2005; Ichihara
et al. 2001). Similarly to brain tissue, white matter has been shown to be slightly
softer than grey matter (Ichihara et al. 2001). The spinal cord is widely assumed
to be mechanically anisotropic, due to highly aligned white matter fibres (Tsuchiya
et al. 2003), although formal studies confirming this are lacking. One unpublished
study (Fiford 2006) has shown that the non-linear stress–strain curve observed
in tensile tests of spinal cord tissue (Bilston and Thibault 1996; Clarke et al.
2009; Fiford and Bilston 2005) is likely to be due to progressive uncrimping and
straightening of axons during stretch, similar to collagenous tissues. For a more
detailed review of CNS tissue mechanical behaviour, see Bilston (2011) and Cheng
et al. (2008).

Age can influence CNS tissue mechanical behaviour, although there are only a
few studies documenting these changes, none of which directly link the changes
to microstructural alterations during development and ageing. Porcine brain tissue
of young animals, matching infant ages in humans, has been shown to be approx-
imately twice as stiff as adult and older juvenile animal brain tissue (Prange and
Margulies 2002). This is possibly due to reduced amounts of myelination in the
youngest animal tissues. One recent MR elastography study has shown that the
mean shear modulus of the human brain in vivo reduces with age in adults (Sack
et al. 2009), and although the structural underpinnings of these changes have not
been directly established, this may be due to cell loss as part of the ageing process.

Alterations in CNS mechanical properties as a result of disease processes are a
growing area of research, at least in part because of the emerging technologies that
allow measurement of in vivo CNS tissue properties, including MR elastography
(Green et al. 2008, 2009; Sack et al. 2008; Kruse et al. 2008). To date, a small
number of preliminary studies have examined mean brain shear modulus changes
in normal pressure hydrocephalus (Streitberger et al. 2011), Alzheimer’s disease
(Murphy et al. 2011), demyelination (Schregel et al. 2012), and also shown that
cancerous tissues can have different elastic and viscous properties to the surrounding
healthy tissues (Jamin et al. 2011). In the latter work, the changes in viscous
behaviour are thought to be due to differences in the vascular structure within the
tissue, whereby cancerous tissue has a disorganised vascular network that acts to
scatter (and thus attenuate) the mechanical waves used to probe tissue mechanical
behaviour. Wave attenuation results in an apparent viscosity in the tissue in these
methods.
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1.5.2 Peripheral Nervous System Tissues

Peripheral nerves have largely been studied in tension. They exhibit the ‘j-shaped’
stress–strain curve typical of soft biological tissues, with an initial softer toe region,
a linear region as strain increases, followed by yield and failure at larger strains
(ranging from 20 to 70 %). The toe region of peripheral nerves is very soft, with
little tension developed up to 15 % of tensile strain (Kwan et al. 1992). Many
early studies report the average elastic modulus for the linear region of the stress–
strain curve, which ranges from 0.5 to 28.5 MPa, depending on the nerve tested
and the species. Peripheral nerves are also viscoelastic, with significant strain-rate
dependent behaviour (Singh et al. 2006), and exhibiting substantial relaxation if
elongated. In compression, similar overall behaviour is seen, with an initial toe
region followed by a stiffening response, although the only detailed study is of
nerve roots (Hubbard et al. 2008). Peripheral nerve mechanics have recently been
reviewed in detail elsewhere (Nicholson and Winkelstein 2011).

1.6 Structure–Function Relationships

One of the most challenging and interesting aspects of researching neural tissue
biomechanics is defining the link between structure, mechanics, and neural function.
There is a plethora of work in the neurosciences and neurological domains that
aims to link structure and function, using both traditional neuropathological and
histological techniques and modern in vivo imaging techniques. Research to link
neurological function to mechanical behaviour was initially driven by studies of
traumatic brain injury, where neurological deficits were observed as a result of
mechanical loading, despite the apparent macroscopic integrity of tissue. It is
now well known that much of the damage to neural tissues arising from trauma
occurs because of secondary damage that occurs hours later than the primary
mechanical insult (Povlishock and Christman 1995). More recently, there has
been interest in studying many other situations and medical disorders in which
mechanical loading of neural tissues are thought to play a key role, including
structural neurological disorders (e.g. hydrocephalus, syringomyelia), neurosurgical
simulation, understanding how the nervous system develops in the embryo and
foetus, and more. The challenge of developing mathematical models that can predict
neural function as a function of mechanical loading is still an open one, although
biomechanics researchers continue to work intensely on the problem. Starting at the
cellular level and working up to the whole organism level, some of the particular
challenges include those outlined in Fig. 1.3.

Meeting each of these challenges requires both reliable experimental data and
robust validated mathematical models that can predict the tissue response across a
broad range of loading conditions. The vast majority of research covering the func-
tional response of neural tissues to mechanical loading has been conducted using
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1. Defining the precise loading conditions (strain, strain rate, 

duration) that result in axonal functional and structural injury;

2. Determining how the population of nerve cells are loaded as a 

result of local tissue-level loading;

3. Determining how these relationships vary across the different 

regions of the nervous system (brain, spinal cord, peripheral 

nerves);

4. Determining how local regions of the nervous system are 

deformed within the overall loading of the organ;

5. Determining how the neural tissues are loaded when the body 

is loaded.

Cell

Whole 
organ

Body

Fig. 1.3 Challenges in understanding neural tissue biomechanics and the relationship to
microstructure

animal models, ranging from rodents to primates. Human studies of traumatic brain
and spinal cord injury are largely limited to retrospective reconstructions of injury
circumstances, often using finite element models to estimate tissue deformation
occurring as a result of the injurious situation, and comparison with the known tissue
injuries. This finite element modelling work has recently been reviewed elsewhere
(Yang et al. 2011). Cadaveric studies can provide some insight into structural
tissue failure, but not functional outcomes. Biomechanical modelling studies of
structural neurological disorders are also typically based on retrospective analysis,
for example, attempting to reproduce the dilation of the ventricles observed in a
hydrocephalus patient as observed from MRI scans (Pena et al. 1999). Controlled
studies where the precise loading conditions are known and the neural response is
recorded, however, are rare in humans, for both practical and ethical reasons, even
at physiological loading levels.

In the CNS, primate studies of brain injury (Gennarelli and Thibault 1982;
Gennarelli et al. 1982) and spinal cord injury (e.g. Clarke and Bilston 2008;
Clarke et al. 2008; Fiford et al. 2004) have suggested that both the amount of
tissue deformation and the rate of deformation are important for predicting neural
dysfunction. More recently, in studies aimed at linking microstructure to injury in
brain tissue suggest that the role of strain rate is less clear (Cater et al. 2006).

In peripheral nerves, neurological deficits are associated with either compression
(Nicholson and Winkelstein 2011; Clarke et al. 2007; Han et al. 2010) or stretch (e.g.
Kwan et al. 1989, 1992). Neurological function can be disrupted by macroscopic
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mechanical loading either directly or indirectly via mechanically induced ischemia
(Tanoue et al. 1996). Responses depend on the degree of deformation, the loading
rate (Hubbard et al. 2008; Clarke et al. 2007; Rothman et al. 2010; Rothman and
Winkelstein 2007), and the duration of loading, reflecting the viscoelastic nature of
these tissues. The threshold for abnormal function can be altered by inflammation
(Dilley et al. 2005). Precise details of how this relates to the local microstructure
are unclear, although one study suggests that the perineurium fails before the nerve
sheath (Kwan et al. 1992) and there are differences in compliance in nerves along
their length (Phillips et al. 2004). One study of nerve roots under tension reported
decreases in nerve conduction velocity with increasing strain and strain rate, and
above a strain of 20 %, nerve conduction was blocked entirely (Singh et al. 2009).

1.7 Modelling of Neural Tissue Mechanical Behaviour

There have been many constitutive models proposed for CNS tissues, particularly
for brain tissue. The majority of these are phenomenological, with only a few based
on microstructural considerations. Early constitutive models attempted to use linear
viscoelastic models (e.g. Fallenstein et al. 1969; Galford and McElhaney 1970),
typically spring and dashpot-based models, but these are not valid for modelling
the non-linear viscoelastic behaviour of CNS tissue for most practical applications,
and have been superseded by non-linear models. The non-linear models tend to fall
into two camps, those based on quasilinear viscoelasticity (e.g. Miller 1999) and
those that are more general (e.g. Bilston et al. 2001; Brands et al. 2004; Darvish
and Crandall 2001). The quasilinear viscoelastic models typically use a hyperelastic
formulation (most commonly an Ogden model) to describe the non-linear elasticity,
together with a linear viscoelastic relaxation modulus (most commonly a Prony
series, but other formulations also exist) to match the viscous behaviour. As noted
above, the strain-time separability of brain tissue has been questioned, which
suggests that these models may be inappropriate for use to describe brain tissue,
however, the deviations from strain-time separability are not large at moderate
strains (Bilston et al. 1997, 2001; Darvish and Crandall 2001), and given the
complexity of the mechanical response of brain tissue, the errors introduced by
this assumption may be acceptable, depending on the application. Indeed, for
neurosurgical simulation, the details of the constitutive model have been suggested
to be less critical than the numerical formulation used to model incompressibility
(Wittek et al. 2009). Models that attempt to capture the full range of non-linear
behaviour of CNS tissue have included those that model the variation in relaxation
behaviour with strain, rate-dependent viscosity (Bilston et al. 2001; Hrapko et al.
2006) and yield behaviour. Few of these models have directly considered the
microstructure as the basis for modelling, although Yoram Lanir’s work has shown
that hyperelastic models can incorporate microstructural information, including
fibre bundle waviness and recruitment with strain, through choice of an appropriate
strain energy density function (Lanir 2009).
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Mechanical anisotropy of brain tissue appears to vary across the brain (as does
the degree of structural anisotropy as determined by DTI (Pierpaoli et al. 1996)),
and constitutive models describing the anisotropy have been suggested. Velardi et al.
(2006) used a transversely isotropic hyperelastic (not viscoelastic) model to describe
the response of porcine corpus callosum and corona radiata tissue samples. Cloots
et al. (2011) used multiscale finite element modelling to simulate the axonal, tissue,
and macroscopic level behaviour, including anisotropy. None of these models fully
capture the anisotropic non-linear viscoelastic behaviour of brain tissue. There is
still much work to be done in developing comprehensive microstructurally based
constitutive models for neural tissue.

Recent work combining DTI with MR elastography is a promising method of
identifying subject-specific anisotropic mechanical properties in neural tissues (Qin
et al. 2013). While this data is, so far, limited to the small strain linear viscoelastic
regime, it could be combined with other forms of deformation (e.g. Clarke et al.
2011) to provide a comprehensive picture of the complex mechanical behaviour of
neural tissues, and used for structurally based constitutive equations.

For some applications, such as the study of hydrocephalus (and the related spinal
cord condition, syringomyelia) and those involving tissue oedema, alterations in
the distribution of fluid within neural tissues play a key role. A small number of
experimental studies (e.g. Cheng and Bilston 2007) and modelling studies have
described brain tissue as a two-phase material, using poroelastic-type models.
The simplest poroelastic (or biphasic) models have been shown to be unable to
reproduce the strain-rate sensitivity observed in brain tissue (Chinzei and Miller
1996), however a poro-hyper-viscoelastic model has been more successful (Cheng
and Bilston 2007) and has been used to model the time-dependent response of
the brain leading to enlarged ventricles (Cheng and Bilston 2010). This model
incorporates an intrinsically viscoelastic porous matrix through which an inviscid
fluid permeates. The model has not been adapted to incorporate white matter
anisotropy to date, although the mathematical framework to do so is relatively
straightforward. Franceschini et al. (2006) modelled brain tissue using a poro-
hyperelastic model, and García and Smith (2009) developed a biphasic hyperelastic
model, focussed on interstitial transport of solutes (such as drugs) in the brain.

1.8 Future Directions

It is clear from this overview of the microstructure, mechanics, and functional
responses of neural tissues that robust, validated constitutive models for neural
tissue that link mechanical behaviour to tissue microstructure remain a considerable
research challenge. Key challenges exist across the experimental, microstructural,
functional, and modelling domains. Specifically, while there are a plethora of
studies testing neural tissues in specific loading conditions, there are very few
well-conducted experimental studies that characterise tissue response across a
broad range of loading regimes, including tension, compression, shear orientations,
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under relaxation, oscillation and more complex loading histories, at large and
small deformations and deformation rates, and across different anatomical regions.
There is also a need to directly match the microstructure to observed responses,
particularly during loading, to better understand how tissue structure influences
observed mechanical behaviour, and how loading influences tissue structure. Given
the importance of the functional activity of neural tissues, linking mechanical
response to neural activity also requires further work, particularly delineating how
loading of individual tissue components (neurons, glial, vasculature) interact to
affect neural activity at different time scales ranging from high loading rates typical
of trauma to the slow loading rates typical of structural neurological disorders, and
peripheral nerve compression pathologies such as carpal tunnel syndrome.
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Chapter 2
Modeling of Collagenous Tissues Using
Distributed Fiber Orientations

Daniel H. Cortes and Dawn M. Elliott

Abstract Collagen is the most abundant protein in mammals and is the major
component of load-bearing tissues including tendons, ligaments, cartilage, and
others. The mechanical behavior of collagenous tissues depends on the relative
collagen content and its organization. Fiber orientation plays a crucial role in
the mechanical behavior of these tissues. Several mechanical properties such
as anisotropy and Poisson’s ratio are mostly determined by fiber organization.
Additionally, mechanical models that include fiber orientation distributions better
predict the mechanical behavior of collagenous tissues. Dr. Lanir proposed a
pioneering formulation to model the mechanics of collagenous tissues that includes
fiber nonlinearity, buckling, and distributed orientations. This formulation had been
used to model a variety of tissues and is considered the gold standard for the analysis
of distributed fibers. The objective of this chapter is to describe the methods to
analyze the mechanical behavior of tissues with fiber orientation distributions. This
chapter includes methods to measure fiber orientation, a detailed description of
Lanir’s formulation, simplified versions of Lanir’s approach, and applications to
several collagenous tissues.

2.1 Introduction

Collagen is the most abundant protein in mammals and is the major component
of load-bearing tissues including tendons, ligaments, cartilage, disc, skin, arteries,
and valves (Fratzl 2008). The fibrillar collagens, particularly types I, II, and III
are primarily present in these tissues that are responsible for mechanical load
transmission (Hulmes 2008). These load-bearing tissues are also composed of other
structural proteins such as elastin and proteoglycans. The mechanical behavior of
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collagenous tissues depends on the relative collagen content and its organization.
Fiber orientation plays a crucial role in the mechanical behavior of these tissues.
For example, tendons and ligaments are largely composed of collagen type I,
and collagen fibers have a preferred orientation in the direction where load is
transmitted. Conversely, tissues loaded in multiple directions, such as the annulus
fibrosus of the intervertebral disc or the adventitia of arteries, have two or more
preferred fiber orientations. The degree of anisotropy and both the modulus and
Poisson’s ratio are influenced by the fiber organization (Ateshian et al. 2009).

Mechanical models of collagenous tissues explicitly consider fibers as one of
their main components. For simplicity, fibers are often considered to be aligned.
However, several studies have shown that mechanical models that include the
orientation distribution of fibers better describe the experimental mechanical behav-
ior (Ateshian et al. 2009; Gasser et al. 2006; Sacks 2003; Federico and Herzog
2008). For instance, a model of articular cartilage that considers fiber orientation
distribution is able to predict several experimental observations such as tension-
compression nonlinearity, high Poisson’s ratio in tension, and stiffening after
proteoglycan depletion (Ateshian et al. 2009). Therefore, modeling the fiber orien-
tation distribution is crucial for the accurate prediction of the mechanical behavior
of collagenous tissues.

The objective of this chapter is to describe the methods to analyze the mechanical
behavior of collagenous tissues with fiber orientation distributions. Techniques to
measure fiber orientation distributions are presented in Sect. 2.2. Two approaches
to model the mechanical behavior of fibers with distributed orientations, Angular
Integration and Structural Tensors, are presented in Sect. 2.3. Lanir proposed
one of these methods, Angular Integration, in 1983 and it is still considered
the gold standard formulation for the mechanics of distributed fibers. The other
method to analyze fiber distributions, Structural Tensors, is a simplification of
Lanir’s formulation that is numerically more efficient. A brief comparison between
those approaches is also presented. To show the advantages of considering fiber
orientation distributions, applications of these modeling approaches to different
tissues are presented in Sect. 2.4. Finally, concluding remarks are presented in
Sect. 2.5.

2.2 Experimental Measurements of Fiber Orientation
Distribution

The mechanical behavior of collagenous tissues is greatly influenced by the collagen
fiber organization. Fiber orientation is a structural parameter that defines the
anisotropy of the tissue. For instance, the modulus of tendons is greater in the
direction of the fibers than in the transverse direction. For some collagenous tissues,
such as Achilles tendon, the orientation of the fibers is predominantly in one
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direction. These tissues can be accurately modeled using a fiber population with
a single orientation. However, collagen fibers in tissues such arteries, mitral valve,
and articular cartilage have a wide range of fiber orientations. To accurately model
the mechanical behavior of these tissues is important to consider the distribution of
fiber orientation. In this section, methods to measure fiber orientation distributions
are discussed.

2.2.1 Small Angle Light Scattering

Small angle light scattering (SALS) is an optical technique where a laser light
is passed through a thin specimen and a portion of the incident light is scattered
due to different refraction indices of the fibers and the surrounding matrix (Sacks
and Chuong 1992). The scattered pattern is measured by rotating a linear array of
photo-detectors around the optical axis. The pattern is related to the 2D Fourier
transformation of the transmitted light (Yang et al. 1987). The general features of
a typical SALS scattered pattern are shown using a surface plot when the height
represents the intensity of transmitted light (Fig. 2.1a). The contour plot (Fig. 2.1b)
shows two preferred directions for this example. Since light scatters in a direction
perpendicular to the long axis of a fiber, there is a 90ı shift between the scattered
light and the fiber orientation. A plot of the angular distribution of light intensities
also shows two preferred orientations (Fig. 2.1c). From this plot the main fiber
orientations, the spread of the fiber orientation distribution (e.g., variance), and the
volume fraction of fibers can be obtained. The preferred orientation is obtained by
locating the angle where light intensity reaches a maximum. The variance can be
obtained by fitting a distribution function to each of the fiber populations. Finally,
the volume fraction of each fiber population can be calculated as the ratio of the area
under the distribution function to the total area of the scan. This technique has been
applied to pericardium (Sacks 2003), aortic valves (Billiar and Sacks 2000), and
other tissues (Sacks and Chuong 1992; Gilbert et al. 2008; Waldman et al. 1999).

Fig. 2.1 Features of a typical small angle light scattering (SALS) experiment. (a) Surface plot
shows the intensity of scattered laser light; (b) a contour plot reveals preferred fiber directions.
(c) Fiber-orientation parameters can be calculated by fitting distribution functions to the angular
distribution of light intensity. Adapted from Sacks and Chuong (1992)



18 D.H. Cortes and D.M. Elliott

CCD Camera

Zoom lens

Effective Circular
Analyzer

Sample

Rotating
Polarizer

Mirror

Focusing
Lens

Fiber Optic
Illuminator

7

6

5

4

3

2

1

0
–50 0

Angle (deg)

P
er

ce
nt

ag
e

50

Normalized Histogram

a b

c

Fig. 2.2 Quantitative polarized light-mechanical testing system. (a) Imaging and testing setup
(adapted from Tower et al. (2002)), (b) Orientation map on a supraspinatus tendon sample, (c)
normalized histogram of fiber orientations calculated from the orientation map shown in (b)

2.2.2 Quantitative Polarized Light

This technique uses the birefringence properties of collagen fibers to determine
their orientation. In this method, a rotating linear polarizing film, the sample, and
a circular polarizing analyzer (a combination of quarter wave and linear polarizing
filters) are placed in-between a light source and a CCD camera (Fig. 2.2). When
an isotropic sample is tested, rotation of the linear polarizer results in a constant
nonzero intensity beam. However in an anisotropic fibrous tissue, the polarized
beam is split into two, one faster than the other, resulting in an elliptically polarized
beam. If the polarization axis of the beam is rotated, a sinusoidal variation of
the intensity is recorded. The oscillation’s phase and amplitude are related to
the sample’s alignment and retardation, respectively. Since a phase value can be
measured per pixel, a fiber orientation map can be calculated for the sample (Tower
et al. 2002). This technique has several advantages: the components are inexpensive
and the data can be acquired fast enough to measure in real-time fiber realignment
during a mechanical test. Additionally, the entire sample can be imaged at once.
This technique has been applied to supraspinatus tendon (Lake et al. 2009), facet
capsule ligament (Quinn et al. 2010; Quinn and Winkelstein 2011), and collagen
gels (Lake et al. 2011; Lake and Barocas 2011; Raghupathy et al. 2011).

2.2.3 Fast Fourier Transformation

This method calculates the distribution of fiber orientations by applying a fast
Fourier transformation (FFT) to an optical image illustrating the fiber population
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Fig. 2.3 SEM Image (a), power spectrum (rotated 90ı) (b), and discrete orientation distribution
for an electrospun scaffold (c). (Adapted from Ayres et al. (2006))

of the tissue. The rationale behind this technique is that in an image of perfectly
aligned fibers the spatial variation (frequency) of the image intensity is higher in
the perpendicular direction than along the fiber. Consequently, a 2D FFT of this
image will easily identify the orientation of the maximum frequency and this will
correspond to the direction perpendicular to the fibers. In an image of a tissue with
distributed fibers, the power spectrum of a 2D FFT converts this image into a 2D
map where, at each pixel, the intensity represents the amplitude of the intensity
variation; the frequency is represented by the distance from the origin; and the
direction represents the orientation in the original image (Fig. 2.3). A discrete
orientation distribution can be calculated from the power spectrum by summing
the pixel intensities along the radii of the power spectrum. A continuous orientation
distribution function can be obtained by fitting the normalized discrete orientation
distribution with a continuous probability function. Since this technique can be
applied to images obtained from a variety of imaging modalities, it has been applied
to variety of tissues including human annulus fibrosus (Guerin and Elliott 2006),
chordae tendineae (Vidal Bde and Mello 2009), and electrospun scaffolds (Ayres
et al. 2006, 2008).

2.2.4 Second-Harmonic-Generation

Second harmonic generation is a nonlinear effect where the light scattered by a
material with non-centrosymmetric structural features has a component with twice
the frequency (second harmonic) (Stoller et al. 2002; Chang and Deng 2010). This
phenomenon was first recognized in crystals by Franken et al. (1961) shortly after
the demonstration of laser. Since collagen molecules are organized naturally into
structures with a lack of center of inversion symmetry, they are able to generate sec-
ond harmonic light (Fine and Hansen 1971). By rotating the polarization axis of the
incident beam, the amplitude and phase of the modulated fundamental and harmonic
signals are recorded. The information about fiber orientation is contained in the
phase of these signals. The preferred fiber orientation at a specific point is calculated
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Fig. 2.4 (a) Light micrograph of a small region of intervertebral disc showing two different
regions of fiber orientation. (b) Orientation image of approximately the same region. (c) Histogram
showing the frequency of fiber orientation in the intervertebral disc (b). Adapted from Stoller et al.
(2002)

using this technique. By scanning the sample a spatial map of fibers orientations can
be obtained. A histogram of fiber orientations shows the overall fiber distribution of
the scanned area (Fig. 2.4). This technique has been applied to a variety of tissues
such as rat tail tendon, bovine fascia, porcine cornea, and human intervertebral disc
(Stoller et al. 2002; Chang and Deng 2010; Fine and Hansen 1971).

2.2.5 Magnetic Resonance Imaging

Two MRI methods have been used to quantify fiber orientation: Diffusion Tensor
Imaging (DTI) and 1H NMR of multipolar spin states. Both techniques are based
on the fact that motion of hydrogen atoms (1H spin) of water molecules in the
vicinity of collagen fibrils is anisotropic and has a preferred direction along the
collagen molecule. In DTI, the fiber orientation can be determined by direction with
maximum flow rate (Merboldt et al. 1985). In 1H NMR of multipolar spin states,
the distribution of the orientation of collagen fibrils can be estimated by measuring
the anisotropy of a spin property called residual dipolar coupling (Berendsen 1962;
Fechete et al. 2003). These techniques have been used to measure the distribution
of fibril orientations in tendons (Fechete et al. 2003) and cartilage (de Visser et al.
2008; Deng et al. 2007; Pierce et al. 2010; Raya et al. 2011).

2.2.6 Continuous Functions of Fiber Orientation Distribution

Once the fiber orientation is experimentally measured, it can be used directly in a
model (see next section) or more often, the fiber orientation distribution is described
as continuous functions of the fiber angle. Probability functions are commonly used
since they represent the spread (variance) of fiber orientation around one or several
preferred orientation without changing the “amount” of fibers, i.e., the integration
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of the area under curve over the entire range is always a constant value. This is
important to uncouple the anisotropy of the fiber distribution and the stiffness of the
fiber population (this will be discussed in more detail in the next section).

The distribution functions can be divided in planar (2D), transversely isotropic
(3D) and orthotropic (3D) distributions. Planar distributions are used when the
majority of the fibers lay in a single plane, e.g., bovine pericardium (Sacks 2003)
and supraspinatus tendon (Lake et al. 2009). Normal and von Mises distribution
have been used to represent planar distributions with a single preferred orientation
(Bischoff 2006; Holzapfel and Ogden 2010) ((2.1) and (2.2), respectively):

R .�/ D 1

�
p
2�

e

�
� .���/2

2�2

�
; (2.1)

R .�/ D eb cos.���/

2�I0.b/
; (2.2)

where R(�) is the fiber density function,� is the preferred fiber orientation, � is the
standard deviation of the distribution, I0 is first-kind zeroth-order Bessel function,
and b is a parameter related to the circular variance as follows:

�2 D 1 � I1.b/

I0.b/
; (2.3)

where I0 and I1 are Bessel functions of first kind of zeroth and first order,
respectively. Other distribution functions have been proposed to represent fiber
distribution with two preferred fiber orientations (bimodal distribution) (Bischoff
2006):
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This distribution is symmetric about � D 0ı, the means of the two modes are ˙�
and each mode has a standard deviation � . A transversely isotropic distribution is
a 3D distribution which is symmetric around the axis of the mean fiber orientation.
This type of distributions have been applied to describe the fiber distribution in
the arterial wall (Gasser et al. 2006), aortic heart valves (Freed et al. 2005), and
supraspinatus tendons (Thomopoulos et al. 2006). Gasser et al. (2006) proposed a
transversely isotropic function that can be interpreted as the axis-symmetric version
of the von Mises distribution:
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where b is a concentration parameter associated with the von Mises distribution,
erfi(x) D �i � erf(x) denotes the imaginary error function, and � is the “nutation”
angle around the axis of symmetry. An ellipsoidal distribution has been used to
describe orthotropic symmetries (Ateshian et al. 2009; Nagel and Kelly 2012):
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�
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.cos � sin'/2

�21
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�22
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where � and ® are Eulerian angles, �1, �2, and �3 are the semi-axes of the ellipsoid,
and
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2.3 Modeling Fiber Mechanics Using a Continuous
Distribution of Fiber Orientation

Collagenous tissues are often modeled as a fiber-reinforced composite material
(Spencer 1984). In this approach, the tissue is analyzed as a mixture of matrix
and fibers, where the matrix represents the non-fibrillar components. In these
models, the matrix is usually considered isotropic and the anisotropy of the tissue
is characterized by the fiber orientation. For instance, tendons and ligaments are
usually modeled using fibers aligned in a single orientation; therefore, the stiffness
along the fibers is much higher than the transverse direction (Lanir 1978). Another
important characteristic of collagen fibers is that they confer the nonlinearity of
the tissue via fiber crimping and buckling. Collagen fibers have different degree of
waviness (crimping). Therefore, when load is applied to the tissue, not all fibers
are stretched simultaneously. Instead, fibers are progressively recruited increasing
the stiffness of the tissue with deformation (Lanir 1978, 1983; Comninou and
Yannas 1976; Diamant et al. 1972). The other mechanism by which fibers contribute
to the nonlinearity of the tissue is fiber buckling. Due to their high slenderness
ratio, fibers buckle at negligible compressive forces (Holzapfel et al. 2004). Thus,
collagenous tissues exhibit direction-dependent tension-compression nonlinearity
(Soltz and Ateshian 2000). The significant influence of the orientation of collagen
fibers on the mechanical behavior of the tissue demands a careful consideration of
the orientation distribution for the accurate modeling of collagenous tissues. In the
pioneering work of Lanir, a formulation, based on angular integrals, was proposed
to include fiber nonlinearity, buckling, and distributed orientations. These integrals
represent the addition of the contribution of infinitesimal fractions of fibers oriented
in a given direction. This section describes Lanir’s Angular Integration formulation
and subsequent simplifications for applications to various tissues.
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2.3.1 Angular Integration

In Lanir’s formulation (Lanir 1983), Angular Integration, the fiber distribution was
described by a spatial density distribution function, which quantifies the volumetric
fraction of fibers oriented in a particular direction. The total strain energy and
stresses were calculated as the integration of the energy and stresses of fibers in
all directions. This general formulation was later simplified for the case of planar
tissues under biaxial testing (Lanir et al. 1996). Similar approaches were presented
by (Ateshian et al. 2009; Sacks 2003; Billiar and Sacks 2000; Girard et al. 2009;
Nguyen et al. 2008). In general, the strain energy (	 ) and the second Piola–
Kirchhoff stress tensor (Sf) for a family of distributed fibers can be expressed as

‰f D
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0

R .�; '/‰ .
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Sf D 2
@‰f

@C
D 2

Z 2�

0

Z �

0

R .�; '/
@‰ .
/

@C
sin �d�d'; (2.9)

where 
 is the stretch of a fiber, ‰ is the strain energy of a fiber, C is the right
Green-Cauchy strain tensor. In (2.8) and (2.9), it is assumed that the fiber will buckle
under any compressive deformation; therefore, ‰ .œ/ D 0 and @‰ .œ/ =@C D 0 for

 � 1:0. The partial derivative in (2.8) can be rewritten using the chain rule as
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where M is a unit vector representing the average direction of an infinitesimal
fraction of fibers, and the stretch, in the direction M, is related to the strain tensor
by 
2 D C W M ˝ M. Therefore, (2.9) can be rewritten as
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Equation (2.11) is valid for a general 3D fiber distribution. However, it can be
simplified for the case of planar fiber distributions as
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M ˝ M d�: (2.12)

Although (2.12) has been solved for a particular choice of R(�) and‰ (Raghupathy
and Barocas 2009), in general, it is very difficult to obtain a closed-form solution;
therefore, numerical integration is the usual alternative.
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2.3.1.1 Numerical Solution of the Angular Integration Formulation

In this section, some aspects of the numerical solution required for Lanir’s
Angular Integration formulation are discussed. Equations (2.8)–(2.12) show that
the calculation of the stress and strain energy requires an angular integration. In
very few simplified cases the integral can be solved analytically (Raghupathy and
Barocas 2009; Cortes et al. 2010). However, in the majority of practical cases a
numerical integration must be executed. In the case of planar (2D) distributions,
such that of (2.12), a trivial 1D integration is necessary. However, 3D distributions,
such as those in (2.5)–(2.7), require an integration over the unit sphere. This integral
cannot be solved just by dividing the range of the variables � and ® in equally
spaced segments since there would be an accumulation of integration points around
the poles of the unit sphere causing numerical inaccuracies (Fig. 2.5a). Instead,
an icosahedron-based method has been used to solve this problem (Ateshian et al.
2009; Nagel and Kelly 2012). In this method, the triangular faces of an icosahedron
are divided using equally spaced points and then mapped onto the unit sphere
producing a more uniform distribution of the area of surface elements. It was shown
that the accuracy of this method can be further improved by rotating the cloud
integration points so that one point coincides with the orientation of the peak value
of the orientation distribution function (Nagel and Kelly 2012). In this way, the
numerical integration method is able to exactly capture the maximum radius of
the distribution function independent of the number of elements used to divide the
sphere.

Fig. 2.5 Discretization of the unit sphere using (a) equally spaced segments over the range of the
variables � and ® and (b) icosahedron-based method
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2.3.2 Generalized Structure Tensors: A simplified Approach
for Fiber Distribution

Structure tensors are an alternative approach to formulate the constitutive rela-
tions for fiber-reinforced materials. A generalized structure tensor represents the
anisotropy of the fiber population and, as shown below, the stress of the fibers is
proportional to this tensor. For instance, a material with aligned fibers is represented
by a structure tensor defined as the dyadic product a0 ˝ a0, where a0 is a unit
vector in the direction of the fibers in the reference configuration. The strain energy
of a composite material with aligned fibers can be expressed as a function of the
invariants of C and a0 ˝ a0:

I1 D C W I; I2 D 1=2
˚
tr2C � trC2

�
; I3 D det C; I4 D C W a0 ˝ a0: (2.13)

A general discussion on the use of these invariants and tensors can be found in
(Spencer 1984). Recently, Freed et al. (2005) and Gasser et al. (2006) formulated
structure tensors which consider the effect of fiber angular distribution. The angular
distribution tensor (H) is defined as
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Again, (2.14) can be simplified for planar fiber distributions as
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A similar expression can be easily obtained for planar distributions. From (2.16), it
can be observed that Ī4 is the weighted average of 
2. Notice that in the definition
of Ī4, there is not a condition to exclude fibers under compression. Therefore, if one
of the principal values of C is lower than 1.0, a fraction of compressed fibers will

be included in the average 

2
. Uniaxial tension, biaxial tension, and simple shear

are examples of deformation states for which at least one of the principal values of
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C is less than one. Consequently, error will be introduced when the structure tensor
formulation is considered in these loading scenarios.

For the generalized structural tensor, the strain energy (	 f) and the second Piola–
Kirchhoff (Sf) stress tensor can be expressed as
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; (2.17)
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An important advantage of this approach is that the angular integrals are evaluated
just once during the definition of the tensor H. After that, the stresses are obtained
by algebraic operations. This is important in numerical methods such as finite
elements since the number of calculation is greatly reduced. Notice that the strain
energy function and the stresses are calculated using the average stretch rather than
the actual stretch in the fibers; therefore, for nonlinear fibers, lower stresses are
obtained. In this formulation the buckling condition establishes that the whole fiber
distribution is neglected when the mean of stretch is lower than one (Gasser et al.
2006): ‰f D 0, Sf D 0 for 
 < 1:0 (or equivalently I4 < 1:0). However, since
this criterion is based on the average value of the stretch, compressed fibers may be
included in the calculation of 
 when 
 > 1:0; and conversely, fibers in tension may
be disregarded when 
 < 1:0. This will cause a difference between the angular
integration (Lanir’s formulation) and structure tensors. The differences between
these formulations are discussed in the next section.

2.3.3 Comparison Between the Angular Integration
and Structure Tensor Approaches

Although the structure tensor approach greatly reduces the amount of calculations
in numerical methods such as finite elements, several studies have shown that these
methods lead to different results for the same fiber distribution and applied strains
(Federico and Herzog 2008; Cortes et al. 2010; Pandolfi and Vasta 2012). In general,
the difference between the formulations increases with deformation and the spread
of the orientation distribution. In this section, a numerical comparison between the
angular integration (Lanir’s formulation) and structure tensors is presented for a von
Mises and a transversely isotropic distributions (Cortes et al. 2010). The following
popular strain energy has been chosen as a constitutive relation to describe the
mechanical behavior of the collagen fibers (Holzapfel et al. 2000)

‰ D c1
2c2

h
ec2.œ2�1/2 � 1

i
; (2.19)
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where c1 is an elastic constant and c2 a is non-dimensional parameter associated with
the degree of nonlinearity. A single set of material properties is used throughout
this section: c1 D 5 MPa, c2 D 30. These properties describe the behavior of the
supraspinatus tendon (Kadlowec 2009).

The generalized structure tensor associated with the distribution function shown
in (2.5) can be expressed as

H D �I C .1 � 3�/ a0 ˝ a0; (2.20)

where � D 2�

Z �

0

R .�/ sin3� d� ranges from 0 to 1/3 for perfectly aligned and

isotropic distributed fibers, respectively. An expression similar to (2.20) can be
obtained for a von Mises distribution

H2 D �2DI2 C .1 � 2�2D/ a02 ˝ a02; (2.21)

where H2, I2, and a02 ˝ a02 are 2D versions of the tensors shown in (2.20), the

distribution parameter is now defined as �2D D
Z �

0

 .�/ sin2� d� and ranges from

0 to 1/2. The parameters � and �2D are associated with the degree of anisotropy of
the fiber distribution (Fig. 2.6). For instance, a value of � D �2D D 0 corresponds to
aligned fibers, whereas �2D D 1=2 or � D 1=3 correspond to isotropic distributions.

Two loading configurations, typically used to characterize connective tissues,
have been selected for comparison: uniaxial and biaxial tension. The tissue is
considered as an incompressible material; therefore, the condition det C D 1 holds.
The comparison between the angular integration and structure tensor formulations

Fig. 2.6 Graphical representation of the fiber distribution of (a) planar distribution for several
values of �2D and (b) a transversely isotropic distribution for different values of �. (Adapted from
Gasser et al. (2006) and Cortes et al. (2010))
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Fig. 2.7 Difference of the
second Piola-Kirchhoff
stresses in the direction x1

(S11) between angular
integration and structure
tensor formulations increases
with the applied stretch (
1)
and decreases when the fiber
distribution (� for
transversely isotropic (3D)
and �2D for planar (2D)
distributions) is small.
Difference defined as
(SAI � SST)/SAI � 100. Notice
that distributions go from
perfectly aligned
(�D �2D D 0) to isotropic
(�D 1/3, �2D D 1/2).
Adapted from Cortes et al.
(2010) 0 0.05 0.1 0.15 0.2 0.30.25

0 0.1 0.2 0.3 0.4 0.5

Transv. Isotropic (3D)

100

90

80

70

60

50

40

30

20

10

0

Planar (2D)

S 1
1 

D
if
fe

re
nc

e 
(%

)

κ

κ2D

λ1 = 1.10

λ1 = 1.20

for planar (2D) and transversely isotropic (3D) distributions under uniaxial tension
is shown in Fig. 2.7. It can be observed that the difference between these formu-
lations tends to zero when the fibers are aligned (� ! 0). This can be attributed
to the reduced number of buckled fibers and that the average fiber stretch is closer
to the actual stretch of the fibers. A difference of 10 % in the longitudinal stress
is obtained for � D 0:015 (�2D D 0:022) when a stretch of 1.2 is applied. These
values of the distribution parameters � and �2D represent distributions where 95 %
of the fibers are oriented within 17ı of the mean fiber direction in the reference
configuration. This is in agreement with the analysis of Federico and Herzog (2008)
who asserted that approximations as those presented in (2.17) and (2.18) are a good
approximation of the general case ((2.8) and (2.9)) when there is a weak directional
dispersion around the mean direction.

For a transversely isotropic distribution, in the equi-biaxial case (
1 D
2), a
fraction of the fibers buckle due to the out-of-plane contraction and therefore do
not contribute to total stresses in the tissue. However, in the GST formulation, those
fibers are considered in the calculation of the average stretch. To illustrate this, a
single fiber of families with transversely isotropic distribution (2.5) under equal-
biaxial stretch is analyzed. Figure 2.8 shows the stress difference as a function of
fiber distribution for several values of the applied stretch. A 10 % difference is
obtained for �D 0.014 and a stretch equal to 1.2. This value is very close to that
obtained for the case of uniaxial tension (Fig. 2.7). The results shown in Figs. 2.8
and 2.9 were confirmed by a subsequent study (Pandolfi and Vasta 2012).

To decrease the difference between these formulations, a method that considers
second order terms of the pseudo-invariant Ih4i was proposed (Pandolfi and Vasta
2012). The inclusion of the dependence of the second order parameters improves the
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Fig. 2.8 Transversely
isotropic (3D) family of fibers
shows differences in the
second Piola–Kirchhoff
stresses (S11) even for the
case equal-biaxial testing.
Difference defined as
(SAI � SGST)/SAI � 100
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Fig. 2.9 Error percentage
with respect to the response
of the angular integration
approach for the generalized
structure tensor model (GST)
(Gasser et al. 2006) and the
fourth order structure tensor
model (V, Pandolfi and Vasta
2012) for equi-biaxial
deformation. Curves refer to
the stretches 
D 1.1 (label
1), 
D 1.15 (label 2), and

D 1.2 (label 3). Adapted
from Pandolfi and Vasta
(2012)

approximation, still conserving a rather simple formulation that avoids the explicit
integration of the stretch in the spatial direction. A Taylor expansion of the 	 (I4)
around it mean argument Ī4
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where the operator h�i is defined as h�i D
Z 2�

0

Z �

0

R .�; '/ .�/ sin �d�d'. The first

term on the right hand side of (2.22) is equivalent to that proposed by Gasser et al.
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(2006); the second term is equal to zero since hI4i D I4; and the third term is a
correction term proposed by Pandolfi and Vasta (2012), which can be rewritten as:

�
2c2‰

�
I4
�C c1

� h
2c2
�
I4 � 1

�2 C 1
i h

C W H W C � .H W C/2
i

for the constitutive equation for the fiber shown in (2.19). HereH D a0˝a0˝a0˝a0
is a fourth order structure tensor. A comparison between angular integration (Lanir’s
formulation) and structure tensor formulations (Gasser et al. 2006; Pandolfi and
Vasta 2012) for the biaxial case shows a decrease in the difference with respect to
angular integration (Fig. 2.9).

2.3.4 Remarks on Modeling Approaches

In this section, the two major approaches, angular integration and structure tensors,
used to analyze the mechanical behavior of tissues with distributed fibers were
described in detail. The angular integration method (Lanir’s formulation) is consid-
ered as the gold standard formulation for the analysis of the mechanics of distributed
fibers. It has been successfully used for many applications. However, it requires
a numerical integration every time a value of stress is required. Consequently,
when this formulation is implemented in numerical tools, such as finite elements,
the computation time increases considerably. The icosahedron method used to
discretize the unit sphere increases the numerical integration efficiency reducing
computational time. The generalized structure tensor formulation was proposed as
an alternative to reduce the number of integrals required to calculate fiber stress.
However, differences have been reported for some loading cases and orientation
distributions when compared to the angular integration approach. Consequently,
choosing one method over the other depends on the application at hand. In the
following section, some applications of both formulations are described.

2.4 Applications

Several fibrous tissues have been modeled using fiber orientation distributions.
Although this approach to model the fibers was first applied by Lanir to tendons
and skin (Lanir 1983; Lanir et al. 1996), a great number of studies have analyzed
cardiovascular tissues using fiber orientation distributions (Vidal Bde and Mello
2009; Stoller et al. 2002; Freed et al. 2005; Thomopoulos et al. 2006; Holzapfel
et al. 2004; Soltz and Ateshian 2000; Lanir et al. 1996). Recently, a few studies
have applied orientation distributions to the modeling of other fibrous tissues such as
articular cartilage, cornea, and annulus fibrosus (Ateshian et al. 2009; Pandolfi and
Holzapfel 2008; Caner et al. 2007). In general, a better prediction of the mechanical
behavior of these tissues has been obtained when fiber orientation distributions
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are considered. Showing each of these cases in detail is out of the scope of this
chapter. Instead, we summarize and discuss only those studies where the effect of
fiber distribution has been quantified by comparing angular integration, generalized
structure tensor, and models without fiber dispersion.

2.4.1 Arteries

The arterial wall is grossly divided in three layers: intima, media, and adventitia.
The intimal layer is the thin innermost layer of the arterial wall. It is composed
of a layer of endothelial cells, a sub-endothelial layer of loose connective tissue
with a large angular deviation, and an elastic layer that separates the intima and the
media. The media is the layer of the arterial and is composed of smooth muscle
cells, elastin fibers, and collagen fiber bundles. The collagen fibers in the medial
layer are highly aligned in the circumferential direction. Finally, the adventitia is
the outermost layer and composed mainly of fibroblasts and fibrocytes, collagen
fibers and ground matrix. The collagen fibers in the adventitia are arranged in two
helical fiber families with significant angular dispersion.

Gasser et al. (2006) modeled the mechanical behavior of the adventitial layer
using a model that consisted of an incompressible neo-Hookean matrix reinforced
by two families of distributed fibers. The fibers were modeled using the “�” model
with an exponential strain energy shown here in (2.18). The parameters used for the
analysis were representative to the human iliac artery: shear modulus of the matrix
c D 7.64 kPa, k1 D 996.6 kPa, k2 D 524.6, �D 0.226, and the angle between the
circumferential direction and each of the fiber families as � D 49.98ı. The model
was used to describe the response of the adventitial layer for the inflation and
uniaxial tests. To analyze the effect of the dispersion parameter � and the mean
fiber angle � on the mechanical response of the adventitia, simulations with the
following parameters were also calculated: � D 39.98ı and 59.98ı and �D 0 and
0.333. A major effect of including the fiber orientation distribution is the reduction
of the dependence of the response of the tube with the mean fiber angle � . The
simulations also show a stiffening effect on the adventitial tube as the axial and
circumferential stretches are reduced when the orientation dispersion increases
(Fig. 2.10a). On uniaxial tests in the circumferential and axial directions, an increase
on the fiber orientation dispersion decreases the amount of lateral contraction, i.e.,
apparent Poisson’s ratio (Fig. 2.10b). This indicates that, for aligned fibers, big
rotations occur before fibers start taking load.

In summary, the inclusion of fiber distribution using the structure tensor model
(Stoller et al. 2002) proposed by Gasser et al. (2006) revealed that characteristics
of the mechanical behavior of the human iliac arteries are more consistent with
experimental observations than simulations with aligned fibers. In particular, the
stiffening effect in the axial direction and elastic properties in the uniaxial behavior
of the adventitia layer were captured closely by considering the fiber orientation
distribution.
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Fig. 2.10 Effect of fiber distribution on the mechanical behavior of arterial tissue. (a) Simulations
of an inflation tests show that the axial stretch is lower for models with distributed fibers (stiffening
effect). (b) The lateral contraction (Poisson’s effect) is higher for samples with aligned fibers.
Adapted from Gasser et al. (2006)

2.4.2 Aortic Valves

Another cardiovascular tissue that has been modeled using fiber angle dispersion
is the aortic valve. This valve is located between the left ventricle and the aorta. It
is composed of three leavelets that are planar tissues composed of proteoglycans,
and fibers of collagen type I and III (Dainese et al. 2006; Eriksen et al. 2006).
Billiar and Sacks (2000) measured the fiber orientation using SALS and used a
bimodal distribution (Fig. 2.11). Although the fibers of both fiber families contribute
to R(�), Billiar and Sacks (2000) concluded that mechanical contribution of the
broader distribution is negligible and the in-plane biaxial response can be modeled
using the highly aligned family of fibers. Freed et al. (2005) used a structure
tensor approach to improve the computational efficiency compared to the angular
integration approach. Additionally, the quality of the curve fit of biaxial tension
experiments was evaluated and compared to the angular integration approach.

The leaflets of the aortic valve were modeled using the distribution shown in
(2.1) and a combination of the three different strain energy functions: dilatational,
distortional isotropic, and distortional anisotropic. In this case, the dilatational and
distortional isotropic components can be regarded as the ground matrix, and the
distortional anisotropic as the fiber component. Angular integration approach and
structure tensor formulations were used for the fiber term. It was found that both
formulations provided a good fit to the experimental biaxial data (Fig. 2.12). The
structure tensor approach slightly under-predicted in the fiber direction and over-
predicted in the transverse direction the stiffness at the toe region. These results are
in agreement with the comparison between angular integration and structure tensors
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Fig. 2.11 Representative fiber orientation distribution for an aortic valve leaflet to a dual Gaussian
distribution. The distribution was principally composed of a highly aligned population (�1 D 16ı)
and a broader distribution (�1 D 44ı). Adapted from Billiar and Sacks (2000)

presented in the previous section. Since only the fiber family with highly aligned
fibers contributes to the in-plane mechanics (Billiar and Sacks 2000), the difference
between both the formulations should be small (Fig. 2.9).

2.4.3 Articular Cartilage

Articular cartilage is mostly composed of proteoglycans and collagen type II.
Collagen fibers in articular cartilage have a characteristic orientation distribution
that goes from radially aligned at the insertion in the subchondral bone, randomly
oriented in the middle zone and aligned parallel to the surface. Articular cartilage
has a complex mechanical behavior that includes tension compression nonlinearity
(Soltz and Ateshian 2000); high Poisson’s ratios in tension and the opposite in
compression (Elliott et al. 2002); and stiffening of glycosaminoglycan digested
samples (Schmidt et al. 1990). A model consisting of osmotic pressure (representing
the matrix) and a distributed fiber family (as that of (2.6)) is able to replicate
these experimental observations (Ateshian et al. 2009). Most of these could not
be obtained from constitutive models which use a discrete number of aligned fiber
populations.
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Fig. 2.12 Curve fitting of the biaxial tension tests. Dots correspond to experimental data,
dashed lines correspond to the angular integration formulation, and solid lines to the structure
tensor approach. Protocols 2–6 correspond to tension ratio Circumferential:Radial D 30:60 (N/m).
Adapted from Freed et al. (2005)

2.4.4 Annulus Fibrosus

The use of fiber orientation distributions in the annulus fibrosus has not been as
common as for other tissues. However, two studies show the importance of the
orientation dispersion in the mechanical behavior of the annulus fibrosus (Caner
et al. 2007; Guo et al. 2012). Annulus fibrosus is a tissue which is composed
of concentric lamellae with alternating mean fiber angles. It has been typically
modeled as an isotropic matrix reinforced with two aligned fiber families. However,
a material model composed of matrix and fibers is not enough to describe the
multiaxial mechanical behavior of the annulus fibrosus (Guerin and Elliott 2006;
Guo et al. 2012; Wagner and Lotz 2004; O’Connell et al. 2009). Specifically, uni-
axial and biaxial experiments demonstrate that the stiffness of the matrix increases
with fiber stretch (Guo et al. 2012). Therefore, several studies have included strain
energy terms representing fiber–matrix interactions to improve model predictions.
However, these fiber–matrix interactions may be artificial concepts to quantify the
real strain energy from homogeneous macro-scale deformations (Guo et al. 2012).

Caner et al. (2007) proposed a model which included a fiber orientation distribu-
tion and proposed that the stiffening effect associated with fiber distributions could
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describe the mechanics of annulus fibrous without explicitly including fiber–matrix
interactions. The transversely isotropic fiber orientation distribution was described
by the function:

R .�/ D c1ec2�2 ; (2.23)

where c1 and c2 were assumed as 18.5 and �60, respectively. The model parameters
were obtained by curve fitting of uniaxial tests of Acaroglu et al. (1995), Skaggs
et al. (1994), Wu and Yao (1976), and Elliott and Setton (2001). The predictions of
the model with fiber distribution were also compared to models with aligned fibers
and aligned fibers with explicit fiber–matrix interactions.

All models were able to describe the uniaxial tension behavior in the fiber
direction (Fig. 2.13a). For the aligned without fiber–matrix interaction, all model
parameters were obtained from this experiment. Tension in the circumferential
direction was used to obtain the remainder of the model parameters for the model
with aligned fibers and fiber–matrix interaction and the fiber distribution model.
Prediction of the change in fiber angle and lateral stretch in uniaxial tension
in the circumferential direction show the good agreement between experimental
measurements and the models with fiber–matrix interaction and fiber distribution.
Additionally, the model with distributed fibers was able to predict the lateral stretch
in the uniaxial test in the circumferential direction (Fig. 2.13b). This comparison
shows that the fiber distribution can explain the discrepancies observed in the
predictions of models that only include aligned fibers and matrix. Additionally,
the response of the models with fiber–matrix interaction and fiber distribution was
very similar suggesting that the “apparent” shear fiber–matrix interaction can be
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explained by including the fiber orientation distribution in the model. Whether or
not the annulus fibrosus fiber distribution as suggested by the model is physically
present within the tissue structure has not yet been determined.

2.5 Conclusions

In this chapter, several methods to measure fiber orientation distribution were
described. All the experimental methods presented here used different approaches;
however, they all have a common output: a fiber distribution histogram. The
choice of a particular method depends on the application: real-time acquisition,
micro/macroscopic scale, and shape of the sample, just to mention few. For
simplicity, a continuous distribution function can be curve-fitted to the experimental
distribution, but this is not a requirement, the formulation can use both types of
distributions since there are no restrictions on their shape.

Two approaches to model the mechanical behavior of distributed fibers were
presented in this chapter: Angular Integration and Structure Tensors. The angular
integration approach, proposed by Lanir in 1983, adds the contribution of fiber at
different orientations, excluding fibers undergoing compression. This approach is
considered the gold standard formulation to describe the mechanics of distributed
fibers. An alternative approach, generalized structure tensors, simplifies the angular
integration formulation by defining a tensor that represents the spatial organization
of the fibers. Once the structure tensor is defined, stress can be calculated just
using algebraic operation. Consequently, the number of integrals required in a
numerical method such as finite elements is drastically reduced. However, some
differences compared to the angular integration approach have been reported for
specific distributions and loading cases. Applications of both approaches show the
importance of including the angular distribution in the modeling of collagenous
tissues. Models that include distributed fiber orientations were able to describe
several key experimental observations that models considering aligned fibers cannot
predict.
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Chapter 3
Emergent Behaviors in Cell Mechanics

Robert L. Steward Jr., Sonia R. Rosner, and Jeffrey J. Fredberg

Abstract Cells and therefore tissues ordinarily experience some form of
mechanical stimulation as they are often in mechanically diverse and dynamic
environments. As a result we have learned that cells have the astounding ability to
sense and respond to their environment. This seemingly innate behavior of cells has
intrigued many researchers in the field of cell mechanics for decades and compelled
efforts aimed at characterizing its behaviors and underlying mechanisms. While
many techniques exist, in the context of this chapter, novel techniques we have
developed and implemented will be examined as well as new emergent behaviors
we have discovered. The behaviors that will be discussed have relevance in various
areas of pathology and physiology including collective cell migration and cancer
metastasis.

3.1 Introduction

Professor Yoram Lanir has performed pioneering works in the field of biomechanics.
His efforts helped lay the groundwork for theoretical and experimental studies
aimed at elucidating the basic functions of cells, tissues, and organs and the
constitutive mechanical laws that govern them. More importantly, he has contributed
significantly to our understanding of how lessons learned from structures at the
cellular level influence physiologic and pathophysiologic function at the tissue level.
Complementing his work, here we present new methodologies in cell mechanics
developed by our group and describe the emergent cellular behaviors we have
discovered using those approaches.

Mechanics are part of our everyday life. For the father teaching his son to catch
a ball as for the commuter running to catch a train, cells cooperate to allow bones,
tissues, and other structures to exert and experience mechanical force. Throughout
their lifetime, cells and tissues experience mechanical stimulation, and depending
on the cell’s location and physiology such stimuli may be in the form of tension,
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compression, or shear, and may be static or cyclic (Garanich et al. 2007; Butcher
et al. 2004; Cheng et al. 2009; Richard et al. 2007; Owan et al. 1997). As a result,
cells have evolved the ability to sense and respond to their local microenvironment
(Kung 2005; Eastwood et al. 1998; Hu et al. 2004; Smith et al. 2003; Thompson
1961; Steward et al. 2009). Such behavior has intrigued scientists from the time of
D’Arcy Thompson (Thompson 1961) and inspired efforts aimed at characterizing
these behaviors and their underlying mechanisms. While a plethora of approaches
exists (Cheng et al. 2009; Steward et al. 2009; Bao and Suresh 2003; Zhu et al.
2000; Chien 2007; Puig-De-Morales et al. 2001; Bellin et al. 2009), we will examine
techniques used to define the physical forces a cell exerts on its substrate and
upon neighboring cells, and the techniques used to characterize cellular material
properties.

3.2 Contractile Forces and Traction Microscopy

Since the pioneering work of Cyril Harris, cellular contractility has been of interest
to many groups (Harris 1988; Harris et al. 1980; Oliver et al. 1995, 1998, 1999;
Dembo and Wang 1999; Dembo et al. 1996). For the adherent cell in isolation, cellu-
lar contractility provides insights into the mechanism of force transmission between
the cell and its underlying substrate. Force transmission involves a feedback loop
in which integrins connected to the extracellular matrix (ECM) sense and transmit
mechanical information through focal adhesions, which contain proteins including
vinculin, talin, paxillin, tensin, and zyxin (Zhu et al. 2000; Ridley et al. 2003;
Wang et al. 1993; Yoshigi et al. 2005; Vogel and Sheetz 2006). Focal adhesions
transmit these mechanical signals to the cytoskeleton (Ridley et al. 2003; Yoshigi
et al. 2005; Revenu et al. 2004; DeMali et al. 2003; Cao et al. 1993). Drawing
from this information, the cytoskeleton adjusts its physical or chemical activity until
intracellular homeostasis is achieved (Ridley et al. 2003; Vogel and Sheetz 2006;
DeMali et al. 2003; Norman et al. 1998; Insall and Machesky 2009; Rodriguez et al.
2003). Force transmission and therefore contractility is known to differ between
cell types as well as between single cells and integrated monolayers of the same
cell type. Contractility is also important in numerous cellular processes including
migration, embryogenesis, morphogenesis, metastasis, and wound healing (Ridley
et al. 2003; Larsen et al. 2006; Poukkula et al. 2011; Tambe et al. 2011; Friedl et al.
2004; Rorth 2007, 2011; Inaki et al. 2012; Trepat and Fredberg 2011; Trepat et al.
2009). To measure contractile forces or tractions at the cellular level we use traction
force microscopy (Dembo and Wang 1999; Dembo et al. 1996; Trepat et al. 2007).

Dembo and Wang were the first to quantify the spatial distributions of the
tractions exerted by single cells (Dembo and Wang 1999). Tractions were obtained
by measuring displacement fields generated by a single cell adherent upon a
flexible, polyacrylamide gel. Embedded within that gel were fluorescent markers
located beneath the gel surface. Although the approach described by Dembo et al.
is computationally intensive, this method provides detailed maps of the traction
forces exerted by a single cell. An alternative to this approach consists of using
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microfabricated, elastomeric microposts (Maruthamuthu et al. 2011; Sniadecki and
Chen 2007). Using this method, the deflection caused by an adherent cell on
vertically aligned microposts can be directly measured and used to deduce tractions
(Maruthamuthu et al. 2011; Sniadecki and Chen 2007).

We extended the approach of Dembo by developing Fourier Transform Traction
Microscopy (FTTM) (Trepat et al. 2009; Butler et al. 2002). Compared with
Dembo’s method, FTTM is computationally efficient. Efficiency arises from its
mathematical foundation in Fourier analysis, and can be applied in either of two
subcases, constrained and unconstrained FTTM. In the former tractions are deduced
without prior specification of cellular boundaries, while in the latter tractions are
deduced including prespecified cellular boundaries.

Experimentation and implementation are as follows. A single cell is cultured
on a ligand-coated, flexible substrate and allowed to spread. Phase contrast images
of cells on top of the gel and fluorescent images of beads embedded within the
gel are obtained. In addition, another image is taken after the cells have been
detached from the gel, representing an unstressed traction-free state referred to as
the reference image (Butler et al. 2002). After image acquisition, post-processing
begins by initially compensating for artifactual translational shifts between the
two pairs of fluorescent images, which are ordinarily attributable to drift of the
microscope stage. A fast Fourier transform algorithm is then used to compute a two-
dimensional cross-correlation function between the two images. Cross-correlation is
used to generate a uniform local displacement from which one image is translated
with respect to another, yielding shift-corrected images. The shift-corrected images
are divided into smaller windows or pixel areas from which the correlation function
is once again used to calculate the local displacement between the reference window
and its corresponding window in the experimental image. The displacement,
which is calculated for each pixel within the image, produces a discretized gel
displacement field. One advantage of FTTM worth noting is its insensitivity to
explicit bead identification and bead density due to the utilization of the cross-
correlation approach. Alternatively, a potential disadvantage is that this method
provides an estimated displacement field while others provide a direct measurement
(Dembo and Wang 1999; Butler et al. 2002). The estimated displacement field
represents the “raw data” from which unconstrained and constrained tractions are
calculated; these tradeoffs were analyzed by the group of Gardel (Maruthamuthu
et al. 2011). The Boussinesq solution in Fourier space provides the direct solution
of the tractions as a function of the two-dimensional inverse Fourier transform
(Butler et al. 2002). This method yields unconstrained tractions as it does not impose
traction boundary conditions upon the solution, contrary to the Dembo approach
(Butler et al. 2002). Calculating constrained tractions is slightly more complex as
this presents a mixed boundary value problem, and is subject to serious potential
artifacts caused by improperly identifying the cell boundary. Computing constrained
tractions is an iterative process that requires the initial calculation of the traction
field as an unconstrained traction and calculation of new traction field by specifying
all tractions outside of a user-specified boundary to zero. We initially developed this
method for single cells and later expanded this to monolayers (Tambe et al. 2011;
Trepat et al. 2009), as shown in Fig. 3.1.
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Fig. 3.1 Tractions (in Pascals) generated by a single cell (a) and monolayer (b). Adapted from
Trepat et al. (2009) and Butler et al. (2002)

3.3 Monolayer Stress Microscopy and Intercellular Stresses

Having introduced FTTM we now extend the discussion to a new technique we
recently developed, monolayer stress microscopy (MSM) (Tambe et al. 2011; Trepat
and Fredberg 2011). The traction forces that the individual cell exerts on its substrate
have been well established and useful in elucidating various cellular processes
(Oliver et al. 1995, 1998; Ridley et al. 2003). However, extending our analysis to
a monolayer of cells, we know that there are also intercellular forces and therefore
intercellular stresses between each cell that they exert on their nearest neighbors.
Newton’s Laws demand that the traction forces produced at the cell–substrate
interface across the monolayer be balanced by intercellular stresses between the
cells (Tambe et al. 2011; Trepat and Fredberg 2011). Therefore combining FTTM
with MSM we are now able to measure previously elusive intercellular stresses
within a monolayer. The intercellular stress within a monolayer is defined as the
local intercellular force per unit area of cell–cell contact (Tambe et al. 2011)
and is composed of two components: a normal stress defined as the stress acting
perpendicular to the local intercellular junction, and shear stress defined as the
stress acting parallel to the local intercellular junction (Fig. 3.2). By assuming
the monolayer to be a thin elastic sheet, a computationally less complex, yet
rigorous two-dimensional force balance can be done (Tambe et al. 2011). The
two-dimensional force balance from Newton’s laws yields the distribution of line
forces (force per unit length) everywhere within the monolayer, which are converted
to stresses (force per unit area) using the average monolayer height (Tambe
et al. 2011). This method is almost model-independent and is built upon the key
assumption that the monolayer be treated as a continuum in which all forces are in
balance.
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Fig. 3.2 Arrows depicting intercellular stresses at the cell junction (a) and intercellular stress maps
of migrating monolayers of RPMEC (b). Adapted from Tambe et al. (2011)

3.4 Optical Magnetic Twisting Cytometry and Cell
Material Properties

Optical magnetic twisting cytometry (OMTC) is used to measure cell material
properties including cell stiffness and has helped elucidate the physical mechanisms
of force transmission across the cell membrane (Wang et al. 1993). OMTC was
first introduced by Crick (Crick and Hughes 1950; Crick 1950), describing a novel
method that used phagocytosed small, magnetic particles to be manipulated by
three principal motions; twisting, dragging, or prodding. Other groups, including
our own (Hu et al. 2004; Puig-De-Morales et al. 2001; Maksym et al. 2000; Fabry
et al. 2001a), later improved upon this technique. While slightly more complex, the
basic operation remains similar to what was introduced some time ago. In general
an OMTC system contains the following components: high-voltage generator for
generating current in coils to magnetize magnetic particles, separate current sources
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Fig. 3.3 Top (a) and side (b) schematic of OMTC device. Image of magnetic beads on single cells
marked with bead-tracking program (c). Adapted from Fabry et al. (2001a)

and computer to manipulate and control the particles, and a microscope and camera
with complementary image acquisition software to observe and acquire images of
particle movement (Hu et al. 2004; Maksym et al. 2000). Cell preparation and
OMTC measurement protocols used by us as well as others begin by incubating
sparsely plated or confluent cells with ligand-coated ferromagnetic beads for a
period of 15–20 min in an incubator. In contrast with the Crick method, this brief
period allows beads to bind to integrin receptors on the cell surface, linking them
to the cytoskeleton through focal adhesions, instead of being phagocytosed (Wang
et al. 1993; Crick and Hughes 1950; Crick 1950). After incubation, beads are
initially magnetized with a strong magnetic field. Subsequently, a set of twisting
coils create a twisting field perpendicular to the initial magnetization and provide
a twisting torque at frequencies ranging from 0.5 Hz to frequencies ranging in
excess of 5 Hz, Fig. 3.3. During twisting, image acquisition occurs at a specific
temporal resolution synchronized with the twisting cycle. A bead-tracking program
is then used to compute the bead motion signal. This software is designed to
search for beads with specific size, contrast, and shape properties (Hu et al. 2004)
(Fig. 3.3). Once, identified, an intensity-based weighted center of mass of the bead
is performed in which the respective x and y coordinates of the bead center is
calculated, defining the bead motion signal. A Fourier transformation of the bead
motion signal (x�) and torque (T) allow the calculation of the complex modulus
(G) (in dimensions of Pascals per nanometer), which can be related to the stiffness
(G

0

), friction (G00), and hysteresivity (�) (3.1). Therefore OMTC can be a useful
tool in determining the effects of various agonist and antagonist on cell material
properties.

G D T=x �D G0 C jG00 D G0 .1C j�/ ; where j D p � 1 (3.1)
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3.5 Three Emergent Behaviors

Many cellular behaviors have been elegantly explained by detailed biochemical
mechanisms, while explanation from a physical perspective remains limited and
poorly understood (Richard et al. 2007; Cao et al. 1993; Norman et al. 1998; Huang
et al. 2004; Lauffenburger 2000; Zheng et al. 1995; Hall and Nobes 2000). This
lack of explanation of cellular phenomena from a physical perspective served as a
motivation for our group, as a complete physical and chemical explanation is needed
to better understand cellular behavior. Here, we present three emergent cellular
behaviors that raise exciting questions and controversies.

3.5.1 Fluidization/Reinforcement

Cells have the ability to sense and respond to mechanical forces. For example,
pulmonary vascular smooth muscle cells exhibit stretch-induced VEGF and FGF-2
expression (Quinn et al. 2001) and endothelial cells exhibit fluid shear stress-
induced polarization (Chien 2007). Stretch in particular is important in various
cellular processes including proliferation, differentiation, and gene expression
(Eastwood et al. 1998; Wang and Thampatty 2006). An important response to
stretch is reinforcement (Choquet et al. 1997; Matthews et al. 2006; von Wichert
et al. 2003). Reinforcement describes a phenomenon in which the cytoskeleton
increases stiffness and recruits actin stress fibers as stretch is experienced by the
cell, exhibiting an active strain-stiffening behavior along with associated structural
changes (Krishnan et al. 2009; Chen et al. 2010). Contrary to stretch-induced
reinforcement, earlier studies suggested the cytoskeleton fluidized in response to
stretch (Choquet et al. 1997; Matthews et al. 2006). These paradoxical findings
were baffling as no agreed-upon consensus existed on a simple question: How
does the cell respond to stretch? To address this paradox we developed a novel
system that allows us to stretch cells while simultaneously using OMTC (Trepat
et al. 2007). We used our system on multiple cell types including human airway
smooth muscle (HASM) cells, human lung fibroblasts, Madin–Darby canine kidney
epithelial (MDCK) cells, and human bronchial epithelial cells to (1) determine
if the cell fluidizes or resolidifies in response to stretch and (2) determine if
this response is shared among mammalian cell types of diverse mesenchymal
lineages. Following stretch, cell stiffness immediately decreased significantly and
then gradually returned to baseline over time, suggesting that in response to stretch,
cells initially fluidize and gradually resolidify (Trepat et al. 2007). Fluidization
in response to stretch was also observed to occur despite chemical perturbation,
but with slight change in magnitude and temporal scales (Trepat et al. 2007).
Contrary to fluidization, chemical perturbation revealed resolidification to be ATP-
dependent (Trepat et al. 2007). Our findings revealed that among mammalian
cells resolidification and fluidization are universal responses (Trepat et al. 2007).
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While fluidization remains relatively new within the field it raises many new and
exciting questions: What are the molecular components involved in fluidization and
resolidification? How do these two responses stay in balance? The latter is exactly
what we next sought out to answer.

Fluidization was further probed as a function of cell contractility using a
method we developed called Cell Mapping Rheometry (CMR) (Krishnan et al.
2009). CMR uses a novel punch-indentation system to induce biaxial or uniaxial
homogeneous deformations on cells cultured on a flexible substrate (Krishnan et al.
2009). The displacements of the substrate are calculated by tracking fluorescent
markers embedded within the substrate using FTTM. HASM cells were subjected
to biaxial and uniaxial stretch to probe whether fluidization was dependent on stretch
isotropy. In response to stretch, cells immediately decreased contractility followed
by a gradual recovery. This stretch-induced fluidization was independent of stress
isotropy and agreed quite well with results found previously using OMTC (Trepat
et al. 2007; Krishnan et al. 2009). However the question of whether fluidization
or resolidification dominated in a mechanical physiological loading condition
remained unanswered. To address this, we extended our system to induce non-
homogeneous stretch on cells by applying force at a localized area on the substrate
(Krishnan et al. 2009). Cells that underwent non-homogeneous stretch responded
by reinforcement, while cells experiencing homogenous stretch fluidized. Being
that we as well as others believe that homogenous stretch is more physiologically
relevant, we concluded that mammalian cells primarily fluidize in response to stretch
(Pirentis et al. 2011). While fluidization is believed to be a critical determinate of
cell response to mechanical stimulation we should not disregard the fact that in
certain physiological conditions reinforcement does prevail. This raises the question
of how, if at all, does the interplay between fluidization and reinforcement change
in response to other forces such as fluid shear, compression, or even a combination
of both? All of this has yet to be elucidated.

3.5.2 Plithotaxis

Shifting our attention from single cells to cell monolayers, we now focus on a recent
emergent phenomena describing collective cellular migration. Cellular migration
is an essential step for many physiological processes including morphogenesis,
wound healing, and regeneration (Ridley et al. 2003; Friedl et al. 2004). For
example, organs including the kidney, lung, breast, and salivary glands form through
branching morphogenesis that requires the coordinated collective migration of
mesenchymal and epithelial cells to form sprouting vessels and ducts (Rorth 2007;
Ewald et al. 2008; Vasilyev et al. 2009). Collective migration has also recently been
shown to be important in cancer, suggesting cellular migration to be ubiquitous
in not only physiology, but pathology as well (Friedl et al. 2004; Scotton et al.
2001). A suggested and widely accepted mechanism proposes this process to
be solely dependent on biochemical signaling (Ridley et al. 2003; Rorth 2007).
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For example the EGF receptor has been shown to guide oogenesis (Duchek and
Rorth 2001) and FGF has been shown to guide tracheal branching morphogenesis
of the Drosophila (Ribeiro et al. 2002). Other studies report cell migration to be
driven by internal biochemical mechanisms in which cells within a monolayer relay
their chemical state to each other through intercellular connections (Rorth 2007),
further illustrating a common theme whereby cells moving as a collective do so
by sensing and responding to endogenous and exogenous chemical cues. While
the role of biochemistry in cell migration is clearly evident, the role of physics is
less so. Cells within a monolayer are physically linked to their underlying substrate
through integrins and other transmembrane proteins including syndecans (Bellin
et al. 2009; Poukkula et al. 2011). These transmembrane proteins are linked to focal
adhesions, which are coupled to the cytoskeleton, but this is not the full story. In
addition to being physically linked to their underlying substrate, the cells themselves
are physically linked to each other through cell–cell junctions (Gomez et al. 2011;
Weber et al. 2012; Borghi et al. 2010). While the mechanics of cell–cell junctions
remain poorly understood, it is agreed upon that they sense and exert forces of
their own.

Liu et al. initially examined intercellular forces between a pair of geomet-
rically constrained cells and reported intercellular force magnitude to regulate
cell–cell contact size (Liu et al. 2010). We later expanded this finding to geomet-
rically constrained endothelial monolayers and determined intercellular forces to
be dependent on substrate stiffness and Rho kinase activity (Krishnan et al. 2011).
Complementary to our work the Gardel group later concluded intercellular forces
to be independent of cell size and morphology (Maruthamuthu et al. 2011). These
studies demonstrated that groups of cells exert intercellular forces at their cell–cell
junctions, opening the door for many more exciting questions to be answered. For
example: How do these forces differ for larger groups of cells (>1000) as would be
seen physiologically? What if any are the spatial and temporal fluctuations observed
by these forces? How, if at all, does this affect collective cellular migration?

To answer these questions we used traction microscopy and MSM to observe the
physical dynamics of migrating cell monolayers (Tambe et al. 2011). We cultured
monolayers of rat pulmonary microvascular endothelial cells and MDCK cells on
elastic gels and observed their migration. Using MSM we reported for the first
time high-resolution normal and shear intercellular stress maps, revealing stress
distributions that were extremely heterogeneous. Also the velocity vector of each
migrating cell was found to correlate with the maximum normal stress (or minimal
shear stress), implying that cells collectively migrating do so such as to minimize
shear stress on its junctions, a phenomenon we have termed plithotaxis (Tambe
et al. 2011; Trepat and Fredberg 2011). Plithotaxis represents the first physical
explanation of collective cellular migration. This mechanically guided behavior
was inhibited by calcium chelation and treatment of anti-cadherin antibodies in
MCF10A breast cancer cells, suggesting cells must be physically linked to each
other in order to migrate via plithotaxis (Tambe et al. 2011). Whether plithotaxis
works cooperatively with other well-known cell guidance mechanisms such as
chemotaxis, mechanotaxis, and durotaxis or if plithotaxis exists in vivo remains



50 R.L. Steward Jr. et al.

unanswered. There is also the possibility that plithotaxis is integral in cellular
processes beyond collective cell migration where the boundary conditions of cells
are different.

3.5.3 Viewing the Cell as a Soft Glassy Material

Stretch-induced fluidization, reinforcement, and plithotaxis all imply an emerging
yet surprising concept of cells being comparable to a class of materials in physics
known as soft glassy materials (SGMs). SGM are quite ubiquitous in nature and
include colloidal suspensions, pastes, foams, and slurries (Sollich 1998; Sollich
et al. 1997). While materials classified as SGM may vary in chemical properties,
they share similar mechanical properties. All materials classified as SGM share
these three common mechanical characteristics: (1) they are soft (young’s mod-
ulus D <1 kPA), (2) their dynamics are “scale free,” and (3) the frictional stress
is proportional to the elastic stress with a constant of proportionality known as
the hysteresivity, � (where � is on the order of 0.1) (Sollich 1998; Sollich et al.
1997; Krishnan et al. 2008). In accordance, SGM also have the ability to selectively
phase transition between solid-like and liquid-like states (Sollich 1998). An initial
suggestion that cells are analogous to SGM was provided by Fabry (Fabry et al.
2001b) when OMTC was used to demonstrate that multiple cell types exhibited a
scaling law behavior that governed their elastic and frictional properties over a wide
range of temporal scales and biological conditions. Trepat later combined OMTC
with stretch on single cells, revealing the cell’s elastic and frictional properties to not
only exhibit a scaling law behavior, but to be scale-free as well (Trepat et al. 2007).
Complementary to our stretch studies, single cells subjected to osmotically induced
compressive stress were observed to become much more solid-like (Zhou et al.
2009). Cell material properties and their similarities to SGM have been documented
for single cells, but the question of whether this behavior remains true for groups of
cells such as monolayers needed to be investigated.

To address this we used FTTM and MSM to observe cooperativity of inter-
cellular stresses between cells within monolayers over relatively long distances
(10–15 cell diameters) (Tambe et al. 2011). Intercellular stress cooperativity was
observed to become enhanced over greater distances when comparing intercellular
stress transmission to increasing cell density over time (Tambe et al. 2011),
reflecting an increase in the dynamic heterogeneity of intercellular stress as cell
density increased. Complementary to cooperativity of intercellular forces, Angelini
(Angelini et al. 2011) recently reported cell migration velocity to decrease as cell
density increased, a behavior remarkably similar to a glassy system transitioning
from a liquid to solid phase (Krishnan et al. 2008).

This glassy-like behavior has led us as well as others to propose that cellular
migration be viewed in terms of a glassy system. It should be cautioned that while
these cellular systems have been observed to possess similar qualities of glassy
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systems, exhaustive studies still need to be done to prove beyond a doubt that these
living, complex systems are in fact comparable to the inert glassy systems we see
and use everyday.

3.6 Concluding Remarks

We have presented emergent behaviors on the cellular level that illustrate physical
mechanisms which dictate biological responses and have forced researchers to
rethink how they view the cell and its processes. We now know that mammalian cells
primarily fluidize in response to stretch and epithelial and endothelial monolayers
are mechanically guided as they collectively migrate through their environment.
Finally, the ability of cells to fluidize, reinforce, and migrate by plithotaxis are
all properties similar to SGMs. Supplementary to our findings is evidence linking
these phenomena to systems beyond our fields of research, including cancer and
morphogenesis. As there still exist many unknowns, these newly defined concepts
represent only the tip of the iceberg of the underlying physical phenomena that
influence cellular behavior.
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Chapter 4
Histomechanical Modeling of the Wall
of Abdominal Aortic Aneurysm

T. Christian Gasser

Abstract Vascular diseases are already the leading cause of death in the industri-
alized countries and many of the associated risk factors are increasing. A multi-
disciplinary approach including biomechanics is needed to better understand and
more effectively treat these diseases. Specifically, constitutive modeling is critical in
understanding the biomechanics of the vascular wall and to uncover pathologies like
Abdominal Aortic Aneurysms (AAAs), i.e. local dilatations of the infrarenal aorta.
Aneurysms are formed through irreversible pathological remodeling of the vascular
wall and integrating this biological process in the constitutive description could
improve our current understanding of aneurysm disease. It might also increase the
predictability of biomechanical simulations towards augmenting clinical decisions.
The present chapter develops histomechanical constitutive models for the AAA wall
according to Lanir’s pioneering approach. Consequently, macroscopic properties
were derived through an integration of distributed fibers, where collagen was
regarded as the most important protein of the aneurysmatic Extra Cellular Matrix
(ECM). Collagen organization was quantified through Polarized Light Microscopy
(PLM) of picrosirius red stained histological slices from tissue samples harvested
during elective open AAA repair. This histological information was either directly
integrated in the constitutive description or used to qualitatively validate the
predicted remodeling of the AAA wall. Specifically, two descriptions for the AAA
wall were used, where collagen was regarded either as a purely passive entity of
the ECM or as an active entity. The suggested constitutive models were able to
successfully capture salient features of the AAA wall, but a rigorous validation
against detailed experimental data was beyond the scope of this chapter.
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4.1 Introduction

Vascular diseases are the leading cause of death in the industrialized countries and
associated risk factors like obesity, diabetes, and life expectancy are increasing.
Current clinical options are somewhat limited, and clearly there is an urgent need
for multi-disciplinary approaches to improve our current understanding of vascular
diseases. Biomechanical conditions play a key role in the genesis and development
of vascular diseases (Bäck et al. 2013) and the identification of the specific causative
links between biomechanics and biochemistry may help advance our current view
of physiology and pathology.

Continued advances in computer technology and computational methods allow
us nowadays to model patient-specific problems, where the nonlinear Finite Element
Method (FEM) effectively solves the 3D (coupled) mechanical problems that arise.
This allows us to incorporate the nonlinear character of the related problems and
combines synergetically with medical imaging. Consequently, computer simula-
tions of biomechanical phenomena have become potentially significant in order to
explore, for instance, loads experienced by cells and extra-cellular components, the
interaction between medical devices and biological material, drug delivery path-
ways, the interplay between structure and function of tissues, mechanotransduction,
and the like. Although, to some extent, traditional mechanics concepts are directly
applicable to solve biomechanical problems, they remain a modeling challenge
due to complex spatial domains, constitutive nonlinearities, and coupling among
structural, fluid, chemical, and electrical fields to mention just a few. Specifically,
the inherent property of biological tissue to adapt to mechanical and chemical
environments remains a challenging modeling task.

The present chapter focuses on Abdominal Aortic Aneurysms (AAAs), i.e. local
dilations of the infrarenal aorta caused by pathological remodeling of structural
proteins in the aortic wall (Choke et al. 2005; Tsamis et al. 2013). An AAA ruptures
if the mechanical stress exceeds the local wall strength, and is a frequent cause of
death in elderly male population (The UK Small Aneurysm Trial Participants 1998).
Consequently, a rupture risk assessment is central to the management of AAA
patients, and an accurate assessment could reduce the related mortality without
unnecessarily increasing the rate of AAA repair interventions. Clinically, the risk
of rupture is correlated with the aneurysm’s maximum diameter, and surgical or
endovascular AAA repair is indicated if the diameter exceeds 55 mm (The UK
Small Aneurysm Trial Participants 1998). However, the diameter criterion has
clear limitations and mechanical parameters, such as Peak Wall Stress (PWS)
(Fillinger et al. 2002; Venkatasubramaniam et al. 2004; Heng et al. 2008) and Peak
Wall Rupture Risk (PWRR) (Gasser et al. 2010; Maier et al. 2010), have been
found to be more reliable indices to assess AAA rupture risk. The computation
of PWS and PWRR requires an accurate patient-specific reconstruction of AAAs
from medical images (Gasser 2012) and appropriate modeling of the aneurysmatic
tissue’s constitution (Martufi and Gasser 2013).
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Throughout this chapter the pioneering constitutive approach by Lanir (1983)
was followed, such that the macroscopic mechanical properties were governed by
the arrangement of fibrous tissue components like collagen. According to Lanir’s
approach, the spatial orientation and undulation of collagen are the most influential
micro-histological parameters that together with the fibers’ constitution determine
the macroscopic mechanical properties. Consequently, the macroscopic mechanical
tissue properties are derived through two numerical integrations, i.e. (1) over the
undulation and (2) over the fibers’ spatial orientation. This requires extensive
computations and makes the application of such an approach somewhat limited.
However, both the use of phenomenological collagen fiber models and specific
assumptions regarding the constitution and undulation of collagen can avoid the
numerical integration over the undulation of collagen (Martufi and Gasser 2011).
Consequently, the biomechanics of an entire AAA can be analyzed by such a
two-scale approach within reasonable computational times. For specific problems,
i.e. under certain constitutive and deformation conditions, even both integrations
can be avoided (Gasser et al. 2006; Federico and Herzog 2008). It is also worth
noting that independent from the applied constitutive formulation an efficient and
implicit numerical implementation (Gasser and Holzapfel 2002; Gasser et al. 2006;
Gasser 2011; Gasser and Forsell 2011) is beneficial for analyzing clinically relevant
problems.

Constitutive modeling requires a sound histological understanding, such that
Sect. 4.2 reviews the composition of the aneurysmatic Extracellular Matrix (ECM)
from a structural mechanical point of view. Specifically, the role of collagen is
discussed, and its three-dimensional organization in the AAA wall is studied from
histological slices. In Sect. 4.3 two constitutive descriptions for the AAA wall are
derived that regard collagen either as a purely passive entity or as an active entity of
the ECM.

4.2 The Extracellular Matrix of the AAA Wall

The ECM provides an essential supporting scaffold for the structural and functional
properties of vessel walls. The ECM mainly contains elastin, collagen, and Pro-
teoglycans (PGs) (Carey 1991) and their three-dimensional organization is vital to
accomplish proper physiological functions. The ECM, therefore, rather than being
merely a system of scaffolding for the surrounding cells, is an active mechanical
structure that controls the micro-mechanical and macro-mechanical environments
to which vascular tissue is exposed. Consequently, a proper understanding of the
mechanical properties of the ECM is critically important to estimate and quantify
the amount of stress and/or strain transmitted from the macroscopic to the cellular
levels of vascular tissue.

Collagen is one of the most dominant structural proteins in the ECM. Collagen
fibrils, with diameters ranging from 50 to a few hundreds of nanometers are
the basic building blocks of fibrous collagenous tissues (Fratzl 2008), and their
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organization into suprafibrilar structures has a large impact on the tissue’s macro-
scopic mechanical properties. Already 60 years ago Roach and Burton (1957)
reported that collagen mainly determined the mechanical properties of arterial tissue
at high strain levels. Since that time a direct correlation between the collagen content
and the stiffness and strength has become generally accepted. Earlier observations
indicated that the collagen-rich abdominal aorta was stiffer than the collagen-
poor thoracic aorta (Bergel 1961; Langewouters et al. 1984) and later regional
variations of aortic properties were specifically documented, see Sokolis (2007) for
example. Numerous further references were provided by the seminal works of Fung
(1993) and Humphrey (2002). Apart from the amount of collagen in the wall its
spatial orientation (Fratzl 2008), including the spread in orientations (Gasser et al.
2006) is the most influential micro-structural parameter that significantly affects the
macroscopic mechanical properties.

While elastin in the ECM is a stable protein having half-life times of tens
of years (Alberts et al. 1994), collagen is normally in a continuous state of
deposition and degradation (Humphrey 1999) and has a normal half-life time of
60–70 days (Nissen et al. 1978). Collagen fibrils are locally secreted by fibroblast
and understanding the formation of hierarchical collagen structures is crucial to
assessing the mechanical properties of the vascular wall. Physiological maintenance
of the collagen structure relies on a delicate (coupled) balance between degradation
and synthesis. Fibroblasts perceive changes in the mechanical strains/stresses and
adjust their expression and synthesis of collagen molecules in order to account for
the changes in their micro-mechanical environment.

Collagen is also critically involved in the gradual remodeling and weakening of
the aneurysmal wall (Choke et al. 2005). It is well understood that through aneurysm
disease the elastin in the wall degrades (in larger AAAs it almost vanishes) while
the collagen content increases significantly (Rizzo et al. 1989). However, at later
stages of aneurysm disease, the collagen synthesis is insufficient to counteract the
increased mechanical wall stress, i.e. the stress required to carry the blood pressure
(Choke et al. 2005). Consequently, the structural integrity of the wall is not ensured
and wall strength decreases, which in turn quickly increases risk for AAA rupture.

In conclusion, from a biomechanics perspective, collagen in the AAA wall is
by far the most important structural protein that largely defines the wall’s stiffness,
strength and toughness.

4.2.1 Proteoglycan

Proteoglycan (PG) bridges have been suggested (Scott 2003, 2008) as providing
interfibrillar load transition, a necessity for a load-carrying collagen fiber structures.
Specifically, small proteoglycans such as decorin bind noncovalently but specifically
to collagen fibrils and cross-link adjacent collagen fibrils at about 60 nm intervals
(Scott 2003). Reversible deformability of the PG bridges is crucial to serve as shape-
maintaining modules (Scott 2003) and fast and slow deformation mechanisms have
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been identified. The fast (elastic) deformation is supported by the sudden extension
of about 10 % of the L-iduronate (an elastic sugar) at a critical load of about 200 pN
(Haverkamp et al. 2005). The slow (viscous) deformation is based on a sliding
filament mechanism of the twofold helix of the glycan (Scott 2003). In addition, the
close packing and cross-linking of collagen molecules in fibrils defines a virtually
inextensible fiber, such that the strain of collagen fibrils is always much smaller than
the macroscopic strain in collagenous tissues. This also points towards the existence
of gliding processes occurring at the interfibrilar and/or the interfiber levels (Gupta
et al. 2010).

PG-based cross-linking is supported by numerous experimental studies showing
that PGs play a direct role in inter-fibril load sharing (Liao and Vesely 2007;
Robinson et al. 2005; Scott 2003; Sasaki and Odajima 1996). This has also been
verified through theoretical investigations (Fessel and Snedeker 2011; Redaelli et al.
2003; Vesentini et al. 2005). However, it should also be noted that the biomechanical
role of PGs is somewhat controversial, and some data indicates minimal, if any,
PG contribution to the tensile properties of the tissue (Fessel and Snedeker 2011;
Rigozzi et al. 2009, 2010).

4.2.2 Imaging the Collagen in the AAA Wall

Collagen is intrinsically birefringent and Polarized Light Microscopy (PLM) pro-
vides an ideal method for its detection and analysis (Vidal et al. 1982; Lindeman
et al. 2009; Weber et al. 1990). PLM provides a clear qualitative image of the
organization of collagen and, when combined with a Universal Rotary Stage (URS),
it allows a quantitative representation of the collagen orientation (Canham et al.
1989; Canham and Finlay 2004). To analyze the collagen organization in the AAA
wall, anterior tissue samples were selected during elective open surgical repair,
see Fig. 4.1. Wall specimens from 24 aneurysm patients were fixed, embedded in
paraffin, and sliced at a thickness of 7�m. Finally, picrosirius red staining was used
to enhance the birefringent properties of collagen, which improved the precision of
measurement while preserving the optical axis of the unstained collagen fiber (Smith
et al. 1981). Further details of specimen preparation are given elsewhere (Gasser
et al. 2012), and two representative samples are shown in Fig. 4.2, which already
allows a qualitative assessment of the collagen organization in the AAA wall. The
images illustrate a large mix bag of azimuthal alignment and the diameter of the
collagen fibers varied significantly between the two wall samples. Extinctions within
the larger collagen fibers (see Fig. 4.2c) arose from the planer zig-zag structure of
collagen fibrils, which was first observed in tail tendon (Diamant et al. 1972) and
later verified by electron microscopy (Gathercole et al. 1974).
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Fig. 4.1 Schematic drawing
of an Abdominal Aortic
Aneurysm (AAAs) that
indicates the orientation and
site of wall specimens that
were harvested during open
elective repair. Image taken
from Gasser et al. (2012)

4.2.3 Three-dimensional Collagen Orientation

The orientation of a collagen fiber, or a coherent bundle of fibers, in the three-
dimensional space is uniquely defined by its azimuthal angle � and its elevation
angle � that are measured by (in-plane) rotating and (out-of-plane) tilting the URS,
respectively. See Fig. 4.3 for the definition of these angles. An artifact-free part of
the slice (as shown in Fig. 4.2a, b) was considered and the specimen edge was used
as a reference for the collagen orientations. The black regions correspond to collagen
fibers perpendicular to the linear polarized light ray, and hence the appearance of
the image changes during rotating and tilting the stage. Note that the intensity of
the non-extinguished (red) areas does not only depend on the angle of the collagen
fibers with respect to the light ray but also on the amount of collagen in the tissue
and stain used in specimen preparation.

To provide a statistically random selection, a 6 by 6 grid of measurement points
was used to measure the collagen orientation from the histological slices. Azimuthal
� and elevation � angles were identified by sequentially rotating and tilting the
specimen until the particular measurement point of at least 7 by 7�m extinguished
in the PLM (Smith et al. 1981). Measurements from all slices were pooled, grouped
into frequency plots, and fitted to a Bingham distribution (Bingham 1974; Alastrué
et al. 2010)

.�; �/ D c�1 expŒ�1.cos � cos�/2 C �2.cos� sin �/2�: (4.1)

The normalization parameter c was used to normalize the collagen fiber density
function, such that

R �=2
�D��=2

R �=2
�D��=2  cos�d�d� D 1 held. This condition was

satisfied for
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Fig. 4.2 Polarized Light Microscopy (PLM) images taken from the Abdominal Aortic Aneurysm
(AAA) wall. The horizontal denotes the circumferential vessel direction. The collagen that is
oriented perpendicular to the linear polarized light defines the extinctions (black) seen in the
image. Picrosirius red was used as a birefringent enhancement stain and the images were taken
at crossed polars on the microscope. (a, b) Typically observed collagen organizations in the AAA
wall, showing a large mix bag of azimuthal alignment. (c) Segmented portion of a single collagen
fiber of diameter d that is formed by a bundle of collagen fibrils. Extinctions at distances of ı
denote the wavelength of the collagen fibrils that form the collagen fiber
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to the unit orientation vector M of a collagen fiber or a coherent bundle of fibers (c). The cylinder
schematically represents the vessel with the dashed line denoting the circumferential direction. The
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Fig. 4.4 Bingham distribution function (red) fitted to the experimentally measured fiber orienta-
tion distribution (light-blue) in the Abdominal Aortic Aneurysm (AAA) wall
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where � and iŠ denoted the Euler gamma function and the factorial of i, respectively.
The identified collagen orientation in the AAA wall is illustrated in Fig. 4.4, where
the red surface denotes the Bingham distribution with parameters �1 D 11:6 and
�2 D 9:7. The light-blue surface denotes the experimentally measured orientation
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distribution. Details regarding the applied optimization method for parameter
estimation are given elsewhere (Gasser et al. 2012).

Note that the Bingham distribution is symmetric, i.e. .�; �/ D .�C�; � C�/

and able to capture a large spectrum of distributions. Specifically, it accounts for
different fiber dispersions in the tangential and cross-sectional planes, such that it
provides more flexibility than a transversely isotropic distribution, i.e. as was earlier
suggested to model the collagen fiber organization in the arterial wall (Gasser et al.
2006).

4.3 Constitutive Modeling of AAA Tissue

Constitutive modeling of vascular tissue is an active field of research and numer-
ous descriptions have been reported. However, the phenomenological approaches
(Vaishnav et al. 1972; Fung et al. 1979; Chuong and Fung 1983; Takamizawa
and Hayashi 1987; Humphrey et al. 1990) that have been successfully used to
fit experimental data cannot allocate stress or strain to the different histological
constituents in the vascular wall. In contrast, structural constitutive descriptions
(Lanir 1983; Wuyts et al. 1995; Holzapfel et al. 2000; Zulliger et al. 2004; Gasser
et al. 2006; Gasser 2011; Pena et al. 2011; Martufi and Gasser 2011) overcome this
limitation and integrate histological and mechanical information of the arterial wall.

Several descriptions, histomechanical constitutive models say, aim at integrating
collagen fiber density and orientation according to Lanir’s pioneering work (Lanir
1983). We followed this powerful approach and assume that the macroscopic
Cauchy stress was defined by a superposition of individual collagen fiber contri-
butions, i.e.

� D 2

�

�=2Z
�D0

�=2Z
�D0

.�; �/�.
/dev.m ˝ m/ cos�d�d� C pI; (4.3)

where m D FM=jFMj denoted the spatial orientation vector of the collagen fiber.
In Eq. (4.3) the constitution of the collagen fiber is incorporated through its Cauchy
stress �.
/. Assuming the collagen fiber is incompressible, Cauchy stress �.
/ and
First Piola-Kirchhoff stress P.
/ are linked through �.
/ D 
P.
/. In Eq. (4.3)
the term pI denoted the hydrostatic stress with the Lagrange parameter p that is
independent from the tissue’s constitution and defined by the boundary conditions
of the problem of interest.
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Fig. 4.5 Hierarchical structure of a collagen fiber, i.e. a fiber built-up by undulated collagen fibrils
that are interlinked through proteoglycan (PG) bridges. Image taken from Martufi and Gasser
(2011)

4.3.1 A Passive Histomechanical AAA Wall Model

AAA wall tissue was regarded as a fibrous collagenous composite, where fibers of
collagen reinforced an otherwise isotropic matrix material. Each collagen fiber was
assembled by a bundle of collagen fibrils mutually interconnected by PG bridges
(Scott 2003, 2008) that provided interfibrillar load transition, see Sect. 4.2.1, for
a micro-histological justification. In addition Fig. 4.2c provides a kind of visual
imagination of the collagen fiber assembly. This structural view defines a basic load
carrying unit, Collagen Fibril PG-complex (CFPG-complex) say, as it is illustrated
in Fig. 4.5. Stretching a collagen fiber involves continuous recruitment of collagen
fibrils, such that they gradually start carrying a load. A straightening stretch 
st

defines the stretch beyond which the collagen fibril is stretched elastically, i.e. elastic
energy is stored in the CFPG-complex, i.e. in the collagen fibril itself and in the PG-
rich matrix between the fibrils.

Finite Strain Kinematics

A fibrous tissue at finite deformations was considered, where the unit direction vec-
tor M denoted the local collagen fiber direction in the reference configuration �0,
see Fig. 4.6. The deformation Fst i straightened the i-th collagen fibril, i.e. it mapped
its crimped referential configuration into a straight but still unstressed intermediate
configuration �st i. In contrast the deformation Fc i recorded deformation relative
to �st i and mapped the fibril to its spatial configuration �. Here, the intermediate
configuration served as a local reference configuration, with fibril stretch 
c i and
fibril tension Tc i D 0, relative to which the fibril deformed elastically. Consequently,
multiplicative kinematics related the continuum deformation to the introduced sub-
deformations through F D Fc iFst i.
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Fig. 4.6 Multi-scale kinematics of the collagen-fiber-reinforced tissue. Configurational map,
where the intermediate configuration �st i separates the straightening and stretching of the i-th
collagen fibril. A collagen fiber is thought to be built-up of a number of undulated collagen fibrils
that are interlinked through proteoglycan (PG) bridges

For simplicity and due to the lack of micro-structural data we assumed that
collagen fibrils that formed a collagen fiber straightened according to a symmetric
triangular probability distribution (Kotz and vanDorp 2004). Specifically, the first
and last fibrils within a collagen fiber straightened at fiber stretches 
min D 1 and

max, respectively. Note that elastin in AAA tissue is decreased (and fragmented)
and collagen may determine the tissues unloaded configuration, which in turn
justifies setting 
min to one. Finally, affine deformation between the continuum and
the collagen fiber, i.e. 
 D jFMj D jmj, and incompressible macro-deformation
(detF D J D 1), was considered.

Constitutive Description of the CFPG-Complex

Collagen fibrils have an approximately linear stress-stretch property (Miyazaki and
Hayashi 1999; Shen et al. 2008), which is nicely captured by the First Piola-
Kirchhoff stress Tc i D k
c ilog
c i. It is assumed that the same constitutive relation
also describes the i-th CFPG-complex sufficiently accurately. Considering the
continuous recruitment of collagen fibrils (see Fig. 4.5), the First Piola-Kirchhoff
stress of a collagen fiber is

T.
/ D k


Z
0

CDF.
/d
; (4.4)

where CDF.
/ denotes the Cumulative Density Function of the triangular prob-
ability distribution (Martufi and Gasser 2011). Integrating CDF.
/ and using the
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abbreviations a D 
max � 1 and b D .
max C 1/=2 yields the piecewise analytical
expressions for the First Piola-Kirchhoff stress of a collagen fiber

T.
/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

0; 0 < 
 � 1;

k
2

3a2
.
 � 1/3; 1 < 
 � b;

kŒ
 � 2

3a2
.
 � 
max/

3 � b�; b < 
 � 
max;

k.
 � b/; 
max < 
 � 1:

(4.5)

This set of equations exhibits the typically non-linear property of soft biological
tissues and its numerical implementation is detailed elsewhere (Martufi and Gasser
2011).

Parameter Identification and Model Validation

Constitutive parameters were identified from macroscopic planar biaxial testing,
where 
c and 
a denoted the circumferential and axial stretches, respectively.
Introducing the kinematics of the biaxial deformation of an incompressible solid,
i.e. F D diagŒ
c; 
a; .
c
a/

�1�, and expressing the orientation of the collagen fiber
through the Eulerian angles M D Œcos� cos � sin � sin � cos ��T (see Fig. 4.3), the
circumferential �c and axial �a Cauchy stresses were

�i D 2

�

�=2Z
�D0

�=2Z
�D0

.�; �/�.
/.aii � arr/ cos�d�d� I i D c; a: (4.6)

Here, acc; aaa and arr were the diagonal coefficients of the spatial tensor a D m ˝
m D .FM/˝.FM/. In addition incompressibility of the collagen fiber was assumed,
such that �.
/ D 
T.
/ held. Knowing the collagen orientation density function
.�; �/ in Eq. (4.6) made it possible to estimate the constitutive parameters from the
macroscopic biaxial experimental data.

Comprehensive experimental data from the AAA wall was recorded from
tension-based biaxial loading protocols (Vande Geest et al. 2006). However,
such data could not be compared directly to predictions through Eq. (4.6),
i.e. where the stretch rather than tension is prescribed. Consequently, patient-
specific model parameters that have been reported elsewhere (Ferruzzi et al.
2010) were used to generate synthetic experimental data instead. The synthetic
data was then used to estimate constitutive parameters based on Eq. (4.6)
(Mathematica, Wolfram Research). In order to achieve a reasonable fit with the
experimental data, it was essential that collagen fibers changed their constitution
with respect to their azimuthal alignment, and 
max D �maxM with �max D
diagŒ
max c; 
max a; .
max c
max a/

�1� was used to set the upper undulation limit.
Further details are given elsewhere (Gasser et al. 2012).
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Fig. 4.7 Comparison between (synthetic) experimental and analytical stress-stretch response of
the Abdominal Aortic Aneurysm (AAA) wall. Results were derived from a stretch-based biaxial
loading protocol with a stretch ratio of 
c=
a D 2. Thick solid lines show the analytical results.
The median and the 50 % quartile of the experimental data are illustrated by the thin solid and
dotted lines, respectively

Table 4.1 Model parameters used to predict the mean-population
response of Abdominal Aortic Aneurysm (AAA) wall tissue (sr
denotes steradian)

Bingham distribution parameters �1 D 11:6 , �1 D 9:7

Collagen undulation parameters 
max c D 1:44 , 
max a D 1:2

CFPG-complex stiffness k D 2:0 GPa

Model predictions in relation to experimental data are illustrated in Fig. 4.7. To
this end the parameters shown in Table 4.1 and a stretch ratio of 
c=
a D 2 were
used.

Discussion

The constitutive model discussed in this section was based on a sound histome-
chanical framework that integrated the collagen’s fibril and fiber levels with the
tissue’s continuum level. Specifically, cross-linked collagen fibrils were thought to
form collagen fibers, which in turn were integrated over the unit sphere to define the
tissue’s macroscopic properties (Lanir 1983; Federico and Gasser 2010).

The applied constitutive model was based on the collagen organization measured
with PLM and was able to replicate anisotropic properties of the AAA wall as
reported from planar biaxial testing (Vande Geest et al. 2006). It was important to
equip collagen fibers with mechanical properties that changed with respect to their
azimuthal orientation. Specifically, the upper undulation limit of a circumferentially
aligned collagen fiber was about twice that of an axially aligned fiber, see Table 4.1.
The undulation of collagen fibrils could be determined by the continuous collagen
turnover that is superimposed on the pulsating wall tissue. Consequently, the higher



70 T.C. Gasser

undulation limit of collagen fibrils aligned with the circumferential direction might
be the direct consequence of the higher pulsating strains in the circumferential
direction.

It is well understood that inter-fiber and inter-fibril sliding plays a significant
role in tendon deformation (Gupta et al. 2010). While the present collagen fiber
model clearly accounted for inter-fibril sliding any inter-fiber sliding was suppressed
through the prescribed affine kinematics between collagen fiber and tissue levels. If
inter-fiber sliding also relates to vascular tissue, the applied affine transformation
should be relaxed, by introducing an interface model for example. Unlike the affine
fiber-continuum kinematics used in the present work, fiber-reinforced tissues were
modeled by interlinked network structures (Chandran and Barocas 2006). Such an
approach is clearly justified for hydrated collagen networks, i.e. where the absence
of inter-fibrillar (solid) material allows a largely unconstraint motion of collagen
fibrils. In contrast, the inter-fibrillar material in the AAA wall was expected to
define a rather affine transformation between the collagen fibers and the continuum.
Likewise, in the media of the normal aorta, bundles of collagen are not woven
together (O’Connell et al. 2008), i.e. cross-linking among fibers is missing, which
further reinforced the affine kinematics approach. However, a sound experimental
validation of affine kinematics for vascular tissue has not yet been reported in the
literature.

4.3.2 An Adaptation Model for the AAA Wall

Vascular tissue responds to mechanical stimuli, a mechanism necessary to optimize
cardio-vascular function under defined boundary conditions. However, malfunction
of vascular adaption can lead to pathologies like aneurysms. Aneurysms grow at
different rates, and in addition to a diameter that exceeds 55 mm, a growth rate
that reaches 10 mm per year is typically regarded as an AAA repair indication.
The growth rate and wall strength of AAAs are thought to be linked (Wilson
et al. 2003), such that a reliable growth predictor could reinforce an AAA rupture
risk assessment. Describing the growth of aneurysms is an active field of research
and several models have been reported, see among others (Volokh and Vorp 2008;
Watton and Hill 2009; Kroon and Holzapfel 2009; Zeinali-Davarani and Baek 2012;
Wilson et al. 2012). However, these models require significant further development
to augment clinical decisions. This section extends the passive AAA wall model
from Sect. 4.3.1 by adding a description for collagen turnover, i.e. the synthesis and
degradation of collagen.

Collagen Turnover Model

Collagen turnover in the vascular wall is accomplished by cells like fibroblasts
that are spread throughout the collagen network. Specifically, the present model
assumes that fibroblast senses the state of strain and pre-stretches collagen fibrils
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prior to their deposition. This is formulated through three distinct sub-models,
denoted as the sensing model, the collagen turnover model, and the structure update
model, respectively. The sensing model defines the physical quantity that stimulates
collagen turnover, the collagen turnover model quantifies the relation between the
sensed stimulus and the change of collagen mass, and the structure update model
details the way collagen is integrated/disintegrated into/from the existing collagen
structure.

Sensing Model

It is assumed that at homeostasis the stretch of a collagen fiber in the vascular wall
tends to 
ph, such that

�.M/ D 
.M/=
ph ! 1 (4.7)

was used as optimality condition. Here, � serves as a stretch-based mechanical
stimulus. For � > 1, the existing collagen is stretched too much, such that in
total more collagen is required to reach homeostasis. In this case the collagen
turnover needs to be amplified in order to increase the total collagen density in the
tissue. Equivalently, for � < 1, the collagen turnover needs to slow down to reach
homeostasis through a net loss of collagen. It is emphasized that � depends on the
orientation through the unit direction vector M, that defines the orientation of the
particular collagen fiber, see Fig. 4.6.

Collagen Turnover Model

It is assumed that collagen degrades isotropically according to

P� D ��; (4.8)

where � defines the time-scale of the degradation process and  is the total
collagen density. This relation is independent from the orientation M and the local
strain, such that degrading collagen is purely time-based, and matured collagen
continuously resolves.

In contrast, the production of collagen is based on the idea that fibroblast pro-
duces collagen in an effort to maintain a homeostatic environment. Consequently,
for a particular direction M, the production of collagen fibrils is related to the
stimulus �.M/ and reads

P.M/C D minŒ��.M/; PC
max� (4.9)

Here, PC
max denotes the maximum collagen production rate that reflects that fibrob-

lasts can only produce a certain amount of collagen in time. A similar limit has been
reported for stretch-induced collagen synthesis of cultured vascular smooth muscle
cells (Li et al. 1998).
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Structure Update Model

It is assumed that collagen fibrils are disintegrated from the existing collagen
structure without changing their undulation characteristics, i.e. without changing the
triangular PDF that describes the continuous recruitment of fibrils when stretching
a collagen fiber, see Sect. 4.3.1.

In contrast to the process that resolves collagen, newly formed collagen fibrils are
integrated at a certain distribution of pre-stretches. We again applied multiplicative
kinematics and considered Fig. 4.6 to analyze the deformation of a newly formed
collagen fibril. Here, the i-th collagen fibril is straight but does not carry any load,
i.e. it is stress-free, at its local intermediate configuration �st i. This individual
collagen fibril is thought to be integrated (cross-linked) in the current (deformed)
configuration at a certain stretch 
new that is measured relative to�st i. Consequently,
the straightening stretch 
st D 
=
new is required to straighten this collagen fibril
relative to the reference (undeformed) configuration �0, where 
 denotes the total
macroscopic stretch in direction of the fibril. Similar to the passive model, collagen
fibrils were considered in a statistical sense, and the undulation of the newly
formed collagen fibrils followed a triangular PDF having the limits 
new

min and 
new
max,

respectively. Finally, and as demonstrated in Martufi and Gasser (2012), adding the
newly formed collagen to the already existing collagen structure can be regarded as
a continuous update of the PDF that represents the collagen fibril distribution.

Although the outlined structure update model assumed a pre-stretched deposition
of collagen fibrils, one could also consider collagen fibrils being stretched by
fibroblasts after their deposition. Note that it is widely accepted that fibroblast adds
tension to a collagen network (Alberts et al. 1994), but Fig. 5 in Silver et al. (2003)
(taken from McBridge 1984) nicely shows that collagen fibrils might already be
under tension when synthesized.

Results

The outlined adaptation model was implemented in an FE environment (FEAP,
University of California at Berkeley) (Taylor 2007) and a patient-specific
AAA was reconstructed from standard Computer Tomography-Angiography
images (A4clinics Research Edition, VASCOPS GmbH). To this end deformable
segmentation models were used that provided an artifact-free segmentation with
minimal user interaction (Auer and Gasser 2010; Gasser 2012). Although the intra-
luminal thrombus is known to be an important solid structure (Gasser et al. 2008)
that increases the predictability of biomechanical AAA models (Gasser et al. 2010),
it was not considered in the present study. Based on the reconstructed geometry an
FE model was developed and exposed to a constant blood pressure of 100 mmHg.
The wall was allowed to remodel over time and Fig. 4.8 shows the development
of the aneurysms. Here, the parameters that determined collagen turnover were set
such that a growth of 3.2 mm per year was reached, which matched available data
from patient follow-up study (Martufi et al. 2013).
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Fig. 4.8 Development of a patient-specific Abdominal Aortic Aneurysm (AAA) over a time
period of 1 year. The color code denotes the maximum principal Cauchy stress and the zoom-
ups show the predicted collagen organization at the site of Peak Wall Stress (PWS). (a) Baseline
prediction at homeostatic conditions, i.e. such that the aneurysm remains stable over time. (b)
Prediction after 1 year with parameters for newly formed collagen (� D 1=60 [day]�1 , 
new

min D
0:98, 
new

max D 1:22, PC

max D 5:3 � 10�3 [sr day]�1) that matched the growth of small AAAs

Discussion

The suggested adaptation model was able to predict the growth of small aneurysms,
where the undulation limits 
new

min and 
new
max of the newly formed collagen as well as

the maximum collagen production rate PC
max were the most influential parameters.

The experimental identification of these parameters is not straightforward, and,
when only considering macroscopic observations, not unique either. While the
present model assumed that the collagen production rate depends on mechanical
factors (see Eq. (4.9)) and its degradation rate not (see Eq. (4.8)), other models
assumed precisely the opposite (Loerakker et al. 2014).

Compared to passive constitutive models, predictions that considered collagen
turnover led to a smoother wall stress distribution. Specifically, the adaptation model
avoided high stress gradients across the vessel (Martufi and Gasser 2013), which are
thought to be non-physiological. Apart from these macroscopic consequences of
collagen turnover, it shifted the initially isotropic collagen orientation density into
a locally orthotropic distribution. This agrees well with an histological study of the
AAA wall, see Sect. 4.2.3.
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By limiting the collagen production in our model, i.e. enforcing being lower or
equal to PC

max, the mechanical stimulus was deactivated and the collagen synthesis
could no longer support a net increase of collagen. Considering the rapidity of
collagen remodeling, this circumstance could over time lead to aneurysm rupture.

4.3.3 Conclusions

Vascular biomechanics is critical in order to define new diagnostic and therapeutic
methods that could have a significant influence on our medical understanding and
even on the lifestyle of human beings. Nowadays, continued advances in computer
technology and computational methods allow us to model patient-specific vascular
problems. Apart from other challenges, such simulations critically depend on an
accurate constitutive description of vascular tissue. Like other biological tissues
the vascular wall responds to its mechanical environment and predictions based on
passive constitutive models, i.e. suppressing tissue remodeling and growth, can only
cover a limited time period. Vascular tissue develops at a loaded in-vivo configura-
tion, which induces residual strains in its (hypothetical) load-free configuration, i.e.
in the setting that typically serves as a reference for FE computations. Predicting
realistic physiological stress states with passive constitutive models requires residual
strains in the load-free configuration, which, for complex geometries are unfortu-
nately unknown. Consequently, the key for improving biomechanical models is to
understand the tissue’s inherent properties to adapt to mechanical environments, and
as demonstrated in Sect. 4.3.2 computational simulations can be potentially helpful.

The present chapter focused on structural aspects and it is known that aneurysm
disease also alters the blood flow through the aorta (Taylor and Humphrey 2009).
The enlarged lumen lowers the wall shear stress (Biasetti et al. 2009) and vortical
structure dynamics differ remarkably between normal and aneurysmatic aortas
(Biasetti et al. 2011). These hemodynamic alterations dictate the distribution of
chemical species like thrombin (Biasetti et al. 2011), and their associated biological
consequences are unknown.

Finally, although the constitutive models presented were able to successfully
capture some features of an AAA wall, a rigorous validation against experimental
data is crucial to evaluate its descriptive and predictive capabilities. In that respect,
a mixed experimental numerical approach that accounts for tissue growth and
remodeling seems to be most appropriate.
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Chapter 5
The Biomechanics of Fat: From Tissue
to a Cell Scale

Naama Shoham and Amit Gefen

Abstract Adipose tissues are weight-bearing biological structures that are involved
in central medical problems such as obesity, diabetes and their comorbidities. Their
biomechanical properties are relevant in several fields such as cosmetics, acute and
chronic wound treatments, implantable drug delivery systems, and plastic surgery.
In this chapter, we relate the mechanical behavior of the adipose tissue continuum to
the biological activities of adipocytes. We demonstrate that first, at a macroscopic
scale, the mechanical behavior of adipose tissues depends on the anatomical site
and hence on physiological function. At a microscopic scale, mechanical function
such as cell stiffness properties depends on the triglyceride contents that in turn
depend on the level of differentiation, which has recently been shown to be regulated
by mechanical loading. Hence, based on the empirical data, we propose a novel
hypothesis regarding structure–function–adaptation processes and relationships in
fat, which might open new research paths for studying adipose-related diseases from
a biomechanical point of view, involving the mechanotransduction and structure–
function–adaptation concepts that are well known to exist for other tissues but were
so far very poorly studied in fat.

5.1 The Adipose Tissue

The adipose tissue is a specialized connective tissue, located in three major anatom-
ical depots: subcutaneous, dermal, and intraperitoneal (Shoham and Gefen 2012a).
In human adults, the main component of adipose tissue is the white adipocyte cell
which contains primarily triglycerides, and the remaining components are water
(5–30 % weight) and proteins (2–3 % weight) (Geerligs et al. 2010). Adipose tissue
is highly vascularized with each adipocyte being in close proximity to at least one
capillary vessel that supports active metabolism (Christiaens and Lijnen 2010). The
main function of adipose tissue is to store excess energy in the form of lipids,
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which can later be mobilized to other tissues in response to metabolic needs (Avram
et al. 2005). Though poorly studied from a biomechanical perspective with respect
to say musculoskeletal or other connective tissues, adipose tissue is a weight-bearing
biological structure (e.g., it supports the bodyweight during sitting or lying). Fat
tissues are also involved in central medical problems, such as obesity, diabetes, and
their comorbidities, and its biomechanical behavior and properties are also relevant
in the fields of cosmetics, acute and chronic wounds, implantable drug delivery
systems, and plastic surgery (Shoham and Gefen 2012a; Gefen and Haberman 2007;
Geerligs et al. 2010). Hence it is very important to characterize and formulate
structure–function relationships for adipose tissue, and, in particular, to understand
how changes that occur at a cellular level eventually lead to macroscopic changes in
the contents, structure and mechanical properties of the fatty tissues.

5.2 Tissue-Scale Studies

Mechanical properties of adipose tissues extracted from different species and/or
different anatomical sites have been reported in the literature (Table 5.1) (Geerligs
et al. 2008, 2010; Gefen and Haberman 2007; Gefen et al. 2001; Iatridis et al.
2003; Krouskop et al. 1998; Samani et al. 2007; Sinkus et al. 2005; Weaver et al.
2005). The biomechanical behavior of the fat tissues in the buttocks is relevant, for
example, when developing mathematical or computational models of deep pressure
ulcers, where adipose tissue damage occurs due to prolonged compression by
bony prominences (Gefen and Haberman 2007). In vitro viscoelastic mechanical
properties of the adipose tissue covering the gluteus muscles of sheep were therefore
measured by Gefen and Haberman (2007) using confined compression and swift
indentations techniques. They found that the short-term aggregated modulus in
confined compression (which is defined as the ratio of the measured reaction
force divided by the cross-sectional area of the upper platen) was 28.9 ˙ 14.9 and
18.1 ˙ 6.9 kPa for nonpreconditioned and preconditioned specimens, respectively.
The corresponding short-term elastic moduli were 0.85 ˙ 0.4 and 0.53 ˙ 0.2 kPa for
the nonpreconditioned and preconditioned specimens, respectively. The long-term
aggregated modulus property, however, was not affected by the preconditioning;
being 10.3 ˙ 4.2 kPa constantly, and accordingly the long-term elastic modulus of
the tissue was calculated to be 0.3 ˙ 0.12 kPa. The plateau phase in the transient
aggregate modulus function was always reached within 2 min. The short-term elastic
modulus strongly depended on the deformation rate, since in the high indentation
rate experiments the short-term elastic moduli were 22.6 ˙ 10 and 15.8 ˙ 9.4 kPa
for the nonpreconditioned and preconditioned specimens, respectively.

Mechanical properties of subcutaneous adipose tissue, which influence, for
example, on the mechanical environment in plastic reconstructive surgeries or in
transdermal drug-delivery systems were examined in the studies of Iatridis and
colleagues (2003) and later by Geerligs and co-authors (2008, 2010). Iatridis et al.
(2003) studied mechanical properties of rat subcutaneous adipose tissues under
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uniaxial tension while applying incremental stress relaxation protocols. They
reported a linear elastic response of the tissue, with instantaneous and long-
term tensile moduli of 4.77 and 2.75 kPa, respectively. Given the linearity in
their data, they were able to describe the constitutive tissue behavior using a 5-
parameter Maxwell solid model and a continuous relaxation function with a constant
amplitude relaxation spectrum. Geerligs and colleagues (2008) performed shear
experiments on porcine subcutaneous adipose tissue using a rotational rheometer.
They found that within the linear viscoelastic regime, which was up to 0.1 %
strain, the storage and loss moduli showed a frequency- and temperature-dependent
behavior. Conversely, the ratio between the two moduli, i.e., the phase angle, did
not show any dependence on temperature and frequency. The shear modulus of
the porcine adipose tissue was 7.5 kPa at 10 rad/s and 37 ıC. Finally, a power-
law function model was used to describe both the frequency-dependent behavior at
constant temperature and the stress relaxation behavior. In a complementary study,
Geerligs and colleagues (2010) further examined the long-term behavior of adipose
viscoelastic properties under small strains (tissue deformations were applied for
at least 45 min), as well as the tissue responses to various large strain profiles
which were delivered again through rheological methods. They found that the shear
modulus dramatically increased (from 1.5 to 15 kPa) after a loading period that
lasted between 250 and 1250 s, but then the modulus returned to its initial value
within 3 h of recovery from the loading. Additionally, the strain–stress responses for
various large strain history sequences were reproducible up to strains of 0.15. For
larger strains, the stress decreased in subsequent loading cycles, and, above strains
of 0.3, the structure of the tissue changed such that the stress became independent
of the applied strain. Given that an anti-thixotropic behavior is defined as a time-
dependent increase in the viscosity or stiffness properties of the tissue which is
induced by deformation loading, but is reversible when the deformation ceases,
Geerligs et al. concluded that, based on their experimental results, subcutaneous
adipose tissues likely behave as an anti-thixotropic material. In addition, they
suggested that a Mooney–Rivlin model would be appropriate for representing the
constitutive behavior of this tissue at physiologically relevant large strains.

Mechanical properties of breast adipose tissues are of interest considering that
palpation for detecting local stiffening of the tissue is commonly used in clinical
practice as a means to screen for breast cancer. Krouskop et al. (1998) investigated
the viscoelastic behavior of human breast fat tissue when subjected to compression
loading at three strain rates (0.1, 1, and 4 Hz) and found that the tissue had
an approximately constant elastic modulus. Additionally, the modulus of the fat
tissues did not change significantly in their studies when the pre-compression strain
level was increased. Specifically, the elastic moduli of the fat were 18 ˙ 7, 19 ˙ 7,
and 22 ˙ 12 kPa for the 0.1, 1, and 4 Hz loading frequencies, respectively, under
5 % pre-compression strain. When a 20 % preconditioning strain was applied, the
elastic moduli were 20 ˙ 8, 20 ˙ 6, and 24 ˙ 6 kPa for the corresponding loading
frequencies, which was statistically indistinguishable from the previous dataset.
Since the elastic moduli of the tissue did not change significantly with the frequency
of the applied deformations, it was concluded that breast fat tissues behave as
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an elastic material (i.e., the viscous component can be considered negligible).
Mechanical properties of fat breast tissue were examined by means of other methods
as well (Sinkus et al. 2005; Samani et al. 2007). Specifically, using magnetic
resonance (MR) elastography, Sinkus et al. (2005) found that the shear modulus
of this tissue was 1 ˙ 0.3 kPa. In brief, MR elastography quantifies viscoelastic
properties of tissues indirectly, by recording mechanical low-frequency shear waves
while they spread in the tissue (Sinkus et al. 2005). Another attempt to determine
mechanical properties of fat breast tissues was made by Samani and colleagues
(2007), who used an indentation technique and found that the Young’s modulus
of the tissue (for small deformations) was 3.25 ˙ 0.91 kPa.

Mechanical properties of the heel fat pad are relevant, for example, when
studying how to biomechanically protect tissues in diabetic feet. Gefen et al. (2001)
measured deformations and contact stresses in heel pad tissues simultaneously,
in vivo, during the stance phase of gait, by combining fluoroscopic and plantar
pressure measurement techniques. These researchers found that the stress–strain
relationship for heel fat pads is highly nonlinear, with a compression modulus of
105 ˙ 11 kPa initially and 306 ˙ 16 kPa at 30 % strain. Additionally, the energy
dissipation in this tissue during heel strike was evaluated to be 17.8 ˙ 0.8 %. Using
MR elastography, Weaver et al. (2005) later reported that the shear modulus of the
heel fat pad increased from 8 to 12 kPa with increasing pressures, again indicating
a strong nonlinearity of the constitutive law.

To summarize this part, the stiffness of adipose tissues appears to depend on the
anatomical site (Table 5.1), and hence on the physiological function (e.g., the
magnitudes of the mechanical loads that are normally transferred through the tissue),
which is consistent with biomechanical knowledge regarding other tissue types such
as cancellous bone. However, it is rather difficult to compare tissue mechanical prop-
erties across literature reports, considering the diversity in measurement techniques
and protocols, inter-specie differences, and the different constitutive parameters
that were determined in each study. Still, and as could be well expected based
on the structure–function concept in tissue biomechanics, the intensively loaded
heel fat pad is stiffer by orders of magnitudes under compression with respect to
the fat tissues of the breast (which are much more lightly loaded, by gravity or
perhaps during breastfeeding). Such substantial differences in mechanical properties
must relate to the fatty acid composition and turnover rates in adipose tissues. For
example, weight-bearing buttocks fat depots generally have a lower proportion of
saturated fatty acids, elevated proportions of monosaturated and polysaturated fat,
and lower lipolysis rates with respect to abdominal depots that are mainly loaded
by gravity (apart from the time when a person spends sleeping prone) (Gefen and
Haberman 2007). Understanding the factors causing these differences in mechanical
performance of fat across anatomical sites requires that the biomechanics of fat be
studied at a cellular scale.
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5.3 Cell Scale Studies

It is very likely that the differences across anatomical sites which were documented
in the literature with respect to mechanical properties of fat at the tissue scale
(Table 5.1) would relate to composition of cells (and/or extracellular matrix
composition) at the microscopic scale. Using atomic force microscopy (AFM),
Darling and colleagues (2008) studied mechanical properties of adipocytes that were
harvested from human fat pads in the joints as well as properties of adipose-derived
adult stem cells which were obtained from human subcutaneous abdominal adipose
tissues. The adipose-derived adult stem cells were tested in two configurations: short
seeding times (which produce nearly spherical cell morphology) and long seeding
times (that allow cells to spread over the culturing substrata). These researchers
found that the elastic moduli (calculated by processing the AFM data by means of
the Hertz theory) of the spherical adipocytes from the fat pads, and the spherical and
spread adipose-derived adult stem cells were 0.9 ˙ 0.8, 2.6 ˙ 1.6, and 2.5 ˙ 1.2 kPa,
respectively. The long-term elastic moduli of these cells (at 30 s) were 0.71 ˙ 0.74,
0.37 ˙ 0.31, and 1.7 ˙ 1.1 kPa, respectively. The relaxed moduli (i.e., the stresses
at a given deformation value, after a certain time of relaxation) were 0.61 ˙ 0.54,
0.37 ˙ 0.26, and 1.7 ˙ 1 kPa, for the spherical adipocytes from the fat pads, and the
spherical and spread adipose-derived adult stem cells, respectively. Corresponding
times for reaching plateaus of the creep response were 55.5 ˙ 129, 31 ˙ 41.5, and
21.5 ˙ 78.5 s, respectively, and times for plateau of the stress relaxation curves
were 31.1 ˙ 63.8, 7.3 ˙ 4.3, and 9.6 ˙ 16 s. Though the stiffness properties and
creep/relaxation times reported by the Darling group were around the same order
of magnitude for the different cells and seeding conditions, their data suggest that
mechanical properties of adipocytes change during cellular maturation, and perhaps
also depend on the interaction of the cells with the substrate (for in vitro studies).

Other than studying the effective mechanical properties of adipocytes, it is also
important to characterize their biomechanical behavior as a (micro) structure, since
it is the cellular structure which supports and transfers loads at the microscopic
scale, but also given the potential influence of mechanical loads on function
of cellular organelles which could, in turn, imply on how cells would respond
biologically to the loading—which is generally termed mechanotransduction. Or-
Tzadikario and Gefen (2011) developed cell-specific finite element models of a
fibroblast-like pre-adipocyte cell versus a mature adipocyte. In brief, they observed
both cell types under confocal microscopy, acquiring z-stack cellular images that
were then assembled to create a three-dimensional solid model of each cell. In
their modeling, the cytoplasm, plasma membrane, nucleus, and lipid droplets (in
the adipocyte) were all incorporated and were assumed to behave as isotropic
compressible materials that obey a neo-Hookean strain energy density function.
They simulated quasi-static cell compression tests by lowering a rigid platen onto
the cell surface until reaching a global cell deformation (GCD D difference between
the undeformed and compressed cell heights over the undeformed cell height, in %)
of 35 % per each cell type. Or-Tzadikario and Gefen then found that the %-plasma
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membrane that was subjected to large tensional strains (>5 %) increased nonlinearly
with the GCD level for both cells, and large tensional strains started to appear in
their plasma membrane for GCD > �15 %. In the adipocyte model, means of peak
tension, compression, and shear strains in cytoplasmic material around lipid droplets
increased in a nearly linear relationship with GCD � 15 %, reaching 17.9 %,
13.4 %, and 25.6 %, respectively, for GCD D 35 %. Additionally, strains were
highly inhomogeneous across the individual lipid droplets, and this inhomogeneity
increased with the rise in GCD. The Or-Tzadikario et al. (2010) paper again provides
support to the hypothesis that cell stiffness, intracellular strains, and intracellular
stresses which develop in response to a certain external loading condition depend
on the maturity of the cells, as cells progress along the process of differentiation and
produce more, and larger lipid droplets. Differentiation in these cells is influenced
in turn by the mechanical environment and applied mechanical loads, as recently
shown by our group, where statically stretching pre-adipocyte cultures up to large
strains for 2 weeks or more accelerated adipogenesis and development of larger
intracytoplasmic lipid droplets (Levy et al. 2011; Shoham et al. 2012b). Therefore,
it appears that there is ongoing feedback between mechanical loads that are sensed
by adipocytes, their differentiation response, and the effective stiffness properties of
the cells—which depend on the stage of differentiation. These interactions, which
are schematically illustrated in Fig. 5.1, were studied by several research groups in
vitro, as described in the next section.

Differentiation

Changes in cell-
level stiffness

Changes in
tissue-level
stiffness

Changes in 
strain/stress 
distributions

Mechanotransduction

Fig. 5.1 The proposed interactions between mechanotransduction at the cell scale and tissue- or
organ-level biomechanics in weight-bearing fat tissues
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5.4 Cell-Level Structure–Function–Adaptation
Relationships in Fat

Recent studies employing different in vitro model systems point to some very
interesting structure–function–adaptation relationships in adipose tissues, which
are probably analogue to those documented in other connective tissues such as
bone. First, at a cellular scale, adipocytes are becoming increasingly recognized
as being mechanosensitive and mechanoresponsive cells, much like osteoblasts,
myocytes, or tenocytes (Levy et al. 2011; Shoham et al. 2012b). Second, dynamic
loading regimes such as cyclic stretching or vibration were generally found to
suppress adipogenesis in cultured adipocytes harvested from various sources, e.g.,
pre-adipocytes, mesenchymal stem cells, and adipose tissue stromal cells. From a
molecular biology perspective, different signaling pathways are activated by the
dynamic mechanical conditioning (Case et al. 2010; David et al. 2007; Huang et al.
2010; Sen et al. 2008, 2009, 2011; Tanabe et al. 2004, 2008; Tirkkonen et al.
2011; Turner et al. 2008) and readers are referred to our recent review paper in
the Journal of Biomechanics in this regard (Shoham and Gefen 2012a). Contrarily
to the suppressing effect that dynamic loading has on adipogenesis, static loads
that are delivered chronically, i.e., for periods of days to weeks, appear to have a
dual influence on adipogenesis, where static stretching accelerates differentiation
and consequent formation of new and larger lipid droplets (Hara et al. 2011; Levy
et al. 2011; Shoham et al. 2012b) but static compression impedes it (Hossain et al.
2010). Here, again, multiple signaling pathways are involved, one of which being
the ERK/MEK pathway (Shoham et al. 2012b). These findings in cell cultures in
vitro are supported by several animal studies and even a few human subject trials
where dynamic loads delivered to adipose tissues have generally been found to
suppress adipogenesis and reduce body fat (Luu et al. 2009; Maddalozzo et al.
2008; Marques et al. 2011; Monteux and Lafontan 2008; Ozcivici et al. 2010; Rubin
et al. 2007; Vissers et al. 2010), whereas static stretching promoted the adipogenesis
(Kato et al. 2010). The different nature of responses of adipose tissues to dynamic
versus static loads resembles the nature of response of bone tissue to loading in the
sense that bone, as well, is known to respond differently to dynamic versus static
loading. However, in bone, chronic static loads would generally have a catabolic
effect and dynamic loading would have an anabolic effect, whereas adipose tissues
respond the other way around (Shoham and Gefen 2012a).

The role of mechanotransduction in regulating lipid contents in adipocytes and
adipose tissues becomes extremely interesting when realizing that cells in human
adipose tissues are physiologically exposed to compound mechanical loading: ten-
sile, compressive, and shear strains/stresses, which are associated with bodyweight
loads and weight-bearing and whose loading profile depends on the lifestyle, age,
injury, and disease in the individual (Linder-Ganz et al. 2007). For example, in
seated healthy individuals the adipose tissues at the buttocks are subjected to peak
tensile, compressive, and shear strains of �30 %, �45 %, and �40 %, respectively.
A lying posture induces peak strains that are approximately half these magnitudes,
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but in case that there are anatomical changes that are associated with an injury or
disease, such as muscle atrophy and/or weight-gain post spinal cord injury, these
loads may increase considerably above the normative levels in sitting or lying
(Linder-Ganz et al. 2007, 2008). During dynamic loading such as when performing
a physical exercise, strains in adipose tissues are also large.

Taken together, the studies reviewed above lead to a novel and perhaps out-of-
the-box hypothesis regarding structure–function–adaptation processes and relation-
ships in fat, as follows. Given that during their differentiation and growth process,
adipocytes accumulate increasing amounts of triglycerides in intracytoplasmic lipid
droplets, the structure and composition of the individual cells change over the
timecourse of differentiation (Levy et al. 2011; Shoham et al. 2012b) (Fig. 5.2).
Hence, it is very likely that the effective stiffness of the cells, as well as the
distribution of intracellular stiffnesses between, e.g., the lipid dropletsand cytosol
in each cell are differentiation-process-dependent, and so, adipocyte stiffnesses
would change over a time course (Or-Tzadikario and Gefen 2011) depending on
the biochemical and mechanical environments of the cells (Or-Tzadikario et al.
2010; Shoham and Gefen 2012b). This immediately implies that over time, tissue-
level (or continuum scale) changes in stiffnesses would result in, which would
then affect the strain/stress distributions in weight-bearing fat, reflect back on the
mechanical environment of the cells—which would trigger a mechanotransduction
response and vice versa (Fig. 5.1). Massive research work is needed to look into
the components of this hypothesis in detail, but the pieces of information that we
already have indicate that it is very likely that these interactions exist in vivo,
and moreover, that they could play a fundamental role in common diseases such
as obesity. Our current work in this regard focuses on characterizing how the
effective stiffness of adipocytes is influenced by the progress of the differentiation
process. For this purpose, we currently image individual adipocytes using wide
field digital interferometric microscopy (Park et al. 2010; Shaked et al. 2011).
By means of this state-of-the-art microscopy method, we were able to evaluate
experimentally, though in a small number of experiments so far, how the effective
adipocyte stiffness depends on the contents of intracytoplasmic lipid droplets
(Shoham et al. 2012a) (Fig. 5.3). Obtaining quantitative formulations for how
adipocytes change structure and mechanical properties in response to biochemical
stimuli such as insulin (Or-Tzadikario et al. 2010) or biomechanical stimuli such
as static stretching (Shoham et al. 2012b; Shoham and Gefen 2012b), which is our
nearest goal, would clarify whether there exists a positive or negative feedback in
the structure–function–adaption loop for fat, that is, whether formation or growth
of intracytoplasmic lipid droplets leads to softening or stiffening of the cells and
tissues. If this process ultimately results in continuum-scale stiffening, the extent
of tissue deformations, particularly their tensional components would eventually
plateau, hence the mechanical driving force for the differentiation would also
stabilize, which would lead to a physiological equilibrium in the tissue. If on
the other hand adipocytes (and fat tissues) soften as they mature—that would
increase deformability at the tissue scale, would deliver more stretching to pre-
adipocytes and promote further differentiation, in a positive feedback loop which
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Fig. 5.2 Differentiation of 3T3-L1 adipocytes in culture: (a) percentage lipid area per field of view
and (b) mean diameters of lipid droplets over time. Example micrographs for three selected time
points are shown at the top frames. The scale bars indicate a 50 �m length
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Fig. 5.3 The optical path delay of a 3T3-L1 adipocyte, which was used in order to evaluate the
mechanical stiffnesses of the subcellular components. The units of the scale are meters. The scale
bar indicates a 10 �m length. (Adapted from Shoham et al. 2012a)

could contribute to obesity or weight gaining, and eventually to hyperlipidemia
as well. These exciting ideas open completely new research paths for studying
obesity, diabetes, and related diseases from a biomechanical point of view, involving
the mechanotransduction and structure–function–adaptation concepts that are well
known to exist for other tissues but were so far very poorly studied in fat.

5.5 Summary and Concluding Comments

In this chapter, we described the up-to-date research work concerning the mechan-
ical properties of adipose tissues, as well as the most recent experimental work
concerning mechanical behavior of, and mechanotransduction in the microscopic
building block of adipose tissues—the adipocytes. We proposed to relate the
mechanical behavior of the adipose tissue continuum to the biological activities
of adipocytes, which follows the classic structure-based mechanics theory for
tissues but have not been previously addressed for fat. We demonstrate that first,
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at a macroscopic scale, the mechanical behavior of adipose tissues depends on
the anatomical site and hence on physiological function. At a microscopic scale,
mechanical function such as cell stiffness properties depends on the triglyceride
contents that in turn depend on the level of differentiation, which has recently been
shown to be regulated by mechanical loading. This have led us to develop a new
hypothesis regarding structure–function–adaptation processes and relationships in
fat, where bodyweight loads chronically shape the mass and composition of weight-
bearing fat through mechanotransduction pathways, where the influence is on the
levels of triglyceride contents in the individual cells and rate of cell differentiation
in mass. The consequent changes in effective adipocyte cell stiffness—which
is highly influenced by the triglyceride contents—eventually cause changes in
continuum-scale mechanical properties, which affects strain and stress distributions
in the weight-bearing fat, which again acts as a mechanotransduction stimulus
on adipocytes. Hence, there is probably ongoing feedback between macro-scale
tissue loads and synthesis of triglycerides in adipocytes, which—if validated further
by future research—may revolutionize the way by which we perceive fat-related
diseases such as obesity, diabetes, and hyperlipidemia, as in all these conditions,
biomechanics, particularly at the cell level, may play a key role.
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Chapter 6
Glaucoma and Structure-Based Mechanics
of the Lamina Cribrosa at Multiple Scales

Rafael Grytz, Günther Meschke, Jost B. Jonas, and J. Crawford Downs

Abstract Glaucoma is among the leading causes of blindness worldwide. The
disease involves damage to the retinal ganglion cell axons that transmit visual
information from the eye to the brain. Experimental evidence indicates that biome-
chanical mechanisms at different length scales are involved in pathophysiology of
glaucoma, where chronic intraocular pressure (IOP) elevation at the organ level
initiates axonal insult at the level of the lamina cribrosa. The lamina cribrosa consists
of a porous collagen structure through which the axons of retinal ganglion cells
(RGCs) pass on their path from the retina to the brain. The extent to which the
structural mechanics of the lamina cribrosa contribute to the axonal insult remains
unclear. In this book chapter, we give a short review of the present understanding of
the structural mechanics of the lamina cribrosa and its role in glaucoma. The main
aim is to present a first computationally coupled two-scale analysis of the lamina
cribrosa that translates the IOP load at the macroscale to the mechanical insult of
the axons within the mesostructure of the lamina cribrosa. The numerical results of
two-scale analysis suggest that the collagen structures of the lamina cribrosa and its
surrounding peripapillary sclera effectively provide mechanical support to the axons
by protecting them from high tensile stresses even at elevated IOP levels. However,
in-plane shear stresses in the axonal tissue may increase with increasing IOP at the
posterior lamina insertion region and contribute to a mechanical insult of the RGC
axons in glaucoma.
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6.1 Introduction

The collagen structures of corneoscleral shell provide the structural integrity
necessary to resist the intraocular pressure (IOP) load and also give the eye the
stable shape necessary for focused vision (see Fig. 6.1a for ocular anatomy). At
the posterior side of the scleral shell the collagen structure is interrupted to form
the scleral canal through which the retinal ganglion cell (RGC) axons pass on
their way from the retina to the brain. The tissues within in the scleral canal can
be histologically divided into three regions (Fig. 6.1b). In the prelaminar region,
the RGC axons converge and turn 90ı to form the optic nerve. Posterior to the
prelaminar region is the lamina cribrosa. The lamina cribrosa is characterized by a
porous collagenous structure (Fig. 6.1c). The RGC axons pass as aggregated bundles
through the pores of the lamina cribrosa. The collagen architecture of the lamina
cribrosa provides mechanical support to the RGC axons as they pass from the high
pressure environment in the eye to the lower pressure environment in cerebrospinal
fluid space. Posterior to the lamina cribrosa is the retrolaminar region. Here the
RGC axons become myelinated, which results in an increased diameter of the optic
nerve.

Glaucoma is characterized by irreversible loss of vision, and is often associated
with chronically elevated IOP. There are varying levels of individual susceptibility to
IOP, yet IOP lowering is currently the only clinical treatment that has been proven
to arrest or delay the onset and progression of the disease. There is considerable
body of evidence to indicate that glaucomatous damage to the RGC is due to RGC
axonal insult at the level of the lamina cribrosa (Lampert et al. 1968; Gaasterland
et al. 1978; Anderson and Hendrickson 1974; Quigley and Addicks 1980; Quigley
et al. 1981). The porous collagen structure of the lamina cribrosa represents a
relatively vulnerable structure in the otherwise robust corneoscleral pressure vessel.
Recent experimental studies have shown that the connective tissues of the lamina
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Fig. 6.1 (a) The anatomy of the human eye. (b) Histologic section through the optic nerve head
region illustrating the prelaminar, laminar cribrosa, and retrolaminar tissues. (c) Three-dimensional
reconstruction of the porous laminar beam structure
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cribrosa and its surrounding tissues undergo extensive structural changes during the
development and progression of glaucoma (Roberts et al. 2009; Yang et al. 2007,
2011).

The mechanisms that lead from IOP elevation to RGC axonal insult and,
ultimately, to RGC death are still unclear. It has been shown that RGCs have an
increased vulnerability to IOP-induced blockade of axonal transport at the level of
the lamina cribrosa (Quigley and Anderson 1976; Minckler et al. 1977; Radius and
Anderson 1979a, b, 1981; Minckler 1980), which may lead to RGC death through
apoptosis. It was suggested that axonal transport blockade might be caused by a
direct IOP-dependent mechanical insult of the RGC axons (Grytz et al. 2011a)
or indirectly through the remodeling of the lamina cribrosa structure or other
mechanisms. The blood supply for the lamina cribrosa and its contained RGC
axons is delivered through capillaries within the load-bearing lamina cribrosa beams
themselves, which directly couples the mechanical and vascular responses of these
tissues (Downs et al. 2008). Hence, a reduction in blood flow or nutrient delivery
might contribute to the IOP-related axonal insult. Whether the axonal damage
results form direct mechanical insult or indirectly through remodeling or reduced
blood flow, the structural mechanics of the lamina cribrosa seems to play major role
in the pathophysiology of glaucoma.

In this book chapter, we give a short review of the current understanding of the
structural mechanics of the lamina cribrosa and its relevance in glaucoma research.
The main aim of this chapter is to present the first computationally coupled two-
scale analysis to bridge structural mechanics between the macro- and mesostructure
of the lamina cribrosa and to investigate the potential mechanical insult of RGC
axons due to IOP elevation.

6.2 Structural Mechanics of the Lamina Cribrosa
at Multiple Scales

Most of the research on the biomechanics of the lamina cribrosa is based on the
eye macrostructure and its mechanical response (Dongqi and Zeqin 1999; Sigal
et al. 2005, 2007, 2009a, b, 2011a, b; Bellezza et al. 2003). Sigal et al. showed
in a series of publications that many macroscopic factors influence the mechanics
of the lamina cribrosa and these factors act both independently and in interaction
(Sigal et al. 2005, 2007, 2009a, b, 2011a, b). Major factors influencing the lamina
cribrosa biomechanics are peripapillary scleral thickness and stiffness, and laminar
position, thickness, and stiffness. These studies were performed using simplified
parametric, axisymmetric models with homogeneous, isotropic, elastic material
properties. Roberts et al. (2009, 2010a, b) showed in several studies of eye-specific
models incorporating inhomogeneous orthotropic material properties of the lamina
cribrosa based on local connective tissue volume fraction and predominant lamina
beam orientation, that the stress and strain distribution in the lamina cribrosa are
correlated with local laminar density.
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The structural mechanics of the human eye are strongly related to the collagen
structures within its tissues. At the mesoscale, organized collagen structures form
networks that introduce anisotropic and nonlinear elastic properties to eye tissues
(Girard et al. 2009a; Grytz et al. 2011a; Grytz and Meschke 2010; Petsche et al.
2012; Pinsky and Datye 1991; Pinsky et al. 2005). The lamina cribrosa represents a
weak spot in an otherwise stiff scleral shell. Consequently, its mechanical response
to IOP is not only influenced by its own collagen structures but also by the structures
of the surrounding peripapillary sclera. It was experimentally observed that the
scleral canal is surrounded by a circumferentially oriented ring of collagen fibrils
in the peripapillary sclera (Goldbaum et al. 1989; Morrison et al. 1989; Winkler
et al. 2010). Grytz et al. (2011a) predicted the same collagenous ring-like structure
in the peripapillary sclera using a computational model based on a remodeling rule
for collagen fibrils. The numerical results revealed that the collagen fibril ring of
peripapillary sclera shields the lamina cribrosa from high tensile forces.

The porous architecture of the laminar beams provides mechanical support to the
RGC axons passing through the lamina cribrosa. The overall organization of laminar
beams seems rather random and mainly designed to provide enough pore space for
the RGC axon bundles. However, Roberts et al. (2009) qualitatively analyzed the
laminar beam structure within three-dimensional reconstructions, and showed that
laminar beams of the monkey lamina cribrosa have a preferred radial orientation
in the periphery of the lamina cribrosa. Grytz et al. (2011a) predicted the same
radial structure using a computational remodeling approach for collagen fibrils.
The numerical results also suggested that these radial laminar beams reinforce
the laminar cribrosa against high transverse shear forces and reduce posterior
deformation.

Several numerical studies incorporated the collagen structures of the peripapil-
lary sclera and lamina cribrosa through constitutive models and investigated their
impact on the biomechanics of the lamina cribrosa (Roberts et al. 2009, 2010a, b;
Grytz et al. 2011a; Girard et al. 2009b). While microstructurally motivated constitu-
tive models are very useful to study the impact of micro- and mesostructures on the
biomechanical response of the tissue at the macroscale, these model are not suited to
localize biomechanical effects at lower scales such as the potential mechanical insult
of RGC axons in the glaucomatous lamina cribrosa. Downs et al. (2009) generated
finite element models of the porous laminar mesostructure from three-dimensional
reconstructions. The mesostructure was subjected to a displacement field, which was
previously computed at the macroscale. Consequently, macroscopic displacements
were transfered to the mesoscale to investigate the biomechanical environment of
the laminar beam structure. This numerical study revealed the complex mechanical
environment of the laminar beam structure. Strains were four to five times higher
locally in the laminar beam structure at the mesoscale compared with the strains
in the homogenized parent macroscale models (Fig. 6.2). While macroscopic
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Fig. 6.2 (a) The finite element mesh of the posterior scleral shell of a monkey eye. (b) The
maximum principal strain of the lamina cribrosa computed at the macroscale for IOP elevation
from 10 to 45 mmHg. (c) For one parent finite element of the macrostructure the maximum
principal strain of the underlying laminar beam mesostructure. The displacements calculated for
each finite element of the macrostructure were applied as displacement boundary conditions to the
underlying laminar beam structure at the mesoscale. The meso- and macrostructures were obtained
from three-dimensional reconstructions of the connective tissues (Downs et al. 2009)

deformations were transfered to the mesoscale, no information from the mesoscale
was transfered back to the macroscale. Consequently, the mesostructure and its
mechanical properties did not impact the structural mechanics of the macrostructure.
As soft tissues are subjected to large deformations, nonlinear effects may lead
to unexpected results when the feedback of the mesoscale to the macroscale is
neglected.

At the present time, most existing numerical models investigate the structural
mechanics of the lamina cribrosa at the macroscale only. In the recent past,
substantial effort was put forward to incorporate the collagen structures of the eye
into computational models by homogenizing meso- and microstructural information
and using microstructurally motivated constitutive formulations. On the other hand,
only very limited work was done on localizing the mechanical environment from
the macro- to the meso- or microscale of the lamina cribrosa. To the best knowledge
of the authors, no scale-bridging study has been proposed that couples the meso-
and macrostructure of the lamina cribrosa in both ways: (1) from the meso- to
the macroscale through homogenization and (2) from the macro- to the mesoscale
through localization. The first computationally coupled two-scale analysis of the
lamina cribrosa is presented here based on the generalized computational homoge-
nization scheme proposed in Grytz and Meschke (2008).



98 R. Grytz et al.

6.3 Computationally Coupled Two-Scale Analysis
of the Lamina Cribrosa

To investigate interactions between the meso- and the macrostructure of the lamina
cribrosa, the first computationally coupled two-scale model of the human eye
is presented in this section (Fig. 6.3). At the macroscale, the model consists of
the corneoscleral shell and the lamina cribrosa. Only the lamina cribrosa has an
underlying mesostructure, which includes the porous laminar beam structure and
RGC axon bundles. The generalized computational homogenization scheme is
applied to computationally couple the meso- and macrostructures of the lamina
cribrosa. Macroscopic deformations are transfered to the mesoscale through the
macroscopic deformation gradient and the stress response of the mesostructure is
homogenized to link the mesostructure back to the macroscale (Grytz and Meschke
2008). To gain insight into the multi-scale phenomena related to glaucomatous optic
neuropathy the two-scale analysis is used to investigate the nonlinear relationship
between the IOP at the macro-level and the stress and strain environment of the
RGC axon bundles at the meso-level of the lamina cribrosa.

6.3.1 Generalized Computational Homogenization

If the length scale of the mesostructure is much smaller than the scale of the macro-
scopic boundary value problem, the argument of scale separation is applicable.

Macro-scale

Cornea

Sclera

Lamina cribrosa

Meso-scale

boundary value
problem

Laminar beams

Axon bundles

Soft layer

Fig. 6.3 Numerical two-scale model of the human eye illustrating the numerical coupling between
macro- and mesoscale using the generalized computational homogenization scheme
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In this case, the macroscopic overall properties at a typical point of a body BM

can be defined by the homogenized response of a representative volume of its
mesostructure Bm. The scale transitions in existing computational homogenization
frameworks are usually formulated in one physical space for both scales (Miehe
et al. 1999a, b; Löhnert and Wriggers 2003; Terada and Kikuchi 2001; Feyel and
Chaboche 2000; Miehe 1996, 2003; Kouznetsova et al. 2004; Miehe and Bayreuther
2007; Balzani et al. 2010). This approach is sufficient for problems where the
physical material directions follow the same Cartesian coordinate lines at both
scales. For problems with physical directions following curvilinear paths, a more
general formulation using different physical spaces at different scales may ease
solution considerably. In this subsection, the basic equations of the generalized
computational homogenization scheme are presented (Grytz and Meschke 2008).
A detailed derivation of the computational homogenization scheme can be found
in Miehe et al. (1999a). To account for different physical spaces at different scales
Grytz and Meschke (2008) introduced the so-called scale-up S" .�/ and scale-down
S# .�/ operations, which are used to transform tensor variables between different
physical spaces at different scales. The mesoscopic deformation gradient Fm

Fm D GRADmxm D @xm

@Xm
(6.1)

is related with its macroscopic counterpart FM via the volume average under
consideration of associated physical reference directions through

FM WD
D
S" .FM/

E
Bm

in BM; (6.2)

where h�iB D 1
V

Z
B

�dV . The same relation holds for the work-conjugate stress

measure of first Piola-Kirchhoff type

PM WD
D
S" .PM .FM//

E
Bm

in BM; (6.3)

where PM and Pm denote the first Piola-Kirchhoff stress tensors the at macro- and
mesoscale, respectively. The stress at the mesoscale Pm is assumed to be related to
Fm by a constitutive relation that governs the local response of the constituents of
the mesostructure. The deformation of the mesostructure is assumed to be linked to
the local deformations of the macroscopic point via

xm D S# .FM/Xm C Qwm in Bm: (6.4)

The deformation consists of a homogeneous part S# .FM/Xm and an inhomo-
geneous superimposed field Qwm

�
‚i

m; t
�

usually referred to as the fluctuation field.
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By inserting (6.4) into (6.1) the definition of the mesoscopic deformation gradient
can be rewritten into

Fm D S# .FM/C QFm with QFm D GRADm Qwm: (6.5)

Inserting (6.5) into (6.2) yields the constraint
D QFm

E
Bm

D 0 for the fluctuation field

Qwm. This constraint and the so-called averaging theorem may be directly enforced
by alternative conditions (see, e.g., Kouznetsova et al. 2004) for the superimposed
deformation field. Here, we assume periodic fluctuations at the boundaries of the
mesostructure QwC

m D Qw�
m on @Bm. Note that boundary problem at the mesoscale

becomes a nonlinear problem when considering the existence of a fluctuation field
Qwm ¤ 0.

For a given macroscopic deformation gradient FM, the boundary value problem
of the mesostructure is governed by the equilibrium condition, the constitutive
equation for the mesoscopic stresses and the boundary condition for the unknown
fluctuation field Qwm up to a constant translation, which does not affect the stress
state. To avoid a singular stiffness matrix when solving the boundary value problem
of the mesostructure within the finite element method, the fluctuation Qwm D 0 is
held fixed at one corner node in addition to the periodic boundary condition.

Assuming a static equilibrium state of the meso-continuum governed by the field
equation

DIVmPm D 0 in Bm (6.6)

the standard Galerkin procedure yields the weak formulation of the meso-boundary
value problem

ıWm D
Z
Bm

Pm .Fm/ W ı QFmdVm: (6.7)

The solution of the weak formulation results in the localized stress and strain
response at the mesoscale driven by the deformation gradient of the macroscale. The
homogenization of the localized stress field according to (6.3) serves as the stress
response at the macroscale. The consistent linearization of the two-scale problem
also requires for the homogenization of the elasticity tensor, which can be found in
Grytz and Meschke (2008).

6.3.2 The Human Eye Model at the Macro-Level

We use our previous generic model (Grytz and Meschke 2010; Grytz et al. 2011a) to
approximate the macrostructure of the human eye. The geometry of the human eye
globe is modeled by means of two spherical shells representing the corneoscleral
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Fig. 6.4 Geometry of the human eye model at the macro-level

shell (Fig. 6.4). We also use our previous estimations of the constitutive parameters
of the sclera and cornea (Grytz and Meschke 2010; Grytz et al. 2011a), which were
fitted to inflation tests performed by Woo et al. (1972). The anisotropic collagen
structures were adopted from our previous numerical remodeling predictions and
include the circumcorneal ring of collagen fibrils at the limbus (Grytz and Meschke
2010) and the circumferentially aligned collagen fibrils around the scleral canal
(Grytz et al. 2011a). The two predicted ring-like structures of collagen fibrils are in
good agreement with experimental observations (Aghamohammadzadeh et al. 2004;
Winkler et al. 2010). Due to the symmetry of the model, only one half of the eye
was modeled using 1372 finite shell elements. The bilinear finite shell elements are
based on a quadratic kinematic assumption in thickness direction and were designed
to model incompressible shell structures at large strains and finite rotations (Başar
and Grytz 2004).

6.3.3 The Lamina Cribrosa Model at the Meso-Level

The lamina cribrosa is composed of collagenous beams which form a porous con-
nective tissue architecture (see Fig. 6.1c). RGC axon bundles exit the eye through
the porous structure of the lamina cribrosa. The laminar beams are composed of a
core of extracellular matrix consisting of collagen fibrils and are lined by astrocytes
(see the schematic illustrations in Fig. 6.5). The astrocytes are separated from the
core of the laminar beams by a continuous basement membrane (Anderson 1969). In
young adults, the core of the laminar beams contains abundant fibers of elastin, and
a network of fibrillar collagen of type I and III (Goldbaum et al. 1989; Hernandez
1992; Morrison et al. 1989; Rehnberg et al. 1987).

We designed a generic representative volume element of the lamina cribrosa
mesostructure inspired by the schematic illustrations in Fig. 6.5a, b proposed by
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Fig. 6.5 Schematic drawing of the (a) cross section and (b) sagittal section of the lamina cribrosa
showing different extracellular matrix components and their relationships. 1 laminar beams, 2
axon bundles, 3 blood vessels, 4 insertion region, 5 sclera. Color code: red basement membranes,
lavender astrocytes, blue collagen and elastin fibers (reproduced from Hernandez et al. 1987). (c)
Schematic cross section of two laminar beams illustrating the components–collagen types I, III
and V and elastin. The capillary endothelial cell (E) basement membranes collagen type IV and V,
laminin, and heparan sulfate. Astrocytes (As) separate the extracellular matrix from axonal bundles
(NB) (reproduced from Morrison et al. 1989)

Hernandez et al. (1987) and in Fig. 6.5c proposed by Morrison et al. (1989).
We assume that the mesostructure is composed of three constituents: the porous
laminar structure, the axon bundles, and a soft layer representing a matrix mainly
composed of astrocytes and the basement membrane (Fig. 6.6). The mesostructure
of the lamina cribrosa is assumed to be periodic in all three dimensions. The
laminar beams are assumed to contain aligned collagen fibrils, where collagen fibril
orientations are illustrated in Fig. 6.7a. The soft layer is assumed to be isotropic.
The axon bundles passing through the laminar beam structure are modeled as
circular cylinders, where Fig. 6.7b illustrates the orientation of the RGC axons
within the axon bundles. We assumed no local variation in mesostructure and
the proposed structure in Fig. 6.6 was used as the underlying mesostructure of
every macroscopic point of the lamina cribrosa model. Note that the proposed
homogenization technique does account for the volume fraction, distribution, and
morphology of the constituents, but not the absolute size of the mesostructure. Thus
the absolute dimensions of the mesostructure Lm and Hm are irrelevant. The relative
dimensions of the meso-model are selected such that the volume fraction of the
axon bundles correlates with the average value of 58 % experimentally obtained in
rhesus monkeys by Minckler et al. (1976).

The meso-model of the lamina is discretized into 320 trilinear brick ele-
ments. Preliminary convergence studies showed small changes of the homogenized
stress tensor for finer discretizations. The proposed model is a highly simplified



6 Glaucoma and Structure-Based Mechanics of the Lamina Cribrosa. . . 103

Lm/3.29
Lm/3.29

Lm/3.29

Hm/2

Hm/2

Laminar beam
structure

Axon
bundles

Soft layer

im3

Lm im1 im2

ba

Fig. 6.6 Lamina cribrosa model at the mesoscale. (a) Finite element model. (b) Exploded view

Fig. 6.7 Lamina cribrosa model at the mesoscale containing three constituents: the porous laminar
beam structure, the axon roundels, and a soft layer. (a) Collagen fibril directions of the laminar
beams. (b) Axon fiber directions of the axon bundles

representation of the true mesostructure (Roberts et al. 2009). A qualitatively better
representation of the laminar mesostructure would also require for a much higher
number of finite elements. However, increasing the unknown degrees of freedom
at the meso-level leads to an exponential increase in computational cost for the
coupled multi-scale analysis. Thus our current computational resources limited the
complexity of the meso-model.

6.3.4 Collagen Fibrils and RGC Axons at the Micro-Level

The constitutive response of the laminar mesostructure is based on the
microstructure-motivated constitutive model presented by Grytz and Meschke
(2009). The strain energy density Wm of the mesostructural constituents is
decomposed into three parts
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Wm D U .Jm/C ^

Wmat

�
I^

Cm

�
C Wfib

�p
IVCm

�
D 1

2
�.ln Jm/

2

C 1

2
�
�

I^
Cm

� 3
�

C Wfib

�p
IVCm

�
:

(6.8)

The following invariant quantities were used in (6.8)

Jm D det Fm; I^
Cm

D J�2=3
m trCm; IVCm D e0Cme0;

where Cm D FT
mFm is the Cauchy-Green tensor at the mesoscale and e0 is a unit

vector representing the collagen fibril and axon direction of the laminar beams

and RGC axon bundles, respectively. In (6.8),
^

Wmat represents a deviatoric Neo-
Hookean energy contribution with one material parameter: the shear modulus �.
U represents a pure volumetric part of the energy function with the bulk modulus
�, which was assumed to be sufficiently higher than the shear modulus to account
for near incompressibility �D 1000�. Wfib represents the one-dimensional energy
contribution of the microstructure-motivated model proposed by Grytz and Meschke
(2009), which was originally derived to model the constitutive response of crimped
collagen fibrils. Wfib is used here to model the fibrillar components of the laminar
beams and the axon bundles. The helix model contains one material parameter (the
elastic model of the fibril Efib) and two microstructural parameters (the crimp angle
of the fibril �0 and the ratio between the amplitude of the helix and the radius of
the fibril’s cross section R0/r0). The energy function Wfib cannot be presented in a
closed form. We, therefore, refer to the original paper for the detailed derivation of
the model (Grytz and Meschke 2009).

Parameter Identification of the Axon Bundles

For a realistic approximation of the model parameters, isolated tests of each
constituent would be most favorable. However, to extract each constituent from the
mesostructure of the lamina cribrosa first and to perform mechanical tests thereafter,
is not possible. Here, we use uniaxial extension tests performed on the optic nerve
(Meaney 2003) to estimate the constitutive parameters for the axon bundles and a
previous fit of the lamina cribrosa to estimate the properties of the laminar beams.

Bain and Meaney (2000) as well as Bain et al. (2003) observed axons in the
unstretched optic nerve to have a wavy (undulated) structure. Meaney (2003)
demonstrated that the constitutive response of white matter under tension can be
nicely captured by microstructurally motivated models considering the crimp of
nerve axons rather than classical approaches of Ogden or Mooney–Rivlin type.
Inspired by these observations, the microstructure-motivated constitutive model
for crimped collagen fibrils (Grytz and Meschke 2009) was used here to predict
the stress–strain relationship of the RGC axon bundles. Figure 6.8 presents the
fit of the crimped fibril model to experimental data of simple elongation tests on
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Fig. 6.8 A fit of the crimped
fibril model (Grytz and
Meschke 2009) to data taken
from simple elongation tests
on optic nerves (Meaney
2003)
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optic nerves reported by Meaney (2003). The crimped fibril model was capable
to replicate the stress-stretch response in excellent agreement with the experimental
data. The model parameters have been identified as Efib D 1766 Pa, �0 D 24.81ı, and
R0/r0 D 2.51. The so-called locking stretch 
lock D 1/cos(�0) of the crimped fibril
model represents the initial undulation (true length over end-to-end distance) of the
crimped axons. Bain et al. (2003) measured a mean undulation of 1.13 for axons
existing in unstretched optic nerves. The locking stretch estimated from the fitting
of the crimped fibril model 
lock D 1.10 is very close to the experimentally obtained
undulation value, which supports the physical relevance of the constitutive model
for modeling optic nerve tissue.

Note that the experimental data used to fit our model (Fig. 6.8) are obtained
from experiments on complete optic nerves which are composed of myelinated
axons. The axon bundles existing in the lamina cribrosa are not myelinated. Also,
the experimental data is based on uniaxial extension test along the optic nerve.
The axon bundles within the lamina cribrosa are expected to be subjected to very
different loading conditions. Accordingly, the optimized model parameters can only
be considered as a rough approximation of the constitutive response of the axon
bundles within the lamina cribrosa.

Parameter Identification of the Laminar Beam Structure
and the Soft Layer

The constitutive parameters of two remaining constituents—the laminar beam struc-
ture and the soft layer—are indirectly identified using the experimental inflation data
presented by Woo et al. (1972). The remaining unknown parameters are optimized
towards the equibiaxial stress-stretch response of our single-scale lamina model
(Fig. 4 in Grytz et al. 2011a) previously fitted to the inflation experiments performed
by Woo et al. (1972). Therefore, a computational two-scale analysis was performed
using one finite element at the macroscale and the meso-model of the lamina
cribrosa (Fig. 6.6) attached to each macroscopic Gauss point. The constitutive
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Fig. 6.9 (a) The indirect fit of the coupled two-scale model of the lamina cribrosa to the
equibiaxial numerical data from Grytz et al. (2011a) (Fig. 6.4), which was initially fitted to
inflation experiments on eye segments by Woo et al. (1972). (b) Contour plot of the maximum
principal Cauchy stress �1

m within the mesostructure subjected to a macroscopic stretch level

M1 D
M2 D 1.05

Table 6.1 The constitutive
parameters used for the three
constituents of the lamina
cribrosa mesostructure

� (MPa) Efib (MPa) �0 (ı) R0/r0 (–)

Laminar beams 0.2 1421.8 16.7 29.9
Soft layer 0.2 0 – –
Axon bundles 10�5 0.0018 24.81 2.51

parameters of the axon bundles were set according to the fitted parameters obtained
(“Parameter Identification of the Axon Bundles”). We assume that the isotropic

strain energy response
^

Wmat is identical for the laminar beam structure and the
soft layer. In accordance with the assumption that solely the laminar beams contain

fibrillar collagen, the transversely isotropic part
^

Wfib of the strain energy function
(6.8) was neglected for the soft layer.

To identify the remaining unknown parameters, the macroelement was subjected
to an equibiaxial stretch state 
1M D 
2M and the homogenized macroscopic stress
components of first Piola-Kirchhoff type P11M D P22M were used to compute the
sum of square residuals with respect to the numerical data of the single-scale
analysis from our previous publication (Fig. 4 in Grytz et al. 2011a). The nonlinear
Levenberg-Marquardt algorithm was applied to optimize the unknown parameters
of the mesostructure such that the sum of square residuals was minimized. In
Fig. 6.9a, the good agreement between the optimized stress-stretch response of the
homogenized mesostructure and the single-scale analysis can be seen. The complete
set of optimized model parameters that belong to the three constituents of the meso-
model are presented in Table 6.1.
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Figure 6.9b shows a contour plot of the maximum principal Cauchy stress values
of the mesostructure for an equibiaxial stretch level of 
M1 D
M2 D 1.05 at the
macroscale. High stress concentrations can be seen in the narrow parts of the laminar
beams.

6.3.5 Computational Coupled Two-Scale Analysis
of the Human Eye

Figure 6.3 illustrates the numerical coupling between the meso- and macroscale,
where the deformation of the mesoscale is driven by the deformation gradient of
the macroscale and the constitutive response of the macrostructure is computed
from the homogenized response of the mesostructure after solving the boundary
value problem (6.7) at the mesoscale. We use the finite element method to solve
both, the boundary value problem at the meso- and macroscale. Each macroelement
contains eight Gauss points according to the finite element formulation presented
in Başar and Grytz (2004). One representative volume element of the underlying
mesostructure is attached to each macroscopic Gauss point. In accordance with the
definition of the scale-up and scale-down operations (Grytz and Meschke 2009)
the physical reference base vectors of the mesoscale relate to the macroscale such
that im3 (Fig. 6.6) coincides with the thickness direction of the lamina cribrosa
macrostructure. According to the computational homogenization scheme, the non-
linear boundary value problem of the mesostructure has to be solved at each iteration
step of each load increment for each Gauss point of the lamina macroelements of the
boundary value problem at the macroscale. To reduce computation time, the eight
mesostructure boundary value problems of each macro-finite element were solved
simultaneously.

The two-scale analysis presented here was used to investigate the structural
mechanics of lamina cribrosa at the two scales of the model. At both scales, we
investigated maximum principal stretch 
1 and Cauchy stress values �1. Note that
the principal stretch values can be easily computed from the principal values of the
Cauchy-Green tensor Ci D (
i)2. At the mesoscale, we investigated in addition the
axial stretch of collagen fibrils in the laminar beams 
axial

m,LB and of axons in the axon
bundles 
axial

m,AB. Furthermore, to investigate a potential direct mechanical insult of
the axon bundles, two alternative measures previously introduced by Grytz et al.
(2011a) were used in addition: the in-plane change in area

dAm=dA0m D Jm
�
im3C�1

m im3
�1=2

(6.10)

and the in-plane shear stress

� IPS
m D

�
ji�m3� mj 2 � �

i�m3� mi�m3
�2�1=2

with i�m3 D im3F�1
m =

ˇ̌
im3F�1

m

ˇ̌
: (6.11)
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The first measure is used to investigate the potential squeezing of the axon
bundles perpendicular to their axis, while the second measure is used to investigate
the potential shearing of axon bundles. Both mechanisms were proposed as potential
indicators for mechanical insult to axonal transport within RGC axons (Grytz et al.
2011a).

6.3.6 Numerical Results

In what follows, numerical results are presented and discussed for two IOP levels: a
normal IOP level pIOP D 16 mmHg and an elevated IOP level pIOP D 40 mmHg.
In Fig. 6.10, the evolution of peak values of strain- and stress-like quantities
defined at the macro- and mesoscale are plotted for IOP levels between 0 and
45 mmHg. Selected macro- and mesoscale results are presented as contour plots
at the macroscale of the lamina cribrosa in Fig. 6.11.

Collagen fibrils existing in the laminar beams which are stretched beyond their
locking stretch (here 
lock D 1/cos(�0) D 1.044) are mainly responsible for bearing
the IOP-dependent load in the lamina cribrosa. Figure 6.10b presents the IOP-
dependent development of the absolute peak value of the axial stretch of collagen
fibrils within the laminar beams. This value increased as the eye model was loaded
until the normal IOP level was reached. Further IOP elevation did not change
(<0.2 %) the peak stretch of collagen max 
axial

m,LB. Instead, collagen fibrils in a
wider region of the lamina cribrosa were stretched beyond their locking stretch (see
Fig. 6.11b). This result suggests that the lamina cribrosa may resist elevated IOP
levels by recruiting additional collagen fibrils to bear a significant part of the load
instead of stretching already locked fibrils further.

In Fig. 6.11a, the plots of the through-the-thickness stretch suggest that the lam-
ina cribrosa macrostructure was subjected to compression strains in the thickness

direction of maximal
0


M D 0:991 and
0


M D 0:979 at normal and elevated IOP,
respectively. Interestingly, the fact that overall the macrostructure of the lamina
cribrosa was subjected to compressive strains in the thickness direction at both IOP

levels (see the thickness stretch
0


M distribution in Fig. 6.11a), but some axons within
the attached mesostructure were under tension, especially at the high IOP level (see
the peak values of the axon bundle axial stretch 
axial

m;AB > 1 at the bottom surface in
the periphery and at the top surface in the center of the macrostructure Fig. 6.11c).
This finding suggests that axons which are unstressed under physiological pressure
conditions may suffer tension when eye is exposed to an elevated IOP level
even though IOP-dependent thinning of the lamina cribrosa is observed. This
phenomena was mainly caused by the nonlinear constitutive response of the ring-
like architecture of collagen fibrils existing in the peripapillary sclera of our eye
model. As IOP was increasing, the scleral canal was expanding until the collagen
fibrils that form this ring around the scleral canal started to lock. After this point,
posterior (bending) deformations dominated the deformation response of the lamina
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Fig. 6.10 Peak values within the meso- or macrostructure of the lamina cribrosa for varying levels
of IOP. (a) Upper peak values of the maximum principal stretch within the laminar beam structure
max 
1

m,LB and the axon bundles max 
1
m,AB, lower peak values of the change of area normal to the

axon direction min dAm,AB/dA0m,AB. (b) Upper peak values of the axial stretch of collagen fibrils
max 
axial

m,LB and axons max 
axial
m,AB. (c) Upper peak values of the macroscopic maximum principal

Cauchy stress �1
M and the maximum principal Cauchy stress within the laminar beams max �1

m,LB.

(d) Upper peak values of the maximum principal stress max �1
m,AB and the in-plane shear stress

� IPS
m,AB within the axon bundles

cribrosa in favor of in-plane (membrane) deformations. In the present example, the
local in-plane compressive deformations caused by the posterior deformation of the
lamina cribrosa (bending mode) outweigh the local in-plane tensile deformations
related to the membrane mode at the top surface of central region of the lamina
cribrosa. For nearly incompressible tissues, a local biaxial compression leads to
tensile deformations in the perpendicular direction, which, in our case, represents
the thickness direction of the lamina cribrosa. The axonal tensile strain seen at the
lower surface in the periphery of the lamina was caused by high transverse shear
forces, which are also related to the bending dominated loading situation. However,
axon fibers remain undulated even at high IOP levels as their axial stretch remains
below their critical locking stretch 
lock D 1.1 (Fig. 6.10b).
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Fig. 6.11 Contour plots of the lamina cribrosa at low pIOP D 16 mmHg and high pIOP D 40 mmHg
IOP levels at the macroscale (deformations fivefold magnified). (a) Through-the-thickness stretch
0


M of the macrostructure. (b) Upper peak values of the axial stretch of collagen fibrils within
the laminar beams of the attached mesostructures max 
axial

m,LB. (c) Upper peak values of the axial

stretch within the axon bundles of the attached mesostructures max 
axial
m,AB

The maximum principal stress distribution of the human eye macro-model is
presented in Fig. 6.12a identifying high stress concentrations at the limbus and at the
peripapillary sclera around the scleral canal. These two regions were characterized
by circumferentially aligned collagen fibrils forming ring-like structures. We have
shown that the circumcorneal ring of collagen fibrils allows the cornea to maintain
its curvature while the eye is subjected to IOP (Grytz and Meschke 2010). The
ring of collagen fibrils in the peripapillary sclera was identified to shield the lamina
cribrosa from high tensile forces (Grytz et al. 2011a).

Contour plots of the mesoscopic maximum principal stress b�1m and maximum
principal stretch 
1

m of the laminar beam structure and axon bundles are presented
in Figs. 6.13, 6.14, 6.15, and 6.16 for four selected mesostructures, two at the
center region (point PMB) and two at the periphery of the lamina cribrosa (point
PMA). The peak values of the mesostructure are used to draw the contour plots
at the macroscale. Results are presented for the normal and the elevated IOP
level. In Fig. 6.13, high strain levels can be observed at the narrow parts of the
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Fig. 6.12 Contour plots of the maximum principal Cauchy stress O�1M of the macrostructure at low
pIOP D 16 mmHg and high pIOP D 40 mmHg IOP levels (deformations fivefold magnified). (a) The
complete human eye model. (b) The macrostructure of the lamina cribrosa

laminar beams existing in the meso-model that is attached to the anterior Gauss
point of macro-point PMA (Fig. 6.13) while moderate strain levels can be found at
the mesostructure attached to the posterior Gauss point at PMA. Note that stress
and strain tensors are usually not coaxial when using anisotropic constitutive
formulations. Consequently, the distribution of maximum principal stress and strain
values can differ substantially in anisotropic tissues. Stress concentrations evolved
at the inside of the laminar beam pore structure of the meso-model attached to
the anterior Gauss point at PMA and posterior Gauss point at PMB but not at the
posterior Gauss point at PMA (Fig. 6.14). Both, the absolute peak value of the
maximum principal stretch max 
1

m,LB and stress max �1
m,LB of the laminar beams

were continuously increasing for increasing IOP levels (Fig. 6.10a, c).
By comparing the numerical results for the elevated IOP level in Fig. 6.12b

with Figs. 6.10c and 6.14, one can observe that the maximum principal stress
values can be up to 25-fold higher at the mesoscale than at the macroscale of the
lamina cribrosa. As the laminar beams are the main load-bearing constituent of the
mesostructure, the distribution of �1

M and max �1
m,LB were qualitatively identical at

the macroscale.
The strain environment of the axon bundles presented in Fig. 6.15 was very

similar to strain environment of the laminar beams (Fig. 6.13), with strain concen-
trations at the top surface in the periphery of the lamina and continuously increasing
peak values for increasing IOP levels (Fig. 6.10a). In contrast to the laminar beams,
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Fig. 6.13 Contour plots of the lamina cribrosa at low pIOP D 16 mmHg and high pIOP D 40 mmHg
IOP levels (deformations fivefold magnified). The maximum principal stretch values 
1

m,LB within
the laminar beams of selected mesostructures at the mesoscale and upper peak values of attached
mesostructures max 
1

m,LB at the macroscale

only small changes in the distribution of the maximum principal stress values were
observed in the axon bundles for IOP elevation from 16 to 40 mmHg (Fig. 6.16).
According to Fig. 6.10d, the absolute peak value of the maximum principal stress
within the axon bundles of all mesostructures increased until normal IOP was
reached and remained almost constant for higher IOP levels. This numerical finding
indicates that the meso-architecture of the lamina cribrosa is effectively protecting
the embedded axon bundles from high tensile stresses even at elevated IOP levels.

In (6.10), the changes of area normal to the RGC axons was introduced as
a potential indicator for axonal insult. Only small changes in axonal area were
observed in the distribution of the scalar quantity when IOP was increased from
16 to 40 mmHg IOP (Fig. 6.17). However, the lower peak value min dAm,N/dA0m,N

decreased with increasing IOP (Fig. 6.10a). In accordance with our single-scale
analysis (Grytz et al. 2011a), lower peak values representing the contraction of the
axon bundle cross sections were found at the top surface in the center of the lamina
cribrosa and at the bottom surface in the periphery of the lamina (Fig. 6.17).

The in-plane shear stress was introduced in (6.11) to indicate regions of axonal
insult due to axon shearing. The numerical results of our single-scale analysis at the
macroscale (Grytz et al. 2011a) showed the highest in-plane shear stress values at
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Fig. 6.14 Contour plots of the lamina cribrosa at low pIOP D 16 mmHg and high pIOP D 40 mmHg
IOP levels (deformations fivefold magnified). The maximum principal Cauchy stress �1

m,LB within
the laminar beams of selected mesostructures at the mesoscale and upper peak values of attached
mesostructures max �1

m,LB at the macroscale

the anterior periphery of the lamina cribrosa. In contrast, the two-scale analysis used
here revealed the highest in-plane shear stress � IPS

m to exist within the axon bundles
at the posterior periphery of the lamina cribrosa (Fig. 6.18). Obviously, numerical
results obtained from single-scale analyses may not be representative for lower-
scale results and may lead to wrong interpretations. At the elevated IOP level, finite
deformations and fluctuations can be observed in the representative volume element
attached to the posterior Gauss point at PMA. In contrast to the maximum principal
stress, the absolute peak value of the in-plane stress existing in the axon bundles
max � IPS

m continuously increased with increasing IOP (Fig. 6.10d).

6.4 Discussion

The two-scale analysis has revealed that the lamina cribrosa seems to resist elevated
IOP levels by recruiting additional collagen fibrils to bear a significant part of
the IOP-related load instead of stretching already locked fibrils further. These
numerical findings demonstrate the important role of the nonlinear constitutive
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Fig. 6.15 Contour plots of the lamina cribrosa at low pIOP D 16 mmHg and high pIOP D 40 mmHg
IOP levels (deformations fivefold magnified). The maximum principal stretch 
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axon bundles of selected mesostructures at the mesoscale and upper peak values of attached
mesostructures max 
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m,AB at the macroscale

response of collagen fibrils on the biomechanics of the laminar beams that linear
elastic constitutive models cannot account for.

Furthermore, the findings of the two-scale analysis have suggested that RGC
axons that are unstressed under physiological pressure conditions may suffer tension
when exposed to an elevated IOP level. However, axons were predicted to remain
undulated at high IOPs. Accordingly, tearing of RGC axons seems unlikely to occur
in ocular hypertension. Single-scale analyses performed solely at the macroscale
could not provide such information.

The numerical investigation has shown that the absolute peak value of the
maximum principal stress within the axon bundles remains almost constant at
elevated IOPs. This numerical finding indicates that the meso-architecture of the
lamina cribrosa together with the ring of collagen fibrils in the peripapillary sclera
are effectively protecting the axon bundles within the lamina cribrosa from high
tensile stresses even at elevated IOPs. In contrast, the in-plane shear stresses within
the axon bundles seem to increase with increasing IOP at the posterior periphery of
the lamina cribrosa. This observation suggests that IOP-induced shearing of RGC
axons may be a potential mechanism for axonal insult in ocular hypertension.
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Fig. 6.16 Contour plots of the lamina cribrosa at low pIOP D 16 mmHg and high pIOP D 40 mmHg
IOP levels (deformations fivefold magnified). The maximum principal Cauchy stress �1
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the axon bundles of selected mesostructures at the mesoscale and upper peak values of attached
mesostructures max �1

m,AB at the macroscale

Note that the physical and biological relevance of the numerical results presented
in this chapter are limited by the approximation of the geometry and constitutive
parameters assumed for the meso- and macrostructures. Both structures are char-
acterized by highly simplified geometries. On the macroscale, the quality of the
contour plots are strongly affected by considering only one element with two Gauss
points through the shell thickness. Accordingly, interpretations of the numerical
results should be carefully drawn. For a higher resolution of the numerical results
at the macroscale, higher order element formulations or multi-layer shell element
could be applied.

The geometry of the proposed mesostructure represents solely a schematic
representation of the structure existing in the living tissue. It is well known that
the mesostructure of the lamina beams varies significantly in different regions
of the lamina cribrosa (Quigley and Addicks 1981) and is characterized by a
much more complex geometry (Burgoyne et al. 2004) than assumed in the present
work. The physical and biological relevance of the two-scale analysis could be
greatly improved by considering three-dimensional reconstructions of experimen-
tally obtained geometries of the meso- (Burgoyne et al. 2004) and macrostructure.
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Fig. 6.17 Contour plots of the lamina cribrosa at low pIOP D 16 mmHg and high pIOP D 40 mmHg
IOP levels (deformations fivefold magnified). The change of area dAm,AB/dA0m,AB normal to the
RGC axons within the axon bundles of selected mesostructures at the mesoscale and lower peak
values of attached mesostructures min dAm,AB/dA0m,AB at the macroscale

The proposed scale-bridging technique between the meso- and the macrostruc-
ture does account for the volume fraction, distribution, and morphology of the
constituents, but it is completely insensitive to the absolute size of the mesostructure.
As a consequence, effects related to the absolute size at the mesoscale cannot
be investigated. Furthermore, the presented homogenization method is based on
the principle of separation of scales. The argument of scale separation can be
applied if the ratio between the characteristic length scale of the macrostructure
dM and the size of the mesostructural constituents dm is very small dm/dM 	 1.
The characteristic length scales of our two-scale lamina cribrosa model can be
approximated by means of the shell thickness (dM � 0.3 mm) at the macroscale
and by the typical diameter of the axon bundles (dm � 58 �m) at the mesoscale.
Unfortunately, the argument of scale separation dm/dM � 0.16 does not hold for
the given multi-scale problem. Consequently, the results presented here can only
be considered as a first approximation of the multi-scale structural mechanics
of the lamina cribrosa. The requirement for scale separation can be overcome
by using alternative scale-bridging algorithms based on a higher-order continuum
formulation (Kouznetsova et al. 2004), multi-grid solver (Miehe and Bayreuther
2007), or locally constraint models (Hund and Ramm 2007).
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Considering glaucoma, further deficiencies of the proposed models are the
assumed static loading conditions and the time-independent constitutive properties.
It is well known that glaucomatous eyes are usually subjected not only to an
increased average level of IOP but also to increased circadian fluctuations. Downs
et al. (2011) has shown that IOP fluctuates considerably on the second, minute,
hour, and day timescales. It has been shown that chronic IOP elevation in monkey
eyes alter the viscoelastic (Downs et al. 2005) and hyperelastic material properties
(Girard et al. 2011) of the peripapillary sclera. Furthermore, the mesostructure of
the lamina cribrosa undergoes significant structural changes during the development
and progression of glaucoma, which may manifest as thickening, thinning, and
migration at the macroscale of the lamina cribrosa (Grytz et al. 2011b; Roberts et al.
2009; Yang et al. 2007, 2011).

Our current understanding of soft tissue mechanics is strongly coupled with
the advances in structure-based mechanics at different length. Computational and
analytical model of tissue structures at lower length scales changed our current
understanding of hyperelasticity, viscoelasticity, residual stresses, preconditioning
effects, osmotic swelling, remodeling, growth, and rheology of soft tissues (Lanir
1979, 1983, 2009, 2012; Hollander et al. 2011; Chen et al. 2011; Lokshin and Lanir
2009; Raz and Lanir 2009; Sverdlik and Lanir 2002; Taber and Humphrey 2001;
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Ambrosi et al. 2011; Grytz et al. 2011b). Pioneering work in this class of models
was performed throughout his career by Lanir. In the case of hyperelasticity, Lanir’s
idea was that individual crimped collagen fibrils within a soft tissue have different
lengths so that for a given macroscopic stretch individual fibrils are undulated and
stretched differently (Lanir 1979). Lanir used a statistical distribution in either the
stretch of the fibrils or their length. Since then Lanir’s idea has been duplicated in
many constitutive formulations and used to investigate the structural mechanics of
many different tissues. Also the present study was highly impacted by Lanir’s work,
as the constitutive response of collagen fibrils within the lamina beams and crimped
axons within the axon bundles were modeled based on a microstructurally motivated
constitutive model for crimped fibrils (Grytz and Meschke 2009).

The structural mechanics of the lamina cribrosa are complex and highly impacted
by the complex mesostructure of the laminar beams. To investigate the structural
mechanics of the lamina cribrosa at multiple scales and its potential impact in
glaucoma remains a challenge for computational and experimental researchers.
However, computational methods and experimental methods are evolving to gain
insight into the multi-scale mechanisms that are involved in the development and
progression of glaucoma. The numerical results presented in this chapter show that
deeper understanding of potential mechanical insults of RGC axons in glaucoma
can be gained from computational models that couple the structural mechanics of
the lamina cribrosa at different length scales.

The proposed two-scale model of the lamina cribrosa bridges biomechanical
mechanisms between the macro- and mesoscale. To investigate mechanisms down
to the meso-level might be insufficient to investigate the phenomena that lead to
axonal transport blockade. Balaratnasingam et al. (2007) reported that elevated IOP
induced changes to the cytoskeleton existing in the optic nerve axons. Changes
to the cytoskeleton may contribute to the axonal transport abnormalities that
occur in glaucoma. To investigate this hypothesis using computational multi-scale
simulations would require the development of biomechanical models down to the
nano-scale of living cells and incorporation of the nano-structure of the cytoskeleton
into such models.
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Chapter 7
From Stress–Strain Relations to Growth
and Remodeling Theories: A Historical
Reflection on Microstructurally Motivated
Constitutive Relations

J.D. Humphrey

Abstract As noted early on by Y.C. Fung, one of the greatest needs in
biomechanics is formulation of constitutive relations for tissues that experience
multiaxial loading. Although most investigators today seek to glean ideas on
constitutive formulations from the latest papers, there is often much to learn from
the earliest papers wherein truly original ideas can be found. In this Chapter, I
provide a brief historical reflection on the formulation of constitutive relations for
cardiovascular tissues, with particular focus on contributions by Y. Lanir. In this
way, we can recall seminal works upon which much of our field has been built as
well as see how past work continues to influence constitutive formulations, even in
frontier areas such as soft tissue growth and remodeling.

7.1 Introduction

Emergence of the modern field of biomechanics can be traced primarily to the
mid-1960s. Amongst the many reasons for this timing, I have suggested before
(Humphrey 2002) that biomechanics needed to await the renaissance in nonlinear
continuum mechanics that occurred following WWII and that was summarized
to large extent in the works of Truesdell and Toupin (1960), Green and Zerna
(1960), Truesdell and Noll (1965), and Green and Adkins (1970). That is, it was
only because of this rich period that modern biomechanics could be founded upon
the strong theoretical framework that was needed due to the complex material
behaviors exhibited by most tissues. Because of the complex geometries and loading
conditions inherent to most physiologically and pathologically relevant situations,
biomechanics also had to await the development of appropriate computational
methods, as, for example, the finite element method that developed rapidly from
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the late 1950s to the early 1970s and was found in suitable form for nonlinear
problems in the important book of Oden (1972). Both the need for computational
methods and computer-control of complex multiaxial experiments also necessitated
that biomechanics await the development of the computer, which progressed rapidly
following the design of transistor-based machines in the late 1950s and early 1960s.
In addition, of course, one can also point to the important influence on modern
biomechanics by the emergence of molecular and cell biology in the mid-1950s and
beyond, which followed the discovery of the structure of DNA as well as important
structural proteins such as collagen. Finally, the Apollo program in the USA also
provided significant new motivation to advance biomechanics, in particular, to
predict how humans might respond to high G-forces due to lift-off or to a sustained
microgravity environment in outer space. Hence, based on enabling theoretical and
technological developments, and motivated by many needs including space travel,
biomechanics emerged as an important and exciting new field in need of ideas and
approaches.

7.2 Stress–Strain Relations (1967–1990)

Many contributed to the early successes of modern biomechanics, but Y.C. Fung
(UCSD) and R. Skalak (Columbia University) provided particularly important
leadership and scientific contributions (cf. Figs. 1.3 and 1.4 in Humphrey 2002).
In particular, in a seminal paper published in the late 1960s (which has been cited
over 750 times to date, not including the many related citations to his first book
on biomechanics—Fung 1981), Fung (1967) showed via a clever one-dimensional
experiment on mesentery that soft tissues tend to exhibit an exponential stress–
strain behavior. Given that this behavior is relatively insensitive to strain-rate and
that the associated hysteresis (i.e., area between the loading and unloading curves)
is typically small, Fung suggested that preconditioned soft tissue behavior (i.e.,
that which follows multiple cycles of testing) is “pseudoelastic” and thus can be
treated as (hyper)elastic separately in loading and unloading (where hyperelastic
simply means an elastic response describable using a strain energy function). From
1967 through 1983, Fung and colleagues continued to develop their exponential
relations for soft tissue behavior, yielding, for example, forms that were quadratic
in the Green strain and containing 10, 6, and 3 material parameters for orthotropic,
transversely isotropic, and isotropic relations, respectively. These parameters could
be determined via nonlinear regression of experimental data. Among other successes
achieved using such relations, Choung and Fung (1986) showed that the experi-
mentally observed opening of a radially cut, traction-free, arterial ring revealed the
presence of residual stresses on the order of a few kPa, which due to the strong
geometric and material nonlinearities helped offset the expected gradients in wall
stress in a pressurized artery (note: it is interesting that this formulation of the
residual stress problem was enabled by a solution found in the aforementioned work
by Green and Adkins (1970), which did not consider biomechanical problems in
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particular). That is, Choung and Fung showed that transmural stresses tend to be
uniform within the normal arterial wall, an observation that contributed significantly
to the subsequent formulation of a fundamental mechanobiological hypothesis:
mechanosensitive cells tend to produce, organize, and remodel the extracellular
matrix to establish, maintain, or restore a mechanical homeostasis (Humphrey
2008).

Although the “phenomenological approach” of Fung, and others, has been and
continues to be very useful in many applications in soft tissue biomechanics, the
associated material parameters do not have physical meaning and thus cannot be
related, except loosely, to histological characteristics of the tissue. Consequently, in
parallel with similar attempts in rubber elasticity (cf. Treolar 1975), investigators
began to seek microstructurally motivated constitutive relations for soft tissues.
Y. Lanir was not the first to seek such relations, but two of his early papers
(Lanir 1979, 1983) represented the first rigorous multiaxial formulations (note: it
is interesting that these papers were similarly founded in the theoretical foundation
of the aforementioned work by Green and Zerna (1960), which serves as a
reminder that continued advances in biomechanics can and should be founded in
rigorous mathematical foundations provided by nonlinear continuum mechanics).
In particular, these two seminal papers of Lanir have been cited over 250 and 450
times, respectively, and continue to inspire many studies. The interested reader is
strongly encouraged to read these papers, but I will focus on a few particularly
important aspects of these papers, especially from the 1979 paper wherein most of
the new ideas first appeared.

Consistent with basic histological evidence, Lanir correctly observed that “The
mechanical behavior of flat soft collagenous tissue depends primarily on the
response of its constituents and their structure. They consist primarily of collagen
fibers, elastin fibers and amorphous ground substances of mucopolysaccharides.”
He thus assumed that constitutive relations for elastic behaviors by such tissues
could be formulated via a total strain energy function W that represents the sum
of the energy stored in each constituent. In the case of both elastin and collagen,
Lanir assumed further that these fibers could be modeled as 1D structures, hence
their stored energy depended only on the 1D strain (or stretch) experienced by
the individual fiber, which could be determined easily from the overall multiaxial
strain field given the assumption of affine motions. Given the energy stored in an
individual fiber, he then noted the importance of knowing how the fibers are oriented
within the tissue, which could be prescribed via continuous distribution functions
and thus integral relations. Another novel assumption was that the highly nonlinear
behavior of a collagen fiber could be modeled by prescribing both an undulation
function and a linearly elastic behavior for the fiber. That is, nonlinear behaviors
could arise from the gradual recruitment of initially undulated fibers that exhibit
a linearly elastic behavior when straight; overall tissue nonlinearity thus results in
part from differential recruitment of fibers that are initially undulated to different
degrees. Of course, once the specific form of the strain energy function is known,
formulation and solution of the initial-boundary value problem can proceed as for
the phenomenological hyperelastic constitutive relations. In strong form, one must
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satisfy linear momentum balance and boundary conditions (Humphrey 2002); in
weak form (e.g., finite element), solutions can similarly be found easily (Holzapfel
2000).

Of particular interest here, however, let us return to other constitutive assump-
tions offered by Lanir. For example, in his 1979 paper, Lanir considered two
“conceptual models” (which we would now call competing hypotheses) for the
origin of undulation in the collagen fibers. One model assumed that “undulations
originate from the subfibrillar or macromolecular organization within the collagen
fiber” whereas the other assumed that “undulations are induced by prestressed
elastin (thin) fibers attached to each collagen (thick) fiber at numerous points.”
Although the latter model did not garner much detailed investigation, particularly
from the perspective of matrix biology, it is interesting to note that over the years
it has become apparent in arterial wall mechanics that prestressed elastin plays
fundamental roles in arterial homeostasis and pathophysiology (Humphrey et al.
2009). In particular, arterial elastin is produced primarily during the perinatal period
and its half-life is on the order of the life-span of the individual (e.g., over 50
years in humans). Hence, elastic fibers (which consist of �90 % elastin and 10 %
microfibrillar glycoproteins) are stretched during normal development and they
retain this “prestretch/prestress” during much of maturity. It thus appears that part of
the undulation of collagen in an unloaded, intact tissue does indeed result from the
prestretched elastin trying to unload (cf. Ferruzzi et al. 2011b), consistent with the
conceptual model of Lanir. Moreover, it now appears that this prestretch/prestress
of elastin probably contributes significantly to the existence of residual stresses
in arteries (Cardamone et al. 2009), the importance of which was nevertheless
identified via the phenomenological constitutive relations of Fung.

Another important assumption found in the 1979 paper of Lanir is that “the
fibers possess only extensional rigidity and their compressive and bending rigidities
are negligible : : :Any interaction between the matrix (ground substance) and the
fibers is negligible. The only possible contribution of the matrix to the behavior
of the tissue is in the form of hydrostatic pressure which may develop upon
stretch.” This assumption continues to be invoked by many today and enables
the tensile mechanical behavior of planar soft tissues to be described well as
originally intended by Lanir; indeed, these ideas also provide some structural
insight into values of the Lagrange multiplier (having units of pressure) that is
often used to enforce incompressibility in such problems. Nevertheless, we must
remain mindful of the intended use of this, indeed all, constitutive assumptions.
For example, continuing histological insight (cf. Dingemans et al. 2000) reveals
that glycosaminoglycans/proteoglycans (or GAGs/PGs, the main components of
the so-called ground substance matrix) tend to orient perpendicular to and interact
directly with collagen fibrils in arteries (and probably other tissues). In this way,
the GAGs/PGs likely confer some effective bending stiffness to the collagen fibers
(not unlike a laterally supported Euler bucking column). Hence, there is a need
in certain problems, such as the problem of residual stresses in arteries wherein
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compressive and tensile stresses must self-equilibrate (Cardamone et al. 2009), to
model the compressive stiffness associated with GAG/PG interactions with fibrillar
collagens.

Not long after publication of the 1983 paper, Lanir and colleagues employed their
microstructurally motivated constitutive relations to describe the biaxial mechanical
behavior of passive myocardium (Horowitz et al. 1988). Specifically, they modeled
the data reported by Demer and Yin (1983) and Yin et al. (1987) based on biaxial
stretching tests of thin excised slabs of canine myocardium. Among the basic
assumptions, one reads: “The myocytes and the collagen fibers are initially assumed
to be the main structural elements of the tissue, their main mechanical role being
to carry tensile stress : : : The third element appearing in the formulation is the
interstitial fluid : : :which is assumed to transmit only hydrostatic pressure.” Similar
to the 1979 and 1983 papers, the fibers constituting the myocardium were assumed
to be undulated in the unstressed configuration, to not bear load until straight,
and to support tension not compression. Finally, it was assumed that “the total strain
energy of the tissue, W, is obtained by summing up the strain energies of the muscle
fibers, w1, and of the collagen fibers, w2.” Because of a lack of detailed histological
information, the distribution functions for both collagen fiber direction and waviness
were assumed to be Gaussian.

As noted in their introduction, one of the motivations of this 1988 paper was
to overcome a limitation of the phenomenological (Fung-type) relation used by
Yin et al. (1987), namely, the inability of the proposed strain energy function to
describe equally well the behaviors observed in very different loading protocols.
Although the microstructural relation was found to fit the data as well as or better
than the prior phenomenological model, a subtle but very important advance was
not emphasized. Prior quantification of biaxial testing data by Fung and many of
his associates (e.g., Lanir and Fung 1974; Vawter et al. 1978; Yin et al. 1987;
Humphrey et al. 1987) was based on separate nonlinear regressions of data from the
multiple biaxial protocols. The obvious outcome of such an approach was a different
set of “best-fit” material parameters for each protocol, which necessarily rendered
each set of material parameters not predictive of behavior from other protocols. It
appears that Horowitz et al. (1988) were the first to combine data from multiple
protocols within a single nonlinear regression to find best-fit values, which thereby
had a better predictive capability. Soon thereafter this use of “combined data sets”
became standard (cf. Choi and Vito 1990; Humphrey et al. 1990b) and thus was a
major advance. Within the context of comparison of the utility of the microstructural
(Horowitz et al. 1988) versus phenomenological (Yin et al. 1987) descriptors of
myocardial behavior, however, the use of different approaches to regression masked
potential real differences.

More importantly, however, following from their assumption that “the values of
the material constants are physically meaningful,” Horowitz et al. (1988) concluded
that “during the process of estimation : : : the contribution of the muscle fibers to the
stress–strain behavior observed in the experiments is insignificant.” This finding was
supported further in their Discussion via references to the histology and stiffness
of collagen. Yet, it was soon discovered that the data (from Demer and Yin 1983;
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Yin et al. 1987) upon which this conclusion was based inadvertently came from
tests wherein the myocardium was partially in contracture and thus significantly
stiffer than that of truly passive myocardium (cf. Humphrey et al. 1990a). That is,
although the microstructurally based model suggested that the myocardial fibers
did not contribute to load bearing, these contracted fibers actually supported most
of the measured loads in the experiments that were analyzed. This finding was
an important reminder that although motivated by gross histological features, the
lack of complete microstructural information (including precise distributions of
orientations and waviness as well as interactions amongst the many constituents)
demands that interpretations be made with caution. Soon thereafter, Nevo and Lanir
(1989) relaxed some of the inherent complexity of the microstructural formulation
in modeling myocardial behavior as justified by the prior findings. The use of
“effective fiber stress–strain relations” subsequently became common (cf. Sacks
2000).

At this point, it is useful to remember that there are, in principal, three basic
approaches to formulate a constitutive relation: theoretically, based on a detailed
understanding of the microstructure; directly from special classes of experiments
that reveal the forms of the response functions; and finally, via trial-and-error and
experience that lead to postulated forms. Although theoretical formulations should
be the best in principle, they are notoriously difficult in practice. Notwithstanding
the success of the ideal gas law, attempts in elasticity have been much less
successful. We recall, for example, the controversy surrounding early attempts by
Navier to formulate a stress–strain relation for linearly elastic behaviors from a
molecular theory that was not resolved fully until the phenomenological approach
of G. Green (Timoshenko 1983). Similarly, we recall the improvement of the
phenomenological Mooney–Rivlin relation over the theoretically derived neo-
Hookean relation in describing the nonlinearly elastic isotropic behavior of rubber
(Treolar 1975). It should not be surprising, therefore, that there remains no truly
validated microstructural model for soft tissues that exhibit nonlinearly elastic
anisotropic behaviors due to the complex responses of and interactions amongst the
many proteins, glycoproteins, and glycosaminoglycans that constitute the tissue.
Indeed, nearly all such formulations are based on the tacit assumption that the
total stored energy is the sum of the energies stored by each of the constituents,
which necessarily ignores possible interaction energies. Comparison of structurally
motivated (Humphrey and Yin 1987) and experimentally based (Humphrey et al.
1990a) formulations of constitutive relations for passive myocardium reveal, for
example, that such interactions are generally not negligible.

Limitations notwithstanding, microstructurally motivated constitutive relations
continue to contribute significantly to our ability to describe better the complex
stress–strain behaviors exhibited by many tissues as well as to interpret implications
of the associated best-fit values of the material parameters. For example, the so-
called two-fiber family constitutive model proposed by Holzapfel et al. (2000)
and its extension to “four-fiber families” by Baek et al. (2006) have each
proven particularly useful in arterial mechanics. Via the simple assumption that
passive arterial behavior results primarily from an amorphous elastin-dominated
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contribution, a circumferentially oriented smooth muscle contribution, and four
families of oriented collagen fibers, constitutive results by Ferruzzi et al. (2011a, b)
and Eberth et al. (2011) support the histologically observed loss of structural
integrity of elastin in aging, aneurysms, genetic disorders, and hypertension.
Clearly, much more will continue to be learned using microstructurally motivated
constitutive relations as originally envisioned by Lanir, provided that we respect
the inherent limitations that result from an imprecise understanding of interactions
amongst the many different constituents.

7.3 Growth and Remodeling

Y.C. Fung could not have selected a better title for his seminal 1981 book (now cited
over 7500 times): Biomechanics: Mechanical Properties of Living Tissues. That is,
the primary characteristics that separate biomechanics from classical mechanics
are those of living, that is, functions such as metabolism, locomotion, responses
to stimuli, reproduction, growth, and adaptation (cf. Dorland’s Illustrated Medical
Dictionary and The American Heritage Dictionary). There has long been interest
in using mechanics to describe growth or adaptation (cf. Thompson 1999), but
interest within modern biomechanics dates back mainly to the important works of
Cowin and Hegedus (1976) and Skalak (1981). In particular, the so-called theory of
“kinematic growth” of Skalak provided one way for applying nonlinear mechanics
to study soft tissue growth and eventually remodeling. Whereas important reviews
can be found elsewhere (e.g., Taber 1995), here we focus on the emerging use of
microstructurally motivated approaches.

Towards that end, note that one usually assumes in the theory of kinematic growth
that a materially uniform, stress-free body can be divided into fictitious parts, each of
which can then grow independently. Because such growth need not be kinematically
compatible, one then assumes that elastic deformations can be imposed to return the
body to a contiguous configuration (which typically introduces residual stresses)
that is then susceptible to typical applied loads. This approach (cf. Rodriguez
et al. 1994) has garnered many adherents, primarily because of the mathematical
tractability, yet it was not motivated by the biological mechanisms underlying
growth and remodeling. That is, growth (change in mass) and remodeling (change in
structure) result from cell-mediated production and removal of diverse constituents,
often within evolving thermomechanical states. Moreover, such constituents may
have different natural (stress-free) configurations, material properties, and rates of
turnover. For this reason, Humphrey and Rajagopal (2002) introduced a different
approach, a so-called constrained mixture theory. Briefly, in this approach, full
mixture relations are used to satisfy mass balance (cf. Truesdell and Noll 1965)
while a simple rule-of-mixtures relation is used to define the overall stress response
(or stored energy function); the latter permits one to satisfy linear momentum
balance in the usual ways, either in strong or weak form. Clearly then, the approach
for modeling the stress response (e.g., stress–strain relation) is very similar to that
advocated by Lanir in his microstructurally motivated approach (it is also similar
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in concept to the rule-of-mixtures approach advocated by A. Rachev in the 1970s).
For example, one can assume that the total strain energy is the sum of the energy
stored in the primary structurally significant constituents, including elastic fibers and
collagen fibers. The primary difference, however, is that each cohort of constituents
can consist not only of fibers having different orientations and undulations, but also
different stress-free configurations, material properties, and rates of turnover.

Similar to aforementioned microstructurally motivated stress–strain relations,
constrained mixture models of tissue growth and remodeling have proven useful in
capturing salient features of diverse tissue responses (e.g., Baek et al. 2006; Valentin
et al. 2009). Indeed, a very simple but interesting outcome of growth and modeling
simulations is that the summation of stress responses over long periods can give rise
to “smoother” (more realistic) nonlinear stress–strain behaviors (e.g., see results
in Fig. 7 in Wilson et al. 2012) than sometimes seen in standard microstructural
formulations (e.g., see the nearly bilinear responses in Fig. 4 in Lanir 1979).
Nevertheless, one must remember not to over-interpret the results just because they
are motivated by the microstructure, which is allowed to evolve. That is, current
growth and remodeling formulations also suffer from many of the same limitations
that remain in microstructural models, including the lack of information needed to
model constituent-to-constituent interactions resulting from weak bonds, physical
entanglements, or covalent cross-links. As with microstructurally motivated stress–
strain relations, however, there is considerable promise that microstructurally and
biologically motivated growth and remodeling models can continue to improve and
to provide significantly increased insight into many important areas of biomechan-
ics, including development, aging, disease progression, wound healing, regenerative
medicine, surgical planning, and so forth.

7.4 Summary

It is natural for us to evaluate past achievements through our current understanding.
Yet, to truly appreciate advances in any field of investigation, one must first
understand the “status quo” during the associated period of study. For example, it is
hard for us today to appreciate the genius of L. Euler and A. Cauchy in developing
the concept of stress (which we now take for granted), yet it took over a century to
move beyond the simple ideas of R. Hooke (as the force, so the extension) to the
modern concept of stress. Similarly, to appreciate major advances during the early
period of modern biomechanics, one must understand the state of the field in the
mid-1960s and remember that biomechanics was truly in its infancy.

Professor Yoram Lanir contributed significantly to many different areas of soft
tissue biomechanics, including study of skin, cartilage, arteries, and myocardium.
Albeit not the first computer-controlled study, Lanir performed the first careful
biaxial tests on planar soft tissues (skin) while working with Professor Fung
at UCSD, and this general method of testing remains preferred to this day.
He advanced the first rigorous microstructurally motivated constitutive relations
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for multiaxially loaded soft tissues, a general approach that has found broader
applicability and continues to offer significant promise to this day. He proposed
clever new approaches for nonlinear parameter estimation, an essential part of any
constitutive formation. For these and many other advances, as discussed in other
chapters within this volume, we must both thank and congratulate Professor Yoram
Lanir.

In conclusion, I wish to note two things. First, it should be evident that I neither
attempted to provide an exhaustive review of the early historical developments
of modern soft tissue biomechanics, nor did I review all of Professor Lanir’s
contributions. Rather, I attempted to provide some historical context, largely based
on personal recollections and observations (the interested reader is also referred
to Humphrey (2003) for additional review). Given wonderful search engines such
as PubMed, which by default list the most recent papers first, there is concern
that many of the older papers will be forgotten even though there is much to
learn from appreciating the evolution of ideas and methodologies. Second, much
has been achieved and yet much more remains to be accomplished in continuum
biomechanics. Indeed, given the continued rapid advance of complementary areas
such as medical genetics, molecular and cell biology, medical imaging, and compu-
tational methods, there is great promise for biomechanics to contribute increasingly
more and more to our understanding of physiology and pathophysiology and
our advancing health care delivery. Hence as Y.C. Fung closed his Foreword in
the inaugural issue of the international journal Biomechanics and Modeling in
Mechanobiology, “let us enjoy the work.”
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Chapter 8
Relationship Between Structure and Mechanics
for Membranous Tissues

Jessica W.Y. Jor, Thiranja P. Babarenda Gamage, Poul M.F. Nielsen,
Martyn P. Nash, and Peter J. Hunter

Abstract Professor Yoram Lanir has pioneered the development of structurally
based constitutive relations to describe the stress–strain response of soft biolog-
ical tissues. This approach relates the mechanical response of the tissue to the
intrinsic micro-structural properties of its constituents, such as collagen. This
article summarises some of the work by the Auckland Bioengineering Institute
contributing towards the goal of understanding the structure–function relationship
of soft membranous tissue. Key aspects of our work are to (1) develop con-
stitutive relations based on quantitative information of tissue structure; and (2)
use rich sets of experimental data to aid in accurate and reliable constitutive
parameter identification. We first outline several common techniques to quantify
tissue structure, such as collagen fibre orientations. A detailed description of an
extended-volume imaging system, developed in our laboratory, is then provided
along with a few application examples. The gathered imaging data is incorporated
into structural constitutive models by means of fitting to mathematical distributions.
Based upon the observations made from some imaging studies, a conceptual fibre
distribution model is proposed for modelling the collagen network in skin. We
then introduce a selection of constitutive models, which have been developed to
characterise the mechanical behaviour of soft connective tissues (skin in particular),
with particular emphasis on structurally based models. Finite element models, used
with appropriate constitutive relations, provide a means of interpreting experimental
results. Some of our recent efforts in developing instrumentation to measure the
two-dimensional and three-dimensional response of soft tissues are described. This
includes a biaxial tensile rig, which is capable of deforming membranes in up to 16
directions, and a force-sensitive micro-robot. We highlight some of the challenges
often associated with constitutive parameter identification using commonly used
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model based fitting approaches. These issues were examined and illustrated in depth
by performing controlled studies on silicon gel phantoms, which allowed us to
focus our attention solely on the identification problem. Lastly, future directions
of applying structurally based models to understanding the biomechanics of soft
tissues are discussed.

8.1 Introduction

More than three decades ago, Professor Yoram Lanir proposed the use of structural
constitutive relations to describe the stress–strain response of soft connective tissues,
thereby highlighting the important relationship between tissue composition and
behaviour. In essence, structural models aim to take into consideration the intrinsic
micro-structural properties of fibres (including fibre undulation and orientation)
when deriving constitutive equations. In the skin, networks of collagen (60–80 %
of dry weight) and elastin (1–4 % of dry weight) fibres are embedded in a fluid-like
ground substance (70–90 % of skin volume), comprised of water and proteoglycan
molecules (Wilkes et al. 1973; Silver et al. 1992). Collagen fibres are non-uniformly
undulated in their natural state and form a three-dimensional interwoven network
throughout the depth of the dermis (Finlay 1969). Elastin fibres are straight in their
natural state and are less stiff compared with collagen fibres. They are capable of
reversibly withstanding stretches to more than 100 % and hence provide the skin
with its ability to recoil to its original shape after being stretched (Carton et al.
1962). Experiments in which elastin and ground substance were digested suggested
that elastin’s contribution to the mechanical response of skin is only significant
at low strains, while the overall contribution from the ground substance is small
(Daly 1969; Harkness and Harkness 1959). It is widely accepted that collagen is the
predominant stress-bearing component in skin at high strains (Brown 1973). It has
been observed in tendons that undulated collagen fibres became gradually recruited
upon stretch, giving rise to the tissue nonlinearity commonly observed during the
toe region of the stress–strain curve (Abrahams 1967). This is due to an increasing
number of fibres being gradually straightened, and then stretched, contributing to the
overall macroscopic tissue stiffness. In addition, tissue anisotropy is predominantly
a result of the non-uniform orientation of the fibres.

Because there is a close relationship between tissue structure and mechanical
behaviour, structural constitutive relations are advantageous by providing a means
to directly relate model parameters to the underlying tissue microstructure. Prior
to the use of structural models, the most common approach to modelling the
elastic response of soft biological tissue was to use phenomenological models.
In phenomenological models, mathematical expressions are chosen to best fit
experimental data or reflect material behaviour, such as the widely used power
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(Kenedi et al. 1965) and exponential forms (Tong and Fung 1976). A major
disadvantage is that the parameters obtained for phenomenological models cannot
be directly related to specific biological constituents.

Although the skin is used as a representative tissue throughout this paper to
demonstrate the fundamental concepts of structural models, the observed structure–
function relationship is applicable across other soft connective tissues. To date,
structural approaches to modelling soft tissues have been employed to investigate
the mechanical properties of various organs and tissues, including skin (Lanir
1983; Lokshin and Lanir 2009a,b; Jor et al. 2011a), tendon (Hurschler et al.
1997), pericardium (Sacks 2003), arterial walls (Holzapfel et al. 2002), passive
myocardium (Horowitz et al. 1988; Holzapfel and Ogden 2009), and heart valves
(Billiar and Sacks 2000; Freed et al. 2005; Gasser et al. 2006). This paper
summarises some of our published works on characterising the structural and
mechanical properties of soft tissues by bringing together imaging, experimental
and computational modelling techniques into a single framework.

In Sect. 8.2, we first outline several common techniques to quantify tissue
structure, such as collagen fibre orientations. A detailed description of an extended-
volume imaging system, developed in our laboratory, is then provided along
with a few application examples. The gathered imaging data is incorporated into
structural constitutive models by means of fitting to mathematical distributions.
Based upon the observations made from some imaging studies, a conceptual fibre
distribution model is proposed for modelling the collagen network in skin. We
then introduce, in Sect. 8.3, a selection of constitutive models, which have been
developed to characterise the mechanical behaviour of soft connective tissues (skin
in particular), with particular emphasis on structurally based models. Finite element
(FE) models, used with appropriate constitutive relations, provide a means of
interpreting experimental results. In Sect. 8.4, we describe some of our recent efforts
in developing instrumentation to measure the two-dimensional (2D) and three-
dimensional (3D) response of soft tissues. This includes a biaxial tensile rig, which
is capable of deforming membranes in up to 16 directions, and a force-sensitive
micro-robot. Several experimental studies on skin tissues will be summarised in
this section. In Sect. 8.5, we highlight some of the challenges often associated with
constitutive parameter identification using model based fitting approaches. These
issues were examined and illustrated in depth by performing controlled studies
on silicon gel phantoms, which allowed us to focus our attention solely on the
identification problem. Finally, Sect. 8.6 is devoted to discussing future directions
of applying structurally based models to soft tissues.

8.2 Quantification of Tissue Structure

One of the major challenges in modelling soft connective tissues is the difficulty
in reliable and meaningful determination of constitutive parameters. To address
this issue, quantification of structural parameters is therefore useful in minimising
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the effects of structural variability in constitutive modelling. Recognising the
importance of tissue microstructure and its relationship to the mechanical behaviour
has led to an increasing number of studies looking to quantify the structural
properties of soft connective tissues. The structure of collagen networks has been
studied extensively in both human and animal issues (Craik and McNeil 1964;
Marcarian and Calhoun 1966; Finlay 1969; Meyer et al. 1982). Of particular interest
is the orientation of collage fibres, due to its important role in providing the
mechanical stability of the tissue and its contribution to the overall tissue behaviour.

Collagen fibres are rendered visible by traditional histological stains, such as
Hematoxylin-Eosin, Pontamine Sky Blue-Eosin, Elastica van Gieson and picrosirius
red (PSR). Microscopic techniques have been developed to visualise collagen fibres,
such as polarised light microscopy (Junquiera et al. 1982), fluorescence microscopy
(Dolber and Spach 1993; MacKenna et al. 1996) and confocal laser scanning
microscopy (CLSM) (Young et al. 1998). However, these conventional microscopic
techniques are often limited to relatively small regions in the tissue, making it
difficult to quantify fibre structure on a larger scale. Early microscopic studies have
suggested that collagen fibres are arranged in an organised, interwoven structure
in the skin. In order to quantify fibre orientations, several studies represent the
degree of fibre anisotropy using a relative measure, often referred to as the “collagen
alignment index”. The techniques used to quantify the degree of collagen anisotropy
included fitting ovals to binary images of skin samples viewed under polarised
light and taking the major axes of fitted ovals as the alignment index parameter
(Melis et al. 2002), performing Fourier analysis on cross-sectional images of skin
samples, and estimating the alignment index as the width-height ratio of the power
spectrum (van Zuijlen et al. 2003; Noorlander et al. 2002). Typically, an alignment
index value of zero indicates an isotropic distribution of fibres while a value of one
indicates perfectly aligned fibres. Despite being able to describe the extent of fibre
orientation anisotropy in a quantitative manner, the above studies do not provide
fibre orientations with respect to the tissue material axes (i.e. an absolute orientation
measure). Therefore, such data cannot be used for fitting to statistical distribution
functions to model fibre orientation.

Sacks et al. (1997) characterised collagen orientations in samples of pericardium
and intestinal submucosa using a small angle light scattering (SALS) device. In
brief, a Helium–Neon (HeNe) laser was passed through the thin connective tissues.
HeNe was chosen because its wavelength (
 D 632:8 nm) is within an order of
magnitude of the diameter of the collagen and elastin fibres. As the laser is passed
through the tissue, a pattern is formed as a result of light being scattered by the
fibrous structures. The angular distribution of collagen fibres R.�/ can then be
directly correlated to the angular distribution of scattered light I.�/. The experimen-
tally derived angular distribution of collagen fibres was directly incorporated into
structural constitutive models to predict the biaxial mechanical response of bovine
pericardium. Although the SALS technique is suitable for determining collagen
fibre orientations in thin connective tissues, such as the pericardium and heart
valves, it is not appropriate for skin tissues. Meijer (1997) found that the charge-
coupled device (CCD) camera employed in the SALS technique was not sensitive
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enough to detect scattered light from stained collagen fibres in rat skin tissues, which
were approximately 380�m thick. Due to its projective nature, the SALS technique
is also limited to the detection of collagen orientations in the in-plane direction only,
i.e. it cannot provide structural information in the transverse direction nor can it be
used to build a 3D dataset of images.

The development of structurally based computational models of biological tissue
relies on the ability to quantify and visualise 3D tissue structure across a large range
of resolutions and scales. For imaging of large tissue volumes, it is often challenging
to address the problems associated with image registration, section distortion, and
realignment. To this end, the motivation to acquire high resolution images in a high
throughput manner has led to the development of a novel automated CLSM imaging
system by our group (Sands et al. 2005).

8.2.1 Extended-Volume CLSM

The automated extended-volume imaging system consists of a high precision XYZ
translation stage, to which the specimen is mounted and imaged using a modified
CLSM (Leica Microsystems AG, Germany) (Fig. 8.1). The use of the translation
stage enables the acquisition of images over larger regions than previously possible
using conventional microscope systems. It avoids the need to remove the specimen
from the microscope stage for manual sectioning, thus re-positioning and alignment
of the specimen is not required at each step. The dimensions that can be imaged
in the Z direction using conventional CLSM is often limited by absorption and
scattering of light in the specimen. To overcome this limitation, extended imaging
into the depth of the tissue is enabled by removing the upper surface of the
specimen using a specialised ultramill (Leica Microsystems). The translation stage,
image acquisition and tissue removal are controlled simultaneously by specialised
hardware and software to enable automated acquisition of a grid of image stacks to
form a 3D image dataset.

The CLSM system has been used to visualise the collagen fibre structure in vari-
ous soft tissues, including myocardial tissue (Sands et al. 2005; Pope et al. 2008), rat
cortex tissues (Sands et al. 2005), engineered heart valves tissues (Eckert et al. 2011)
and cardiac trabeculae carneae (Sands et al. 2011). To give a representative example
of the capabilities of the CLSM system, the image acquisition of ventricular tissue
will be presented. Rat hearts were excised, mounted on a Langedorff apparatus, and
perfused with oxygenated Tyrode’s solution. In a relaxed state, the heart was arrested
and perfused with Bouin’s fixative solution. To render collagen fibres visible, the
heart was then perfused with collagen-specific stain PSR (Sweat et al. 1964). A
transmural 3 mm section from the LV free wall was cut and embedded in Agar
100 resin for imaging. A 16x/0.5 NA Plan Fluotar oil-immersion lens was used to
obtain 512 pixel � 512 pixel slices with lateral resolution of 1.22�m. To image
PSR-stained samples, a rhodamine filter set (excitation wavelength at 568 nm; high
pass detection filter at 590 nm) was used, with 8� averaging for the ventricular
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Fig. 8.1 The extended-volume confocal microscope imaging system consists of a high-precision
three-axis translation stage (labelled as A with individual X,Y and Z translation stages), confocal
microscope unit (B), and the ultramill (C). Reproduced with permission from Sands et al. (2005)

samples. A region of interest (5 � 3 mm) was specified to form a regular X-Y
grid of overlapping slices. The depth to which the specimen may be imaged before
the upper surface is milled was determined to be 35�m, allowing 28 planes to be
acquired at 1.22�m spacing in the Z direction. At each milling step, 30�m of
tissue was removed. The volume rendering of the 3D reconstruction of the imaged
specimen, covering 4.25 � 1.12 � 0.88 mm, is shown in Fig. 8.2. Brightly stained
collagen fibres were shown to vary significantly in the transmural direction, and are
densely arranged in sheets lining the epicardial and endocardial surfaces.

The imaging system has also been used to visualise collagen fibres in skin
specimens (Jor et al. 2011b). Unlike cardiac tissues, stain penetration for the skin
samples was achieved primarily via tissue diffusion (not via perfusion). However,
because of the dense structure of the dermal tissue, stain penetration by means of
diffusion was found to be limited in the direction of tissue depth. To overcome this
problem, 30–60�m thick transverse cryosections were obtained from the abdominal
region of young pigs at four orientations (0ı; 30ı; 60ı; 90ı) with respect to the torso
mid-line. Since the sample thickness was relatively thin, the milling procedure was
omitted in this study. Skin sections were fixed in Bouin’s solution, prior to staining
in PSR. Images were acquired using the protocols described for myocardium tissues,
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Fig. 8.2 (a) The volume rendering reconstruction of a transmural stack of myocardial tissue, and
(b) with the collagen network revealed by adjusting for image transparency based upon intensity
values. Reproduced with permission from Sands et al. (2005)

but using a 20� water immersion lens with 4� line averaging. The lateral resolution
for the acquired images was 0.98�m per pixel. Overlapping 512 pixel � 512 pixel
images were acquired and montaged together to form a 3 � 2 mm slice mosaic
at each z-depth. The imaging process was repeated at 1�m steps throughout the
entire tissue thickness, forming a stack of slice mosaics. For each tissue section,
a maximum intensity projection was obtained from all slice mosaics through the
entire z-depth.

Figure 8.3 shows a typical image of a PSR-stained sagittal section of porcine
skin. CLSM images of pig skin in this study showed in the reticular dermis region
thick collagen bundles crossing obliquely in two main directions, between epidermis
and hypodermis. Smaller diameter fibres are interwoven between the main network.
The oblique arrangement of collagen fibres is thought to be responsible for resisting
in-plane shear deformation while allowing changes in thickness of the dermis as
the skin is stretched or compressed. In contrast, thinner collagen bundles were
found in a more parallel arrangement in the relatively thin papillary dermis layer
as seen in Fig. 8.4. The collagen fibres were observed to form a dense and compact
3D meshwork in the dermis region. Such observations are consistent with early
qualitative studies performed on pig skin using light microscopy and SEM (Mowafy
and Cassens 1975; Meyer et al. 1982).
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Fig. 8.3 Maximum intensity projection of a 60�m sagittal section of picrosirius stained porcine
skin, revealing the cross lattice arrangement of collagen fibres. Reproduced with permission from
Jor et al. (2011b)

Fig. 8.4 300 � 300�m cropped sections from Fig. 8.3: (a) thinner collagen fibre bundles are seen
in the upper papillary dermis region; (b) much thicker collagen fibre bundles, arranged in a lattice
structure, are found in the lower reticular dermis region. Reproduced with permission from Jor
et al. (2011b)
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8.2.2 Structure Tensor Approach

To analyse the structure of collagen of the acquired images of skin specimens, a
structure-tensor approach was used to determine fibre orientations (Jahne 2004).
The components of a structure tensor are the weighted sum of the first-order spatial
derivatives of the image. The information within a local neighbourhood about the
central point x is weighted by the window function w.x � x0/

Jpq.x/ D
Z 1

�1
w.x � x0/

	
@g.x0/
@xp

@g.x0/
@xq



dx0 (8.1)

where g.x/ represents the grey values and @g.x0/=@xp is the partial derivation along
the p-axis direction.

The components of the structure tensor can be computed efficiently as a combina-
tion of linear convolution and nonlinear point operations. This involves convolving
the image independently with partial derivative operators .Dp;Dq/ associated with
each coordinate .p; q/, multiplying both images on a pixel basis prior to applying a
smoothing operator .B/ to the resultant image.

Jpq D B.Dp � Dq/ (8.2)

After computing the structure tensor, an eigenvalue analysis is performed to
extract local orientation vectors. For a 2D image, the form of the structure tensor is

J D
�

Jxx Jxy

Jxy Jyy

�
(8.3)

The eigenvalue analysis involves only a single rotation from the image coordinate
system to the principal axes coordinate system [Eq. (8.4)]. As a result, the two axes
are aligned with the directions of the eigenvectors of the maximum and minimum
eigenvalues, respectively.

�
Jx 0

0 Jy

�
D
�

cos� �sin�
sin� cos�

� �
Jxx Jxy

Jxy Jyy

� �
cos� sin�
�sin� cos�

�
(8.4)

By substitution of trigonometric identities, the orientation vector O in vectorial
form can be written as

O D
�

Jyy � Jxx

2Jxy

�
(8.5)

where the orientation angle is given by the phase of this vector (�). As shown
in Eq. (8.5), the components of the orientation vector are readily obtained from
the components of the structure tensor and involve only one subtraction and one
multiplication.
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8.2.3 Fitting Fibre Orientations

In order to incorporate micro-structural information into computational models,
mathematical density distributions are employed in structural constitutive equations
to represent the distributions of fibre undulation and orientations. One of the most
common mathematical distributions used to represent circular data is the von
Mises (VM) distribution, VM.�; �/. The probability density distribution function
of VM.�; �/ is given by

R.�/ D e�cos.���/

2�I0.�/
0 � � < 2� 0 � � < 1 (8.6)

where

I0.�/ D 1

2�

Z 2�

0

exp�cos.���/d� (8.7)

is the modified Bessel function of order zero. The parameter � is the circular mean
and � is a measure of spread that is related to the inverse of the standard deviation in
the conventional Gaussian distribution. As � tends to zero, the distribution tends
to a uniform distribution. As � tends to large values, the distribution becomes
concentrated about the mean orientation, �.

Due to the bimodal nature of fibre orientations from porcine skin, a mixture of
two symmetrical VM distributions was selected for fitting the acquired imaging
data. The method of moments was used in this study to estimate parameters of
the distribution (Spurr and Koutbeiy 1991). Figure 8.5c shows a representative
histogram and fitted VM distributions to fibre data obtained from skin specimens
aligned parallel to the torso mid-line. It was demonstrated that the two parameters
of the distribution, the orientation mean and spread, may be directly determined
using CLSM image analysis. An important advantage of this approach is that model
parameters can be estimated directly from observable micro-structural features.

One important feature observed in the images was the presence of a distinct
lattice pattern in the transverse samples. Based on fibre data obtained from a
single sectioning orientation, there was insufficient information to deduce the
collagen structure arrangement; thus, images from other sectioning orientations
were required. Analysis of transverse sections excised at 0ı; 30ı; 60ı and 90ı
relative to the torso mid-line revealed that the distributions of fibre orientations

Fibre orientations in sagittal sections of porcine skin were defined with respect
to the direction normal to the epidermis (ranging from ��

2
to C�

2
), with clockwise

angles from the Y-axis to X-axis in the imaging plane defined as positive. The
structure-tensor algorithm was used to determine fibre orientations of a regular
grid of 16 pixel � 16 pixel for each image projection, as shown in Fig. 8.5a. Areas
containing non-collagenous features such as blood vessels, hair follicles and fat
tissue were masked and excluded from the statistical analysis as shown in Fig. 8.5b.
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Fig. 8.5 Collagen orientation analysis: (a) A regular grid of computed fibre angles, using the
structure tensor approach, shown as line segments; (b) Areas of the image containing non-
collagenous structures, such as blood vessels, fat cells and glands, were masked out; (c) A mixture
of two von Mises distributions fitted to collagen fibre orientations presented in the form of a
histogram
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were bi-modal for all sectioning orientations. To determine whether there was any
difference in the collagen structure across the four different sectioning orientations,
an analysis of variance (ANOVA) was performed on the fitted orientation means.
It was shown that all p-values were greater than 0.05, indicating no significant
differences in the fitted means across the four section orientation groups. The
observations led to the proposal of a 3D conceptual model of collagen distribution
for porcine skin, which will be described in the following section.

8.2.4 Conceptual Fibre Distribution Model

Based upon the observation of a lattice structure consistently observed in CLSM
images of different sectioning orientations, it appears that porcine skin contains
a rotationally symmetric 3D lattice structure about the normal direction to the
epidermis. Thus, a 3D conceptual model to represent the observed collagen fibre
distribution in porcine skin was proposed. Firstly, a material coordinate system
(Fig. 8.6) was defined as follows: (1) N is normal to the epidermis; (2) L is parallel
to the Langer’s lines and (3) O is orthogonal to N and L.

Each fibre is defined in 3D space by its spherical coordinates �� and �

(Fig. 8.6a). � is the in-plane angle between L- and O-axes (with anti-clockwise
defined as positive), whereas � describes the fibre angle from the N-axis within
the transverse section. It is assumed that the total probability of finding a fibre at

Fig. 8.6 3D conceptual model: (a) definition of a fibre with respect to the material coordinate
system; (b) a circular distribution around the skin normal direction (N) is assumed based upon the
similar collagen lattice network observed for the different sectioning orientations. L: Langer’s line
direction; O: direction orthogonal to N and L. Reproduced with permission from Jor et al. (2011b)
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an orientation (�,�) can be determined by selecting appropriate density distribution
functions R1.�/ and R2.�/ that independently represent � and � .

R.�; �/ D R1.�/ � R2.�/ (8.8)

The in-plane angle � describes structural information in the plane parallel to
the epidermis. Although images acquired in this study do not provide any direct
information, it is simplest to describe � with a unimodal density distribution
function, in which the fibre density in the direction of Langer’s line has been
observed to be greater than in any other direction. Cox (1941) showed that the
preferred collagen orientation tends to be aligned along the Langer’s lines. A
unimodal �-periodic VM distribution, centred around the direction of Langer’s
lines, was chosen to describe the variation in � .

For the idealised situation in which all the fibres are assumed to be perfectly
aligned along two predominant orientations, the fibre distribution in the transverse
planes may be represented by a rotationally symmetric distribution about the
normal direction (Fig. 8.6b). This mathematical representation is consistent with
the observations described in CLSM images of porcine skin collagen, i.e. that a
similar lattice structure was apparent regardless of the sectioning orientation. Rather
than being perfectly aligned, collagen fibres in biological tissues are likely to be
dispersed about their mean directions within the lattice, thus requiring additional
parameter(s) to describe the variation(s) about the predominant directions.

Based upon the bimodal nature of imaging data, a suitable density distribution
function to describe � is the mixture of two �-periodic VM distributions, defined as

R1.�/ D 1

2
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�
��C

cos.2.� � ��C
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�

�I0.��C
/
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�
���
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�

�I0.���
/

!
(8.9)

where�� and �� are the mean and spread parameters, respectively, of the orientation
distribution. As shown previously, both parameters can be directly estimated from
analysis of CLSM images.

The total probability density function [Eq. (8.8)] is thus defined as the product of
a unimodal VM distribution and a bimodal VM distribution to describe R1.�/ and
R2.�/, respectively. By integrating the probability density function over the range
��
2

� � � �
2
;��

2
� � � �

2
, all possible fibre orientations are covered by the

unit hemisphere. Therefore, Eq. (8.8) must also satisfy the following normalisation
constraint

Z �
2

�D� �
2

Z �
2

�D� �
2

R.�; �/d�d� D 1 (8.10)

Consider a fibre in the reference configuration that is described by a vector u.
Since the stretch is identical in both the Cu and �u directions, R.�; �/must remain
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invariant under the symmetrical transformation (� ! � � �,� ! � C �) for all
values of � and � such that

R.�; �/ D R.� � �; � C �/ (8.11)

In examining some commonly used statistical distributions, it was found that
not all proposed distributions satisfied this physical restriction. For example, the
commonly used unimodal Gaussian distribution does not satisfy Eq. (8.11).

Lokshin and Lanir (2009a) proposed a bimodal distribution in the form of
trigonometric functions, given by

R.�/ D c11.cos4.� � �� //C c12.sin4.� � ��//C c2
�

(8.12)

where c11; c12; c2 and �� are constants. It can be seen that Eq. (8.12) satisfies the
physical restriction for the planar angle � . However, if the same distribution was
used to represent �, i.e.

R.�/ D c11.cos4.� � ��//C c12.sin4.� � ��//C c2
�

(8.13)

Equation (8.11) would not be satisfied.
In the proposed conceptual model, it can be shown that by choosing unimodal

and bimodal VM distributions to describe R1.�/ and R2.�/, respectively, Eq. (8.8)
satisfies the physical symmetry restriction. This is due to a factor of two in the
� distribution and the appearance of both (� � �� ) and (� C ��) in the R2.�/
distribution.

In this section, we have described techniques to mathematically represent tissue
structure by combining confocal imaging and statistical analyses. Structural data in
this form act as important inputs to structurally based constitutive models, which
will be introduced in the following section.

8.3 Constitutive Modelling of Connective Tissues

The model-based approach, which uses finite element (FE) models to simulate
the mechanical testing of tissues, provides an effective means to analyse rich sets
of experimental data. This iterative numerical-experimental technique allows the
identification of constitutive parameters. A selection of the constitutive models used
in characterising the response of soft membranes will be presented here.
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8.3.1 Phenomenological Models

Phenomenological models are mathematical functions, such as the power or expo-
nential forms, that are chosen to best fit experimental data or reflect material
behaviour. Based upon the classical biaxial testing of rabbit skin, Tong and Fung
developed the widely used Fung constitutive equations for soft tissues (Fung 1965,
1967). In order to model the J-shaped stress–strain curves observed from the
experiment data (i.e. a low stiffness region followed by an abrupt transition to a
high stiffness region), the following generalised form was proposed:

W D 1

2
.˛1E

2
11 C ˛2E

2
22 C ˛3E

2
12 C 2˛4E11E22/

C1

2
cexp.a1E211 C a2E

2
22 C a3E

2
12 C 2a4E11E22

C�1E311 C �2E
3
22 C �4E

2
11E22 C �5E11E

2
22/ (8.14)

where ˛i; ai, �i and c are material constants and Eij is the Green strain tensor,
resulting in a total of 13 constitutive parameters. It was found by Tong and co-
workers that Eq. (8.14) can be simplified by omitting the ˛i and �i terms without
compromising the goodness of fit to a majority of stress–strain curves. In biaxial
testing, this equation can be further simplified by assuming the shear strain E12 is
zero, thus can be written as

W D c

2
exp.a1E211 C a2E

2
22 C 2a4E11E22/ (8.15)

While phenomenological models often provide good fits to experimental data,
a major limitation of phenomenological models is that the constitutive parameters
do not bear any physical meaning. Driven by the need to relate tissue behaviour to
structure, structural constitutive models have since been developed and employed in
studies to investigate soft tissue mechanics.

8.3.2 Structural Models

Structural models aim to formulate the constitutive relations based upon the under-
lying tissue histology. Since constitutive parameters relate to specific biological
features, structural models are capable of providing insights into the important
relationship between tissue structure and behaviour. Lanir (1979, 1983) was one of
the first researchers to consider the geometric arrangement of fibre networks in soft
connective tissues. Following his pioneering work, structurally based constitutive
models have since been developed over the years for a variety of tissues such as
arterial walls (Holzapfel et al. 2002), pericardium (Sacks 2003), tendon/ligament
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(Hurschler et al. 1997), passive myocardium (Horowitz et al. 1988; Holzapfel and
Ogden 2009) and heart valves (Billiar and Sacks 2000).

Recently, Lokshin and Lanir (2009a) presented an extensive approach to model
the in vitro uniaxial response of membranous tissues. The effects of tissue nonlin-
earity, anisotropy, viscoelasticity, orientation and recruitment of two fibre networks
(collagen and elastin), and preconditioning adaptations have been considered in a
single constitutive model. The model, with 31 constitutive parameters, provided
good fits to biaxial data of rabbit skin. An important outcome from this study was
the investigation and incorporation of preconditioning effects in the experimental
setting and constitutive models, respectively. Since different test protocols recruit
different sets of fibres, the loading history (and hence preconditioning adaptation)
will alter the time-dependent response of the tissue. It has been suggested that the
underlying mechanisms are different for the two types of fibres: strain- and time-
dependent increases in the reference length of collagen fibres, and strain-dependent
strain softening (i.e. Mullins effect) of elastin fibres. The study also confirms the
notion that the ground matrix and elastin contribute predominantly in the low strain
regions, while collagen fibres are important for higher strains.

Representing Fibre Orientations with Continuous Distributions

Although a comprehensive constitutive description of soft tissue mechanics is
desirable, the bottleneck is often the lack of ability to accurately identify the
unknown constitutive parameters. The identification of constitutive parameters is a
challenging task, even in the case of simple, isotropic and heterogeneous materials
(Babarenda Gamage et al. 2011). Therefore, to characterise the biaxial response
of porcine skin (outlined in the following section), we considered a simplified
version of the structural model proposed by Lanir. In this micro-structural model,
a network of collagen fibres with varying orientations is embedded in a tissue
block consisting of ground matrix. The tissue block was assumed to be very
small compared to the whole tissue, such that the material can be assumed to be
homogeneous within each block and that the deformation field varies linearly over
the block. The following assumptions were made:

• each fibre is undulated and only resists load when completely straightened.
• fibres can only resist tensile loading and buckle under compressive loads, i.e. no

load is required to fold or unfold fibres.
• each fibre undergoes a uniaxial strain, which is representative of the macroscopic

tissue strain along the fibre direction.
• the fibres are assumed to be linearly elastic when stretched, and their mechanical

properties are governed by a one-dimensional (1D) fibre load-stretch relation.
• viscoelastic effects are ignored.

The second Piola–Kirchhoff stress tensor, S, sums the contributions from the
ground matrix Sm and collagen fibres Sf , respectively, by taking into consideration
the fibre volume fraction Vf , such that
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S D .1 � Vf / � Sm C Vf � Sf (8.16)

The ground matrix is assumed to be an isotropic neo-Hookean material; thus, the
strain energy function of the ground matrix (Wm) is given by

Wm D Km.I1 � 3/ (8.17)

where Km is the stiffness of the ground matrix and I1 is the first principal strain
invariant of the Cauchy–Green deformation tensor. For a 2D membrane, the second
Piola–Kirchhoff stress tensor for the ground matrix can be expressed as

Sm
ij D @Wm

@Eij
D @Wm

@I1

@I1
@Eij

D

2Km i D j
0 i ¤ j

(8.18)

where E is the Green–Lagrange strain tensor. A uniaxial fibre strain energy function
(wf ) is defined as a function of the fibre stretch ratio 


wf D Kc

2
.
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where Kc is the collagen fibre stiffness and 
 is given by Eq. (8.20).
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where � 0
f represents the strain along the fibre in the deformed configuration and � is

the in-plane fibre angle.
The load per unit undeformed cross-sectional area in the fibre is
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The total strain energy of all fibres in an undeformed volume unit, Wf , is given by

Wf D
Z
�

R.�/ � wf .
/d� (8.22)

where R is the probability density function for the fibre orientation. The summation
can be replaced by integrals if there is a large enough number of fibres in each
direction.

For a 2D membrane, the second Piola–Kirchhoff stress tensor for the fibres can
be expressed as
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where x is the stretch required to straighten an undulated fibre and D.x/ is the
probability density function for fibre undulation. Continuous distribution functions
are used to represent the orientation of collagen fibres, with the most commonly
used being the Gaussian (Lanir 1983) and von Mises distributions. A unimodal
�-periodic von Mises distribution was chosen to describe the in-plane fibre ori-
entation � . For fibre undulation, commonly used continuous distribution functions
include the Gaussian, beta, Lorentz function and log-logistic distribution function.
For present purposes, a Gaussian distribution was used to describe fibre undulation:

D.x/ D 1p
2��x

exp


� .x � �x/

2

2�2x

�
(8.24)

where �x and �x are the mean and standard deviation of the undulation distribution,
respectively.

It is important to note that the above structural model has many simplifications,
such as the omission of the elastic fibre response and time effects. However, we
will demonstrate in Sect. 8.5 that, even with such a simplified model, there remains
significant challenges with material parameter identification.

Discretised Fibre Model

Flynn et al. (2011a) proposed a discretised fibre structural model for soft tissues
comprising of six fibre bundles. In this model, each fibre bundle was aligned parallel
to lines that pass through opposing vertices of a regular icosahedron. Each fibre
bundle was assumed to consist of a single elastin fibre in parallel with a distribution
of undulated collagen fibres. The total strain energy function of the six fibre bundle
ensemble was given by

W D f .J/C
6X

iD1
wiŒWe.
i/C Wc.
i/� (8.25)

where f .J/ denotes the response to compression, and We.
i/ and Wc.
i/ is the strain
energy of the elastin fibre and undulated bundle of collagen fibres, respectively. The
total strain energy of equally weighted elastin fibres was represented by a modified
neo-Hookean material.

To represent the strain energy of undulated collagen fibres, a novel approach
involving analytical expressions was adopted. This approach does not require
numerical integration of continuous distribution functions and is thus more com-
putationally efficient. Two simple distribution functions (a step and triangular
function) for collagen undulation that yield analytical stress–strain expressions were
investigated. It was found that the fibre stresses closely matched those calculated
using the normal distribution function, indicating that a two-parameter step function
is sufficient to model collagen fibre undulation. The proposed discrete fibre model
was used to fit experimental data from various biaxial tensile tests. Although
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providing relatively good fits, this model is limited by the fact that it does not
guarantee a polyconvex formulation and it does not yield isotropic response when
all of the weights wi are equal.

In Sects. 8.2 and 8.3, we have established characterisation of tissue structure and
introduced a selection of constitutive relations. The measurement of mechanical
response relies on performing mechanical tests on the tissues of interest, which will
be discussed in the next section.

8.4 Mechanical Experiments

Over the years, many research groups have attempted to characterise and quantify
the mechanical functions of soft tissues by performing mechanical experiments.
Two types of deformation are typically applied—loads parallel to the surface of the
tissue (such as uniaxial, biaxial tension and torsion), or loads applied perpendicular
to the surface (such as suction and indentation). In this section, we will present some
of our recent instrumentation developments in measuring the mechanical response
of skin tissues.

8.4.1 Biaxial Testing

Biaxial testing has been employed to determine the material properties of skin (Lanir
and Fung 1974a,b), pericardium (Choi and Vito 1990; Billiar and Sacks 1997; Sacks
2003), lung parenchyma (Vawter et al. 1978) and thin sections of myocardium
(Yin et al. 1987; Smaill and Hunter 1991; Humphrey et al. 1990). Prior to this,
mechanical tensile tests were often restricted to uniaxial tests (Daly 1966; Manschot
and Brakkee 1986) due to challenges in prescribing the appropriate boundary
conditions. Biaxial testing presents many technical difficulties, including the need
to control two boundary conditions, minimising gripping effects, applying forces
uniformly along the specimen edge, and determining the optimal specimen size to
promote homogeneity within the specimen while ensuring that the region of interest
is located sufficiently far from the exterior edges (Sacks 2003). Lanir and Fung
(1974a) were the first researchers to investigate the mechanical properties of planar
soft tissue using biaxial testing. A rabbit skin specimen was mounted on the biaxial
device in a trampoline-like manner at 68 attachment points using thin threads.
The stress and strain states across the central region of interest were considered
to be uniform. Tissue strain within this region was obtained by measuring the
distance between pairs of lines marked on the specimen using video dimensional
analysers. From the experimental data, it was observed that the skin tissues exhibited
J-shaped directionally dependent stress–strain curves, highlighting nonlinearity and
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anisotropic mechanical behaviour. An important observation is that the stress–strain
curves were independent of strain rate for both the loading and unloading cycles,
within the range tested.

A major challenge in characterising and comparing the mechanical response
of soft connective tissues, such as skin and pericardium, is the significant inter-
specimen structural variability that exists, particularly relating to the anisotropy
of the tissues. To minimise the underlying structural variability across specimens,
Sacks (2003) developed biaxial testing protocols that incorporated the use of the
SALS technique described in Sect. 8.2. Using the SALS imaging technique, tissue
specimens with a high degree of structural uniformity were selected for biaxial
testing. This resulted in consistent mechanical response across specimens and low
variability in the identified constitutive parameters. Rectangular samples of bovine
pericardial specimens and porcine aortic valve leaflets were attached to the biaxial
rig in the trampoline-like manner with sutures. To track the strain field, four graphite
markers (¿0.3 mm) were attached to the central region of the specimen using
cyanoacrylate adhesive. The positions of these markers were continuously tracked
during deformation using a CCD camera. It was demonstrated that the use of SALS
with biaxial testing provided additional insight into the relationship between fibre
alignment and mechanical anisotropic behaviour.

In order to identify anisotropic, nonlinear, and inhomogeneous properties of soft
membranes, it is necessary to subject the sample to a rich set of deformations, as will
be described in Sect. 8.5.2. In addition, the use of a model-based approach provides
a framework within which to interpret the acquired experimental data. To this end,
our group has developed a novel biaxial tensile device that is capable of imposing
rich sets of complex deformation fields.

Biaxial Rig Hardware

The biaxial tensile rig (Fig. 8.7a) consists of up to 16 displacement actuators (Physik
Instrument DC-Mike, Germany) arranged in a circular array to stretch the tissue
specimen (Nielsen et al. 2002). Since the movement of each motor axis is controlled
independently, the circular arrangement permits a rich set of strains to be applied to
the membrane. Each actuator, controlled by a Hewlett Packard HCTL100 motor
controller, has a displacement range of 50 mm and position accuracy of 0.2�m. The
minimum specimen size is restricted by the radius at which transducers can converge
without colliding. For the 16 axis set-up, the minimum diameter is 50 mm. A smaller
specimen size of 20 mm can be accommodated by using eight transducers.

Mounted at the tips of each displacement actuator is a 2D force transducer that
measures the forces applied to the membrane during testing. Each force transducer
is made up of two pairs of strain gauges, arranged as two half-Wheatstone bridges,
bonded to the four necked surfaces of a cantilever. They measure the strain applied
to the surface of the cantilever when force is applied at the attachment pin.
The membrane is attached to the transducers via a sharp needle at the end of a
30 mm long pin. This provides a quick and easy tethering method, compared with
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Fig. 8.7 Biaxial rig set-up: (a) Tensile tests were performed on in vitro samples of porcine skin
bathed in phosphate buffered solution; (b) Alternative method of attaching in vivo samples to the
biaxial rig using a rod end bearing approach; (c) Tracking of material points from the reference
configuration to the deformed configuration. The CCD image of the deformed sample is shown in
the background. Reproduced with permissions from Jor et al. (2011a) and Kvistedal and Nielsen
(2009)
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thin threads commonly used in biaxial devices. The deformed geometry and the
associated deformed speckle pattern applied to the membrane surface are captured
using a CCD camera (Atmel Corporation, France, Camelia 4 M). These images
are used to compute the deformation field of the membrane using nonlinear cross-
correlation techniques, which are described in the following section. The system
uses a 12-bit monochrome camera with a 2048 pixel � 2048 pixel resolution.
It is equipped with a bellows and an El-Nikkor (Tokyo, Japan) 80 mm enlarger lens,
providing a field-of-view of 20–200 mm. The actuator control, force measurements,
and image acquisition are controlled using an integrated software system developed
with LabView (National Instruments).

Cross-Correlation Technique for Tracking Deformation

The measurement of strain fields poses a significant challenge in biaxial testing
of soft biological tissues. Ideally, one would measure strain optically to avoid
any mechanical interference. Malcolm et al. (2002) proposed a novel technique to
measure the displacement of material points over the specimen using a phase-based
cross-correlation technique, and subsequently compute the strain field via finite ele-
ment modelling. The mathematics of this procedure have been previously described
in detail by Malcolm (2000) and thus will only be briefly summarised here.

At each successive loading step, forces at the membrane boundary are recorded
and an image of the speckled surface of the deformed specimen is acquired. In order
to compute the displacement of a material point initially positioned at .x; y/ in the
undeformed configuration and later moved to .x C ıx; y C ıy/ using a phase-based
Fourier transform cross-correlation (FTCC) method, signals with a wide spatial
frequency bandwidth are required. In the biaxial testing set-up, this is achieved by
applying a random speckle pattern on the surface of the membrane being tested. The
FTCC method computes the 2D displacement vector of a region on the specimen
when it is stretched from one state to another.

The total displacement is calculated by adding displacement obtained from the
phase data to the displacement obtained by the amplitude data. This technique
is capable of resolving displacements to a sub-pixel resolution (as small as
0.008 pixel). It is important to note that the cross-correlation gives the average
displacement of the region within the subimage, and only works under the fol-
lowing conditions: (1) the visual pattern has a wide frequency bandwidth; (2) the
displacement of the two subimages is relatively small compared with the size of
the subimages, and; (3) there is little distortion or rotation associated with the
deformation (i.e. deformation is homogeneous) within the subimage, although this
can be accounted for using the underlying FE model.

To determine the strain field, a geometric FE geometric model of the undeformed
membrane geometry is created and deformed to the measured displacements using
least-squares fitting to obtain the geometric model of the deformed state. The
deformation of the geometric model is used to compute the associated strain field.
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Applications to Skin Tissues

The biaxial testing device was used to characterise the biaxial mechanical response
of porcine skin (Jor et al. 2011a). For this experiment, a 12-transducer configuration
was used to deform in vitro square samples (70 � 70 mm) of porcine skin excised
along the abdominal mid-line of the animal. To determine the pretension, each
sample was allowed to relax in phosphate buffered solution (PBS) over a period
of 3–4 h (defined as the unloaded state). The changes in length along each of the 12
directions were estimated, by comparing an image of the sample in its unloaded and
preloaded (i.e. in vivo or intact) states. In general, the skin samples retracted 40 %
in the direction parallel to the torso mid-line (also the Langer’s lines) and 20 %
in the normal direction. Pretension forces were defined as the forces required to
stretch a specimen from its unloaded to preloaded configuration. From the preloaded
configuration, equi-axial deformations were imposed by stretching circular skin
specimens uniformly along 12 directions using the biaxial rig, with the resultant
loads at the membrane attachment points being measured. Displacement fields at
each deformation step were tracked using the image 2D cross-correlation technique
described above (Fig. 8.7c).

The biaxial rig has also been used to characterise the mechanical response of
human forearm skin in vivo. Five healthy male subjects, between 29 years and 35
years of age, participated in this study (Kvistedal and Nielsen 2009). To avoid
the use of fixed attachment points, which would lead to undesired vertical and
torsional stresses in the sample, a miniature rod end bearing was used to attach
the skin surface to the force transducers (Fig. 8.7b). Equi-axial deformations were
imposed in increments of 0.2 mm along and across the Langer’s lines of the forearm.
Cross-correlation techniques were used to track the displacements between each
successive loading state. It was observed that the stress–strain curves were different
between individuals, further demonstrating variations in the mechanical properties
of skin that is dependent on age, body locations and gender.

8.4.2 Three-Dimensional Testing

There are important limitations with biaxial testing of soft tissues. Researchers have
commented on the inability to infer any in-plane shear information due to difficulties
in imposing and controlling shear stresses in planar biaxial tests (Humphrey et al.
1990; Sacks 2000). Simple shear devices have been developed by Arbogast et al.
(1997) and Dokos et al. (2000) for testing myocardial tissues, but these studies did
not combine shear with biaxial stretching. Extension and inflation tests on tubular
specimens, combined with torsion, have similar effects to planar biaxial tests with
simple shear. The first experiment of this kind was performed by Humphrey et al. on
cylindrical blood vessels (Humphrey et al. 1993). However, in order to completely
characterise the 3D anisotropic mechanical response of soft tissues, an additional
independent, out-of-plane deformation is required (Holzapfel and Ogden 2009).
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Fig. 8.8 Three-dimensional measurements using a force-sensitive micro-robot. Reproduced with
permission from Flynn et al. (2011a)

To date, there is no biaxial device that will independently control and measure
three components of stress or strain. In an attempt to impose a rich set of three-
dimensional deformations on soft tissues, such as the skin, we have developed a
novel force-sensitive micro-robot (Fig. 8.8).

Technical details of the micro-robot are provided in Flynn et al. (2011a) and
will only be summarised here. The micro-robot consists of a 4-mm-cylindrical
probe attached to three parallel axes, each driven by a voice-coil actuator to allow
controlled movement of the probe tip within a working volume. Three linear
position transducers are used to measure the displacement of each actuator. The
displacement resolution is 50�m with a repeatability of 60�m. The 3D force vector
at the probe tip can be computed from the force measured by three force transducers
placed between each actuator and the probe, with a resolution of 6 mN with a
repeatability of 8 mN. In a study to investigate the in vivo mechanical properties
of human skin, 21 volunteers between the age of 21 and 52 years were recruited
(Flynn et al. 2011a). To position the arm relative to the micro-robot, a plate with a
40 mm diameter hole was used to support and define the testing region.

A rich set of three-dimensional deformations was imposed, with a cycle fre-
quency of 0.1 Hz, at three locations of the arm: the anterior right forearm; the
anterior left forearm; and posterior right upper arm. Liquid cyanoacrylate adhesive
was used to attach the micro-robot probe to the skin. The skin was preconditioned
by performing three triangular-wave cycles. Firstly, in-plane deformations were
applied, using 0ı increments, in directions 0ı–180ı relative to the longitudinal
axis of the arm. A series of out-of-plane deformations was then applied within
planes oriented 0ı, 45ı and 90ı relative to the longitudinal axis and normal
to the surface of the arm. Normal indentations were also investigated. Results
demonstrated that at all testing locations for all subjects, the skin exhibited nonlinear
and anisotropic mechanical characteristics with significant hysteresis. Figure 8.9
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Fig. 8.9 Force-displacement curves of the anterior right forearm for all subjects tested subjected to
in-plane (left) and out-of-plane (right) loading at 0ı to the longitudinal axis of the arm. Reproduced
with permission from Flynn et al. (2011a)

shows the force-displacement curves of the anterior right forearm for all subjects
subjected to in-plane and out-of-plane loading at 0ı to the longitudinal axis of
the arm and normal deformations. Anisotropic effects cannot be quantified by
experimental devices that apply torsion, suction or normal indentation deformations.
This highlights a major advantage of the force-sensitive micro-robot, which is
capable of characterising anisotropic effects by imposing both in-plane and out-
of-plane deformations. There was also a wide range of variations reported across
different subjects, suggesting the importance of acquiring experimental data from
different body locations of a large population of individuals.

In order to interpret the experimental data, FE models coupled with appropriate
constitutive relations are employed to identify constitutive parameters. In the
following section, we will discuss the techniques and challenges associated with
material parameter identification of soft tissues.

8.5 Constitutive Parameter Identification

Parameters of the constitutive relations chosen to describe skin are often determined
by using model-based approaches where model predicted responses are fitted
to experimental measurements obtained from devices such as those described
in Sect. 8.4. This is usually performed using nonlinear optimisation techniques.
Identifying these constitutive parameters for individual specific tissues can be
valuable for determining normal vs pathological changes in a number of clinical
applications. These include diagnosis of dermatological diseases, such as systemic
scleroderma or other collagen related diseases, while also providing insight into
improved clinical treatment and management of wounds and burns, where creation
of skin scaffolds mimicking the behaviour of biological skin is required. However,
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determining the optimal constitutive parameters is generally a non-trivial exercise
since there are many factors which can potentially confound this process. These are
issues related to the large number of parameters used to describe the stress–strain
responses, many of which appear to tradeoff (or be correlated) when insufficient
experimental data is available for identification. It is usually difficult to ascertain
this information requirement prior to performing the experiments, which can lead to
difficulties in identifying these parameters.

In previous studies, both phenomenological and structurally based constitutive
relations have been extensively used for fitting to specific in vitro samples of human
or animal tissue. In doing so, the descriptive power of the models has also been
characterised by analysing the accuracy of the fit. One benefit of in vitro testing
is the ability to finely control the experimental conditions, allowing the tissues to
be subjected to specific modes of deformation such as uniaxial, biaxial and shear
strains. This can help focus the identification to specific attributes of the tissue,
such as the biaxial response without considering shear. Such simplifications have
helped the identification process by reducing the number of parameters required to
be estimated. However, testing tissues in this manner becomes difficult in vivo and
via non-invasive means, as often required in a clinical setting. This is due to the fact
that it is difficult, if not impossible, to independently apply specific modes of defor-
mation in vivo rendering the simplifications used with in vitro experiments unusable.
While still a challenging task, phenomenologically based relations typically contain
relatively few parameters, which reduces the complexity of the problem. However,
the determination of constitutive parameters for structurally based relations remains
a difficult task due to the complex experimental protocols required for determining
their parameters (e.g. determination of fibre orientation, spread and undulation).
Further modelling considerations also need to be taken into account when modelling
the skin in vivo, such as the state of pre-tension and the coupling of skin to
the underlying tissues. As a consequence, very few in vivo applications currently
make use of structural-based constitutive relations despite their parameters directly
relating to tissue microstructure and being biologically meaningful.

In this section, we highlight challenges in identifying constitutive parameters and
strategies our group has employed to approach these issues. We first discuss results
that highlight the difficulties associated with identifying constitutive parameters of
in vitro skin using the structurally-based model described in Sect. 8.3. Next we
discuss a case study performed on synthetic materials which aimed to investigate
the identification issues in closer detail and look at methods for improving identifi-
ability. We then describe more recent studies which aim to characterise in vivo skin
using non-invasive techniques. Issues regarding the pre-tension and time-dependent
mechanical response of skin are also discussed.
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8.5.1 In Vitro Biaxial Testing of Skin

This section summarises a study that was performed to identify the mechanical
properties of porcine skin using the structurally based constitutive relation described
in Sect. 8.2.1. A quasi-static modelling framework was developed to simulate the
experiments described in Sect. 8.4.1, whereby measured forces were applied to FE
models that were created to represent the geometry and structure of the tissue
samples. Parameters of the structurally based constitutive relation, which were
assumed to be homogeneous across the entire specimen, were identified using
nonlinear least squares optimisation. The objective function to be minimised was the
sum of squared errors between experimentally tracked material points on the skin
surface (described in Sect. 4.1.3), and their corresponding points embedded in the
model. The optimisation was subjected to box constraints describing physiologically
appropriate upper and lower bounds for each constitutive parameter which are
described in the next section.

Identification Strategy

Due to the large number of parameters in the constitutive relation described
in Sect. 8.3, there appeared to be ‘trade-off’ effects for the optimisations, thus
the number of estimated parameters was limited to subsets. In the identifica-
tion procedure, two different estimation strategies were investigated, as listed in
Table 8.1. The parameters to be identified for Strategy A were mean orientation
(�� ), collagen stiffness (Kc) and matrix stiffness (Km); for Strategy B, parameters
were the mean orientation (�� ), mean undulation (�x) and matrix stiffness (Km).
The fixed parameters for both strategies were fibre orientation spread (�), fibre
undulation SD (�x) and volume fraction (V) and were set to values previously
reported in the literature. Fibre spread � was fixed to 10 (equivalent to a circular

Table 8.1 List of parameters for a 2D a structural constitutive relation with the corresponding
lower/upper bounds and values from the literature (aJor et al. 2011b; bManschot 1985; cViidik
1980)

Type Parameter Description L.B. U.B. Strategy A Strategy B

Structural Fibre Mean �� 0 � Free Free
orientation � Spread �� – – Fixed at 10a Fixed at 10a

Fibre Mean �x 1.0 1.8 Fixed at 1.2b Free
undulation x SD �x – – Fixed at 0.2b Fixed at 0.2b

Volume
fraction V

– – Fixed at 0.3b Fixed at 0.3b

Non-structural Fibre stiffness Kc 0.3 MPa 500 MPa Free Fixed at 100 MPac

Ground
matrix
stiffness

Km 1 kPa 100 kPa Free Free
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SD of 21ı) based upon quantitative analysis of collagen orientation in porcine
skin (Jor et al. 2011b). In order to investigate the identifiability of the parameters,
both estimation strategies were performed starting from ten different sets of initial
estimates (random numbers generated between the lower and upper bounds for
each parameter). Determinability criteria were also used to quantitatively assess
parameter identifiability by analysing the Hessian matrix (i.e. the matrix of second
partial derivatives of the objective function with respect to the model parameters)
within the neighbourhood of the optimal set of parameters and are described further
in Babarenda Gamage et al. (2011), Lanir et al. (1996), and Nathanson and Saidel
(1985). These criteria were also used in subsequent studies in order to compare
proposed identification strategies and improvements.

Results and Identifiability Issues

The optimal solutions for the samples, using Strategy A resulted in a matrix stiffness
which ranged between 5 and 32 kPa. The mean orientations were similar across the
three tissue samples, ranging between 167ı and 178ı, indicating that the mean fibre
orientations deviated only 2ı–13ı from the torso midline. Collagen stiffness varied
greatly across the three samples, ranging from 48 to 366 MPa. The reported range
of collagen stiffness for tendons is also large, ranging from 100 MPa to 1.2 GPa
(van Brocklin and Ellis 1965; Wright and Rennels 1964). The mean displacement
errors of the optimal models using Strategy A ranged between 0.64 and 0.90 mm.
For Strategy B, the optimal values for Km and �� were similar to those identified
using Strategy A. The mean undulation at the optimum ranged from 1.04 to 1.34
across all samples. The mean displacement errors of the models optimised using
Strategy B ranged between 0.63 and 1.03 mm.

Of the ten different sets of initial estimates used for Strategy A, only initial
estimates with a mean orientation �� relatively close to the optimal mean orien-
tation converged to the same optimal solution for all tissue samples, regardless
of large variations in the initial estimates of the other variable parameters (Km

and Kc). The initial estimates needed to be close to the optimal minimum to
be found; thus, the identification problem was highly sensitive to �� . Analysis
of the identifiability of the parameters from the Hessian matrix obtained at the
optimal set of parameters also reflected a high sensitivity to mean fibre orientation,
confirming these observations. Similar observations were made for Strategy B,
whereby the initial estimate for the mean orientation needed to be relatively close to
the optimal mean orientation in order to achieve successful convergence. Although
quantitative data on fibre orientation have been extracted from confocal images
in a previous study as described in Sect. 8.2, this analysis was only performed on
sagittal, not parallel, sections. Furthermore, although the samples used in imaging
and mechanical experiments were excised from similar body locations of the pig,
it would be better to use the same specimen for both imaging and experimental
purposes in any future work in order to account for inter-specimen variations.
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Given that the inter-specimen variability in structural arrangement may be large,
fixing structural parameters such as fibre orientation spread, undulation mean,
undulation spread, and fibre volume fraction of all the tissue samples to the same
values (e.g. as reported in the literature) may potentially cause problems. In light
of such difficulties in identifying parameters of the structural models, a case
study was undertaken to help understand the general mechanisms leading to these
identifiability issues and how they can be potentially mitigated.

8.5.2 Case Study: Highlighting Parameter Identification Issues

In order to investigate the identifiability issues in more detail, experiments were
performed on silicone gel phantoms in Babarenda Gamage et al. (2011) under
controlled conditions where boundary conditions and geometry of the body could be
accurately prescribed. This allowed us to focus our attention solely on the identifi-
cation problem. The study involved creating a two-layered cantilever structure from
silicone gel (70 � 30 � 30 mm). Eight different gravity loaded orientations of the
beam digitised using a FaroArm Laser ScanArm V21 and a tilt table. These datasets
were used to assess both the descriptive and predictive power of the constitutive
parameters of the beam that were subsequently identified using a similar model
based identification approach as previously described.

Modelling

The two layers of silicone gel were modelled using an ideally incompressible
hyperelastic neo-Hookean constitutive relation (‰ D c.I1 � 3/, where I1 is the first
invariant of the right Cauchy–Green deformation tensor). The different layers of the
cantilever beam were described by two different stiffness parameters, ca and cb in
units of kPa. These mechanical parameters were identified using an optimization
method similar to that described in Sect. 8.5.1, however, in this case, the objective
function was constructed from the laser scanned data using a closest point to model
surface projection approach. The objective function to be minimised was defined

as ˆ D
MX

jD1

NjX
iD1

kZijk2, where kZijk was the Euclidean distance between the ith

datapoint and its closest point on the surface of a model in experiment j, M is the
number of experiments performed and Nj is the number of laser scanned data points
in experiment j. In order to aid interpretation of the results, the root mean square
error (RMSE) was used as defined in Eq. (8.26).

1Manufactured by FARO Swiss Holding GmbH, Switzerland: http://www.faro.com.

http://www.faro.com
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The optimisation tolerance on the parameters was set to the nearest 1 Pa while the
objective function tolerance was lowered to an RMSE value equivalent to 1e�9 mm.

Results

Figure 8.10 illustrates the optimal model fits to the experimental surface data
and their associated parameter estimates when each orientation was analysed
independently. The results show that even for this simple two-layered model, the
stiffness parameters derived from individual experiments varied over a wide range
of values even though the surface fitting errors were similar. Figure 8.11 illustrates
how the use of one of these parameter sets to predict the deformations for the other
orientations resulted in large surface fit errors.

A cross-validation study was performed to see whether the use of multiple
orientations would improve the predictive power of the identified parameters.

Fig. 8.10 Laser scanned datapoints from the eight cantilever beam orientations overlaid with best
fit mechanics models using optimal stiffness parameters (indicated, in kPa) derived from individual
gravity loading experiments. The fixed end of each model is indicated by a thick outline. It should
be noted that model 1 (a) is orientated upright while model 7 (g) is orientated downward in the
direction of gravity. Reproduced with permission from Babarenda Gamage et al. (2011). (a) Model
1: 1.82, 1.46 (b) Model 2: 4.72, 1.92 (c) Model 3: 4.37, 1.93 (d) Model 4: 4.57, 1.93 (e) Model 5:
4.79, 1.84 (f) Model 6: 4.13, 2.04 (g) Model 7: 4.91, 2.82 (h) Model 8: 3.70, 3.45
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Fig. 8.11 Laser scanned data from the eight gravity loading experiments overlaid with predictions
from models that used stiffness parameters derived from the upright orientation shown in Fig. 8.10.
The maximum RMSE at the four corner points at the free ends of each beam was between 7.91
and 20.13 mm, respectively. Reproduced with permission from Babarenda Gamage et al. (2011).
(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 (e) Model 5 (f) Model 6 (g) Model 7 (h) Model 8

The cross-validation involved optimising a training subset of models against their
respective experimental data. The resulting parameters were then used to estimate
how accurately they could predict the deformation of the remaining validation
subsets. The results were split into four groups, with groups 1 to 4 using 1, 2, 3 and
7 training models for identification, respectively, with eight sets of training models
sampled randomly for groups 2 and 3 (for groups 1 and 4, all eight training sets
were considered).

Visual interpretations of the results from groups 1 to 4 are presented in
Fig. 8.12a–d, respectively, which show contour plots on the hyper-surfaces of the
RMSE objective function. These hyper-surfaces were created by evaluating the
objective function on the material parameter space. The markers on these plots
indicate the optimal solution for each training set of models, which is the point
at which the determinability of the parameters were also evaluated. The contours
were plotted such that any set of parameters � , which results in RMSE values
less than � , were inside the contour. For each contour, the value of � was set to
the optimal RMSE plus 0.1 mm to account for experimental error. Any pair of
stiffness parameters inside this region can be considered as an equally valid solution
within the limit of experimental error. The cross validation results showed that
by increasing the number of training models used for parameter identification, the
maximum RMSE error of the validation sets was reduced. The results also showed
that we can satisfactorily estimate the stiffness properties of the two layers of the
gel using three orientations with a maximum predictive RMSE of approximately
0.6 mm and maximum free corner error of approximately 1.9 mm. Some points
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Fig. 8.12 Contour plots of the objective function (RMSE) over the stiffness parameter spaces.
Panels (a) to (d) show contours as the number of training cases was increased from 1 to 2, 3 and 7,
respectively, with legends indicating experiments included in the training sets (Groups 1–3), or the
excluded experiment (Group 4). Areas where contours overlap represent parameter combinations
that provide equally accurate predictions to within the experimental error. Reproduced with
permission from Babarenda Gamage et al. (2011). (a) Group 1 (identification based on 1 model)
(b) Group 2 (identification based on 2 models) (c) Group 3 (identification based on 3 models) (d)
Group 4 (identification based on 7 models)

of interest related to the identification process, such as the uniqueness of the
parameter estimates, are described in the following section, along with suggestions
on techniques that could be used to further improve parameter identification.

Uniqueness of Parameter Estimates and Improving Identifiability

This study showed that choice of the optimality tolerance of the objective function
affects the apparent uniqueness of the constitutive parameter estimates. Ideally, the
optimisation should be terminated once the change in the objective function is less
than the maximum error observed in the experimental measurements since this is
the smallest physical quantity that can be accurately measured. Any optimisation
solution which terminates under this condition should be valid (inside the contours
in Fig. 8.12a–d). This gives rise to multitude of parameters sets, each of which is
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an equally valid solution to the identification problem. Some of these solutions
can give rise to a variety of prediction errors that depend upon where the true
minimum lies. This can occur if the deformation is relatively insensitive to the
constitutive parameters in certain orientations, as was the case for some of the
models considered here, and noise in the data could easily shift the global optimum.
Thus, some model’s parameter estimates appeared as outliers, but in fact were
valid solutions within the experimental accuracy. Another factor that can lead to
non-unique solutions is the mathematical formulation of the constitutive relation
and whether the parameters of the model are correlated. However, in this study, a
single parameter was used to describe the stiffness of each layer of the beam and
therefore any apparent correlation between the parameters was directly related to
the information contained within the data.

Setting the objective function tolerance to a very low value during the iden-
tification procedure allowed the optimisation to terminate once the constitutive
parameters converged to the nearest Pa. This resulted in unique solutions being
obtained independent of the initial estimate. For this reason the optimal solutions
provided in Fig. 8.10 (shown as markers) are only indicative of possible sets of
valid parameters. However, the prediction results when the number of orientations
used for identification was increased produced contours that overlapped to a greater
extent. This reduced the possibility of obtaining parameters that would cause the
large prediction errors seen in Fig. 8.11. It should be noted that with constitutive
equations with a large number of unknowns, and a given dataset from which these
parameters are required to be identified, it may not be possible to obtain unique
solutions by lowering the tolerance on the optimised parameters (Ogden et al. 2004),
especially if there is high correlation between parameters. This is related to the
information content present within the data used to construct each model’s objective
function and whether this provides sufficient information for unique identification.
For example, in this study, multiple solutions could potentially be produced with
the two-layered cantilever beam if data from only one side of the beam was used
for identification. This underscores the importance of the quality and quantity of the
data that is used for fitting. High quality data would result in a smaller region in
which parameters could equally well describe the model; while a rich set of data
used for fitting the model would result in parameters which increase the ability of
the models to predict different deformations.

The identification methodology for assessing and improving identifiability
described in this section was used in our more recent studies looking at determining
mechanical properties of skin in vivo. The results of these studies will be
summarised in the next section.

8.5.3 In Vivo Identification of Skin Properties

Previous studies from our group have focussed on identifying constitutive param-
eters for a simplified form of the Tong and Fung strain energy function using
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the biaxial rig on human forearm skin in vivo (Kvistedal and Nielsen 2009).
This was achieved using a similar modelling and identification methodology as
that described earlier in the previous sections. A series of multiaxial loading
experiments were performed on the forearms of four age and gender matched
subjects. The tissue geometry, together with recorded displacements and bound-
ary forces, was combined with a nonlinear FE anisotropic membrane model to
identify the mechanical parameters of the simplified Tong and Fung relation. Ten
sets of constitutive parameters were estimated from the experiments and showed
considerable differences in mechanical behaviour, both between individual subjects
and symmetric locations on the body for a single subject. Variations between
individuals have previously been reported as being dependent on body locations
and age (Reihsner et al. 1995). The study showed that differences in the stress–
strain relationship are also expected in identical body locations from age and gender
matched subjects.

More recent studies from our group have utilised a micro-robot indenter
(described in Sect. 8.4.2) for identifying mechanical parameters of human forearm
skin. One such study will be described here, where the constitutive parameters of
the Ogden and Tong and Fung constitutive models together with in vivo tensions
were identified using a model-based approach (Flynn et al. 2011b). Based on the
experiments on the silicon gel phantoms described in the previous section, it was
shown that multiple loading conditions were important for improving identifiability
of the constitutive parameters. We therefore aimed to obtain a rich set deformations,
using the micro-robot indenter on the forearm for a number of volunteers, to aid
subsequent identification and these are described in more detail in Sect. 8.4.2. The
deformations included various in-plane and out-of-plane measurements of the force
vs displacement response of the skin measured on the anterior forearm and posterior
upper arm. Constitutive parameters were then identified from volunteers within this
database using a model-based approach. To date, few finite element models in
the literature have considered the effects of the in vivo pretension of the skin.
In our studies, pretension was represented by an initial stress field imposed on the
reference configuration in the X and Y directions, whereby the two parameters of the
stress field were included in the optimisation procedure. When using only in-plane
average forearm data to form the objective function, both the Tong and Fung and
Ogden models provided good fits to the experimental data, with fitting errors of 9.9
and 11.6 %, respectively. However, they were unable to accurately predict the out-
of-plane responses with overall fitting errors of 19.8 and 23.2 %, respectively. Using
only the out-of-plane data in parameter optimisation, the Ogden model predicted the
in-plane response with a fitting error of 17 %. The results from this study support
the hypothesis that in-plane deformations alone do not provide sufficient data to
identify the constitutive parameters and in vivo tensions. This hypothesis is further
supported by the fact that increasing the number of deformation orientations leads
to consistent improvements of the determinability criteria. It was also shown that
there is a wide variability in parameter and predicted pre-stress values across the
subjects, indicating the need to collect experimental data from a diverse population.
A common problem in parameter estimation, especially when phenomenological
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models are used, is the ability to address the issue of uniqueness of the optimal
solution. A limitation of this study was the use of only the force and displacement
measures on the tip of the microrobot for identifying the mechanical properties.

8.6 Conclusions and Outlook

Building upon the pioneering work of Professor Yoram Lanir, increasing research
efforts over the years have now resulted in a well-established structurally based
constitutive modelling framework for soft connective tissues. The present article
has focused on some of the work by the Auckland Bioengineering Institute
contributing towards the goal of understanding the structure–function relationship
of soft membranous tissue. Key aspects of our work are to (1) develop constitutive
relations based on quantitative information of tissue structure; and (2) use rich
sets of experimental data to aid in accurate and reliable constitutive parameter
identification.

To this end, we have developed imaging techniques to analyse collagen fibre
networks and represent fibre orientations with mathematical distributions. Currently,
there remains a shortage of quantitative structural data that can be directly incorpo-
rated into constitutive modelling frameworks, which will help reduce the number
of constitutive parameters to be identified. It has also been demonstrated in one of
our studies that a priori knowledge of mean fibre orientation is important to the
success of parameter identification. Due to the high inter-specimen variability in
soft tissues, it is highly desirable to extract both the structural and experimental
data from the same tissue sample. However, this becomes difficult when in vivo
tissues are of interest as invasive methods, such as conventional microscopy, can
no longer be considered. To address this issue, work is currently underway in our
group to develop alternative methods for gathering structural data in a non-invasive
manner. Furthermore, although previous research effort has been primarily devoted
to the studies of collagen fibre orientations, it is important to also understand the
properties and interactions of other tissue constituents, such as elastin.

The use of complex structural constitutive models—which consider the effects
of anisotropy, nonlinearity, viscoelasticity, preconditioning, and multiple families of
fibres—relies heavily upon the availability of rich sets of experimental data. There
is clearly a need to further improve current instrumentation techniques to achieve a
wide range of deformation modes. In this article, we summarised the development
of a multi-axial tensile device coupled with digital image correlation techniques to
track the deformation field, used to characterise the planar stress–strain response
of soft tissues. Since biaxial testing does not provide a complete 3D mechanical
description, a force-sensitive micro-robot has been developed to impose out-of-
plane deformations. It is expected that the measurement of the strain field in the
vicinity surrounding the indenter probe, using digital image correlation techniques,
would improve the identification of the constitutive parameters. In light of this, we
are currently investigating techniques to obtain strain measurements by tracking
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surface deformations using a 3D stereoscopic system (Alvares 2009; Evans and
Holt 2009). In order to improve the identifiability of constitutive parameters, the
design of optimal experiments (Humphrey 2003; Lanir et al. 1996) requires further
development.

The merits of structurally based constitutive modelling frameworks becomes
particularly apparent when the mechanics of ageing or diseased tissues are of inter-
est. Structural changes in the microscopic level associated with ageing include the
thickening of collagen fibres (which take on a much denser and sheet-like arrange-
ment), and the fragmentation and aggregation of elastin fibres. Such geometric and
mechanical changes in the individual tissue constituents are thought to contribute
to the reduced extensibility and elasticity often observed in ageing skin. In order
to gain improved understanding of the underlying mechanisms, structural models
allow one to perturb structural constitutive parameters that are associated with
time or pathological changes, and subsequently, predict the associated mechanical
response. To be useful in a clinical setting, patient-specific computational models
are likely to require the combination of fast and non-invasive image techniques,
along with in vivo experimental data under various loading conditions.

Although recent research advancements have contributed to improved under-
standing of soft tissue biomechanics, many aspects of the complex interactions
between microscopic structure and macroscopic mechanical response are still to
be elucidated.
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Chapter 9
Structure–Function Relations in the Coronary
Vasculature

Benjamin Kaimovitz, Yunlong Huo, Yoram Lanir, and Ghassan S. Kassab

The function of the coronary system is to deliver blood to the capillary network,
to nourish the myocardium and to autoregulate coronary blood flow. The coronary
vessels run through cyclically contracting, cardiac muscle. Consequently, intramy-
ocardial pressures have a major influence on vascular transmural pressure and,
therefore, on the flow. It is widely acknowledged that the distribution of coronary
blood is spatially heterogeneous. Aside from the interaction between myocardial
contraction and flow, causing impediment at the local level, the stochastic nature
of the coronary tree geometry contributes to the inhomogeneity of the blood flow
distribution. Additionally, variations of flow exist from epicardium to endocardium.
Flow heterogeneity is further enhanced in pathologies, such as ischemia, which
induces vulnerability of the subendocardium to ischemia. The coronary perfusion
distribution as well as local coronary flow is difficult to measure, especially in the
endocardium. Hence it is not yet fully understood as to what the specific effects
cardiac contraction, local neurogenic controls, cardiac and vascular pathologies,
and specific therapeutic modalities (e.g., drugs) have on the extent and distribution
of coronary perfusion. For this reason, simulation is an attractive methodological
alternative. Accordingly, realistic analysis of the flow distribution must be carried
out within a framework of a realistic three-dimensional (3D) representation of the
coronary geometry and its biological variability. Recent morphological studies facil-
itate realistic reconstructions of the coronary vasculature to serve as a foundation for
simulation of the flow in the entire coronary system.
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9.1 Architecture of the Coronary Vasculature

The architecture of the coronary network is one of the major determinants of
the coronary perfusion and oxygen supply (Ansari 2001; Loukas et al. 2009;
von Lüdinghausen 2003). In term of functionality, the coronary network can be
partitioned into three sub-networks (Fig. 9.1): epicardial, transmural, and perfusing.
The rational for this classification is based on the differences in the functional
design of these sub-networks (Berne and Rubio 1979; Fulton 1982; Grayson 1982;
James 1961; Tanaka et al. 1999; Zamir 1999). Segments of the coronary vasculature
act as conduits, metabolic units, and semipermeable membranes. Certain vascular
segments contribute significantly to the resistance and capacitance of the coronary
circulation.

The epicardial network comprises relatively large vessels which run over the
surface of the heart (epicardium), giving rise to transmural branches, which in turn
penetrate the heart muscle, and branch further into smaller vessels down to the
capillary network.

A large variability in the anatomy of the coronary network exists at the level
of the epicardial vessels, which is expressed by the diversity in the number of
branches their location and dimension (diameter and length) (Baroldi et al. 1967;
Berne and Rubio 1979; von Ludinghausen 1984). The epicardial coronary arteries
(EPCAs), and more prominently the venous system contribute the major portion
of the coronary capacitance; whereas, the small arterial transmural vessels (Chilian
et al. 1989; Jones et al. 1993; Kaul and Ito 2004; Toyota et al. 2001), as well as to a
lesser extent the coronary venules (Chilian et al. 1989; Jones et al. 1993; Kaul and
Ito 2004; Toyota et al. 2001), play a dominant role in regulating coronary resistance.
A vessel’s contribution to the overall resistance depends on the network structure
and the position of the vessel in the network.

Fig. 9.1 A schematic of the classification of coronary functional sub-network hierarchy. The
epicardial sub-network is confined to orders 11–9, the transmural sub-network encompasses orders
8–5 and the perfusion sub-network spans the range of order 4 to 0a
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The EPCAs give rise to intramural vessels. These vessels, in the case of the left
ventricle, originate at right angles to their parent epicardial vessel and penetrate
perpendicularly to the epicardial surface (Berne and Rubio 1979). In the right
ventricular wall, the branches penetrate obliquely. Arterioles branch off almost at
right angles from the small penetrating arteries (Kassab et al. 1993) and either take
an oblique course to the nearest capillary bed or wind around a muscle fiber to
proceed to a more distant muscle fiber.

Oxygen and nutrients are exchanged between blood and muscle cells at the
capillary level. The capillary network is characterized by high density, which
compensates for the small volumes flow in each capillary. The capillary density is
species dependent, ranging between 2000 and 5000 per mm2 cross section perpen-
dicular to capillary direction (Bassingthwaighte et al. 1974; Olsson and Bugni 1986;
Spaan 1991) with an average intercapillary distance of 20 �m (Bassingthwaighte
et al. 1974; Berne and Rubio 1979). Unlike the arterial and venous networks, the
coronary capillary bed is not tree-like.

The capillary network expands in the direction of the venous system, in terms
of number of vessels and corresponding cross-sectional area (CSA), which serves
to increase the transit time of red blood cells. The expansion rate can be calculated
based on the measured data, showing that the average 0v/0a ratio is 1.61 for the
left coronary artery (LCA) and 1.86 for the right coronary artery (RCA) (Kaimovitz
et al. 2010).

After passing through the capillary bed, the blood drains into venules which then
confluences into the larger epicardial veins and finally into the right atria. Some
arterial branches (80–200 �m in diameter), accounting for approximately 5 % of
LCA inflow (von Lüdinghausen 2003), drain directly into the lumens of the four
cardiac chambers via the Thebesian veins (Fig. 9.2). The coronary venous system
is the largest component of the coronary network in terms of volume (Grayson
1982; Hoffman and Spaan 1990; Kajiya and Goto 1999), compliance (Spaan 1985),
and number of vessels (Hiramatsu et al. 1998; Hutchins et al. 1986; Kassab et al.
1994).

The major venous epicardial vessels follow the course of arteries (LAD, LCx,
and RCA) (Baroldi et al. 1967; Grayson 1982; Hutchins et al. 1986; Kajiya and Goto
1999) and provide coverage of the entire epicardial surface to drain the respective
arterial networks (von Lüdinghausen 2003; Mohl et al. 1984). The major veins give
rise to smaller veins which run on the LV and RV surfaces and emerge from the
myocardium at almost right angles. The intramural venous branches are independent
of the arterial branches (Baroldi et al. 1967).

The anatomy of the coronary venous system has a complex 3D geometry. The
branching pattern consists of higher asymmetry compared to the coronary arterial
tree with abrupt changes in diameters. While the arterial branching is mostly
dichotomous (Baroldi et al. 1967; Kalsho and Kassab 2004; Kassab et al. 1993),
the venous system is characterized by abundant trifurcations, quadrifications, and
quintifications with frequencies of 86 %, 12.8 %, and 0.2 %, respectively (Kassab
et al. 1994). The venous branches are more numerous than the arterial ones (Bales
2004; Kassab et al. 1994; von Lüdinghausen 2003) and the branching pattern of
venules is very different from that of the arterioles. The smallest venules run first in
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Fig. 9.2 A schematic of coronary vasculature. Red denotes oxygenated arterial blood flow while
blue represents venous blood. The venous system has intervenous connections, Thebesian–Sinus
connections and a venous plexus. Taken from (Kassab et al. 2008)

the direction of the capillaries they drain and then diverge obliquely toward larger
veins (Kassab et al. 1994). The venous system largely determines the capacitance
of the coronary circulation. Venous tone does not contribute significantly to the
coronary vasculature resistance. Similar to the arterial bed, venous flow is affected
by myocardial tissue stresses and strains while demonstrating out-of-phase flow
patterns relative to the arterial circulation (Chilian and Marcus 1984; Hiramatsu
et al. 1998; Hoffman and Spaan 1990). Coronary venules have a myogenic response
(Kuo et al. 1993) and account for about 15 % of the total myocardial vascular
resistance at rest (Kaul and Ito 2004; Toyota et al. 2001). Due to arteriolar–
venular pairing, vasoconstrictive substances from the venous blood can diffuse
and affect arteriolar resistance (Hester and Hammer 2002; Hutchins et al. 1986).
The characteristics of the coronary venous system, in terms of both the structure and
pressure-flow relationship, and its contribution to the capacitance of the coronary
vasculature, underline the importance of the coronary venous network flow in the
entire function of the coronary system (Kresh et al. 1990). Nevertheless, and despite
the growing clinically motivated interest in the coronary venous system (Jain et al.
2006; Kassab et al. 2008), the venous system has received little attention relative to
the arteries. There is clearly paucity of data on coronary venous pharmacology and
physiology.

9.2 Diameter Asymmetry of Coronary Network

The coronary network is characterized by highly irregular and asymmetric branch-
ing patterns (Kalsho and Kassab 2004; Kassab and Fung 1994; Kassab et al.
1993, 1994, 1997; VanBavel and Spaan 1992). Due to the fractal nature of the
coronary vasculature (Zamir 1999, 2001), the number of vessels increases in a
geometric fashion toward the capillary vessels. This leads to an overwhelmingly
high number of vessels (order of 109). This high vessel number, coupled with
the inherent biological variability in coronary structure precludes the possibility
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of a deterministic description of the coronary anatomy. Consequently, a stochastic
representation of the anatomy is necessary to facilitate a realistic three-dimensional
(3D) reconstruction of the entire coronary vasculature.

Statistical morphometric data was obtained for the pig heart based on the
diameter-defined Strahler’s ordering scheme (Kassab et al. 1993). However, the
process of reconstructing a tree from a statistical database requires anatomical
constraints or morphometric data. In addition to coronary morphometry (diameters,
lengths, number of vessels, connectivity, etc.), which has been described in great
detail (Kassab and Fung 1994; Kassab et al. 1993, 1994, 1997; VanBavel and
Spaan 1992), a correlation between successive vessels is required in order to impose
additional bounds. Of all the morphometric parameters, the diameter is the most
important hemodynamically. Based on the above statistical data, we have recently
introduced local measures of diameter asymmetry at bifurcations (Kaimovitz et al.
2008, 2010). The bifurcation asymmetry data were represented by the diameter
ratio of the daughters relative to mother vessel and by the area expansion ratios
(AER) for entire arterial and venous trees. The diameter asymmetry at a bifurcation
was quantified as a function of the order number of mother vessel for Dl/Dm and
Ds/Dm; i.e., the ratios of the diameters of larger (Dl) and smaller (Ds) daughters,
respectively, relative to their mother (Dm) vessel. In addition, a distinction was made
between intra-element and inter-element segments, where an element consists of one
or more vessel segments of the same order in series. For the intra-element case, the
branching occurs along the same element, and hence the larger daughter belongs
to the element. Accordingly, the Dl/Dm statistics were represented as a function of
the element order number only (Fig. 9.3 for the LAD, LCx, and RCA arteries).
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vessel) and mother vessel order number data of left anterior descending (LAD) artery, left
circumflex (LCx) artery, and right coronary artery (RCA)
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et al. 1994). Green—fitted data using smoothing cubic-spline technique. Red circle indicated the
location of the minimum at 70 �m, which corresponds to order number �4

For the inter-element case, each daughter belongs to a different element, and hence,
the Ds/Dm ratio was formulated as an asymmetry ratio matrix (ARM), since the
ratio is a function of order of mother and daughter segments. The intra-element case
can be viewed as an index of vessel taper, whereas inter-element one represents
branching asymmetry.

Statistical analysis of the data (Fig. 9.4) revealed that the ratio of large daughter
to mother vessels has a statistically significant minimum value at order 5 and �4
(mean diameter of �70 �m), for the arterial and venous trees, respectively, with
a functional hierarchy for epicardial, transmural, and perfusion sub-networks. This
result is consistent with the abrupt change in cross-sectional area and blood flow that
demarcates the transition from epicardial (orders 8–11) to intramyocardial coronary
arteries (transmural and perfusion vessels) (Kassab 2005).

The diameter ratio of large daughter to mother vessel (Fig. 9.3) reveals a
functional hierarchy for the coronary arterial tree that discriminates epicardial,
transmural, and perfusion sub-networks. The diameters ratio of small daughter to
mother vessels (Fig. 9.5) decreases monotonically with order number, with the
larger vessels being more asymmetric than smaller vessels. Figure 9.6 shows the
relationship between AER and order number.
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Murray’s law states that Dm cubed is equal to the sum of the cubes of the daughter
vessels (i.e., D3

m D D3
l C D3

s ) (Murray 1926). Figure 9.7 presents a general form
of Murray’s law at a bifurcation, i.e., Dk

m D Dk
l C Dk

s . The bifurcation exponent
k was determined for each bifurcation in the arterial trees. AER has values near
unity in orders 6–11 and monotonically increases toward order 1, which again
reflects a functional distinction between perfusion and transmural and epicardial
sub-networks.

The relationships between AER and flow velocity, and between ARM and flow
distribution were considered as well (Kaimovitz et al. 2008). The hemodynamic
connection to the AER can be made by using (9.1); namely:

Um

Ul
D Um

Us
D Al C As

Am
D
	

Dl

Dm


2
C
	

Ds

Dm


2
D AER (9.1)

where Ul, Us, and Um are the mean velocities, and Al, As, and Am are the
corresponding cross-section areas.

Using the flow analysis in Huo et al. (2007), the distribution of flow was
calculated in the entire coronary arterial tree (Figs. 9.8 and 9.9). It is seen in Fig. 9.8
that the flow ratio (the ratio between the flows in large and small vessel, respectively)
remains fairly uniform in the perfusion sub-networks and increases significantly
in the epicardial and transmural vessels), which suggests that the microvasculature
distal to order 5 may play a regulatory role in the arterial tree.
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In comparison, the velocity ratio is about two orders of magnitude smaller than
the flow ratio in all three networks. Furthermore, the transmural sub-network has
a velocity ratio approximately equal to unity and increases at higher and lower
orders in epicardial and perfusion sub-networks, respectively. The AER has a value
close to unity in vessel orders >5 but increases toward vessel order 1 (Fig. 9.6).
Figure 9.9 confirms that the velocity ratio is small such that Ul Š Us, respectively,
in the transmural trees, where Ul and Us are the large and small vessel velocities,
respectively. Hence, as suggested by (9.1) (Kaimovitz et al. 2008) and Fig. 9.6, the
velocity rapidly decreases from order 5 toward order 1, which is consistent with
experimental measurements (Kassab 2005). This suggests that order 5 may mark a
functional transition from epicardial–transmural to perfusion sub-networks.

The significance of the ratio Dl/Dm may be related to the “distributing” vessels
that remain on the surface of distinct zones of the heart, as compared with the
“delivering” vessels that penetrate the respective zones to implement the delivery
of blood (Kassab 2005). The former constitute the epicardial vessels, whereas the
latter constitute the transmural and perfusion sub-networks. The distributing arteries
tend to maintain their diameter and, consequently, their flow fairly uniformly, so
that the various regions of the heart can receive a similar source of blood supply
(Kassab 2005). This is achieved when the vessels maintain their diameters (i.e.,
small tapering slope) and, accordingly, large Dl/Dm (Kassab 2005). The function
of the transmural vessels is to transport blood to all layers within the myocardium,
which is again accomplished with relatively large Dl/Dm values. As the transmural
vessels approach their respective layers, however, their function gradually changes.
The main function of order 5 (presumably the highest order of perfusion vessels)
is to distribute blood equally in all directions in each layer or myocardial sheet
(Nielsen et al. 1991). This requires the daughter diameters to be more similar (more
symmetric), which is reflected in the decrease of Dl/Dm value toward Ds/Dm.

The wall shear stress, � , is related to the exponent k, by � � D�3
k (Kaimovitz et al.

2008). If k D 3 (Murray’s law), the wall shear stress is uniform over different size
vessel. If k D 2 (AER D 1), the velocity is uniform, but the shear stress increases
inversely with a decrease in diameter; i.e., amplifies in the microcirculation. The
variation in k for different vessel sizes is shown in Fig. 9.7 and reflects the transitions
in shear stress (Huo and Kassab 2007; Huo et al. 2007). Previous studies (Murray
1926; Rossitti and Lofgren 1993) proposed the minimum work and uniform shear
stress as the optimization criteria for the design of arterial bifurcations. Murray
postulated that an exponent k of 3 represents an optimized design. Other studies
(Sherman 1981; Uylings 1977), however, showed significant scatter in the exponent.
Our studies (Kassab 2006, 2007) found an exponent of �2.3 for the entire coronary
arterial tree, which deviates from Murray’s prediction of 3. The results in Fig. 9.7
show that the exponent varies with different orders. This may be caused by reduced
loss coefficients at bifurcations when the value of the exponent is approximately
equal to 2 (Huo and Kassab 2007; Miller 1990). When AER increases in the lower
orders, large loss coefficients coupled with other factors (e.g., the increase of total
cross-sectional area, vessel number, and bifurcations due to the fractal nature of the
coronary vasculature) may contribute to large energy losses. This loss of energy is
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necessary to reduce flow velocity to ensure sufficient transit time for transport of
oxygen and nutrients in the capillaries. The results in Figs. 9.5 and 9.6 indicate that
vessels in orders 5 and 4, for the arterial and venous trees, respectively, demarcate
transition in structure and function. These findings may further support the role
of microvasculature as a regulatory module or unit. In addition to the functional
implications, the data are essential for faithful reconstructions of the coronary
vasculature. Since the diameter is the most significant hemodynamic parameter,
these data on the local diameter asymmetry can be used to physically constrain
the reconstructions of full 3D coronary vascular networks.

9.3 Structure–Function Relations

The data show that there is a functional hierarchy for the design of the coronary
vasculature. The relationships between the CSA plotted against the normalized
cumulative length from root for the main trunk and primary branches exhibit a
knee or abrupt change in trend (Fig. 9.10a). Interestingly, the transition of branching
pattern for the CSA occurs at order 8 vessels (�400–500 �m in diameter).

Typically, orders 11, 10, and 9 are epicardial whereas orders �8 are intramural
(Kassab 2005). Hence, the transition demarcates EPCA from intramural coronary
artery (IMCA). The EPCA tend to maintain their CSA fairly uniform and serve to
spread the larger branches over the surface of the heart to reach the entire surface
area of the ventricles. Furthermore, the EPCA seem to maintain relatively uniform
flow (Fig. 9.10b) so that the various regions of the heart can receive a similar source
of blood supply (Kassab 2005).

An additional pattern can be seen for the flow velocity of the entire coronary
arterial tree as shown in Fig. 9.10c. The velocity is relatively uniform throughout
the larger vessels and abruptly decreases in the microcirculation. The transition
corresponds to the diameter of order 2 vessels (�13 �m in diameter). This
observation highlights the functional significances of various intramyocardial or
delivering vessels: transition from conductive to transportive flow. The conduction
vessels (orders 3–8) which maintain nearly constant CSA area (i.e., the exponent of
flow-diameter relation is 2) function to conduct blood without reduction in velocity.
In the smaller arterioles and capillaries (orders �2), the velocity must be reduced to
ensure sufficient transit time and oxygen and nutrient transport across the capillaries.
Hence, the exponent must increase to >2.

In terms of wave transition, a hybrid 1D/Womersley analysis (Huo and Kassab
2007) shows (Fig. 9.11) that the patterns of normalized flow waves are mutually
similar at the major branches except for a phase angle shift in a vasodilated,
potassium-arrested heart (Fig. 9.12). The observation that the normalized flow
waves maintain similar patterns suggests scaling laws of coronary circulation (Huo
et al. 2009).
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Fig. 9.10 (a, b) Relationship between segment cross-sectional area (a) and segment flow (b) and
the normalized cumulative length of the segment from the root of the trunk and the primary
branches of the right coronary artery (RCA) tree. The solid line denotes the main trunk. (c)
Isodensity plot showing five layers of frequency between the velocity in a vessel segment and
the corresponding diameter of the vessel for the RCA tree (Kassab 2005)

9.4 Morphometric Models of the Coronary Network

Several approaches have been used to model the architecture of coronary vascula-
ture. The lumped approach relies on a single (Klocke et al. 1985; Spaan 1985) or
limited number (Bruinsma et al. 1988; Chadwick et al. 1990; Kresh et al. 1990;
Reneman and Arts 1985) of analog mechanical elements representing the resistance
and compliance of the entire or portions of the coronary systems.

The distributive approach incorporates the network structure (Beard and Bass-
ingthwaighte 2000; Mittal et al. 2005a, b; Smith et al. 2000, 2002). While the first
approach ignores the network structure and topology but considers the dynamic
aspect of coronary flow, the second allows for local perfusion analysis in a more
realistic manner. Finally, the porous media approach (Vankan et al. 1997) ignores
the vascular network structure and assumes that the high microvessels density can be
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Fig. 9.11 Flow waves of the primary branches of LAD arterial trunk (Huo and Kassab 2007)

regarded as voids in porous media. Blood flow is represented by average quantities,
using a hierarchical mixture model. An approach that combines the advantages
of both a lumped hemodynamic model for each vessel, with the distributive
network structure may significantly contribute to more realistic representation of
the coronary flow.

9.5 3D Reconstruction of the Coronary Arterial Tree

For 3D reconstruction of the entire coronary arterial tree (Kaimovitz et al. 2005),
the bifurcation asymmetry data was utilized to reproduce a realistic reconstruction
of the coronary vascular tree. The model was based on a hierarchical scheme
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Fig. 9.12 (a) Flow waves
normalized by time-averaged
value in main trunk of LAD.
(b) Flow waves normalized
by mean value at inlet of
primary branches of LAD. (c)
Normalized flow waves at
inlet of main trunk and one
primary branch of LAD
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consisting of epicardial, transmural, and perfusion sub-networks (Fig. 9.1), which
facilitates efficient reconstruction algorithm which reconstructs each of the entities
independently and hence, is amenable to parallel computing.

The epicardial sub-network was confined to orders 9–11. The selection of
order 9 as the lower bound is based on the observed diameter (600–800 �m) of
transmural vessels that perforate the myocardium at approximately right angles
(Berne and Rubio 1979; Fulton 1982; Grayson 1982; James 1961; Tanaka et al.
1999; Zamir 1999). The transmural sub-networks were defined as vessels in the
range of orders 8–5 to ensure their span over the heart wall thickness. Finally,
the perfusion sub-networks spanned the remaining range starting from order 4 to
order 0a (arterial capillaries). The 3D coronary network geometry was reconstructed
by implementing large-scale global optimization of each set of branching angles
subject to the following: (1) published constraints on the planar branching geometry
(Zamir 1978; Zamir and Brown 1982; Zamir et al. 1983, 1984), (2) avoidance
rules intended to prevent intersections between segments, and (3) constraints which
avoid protrusion of the myocardial wall surfaces. Based on Zamir et al. (1983), it
was assumed that the arterial bifurcations are planar and satisfy the condition of
minimum lateral drag force. Additionally, it was assumed that in an asymmetrical
bifurcation, the branching angle of the larger daughter branch relative to its parent
vessel decreases with increase in asymmetry ratio (Zamir 1978). Based on the latter
observation, a set of bifurcation angular rules were formulated and implemented into
the 3D network model. In order to model coronary flow dynamics, the geometric
relationship between the contracting myocytes and microcirculatory vessels was
ensured. Hence, the microcirculation, which encompasses the perfusion vessels
down to the 0a capillary vessels was reconstructed with the capillaries arranged
in sheets along the direction of the myocytes bundles (Fulton 1982; Izumi et al.
1984) based on their location within the myocardial wall (Nielsen et al. 1991). The
reconstruction procedure was common to all three coronary trees (RCA, LAD, and
LCx) and was based on a hierarchical scheme by which the three types of sub-
networks (epicardial, transmural, and perfusion) were generated independent of
each other and meshed later.

Following the reconstruction of the network geometry, the diameter assignment
procedure was generated based on the intra-element Dl/Dm and Ds/Dm inter-element
mean and SD statistics (Kaimovitz et al. 2005).

The average total numbers of vessel elements obtained from the reconstructions
were 2,559,721˙ 290,177; 3,928,390˙ 263,513; and 1,068,109˙ 30,358 for the
RCA, LAD, and LCx trees, respectively. The corresponding epicardial branches
(distributing vessels) provide coverage of the entire epicardial surface as shown
in Fig. 9.13. Figure 9.14 demonstrates a view of the entire coronary arterial tree
including the perfusion networks down to the 0a capillary vessels. The transmural
vessels branch from the epicardial vessels at almost right angle and course from the
epicardial surface toward the endocardium to convey blood to the microcirculatory
perfusion vessels at the inner layers (Baroldi et al. 1967; James 1961). Typical
transmural and perfusion sub-networks are shown in Fig. 9.15 demonstrating the
capillaries arrangement along the direction of the muscle fibers.
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Fig. 9.15 (a) Inferior view of the transmural sub-tree demonstrating the change in capillary
orientation along the myocardial wall. (b) Close-up view on the transmural sub-tree demonstrating
the dense mesh of the capillaries

The arterial model is consistent with the anatomical characteristics observed
in the real coronary networks. The reconstructed epicardial and perfusion sub-
networks as well as the septal branches are confined to shell planes which are
arranged continuously in parallel to the epicardial surface (Figs. 9.13 and 9.14).
While the reconstructed epicardial vessels are aligned on the LV and RV surfaces,
the septal branches which course circumferentially along the septum (Fig. 9.13) are
located proximal to the right ventricular endocardium (James 1961).

In contrast to the epicardial sub-network, the reconstructed transmural sub-
networks have a 3D structure. As dictated by the imposed branching geometry
constraints above, the transmural reconstructed branches penetrate at nearly right
angles (Berne and Rubio 1979; Fulton 1982; James 1987) (Fig. 9.14), while in the
RV, they course obliquely toward the endocardium (Berne and Rubio 1979; Kassab
et al. 1993). The reconstructed LV transmural branches are relatively short (total
lengths range from 7 to 14 mm depending on the wall thickness of the LV and
RV, respectively) since they typically course directly toward the endocardium. In
few cases, the reconstructed sub-branches might be as long as 6 cm in agreement
with native vessel anatomy (Baroldi et al. 1967; James 1961, 1987; McAlpine
1975). These are typically the perforating branches of the LAD artery and those that
originate from the posterior descending artery (Fig. 9.13) and perfuse the anterior
posterior interventricular septum (Berne and Rubio 1979; Gray et al. 1995; James
1961).

To further validate reconstructions, the blood volume and scaling exponents for
the volume–length and CSA length relation were determined. It was found that
the RCA and LCx arterial tree volumes to be similar to those reported by Kassab
et al. (Kassab and Fung 1994; Kassab et al. 1993) as 1.4 ˙ 0.15 mL (RCA) and
0.57 ˙ 0.09 mL (LCx). The LAD volume, however, was approximately 50 % larger
in the present model as compared to the previously reported value of 0.98 ˙ 0.21 mL
(Kassab and Fung 1994; Kassab et al. 1993). It is likely that the greater blood
volume for the LAD system stems from nearly twice the number of vessels obtained



192 B. Kaimovitz et al.

in the previous study (Kassab and Fung 1994; Kassab et al. 1993). The exponents of
volume–length and CSA–length scaling power-laws were similar to the theoretical
predictions reported by Huo and Kassab (2009, 2012).

The AER determined in the present study was similar to the relation
AER D 1.279 � 0.086�Dm (r2 D 0.024) reported by VanBavel and Spaan (1992).
The averaged value of the Dl/Dm ratio over all the orders was 0.877 ˙ 0.097,
0.859 ˙ 0.092, and 0.859 ˙ 0.092 for the LAD, RCA, and LCx, respectively, as
compared to 0.905 ˙ 0.004 as reported by Van Bavel (1989).

Although the stochastic reconstruction was subject to a set of constraints,
including both global (boundary avoidance) and local (bounds on branching angles),
it was observed that the mean and SD of morphometric data (diameters, lengths,
segment-to-element ratio, CM, and LPM) of the reconstructions were in good
agreement with those of Kassab’s database (Kassab and Fung 1994; Kassab et al.
1993, 1997) at each order number.

9.6 3D Reconstruction of the Entire Porcine Coronary
Vasculature

The coronary arterial model was extended to include the capillaries and the
entire coronary venous system. The reconstruction was based on a set of rules
stemming from qualitative anatomical features (Bales 2004; Baroldi et al. 1967;
Izumi et al. 1984; von Lüdinghausen 2003) and quantitative statistical morpho-
metric data on the coronary Sinual tree (Choy and Kassab 2009; Kassab et al.
1994). The coronary venous network was partitioned into three major branches
in parallel to the respective arterial LAD, LCx, and RCA sub-trees. An average
0v/0a ratio (the ratio between number of venous and arterial functional capillaries)
of 1.61:1 (2 � 2.56/3.18) for the LAD and LCx and 1.86:1 (2 � 2.56/2.75) for
the RCA was imposed. Similar to the coronary arterial tree (Kaimovitz et al.
2005), each venous branch was partitioned longitudinally into functional epicardial
sub-networks (orders �9 to �12 vessels), transmural (orders �5 to �8 vessels),
and perfusion networks (orders �4 to 0v). The epicardial portion was generated
by a Simulated Annealing search for the optimal coverage of the area perfused
by the arterial epicardial vessels. The epicardial sub-network and the coronary
arterial capillary network served as boundary conditions for the reconstruction
of the in-between transmural and perfusion networks which were generated to
optimize vascular homogeneity (uniform vascular density). The venous network
reconstruction was formulated as a large-scale optimization process subject to local
and global constraints. The optimization criteria enforced optimal coverage of the
surface covered by the epicardial arterial sub-networks and drainage compatibility
with the arterial capillary network subject to the constraints on the 0v/0a ratio listed
above as well as capillary length and orientation. It was assumed that vessels in
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each of the LAD, RCA, and LCx sub-networks independently follow the respective
arterial major vessels; i.e., there is no connection between the three venous sub-
networks.

The diameter assignment algorithm was based on the branching asymmetry
at branching points along the venous tree which was extracted from database of
native trees. For this purpose, the branching asymmetry statistics (mean ˙ SD) was
calculated from the raw database (Kassab et al. 1994) for the coronary Sinusal tree,
in terms of the AER and the ratios of the diameters of larger (l) and smaller (s)
daughter vessels to their mother (m) vessel (Dl/Dm and Ds/Dm), respectively, as a
function of order number (Kassab et al. 1994). The assignment was done in a top-
down direction starting with the network stem and moved toward the 0v capillaries.

Five sets of full coronary venous trees down to the capillary level were
reconstructed coupled to the coronary arterial trees (Kaimovitz et al. 2005). The
total number of reconstructed venous segments was 17,148,946˙ 1,049,498 (n D 5)
which spans orders �12 (coronary sinus) to 0v capillaries (first segment of venous
capillary). Combined with the reconstructed arterial network, the number of vessel
segments for the entire coronary network adds up to 27,307,376˙ 1,155,359
(n D 5). The reconstructed network agrees with the gross anatomy of coronary
vasculature in terms of structure, location of major vessels (Fig. 9.16), and measured
morphometric statistics of native coronary networks.

The epicardial and septal vessels are aligned along the prolate spheroid surfaces
(Streeter 1979) of the LV and RV (Fig. 9.16). The major venous epicardial vessels
(Fig. 9.16) follow the correct course and provide coverage of the entire epicardial
surface perfused by corresponding reconstructed arterial epicardial vessels (LAD,
LCx, and RCA) (Baroldi et al. 1967; Grayson 1982; Hutchins et al. 1986; Kajiya
and Goto 1999) and drain their respective networks (von Lüdinghausen 2003; Mohl
et al. 1984). This includes the small cardiac vein (SCV) which follows the route of
the RCA artery and branches off to the posterior interventricular vein (PIV) which
accompanies the posterior interventricular artery. Similarly, the great cardiac vein
(GCV) follows the LCx and gives rise to the lateral LV veins, the posterior vein of
the left ventricle (PVLV), and the anterior interventricular vein (AIV), which runs
in parallel to the anterior interventricular artery. Finally, the coronary sinus, which
drains most of the epicardial ventricular veins (von Lüdinghausen 2003) is situated
at the posterior region of the coronary sulcus and drains the GCV, SCV, PVLV, and
PIV. The septal veins originate anteriorly and posteriorly from the AIV and PIV,
respectively (Baroldi et al. 1967).

All the major veins collect the smaller veins which run on the LV and RV
surfaces (order �12 to �9) and run through the myocardium at almost right
angles to reach orders �8 to �5 (Fig. 9.16c). The reconstructed transmural venous
branches are independent of their arterial counterparts in terms of both their location
and disposition while only some of the principle epicardial vessels coincide with
the arrangement of the principle arteries (Fig. 9.16a, b), similar to anatomical
observations (Baroldi et al. 1967). The venous branches are more numerous than the
arterial ones (Bales 2004; Kassab et al. 1994; von Lüdinghausen 2003) as evident
from both the opaque appearance of the combined network (Fig. 9.16), in line
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Fig. 9.16 Rendering of the reconstructed arterial and venous trees (orders 1–11 and �1 to �12) as
viewed from four different aspects: (a) anterolateral left, (b) anterolateral right, (c) posterolateral
left, and (d) posterolateral right. The rendering was done using POVWIN™ Raytracer. Orange—
arterial, cyan—venous

with anatomical observations (Baroldi et al. 1967; James 1961; Mohl et al. 1984),
and from quantitative evidence. For example, the reconstructed venous network
encompasses 1.69 ˙ 0.10 times the number of vessels than in the reconstructed
coronary arterial tree. The average and SD of the 0v/0a capillaries ratio for the entire
reconstructed venous network was found to be 1.63 ˙ 0.02:1 and 1.87 ˙ 0.005:1
for the venous LAD/LCx and RCA, respectively, compared to the estimated
values of 1.61:1 and 1.86:1. The percentage of branching types was found to be
85.4 ˙ 0.34 %, 13.3 ˙ 0.29 %, 1.10 ˙ 0.04 %, and 0.18 ˙ 0.01 % for bifurcations,
trifurcations, quadrifications, and quintifications, respectively, compared to 86 %,
12.8 %, 1 %, and 0.2 % in the native trees (Kassab et al. 1994).

The coronary system was found to have fractal characteristics (Zamir 1999). A
system which demonstrates self-similarity is termed “fractal” and obeys Horton’s
law, which suggests that a geometric relationship exists between system attributes.
In the reconstructed venous tree, the values of the reconstructed venous networks
of RL (mean element length ratio) were 2.1 ˙ 0.91 and 1.16 ˙ 0.009, and the
values obtained for RN (mean element branching ratio) and RD (mean diameters
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of successive generations) were 3.30 ˙ 0.03 and 1.67 ˙ 0.17, respectively, which
were in good agreement with measure values for the Sinusal network (Kassab et al.
1994).

The total volume for the venous and arterial trees was obtained by adding the
capillary volume to the volumes of the venous and arterial trees. Accordingly,
the total mass normalized CBV obtained for the venous and arterial trees was
14.6 ˙ 0.56 mL/100 g and 7.32 ˙ 0.31 mL/100 g, respectively, and accordingly, the
total myocardial mass normalized CBV was 21.9 ˙ 0.64 mL/100 g. This estimate,
which is within the bounds of reported data (Feigl 1983; Hoffman and Spaan
1990; Olsson and Bugni 1986; Spaan 1985), is nearly twice the CBV estimated
from the morphometric database (Kassab et al. 1994). The difference, in absolute
volume, between the reconstruction and the database is consistent with the 1.8
difference in number of vessels between the reconstruction and the database.
Reports on measured volumes of the coronary system have large variation (Feigl
1983; Hoffman and Spaan 1990; Olsson and Bugni 1986; Spaan 1985) which may
stem from biological variability and experimental error. Similarly, large variability
exists in estimates of the number of coronary vessels (Kassab et al. 1993, 1994;
Spaan 1991). In addition, some variability is expected in stochastic reconstructions,
depending on range of distribution parameters in the statistical database.

Finally, the LV was divided into slabs with an average volume of 0.017 mL.
The number of capillaries in each slab was computed and averaged over the
subepicardium, midwall, and subendocardium to yield mean transmural values. The
calculated ratio of the mean number of capillaries between the subendocardium and
the subepicardium was 1.33 ˙ 0.11 (n D 5). This value agrees with the reports of
greater coronary blood volume in the subendocardial than the subepicardial layer in
the LV, and is similar to reported values of 1.10–1.55 for endo-to-epi ratios of red
blood cell content (Crystal et al. 1981; Howe and Winbury 1973; Myers and Honig
1964; Weiss and Winbury 1974).

In summary, the reconstructed venous trees demonstrate similarity in their
native 3D structure. Furthermore, they show good fit to the measured data both
quantitatively and qualitatively; i.e., the overall fit follows the general behavior of
the database, and usually falls within ˙1 SD of the measured data. The effect of
these small deviations on local hemodynamics and flow distribution is likely to be
small since these deviations are primarily affected by the asymmetry of the network
(Dl/Dm and Ds/Dm), a feature of the reconstructed tree which demonstrates excellent
fit to the database. All these results serve as validation of the anatomical model.

9.7 Physiological Significance of the 3D Model

Based on the reconstructed arterial 3D model, the regional myocardial flow
heterogeneity was calculated using flow simulation in the RCA, LAD, and LCx
arterial branches (Huo et al. 2009). The flow model predictions were validated
experimentally with the use of nonradioactive fluorescent microspheres of 15 �m
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Fig. 9.17 (a) Mean ˙ 1 SD for pressure-flow relationship in five reconstructions of 3D models
(both mean pressure and mean flows over each order are averaged over five reconstructions). (b)
Comparison of pressure-flow relationships of blood using the LCX in one representative 3D model
and a previous LCX arterial tree model (Mittal et al. 2005b)
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Fig. 9.18 Arteriolar pressures in the (a) subepicardial and (b) subendocardial microcirculation at
orders 5 and 6 (with vessel diameter range of 64.4�150 �m) of LAD arterial tree at the different
coronary perfusion pressures, which agrees reasonably with the data (Chilian 1991)

diameter (Huo et al. 2009). Figure 9.17 shows on panel (a) the mean ˙ 1 SD (both
mean pressure and mean flow over each order are averaged in five reconstructions)
for the pressure-flow relationship of blood in five reconstructions of the 3D tree
models. The 3D model longitudinal pressure-flow predictions were validated by
comparison to the results of the topologic model of Mittal et al. (2005b) (panel (b))
(as indicated above, this analysis can be done realistically based on the topological
2D primitive tree), and were found to be similar (small SD) in longitudinal
distribution of pressure-flow.

Further validation included comparison of the arteriolar pressures predictions
of the 3D model in the subepicardial and subendocardial to the measured data of
Chilian (1991). The comparison results are depicted in Fig. 9.18a, b, which reveal
an excellent match.
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Fig. 9.19 Pressure distribution in two views (lateral left and posterolateral oblique left) in the 3D
entire coronary arterial trees consisting of the epicardial, transmural, and perfusion sub-networks:
(a) lateral-left-view pressure and (b) posterolateral-oblique-left-view pressure

These comparisons demonstrate the capability of the arterial 3D model to predict
longitudinal pressure-flow distributions. Figure 9.19a, b illustrates the pressure
distribution, in two views (lateral left and posterolateral oblique left), of the entire
coronary arterial tree model down to the first capillary segments. It is clear that
the longitudinal pressure distribution is fairly uniform in larger vessels and changes
significantly in smaller vessels (<100 �m).

Since the 2D primitive model prediction is limited to longitudinal distribution of
pressure-flow, validation of the 3D model capability to predict spatial flow distri-
bution was done by comparison of the model analysis results with the experimental
data (Huo et al. 2009). The current 3D model predicted spatial heterogeneity of flow
and showed good agreement with the experimental data. The average myocardial
flow prediction of the model was 2.39 mL/min/g compared to 2.17 mL/min/g in the
experiment. The relative flow dispersion, defined as RD D SD/Mean, was found to
be 44 % and 48 % for the numerical model and the experiment, respectively. The
numerical flow dispersion was found to have fractal characteristics (Fig. 9.20) with
fractal dimension D of 1.25 vs. 1.27 in the experiment and compared to 1.23 as
reported by Bassingthwaighte et al. (1989) where D is defined by (9.2).

RD.m/ D RD .mref/ �
�

m

mref

�1�D

(9.2)

An important attribute of the 3D reconstruction is to predict the coronary flow
heterogeneity, based on a mathematical model of the 3D coronary arterial tree in
the myocardium. Results of the numerical flow analysis (Huo et al. 2009) clearly
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Fig. 9.20 The fractal regression for spatial flow in three layers of the LV and septum (subepi-
cardium, midwall, and subendocardium) obtained from experiments (mean ˙ 1 SD) and the
3D model. The solid, dashed, and dotted lines represent the results of the 3D model for the
subendocardium, midwall, and subepicardium, respectively. A power fit for fractal regression
in the 3D model shows exponents of 1.47 (R2 D 0.99), 1.47 (R2 D 0.98), and 1.49 (R2 D 0.98)
for the subepicardium, midwall, and subendocardium, respectively. These agree well with the
experimental values (six hearts) of 1.47, 1.45, and 1.51 for the subepicardium, midwall, and
subendocardium, respectively

demonstrate that the fractal nature of regional myocardial blood flow heterogeneity
can be simulated by the 3D model. As such, the reconstruction can serve as a basic
platform for detailed, realistic large-scale distributive analysis of the coronary flow.
Since the 3D venous network is based on the structure of the 3D arterial network, the
integrative arterio-venous reconstructed network is expected to preserve the spatial
heterogeneity characteristics of flow and pressure.

The reconstruction, which includes a detailed, distributive description of the
3D geometry and morphometry of the coronary network (Fig. 9.21), constitutes
an excellent platform to include flow control in future studies, with local, global
and autoregulation mechanisms. Furthermore, the reconstruction not only provides
a predictive model of coronary circulation, which can be used to test quantitative
hypotheses and address basic issues in coronary physiology and pathophysiology,
but it can also serve as a valuable educational tool. The reconstruction, which has
a strong visual component, can be set up in an interactive, user-friendly mode
which will become a valuable tool for cardiovascular scientists, physiologists,
bioengineers, cardiologists, cardiac surgeons, and students.
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Fig. 9.21 Rendering of the reconstructed arterial and venous trees, covering orders 0a to 11 and
0v to �12 as viewed from: (a) right anterolateral aspect, (b) posterior aspect. Overall, about 27
million vessels were rendered
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Chapter 10
Biomechanical Basis of Myocardium/Vessel
Interaction: Implications for Pathophysiology
and Therapy

Dotan Algranati, Ghassan S. Kassab, and Yoram Lanir

10.1 Introduction

Ischemic heart disease is a major cause of morbidity and mortality worldwide.
Interestingly, the onset of ischemia is transmurally heterogeneous, where the
deeper (subendocardial) layers are more vulnerable to ischemia than the more
superficial (subepicardial) ones (Hoffman 1987). This observation is especially
puzzling in light of the opposite manifestation of coronary artery disease, which
exclusively affects the epicardial coronary arteries, whereas intramural arteries are
athero-protected (Geiringer 1951). Initiation of both atherosclerosis and ischemia
depend highly on flow conditions; therefore, investigation of the hemodynamic
determinants of both pathologies requires comprehension of the local coronary
flow conditions, which are measured in the beating heart. Computer simulation is
an attractive approach to study local coronary flow conditions. For hemodynamic
simulation to be realistic, however, it must incorporate both a realistic description
of the coronary network and the manner by which the contracting myocardium
affects coronary flow—the myocardium/vessel interaction (MVI). Such an approach
has several inherent challenges: First, the vast number of coronary blood vessels
(Kaimovitz et al. 2005) is associated with an extensive computational cost to solve
the network dynamic flow. To circumvent this difficulty, previous flow models
(Bruinsma et al. 1988; Cornelissen et al. 2000; Flynn et al. 1992; Klocke et al.
1985; Manor et al. 1994) used lumped representations for the coronary vasculature.
Although this approach is useful to reveal basic flow characteristics, it cannot
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address the physical relation between structure, vessel mechanics, and blood flow.
Moreover, validation of a lumped model with experimental data is limited due
to the inability of the model to describe flow conditions in specific vessels. A
second challenge stems from paucity of experimental data required for both the
flow model representation and for validation. Finally, the physical origins of the
MVI, a key determinant in coronary flow analysis, are under a long-standing
dispute and hitherto unknown. In fact, none of the mechanisms previously proposed
(Downey and Kirk 1975; Krams et al. 1989a; Rabbany et al. 1989; Spaan et al.
1981; Zinemanas et al. 1994) to describe this mechanical interaction predict all of
the characteristics of coronary flow (Westerhof et al. 2006), i.e., the blood flow
velocities, pressures, and vascular diameters that correspond with the measured data.

To address this issue, a recently developed, structure-based computational
framework for coronary distributed flow analysis was developed. This analysis
allows for elucidation of (a) the MVI and its biomechanical origins, (b) the origins
of subendocardial vulnerability to ischemia under conditions of epicardial artery
stenosis, and (c) evaluation of the consistency of indices that are presently used in
the clinic to quantify the severity of coronary stenosis.

10.2 Flow Analysis Computational Platform

To investigate the transmural, distributive, and dynamic features of coronary flow, a
computational platform (Fig. 10.1) was developed (Algranati et al. 2010).

The platform consists of a number of sub-models and auxiliary computational
processes developed to reconstruct the network anatomy (Fig. 10.1a) to determine
the vessel mechanics (in reference to the pressure–diameter relationship, PDR,
Fig. 10.1b) and to analyze the flow in the entire coronary network (Fig. 10.1c)
based on MVI mechanisms (Fig. 10.1d). The network flow boundary conditions
(Fig. 10.1e) were adopted from measured data. The computational scheme consists
of the following elements:

10.2.1 Network Anatomy

Reconstruction of the network anatomy was based on detailed, statistical morpho-
metric data of Kassab and coworkers (Kassab and Fung 1994; Kassab et al. 1993b,
1994, 1999) and was carried out in three stages: (1) reconstruction of microvascular
networks, (2) integration into an intramyocardial coronary network, and (3) linking
of the network to a large epicardial arterial tree. The latter stage was performed for
the analysis of the effect of epicardial stenosis on the flow.
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Fig. 10.1 Flow analysis computational platform. The platform consists of a number of sub-models
aimed at reconstructing the network anatomy (a) to determine each vessel reference and loaded
diameters (b) and to analyze network flow (c) based on myocardium/vessel interaction mechanisms
(d). Platform hemodynamic inputs (e) include the aortic, venous, and left ventricle dynamic
pressure waveforms (PAo, Pv, and LVP, respectively) the heart rate (HR), contractility, and the
blood hematocrit (HCT). Based on these inputs, the dynamic flow conditions in terms of pressure,
diameter, and flow are calculated in each vessel (f)

10.2.2 In Situ Vessel Mechanics

Vessel diameters are of primary significance since they determine the resistance to
the flow (Spaan 1995). In situ data (Hamza et al. 2003) show that vascular diameter–
pressure relations are sigmoid in shape (Fig. 10.1b), namely:
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where 4P is the vessel trans-vascular pressure, i.e., the difference between intravas-
cular and extravascular pressures (PIV and PEV, respectively). D, DC, D0, and
D� denote the loaded, maximum inflated, 0-pressure, and maximum unloaded
diameters, respectively, and 4P1/2 is the trans-vascular pressure corresponding to
a diameter equal to the average of DC and D�.

The values of these four parameters were obtained for each large epicardial
vessel (>0.7 mm in diameter) from measured data (Hamza et al. 2003). For smaller
intramyocardial vessels, where such data are unavailable, the parameters were
evaluated from a mechanical stress analysis of a vessel-in-myocardium (Fig. 10.1b,
details in Ref. (Algranati et al. 2010)).

10.2.3 Dynamic Flow Analysis

Conservation of mass requires that the difference between inlet and outlet flows of
each vessel, Qin and Qout, respectively, should equal the time derivative of the vessel
volume (V), namely:

Qin.t/ � Qout.t/ D Pin.t/ � PIV.t/
<.t/.

2

C Pout.t/ � PIV.t/
<.t/.

2

D dV

dt
D d

dt

	
�D2.t/L.t/

4




(10.2)

where Pin and Pout denote vessel inlet and outlet pressures, respectively (Fig. 10.1c),
PIV is the vessel midlength pressure, and < is the vessel flow resistance. For
intramural vessels (diameters <0.7 mm), the instantaneous hydraulic resistance <
was calculated from Poiseuille’s law as:

<.t/ 
 Q.t/

Pin.t/� Pout.t/
D 128�.t/L.t/

�D.t/4
(10.3)

where L, D, and � are the vessel length, diameter, and the blood apparent viscosity,
respectively, with the latter as a function of diameter and hematocrit (Pries et al.
1994). The predictions of such a lumped, single vessel flow model were shown
(Jacobs et al. 2008) to match those of a more comprehensive distributive model
(Fibich et al. 1993) under dynamic flow conditions.

For stenosis in epicardial vessels (diameters >0.7 mm), the longitudinal pressure
gradient stems from blood viscosity, flow pulsatility, and the inertial pressure losses
at the exit of a stenosis (Young 1979), namely:

Pin � Pout D kv�Q

D3
C kiL
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�
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where Q is the instantaneous flow (assumed to equal the mean value of Qin and Qout),
and blood density  was taken as 1060 kg/m3. The magnitude of each mechanism
was determined by the respective coefficients kv, ki, and ke, evaluated in detail
elsewhere (Young 1979). Though thoroughly validated (Gould 1985; Siebes et al.
2004; Young 1979), the major drawback of (10.4) is that it relies on empirical
coefficients, whereas recent studies (Huo et al. 2012) propose analytical formulation
for pressure drop across coronary stenoses.

For network flow analysis, mass conservation was imposed at each network
bifurcation. This implies that the sum of discharges Qjk should vanish, i.e.,

3X
jD1

Qjk D
3X

jD1

Pj
IV � Pbif

k

<j=2
D 0 k D 1; 2; : : : ; Bifurcation No: (10.5)

where Pj
IV denotes the intravascular pressure in each of the three vessels that

compose the kth bifurcation, and Pbif
k is the bifurcation pressure.

10.2.4 Myocardium/Vessel Interaction

The computational platform presented above (details in (Algranati et al. 2010,
2012)) was applied first to examine several different MVI mechanisms. This was
done to determine which of the previously proposed MVI mechanisms (or any of
their combinations) can predict the measured data and thus is suitable for further
analyses of coronary flow. The analysis of MVI mechanisms (Algranati et al. 2010)
is briefly presented in the following section.

10.3 Physical Mechanisms of Myocardium/Vessel Interaction

Cardiac contraction has significant impact on the blood flow in the distensible
coronary vessels. Myocardial contraction applies pressure on and reduces the
diameters of intramyocardial vessels, thus increasing their resistance to flow. This
“systolic impediment” is the subject of extensive research as it relates to: (1) the
nature and distribution of the extravascular forces (often termed intramyocardial
pressure, IMP) exerted by the myocardium on the coronary vessels and (2) the
manner by which these forces affect the flow in the embedded coronary vessels.
The elucidation of these issues will allow for a deeper insight into the MVI which is
seminal to understanding coronary phasic flow (Rogers et al. 2006) and transmural
flow distribution.

The interpretation of the spatial and temporal distribution of IMP from direct
in vivo tissue pressure measurements (Heineman and Grayson 1985; Mihailescu
and Abel 1994) is complex, due to the cardiac motion, the distortion of the tissue
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microstructure by the pipette tip (Westerhof 1990), and the heterogeneity of this
pressure in various micro-compartments (Spaan 1995). Downey and Kirk (1975)
and Spaan et al. (1981) assumed IMP to be equal to left ventricular pressure (LVP)
at the endocardium and to decrease linearly to zero at the epicardium. Krams
et al. (1989b) found that LVP plays only a partial role and proposed (Krams
et al. 1989a) the “time-varying elastance concept” to account for the full extent
of systolic flow impediment. The elastance concept by itself, however, does not
explain why epicardial flows are uninhibited to the same degree as endocardial
ones (Spaan 1991). More recent studies suggest that both LVP and myocardial
contraction have significant effect on the time-varying coronary flow (Kouwenhoven
et al. 1992). Studies of epicardial lymph pressure (VanTeeffelen et al. 1998) and of
coronary arterial pressure and flow (Kouwenhoven et al. 1992) suggest that rather
than inducing flow impediment, systolic stiffening shields intramural vessels from
the effects of LVP during a portion of systole (Spaan 1995). Another hypothesis
(Rabbany et al. 1989) attributes IMP to a combination of LVP-derived interstitial
fluid pressure, and a stress induced by fiber contraction.

Some models have been developed (Vis et al. 1995, 1997) to study the separate
and combined effects of MVI mechanisms on the local vessel diameter at peak
systole and diastole. These models were not integrated into a dynamic network
flow analysis, however, and thus, cannot provide a complete account of the
temporal/spatial coronary flow features. In a recent review (Westerhof et al. 2006),
several specific MVI mechanisms were conceptually proposed but were neither
modeled nor tested quantitatively. Hence, the mechanisms underlying MVI, their
interplay, and the effect on flow conditions remain unclear.

10.3.1 Methodological Approach

Since there is still no agreement on the nature of the MVI mechanism, a coronary
flow analysis was applied to establish the most likely hypothesis for the MVI
mechanisms (Algranati et al. 2010). The flow analysis under each MVI mechanism
was carried out several times to account for the various experimental conditions
reported for each data base (e.g., heart rate, LVP; Fig. 10.1e). The MVI mechanisms
studied were as follows:

Varying Elasticity (VE, Fig. 10.2a): Under this mechanism, contractility was
taken to affect coronary flow through activation-dependent changes of myocardial
stiffness (Vis et al. 1995).

Shortening-Induced Intracellular Pressure (SIP, Fig. 10.2b): Myocytes were
modeled as membrane-contained fluid compartments that surround the vessels.
During shortening, myocyte thickening (lateral expansion of their membranes) is
due to internal volume preservation and is accompanied by pressure elevation. This
intra-myocyte pressure is transmitted to the vessels due to their impingement on the
vessels. This mechanism is based on data and model (Rabbany et al. 1994) showing
linear increase in pressure with contractile shortening.
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Fig. 10.2 The studied myocardium/vessel interaction mechanisms. (a) Varying elasticity (VE):
flow is affected by the activation-mediated changes in myocardial stiffness (represented by a
spring). (b) Shortening-induced intracellular pressure (SIP): flow is regulated by the differ-
ence between intravascular and contraction-induced myocyte intracellular pressures (arrows),
(c) Cavity-induced extracellular pressure (CEP): extravascular pressure (PEV) is the interstitial
pressure which varies linearly (Heineman and Grayson 1985) from cavity pressure (LVP) at the
endocardium to atmospheric pressure (Patm) at the epicardium

Cavity-Induced Extracellular (Interstitial) Pressure (CEP, Fig. 10.2c): This
mechanism relies on the underlying assumption of both the intramyocardial pump
(Spaan et al. 1981) and the vascular waterfall (Downey and Kirk 1975) models. PEV

was assumed to stem from the LVP alone and is taken to vary linearly (Heineman
and Grayson 1985) with transmural position (expressed by MRD, myocardial
relative depth, that ranges between 0 at epicardium and 1 at endocardium).

CEP C VE: The extracellular pressure and varying elasticity were combined in
this model. The material law of surrounding myocardium was activation dependent
(as in VE) and the extracellular pressure was applied to the myocardial external
surface.

CEP C SIP: The myocytes were assumed to contract within an LVP-derived
pressurized interstitium. Hence, the assigned PEV equals the algebraic sum of extra-
cellular pressure and of the shortening-dependent intracellular pressure, namely:

PEV.t/ D LVP.t/ � MRD C ˛ � MRS.t/ (10.6)

where MRS is the myocytes relative shortening, and ˛ is a coefficient that relaxes
this shortening to intracellular pressure (Algranati et al. 2010).

10.3.2 Summary of Results

The major observed coronary flow features were compared with the model pre-
dictions under each of the tested MVI mechanisms. A summary of the results is
listed in Table 10.1. These results clearly point to the deficiency of hypotheses that
exclude CEP. Although CEP predictions generally fit the data well, this mechanism
alone cannot account for the observed reduced coronary flow under unchanged LVP
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Table 10.1 Comparison of tested (Algranati et al. 2010) MVI mechanisms with
experimental observations

Mechanism
Observation VE SIP CEP CEP C VE CEP C SIP

Transmural distribution of
perfusion under contraction is
close to homogeneous

� � C C C

Elevated contractility attenuate
total perfusion under similar LVP
values

C C � � C

Elevated heart rate attenuates both
total perfusion and endo/epi
perfusion ratio

� � C C C

Reduced inlet pressure attenuates
both total perfusion and endo/epi
perfusion ratio

� � C C C

Epicardial arteriolar waveforms
follow aortic pressure

� C C � C

Predicted systolic/diastolic
diameters change follows
measured data

� � C C C

Predicted velocity waveforms
follow measured data

� � C � C

levels but increased contractility (Marzilli et al. 1979). The CEP C VE mechanism
can account for this observation only under higher than normal inlet pressures
(Algranati et al. 2010). Yet under CEP C VE, the predicted subepicardial pressure
and subendocardial velocity waveforms were found to differ significantly from
experimental results. Most notably, only the combination of CEP C SIP mechanisms
is in good agreement with all observations.

10.3.3 Biophysical Implications

Through cardiac contraction, myocytes intrinsically generate contraction during
which their intracellular pressure is increased (Rabbany et al. 1994). In light of
the condensed packing of myocytes in myocardium (Spaan 1991), it is reasonable
to assume that myocytes contact directly with both the interstitial fluid and with the
adjacent vessels during cardiac contraction (Caulfield and Borg 1979). Thus, the
overall extravascular pressure (PEV) consists of both the interstitial pressure (CEP
mechanism) and intra-myocyte pressure (SIP mechanism) (Fig. 10.3a).

Unfortunately, experimental determination of IMP is unreliable and subject to
large variance (Heineman and Grayson 1985; Mihailescu and Abel 1994; Rabbany
et al. 1989). Some of the confounding factors are that when inserting a small-bore
pressure-gauge tip into the myocardial tissue, the measured pressure depends on the
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Fig. 10.3 (a) Structural illustration of PEV origins. The coronary vessel is exposed both to
extracellular (interstitial) pressure (where vessel and myocyte membrane have no surface-contact)
and to intracellular pressure, the latter being a combination of shortening-induced intracellular
pressure at atmospheric pressure and the myocyte environmental pressure, which equals to the
extracellular pressure. (b), (c) Micropipette inserted into myocardium. The transducer (black
square) measures the myocyte intracellular pressure, which although perforated still generates SIP
to a certain extent. Perforation of the target myocyte (illustrated in c) inhibits SIP generation,
thus the measured pressure is the extracellular one. Broken lines represent myocytes that were
perforated during micropipette insertion

tissue compartment in which the tip resides (whether within a myocyte, small artery
or vein, or extracellular fluid). Even if within a myocyte, the measured pressure
depends on whether its membrane perforation was mild enough as to permit SIP
generation or not, as illustrated in Fig. 10.3b, c. In addition, perforation invariably
induces microstructural distortion which has a significant effect on the measured
pressure.

The varying elastance concept (Vis et al. 1995) assumes that the myocardium,
being a continuum solid, affects the intravascular pressure through change in
myocardial mechanical properties. Such a model applies to the left ventricle cavity,
where the myocytes annularly circumvent the cavity thus applying tangential “hoop”
forces in the cavity wall which, by Laplace’s law, resist the cavity pressure.
In the coronary vasculature, however, the myocytes configuration is oblique or
tangential to the vessel (Fig. 10.3a), and they do not circumvent the vessels. During
contraction, myocytes do not apply tangential hoop forces and are thus incapable
of resisting vascular pressure. Hence, myocytes stiffening per se is not expected to
exert significant extravascular forces on intramyocardial vessels. It is the myocytes
internal pressure that exerts radial forces on the vessels which impinge them.

10.4 Subendocardial Vulnerability to Ischemia

Myocardial ischemia is a major cause of morbidity and mortality. It is transmurally
heterogeneous where the subendocardium is at a higher risk than the midwall or
epicardium (Hoffman 1987). Despite its significant clinical relevance, the physical
determinants of subendocardial vulnerability remain controversial. Although
subendocardial metabolic demand is somewhat higher than subepicardial (Hoffman
1987), data suggest that it is the lower blood supply to the subendocardium
rather than the higher demand that induces subendocardial vulnerability (Hoffman



212 D. Algranati et al.

et al. 1985). For example, under partial occlusions (Bache and Schwartz 1982) or
otherwise decreased perfusion pressure in a non-auto-regulated coronary circulation
(Chilian and Layne 1990), the subendocardial blood supply has been observed to
be compromised to a higher extent than subepicardial. Conversely, an increase of
perfusion pressure was found to improve primarily the subendocardial blood supply
(Boatwright et al. 1980). Hence, changes in perfusion pressure induce transmural
flow redistribution, i.e., changes in subendocardial-to-subepicardial perfusion ratio
(endo/epi).

Subendocardial vulnerability to ischemia has been previously attributed to
several mechanisms. The greater subendocardial systolic compression was proposed
to induce one or more of the following: (1) higher subendocardial vessel resistance
(Buckberg et al. 1972; Moir 1972), (2) systolic backflow from endocardial to
epicardial vessels (Flynn et al. 1992), induced by systolic–diastolic interaction
(Hoffman et al. 1985; Spaan et al. 1981), or (3) transient vessel collapse (Downey
and Kirk 1975), which would result in effectively higher subendocardial back
pressures (Bache and Schwartz 1982). The first two mechanisms account for a pref-
erentially epicardial blood flow (i.e., endo/epi reduction) under increased systolic
compression. The predicted effect of these mechanisms on endo/epi was not shown
to increase, however, under reduced perfusion pressure. It is, therefore, unclear
whether these mechanisms alone can account for the measured endo/epi reduction
under such conditions (Bache and Schwartz 1982). The proposed transmural
differences in back pressures (Bache and Schwartz 1982) may, alternatively, account
for the measured change in endo/epi under reduced perfusion pressure, but vessel
collapse has not been demonstrated in the coronary vasculature (Hamza et al. 2003;
Hiramatsu et al. 1998; Hoffman and Spaan 1990). It is still unknown whether back
pressure differences exist or are large enough to account for substantial endo/epi
changes (Hoffman 1987; Hoffman et al. 1985). Another proposed mechanism relates
to anatomically induced higher resistance of subendocardial conduit vessels or
lower resistance of subendocardial microcirculation, which was suggested (Chilian
1991) to reduce the driving pressure of the subendocardial microcirculation. This
mechanism cannot account for flow redistribution under reduced perfusion pressure,
as discussed below. Moreover, the pressure drop over conduit vessels was shown to
be small in magnitude (Mittal et al. 2005).

We recently proposed (Algranati et al. 2011) that the measured flow redistri-
bution, and the consequent subendocardial vulnerability under reduced perfusion
pressure, results from the sigmoidal shape of the pressure–diameter relation (PDR,
Fig. 10.1b), where there is a higher compliance of subendocardial as compared to
the respective subepicardial vasculature. This hypothesis was based on the premise
that since both subendocardial and subepicardial flows are driven by the same
pressure source, a difference in transmural flow distribution may only stem from
a difference in the respective vascular resistances. Flow resistance depends on
vascular diameters, and diameters depend on the pressure through vascular com-
pliance. Hence, only a higher compliance of subendocardial vasculature can induce
a greater increase in resistance to flow there, as compared to the subepicardium. The
underlying determinants of endo-to-epi compliance differences are presented below.
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10.4.1 Methodological Approach

The flow analysis scheme described above was used (Algranati et al. 2011) to predict
the time-averaged 4P and the endo/epi with and without the effect of myocardial
contraction (i.e., not accounting for myocardium/vessel interaction), and under a
wide range of physiologic and pathologic conditions.

To study the effect of contraction on subendocardial vulnerability, flow was
compared between the cases of the contracting and non-contracting heart. To that
end, contraction effects were abolished by zeroing PEV (namely (10.6) becomes
PEV D 0).

10.4.2 Summary of the Results

The analysis predicts that myocardial contractions induce significant transmural
heterogeneity in the mean trans-vascular pressure, namely to induce lower (more
compressive) pressures in subendocardial vessels. Systolic LVP was found to be
the most important determinant of this contraction-induced heterogeneity; whereas,
changes in diastolic LVP, heart rate, cardiac contractility, and perfusion pressure and
its pulsatility were shown to be of lower significance.

Moreover, the model predicts that in beating hearts, a reduction in perfusion
pressure inhibits subendocardial blood flow to a higher extent than epicardial flow, a
prediction that is in-line with observed data (Bache and Schwartz 1982; Boatwright
et al. 1980; Chilian and Layne 1990). The differences in trans-vascular pressures
and the nonlinear (sigmoid) vessel PDR result in more compliant arteries in the
subendocardium than in the subepicardium (Fig. 10.4). Hence, the response of
subendocardial diameters (and resistance) to changes in perfusion pressure is more
prominent, thus explaining the predicted higher subendocardial flow drop under
reduced perfusion pressure.

In contrast, the mean trans-vascular pressures are similar between subendocardial
and epicardial vessels in diastole, and so is the PDR slope (Fig. 10.4). Consequently,
flow is predicted to be evenly inhibited in subendocardium and epicardium under
reduced perfusion pressure.

10.4.3 Clinical Implications

The predicted higher subendocardial vulnerability depends on a number of clinical
factors such as heart rate, LVP, and contractility. The analysis results imply
that pharmacological reduction of heart rate, in addition to reducing myocardial
metabolic demand, enhances subendocardial blood supply by (1) increase of total
coronary flow under a given perfusion pressure, (2) increasing endo/epi under a
given perfusion pressure; and (3) decreasing the redistribution of blood away from
the subendocardium under perfusion pressure reduction.
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Fig. 10.4 Origins of subendocardial vulnerability: The time-averaged trans-vascular pressure
predicted in 100 �m diameter subendocardial (full) and subepicardial (blank) arterioles in the
beating (circles) and non-beating (diamonds) heart are indicated on the vessels’ pressure–diameter
curves (subendocardial—solid, subepicardial—dash). Results are under baseline (95 mmHg) and
reduced (35 mmHg) perfusion pressure, and under otherwise baseline conditions (Algranati et al.
2011). X-axis—trans-vascular pressure (mmHg). Y-axis—vessel diameter (�m). In the beating
heart, a reduced perfusion pressure induces a more substantial vessel narrowing (double arrows)
in the subendocardium than in the subepicardium, due to the higher subendocardial slope (i.e.,
its lower stiffness). In the non-beating heart, diameter change is similar in subendocardial and
subepicardial vessels

Under severe stenosis of the aortic valve, systolic LVP is considerably higher
than aortic (i.e., coronary perfusion) pressure. Treatment of valve stenosis should
thus result in both lower systolic LVP and possibly also in higher coronary
perfusion pressure. Both effects were predicted (Algranati et al. 2011) to enhance
subendocardial coronary flow, consistent with experimental results (Iwanaga et al.
1995).

In contrast, pharmacological reduction of afterload reduces simultaneously both
the aortic (coronary perfusion) pressure, and the systolic LVP. The effect on
subendocardial perfusion is more complex as the former diminishes subendocardial
supply while the latter increases it. The effect of aortic pressure is more significant
than that of the systolic LVP, i.e., when both pressures were simultaneously reduced
from their baseline level, the total coronary flow was predicted to drop substantially
(Algranati et al. 2011).
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Elevated diastolic LVP, often observed in patients with congestive cardiomyopa-
thy, was predicted to compromise both total and especially the subendocardial flow,
consistent with previous observations (Hoffman 1987).

10.5 Consistency of Stenosis Severity Indices

Percutaneous coronary interventions and coronary artery bypass grafts focus on
improving myocardial blood supply, i.e., to restore blood flow downstream from
the stenosed vessel (Qs) to non-stenotic value (Qn). Stenosis functional severity
depends on the ratio Qs/Qn. Clinically, the stenosis severity determines the treat-
ment strategy. Since, however, Qn is unknown prior to treatment, a number of
indices are used to estimate the patient stenosis severity. Since both Qn and Qs
depend on coronary autoregulation, the study presented below focused on indices
measured under full vasodilation. But even under this condition, there are a number
of structural, hemodynamic, and mechanical factors which may significantly affect
both Qn and Qs. Below, we address the question of how consistent are the indices
used in the clinic in predicting the flow ratio Qs/Qn under variability of the
hemodynamic determinants.

The three indices considered were: the relative area of stenotic occlusion (%AS),
which relates to the stenosis geometry; the hyperemic stenosis resistance, HSR
(Hoffman 1987); and the pressure-based fractional flow reserve (FFR), which
attempts to represent the flow ratio Qs/Qn.

Previous clinical studies of stenosis indices (Kini et al. 2008; Tonino et al. 2009)
did not include prior and post-interventional flow data (in mL/min) which can shed
light on the reliability of the indices. In silico studies of coronary circulation, on the
other hand, are impeded by the vast number of network vessels (Kassab and Fung
1994; Kassab et al. 1993a, 1994) and by the complex myocardial/vessel interaction
(Algranati et al. 2010). Hence, previous in silico studies of clinical indices used
lumped network structures, lumped linear coronary pressure–flow relations (Siebes
et al. 2002), and empirically derived concepts of the effect of myocardial contraction
on coronary flow (van den Wijngaard et al. 2008). Although such approaches
facilitate understanding of basic behavior under specific empirical conditions, a
more general and realistic distributive analysis is required to gain both mechanistic
and quantitative insight into the physical factors that affect the consistency of
stenosis indices. In the following section, it is shown how the above computational
platform for coronary flow facilitates an understanding of various indices of stenosis
severity (Algranati et al. 2012).
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Table 10.2 Reference hemodynamic conditions and associated perturbations used for analysis
of indices consistency. Pao, Pv, and LVP denote (time-varying) aortic, venous, and left ventricle
pressures, respectively, and are listed as systolic/diastolic levels. High and low values represent
the borders of physiological levels

Determinant Reference High Low

Pao (mmHg) 120/80 140/90 90/60
Heart rate (beats/min) 80 100 60
LVP (mmHg) 120/5 140/5 90/5
Hematocrit (%) 45 53 39
Pv (mmHg) 15/5 30/10 0/0
Vascular stiffness Average PDR based

on measured data
(Hamza et al. 2003)

3 standard deviations
stiffer than measured
(Hamza et al. 2003)
PDR

3 standard deviations
more compliant than
measured (Hamza
et al. 2003) PDR

10.5.1 Methodological Approach

In the clinic, each index has its own experience-based cutoff value, used to
distinguish between severe and non-severe stenosis. The values are 0.75 for FFR
(Tonino et al. 2009), 75 % for %AS (Baptista et al. 1994), and 0.8 mmHg s/cm for
HSR (Hoffman and Spaan 1990). We define the index consistency as a measure of
its robustness in predicting Qs/Qn against variations in hemodynamic conditions. In
other words, for a given cutoff level of the index, how sensitive is the “real” Qs/Qn
(as predicted by the flow model) to possible variations in the patient hemodynamic
conditions (Table 10.2). For clinical purposes, index consistency is most important
at its cutoff level. Hence, an index is reliable if its cutoff level is associated with
a consistent value of Qs/Qn in pressure of hemodynamic variability. In practice,
Qs/Qn was found to have dispersion and can have a range of several percent in a
single subject under the same index level (Pijls et al. 1993). Hence, we (Algranati
et al. 2012) considered a threshold level of ˙5 % change from reference in
Qs/Qn under physiological hemodynamic variations to be an acceptable range of
consistency.

10.5.2 Summary of the Results

The model predictions (Fig. 10.5) indicate that FFR is more consistent than both
%AS and HSR under the physiological variations tabulated in Table 10.2; and that
FFR is only inconsistent under variability in the vascular stiffness (Algranati et al.
2012). As predicted by the theory (Spaan et al. 2006), FFR and Qs/Qn values tend to
equalize only in rigid vasculature (Fig. 10.6) but may differ substantially in nonrigid
tubes.
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Fig. 10.5 Hemodynamic effects on indices-predicted Qs/Qn under the indices cutoff values of
FFR D 0.75 (a), %AS D 75 % (b), and HSR D 0.8 mmHg s/cm (c). The low and high values of
aortic blood pressure (Pao), heart rate (HR), left ventricle pressure (LVP), vascular stiffness (STF),
and blood hematocrit (HCT) are within physiological range (Table 10.2). Y-axis: Qs/Qn levels
normalized by the value of Qs/Qn under baseline conditions (Table 10.2). The FFR predicted
Qs/Qn changes (a) are lower than 10 % (horizontal lines) under all but vascular stiffness variation
and are lower than the predicted Qs/Qn changes under %AS (b) and HSR (c) cutoff levels

Fig. 10.6 Effect of vascular
stiffness on Qs/Qn under
FFR D 0.75. The predicted
Qs/Qn (Y-axis) increases with
vascular stiffness (X-axis),
until reaching FFR value of
0.75 in perfectly rigid
vasculature. Under stiffness
variation of ˙3 standard
deviation of the measured
(Hamza et al. 2003) vascular
stiffness (vertical dash),
Qs/Qn changes by more than
10 % (horizontal dash)

10.5.3 Clinical Implications

The predictions (Fig. 10.6) imply that under a given value of FFR, Qs/Qn is
higher in patients with higher vessel stiffness (e.g., diabetic, hypertensive, smokers).
Hence, the maximal flow improvement (Qn/Qs-1) due to a coronary intervention is
expected to be lower under higher vascular stiffness. This is of clinical significance
since it provides mechanistic insights into the suboptimal outcome of percutaneous
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coronary intervention in patients with diabetes mellitus (Heineman and Grayson
1985). This result can be readily understood since stenosis treatment reduces
resistance to flow, which leads to an elevation of the pressure downstream from the
stenosis (Pd) and an FFR increase. In healthy compliant vessels, this Pd elevation
increases the vessel diameters downstream from the stenosis and thereby increases
Qn. In a stiffer vasculature, a similar Pd (FFR) elevation is not expected to increase
the vessel diameters as much as in compliant vessels. Hence, the flow improvement
due to stenosis treatment is expected to be lower when compared to the normal
population. As Spaan et al. (2006) pointed out, FFR describes Qs/Qn exactly only
if the coronary resistance downstream to the occlusion is pressure independent.
Physically, vessel resistance depends highly on diameter (10.2–10.4), and hence,
a pressure-independent resistance can only occur in rigid vessels. Since passive
coronary vessels are compliant (albeit less so in diabetics) (Cornelissen et al. 2000;
Hamza et al. 2003), FFR underestimates Qs/Qn (Fig. 10.6) in agreement with
measured data (Pijls et al. 1993; Spaan et al. 2006). A lower flow improvement
in a stiffer coronary vasculature supports the view (Yanagisawa et al. 2002) that
stratification of patients which includes consideration of pathologies known to
affect vascular stiffness may enhance the consistency of a priori prediction of an
interventional success.

10.6 Future Directions

The presented structure-based computational platform for coronary flow analysis
provides a wide spectrum of novel information regarding the dynamic local flow
conditions in vessels from different transmural myocardial layers and of various
diameters, thus providing opportunity to investigate additional open questions in
the coronary field. Some examples are:

10.6.1 Coronary Vascular Stiffness

An obvious aim for future research arising from the present results and conclusions
would be to quantify coronary vascular stiffness, as this stiffness is a key for
deeper insight into the coronary flow (Fig. 10.4), and for clinical interpretation of
measured indices of stenosis severity (Fig. 10.6). Unfortunately, with the exception
of the swine large epicardial (Hamza et al. 2003) coronary arteries, previous studies
focused on isolated vessels, thus disregarding their in vivo stiffness. As discussed
in Chap. 5, a method for evaluating patient-specific vascular stiffness in the clinic
is required. At present, it is unclear whether reliable evaluation of the patient’s
vascular stiffness may be achieved by combining current clinical indices of stenosis
(e.g., combining FFR and %AS). An alternative approach may be to measure
functional stenosis indices (i.e., FFR) in a single individual under several loading

http://dx.doi.org/10.1007/978-1-4899-7630-7_5
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conditions. The functional characteristics (e.g., resistance, stiffness) of the stenosis
may then be separated from those of its downstream microvasculature to allow for
patient-specific understanding of the effect of the stenosis on the coronary flow.

10.6.2 Coronary Autoregulation

Autoregulation is achieved by vasoactivity of the smooth muscle cell (SMC) in
the walls of coronary arterioles. The mechanisms of coronary autoregulation are
complex and only partially understood. It has been shown (Jones et al. 1995; Kuo
et al. 1988, 1995; Liao and Kuo 1997) that coronary arterioles (<200 �m diameter)
actively respond to changes in intravascular pressure (myogenic response) in shear
stresses (flow-mediated dilation) and to concentrations of metabolites (metabolic
response). The magnitude of response to each stimulus depends, however, on the
vessel diameter (Kuo et al. 1995; Liao and Kuo 1997) and on the transmural location
(Kuo et al. 1988). Unfortunately, data regarding the magnitude of responses are
highly sparse. Furthermore, the available data were obtained only under steady flow
conditions, whereas coronary flow is highly oscillatory. Hence, a major research
question relates to the driving stimuli of each autoregulation response in the in
vivo dynamic flow, e.g., is it the time-averaged pressure/shear stress or other
characteristics of the phasic pattern such as the stimulus frequency, or its extremum
levels? As an example, the myogenic response of arteries in the rat kidneys was
observed (Loutzenhiser et al. 2002) to be controlled by the highest (systolic) blood
pressure.

10.6.3 Coronary Flow and Ventricular Energetics

An interesting outcome of the summarized studies relates to the combined effect of
elevation in both aortic and left ventricle pressure (PAo and LVP, respectively) on
coronary flow. Such combined elevation is a characteristic response to sympathetic
stimulus (afterload elevation) and is predicted by the model to have a complex
effect on coronary flow perfusion: PAo elevation increases perfusion, whereas LVP
elevation reduces it. Our preliminary results indicate that under such conditions,
which are associated with an elevation of myocardial work, the total flow to
all layers is significantly increased. These results suggest a mechanical control
mechanism that compensates over the increased myocardial metabolic demand
by increasing coronary flow. Suga (1979) showed a linear relation between the
myocardial pressure-volume area and oxygen consumption, where the slope of this
relation is the myocardium work efficiency. Hence our computational framework, if
combined with a model of the entire heart system, is likely to facilitate quantitative
evaluation of the above suggested control mechanism or an alternative hypothesis.
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10.6.4 Determinants of Intramural Artery Athero-Protection

Atherosclerosis was shown (Caro 2009) to be highly affected by the dynamic,
local flow conditions. However, only epicardial arteries are prone to atherogenesis,
whereas intramural coronaries were observed to be athero-protected (Geiringer
1951; Robicsek and Thubrikar 1994). The underlying mechanistic reason for this
epicardium/intramyocardium difference is yet unknown, though it is commonly
accepted (Zhang et al. 2007) that the dynamic nature of blood flow induces
morphological changes in large arteries. Hence, consideration of the dynamic
local trans-vascular pressure and shear stress in vessels from different transmural
myocardial layers and of the associated vessel responses to them are expected to
provide insights into the determinants of athero-protection of intramural arteries.

10.7 Discussion

Comprehension of the underlying mechanisms of coronary flow dates back to the
seventeenth century, when Scaramucci (1696), commonly regarded as “the father
of coronary physiology” (Kajiya et al. 2008), hypothesized that deep myocardial
vessels are squeezed during systole and filled during diastole. However, only the
later introduction of mathematical models allowed for quantitative flow analysis.
This resulted in a significant advancement in the understanding of coronary flow,
especially when the advance in models was accompanied by advances in flow
measurement techniques. Although coronary flow models became increasingly
sophisticated, the coronary system is still simplified using lumped, linear mathe-
matical models (Spaan 1991). This simplification is justified mainly by the ease
of conception and simulation. It is not justified, however, in line with the highly
nonlinear vessel mechanical and biological behavior, nor with the substantial effect
of flow conditions in remote vessels along the coronary tree.

Here, we advanced the current understanding of coronary flow under normal and
pathological conditions by removing ad hoc assumptions. This was achieved by a
physics-based analysis of the dynamic, transmural flow in a distributive coronary
network. The analysis is unique in several aspects: First, it is based on fundamental
mechanical properties and on measured morphometry. Secondly, it provides unique
information about the dynamic flow and its mechanistic origins in coronary vessels
of all diameters and in all myocardial transmural locations. The predictions are
validated with both qualitative and quantitative available data (Algranati et al. 2010),
resulting in good agreement. Importantly, the agreement with the data is obtained
with no parameter adjustment. An important attribute of the present analysis is the
extensive model testing and validation against both qualitative and quantitative data
(Algranati et al. 2010). The results show (Table 10.1) that although several previous
linear models may be acceptable when validating against a narrow scope or limited
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ranges of data, they cannot account for a wide scope of different data. This points to
the importance of using as many data sources as possible for model validation.

In summary, the model-based predictions are as follows:
(1) The extravascular loading applied on coronary vessels by the contracting

myocardium (myocardium/vessel interaction) results from a combined effect of
LVP-derived interstitial pressure and contraction-induced intramyocyte pressure;
(2) subendocardial vulnerability to stenosis-induced reduction in perfusion pressure
stems from the combined effects of cardiac contraction and a sigmoidal PDR that
gives rise to transmural compliance; and (3) the reliability of the FFR as an index
of stenosis severity is higher than that of other commonly used indices such as the
degree of occlusion (%-stenosis) and the hyperemic stenosis resistance (HSR), but
its reliability is compromised by dependency on coronary vascular stiffness.
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Chapter 11
Microstructure-Based Constitutive Models
for Coronary Artery Adventitia

Huan Chen, Xuefeng Zhao, Xiao Lu, and Ghassan S. Kassab

Abstract A structure-based constitutive model can accurately predict mechanical
behaviors of blood vessels and enables a better understanding vascular patho-
physiology. Most microstructural models assume affine deformation, i.e., fiber
constituent deforms as the same as the tissue, and employ idealized microstructure
due to the limited morphological data on vessel constituents. The goal of this
chapter is to (1) introduce a new microstructural mechanical model that removes
the affine deformation assumption and (2) to obtain quantitative microstructural
data of coronary arteries. We develop a micromechanics-based constitutive model
of fibrous tissue to take into consideration non-affine deformation that intrinsically
induced by heterogeneous interactions between the constituents. Elastin fibers,
cells, and ground substance are collectively considered as a solid-like matrix
while collagen fibers is a reinforced phase. The model accounts for the waviness,
orientation and spatial distributions of collagen fibers and provides a good
prediction of macroscopic responses of the tissue which agree well with the
finite element simulation results as a golden standard. We then use multiphoton
microscopy to quantify the geometrical features of elastin and collagen fibers under
mechanical loads. Simultaneous loading-imaging of the coronary adventitia allows
measurements of the morphometry and in situ deformation of individual fibers. The
population of fibers geometrical parameters including orientation angle, waviness,
width and area fraction were measured at no-load state and the mechanical loading–
deformation relation of fiber geometrical parameter were obtained as well. The
present model and experimental studies are seminal for structural models and will
lead to a better understanding of vascular biomechanics.
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11.1 Introduction

Hemodynamics, wave propagation and distensibility of arteries, plaque stability and
rupture, and vascular growth and remodeling are strongly affected by the stress or
strain of the cells in vessel walls. An understanding of mechanical properties of
blood vessels is thus fundamental to clarify the initiation and progression of diseases
such as atherosclerosis (Vito and Dixon 2003). The vascular mechanical properties
largely stem from microstructural components such as elastin and collagen fibers,
cells, and ground substance (Oka and Azuma 1970; Azuma and Hasegawa 1971;
Azuma and Oka 1971; Oka 1972). Thus, the relation between the microstructure
and macroscopic mechanical properties of the vessel is essential in both biomedical
research and clinical practice. Accurate prediction of microstructural deformation
and loading, and in turn function, will result in a new level of understanding of the
tissue.

The arterial wall is composed of three distinct layers: intima, media, and adven-
titia. The intima is normally very thin and contributes negligibly to the mechanical
properties of the artery, while the media serves as the most important mechanical
layer as it bears the majority of the load under physiological state (Lu et al. 2004).
The media consists of three mechanically significant constituents: smooth muscle
cells, elastin, and collagen fibers. The smooth muscles, when activated, achieve
active response to physiological loads by altering the circumferential mechanical
properties (Dobrin 1984; Tanaka and Yamada 1990). The passive state of smooth
muscle cell may also contribute to the arterial behavior but the extent of this
contribution is not currently well known. Elastin fibrils have relatively lower
stiffness and larger deformability, which helps to maintain blood flow through a
windkessel effect in elastin vessels. The outer layer, the adventitia, consisting of
dense collagen fibers, some elastin fibers and some fibroblasts, contributes to the
mechanical properties mainly by facilitating tethering to the surrounding connective
tissue (Clark and Glagov 1985). At physiological pressures, the adventitia is less
stiff than the media and its mechanical function is mainly to support the vessel. At
higher pressures, such as in hypertension, however, the collagen fibers reach their
straightened lengths and the adventitia becomes a stiff tube which prevents the artery
from overstretch and ruptures (Holzapfel et al. 2000; Humphrey and Na 2002).

11.1.1 Phenomenological Constitutive Model

The vast majority of constitutive models of blood vessel assumes a single layer
homogeneous wall and is phenomenological in nature. A 2-D exponential strain
energy function (SEF) was introduced by Fung et al. (1979) to describe highly
nonlinear mechanical behavior of arteries, and later was generalized into a 3-D form
(Chuong and Fung 1983), in which the formulation applied to axisymmetric defor-
mation of the vessel where the principal directions of the stress and strain tensors
coincide with the radial, circumferential, and axial directions, i.e., assuming zero
shear deformation. An extension of this model was proposed by Deng et al. (1994)
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by adding a radial–circumferential strain to analyze axial torsion experiment and to
determine the respective shear parameter. Humphrey (1995) subsequently developed
a more general form of Fung-type SEF for arbitrary 3-D deformations. Other forms
of hyperelastic constitutive models include the four-parameter logarithmic SEF of
Takamizawa and Hayashi (1987), and the polynomial SEFs developed by Vaishnav
et al. (1973) with 3, 7, or even 12 parameters. Since the 1990s, a number of studies
have considered the artery to be a two-layered structure theoretically and experimen-
tally (Von Maltzahn et al. 1981, 1984; Demiray and Vito 1991; Xie et al. 1995; Mat-
sumoto and Sato 2002; Lu et al. 2003, 2004). The vessel wall is assumed to be made
of two layers, of which each has its own elasticity constants and its own state of zero-
stress resultants and zero-stress moments. These single- or two-layer phenomeno-
logical models, however, cannot predict the microenvironment of vessel wall and
hence cannot elucidate the underlying mechanisms of vessel behavior. The param-
eters in these models have no physical meaning and are obtained by fitting experi-
mental data, which show large variability in material constants (Zulliger et al. 2004).

11.1.2 Microstructure-Based Constitutive Model

The idea of relating the macroscopic mechanical properties of arteries to the
arterial microstructures, including elastin and collagen fibers and cells, was first
demonstrated by Burton and Yamada (1951). Roach and Burton (1957) made a
quantitative study by differential digestion of elastin or collagen and measured the
mechanical properties of the digested artery. Oka (1972) proposed a theoretical
analysis of arterial wall, culminating in several well-known papers (Oka and Azuma
1970; Azuma and Hasegawa 1971; Azuma and Oka 1971). Azuma and Hasegawa
(1971) discussed the rheological properties of arteries and veins in terms of the
networks of collagen, elastin, and smooth muscle cells. Their works showed that the
mechanical properties of the vessels are intimately associated with microstructural
components such as elastin and collagen fibers, cells, and ground substance. Based
on this idea, many efforts have been made to derive the constitutive model of the
soft tissue from the geometry, distribution, and the mechanical properties of the
individual microstructures.

Two major classes of micromechanical models, in relation to the matrix material
(cells and ground substance) of the tissue, have been reported in literature. The first
class of models proposed by Lanir (1979, 1983) considers the tissue as a composite
of elastin and collagen fibers embedded in a fluid-like matrix. Thus, the fibers are
the only constituent phases that sustain non-hydrostatic loading such as tension and
shear, while the contribution of the fluid-like matrix is a hydrostatic pressure. This
assumption leads to a simplification that all the microstructures deform identically to
the macroscopic deformation of the tissue since no fiber interactions are considered,
such that the macroscopic SEF is the volumetric sum of the individual fibers’ SEF.
On the basis of this assumption and thermodynamic consideration, Lanir developed
a general multi-axial theory for the constitutive relations in fibrous connective
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tissues (Lanir 1979, 1983). Similarly, Decraemer et al. (1980) proposed a parallel
wavy fibers model for soft biological tissues in uniaxial tension, followed by Wuyts
et al. (1995). More recent developments of fluid-like matrix based models can be
referred to in Humphrey and Yin (1987), Dahl et al. (2008), and Lokshin and Lanir
(2009).

A second class of micromechanical models assume the tissue as a collagen fiber
reinforced composite, whose matrix is a solid-like material that can take up loading.
This assumption is motivated by the fact that the elastin, which is part of the matrix,
becomes straightened and starts to take the load in the early deformation of the
tissue. For example, the experimental study of Gundiah et al. (2007) suggested
that the elastin is described with a neo-Hookean constitutive model. Based on this
solid-like matrix assumption, Holzapfel and Weizsäcker (1998) and Holzapfel et al.
(2000) modeled the arterial wall as a two-layer fiber-reinforced composite, where
the macroscopic SEF of soft tissue stems from two sources: (1) an isotropic part
associated with the mechanical response of the non-collagenous matrix material
(elastin fibers, cells, and ground substance) and (2) an anisotropic part due to
the deformation of two classes of collagen fibers symmetrically disposed with
respect to the axis of the vessel. Successive developments of this model can be
found in Zulliger et al. (2004), Kroon and Holzapfel (2008), and Li and Robertson
(2009). Specifically, Zulliger et al. (2004) made further refinement to account for
the distribution of the waviness of collagen fibers and different SEF of the matrix
and collagen fibers. Mechanical predictions of these models are more accurate than
that of phenomenological models as they account for heterogeneity of material
properties and geometrical features of vessel components. These models, however,
cannot accurately predict microenvironments of vessel, i.e., strain and stress of
individual fiber or cell, since they all assume affine deformation in tissue, i.e., the
deformation of the collagen fibers and the matrix are identical to the macroscopic
deformation of the tissue (Chen et al. 2011b), and the microstructure is not based on
histological measurements in arteries (Chen et al. 2011a).

Recently, Chen et al. (2011b) developed a finite-strain homogenization approach
based on the second-order estimate (SOE) theory to predict the macroscopic stress–
strain relation and microstructural deformation of vascular tissue, and showed
significant improvements over previous microstructure models when compared to
finite-element (FE) simulations. This micromechanical model considers measured
histological geometrical features and material properties of vessel constituents, and
allows more flexible deformation in each component. Hence, the model provides a
better prediction of macro- and microscopic mechanical behavior of vascular tissue.

11.1.3 Quantitative Data of Coronary Artery Microstructure

The majority of microstructure-based constitutive models simplify the microstruc-
ture by assuming fibers to be symmetrically disposed with respect to the axis of the
vessel (with a preferred orientation) to yield a macroscopic orthotropic constitutive
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law for each layer as aforementioned (Holzapfel and Weizsäcker 1998; Holzapfel
et al. 2000; Zulliger et al. 2004). Other models assume the geometrical features of
fibers follow a typical continuous distribution such as beta distribution with primar-
ily planar array (Lanir 1983; Lokshin and Lanir 2009; Chen et al. 2011b; Hollander
et al. 2011). The lack of accurate quantitative data of microstructure and deformation
of elastin and collagen fibers in structural models is a barrier to accurately predict
a vessel microenvironment. Therefore, comprehensive geometrical data of tissue
microstructure are needed for understanding the morphology of arteries and for the
development of mechanical modeling.

The development of nonlinear imaging modality (multi-photon microscopy,
MPM) has enabled noninvasive measurements of biological tissues and cells. MPM
imaging is driven by two primary types of nonlinear interaction between ultra-fast
laser light and biological tissues: two-photon excited fluorescence (TPEF) for elastin
and second-harmonic generation (SHG) for collagen. MPM is well developed and
widely implemented for imaging cells (Campagnola et al. 2001; Mansfield et al.
2009), thin tissue sections (Campagnola et al. 2002; Garcia and Kassab 2009),
thick unstained biological specimens (Zoumi et al. 2004; Arkill et al. 2010), and
engineered tissues (Zoumi et al. 2002; Raub et al. 2008). Although the MPM studies
of microstructure of arteries have advanced during the past decade, quantitative
morphological data for elastin and collagen fibers have not been well established
as the fibers are well knit, close to each other and dense.

The mechanical loading–deformation relation of elastin and collagen fibril
bundles is fundamental to understand the microstructural properties of arteries.
In situ deformation studies of fibers under physiological state have been limited,
however, due to difficulties in implementation of simultaneous mechanical loading–
imaging of fresh unfixed and unstained tissue at a microscopic level. Some studies,
based on the use of the custom planar mechanical devices (Hu et al. 2009; Timmins
et al. 2010; Keyes et al. 2011a), required splaying a vessel open that introduces
undesired stress to the specimens. Recently, simultaneous mechanical loading-
imaging on a fresh unfixed, unstained lymphatic vessel was conducted to investigate
the microstructure and their responses to external mechanical loading (Arkill et al.
2010; Keyes et al. 2011b). They investigated the reorientation of collagen and elastin
fibers under pressurized conditions and provided the corresponding statistical data.
These studies, however, lacked the capability of tracking the scan area between
loading states and were not able to measure in situ deformation of individual
fibers. A recent study overcame this limitation by using fluorescent microspheres
as markers to track the scan area as well as deformation of individual fibers (Chen
et al. 2011a). This study quantified the geometrical data of collagen and elastin fibers
as well as their loading–deformation behavior on a unstained fresh coronary artery
adventitia.

In this chapter, we will provide some details on micromechanical models and
measurements of artery microstructure. The motivation and basis of the recently
proposed SOE homogenization approach are introduced in Sect. 11.2, and discus-
sion of microstructural models based on affine deformation assumption is made as
well. In Sect. 11.3, quantitative geometrical data of the collagen and elastin fibers
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of arterial wall under in situ deformation using MPM are described. The limitations
and future directions are elaborated in the last section.

11.2 A Finite-Strain Micromechanics Model of Fibrous
Tissue

All microstructural constituents contribute to the mechanical response of vascular
tissue to loads. The macroscopic effective strain–stress relation of vessel wall
is associated with the geometrical feature and mechanical properties of elastin,
collagen fibers, cells, and ground substance. Statistical deformation or stress of
each component (such as a single fiber) depends on its own stiffness, geometry,
and interaction with each other. Thus, accurate description of geometrical and
mechanical properties of microstructure is essential to a microstructure-based
constitutive model.

11.2.1 The Geometrical and Mechanical Features of Tissue
Constitutes

In the adventitia, dense and wavy collagen fibers form an interwoven network that
tangles with elastin fibers (Wolinsky and Glagov 1967; Rhodin 1980). Histologi-
cally, a collagen or elastin fiber is well described as a bundle of loosely bounded
fibrils (Fratzl et al. 1998; Ottani et al. 2001; Chen et al. 2011a). In an undulating
state, such a fiber can deform with very little stress. When straightened, it can sustain
a significant amount of stress. Experimental observations showed that elastin fibers
are much less undulated than collagen at zero-stress state, so they gradually extend
(Lu et al. 2004; Chen et al. 2011a) to take up load together with the fibroblasts and
ground substance at very low strain level. At this level of deformation, the stress–
strain behavior of the tissue exhibits only weak nonlinearity since the stiffness of
elastin fibers is not significantly higher than the fibroblasts and ground substance.
When the artery is distended beyond a certain stretch ratio, the collagen fibers are
gradually straightened and begin to take up increasing loads in a manner, which
depends on the deformation of the network. Since the collagen fibers have much
higher tensile stiffness than elastin fibers and ground substance, full engagement
of collagen leads to the highly nonlinear overall mechanical properties of the
adventitia.
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Material Property of Matrix

Noncollagenous matrix material (elastin and cells) is associated with an isotropic
mechanical response of vessel wall, while anisotropic deformation is almost entirely
due to collagen fibers. So, elastin, fibroblasts, and ground substance make up the
effective isotropic matrix and the collagen fibers are considered as the reinforcing
phases. This approximation is consistent with the framework of Holzapfel and
Weizsäcker (1998), Holzapfel et al. (2000), and Gundiah et al. (2007), and the matrix
material is described by an approximate incompressible .� � �/ neo-Hookean
SEF as:

W.0/ .F/ D Wiso .F/ D � .I1 � 3/ =2� � ln I3 C .3� � 2�/ .I3 � 1/2=6; (11.1)

where F is the deformation gradient, I1 D tr C (C D FT � F), and I3 D p
det .C/

are the first and the third invariants of the right Cauchy-Green deformation tensor. �
and � is bulk and shear modulus, respectively.

Geometry and Material Property of Collagen Fibers

The SEF of a single collagen fiber is associated with its material property as well
as structure. The waviness of a single undeformed collagen fiber is defined as the
ratio of the end-to-end distance S0 and the straight length l0 as 
0 D S0=l0. It should
be noted that the fiber becomes straightened to take up loads when it is stretched
along the fiber direction with a ratio > 
0. The orientation of a fiber is described
by the overall direction N. The shape of the fiber can be described by a geometric
tensor Zs D 2l�10 N ˝ N C r�1

L nL ˝ nLL C r�1
s nS ˝ nS, where .rL; nL/ is the cross-

sectional long axis and .rS; nS/ is the short axis. So each fiber has its own geometric
properties (
0, Zs).

The orientation and waviness of fibers were found to follow certain continuous
distribution functions (Sacks 2003; Chen et al. 2011a). In the present homogeniza-
tion modeling, the collagen fibers are categorized into N phases for convenience,
such that the r-th phase has the same geometric properties (
0, Zs) and occupies a
volume fraction c(r) in the composite. Correspondingly, the volume fraction of the

matrix, denoted as phase 0, is c.0/ D 1 �
XN

rD1c
.r/. Furthermore, we use another

geometric tensor Zd to characterize the spatial distribution of fibers centers (Willis
1977; Ponte Castañeda and Willis 1995).

Given that a collagen fiber deforms the same as the soft matrix before straight-
ening and becomes stiffer when straightened, the constitutive SEF for a single fiber
is assumed to have the form:

W.r/ .F; X/ D
8<
:

W.0/ 
 < 

.r/
0 ; .2a/

W.0/ C W.r/
fiber .
/ 
 � 


.r/
0 ; .2b/
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where 
 D p
N.r/ � .FT � F/ � N.r/ is the stretch of the r-th fiber along its direction

N(r) and 
(r)
0 is the waviness of the r-th fiber. This approximation implies that when

the tissue is at the reference state (macroscopic deformation gradient F D I), all the
r-th phase fibers are wavy so that they deform with SEF W(0). When F increases,
some fibers are straightened to take up loads, and the tissue is considered as a
composite with reinforced fibers with additional SEF W (r)

fiber, of which macroscopic

SEF is W
�

F
�

. The anisotropic term W (r)
fiber(
) in the SEF of fibers is selected as:

W.r/
fiber .
/ D E1

�

 � 


.r/
0

�2
=2C E2

�

 � 


.r/
0

�3
=3 (11.3)

This is a generalization of the linear model employed in other works (Lanir
1979, 1983; Decraemer et al. 1980; Wuyts et al. 1995) where only the first term�

 � 


.r/
0

�2
was included. In Principle, the homogenization model employed in this

work can use any well-defined constitutive model of the matrix and fibers.

11.2.2 Homogenization Approach Based on Uniform-Field
Assumption

Based on thermodynamics, the heterogeneous hyperelastic SEF of a composite

is determined as W .X; F/ D
XN

rD0�
.r/ .X/W.r/ .F/, where �.r/ D 1 when

X 2 �.r/ (the volume occupied by phase r), and 0 otherwise. The classical works of
Hill (1972), Hill and Rice (1973) and Ogden (1978) proved that the macroscopic
constitutive property for a microscopically inhomogeneous hyperelastic material
can be described with macroscopic or effective SEF:

W
�

F
�

D min
F2�.F/

hW .X; F/i D min
F2�.F/

XN

rD0c
.r/
˝
W.r/ .F/

˛.r/
(11.4)

where �
�

F
�

denotes all admissible deformation gradient field in the representative

volume element (RVE) of the composite such that the displacement u on the

boundary @� of RVE is u .X/ D
�

F � I
�

�X (where rigid body motion is excluded).

The notation h�i denotes volumetric average in the RVE and h�i.r/ denotes volumetric
average in the r-th phase. This equation represents the principle of minimum strain
energy in micromechanics, and the efforts to seek an approximate minimizing field
F(X) have resulted in several classes of finite-strain micromechanics models.

Some homogenization models of soft tissue assume that deformation of rein-
forced collagen fibers is identical to that of solid-like matrix as well as bulk tissue,
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i.e., assuming a uniform deformation field in the RVE F .X/ D F. Thus, the

macroscopic SEF W
�

F
�

is simply the volumetric sum of the constituents:

W
�

F
�

� WU

�
F
�

D
XN

rD0c
.r/W.r/

�
F
�

(11.5)

Since F .X/ D F is an admissible deformation field that does not minimize the

total strain energy, WU

�
F
�

is an upper bound of the exact W
�

F
�

. Consequently,

the macroscopic stress field SU D @WU=@F (S is the transpose of the first Piola–

Kirchhoff stress and is related to the Cauchy stress ¢ by S D ¢ � F
�T

) is the upper
bound of the exact macroscopic stress for a given F. A number of works (Holzapfel
and Weizsäcker 1998; Holzapfel et al. 2000; Zulliger et al. 2004; Kroon and
Holzapfel 2008; Li and Robertson 2009) employ this uniform-field approximation
F .X/ D F in various forms, and thus are all upper bounds.

11.2.3 Second-Order Microstructural Model

An SOE homogenization method for fibrous tissue in finite-strain deformation was
implemented (Chen et al. 2011b) to consider the statistical microstructural geometry
of the tissue and provide a better constitutive model than the uniform-field upper
bound recently. This SOE homogenization approach has been well developed and
applied for composites in the past decade (Ponte Castañeda 2002; Lopez-Pamies
and Ponte Castañeda 2004a).

The key premise of SOE method is to introduce a linear thermoelastic com-
parison composite (LTCC) that has the same microstructures as the nonlinear
composites, but each of the phases is linearly thermoelastic with SEF (Ponte
Castañeda 2002; Lopez-Pamies and Ponte Castañeda 2004a):

W.r/
T .F/ D W.r/

�
F�.r/�C ¡�.r/ �F � F�.r/�

C 1

2

�
F � F�.r/�L.r/

�
F � F�.r/� .r D 0; 1; : : : ; N/ ; (11.6)

in which the reference modulus L(r) and virtual residual deformation gradient

F* (r) are to be determined later for conditional minimization, i.e., W
�

F
�

D
min

F2�.F/
hW .X; F/i, and ¡�.r/ D �

@W.r/=@F
�

FDF�.r/ . According to generalized

Legendre transform of the strain energy as in Ponte Castañeda (2002) and Chen
et al. (2011b), it is shown that the exact macroscopic SEF can be approximated by:
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W
�

F
�

D min
F2�.F/

hW .X; F/i � minfF�.s/;L.s/g
n
WT

�
FI ˚F�.s/; L.s/

��

C
XN

rD0c
.r/V.r/

�
F�.r/; L.r/

�o
(11.7)

where WT is the effective strain energy for the LTCC, and V.r/
�
F�.r/; L.r/

� D
supbF

n
W.r/

�bF� � W.r/
T

�bF�o. This derivation translates the optimization over contin-

uous deformation field F 2 �
�

F
�

to that of respective tensors L(r) and F�.r/. In

theory, the field F 2 �
�

F
�

must satisfy continuity and compatibility conditions,

while L(r) and F�.r/ can be arbitrary within the physically meaningful ranges.
Equation (11.7) is identical to the principle of minimum energy, provided that L(r)

and F�.r/ are allowed to change from point to point in the material. In standard
nonlinear micromechanics (Willis 1977; Ponte Castañeda 2002; Lopez-Pamies and
Ponte Castañeda 2004a), L(r) and F�.r/ are assumed to be uniform for the r-th phase
and equation (11.7) is an estimate of the exact SEF.

As has been derived in (Kailasam et al. 1997), the effective strain energy for the
LTCC WT is estimated by taking into account the shape and distribution tensors Z(r)

s
and Zd , as

WT

�
F
�

D 1

2

�
F � I

� QL
�

F � I
�

C Qs
�

F � I
�

C 1

2
Qg C

XN

rD0c
.r/w.r/0 (11.8)

where QL is the effective stiffness of LTCC, Qs, w(r)
0 , and Qg are the macroscopic residual

stress and energies. These quantities all depend on the phase modulus L(r), residual
deformation gradient F�.r/ as well as geometric property Z(r)

s and microstructural
spatial distribution function Zd (Chen et al. 2011b).

The stationary procedures involved in the above derivation, maximization of
V(r) and the minimization in (11.7), yield a set of nonlinear tensorial equations for
determination of the unknown reference modulus L(r) and reference deformation
gradient F�.r/ (Ponte Castañeda 2002; Lopez-Pamies and Ponte Castañeda 2004a,
b, 2006). These equations have multiple solutions that lead to various estimations of

the macroscopic SEF W
�

F
�

. A tangent solution was employed here, in which the

reference deformation gradient F�.r/ is taken to be the average deformation gradient

F
.r/

in the r-th phase of the LTCC and L(r) is the tangent stiffness tensor evaluated

at F
.r/

. This solution leads to V.r/
�
F�.r/; L.r/

� D 0 and an estimation of W
�

F
�

, as:

W
�

F
�

� WS

�
F
�

D
XN

rD0c
.r/


W.r/

�
F
.r/
�

C 1

2
¡.r/

�
F
.r/
� �

F � F
.r/
��
: (11.9)
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11.2.4 Comparison of Modeling Predictions

Both uniform-field (UF) approach and tangent second-order micromechanics model
were applied to 2-D material with distributed collagen fibers, respectively. The
planar tissue stretches along the principal direction of the fibers with stretch ratio

, but shrinks in the transverse direction to maintain material incompressibility.
The material property of matrix is directly taken from Holzapfel et al. (2000)
and the bulk modulus is set as k � � in simulation to account for material
incompressibility. The material parameters E1 and E2 in the present W (r)

fiber(
) were
fitted to the exponential form in Holzapfel et al. (2000) with 
0 D 1:6 (the mean
value of distribution of the waviness).

To simplify the simulations, all the fibers were assumed to be isotropically
distributed in space .Zd D I/ and have the same undeformed cross-sectional
geometry with rL D rS D 0:05l0. The fiber orientation was assumed to follow a beta
distribution (Sacks 2003), and the waviness was also assumed to be beta distributed
but direction dependent in line with tissue ultrastructure (Brown 1973; Sverdlik and
Lanir 2002). The orientation distribution was discredited into 13 regions and the
waviness was discredited into five regions, so that the collagen fibers are categorized
into 65 phases according to their orientation and waviness. The total volume fraction
of collagen fibers is taken as 20 % and that of the matrix was 80 %. The volume
fraction of every fiber phase was determined by its cumulative probabilities of the
orientation and waviness. For example, the r-th fiber phase with mean orientation
angle � D 10ı and waviness 
0 D 1:6 is 0.15 % (Chen et al. 2011b). FE simulations
were used for the purpose of model validation. The FE model contained �200
randomly distributed fibers whose orientation angle and waviness were randomly
assigned according to the beta distribution. The average Cauchy stress was outputted
and compared with the model prediction.

The model predictions of the macroscopic SEF W and the tensile Cauchy stress
�11 of fibrous tissue are plotted in Fig. 11.1, in comparison with FE computational
results. At low stretch level (
 < 1:6), most fibers are still undulated or have just
been straightened and deform as the same as matrix so that effective macroscopic
SEF and Cauchy stress of tissue predicted by UF and SOE models are very similar
and approximate to that of pure matrix material. When the macroscopic deformation

 is >1.6, predictions of the two models become different. The UF predictions
of SEF and Cauchy stress increase rapidly with higher macroscopic stretch ratio
while SOE results increase slowly and predicted Cauchy stress is consistent with
FE simulation as shown in Fig. 11.1b. At this loading level, collagen fibers become
straighten completely to take up loads and deform less than matrix. The UF
model, however, overestimates the deformation field of stiffer fibers (assuming it is
identical to that of matrix) and hence approaches upper bounds of the exact SEF
and Cauchy stress. The SOE model statistically accounts for the heterogeneous
deformation of the matrix and fibers, which is due to the heterogeneities of
microstructural geometries and material properties as well as matrix–fiber and fiber–
fiber interactions. Thus, the deformation field employed by SOE is more realistic
and leads to lower estimates of the macroscopic SEF and stress than the UF upper
bounds.
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Fig. 11.1 The macroscopic strain energy function (a) and Cauchy stress–stretch relation (b) of
fibrous tissue with 20 % randomly distributed collagen fibers. Values are normalized with material
parameter �. The reference fiber material has waviness 
0 D 1:6

In the SOE prediction, the statistical deformation is flexible and non-affine,
i.e., fibers with different orientation and waviness deform differently once they
are straightened and become stiffer to take up the load. Figure 11.2a describes the
influence of waviness 
0 on the microscopic stretch of the fibers. The axial stretch
of collagen fibers that are parallel to the loading axis .� D 0ı/ and with waviness

0 D 1:5; 1:6; 1:7 and 1.8 are plotted. In UF method, the deformation gradient of
the matrix and all fibers are identical to the applied macroscopic deformation, i.e., 
.
In the SOE model, the microscopic deformation is non-affine once some fibers are
straightened and become stiffer to take up the load. For fibers with a low waviness,
such as 
0 D 1:5, their stretch shows a tendency of becoming straight at large
macroscopic deformation. As a result, the matrix phase must deform slightly more
to accommodate the applied macroscopic deformation, as indicated by the solid line
in Fig. 11.2a, which is noticeably higher than the UF prediction. Figure 11.2b plots
the stretch of fibers with orientation angle � D 0ı; 10ı and 20ı, and waviness

0 D 1:6, showing the influence of the orientation angle � on the statistical average
microscopic stretch of the fibers. The UF predictions depend on the orientation but
not the waviness. The SOE predictions also show similar trend that larger orientation
angle � leads to later engagement of the fiber.

The macroscopic stretch 
 that straightens the fibers with � D 0ı; 15ı and
25ı, and 
0 from 1.4 to 1.8, denoted as the macroscopic straightening stretch, is
plotted in Fig. 11.2c. The macroscopic straightening stretches predicted by SOE
model are consistently lower than the UF predictions, indicating earlier engagement
of the fibers. The difference is more significant for fibers with larger angle and/or
higher waviness. As discussed above, the earlier fiber engagement is due to the
heterogeneous microscopic deformation predicted by SOE method. Once a fiber
is straightened, it deforms less than those undulated fibers and the macroscopic
deformation, due to the engagement of higher SEF. This mechanism prevents over
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Fig. 11.2 The influence of waviness 
0 and orientation angle � on the statistical average micro-
scopic stretch of the fibers. (a) The microscopic stretch of matrix phase (solid line) and collagen
fibers (symbols) with orientation angle � D 0ı and different waviness; (b) the microscopic stretch
of collagen fibers with waviness 
0 D 1:6 and different orientation angle. (c) The macroscopic
stretch that straightens the undulated collagen fibers with different orientation angle

stretch of the fibers with low waviness 
0 in the tissue under large macroscopic
deformation (Fig. 11.2). Since there is limit for the collagen fibers to stretch
beyond the straightening value (Mohanaradhakrishnan et al. 1970), this prediction
is qualitatively consistent with the protective role of fibers in the tissue.

It is important to investigate the predictive capability of UF and SOE models
under different conditions. Figure 11.3 shows model predictions of macroscopic
Cauchy stress of two tissues with the same waviness 
0 D 1:6 but with different
span of the fiber orientation distribution (span � D 0ı and 60ı, respectively).
These tissues are stretched along the principal direction of the fibers (� D 0ı),
but contracted in the transverse direction. While � D 60ı, the UF estimates are
significantly higher than both SOE and FE. For� D 0ı, the UF estimates, however,
are similar to both FE and SOE results. The span � of fiber orientation distribution
plays a very important role in FE and SOE predictions, but is much less significant
in UF model. It seems that the UF prediction of the macroscopic stress is considered
accurate for tissue with very narrow distribution of fiber orientation.

11.3 Quantitative Morphometric Data of Coronary
Adventitia

In order to quantify the geometrical features of fibers under deformation, unstained
fresh adventitia specimens of arteries were imaged simultaneously under various
mechanical loading, and the in situ deformation of elastin and collagen fibers were
measured for a given fiber. Statistical analysis was also carried out to describe the
population of fibers in terms of geometrical features, such as orientation angle,
waviness, width, and area fraction. These data establish a microstructural foundation
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Fig. 11.3 The macroscopic
tensile stress–strain curve of
fibrous tissues with 20 %
randomly distributed collagen
fibers. The beta distribution
of the fiber orientation angle
� has mean M D 0ı and span
� D 0ı and 60ı, respectively

for vascular biomechanics and may lead to a better understanding of vascular
function and dysfunction.

11.3.1 Material and Method

Sample preparation: The swine left anterior descending (LAD) arteries (n D 7) were
dissected carefully from hearts in saline and were inverted (turned inside out). The
exposed intima-media layers were then peeled off carefully (Chen et al. 2011a).
Since the penetration depth of the MPM is limited and the loose tissue on external
adventitia layer cannot be removed thoroughly, inverted adventitia segment was
scanned. The adventitia at no-load state is rather loose and the opening angle is
relatively small (Lu et al. 2004), so the mechanical deformation is not significantly
altered by the inversion.

Simultaneous mechanical loading–imaging: MPM images (Z-stack) from the
adventitia specimen were obtained using a combined SHG/TPEF setup (Chen et al.
2011a). The specimen was first mounted on a custom-made organ bath chamber, and
an elastic balloon was inserted to conduct distension and extension testing for vessel
segments. The specimen was preconditioned several times before testing. Diameter
of a segment was recorded by a commercial camera (Canon T1i), and fluorescent
microspheres (excitation/emission wavelength: 540/584 nm) were dispersed on the
outer surface of specimen to track the scan area as well as the deformation of
individual fiber during loading. When increasing distension load, the elastic balloon
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was inflated slowly to follow the scan area at all times during the scan. Five
mechanical loading conditions were considered: 
� D 1:0; 1:2; 1:4; 1:6 and 1:8.

Image processing and statistical analysis: The elastin and collagen were found to
form multiple concentric densely packed fiber sheets, with thickness of 3–7 �m and
alternating principal directions. MPM images of the first five layers of specimens
were collected (total average thickness of 30 �m) due to penetration limitation
of MPM (Fig. 11.4). Image processing was then implemented on selected MPM
images (Chen et al. 2011a). Four geometrical parameters were measured: the
orientation angle � (circumferential direction � D 0ı), the waviness 
0, the width
D of a single fiber and the area fractions of fibers in images. The significance of the
differences between the variables under various mechanical loading was evaluated
by one-way ANOVA test, and the results were considered statistically different when
P < 0.05.

11.3.2 Morphometric Data of Elastin and Collagen Fibers
at No-Distension State

Both elastin and collagen fibers in inner adventitia formed layered structures (Haas
et al. 1991; Finlay et al. 1995), where orientation, width, and area fraction of
fibers revealed significant transmural variation as shown in Fig. 11.4. Such sublayer
structure was about 3–7 �m thick and occupied 30–40 % of the total adventitial
thickness. This structure did not present towards the exterior adventitia where
collagen fibers were highly random and elastin fibers were largely absent.

Fig. 11.4 Collagen and elastin fibers in inner adventitia form layered structures. Images (a–e) are
five collagen layers at different depth Z, and images (f–j) are five elastin layers at the exactly same
depth. In each layer, white arrow indicates the main orientation of fibers and yellow arrow indicates
the second principal direction for elastin (X, Y, Z: axial, circumferential, and radial directions)
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Fig. 11.5 Statistical data of microstructure of collagen and elastin fibers. (a) The orientation
distribution of fibers of all specimen layers; (b) the bell-shaped distribution of the collagen
fiber waviness of all layers; (c) layer-to-layer heterogeneity of the fiber width; (d) layer-to-layer
heterogeneity of area fraction of fiber

In each adventitia layer, there was a main orientation of collagen and elastin
fibers, and a secondary principal direction for elastin fibers as shown in Fig. 11.4.
The orientation angles of collagen fibers followed a bell-shaped distribution (trun-
cated normal distribution) in each layer. Furthermore, the main orientation angles
varied in subsequent layers randomly as shown in Fig. 11.4. The orientation distri-
bution of collagen fibers was shown in Fig. 11.5a, which demonstrated that most of
collagen fibers aligned at about 60ı in the no-distension state. The main orientation
angles of elastin fibers were parallel with collagen fibers but with secondary
principal directions. As a result, elastin fibers form a net-like structure and collagen
fibers tend to uniformly align in a layer, which confirms that isotropic mechanical
response of vessel wall predominates by non-collagenous matrix material (mainly
elastin fibers) while anisotropic deformation is almost entirely due to collagen fibers
in most models (Holzapfel et al. 2000; Zulliger et al. 2004; Kroon and Holzapfel
2008; Li and Robertson 2009; Chen et al. 2011b).
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Table 11.1 The
layer-to-layer heterogeneity
of mean width and area
fraction of fibers are assumed
as linear function:
P D ˛N C ˇ, where N is the
layer order

Geometric parameter Collagen Elastin
˛ ˇ R ˛ ˇ R

Width 0:34 1:76 0:97 �0:05 2:20 0:92

Area fraction 2:38 25:8 0:97 �1:73 27:0 0:95

This function is determined by least-squares method, and R
is the correlation coefficient between predicted data value and
experimental measurement

The waviness of the collagen fibril bundle was also found to follow a bell-
shaped distribution as shown in Fig. 11.5b (mean waviness is about 1.24). The
morphometric features of elastin fiber differed significantly from collagen where
elastin was rod-like rather than a spiral, and more than 80 % of elastin fiber
was straight (waviness 
0 � 1:0) at no-distension state (Fig. 11.4f–j). Collagen
fibers became thicker towards the exterior of adventitia, while elastin fibers became
thinner as shown in Fig. 11.5c. The width-layer relationships of fibers were curve
fitted using linear regression (solid line in Fig. 11.5c, Table 11.1). The width of
collagen changed more than that of elastin in inner adventitia. The average width of
collagen fibers of all layers was about 2.8 �m and that of elastin fibers was 2.0 �m.
Similarly, the area fraction of collagen fibers was found to increase significantly
in deeper layers while that of elastin fibers decreased moderately as shown in
Fig. 11.5d and Table 11.1. The average area fraction of collagen and elastin over
all layers were 33 % and 22 %, respectively.

The images showed that the elastin fibers were rarely found in exterior adven-
titia, where collagen fibers become much thicker and orient randomly. The outer
adventitia occupies about 60–70 % of adventitia thickness and the main function of
thicker collagen fibers is to support the vessel and connect with surrounding tissue
rather than to resist the transmural pressure. On the other hand, the inner adventitia
which consists of alternating elastin and collagen fiber layers plays an important role
in opposing the transmural pressure and prevents overdistension of vessel at high
loading. The aforementioned microstructure-based model (Chen et al. 2011b) can
consider the protective function of adventitia of coronary arteries with the present
measured geometry and deformation of microstructures to accurately predict both
macroscopic responses and microenvironment of blood vessel.

11.3.3 In Situ Deformation of Elastin and Collagen Fibers

In situ deformation of individual fibers under various mechanical loading was
tracked in reference to the fluorescent microspheres and the extent of fiber deforma-
tion depended on the initial orientation angle at no-distension state. Fibers oriented
towards the circumferential direction (distension direction) were stretched much
more than those aligned more axially, such that the former became straightened
or thinner earlier than the latter. For collagen fibers, the orientation angle and the
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Fig. 11.6 In situ deformation of collagen and elastin fibers. (a) Change of mean orientation angle
normalized by initial orientation angle; (b) change of mean waviness and waviness of elastin fibers
is about 1.0 constantly; (c) change of mean width normalized by initial width

Table 11.2 The mechanical loading–deformation relation of fiber
geometrical parameter is assumed as linear function: P D ˛ 
�Cˇ,
where 
� is circumferential stretch ratio of vessels

Geometric parameter Collagen Elastin
˛ ˇ R ˛ ˇ R

Waviness �0.22 1.43 0.95
Width 1:0 � 
� < 1:4 �0.10 1.11 0.70 �0.33 1.32 0.87

1:4 � 
� < 1:8 �0.40 1.51 0.88

waviness were approximately uniform in a layer so that fiber deformation tended to
be homogeneous while elastin fiber deformation was much more heterogeneous due
to the various fiber orientations.

Both collagen and elastin fibers gradually oriented towards the circumferential
direction (Fig. 11.6a). The orientation–distension relationships of collagen and
elastin were curve fitted by linear least-squares method in Table 11.2 (solid line
in Fig. 11.6a). Since collagen fibers aligned uniformly in a layer, the change of
their mean orientation angles was more homogeneous. The orientation angles of
elastin were heterogeneous with multiple directions as shown in Fig. 11.6a, i.e., the
orientation of collagen shifted towards the circumferential direction more gradually
than the elastin fibers. Furthermore, collagen fibers in a layer tended to align towards
the principal direction so that the bell-shaped distribution of orientation angles
became narrower (Chen et al. 2011a).

In Fig. 11.6b, a linear least-squares fit was used to describe the waviness–
distension relation of collagen (Table 11.2), which showed that the collagen fibers
were stretched gradually at elevated distension and became completely straightened
to take up loads at 
� � 1:8. Although the initial waviness of collagen fiber
slightly varied in different layers, the waviness became uniform under higher loads.
As shown in Fig. 11.6b (error bars are smaller under higher loads), the relative
dispersion (RD D SD/mean) of waviness of collagen fiber decreased gradually
with increase of loading conditions (i.e., RD D 6.0–2.9 
� ; R D 0.78 and P < 0.05).
This suggests that the layered structure adventitia has heterogeneous mechanical
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response to loads given the observed significant transmural heterogeneity. It should
be noted that the RDs of orientation angle and width of fibers were independent of
circumferential loads.

The change of collagen width was more homogeneous than that of elastin fiber
(Fig. 11.6c) consistent with the change of fiber orientation angle. The width change
of collagen fibers was insignificant at lower loading (
� D 1:0; 1:2 and 1.4,
and P > 0.05), but decreased at 
� > 1:4 (P < 0.05). Hence, a piecewise linear
function was used to describe the width–distension relationship of collagen fibers
(Table 11.2). On the other hand, elastin fibers became thinner continuously and
gradually at higher loading as shown in Fig. 11.6c.

The nearly uniform alignment of collagen fibers makes their deformation more
homogeneous than elastin fibers which have multiple directions in each layer.
As a result, collagen fibers were uniformly stretched and shifted towards the
circumferential direction of adventitia and elastin fibers gradually resembled a
network. Additionally, change of the fiber orientation and waviness depends on
both the longitudinal stretch and luminal pressure. The statistical data (Fig. 11.5a)
showed that most of elastin and collagen fibers oriented towards axial direction
rather than the circumferential direction at no-distension state with physiological
axial stretch ratio 
axial D 1:3. When the specimens were returned to their relaxed
axial length with luminal pressure remaining zero, elastin and collagen fibers
reoriented and aligned in the circumferential direction (Arkill et al. 2010), and
collagen fibers became slightly more undulated.

The collagen fibers thinned down significantly (Fig. 11.6c) at 
� � 1:4 albeit
they were not completely straightened at this state. This is consistent with the
diameter-pressure curve of coronary adventitia that shows the adventitia becomes
stiffer after 
� � 1:4 (Chen et al. 2011a). In other words, collagen fibers
in adventitia were gradually recruited after 
� � 1:4 to take up loads, and
then gradually predominate in the mechanical function of adventitia and became
completely straightened when loaded at 
� � 1:8. This finding suggests that
collagen contributes mainly to the flat region of the nonlinear stress–strain curve
whereas elastin mainly contributes to the toe portion of the stress–strain curve
(Roach and Burton 1957; Zoumi et al. 2004). This underscores the function of the
adventitia in a normal vessel (with physiological blood pressure 
� � 1:5) is to
support the vessel rather than to take up loads.

All of the deformation patterns were described by linear least-squares fit as
shown in Table 11.2. However, these linear relationships were only determined
between distension loading 
� D 1:0 to 
� D 1:8. When considering distension
loading beyond 
� D 1:8, these relationships may become nonlinear. For instance,
since collagen fibers became completely straightened (
0 � 1:0) at 
� D 1:8,
the waviness of collagen fibers did not change further, and remained 1.0 at higher
loading 
� � 1:8. Similarly, the change of orientation angle of collagen and elastin
fibers decreased when they approached the circumferential direction. In future
studies, a larger range of loading should be considered to determine the extent of
linearity.
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11.4 Limitations

There are some limitations that deserve discussion. Firstly, the present model takes
into consideration two functional microstructures in the vascular tissue: an effective
matrix and distributed collagen fibers. The elastin fibers, which are also undulated,
are considered as part of the effective matrix. This simplification is motivated by the
fact that the elastin, while being stiffer than the ground substance and cells, are much
softer than the collagen fibers and become straightened in the early deformation
of the tissue. Thus, W(0)(F) in (11.1) should be considered as a macroscopic SEF
of the effective matrix, and thus the presently employed neo-Hookean form of
W(0) is phenomenological. For more microstructural modeling of W(0) and accurate
description of the deformation of the cells and elastin, a multiscale homogenization
method is needed, in which the effective matrix is considered as an elastin fiber-
reinforced composite, with the ground substance and cells as the ground material.
Lanir (1983) and Lokshin and Lanir (2009) considered both collagen and elastin
as fibrous entities but embedded in a fluid-like matrix. When considering solid-like
matrix, the effective SEF of matrix is first estimated with use of homogenization
methods which takes into account the constitutive relation, geometries, and dis-
tributions of the elastin. Additionally, the homogenization approaches should be
adjusted to reflect the microstructures of soft tissue. For example, in the media layer
of the vessel, the elastin forms a complex network connected to vascular smooth
muscle cells, in which the cytoskeleton (actin, myosin, tubulin, etc.) contributes
to mechanical loading, that can sustain non-hydrostatic loading such as tension and
shear. Therefore, the assumption of solid-like matrix may be an accurate description
for artery media. In the adventitial layer, however, the non-fiber constituents are
fibroblasts, macrophage, and amorphous gel-like ground substances that do not take
much non-hydrostatic loading. Thus, the fluid-like matrix as employed in the models
of Lanir (1979, 1983) may be appropriate.

Secondly, the most significant advantage of the UF method is the lower compu-
tational cost, i.e., it only requires a simple summation as in (11.5). In comparison,
the SOE method requires higher computational expense, albeit it is much more
efficient than direct FE simulation. Therefore, it is useful to investigate the predictive
abilities of UF and SOE methods. In the illustrative simulation, it is found that the
UF prediction of the macroscopic stress is considered accurate for tissue with very
narrow distribution of fiber orientation. As shown in Sect. 11.3, arterial adventitia
forms layered structure, and alignment of collagen fiber in each sublayer follows
a narrow bell-shaped distribution (almost uniformly align), for which UF model
may work well. Elastin fibers, however, are found to distribute randomly compared
with collagen fibers. Hence, it is important to test predictive power of UF and SOE
models with inclusion of realistic microstructure of arteries.

Finally, it was observed that some collagen fibers were out of the imaging plane
in the z-direction and formed coils, i.e., 3-D helix structures (Arkill et al. 2010),
which resulted in false impression of discontinuities of collagen networks in 2-D
images. Therefore, the present 2-D image processing may underestimate some of
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the geometrical features of collagen fibers (e.g., for the waviness and area fraction)
and any apparent discontinuities were excluded from measurements. This limitation
suggests the need for 3-D reconstruction of fibers which can render more accurate
morphology of fibers in vascular tissue in the future.

11.5 Summary

The developed microstructural model takes into consideration a full set of statistical
microstructural geometries, the interactions between fibers and matrix, and the
nonlinearity of constituent phases. As a result, this approach shows comparative
advantage over the classical uniform-field theory, and enables more realistic pre-
dictions of the macroscopic stress and the statistical deformation of the wavy
collagen fibers, when compared with direct FE numerical simulations. Meanwhile,
the distribution and transmural heterogeneity of fiber geometrical parameters reflect
realistic microstructures of adventitial wall, and statistical loading–deformation
relation of fibers reveals partially mechanical properties of individual fibers. The
present modeling and experimental studies will lead to a better understanding of
vascular biomechanics and will contribute to future models of blood vessels.

Additionally, extension of these studies is necessary. For instance, material prop-
erties of single fibers are significant in microstructure models but remain unknown.
The microstructural model has potential to identify the stress–strain relation of
individual elastin and collagen fibers. Given MPM measured microstructure data
of arteries, the predicted constitutive relation can be integrated with the FE model to
predict both macro- and micro-scopic mechanical response of blood vessel wall
under various mechanical loadings. Simultaneous mechanical loading-imaging,
implemented on fresh unstained arteries, provides the loading–deformation relation
of individual fibers. Hence, material properties of fibers can be identified by
comparing model predictions and experimentally measured deformation of the
fibers. While the microstructural morphometric data may be different from vessel
to vessel, the microstructural material parameters are expected to be unique since
in theory they are independent of morphometric data. It is also expected that
identified material parameters will be physically meaningful and reflect the realistic
mechanical behavior of individual fibers.
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Chapter 12
Structural-Based Models of Ventricular
Myocardium

Lik Chuan Lee, Jonathan Wenk, Doron Klepach, Ghassan S. Kassab,
and Julius M. Guccione

12.1 Introduction

Ventricular wall stress is an important determinant of myocardial oxygen
consumption (Sarnoff et al. 1958; Strauer et al. 1977), ventricular remodeling,
and hypertrophy (Grossman 1980), and is necessary for an understanding of both
physiological and pathological ventricular mechanics (Yin 1981). Despite recent
advancement in measurement techniques and computational modeling, a detailed
knowledge of ventricular wall stress (particularly in patients diagnosed with heart
disease) remains elusive.

As pointed out by Huisman et al. (1980), forces or stresses cannot be measured
directly in the intact left ventricle (LV) because of the uncertainty arising from the
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degree of coupling between the transducer and the muscle wall. In-vivo ventricular
wall stress, therefore, has to be determined indirectly through measurements of the
LV cavity pressure and the laws of mechanics (Yin 1981).

Closed-form analytical equations have been developed to estimate LV wall
stress (e.g., Janz 1982), but they are accompanied by assumptions which include
axis-symmetry of the LV, as well as material isotropy and homogeneity within
the LV. These assumptions can be removed with more versatile approaches such
as mathematical modeling using the finite element (FE) method (e.g., Zhang et al.
2011). However, the use of mathematical modeling to predict ventricular wall stress
requires accurate constitutive models of the ventricular material, at least, at the
tissue-level.

Two approaches have been used to construct constitutive models of the ven-
tricular material at the tissue-level based on: (1) phenomenological experimental
measurements of the material behavior at the tissue-level and (2) structural com-
position of the ventricular constituents and their micromechanical behavior. The
first approach was pioneered by Fung (1967), who showed that under uniaxial
tension, the load-deflection curve of a rabbit mesentery is highly nonlinear and can
be described using an exponential function of the extension ratio (stretch). This
result has formed the basis of many phenomenological constitutive models in soft
tissues, including the ventricular myocardium (Humphrey and Yin 1987; Guccione
et al. 1991; Costa et al. 2001; Schmid et al. 2006; Holzapfel and Odgen 20091).
Other functions have also been used to describe the monotonic increase in stiffness
of the myocardial tissue as it stretches, including the “pole-zero” model proposed
by Hunter et al. (1997).

12.2 Structural-Based Constitutive Models

In contrast to phenomenological constitutive models, structural-based constitutive
models take into account the inherent microstructural compositions of the tissue, as
well as their arrangement, interactions, and individual mechanical behavior of the
constituents. Consequently, parameters of structural-based constitutive models can
be directly related to physical features of the tissue. Structural-based constitutive
model of the tissue was first introduced by Lanir for flat collagenous tissue (Lanir
1979) and was later expanded and tailored to the myocardium (Horowitz et al.,
1988a, b, c; Nevo and Lanir 1989, 1994). To understand such model, it is appropriate
to first describe the structure of the ventricular wall and the microstructure of the
heart muscle.

1Although the constitutive model by Holzapfel and Odgen (2009) was constructed by taking into
account structural features of the myocardium in the sense of an orthotropic configuration, it is
still (strictly speaking) phenomenological as the constitutive model did not distinguish individual
contribution from the tissue constituents and the model’s parameters did not relate directly to the
microstructure of the tissue.
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Fig. 12.1 Helical structure of the muscle fiber orientation in the ventricular wall (Reproduced
from Walker et al. 2005)

12.2.1 Structure of the Ventricular Wall

At a macroscopic level, the ventricular wall exhibits a regular arrangement of
cardiomyocytes (or muscle cells) that has been observed across species. The
arrangement of the cardiomyocytes orientation was first quantified by Streeter et al.
(1969) that showed a smooth transition in the orientation of cardiomyocytes from
a left-handed helix at the epicardium to a right-handed helix at the endocardium
(Fig. 12.1).

Other studies have confirmed these results in man (Greenbaum et al. 1981), rabbit
(Vetter and McCulloch 1998), and many other species. Such arrangement of the
helical myocytes orientation is widely believed to augment the ventricular pumping
efficiency (Guccione et al. 1991; Vendelin et al. 2002; Ingels. 1997).

12.2.2 Structure of the Cardiac Muscle

At a microscopic level, the structure of cardiac muscle bears some resemblance to
other two muscle types; i.e., skeletal muscle and smooth muscle. Cardiomyocytes
are embedded by an extracellular matrix (ECM) comprising of endomysium that
separates individual cardiomyocytes, and perimysium that separates between tracts
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Fig. 12.2 Planar wavy perimysial collagen fiber from confocal laser scanning microscopy of the
right ventricular trabecula of rat (Reproduced from Hanley et al. 1999)

of cardiomyocytes. The ECM consists of blood vessels, collagen fibers, connective
tissue cells and interstitial fluid (Frank and Langer 1974). Collagen fibers have
been observed to be periodic planar wavy-like structures in the endomysium and
perimysium (Hanley et al. 1999) (Fig. 12.2). On the other hand, Robinson et al.
(1988) described that the perimysial fibers of rat heart papillary muscle as helical
coil structures as opposed to 2-D wavy-like structures.

While the mechanical role of the cardiomyocytes is to generate a contractive
force that propels blood and drives the systemic and pulmonary circulation, the role
of ECM is to provide mechanical support for the tissue. As such, the ECM is a major
contributor to the tissue’s mechanical behavior that affects the ventricular pumping
function. To describe the mechanical behavior of the ventricular myocardium, it is
therefore important to account for the mechanical effects of major cardiac tissue
constituents (i.e., ECM and the cardiomyocytes). Structural-based constitutive
models enable one to do that elegantly by individually accounting for the mechanical
effects of the cardiac tissue constituents, as well as their interactions.
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Constitutive Models

A structural-based constitutive model of fibrous tissue was developed by Lanir
(1983) where he took into account two important features found in collagen and
muscle fibers, namely, the fiber waviness and the distribution of fiber orientation in
the tissue.

Fiber Waviness

The nonlinearity of stress-strain relationship found typically in cardiac tissue is
widely believed to be caused by the unraveling of initially wavy fibers as the tissue
stretches. To model this effect, a strain energy function wk of type k fiber was
assumed to exist for a straightened fiber. The uniaxial stress for the straightened
fiber is given as

fk D @wk

@Eff
; (12.1)

where Eff is defined as the fiber strain. For a given waviness function Dk, n(x), where
Dk,n(x)�x can be interpreted as the distribution of fibers aligned in the direction n
and having a straightening strain between x and x C �x, the uniaxial stress of this
collection of wavy fibers has the form:

fk
� �Eff

� D
EffZ
0

Dk;n.x/fk
�
Et

ff

�
dx; (12.2)

where Eff is the total fiber strain and Et
ff is the true fiber strain with the straightened

fiber as the reference configuration. The true strain Et
ff can be expressed as a function

of Eff and x (see Eq. (5) in Horowitz et al. 1988c). Figure 12.3a shows the resultant
stress-strain relationship from (12.2) when fk is a linear function of the true strain
with stiffness (or slope) c and Dk,n(x) is a normal distribution function with mean x
and standard deviation �x. This relationship is nonlinear and captures the stiffening
effects of the originally wavy fibers as it unravels and becomes stretched. We also
note that as the total strain of the fiber Eff ! 1, all the fibers becomes straightened
and the stiffness approaches an asymptotic value.

It should be noted that in addition to modeling the nonlinear stress-strain
relationship through the use of a given waviness function, the nonlinear stress-
strain relationship of a (perimysial) collagen fiber has been modeled by a helical
coil consisting of a curved, inextensible rod that is capable of bending and twisting
(MacKenna et al. 1997). The origin of the nonlinear stress-strain relationship of this
model is different from that proposed by Lanir (1983), where the nonlinear behavior
is caused by the straightening of the collagen fibers with different straightening
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Fig. 12.3 (a) Stress-strain relationship (solid line) calculated from (12.2). Dotted line: asymptotic
value of the stiffness calculated using Leibniz’s rule of differentiation and is given here as

limEff !1

Z Eff

0

Dk;n.x/@fk

�
Et

ff

�
=@Eff dx. Parameters of c, x and � x are based on biaxial testing

of canine myocardial strips and have values 35 GPa, 0.28 GPa and 0.11 GPa, respectively.
(b) Comparison of collagen material models. Solid line: Lanir (1983) with same material constants
as in (a). Dotted line: MacKenna et al. (1997) with material constants given in the text. Note:
for comparison purposes, the uniaxial stress-strain relationship in (12.2) was multiplied by the
collagen volumetric ratio Sk D 0.05 in the myocardial tissue

strain. Instead, the nonlinearity found in the model by MacKenna et al. (1997)
is inherited directly from the stress-strain relationship of a helical coil. This
relationship was described by the following equation:

� D ��D4NdE

64P20V0


 
1 �

p
V02 � 1p
V02 � 


!
; (12.3)

where D is the fiber diameter, Nd is the number density of fiber per unit area, E
is the Young’s modulus, P0 is the coil period, V0 is the convolution index and 

is the stretch of the fiber. These parameters were determined based on histological
measurements of the collagen geometry and 2-D measurements of the strain at the
LV midwall (Omens et al. 1993). For a canine LV, these values were found to be
D D 3:44˙0:18�m; P0 D 15:7˙0:1�m; Nd D 2030˙290 fibers=mm2; V0 D
1:14 ˙ 0:02 and E D 160 MPa. The resultant stress-strain relationship is shown in
Fig. 12.3b by the dotted line together with that from the model by Lanir (1983)
(solid line) using material parameters obtained from the biaxial testing of canine
myocardial strip. Because the rod is inextensible, the stress � ! 1 as the stretch

 ! V0 (or when the helical coil is straightened). Compared to the model by Lanir
(1983), the helical coil model by MacKenna et al. (1997) is significantly softer. It
should be noted that even though the same species was modeled, the experimental
data used to determine the material parameters is different between the two models.
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Fig. 12.4 Orientation of the fiber direction. Left: Tangential plane of the LV subepicardial slice
defined by normal �3. Right: Local coordinate systems in the slice (reproduced from Horowitz
et al. 1988a, b, c)

Distribution of the Fiber Orientation

To account for the fiber distribution found in the myocardium, a density distribution
function Rk(n) was employed. Based on histological studies where the muscle fiber
(k D 1) was found to vary by about 10–15ı along the predominant fiber direction
�1 in subepicardial layer of the LV wall (Yin et al. 1987), the muscle fiber was
assumed to vary uniformly in the subepicardial myocardial sheet (Fig. 12.4) by the
distribution function

R1 .˛/ D 12=� (12.4)

On the other hand, the collagen fiber (k D 2) direction was assumed to vary based
on the following distribution function defined in terms of a spherical coordinate
system .r0; � 0;¿0/, where the tangent to the muscle fiber serves as a polar axis
(Fig. 12.4):

R2
�
� 0;¿0� D R2a

�
� 0�R2b

�
¿0� (12.5)

Because the muscle fiber was assumed to serve as an axis of symmetry for the
collagen fiber, the distribution function in the circumferential direction is R2a .�

0/ D
1=2� . The distribution of collagen fiber in the meridional R2b .¿0/ direction was
assumed to be a double-peaked normal distribution with standard deviation �¿ and
mean angles ¿0 and �¿0 the choice of a double-peak normal distribution is to ensure
that there is no preference between the fiber direction and its opposite direction.
Consequently, the model is effectively transversely isotropic.

By summing the contributions of the muscle and collagen fibers to the tissue
strain energy, and accounting for the arrangement of these fibers, the total strain
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energy of the tissue can be expressed as

W D
2X

kD1
sk

Z
�

Rk .n/ w�
k

�
Eff
�

d�; (12.6)

where� is the tissue domain, sk is the volumetric fraction of fiber type k in the tissue
and w*

k is the resultant strain energy function from the stress-strain relationship in
(12.2). The effects of interstitial fluid in the ECM are considered by enforcement of
the incompressibility condition in the strain energy function.

Validation of Constitutive Model

This model has been validated and the material parameters have been found by
fitting the data from the biaxial testing of canine myocardial strip taken from the
subepicardial layer of the left ventricular wall (Horowitz et al. 1988a, b, c). Because
the contribution of muscle fiber to the tissue overall stress-strain relationship is small
compared to that from the collagen fiber (which has a stiffness �1 GPa that is three
order of magnitude greater than that from the muscle fiber), the mechanical effects
of muscle fiber were neglected. This leaves only five essential material parameters;
namely, the collagen fiber stiffness c2, the waviness function’s mean and variance
Qx; �x and the mean and variance of its distribution in the meridional direction ¿0,
�¿ to be determined. The average values of these parameters over three specimens
were c2 D 1:99 GPa, Qx D 0:27; �x D 0:1;¿0 D 0:69 and �¿ D 0:18. These values
suggests that the average straightening strain of the collagen is about 0.27 and the
average angle between collagen fibers and the muscle fiber is roughly 40ı (Horowitz
et al. 1988c).

In Fig. 12.5, we compare the results from equi-biaxial testing of a canine
myocardial strip described in Horowitz et al. (1988a, b, c) using the structural-
based constitutive model and a phenomenological transversely isotropic model
(Guccione et al. 1991). The parameters from the model described in Guccione et al.
(1991) was determined to match the epicardial strains measured in an intact canine
heart preparation (McCulloch et al. 1989). Although both models show that the
tissue is stiffer in the muscle fiber direction than in the transverse directions, the
phenomenological model is significantly softer than that from the structural-based
model. One possible reason for the apparently stiffer structural-based model (when
compared to the phenomenological model) is because the experiment specimens
used in the biaxial testing (Yin et al. 1987) from which the model was fitted was
under partial contracture (Humphrey et al. 1990).

More recently, the structural-based constitutive model (Lanir 1983) was validated
using direct measurements on the microstructure of planar collagenous tissue.
Specifically, Sacks (2003) used the collagen fiber angular distribution (i.e., R2(n))
from native bovine pericardium measured by a small angle light scattering device as
direct input into the structural-based constitutive model (Lanir 1983). The rest of the
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experimental results with that obtained from the fitted structural-based constitutive model using
directly measured angular distribution of collagen fibers R2(n) in bovine pericardium. Note that
the waviness function D(") used in that study is a Gamma distribution as opposed to a Normal
distribution described in Sect. 12.2.3 (Reproduced from Sacks 2003)

parameters (i.e., elastic modulus and waviness properties) were then determined by
fitting the constitutive model to the results of biaxial testing on the same specimens.
This analysis showed that the resultant stress-strain relationship derived from the
constitutive model closely matches that obtained from biaxial testing (R2 > 0.9)
(Fig. 12.6).
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12.3 Future Directions

Structural-based constitutive models describing the myocardium are clearly limited
in the literature when compared to phenomenological models, which are typically
simpler and easier to implement numerically. Despite the complexity, the ability of
structural-based constitutive model to directly relate the material parameters to the
microstructure of myocardial tissue (as opposed to phenomenological models) is
an extremely useful feature that can be used to deepen our understanding of the
functional behavior. The structurally based model parameters may also serve as
useful noninvasive biomarkers for myocardial infarction, particularly if the material
parameters are quantified in-vivo and noninvasively, which has been done for
phenomenological constitutive model (see Sect. 12.3.1).

Two potentially useful parameters that can help serve as useful biomarkers
for myocardial infarction are the volume ratio of collagen and the “waviness” of
the collagen fibers. Ventricular remodeling as a result of myocardial infarction
typically leads to an increase in interstitial collagen content (to replace the apoptotic
myocytes) in the infarcted regions and in the borderzone (a region separating the
infarct and the non-infarcted tissue) (Marijianowski et al. 1997). As a consequence
of the increase in collagen contents, the ventricle becomes less compliant and
diastolic dysfunction may follow. The increase in collagen content as a result of
myocardial infarction can be directly modeled in the structural-based constitutive
model through the volumetric ratio of the collagen s2. Horowitz et al. (1988a,
b, c) showed that, by doubling the collagen volumetric ratio s2, the stresses are
considerably higher in a thick ventricular wall segment under equi-biaxial tension.
In addition to determining the stresses found in the stiffer infarct region (or in the
entire ventricles), structural-based constitutive model can also be used to determine
volumetric ratio of the collagen in individual patients by fitting the model using
in-vivo strain data from medical imaging and LV pressure measurements. Patient-
specific collagen content can be helpful in determining the extent of myocardial
infarction. Given that the apoptotic cardiomyocytes are replaced through the
accumulation of collagen, a measure of the increase in collagen content can help
determine the decrease in cardiomyocytes at the infarct/borderzone and the resultant
reduction in active contraction in these regions to predict the depressed function of
the ventricles.

The waviness of collagen fibers has been found to be slightly smaller in the
infarct than in the remote regions rat hearts. This difference becomes increasingly
significant as the ventricular cavity pressure increases. With an increase in pressure,
the collagen fibers become significantly less wavy than those found in the remote
region (Omens et al. 1997). The result that a difference in waviness was found
only to be significant at a higher pressure suggests the presence of a different
kind of uncoiling or straightening process in the infarct and in the normal tissue
(Omens et al. 1997). Little is known about the in-vivo waviness (or crimp period)
of collagen fibers found in normal or infarcted cardiac tissue, however, especially
in humans. Since a difference in collagen waviness was observed in infarct and in
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remote regions of the rat’s left ventricle, it is possible that such a difference also
exists in human ventricles. If such difference does exist in human, the waviness
of collagen fiber can potentially serve as a biomarker for the extent of myocardial
infarction. Structural-based constitutive model can readily be used to determine the
in-vivo waviness of collagen fibers as the extent of waviness and the distribution of
waviness are directly quantified by the mean straightening strain and the variance
of straightening strain found in the collagen fibers. For instance, a large mean
straightening strain of the collagen fibers implies that the collagen are more wavy as
opposed to a small mean straightening strain. The study by Sacks (2003) has shown
that it is feasible to determine the collagen waviness in the myocardial tissue through
the use of structural-based constitutive model. In that study, the mean straightening
Green-Lagrange strain of collagen tissue was determined by fitting the constitutive
model to the results from biaxial testing of bovine pericardial tissue and was found
to be about 0.24. This result was close to the ex-vivo measurements by (Liao et al.
2005), where they estimated the waviness or crimp amplitude and period in similar
bovine pericardial tissue to be �15 �m and �30 �m, respectively. Subsequent
calculation using these results show that the resultant straightening strain is 0.22
(Meyers et al. 2008).

12.3.1 In-Vivo Characterization of Myocardial Microstructure

Material parameters of structural-based constitutive model have been determined
largely using ex-vivo biaxial testing results, which can be potentially different from
that in-vivo. The significant progress made in medical imaging (e.g., magnetic
resonance imaging and 3D echocardiography) has enabled accurate and noninvasive
quantification of in-vivo myocardial strain. A 3D optical flow method (Xu et al.
2010) applied to tagged magnetic resonance imaging (MRI), in combination with
mathematical modeling using finite element method (FE), has been recently used to
determine regional myocardial diastolic material parameters based on a transversely
isotropic phenomenological constitutive model (Guccione et al. 1991) of a sheep
with LV posterolateral infarct (Fig. 12.7).

The strain energy function describing the transversely isotropic constitutive
model is given as follows:

WDC

2

�
exp

�
bf Eff

2Cbt
�
Enn

2CEss
2CEns

2CEsn
2
�Cbfs

�
Efn

2CEnf
2CEfs

2CEsf
2
���1�
(12.7)

where C, bf , bt and bfs are material parameters and Eij is the Green-Lagrangian
strains with subscripts f denoting the fiber direction and s, n denoting two
other directions perpendicular to f. Specifically, a systematic search methodology
(successive response surface method) was used to determine the material parameters
by minimizing the mean square error between the measurements of 7 LV cavity
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Table 12.1 Resultant
material parameters
determined from FE and MRI

C (kPa) bf bt bfs

Remote 2.19 8.65 7.5 5.5
Infarct 6.71 25 22.43 1.11

volumes during filling and 1080 end-diastolic strain components (from MRI) to
those predicted by FE

The resultant material parameters are shown in Table 12.1 and there is good
agreement between the FE-predicted end-diastolic strains and the MRI-measured
strains (Fig. 12.8). Overall, the larger values of bf and bt at the infarct implies that
the infarct was stiffer in the fiber and cross-fiber directions compared to the remote
region, as observed frequently across species.

The fact that the phenomenological model is able to quantify the mechanical
effects of LV remodeling after myocardial infarction as described in this section is
useful, as such information can help us better understand the effects of myocardial
infarction and to create more realistic mathematical models of infarcted LV. It is
difficult to infer from these parameters, however, the mechanisms for the observed
mechanical behavior at the infarct; i.e., whether and how much the increase in
stiffness is caused by an increase in collagen content or by a decrease in the collagen
fiber waviness. Given that these physical attributes are directly quantified by the
material parameters in structural-based models, it is possible to use the methodology
described in this section (in combination with histological studies) to quantify the
physical properties at the infarct and at the remote regions of the myocardium.

Fig. 12.7 (a) Short-axis view from 3D tagged magnetic resonance image (infarct is between the
black markers on the epicardium). (b) Finite element model of the infarcted LV. Red and blue
denotes the remote and infarcted regions, respectively
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Chapter 13
Structure-Based Constitutive Model
of Coronary Media

Yaniv Hollander, David Durban, Xiao Lu, Ghassan S. Kassab,
and Yoram Lanir

13.1 Introduction

Blood vessel biomechanics is an essential and interdisciplinary research topic,
incorporating disciplines ranging from nonlinear solid mechanics to anatomy,
physiology, and pathology. Vascular mechanics is imperative for predicting vascular
physiology and the way blood vessels interact mechanically with other organs.
In addition, a number of vascular pathologies (e.g., atherosclerosis, hypertension,
arterial aneurysms) have a pivotal biomechanical basis since they are initiated and
propagated as a result of non-homeostatic mechanical loadings. Knowledge of the
stress field in the blood vessel wall and its relation to strains and to loading imposed
on the vessel cells will aid in understanding these diseases.

Blood vessels are anisotropic materials, exhibiting a global orthotropic behavior.
As in other soft tissues, blood vessels have a nonlinear stress–strain response and
are viscoelastic. A typical large blood vessel is made of three layers: intima, media,
and adventitia. Each layer has a different fibrous structure, and therefore, behaves
differently in response to applied loads. Importantly, blood vessels are capable of
actively changing their diameter and length. This is achieved by activation of smooth
muscle cells in the vessel wall.
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Over the last 40 years, several models were proposed for constitutive laws of
passive blood vessel elastic response. Most of these models are phenomenological,
attempting mainly to fit mathematical expressions to experimental data. The main
disadvantage of phenomenological models is that their material constants have no
direct physical interpretation and thus do not pave the way for understanding the
connection between tissue architecture and the inherent mechanical characteristics.
Recently, an increasing number of models have attempted to incorporate structural
information into the constitutive relations. These data are usually incorporated
phenomenologically, however, implying that the associated material constants still
have little physical significance. Structural models for soft tissues, in general, and
for blood vessels, in particular, are essential for analysis of tissue mechanical
response and understanding the individual role of each of the tissue constituents.
Since several vascular pathologies are related to the degradation of tissue fibers, the
prediction of the onset of these diseases can be done only by using a model which
adequately incorporates the influence of each fiber type.

This chapter describes the development of a structural model for the passive
blood vessel, with focus on the coronary media which is a major load-bearing
layer in the wall. The model, which is based on histological information, contains
independent parameters representing both the three-dimensional (3D) inner fibrous
structure of the media and the fiber properties. The model also includes the effects
of residual stresses and osmotic swelling. Model parameter estimation was done
using the Genetic Algorithm Method, and was based on mechanical data of porcine
left anterior descending (LAD) coronary media. The data, provided by Kassab’s
group, includes measurements of vessel response to combined radial inflation, axial
extension, and twist. Although the full model has 12 parameters, results show
that a reduced model containing only four parameters that represent key structural
and mechanical features is sufficient to reliably predict the passive mechanical
properties. It is also shown that the model provides good predictions of the LAD
media response to data under protocols not used for the parameter estimation.

The constitutive model constructed in this work has noteworthy novelties when
compared to current models in the literature. It is the first fully structural model,
which considers the effect of fibers embedded in a fluid-like matrix. Secondly,
the model includes the influence of osmotic swelling which affects the nonlinear
mechanical interaction between the tissue solid fibers and the fluid-like matrix. Also,
the predictive capabilities of the model were verified, in contrast to previous models,
which were purely curve fitting of existing data and not predictive of additional
experiments. Finally, the present model was validated with 3D data which includes
twist in addition to inflation and extension. To date, no model found in the literature
was validated with shear data.

To assess whether the improvements proposed by the present model are signif-
icant, a multi-faceted comparison was carried out between the present structural
model and representatives of two major classes of arterial models (phenomenologi-
cal and semi-structural). A comparison was conducted in terms of model descriptive
and predictive powers, using identical 3D mechanical data. The results show that
the fully structural model performed best, followed by the structure-motivated and
the phenomenological models, when considering the descriptive accuracy to the
given data as well as the predictive capabilities to data not used for estimation.
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An important conclusion from this comparison is that incorporation of tissue
structure, as well as other physical properties, such as tissue swelling, is crucial
for a reliable description and prediction of the vessel mechanical behavior.

The work described in this chapter is focused on constructing a model for
only the coronary media layer. Since the blood vessel wall is composed of two
mechanically significant layers, future investigation is needed to formulate a model
for the adventitia layer. The adventitia layer is responsible for tethering the vessel
to surrounding tissues and, more importantly, protects against rupture due to
hypertension. The degradation of adventitial fibers is responsible for the onset
of several pathologies, including arterial aneurysms. The adventitia layer has a
different structure than the media, and hence, behaves differently in response to
mechanical loads.

13.2 Mathematical Model

The present media model was compared and validated with data of inflation,
extension, and twist tests, under internal pressure Pi, external axial load F, and
external torque M. The media was initially loaded by residual stress (RS) and by
tissue osmotic swelling. For these protocols, the media was considered a hollow
cylindrical tube, and the following kinematical assumptions were adopted: (1) defor-
mations are axis-symmetric and independent of axial position (Green and Adkins
1970; Humphrey et al. 1989); (2) incompressible vessel media; (3) transverse
sections remain planar (no warping); (4) both the twist angle and axial displacement
are independent of radial position; (5) quasi-static and elastic response; (6) no
luminal flow and associated shear stress; and (7) there is a unique stress-free
reference configuration, which can be obtained through a combination of cutting the
tissue radially and unswelling it by immersion in a hyper-osmotic solution (Chuong
and Fung 1986; Fung 1991; Guo et al. 2007; Azeloglu et al. 2008; Lanir 2009).

13.2.1 Kinematics and Statics

The general deformation field describing vessel kinematics can be written as

r D r.R/; � D � .‚;Z/ ; z D z.Z/; (13.1)

where (r, � , z) and (R,‚, Z) are the radial, tangential, and axial cylindrical coordi-
nates in the deformed and reference configurations, respectively.

To incorporate all physiological mechanisms affecting the wall response, such
as residual stress and osmotic swelling, four distinct kinematical configurations are
considered (Fig. 13.1): (1) stress-free (SF), with inner and outer radii, Ri and Ro,
length L and an opening angle ‚0; (2) swollen (SW), withbRi,bRo, �0L as inner and
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Fig. 13.1 Kinematical configurations. A schematic description of the mappings from the open
stress-free (SF) sector configuration, through the open sector swollen (SW) and closed unloaded
(UL) states, to the loaded (L) configuration

outer radii, and length, and �0 and ‚1 as SF–SW stretch ratio and opening angle;
(3) unloaded (UL), with dimensions i, o, and �0�1L, with �1 as the SW–UL
stretch ratio; and (4) loaded (L) with dimensions: ri, ro, and 
�0�1L, where 
 is
the UL-L stretch ratio, and � as the twist per unit length. The general deformation
field, from the stress-free to the loaded states, is expressed as (Green and Adkins
1970; Humphrey 2002):

r D r.R/; � D �

‚0

‚C �ƒ0ƒ1Z; z D 
ƒ0ƒ1Z; (13.2)

where r(R) is given by:

r D
s

r2i C JSW‚0

�ƒ0ƒ1


�
R2 � R2i

�
: (13.3)

The swollen state is obtained by osmotic swelling, which induces inner stresses
to the reference stress-free configuration, due to balance between the tissue fibers
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and the fluid-like solid matrix. The swelling affects the opening angle of the open
sector-shaped tissue (Guo et al. 2007). Volume swelling ratio between the stress-free
and swollen configurations is denoted in (13.3) by JSW.

Static equilibrium is obtained by satisfying the radial equation

@�rr

@r
C �rr � ���

r
D 0; (13.4)

where � rr and ��� are the radial and tangential components of the Cauchy stress
tensor. The boundary conditions associated with (13.4) are given by:

�rr .r D ri/ D �Pi; �rr .r D ro/ D 0;

F D 2�

Z ro

ri

�zzrdr � Pi�r2i ; M D 2�

Z ro

ri

��zr
2dr; (13.6)

where �zz and ��z are the two additional axial and shear stress components of the
Cauchy stress tensor.

Hyperelastic Constitutive Model Formulation

The passive media is assumed to be a hyperelastic material, with strain energy
function (SEF) W(E), where E D �

FT � F � I
�
=2 is the Green-Lagrange strain, and

F is the deformation gradient tensors. If we assume that incompressibility holds, the
Cauchy stress tensor can be expressed as, � D J�1

SWF � @W=@E � FT � pI, where p is
the matrix hydrostatic pressure.

In the microstructural approach (Lanir 1983), W reflects the tissue inner
microstructure and associated changes during deformation. The basic assumptions
are (Lanir 1983; Nevo and Lanir 1989; Billiar and Sacks 2000; Lokshin and Lanir
2009): (1) the passive tissue total strain energy is the sum of the strain energies
of the fibrous constituents, (2) each fiber can respond to stretch and buckles in
response to compressive loads; (3) the fluid-like ground matrix contribution to the
overall stress field is given by hydrostatic pressure; and (4) the strain of each fiber
can be computed from the tensorial transformation of the global strain tensor (affine
deformation). Following these assumptions, W(E) is written as

W .E/ D
X

i

�0i

“
<�

i . ; �/wi.e/ sin d d�; (13.7)

where �0
i is the reference (stress-free) volume fraction of type i fibers, <*

i ( , �)
is the fibers orientation density distribution function, whose arguments are the
spherical angles and � , and wi(e) is the type i fiber energy function which depends
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Fig. 13.2 Model illustration. A scheme of the vessel wall microstructure including the lamellae
helical elastin-collagen fibers, the interlamellar strut networks, and the smooth muscle cells

on the fibers axial Lagrangian strain e. The assumption of affine deformation
suggests that e can be determined from the global Green strain tensor E by e D
E W NN, where N is the fiber group orientation vector in the reference configuration.

Histological surveys of the arterial media suggest that the media is made
up of an elastin scaffold in the shape of thick fenestrated concentric laminae,
interconnected by a network of thin and short struts (Wolinsky and Glagov 1967;
Wasano and Yamamoto 1983; Clark and Glagov 1985; O’Connell et al. 2008),
which are uniformly dispersed over orientation space with a mean radial direction.
The concentric lamellae are composed by two families of helical fibers with a mean
symmetric pitch angle (Canham et al. 1989, 1997; Dahl et al. 2007). The fibers’
orientations are distributed around the mean symmetric angle. The first family
consists of straight elastin fibers, and the other, of wavy collagen fibers arranged
in parallel with the elastin fibers. The mathematical model developed for the media
(Hollander et al. 2011b) is based on this interpretation of histological studies and can
be best described schematically by the illustration in Fig. 13.2. The model includes
a summation of the contribution of the following families of fibers:

1. Helical wavy collagen fibers aligned in two groups with mean symmetrical polar
angles, around which the fibers are dispersed.

2. Straight helical elastin fibers that run in parallel to the helical collagen network.
Both the helical collagen and elastin fibers form concentric lamellae.
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Table 13.1 The 12 parameters of the general structural model and their physical
significance: Those underlined are of significant importance for the LAD media model

Parameter Physical meaning

k0
h Helical elastin stiffness

kh Helical collagen stiffness
Nh Power law term representing gradual recruitment of collagen fibers
e01, e02 Collagen lowest and highest straightening strains
mh Exponent of symmetric beta function related with helical fiber distribution
ˇ0

h Mean polar angle of helical fibers
�ˇh Range of polar angle dispersion of helical fibers
kil Inter-lamellar struts stiffness
m, n, c0 Anisotropic inter-lamellar network

3. Interlamellar short elastin struts interconnect adjacent media lamellae. Fibers in
this group have a 3D anisotropic dispersion with a mean radial direction.

The general structural media model based on the above description includes 12
parameters (Hollander et al. 2011a, b). The model parameters represent the different
fiber stiffnesses and include the effect of the increasing stiffness of collagen fibers
recruited gradually with stretch (Table 13.1). The model also takes into account
the effect of fiber dispersion. In this study, it was found that only four parameters
are needed for the LAD media model in order to adequately describe the given
experimental data. The formulations for this four parameter reduced model are given
below:

Interlamellar Fiber Energy Function

Wil .E/ D �0il

“
wil .eil/

�2
d˛dˇ;

@wil

@eil
D


kileil; eil � 0

0; eil < 0
; (13.8)

where kil is the model parameter representing interlamellar fiber stiffness. The axial
strain of an interlamellar fiber eil is found by the tensorial projection of the Green-
Lagrange strain tensor on the fiber orientation in the reference configuration, which
can be described by the polar angles ˛ and ˇ. The fiber family volume fraction is
denoted by �0

il.
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Helical Fiber Energy Function

Wh .E/ D �0h
2

˚
wh
�
eh
�
ˇ0h
��C wh

�
eh
��ˇ0h��� ;

@wh

@eh
D


kheNh
h ; eh � 0

0; eh < 0
: (13.9)

Here, the additional model parameters are ˇ0
h, representing the angle between the

two symmetrical helical fiber groups, and kh and Nh, parameters that describe the
increasing stiffness of collagen fibers with gradual recruitment by stretch. The axial
strain of a helical fiber eh is found in a similar manner to the one described above
for eil.

13.3 Testing the Model

13.3.1 Experimental Database

Model validation was carried out based on triaxial mechanical data (Lu et al. 2003;
Wang et al. 2006) of porcine coronary arteries. The database includes 5 LAD
coronary media specimen, which were separated from the intact blood vessel before
the experiment (Lu et al. 2003). The cylindrical media was cannulated to a triaxial
machine and preconditioned prior to mechanical testing. Measurements were made
of the outer vessel radius, axial force, and torque, in response to a series of applied
stepwise luminal pressures (0–85 mmHg), axial stretches (1.2–1.4), and twist (�25ı
to 25ı, which reflects a range of twist angle per unit length � D ˙0:04 rad=mm).
In addition, the geometry of the open sector swollen configuration was recorded for
each vessel and used as input to the model.

13.3.2 Torsional Stiffness

Mechanical testing of blood vessel twist response (Deng et al. 1994; Lu et al. 2003)
shows a linear relation between torque and twist angle per unit length (denoted in
this study as M and � , respectively). The torsional stiffness �* relates these two
measures by

M D �� .Pi; 
/ �; (13.10)
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Fig. 13.3 Bulging effect of the inflated vessel. (a) 3D scheme of the actual loaded vessel axial
profile, showing how the vessel radius remains constant throughout most of the vessel length.
A short transition zone, over which the vessel radius decreases from its mid-length level to the
cannula radius, is seen around the vessel ends. (b) An image of pig RCA media, inflated by luminal
pressure of 100 mmHg

Unlike linear elasticity, where the torsional stiffness is a constant quantity, here
�* is a function of both luminal pressure and axial stretch ratio. Using M from
(13.6) �* is given by:

�� D 2�

Z ro

ri

��z;� r2dr: (13.11)

During the mechanical testing, the luminal pressure is gradually increased to
inflate the blood vessel. Since the test specimen have their ends tied to cannulas, the
vessel bulges as demonstrated schematically as well as for an actual pig RCA media
in Fig. 13.3.

This bulging violates the kinematic assumption of an axis-symmetric deforma-
tion field. For simplicity, both the twist angle per length and axial stretch ratio where
taken to be functions of z, hence � (z) and 
(z). Each axial segment satisfies

�.z/ D M

��.z/
; (13.12)

while 
.z/ D @z=@� (� denotes the axial coordinate in the unloaded configuration)
needs to conform with the global constraint of known vessel length

l D
Z LUL

0


 .�/ d�; (13.13)

with LUL and l as the vessel unloaded and loaded lengths, respectively. For the
varying axial vessel profile, the axial force at each axial position has the form
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F D 2�

Z ro.z/

ri.z/
�zzrdr � Pi�r2i .z/; (13.14)

where ri(z) and ro(z) are the inner and outer radii. The torque M remains constant
between adjacent axial segments as well as between the two cannulas, namely

M D �
�.l/

l
; (13.15)

where �(l) is the global twist angle of the vessel. If we equate M from (13.10) and
(13.15), we obtain an expression for the effective torsional stiffness � as:

� D 1

1
l

Z l

0

dz
��.z/

: (13.16)

13.3.3 Parameter Estimation

Parameters were optimized by least squares fit to the data by minimizing an
objective function consisting of the sum of squared errors (SSE) between model
predictions and experimental data. The objective function incorporates the averaged
normalized data of all three protocols and was defined as

SSE D 1

n

X
i

2
4
 

ri
o �bri

o

�bro

!2
C
 

Fi �bFi

�bF
!2

C
 
�i �b�i

�b�
!23
5 ; (13.17)

where n is the number of data points, (•)i and .O�/i are the i’th point model
prediction and measured data, respectively, and �O� are the standard deviations
of the experimental data for the three testing protocols (inflation, extension, and
shear). A similar, objective function was used by Zulliger et al. (2004), but for 2D
estimations, which included only inflation and extension (without the contribution of
torsion). The search for the optimal parameter set was carried out using the Genetic
Algorithm (GA) method (Goldberg 1989), using an MPI parallel computation based
version of the C-code GAUL package (Adcock 2004).

13.3.4 Aspects of Model Examination

The examination of the proposed model was done in two aspects. First, the
model descriptive power was tested by estimating its parameters and comparing
the simulated response with known data. Second, model predictive capabilities
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were evaluated by simulating the behavior of known data which was not used
for parameter estimation. An example of this is prediction of the vessel twist
response while using only the data of inflation–extension for parameter estimation
and comparing with the known experimental twist behavior.

13.4 Comparison with Known Models

The current model has been compared with two models published in literature,
which represent major classes of arterial constitutive laws: (1) phenomenological
(Chuong and Fung 1983; Deng et al. 1994) and (2) semi-structural (Holzapfel et al.
2000, 2002, 2004b, 2005). The comparison was made for the same aspects as those
specified for the structural model, i.e., model descriptive and predictive powers,
requisite data dimensionality for reliable parameter estimation, and the requisite
number of model parameters.

The first phenomenological model is based on an extension of a 1D model
proposed by Fung (1972). A generalization of this model for the 2D and 3D cases
was given by Fung et al. (1979), Chuong and Fung (1983), Deng et al. (1994). The
model is based on an exponential strain energy function that conforms with the
experimental observations, suited for many types of soft tissues. The general form
of the Fung-type SEF can be written as Humphrey (1995)

W D 1

2
C Œexp.Q/� 1� ; (13.18)

cQ D c1E
2
‚‚ C c2E

2
ZZ C c3E

2
RR C 2c4E‚‚EZZ C 2c5EZZERR

C 2c6E‚‚ERR C c7E
2
R‚ C c8E

2
‚Z C c9E

2
RZ; (13.19)

denoting Eij .i; j D R; ‚; Z/ as the Green-Lagrange strain tensor components and
C and ci .i D 1; : : : ; 9/ as material parameters.

The second semi-structural model considers a more realistic representation of the
helical collagen fibers. The model combines the contribution of these fibers and the
matrix embedding them. The SEF for this model (Holzapfel et al. 2000, 2005) reads

W D Wiso .I1/C Waniso .I4; I6/ ; (13.20)

Wiso .I1/ D CI1 .I1 � 3/ ; (13.21)

Waniso .I4; I6/ D k1
2k2

X
˛D4;6

n
exp

h
k2.I˛ � 1/2

i
� 1

o
; (13.22)

where CI1 , k1, k2, and � are model parameters. The invariants in (13.4) are I1 D tr C,
I4 D C W MM, and I6 D C W M0M0, where C is the right Cauchy-Green tensor, and
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M and M0 are the directions of the two symmetric collagen helices. In order to
account for possible collagen fiber buckling, the anisotropic energy function Waniso

is active only when either I4 � 0 or I6 � 0. It should be noted, however, that the
model does not account for possible buckling of interlamellar fibers, which may
occur as the blood vessel is inflated and its wall gets thinner.

13.5 Examples

13.5.1 Model Descriptive Power

The fit to the data of the three models for the combined 3D protocols (inflation-
extension-twist) is plotted in Fig. 13.4.

The Fung-type model provides good fit to the inflation data (Fig. 13.4b) and
satisfactory fit to the axial force (Fig. 13.4e) and torsional stiffness (Fig. 13.4h) data
under extension ratios of 1.2 and 1.3. The fit under extension ratio of 1.4 is not

Fig. 13.4 Model descriptive power. Predictions (lines) compared with experimental data (sym-
bols) of vessel outer radius ro (a–c), axial force F (d–f), and torsional stiffness � (g–i) vs. inner
luminal pressure Pi, under three axial stretch ratios (
), for (a, d, g) structural model, compared
with (b, e, h) Fung type, and (c, f, i) semi-structure models
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as good since the model underestimates the torsional stiffness and overestimates
the axial force in the medium to high pressure range, while it underestimates it in
the low pressure range. In addition, the predicted axial force–pressure relationship
(Fig. 13.4e) indicates leveling of the curve and a changing trend (at curves maxima
under low pressures), which is not born out by the data. The Holzapfel semi-
structural model provides good fit to the inflation data (Fig. 13.4c) and to the axial
force (Fig. 13.4f) data at extensions 1.2 and 1.3, while it slightly underestimates
the 1.4 axial force data. For the torsional stiffness (Fig. 13.4i), the model is seen to
slightly overestimate the data at the medium to high pressure ranges. In addition, the
model predicts leveling of axial force data at low pressures, a feature which is not
confirmed by the data. The fully structural model provides good fit to the inflation
(Fig. 13.4a), axial force (Fig. 13.4d), and torsional stiffness data (Fig. 13.4g) under
all three extension ratios. It should be noted that the qualitative analysis presented
here is supported by a more quantitative investigation (Hollander et al. 2011b) which
shows similar results (Hollander et al. 2011a).

13.5.2 Model Predictive Capabilities

One example of the prediction power of the different models is their ability to predict
the behavior of the torsional stiffness based on model estimations using only 2D data
of inflation–extension. Figure 13.5 shows such a prediction and compares both the
fully and semi-structural models. As can be deduced from (13.4), the Fung-type
model torsional response is inherently decoupled from inflation-extension. For this
model, estimation based on 2D protocol cannot be used for simulation of twist.
However, for the other two models, their structural basis allows the prediction of the
coupled inflation–extension–twist response. It can be seen (Fig. 13.5) that the fully
structural prediction of twist outperforms that of the semi-structural model.

Fig. 13.5 2D-to-3D predictive power. Comparison between predicted twist apparent stiffness
(lines) and measured data (symbols) at three axial stretch ratios (
) of 1.2 (open circle), 1.3 (open
square), and 1.4 (C), for (a) the semi-structural, and (b) the fully structural models
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13.6 Concluding Remarks and Future Research

In the study described in this chapter, a new constitutive model has been developed
for the coronary arterial media. The model is based on the structural approach
(Lanir 1983) and incorporates a mixture of various fibers in different morphologies,
embedded within a fluid-like matrix. These morphologies follow general structural
features, studied in a number of histological observations. The proposed model is
the first 3D fully structural model developed for blood vessels, while most previous
models were either purely or partially phenomenological.

Blood vessels in vivo are loaded by inner luminal pressure, affecting their
diameter, and axial force, which affects their length and stretch. Some blood vessels
also twist. The coronaries, for example, twist following normal contraction of the
heart. Experimental data of blood vessel response to twist is rare (Deng et al. 1994;
Lu et al. 2003). Consequently, while many known models can be used for simulation
of twist, as demonstrated in Holzapfel et al. (2000) and Humphrey (2002), no work
was found which experimentally validates the shear properties of blood vessels.
The model studied in this research is the first to be validated against shear data, in
addition to inflation and extension data.

In general, a soft tissue is a fibrous structure composed of various fibers in
different morphologies, embedded within a ground substance assumed to be a fluid-
like matrix (Lanir 1983; Nevo and Lanir 1989). The fibers can sustain only tension,
while the fluid carries compressive loads. In normal conditions, there is an osmotic
balance between the fibers and fluid-like matrix. Osmotic pressure is therefore an
important factor which affects the tissue mechanical response, an influence which
was also observed in experiments of blood vessels and other soft tissues like the
myocardium (Lanir et al. 1996; Guo et al. 2007; Azeloglu et al. 2008; Lanir 2009).
Unlike previous models for blood vessels, the model in the present work also
includes the effect of osmotic pressure and tissue swelling, and introduces two open
sector configurations: open unswollen and swollen sectors. The swollen sector is not
stress-free—an inner balance exists between stretched fibers and compressed fluid.
A true stress-free state, characterized by an opening angle, is found in unswelling
the tissue.

In past research of arterial hyperelastic constitutive modeling, two classes of
material laws were proposed: purely phenomenological and structural models. The
latter combines a structurally oriented characteristic along with a phenomenological
contribution. Two representatives of these classes were chosen for a quantitative
comparison with the fully structural model proposed in this work. The first is the
3D version of the Fung-type model (Chuong and Fung 1983; Deng et al. 1994)
formulated in (13.4), and the second is the semi-structural model (Holzapfel et al.
2000, 2002, 2004b, 2005) given in (13.4). The models were compared with the
reduced form of the fully structural model, formulated in (13.8). The three model
performances were characterized in two ways: (1) their ability to describe given
data of radial inflation, axial extension, and twist; and (2) their ability to predict
twist response, which was not used for parameter estimation. It was found that
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the fully structural model outperformed the other two in descriptive and predictive
powers. This finding was illustrated graphically in Figs. 13.4 and 13.5. A more
thorough investigation, which also includes a numerical study done by Hollander
et al. (2011b), showed that the SSE values for the fully structural model were
the lowest among the three for all tests performed. Hollander et al. (2011b) also
expanded the examination to other tests not covered in this chapter, which support
similar conclusions.

Phenomenological models in general, and Fung-type in particular, involve a
number of parameters which are estimated to fit experimental data but have no
physical meaning or relation to the tissue inner structure. These models also
cannot account for other tissue properties such as osmotic swelling and fiber
buckling under compression. For the semi-structural model, the representation of
the elastin scaffold as a neo-Hookean solid is unrealistic and contradicts histological
observations (Wasano and Yamamoto 1983). It considers the matrix as a continuum,
where in fact, it is a fibrous structure embedded within a possibly fluid-like matrix.
The neo-Hookean solid can sustain compression, whereas within the tissue, fibers
buckle under compression taken by the fluid matrix. These drawbacks of the
phenomenological models limit their ability to describe certain data and may explain
the comparative results described above.

Some limitations can be attributed to structural models (Chen et al. 2011a, b).
Firstly, such models require large computational cost since they involve many
integral computations (sums of fiber contributions in many directions). Phenomeno-
logical models, by contrast, are much less computationally costly. Secondly, to
account for all histological features, structural models require a large number of
model parameters. This increases the computational effort of the parameter estima-
tion process and requires advance estimation techniques (e.g., Genetic Algorithms).
It should be noted, however, that for the specific model in this work, it was found
that four parameters were sufficient for reliable description of experimental data.
This number is on par with the number of parameters of other arterial constitutive
models, including the Fung and Holzapfel model types. We also note that any
process of structural model buildup involves parsimony examinations, which aim
at ensuring a minimal set of required parameters. If the tissue microstructure is very
complex, however, the high number of parameters results directly from the need to
take this complexity into account. The ability to consider complex structures is not
possessed by phenomenological models. Evidently, the Fung-type model included
nine parameters, but nevertheless failed to achieve as good descriptive capabilities
as those demonstrated by the fully structural model. The third model limitation is
related to the validation of the model which was based on mechanical data of global
properties (outer radius, axial force, and torsional stiffness). A validation based
on direct quantitative measurement of histological data would be more ideal. The
quantitative measurement of histological data is, however, very difficult, and there
are very few techniques available to quantify complex 3D structural features, such
as that of the interlamellar network. In recent work by Chen et al. (2011a, b), the
authors used multi-photon microscopy, a relatively new technique for quantitative
imaging of fibers in unfixed, unstained tissue, to measure the inner structure of
the adventitia. Such a technique may decrease the uncertainty of model structure
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and decrease the number of parameters actually estimated using global mechanical
data. It should be noted that past experience with other types of tissues (e.g.,
skin, myocardium, cartilage, pericardium, heart valves) showed that validation of
microstructural features based on appropriate global mechanical data is sufficient,
in most cases, for good model descriptive and predictive capabilities.

13.6.1 Future Work: Incorporation of the Adventitia Layer

The research described in this chapter focused on establishing and validating a 3D
structural constitutive model for the coronary media. The coronaries, as well as other
blood vessels, are composed of two mechanically significant layers, the media and
adventitia. The adventitia tethers the vessel to the surrounding tissues, and has an
important role in preventing vessel burst during pressure-overload (hypertension).
When the vessel is inflated, collagen and elastin fibers within the adventitia are
stretched and thus stiffen the vessel. Degradation of adventitial fibers is related with
the onset of pathologies like arterial aneurysms Humphrey (2003).

Both arterial layers are composed of the same passive fibrous structures, elastin
and collagen. These are arranged differently in the two layers, however, and hence,
induce two different mechanical responses for the media and adventitia. These
differences are enhanced by the fact that the two layers have mutually different
reference configurations with two unequal opening angles (Lu et al. 2003; Wang et
al. 2006; Holzapfel and Gasser 2007) and swelling ratios (Fung and Liu 1992). An
example of the difference between the mechanical response of media and adventitia
is given in Fig. 13.6, which presents stress-stretch curves obtained from rectangular
slices cut from human LADs. It is apparent that the adventitia is stiffer than the
media in both the circumferential and axial directions. Note also that the media is
stiffer in the circumferential direction, whereas the adventitia is stiffer in the axial
direction, consistent with (Wang et al. 2006). The strength differential between the
two materials, and their different reference configurations, has an important effect
on the mechanical response of the two-layer intact structure.

Some studies treated blood vessels as a one-layer tube (Vaishnav et al. 1972;
Fung et al. 1979), whereas others treated the layers separately (Holzapfel et al.
2004a, b; Holzapfel et al. 2005; Wang et al. 2006; Holzapfel and Gasser 2007).
The studies which considered both layers used the same form of the constitutive
law for each layer. For example, Wang et al. (2006) used the same Fung-type
constitutive relation for both the media and adventitia. The strength differential
between the layers was taken into account by introducing separate sets of material
parameters for each layer (resulting in 14 parameters, 7 for the media, and 7 for
the adventitia). Moreover, structurally motivated invariant-based models (Holzapfel
et al. 2005) used the same law described in (13.4) for both layers, where the only
difference between the layers was the values of their parameters. As demonstrated, a
fully structural model has a better potential to predict experimental data not used to
estimate its parameters. These results are mainly attributed to the fact that structural
models include an accurate representation of the true tissue microstructure. It is
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Fig. 13.6 Average stress-stretch curves in circumferential and axial directions for the media
and adventitia layers—data of the human left anterior descending coronary artery (taken from
Holzapfel et al. 2005)

expected, therefore, that a fully structural model for the adventitia, which will
include its various structural features found in histological studies, will be fruitful.
Such a model will also incorporate tissue swelling, similar to the media. A search of
literature on vascular mechanics revealed that, like in the media case, no constitutive
model based solely on tissue microstructure is available for the adventitia.

To conclude, a constitutive law for the adventitia is important as a complement
to the media model developed in this work. This formulation should be constructed
and validated using a 3D mechanical data, similar to the data used for the estimation
of the media model. It would be ideal if the experimental database will include many
loading combinations (as in Fig. 13.6) to increase statistical reliability of validation.
The adventitia model can enable the analysis of the mechanical significance of
this layer constituents and its microstructure. In addition, incorporation of the
strength and reference differentials between the two layers would facilitate a better
understanding of the behavior of the intact blood vessel.
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Chapter 14
Biomechanics of the Cornea and Sclera

Thao D. Nguyen

Abstract The cornea and sclera are soft fibrous tissues that serve important
structural and visual functions. The tissues protect the eye from external injury,
provide mechanical support for critical internal ocular structures, and preserve an
optimal shape for vision. The mechanical properties of the cornea and sclera sup-
porting these functions are achieved through the collagen, elastin, and proteoglycans
architecture of the extracellular matrix. This review discusses recent advances in
experimental characterization of the structure and mechanical properties of the
cornea and sclera, as well as theoretical and computational modeling studies of the
relationship between the structure, mechanical properties, and physiologic function
of the tissues.

14.1 Introduction

The transparent cornea and opaque sclera together form the tough outer layer of the
eye wall, which provides mechanical support and protection from external injuries
to the more delicate internal structures of the eye, such as the lens, retina, and optic
nerve head. The tissues also function to maintain an optimal shape for vision in
the presence of physiological fluctuations in the intraocular pressure. The domed
shape cornea produces approximately 75 % of the unaccommodated power of the
eye (Ruberti et al. 2011), while the sclera positions the retina relative to the focal
plane. Myopia and hyperopia, also known as nearsightedness and farsightedness,
are caused by axial lengthening and shortening of the sclera.

The mechanical properties of the cornea and sclera arise from the fibrous
microstructure of the stroma, which contains densely stacked lamellae primarily of
type I (�90 %) and type III (�5 %) collagen fibrils embedded in a hydrated matrix of
proteoglycans (Watson and Young 2004). The collagen fibrils in the central cornea
have a uniform diameter (�32 nm) and interfibrillar spacing (�55 nm) (Boote et al.
2003). This highly ordered fibrillar structure is needed to provide the cornea with its
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optical transparency (Maurice 1957). The sclera possesses a wider range and larger
spatial variation in the collagen fibril diameter and interfibrillar spacing. These are
also on average larger in the sclera, where the mean collagen fibril diameter is 70 nm
in the peripapillary region and twice as much in the equatorial region (Quigley et al.
1991).

The stroma in the human cornea is comprised of approximately 250 lamellae,
also referred to as fibers, which run mainly in the plane of the tissue (Kaufman
and Alm 2003). Collagen fibrils lie parallel within a lamella, but are orientated
at widely different angles in adjacent lamellae. The collagen fiber structure of the
human cornea has been investigated extensively using wide-angle X-ray scattering
(WAXS) by Meek and coworkers (Boote et al. 2004; Aghamohammadzadeh et al.
2005; Boote et al. 2006; Meek and Boote 2009). In WAXS, X-rays passing through
the ordered collagen structure are scattered to produce a diffraction pattern, which
provides a thickness-averaged measurement of the orientation distribution of the
collagen lamellae. Both the preferred orientation and degree of fiber alignment
of the human sclera display substantial regional variation. In the human cornea,
the collagen lamellae are weakly aligned along the orthogonal nasal-temporal
and inferior–superior directions in the central region, but are strongly aligned
in the circumferential direction in the limbus (Fig. 14.1). Pijanka et al. (2012)
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Fig. 14.1 Polar plot map of the WAXS scattering intensity of a human cornea, limbus (solid line),
and adjacent sclera. Reproduced from Hayes et al. (2007) with permission from copyright holder.
The orthogonal arrangement in the central region changes to a more highly aligned circumferential
arrangement in the limbus and sclera
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Fig. 14.2 Polar plot map of the scattering intensity measured by WAXS of a human posterior
sclera. Reproduced from Pijanka et al. 2012 with permission of copyright holder. The strong
circumferential orientation in the peripapillary region decays away from the optic nerve region

recently mapped the collagen structure of the scleral stroma using WAXS. In the
peripapillary region, the collagen lamellae display a uniform circumferential ori-
entation, ringing the optic nerve head, but a spatially heterogeneous degree of
fiber alignment. The degree of fiber alignment decreases further away from the
peripapillary region, and the fiber structure loses any discernible long range
preferred orientation (Fig. 14.2). The sclera contains additional reinforcements from
elastic fibers, the presence of which are concentrated in the peripapillary region,
immediately adjacent to the optic nerve head (Quigley et al. 1996; Gelman et al.
2010), and towards the inner lamellae of the tissue adjacent to the choroid (Kamma-
Lorger et al. 2010).

Mechanical experiments have shown that the cornea (Nyquist 1968; Woo et al.
1972; Andreassen et al. 1980; Jue and Maurice 1991; Hoeltzel et al. 1992; Hjortdal
1996; Shin et al. 1997; Kampmeier et al. 2000; Wollensak et al. 2003; Elsheikh
and Anderson 2006; Boyce et al. 2007, 2008; Elsheikh et al. 2008, 2010b) and the
sclera (Curtin 1969; Woo et al. 1972; Friberg and Lace 1988; Phillips and McBrien
1995; Phillips et al. 2000; Downs et al. 2001, 2003; Girard et al. 2009a,b; Elsheikh
et al. 2010a; Girard et al. 2011; Coudrillier et al. 2012) exhibit a nonlinear strain-
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stiffening, anisotropic, and viscoelastic stress response. The mechanical anisotropy
is attributed generally to the anisotropic collagen fiber structure; however, the
structural origins of the viscoelastic behavior of the tissues are not well understood.
Transmission electron microscopy studies of scleral sections labeled with cationic
dyes, such as cuprolinic blue, show proteoglycans binding to adjacent collagen
fibrils at specific sites of the D-periodic structure (Young 1985). The transient
interactions of the collagen fibrils and proteoglycans may be a significant contributor
to the rate-dependent stress response of the tissue.

The cornea and sclera are dynamic biological tissues that undergo physiological
changes with age and pathological changes with diseases, such as keratoconus and
glaucoma. Studies have shown that the human and monkey sclera stiffen (Friberg
and Lace 1988; Girard et al. 2009b; Coudrillier et al. 2012) and creep more
slowly with age (Siegwart and Norton 1999). The same has been observed for
human corneas in uniaxial strip and inflation tests (Elsheikh et al. 2007, 2010b).
In keratoconus corneas, a degenerative disease caused by progressive thinning
of the cornea, the collagen structure of the central cornea loses the orthogonal
fiber structure characteristic of healthy corneas (Meek et al. 2005). Chick eyes
afflicted by globe-enlarged retinopathy have a meridional fiber structure rather than
circumferential structure in the limbus (Boote et al. 2008). Regional differences
in the scleral collagen structure of glaucoma and age-matched normal eyes have
also been measured by WAXS. Glaucoma is a blinding disease characterized by
progressive degeneration of the axons of retinal ganglion cells. The degree of
fiber alignment is significantly lower in the superior-temporal and inferior-nasal
quadrants in the peripapillary region, immediately adjacent to the optic nerve head,
of glaucoma eyes (Pijanka et al. 2012). Uniaxial strip tests and inflation tests of
the sclera consistently measure a stiffer mechanical response (Downs et al. 2005;
Hommer et al. 2008; Girard et al. 2011; Coudrillier et al. 2012; Steinhart et al. 2012)
and altered viscoelastic properties (Downs et al. 2005; Coudrillier et al. 2012) for
glaucoma eyes in humans and animal models of the disease. Dramatic alterations in
the mechanical behavior and structure have also been measured in myopia, where
the sclera thins and elongates in response to the quality of the image focus on the
retina. The sclera of induced-myopia chick and tree shrew eyes are significantly
more compliant and exhibit faster creep than the sclera of contralateral control eyes
(Phillips et al. 2000; McBrien et al. 2001; McBrien and Gentle 2003).

The mechanical behavior of the cornea is of central importance to a number of
biomedical applications, including the development of tonometric procedures for
glaucoma screening and corneal biomaterials for prosthetics and wound healing.
Mechanical evaluation and computational modeling of the cornea is needed for sur-
gical planning and design of therapeutic procedures, such as collagen crosslinking
to stabilize the mechanical properties of keratoconus cornea. Research in corneal
biomechanics has increasingly focused on establishing a relationship between the
collagen structure and mechanical behavior to understand the effect of pathological
alterations in structure and properties on the tissue function and disease progression.
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In the same manner, scleral biomechanics is driven to understand the structural
origins of mechanical properties and their alterations and aberrations in myopia and
glaucoma.

This paper provides a review of recent advances towards understanding the
relationship between the collagen structure, mechanical properties, and physiologic
function of the cornea and sclera. The following sections will review first the
development of inflation experiments with full-field displacement mapping and
associated analytical methods to determine the anisotropic mechanical properties
of the tissues. Next, constitutive models for the anisotropic stress response based
on the collagen fiber structure will be presented. The final sections will focus
on the author’s recent work investigating the effect of collagen anisotropy on the
deformation response of the cornea, sclera, and adjacent optic nerve region.

14.2 Inflation Experiments and Analytical Methods
for Strains and Stresses

14.2.1 A Comparison of Uniaxial Strip Testing and Inflation
Testing

Mechanical characterization of the cornea and sclera has relied primarily on either
uniaxial strip testing or inflation testing. A few studies, such as those of Eilaghi
et al. (2010), have applied biaxial mechanical testing to the sclera, but none to the
author’s knowledge has been applied to the cornea. Biaxial testing is challenging for
the cornea and sclera because of the small size of the tissue, large natural curvature,
and large spatial variation in the thickness and collagen structure, all of which makes
it difficult to prepare a uniform gage section. These issues also pose challenges for
uniaxial strip tests. Conventional uniaxial tensile strip tests can probe the anisotropic
response of the central cornea and midposterior sclera, but would face difficulties
in the limbus region of the cornea and peripapillary region of the sclera. The
natural curvature and small dimensions of these regions prevent cutting sufficiently
large and straight samples for uniaxial testing of different orientations. Uniaxial
strip tests also require preconditioning to characterize viscoelastic properties such
as hysteresis (Fung 1993); however, the process of preconditioning, where the
tissue sample is repeatedly loaded and unloaded to obtain repeatable measurements,
produces large permanent deformation and alterations in the stress response (Boyce
et al. 2007). El-Sheikh et al. (2006) showed that the stress-strain response of the
cornea measured by uniaxial tests is significantly stiffer than measured by inflation
tests. In contrast, Lari et al. (2012) comparing whole globe inflation tests and
uniaxial testing of the sclera showed a more extended toe region of the load-
deformation curve and a more compliant response for uniaxial testing.
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14.2.2 Basic Experimental Setup

Inflation experiments measure the mechanical response of the cornea and sclera to
controlled pressure changes, and the method has been developed for both excised
tissue structures and whole globes. As the limitations of biaxial and uniaxial strip
testing become increasingly recognized, inflation testing has become the preferred
method to obtain more detailed, physiological characterization of the material
properties of the cornea and sclera. Compared to uniaxial and biaxial tests, the
experimental apparatus for inflation testing is relatively simple and inexpensive to
construct. A typical inflation setup includes a syringe injection system, which can be
a simple column of water (Woo et al. 1972; Jue and Maurice 1991; Hjortdal 1996) or
a commercial syringe pump; a feedback controller for pressure; an inflation chamber
to hold the tissue with inlets for syringe injection and pressure measurement; and a
displacement measurement system (see, for example, Elsheikh and Anderson 2006;
Girard et al. 2007). In our experimental setup for the cornea and the posterior sclera,
an MTS universal tension tester (Fig. 14.3) provides both the syringe injection
system and feedback controller for pressure and pressure rate (Boyce et al. 2008;
Myers et al. 2010a; Coudrillier et al. 2012). Whole globe systems directly inject fluid
into the eye (e.g., via a syringe inserted through the optic nerve head Bisplinghoff

Fig. 14.3 Inflation testing of human eyes showing the experimental setup, the posterior sclera
mounted on a custom plastic holder, and the posterior scleral cup speckled with graphite
powder and transilluminated by fiber optic lights through the inflation chamber. Reproduced from
Coudrillier et al. 2012, 2013 with permission of copyright holder
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et al. 2009 or near the corneoscleral junction Thornton et al. 2009; Myers et al.
2010b; Lari et al. 2012) and require only a holder rather than an inflation chamber
to secure the globe during pressurization.

Significant advances in inflation testing have been made to the displacement
measurement system and to analysis methods used to determine the stress response
and mechanical properties. Woo et al. (1972) used a laser system to measure the
motion of markers placed near the apex. An inverse finite element analysis (IFEA)
was used determine the nonlinear isotropic stress-strain response of the tissues
that reproduces the deformation of the markers. El-Sheikh et al. (2006) used a
laser sensor system to measure the apex displacement of the corneal specimen,
then applied linear elastic shell theory to determine the instantaneous (linearized)
Young’s modulus of an isotropic nonlinear constitutive relation from the pressure-
displacement response. A number of works digitally imaged the deformation of
makers and analytically calculated local strains from the relative displacements
of the makers (Jue and Maurice 1991; Hjortdal 1996; Bisplinghoff et al. 2009).
The deformed markers were also used to calculate the principal curvatures of
the pressurized tissues and principal stresses using membrane models for a thin
spherical shell or shells of revolution.

Recent works have taken advantage of advances in full-field, non-contact
measurements to spatially map the deformation response of the specimen surface.
These methods bring the ability to characterize the spatial heterogeneity of the
material response. This is of particular importance to the cornea and sclera, which
exhibit large variations in the collagen structure and anatomic dimensions, both
of which lead to large gradients in the strain response (Coudrillier et al. 2012;
Fazio et al. 2012). Girard et al. (2009a) and subsequent works (Girard et al. 2011;
Fazio et al. 2012) used electronic speckle pattern interferometry (ESPI), a laser
holographic technique, to map the three-dimensional (3D) displacement field of
the scleral surface. In ESPI, laser light is scattered off the specimen surface to
produce a speckle pattern, where the phase, amplitude, and intensity are related
to the specimen surface structure. This is superimposed onto a reference beam from
the same laser source to produce an interferogram. Deformation of the object is
visualized as changes in the fringe separations of the interferogram. The method
can be extended to 3D by illuminating the object with two laser beams coming
from different orientations. ESPI is a highly accurate method for displacement
measurement with submicron accuracy; however, the time requirements for the laser
scanning of the specimen restrict its measurements to the equilibrium (long-time)
elastic response.

The authors and coworkers have used an optical method, stereoscopic digital
image correlation (DIC), to map the surface deformation field of the cornea and
sclera (Boyce et al. 2008; Myers et al. 2010a,b; Coudrillier et al. 2012). In
stereoscopic DIC, a speckle pattern is applied to the specimen surface to determine
the motion of material points during inflation. We have used both fine graphite
powder for the transparent cornea and white human sclera as well as India ink to
even out the surface contrast of the heavily pigmented bovine sclera. Spray-painting
India ink provides more control of the particle size, uniformity of the speckle
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tracking
tracking

Time t Time t ′ Time t ″

Fig. 14.4 Illustration of the motion tracking of material points by DIC for a bovine sclera
specimen speckled with graphite powder during an inflation test. Reproduced from Myers et al.
2010b with permission of copyright holder. The material point is illustrated by a red dot and the
dashed line highlights the pixel subset

Fig. 14.5 Illustration of the 3D surface reconstruction of an undeformed specimen of the bovine
posterior sclera using DIC shown (a) the specimen mounted on the pressurization chamber and (b)
a contour plot of the vertical (Z) position. Reproduced from Myers et al. 2010b with permission of
copyright holder

pattern, and surface contrast. However, extensive surface coverage with the ink can
dry out the surface of the tissue over long testing periods. The deforming surface is
imaged at regular intervals by two CCD cameras arranged in stereo (Fig. 14.3). The
images are post-processed and the displacement field is determined by comparing
the deformed images to a reference image taken at the nominally zero baseline
pressure. The textbook of Sutton (2009) provides a comprehensive description
of the various manifestations of digital image correlation methods. In brief, the
algorithm compares the distribution of gray values of a subset of pixels from the
reference image of one camera to those of subsequent deformed images, essentially
optimizing the parameters of a cross-correlating function, to track the motion of
material points over time (Fig. 14.4). The algorithm then performs a cross-camera
correlation to reconstruct the 3D surface of the deforming specimen (Fig. 14.5).
Stereo DIC provides both the undeformed 3D configuration of the specimen surface
and a time-dependent deformation map of the displacement field. The accuracy of
displacement and strain measurements depends on a variety of factors, including
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the quality of the speckling pattern, lighting, and stereo angle (Ke et al. 2011) but
the method has the potential for high accuracy. Spatial resolution of 1 % of the
field of view can be realized (Sutton et al. 2007). In our method, we were able
to achieve displacement uncertainties of <10�m (Coudrillier et al. 2012), which
was consistent with the findings of Ke et al. (2011). The time resolution of DIC is
limited by the speed of the imaging system, which allows the method to be applied
to measure the time-dependent and rate-dependent viscoelastic behavior of tissues.

14.2.3 Strain Analysis

The preferred fiber orientation of the collagen structure for the most part follows
the lines of curvature, e.g. circumferential and meridional, in the cornea and sclera.
Thus, it is convenient to calculate the stress and strain state for a coordinate system
following the lines of curvature of the undeformed tissues from the measured
displacement field (Coudrillier et al. 2012; Nguyen et al. 2013). The undeformed
surface of the cornea and sclera can be described well by an ellipsoidal and
spherical geometry, respectively. The coordinates of the specimen surface and
displacements measurements are commonly provided by the imaging system,
such as DIC, on a Cartesian grid and in a Cartesian coordinate system, e.g.
uX .X;Y;Z/ ; uY .X;Y;Z/ ; uZ .X;Y;Z/. To determine the strain components in the
circumferential-meridional plane of the sclera, the coordinates of points on the
undeformed surface can be fit to sphere to provide an analytical representation
of the reference configuration. This allows a spherical grid to be created for the
specimen surface on which to interpolate the Cartesian displacement components

ONH
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a b c)

lθ
lφ(φ,θ)

Lφ

Lθ

c

Lθ
Lφ

e
e

Fig. 14.6 Grids for numerical strain calculations from DIC displacement data showing (a) the
Cartesian grid native to the DIC algorithm, (b) a 2D polar projection of a spherical grid, where
' is the meridional direction and � is the circumferential direction, and (c) the deformed and
undeformed material lines along the meridional and circumferential orientations. Reproduced from
Coudrillier et al. (2013) with permission from copyright holder
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(Fig. 14.6). These are transformed to the spherical coordinate system to provide the
circumferential u� and meridional u' displacement components

ur .�; '/ D uX sin ' cos � C uY sin' sin � C uZ cos';

u' .�; '/ D uX cos' cos � C uY cos' sin � � uZ sin ';

u� .�; '/ D �uX sin � C uY cos �: (14.1)

The tangent vectors of the deformed circumferential and meridional directions can
be calculated from the displacement gradients as follows:

t� D T� C 1

R sin'

@u
@�
; t' D T' C 1

R

@u
@'
; (14.2)

where T� D e� and T' D e' are tangents of the undeformed circumference and
meridian. It follows that the components of the surface Lagrange strain tensor can
be determined as follows:

E�� D 1

2
.t� � t� � 1/ ;

E'' D 1

2

�
t' � t' � 1� ;

E'� D E�' D 1

2

�
t' � t�

�
; (14.3)

where the shear strain E'� describes the distortion of the initially orthogonal angle
spanning the circumferential and meridional directions. The transverse shear strains,
Er' and Er� , remain unknown because the radial gradients cannot be calculated from
the surface measurements, while the radial strain Err can be estimated from in-plane
strain components in Eq. (14.3) by assuming incompressibility.

The above analysis can be applied to the cornea, though the reference positions of
the corneal surface would be fitted to an ellipsoid rather than a sphere. Alternatively,
the reference configuration can be reconstructed directly from the coordinates of the
reference position. In this method, a 2D polar grid is created then projected into a 3D
surface using the measured Z-position interpolated to the polar grid (Fig. 14.6). The
Cartesian displacement components are interpolated to the polar grid. This allows
the stretch to be calculated from the ratio of the deformed, l, and undeformed,
L, lengths between two adjacent grid points. For example, the meridional and
circumferential stretch are 
' D l'=L' and 
� D l�=L� . This method were also
employed to calculate the surface strain field for the human sclera. A comparison
between the two methods found no noticeable differences for a sufficiently small
grid size.

Figure 14.7 plots the strain field for a representative human sclera specimen
tested to 30 mmHg, showing tremendous spatial gradients. Measurements for the
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Fig. 14.7 The circumferential and meridional Lagrange strains calculated for the human posterior
sclera. Note the strain concentration surrounding the optic nerve head (black) (Coudrillier et al.
2012, 2013)

optic nerve head has been omitted for clarity. The strain components increased
dramatically in the peripapillary region, ringing the optic nerve head. This strain
concentration is caused by the presence of the more compliant tissues of the nerve
head. The meridional strain in the peripapillary region was also significantly larger
than the circumferential strain, which reflects the strong circumferential collagen
fiber reinforcement. Large gradients was also observed for the surface shear strain
component E'� (not shown), which is to be expected from the spatial heterogeneity
of the collagen structure. However, when averaged over a circumference, the average
shear strain was an order of magnitude smaller than the average meridional and
circumferential strains.

14.2.4 Stress Analysis

Inflation testing does not directly measure the stress response of the tissue to
pressurization. Rather, a model of the pressurized specimen is needed to describe the
stress response and ultimately determine the material properties of the tissue. One
strategy is to model the tissues as a thin shell that exhibits negligible bending under
physiological pressures. The thin assumption neglects the radial stress component
and variations of the in-plane stress components through the thickness. Under these
conditions, and conditions of axisymmetry, the principal stress resultants N' and
N� can be determined from the pressure loading solely using equilibrium. The
equilibrium equations for a thin shell under uniform pressure loading p simplifies to
(Tomoshenko 1959)

d

dr

�
rN'

� � N� D 0;
N�
r2

C N'
r1

D p; (14.4)
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where r1 and r2 are the principal curvatures in the meridian and transverse plane of
the deformed shape and

r D r2 sin ' (14.5)

is the radius of the planar projection at the position ' measured from the apex. The
stress components can be calculated from the resultants for a thin shell by dividing
through by the deformed thickness t (i.e., �'' D N'=t and ��� D N� =t). Assuming
an axisymmetric surface, the equilibrium equations can be solved analytically for
the cornea (Hjortdal 1996) and sclera (Coudrillier et al. 2012) as follows:

�'' D pr2
2t
; ��� D pr2

	
1 � r2

2r1



: (14.6)

For a spherical shell, r1 D r2 D r and the solution for the stress response reduce to
that of a thin-walled spherical pressure vessel:

�'' D ��� D pr

2t
: (14.7)

The local principal radii of curvature for an ellipsoid of revolution for the position
' can be determined from the major and minor axis, a and b of the meridian as,

r1 D a2b2

�
a2 sin2 ' C b2 cos2 '

� 3
2

;

r2 D a2

�
a2 sin2 ' C b2 cos2 '

� 1
2

; (14.8)

where ' denotes the location on the meridian.
Alternatively, the local curvatures can be calculated numerically by fitting an

analytic function (e.g., a lower order bivariate polynomial or a spherical surface)
to a small region about a point of interest, then evaluating the principal curvatures
r1 and r2 using the first and second fundamental forms (Tonge et al. 2013). The
accuracy of these analytical approaches depends directly on the accuracy of the
radius of curvature calculations and the assumption of an axisymmetric surface.
The assumptions of the analytical membrane model for the stress components
prohibit its application in regions adjacent to the boundaries, regions with large
material discontinuities, and regions of negative curvature, where the effects of
bending stresses cannot be neglected. For the sclera, this precludes the analytical
stress calculation in the peripapillary region adjacent to the optic nerve head.
A computational model of the specimen under inflation is needed to describe the
stress response and determine the material properties from inflation testing for these
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regions. This requires developing constitutive models for the stress response and
specimen-specific finite element models of the cornea and sclera.

14.3 Structural Constitutive Models

The cornea and sclera exhibit a complex hierarchical structure ranging over many
length scales as described in Sect. 14.1. Each structural level exhibits distinct
deformation mechanisms that dominate under different stress states and time
scales. The multiscale nature of soft tissues presents formidable challenges to the
development of predictive models and simulation tools, which is needed for a
wide range of biomedical applications from surgical planning to development of
collagen crosslinking therapies, tonometric and elastographic diagnostic techniques,
and engineered biomaterials. Early modeling efforts treated the corneal and scleral
tissues as a homogeneous, isotropic, linear elastic, or hyperelastic materials (Bryant
et al. 1991; Asejczyk-Widlicka 2007; Hanna et al. 1989; Yan et al. 1994; Dongqi
and Zeqin 1999; Bellezza et al. 2000; Sigal et al. 2004, 2005). Development
of constitutive models for the nonlinear, anisotropic, and viscoelastic behavior
remains active areas of research. Phenomenological models for soft tissues, such
as those based on the structure tensor approach (Spencer 1971), often contain a
large number of parameters to be determined experimentally (e.g., Pioletti et al.
1998; Limbert and Middleton 2004). Thus, most recently developed anisotropic
models for the cornea and sclera have followed a structural approach, which base
the description of the mechanical anisotropy of the tissue stress response on the
anisotropic collagen structure. This reduces the number of parameters and extends
the predictive capability of the model beyond the range of available experimental
data. Structural models can be categorized into discrete fiber models, which idealize
the collagen structure as having discrete numbers of fiber orientations (Alastrué
et al. 2006; Pandolfi and Manganiello 2006; Pandolfi et al. 2009) (e.g., two in the
central region for the human cornea), and distributed fiber models, which represent
the collagen structure using a continuous orientation distribution (Pinsky et al. 2005;
Pandolfi and Holzapfel 2008; Nguyen et al. 2008; Girard et al. 2009c; Studer et al.
2010; Nguyen and Boyce 2011; Pandolfi and Vasta 2012). For the cornea and
sclera, discrete fiber models do not consider that the collagen fibers are arranged
in all possible orientations despite having preferred orientations. When applied to
simulate the response of the tissues to intraocular pressure, discrete fiber models
can produce non-physiological bulging zones at physiological pressures (Pandolfi
and Holzapfel 2008).

Distributed fiber models can be further split into fully integrated and pre-
integrated models. Fully integrated models assume a strain energy density at the
fiber-level rather than at the tissue level. These are integrated over all possible
fiber orientations weighted by a continuous probability density function (PDF) of
the fiber orientation to describe the anisotropic behavior of the tissue. The PDF
describes the preferred fiber orientation as well as the dispersion about the preferred
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orientation. A fully integrated model reduces to a structure tensor model when there
is no dispersion in the fiber orientation. This modeling approach has its origins in
the work of Lanir (1983), and has become the standard approach in modeling the
cornea (Pinsky et al. 2005; Nguyen et al. 2008; Studer et al. 2010; Nguyen and
Boyce 2011), sclera (Girard et al. 2009c; Coudrillier et al. 2013), and many other
collagenous tissues (Sacks 2003).

The integral formulation of distributed fiber models cannot in general be
evaluated analytically except for special forms of the PDF and fiber potential
(Raghupathy and Barocas 2009). In a finite element framework, numerical eval-
uation of the integral formulation at each integration point for each iteration is
computationally expensive. Gasser et al. (2006) introduced an alternative model
formulation in which the continuous PDF is pre-integrated in the reference config-
uration to give an equivalent generalized structure tensor. The generalized structure
tensor is a linear mixture of an isotropic tensor representing the population of fibers
equally distributed in all orientations and a transversely isotropic structure tensor
for the dominant fiber orientation. The strain energy density for the tissue then can
be expressed as an isotropic function of the deformation tensor and generalized
structure tensor. Pre-integrated distributed fiber models have been developed for
the cornea (Pandolfi and Holzapfel 2008) and the sclera (Grytz et al. 2011).
Though rooted in the same structural descriptions, the fully integrated and pre-
integrated models are equivalent only for planar distributions under equibiaxial
stretch. They demonstrate divergent results for cases with a low degree of fiber
alignment (Federico and Herzog 2008; Cortes et al. 2010), which is characteristic
of the cornea and sclera.

The subsections below will present in detail the development of the fully
integrated distributed fiber modeling approach for the large deformation mechanical
behavior of the cornea and sclera. The following subsection will present an
extension of the model developed by the author to describe the nonlinear anisotropic
behavior of the cornea.

14.3.1 Fully Integrated Distributed Fiber Model

Distributed fiber model is developed from the following assumptions. First, the
stroma can be idealized as a continuum mixture of fibers arranged in an isotropic
matrix. The fiber orientation is represented in the reference configuration by an
orientation vector N. For a 2D fiber arrangement, e.g., distributed in the plane of
the tissue, N D .cos �; sin �/, where � is an angle defined in the plane of the tissue.
The anisotropic collagen structure can be described by a continuous PDF D .�;X/
that can vary with the material position. Pinsky et al. (2005) and Studer et al. (2010)
used trigonometric functions to represent angular dependence of the normalized
scattering intensity data of the WAXS measurements. Girard et al. (2009c) and the
author and coworkers (Nguyen and Boyce 2011) have used a von Mises distribution
function
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D .�;X/ D exp
�
k .X/ cos

�
2
�
� � �p .X/

���
2�I0 .k .X//

; (14.9)

where k is the dispersion parameter for the degree of fiber alignment and �p is the
preferred fiber orientation. Girard and coworkers (Girard et al. 2009b, 2011) applied
IFEA to fit both parameters to the inflation response, while Coudrillier et al. (2013),
used the normalized scattering intensity measured independently by WAXS directly
to describe D .�;X/ without fitting to an analytic function.

Second, the fibers and matrix deform affinely with the tissue, such that their
deformation can be described by the macroscopic deformation gradient

F D @� .X; t/
@X

; (14.10)

where x D � .X; t/ is the motion that maps material points X in the reference
configuration to spatial points x in the deformed configuration at time t. The
deformation gradient maps material lines from the reference configuration to spatial
lines in the deformed configuration. From F, we can define the symmetric left and
right deformation tensors C D FTF and b D FFT for the reference and deformed
configurations. The fiber stretch then can be computed as,


 .�/ D .N .�/ � CN .�//1=2 (14.11)

and the deformed fiber orientation is given as n D 
�1FN.
Finally, the fibers and matrix behave independently from one another, i.e., they

deform in parallel. Together, these assumptions lead to a model for the strain energy
density of the tissue that is mixture of an isotropic part for the proteoglycan matrix
and anisotropic part from the collagen fibers,

W .C;X/ D Wm .I1; I2; I3/C
Z �

��
Wf .
 .�//D .�;X/ d�; (14.12)

where I1 D C W 1, I2 D 1
2

�
I21 � C W C

�
, and I3 D det ŒC� are the first and third

invariants of the deformation tensor. In Eq. (14.12), the anisotropic component is
represented by the integrated contributions of the free energy density of the fibers
Wf weighted by the PDF of the fiber orientation.

A compressible Neo-Hookean model is commonly applied to represent the
compliant isotropic matrix of the free energy density, e.g.,

Wm .I1; I3/ D �

2

�
I1 � 3

�C �

4
.I3 � lnI3 � 1/ ; (14.13)

where I1 D I
� 1
3

3 I1 is the distortional part of I1 and � and � are the shear modulus
bulk moduli in the reference configuration. A nearly incompressible response can be
achieved by choosing � � �. The strain-stiffening stress response observed for the
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cornea and sclera is widely described using an exponential function such as Nguyen
and Boyce (2011)

Wf
�

f
� D ˛

ˇ

�
exp

�
ˇ
�

2f � 1�� � ˇ
2f

�
: (14.14)

The model has two parameters, ˛ and ˇ where ˇ is related to the strain at the onset of
stiffening. The expression 4˛ˇ signifies the small-strain stiffness of the fiber family
and ˇ is the strain-stiffening parameter. Elastica models for the strain-stiffening
stress response of the collagen fiber has also been developed. Grytz et al. (2009)
used a helical coiled beam to represent the crimped collagen fiber and calculated
the axial response of the coiled beam to determine the stress response of the fiber.

The second Piola–Kirchhoff stress tensor can be calculated from hyperelasticity
theory as S D 2@W

@C to give

S .C/ D�I
� 1
3

3

	
1 � 1

3
I1C�1



C �

2
.I3 � 1/C�1

C
Z �

��
Sf
�

f .�/ ; t

�
N .�/˝ N .�/ D .�;X/ d�; (14.15)

where the fiber stress, Sf , is given by

Sf D ˛
�
exp

�
ˇ
�

2f � 1�� � 1

�
: (14.16)

The Cauchy stress is determined by applying the Piola transformation � D
1p
I3

FSFT to give

� D �p
I3

	
b � 1

3
I11



C �

2
p

I3
.I3 � 1/ 1

C 1p
I3

Z �

��
sf
�

f .�/

�
n .�/˝ n .�/ D .�;X/ d�; (14.17)

where b D I
� 1
3

3 FFT is the distortional component of the left deformation tensor and
sf D 
2f Sf .

Inverse Finite Element Analysis for Parameter Determination

The distributed fiber model contains two sets of parameters, one for the collagen
fiber and matrix (˛; ˇ; �) and another for the PDF of the collagen orientation. Girard
and coworkers (Girard et al. 2009a, 2011) used IFEA to fit both sets to the 3D
displacement field measured for inflation testing of the monkey sclera using ESPI
at different pressure steps. Finite element models were created for each specimen
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from digital surface reconstruction and ultrasonic pachymeter measurements of the
spatially varying thickness. The models were then segmented into eight regions,
four sectors in the peripapillary and four in the midposterior region. The von Mises
PDF in Eq. (14.9) was used to describe the collagen structure of each region. The
parameters of the collagen fibers and matrix were assumed to be uniform over the
entire region. For the parameters of the PDF, each sector was assumed to exhibit a
different preferred orientation �p, while the peripapillary and midposterior regions
were assigned different dispersion parameters for fiber orientation. This model
attributed all spatial variations in material response to the collagen structure, and
the assumption that the two regions had a different degree of fiber alignment was
justified from histology. An evolutionary algorithm was used to find the set of 13
parameters that globally minimized the Euclidian error norm between the ESPI
measured and FEA calculated displacement field over the different pressure steps.
A good fit was obtained to the experimental data, but the resulting preferred fiber
orientation showed large differences between different sectors, though they were
on average circumferential over all the regions (Girard et al. 2009a). This method
was extended recently by Grytz et al. (2013) to determine the parameters of the
human posterior sclera. This work used an elastica model to describe the strain-
stiffening response of the collagen fibers, a smooth interpolation of the parameters
of the von Mises PDF between material regions, and a compliant spring support
to describe the boundary conditions at the clamps. The inverse analysis fits the
spring constant of the compliant support and parameters describing the location of
the material regions, as well as those of the elastica model and von Mises PDF,
resulting in a total of 21 fitting parameters. In a different approach, the author
and coworkers used the specimen-specific WAXS measurements of the collagen
structure directly to represent the PDF of the collagen orientation (Coudrillier et al.
2013). For each measurement point, the angular variation of the X-ray scattering
intensity was normalized to obtain the PDF of the fiber orientation. Consequently,
only three parameters (˛; ˇ; �) for the collagen fibril and proteoglycan matrix
needed to be determined from the DIC measured inflation response. This highlights
the tremendous advantage of the structural modeling approach. Allowing structural
measurements to inform the models greatly reduces the number of parameters
needed to be determined from mechanical experiments.

The parameters obtained from inverse analysis were applied in a computational
study of the effects of the heterogeneous collagen fiber structure on the anisotropic
mechanical behavior of the sclera (Coudrillier et al. 2013). Micromechanical models
were created that applied equibiaxial loading to virtual sections of the sclera to
calculate the anisotropic strain response. Different size sections were examined,
including 0:5mm2 squares containing one WAXS measurement, 2.0 mm2 squares
equal to the width of the peripapillary region, and 4.5 mm2 squares similar in
size used in the biaxial experiments of Eilaghi et al. (2010). The simulations
applied normal tractions consistent with a pressure loading of 30 mmHg in the
preferred fiber and perpendicular orientations for the 0.5 mm2 sections and in
the circumferential and meridional directions for all other sections. Figures 14.8
and 14.9 plot the resulting maps of the anisotropic ratio of the maximum over
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Fig. 14.9 Map of anisotropic ratio comparing strain response of circumferential and meridional
orientation to equibiaxial loading of 2.0 mm2 regions containing 16 WAXS measurements.
Reproduced from Coudrillier et al. 2013 with permission of copyright holder

minimum strain response for the different length scales. The peripapillary region is
more anisotropic than the midposterior region for all length scales. For the 0.5 mm2

sections, the anisotropic ratio was on average 2.0 (fiber orientation is twice as stiff
as perpendicular orientation) in the peripapillary region and 1.4 in the midposterior
region. Moreover, there was a large spatial variation in the anisotropic ratio in the
peripapillary region. For the 2.0 mm2 sections, the anisotropic ratio of both regions
decreased; but while the peripapillary region remained anisotropic with a ratio of
1.76 (e.g. the circumferential orientation is 1.76 times stiffer than the meridional
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direction), the midposterior region became nearly isotropic with an anisotropic ratio
of 1.2. The large spatial variations in the preferred fiber orientation and low degree
of fiber alignment lead to an isotropic behavior at larger length scales.

14.3.2 Viscoelastic Distributed Fiber Model

We developed an anisotropic viscoelastic distributed fiber model for the nonlinear
creep response of the cornea (Nguyen et al. 2007, 2008; Nguyen 2010) based on
the results of uniaxial strip tests (Boyce et al. 2007). The experiments showed
extensive creep deformation and a strong dependence of the normalized creep
rate on the applied stress. The model attributes the large creep strains to the
viscoelastic deformation of the collagen fibers and the nonlinear creep behavior
to multiple stress-activated viscoelastic processes. The viscoelastic constitutive
relation is specified at the fiber level then homogenized to obtain the viscoelastic
constitutive relation for the stroma. As a result, the anisotropy of the viscoelastic
behavior is described entirely by the anisotropic collagen structure, which can
be measured independently from WAXS or similar histological methods. The
remaining parameters characterize the stiffness and viscosity of the fibers.

The model was developed using the nonlinear viscoelastic framework of Reese
and Govindjee (1998). The kinematics of each viscoelastic process is described by
the multiplicative split of the deformation gradient F into N elastic and viscous parts

F D Fe
kFv

k ; k D 1 : : :N; (14.18)

where Fv
k is the viscous component of the deformation gradient and Fe

k is the com-
plementary elastic component. The deformation tensors and rates of deformation
tensors associated with the elastic and viscous deformation gradient are defined as

Cv
k D FvT

k Fv
k ; bv

k D Fv
kFvT
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k D FeT

k Fe
k; be
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kFeT

k ;
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2
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kFv�1

k C PFv�T

k F
vT

k



; Lvbe D Fe

kDv
kFeT

k ; (14.19)

where Dv
k is the viscous rate of deformation tensor and Lvbe is the Lie time

derivative, an objective rate, of the elastic left deformation tensor. The viscous
and elastic components of the fiber stretch for the kth relaxation mechanism are
defined as


v
k D p

N � Cv
kN; 
e

k D 



v
k

: (14.20)

The theoretical developments for the stretch components are detailed in Nguyen
et al. (2007).
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To model the viscoelastic behavior of the fibers, the free energy density of the
collagen fiber is split into an equilibrium component dependent on the total fiber
stretch and N time-dependent nonequilibrium parts dependent on the elastic fiber
stretch. This results in the following formulation for the free energy density

W
�
C;Cv

k ;X
� DWm .I1; I2; I3/

C
Z �

��

 
Weq

f .
 .�//C
X

k

Wneq
fk

�

e

k .�/
�!

D .�;X/ d�: (14.21)

We assumed that the equilibrium and nonequilibrium components of the free energy
density can be described using a phenomenological exponential function:

Weq
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/ D ˛eq

�
exp

�
ˇ
�
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2
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.
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"
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�
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e2
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��

� ˇ


e2
k

#
; (14.22)

where the same ˇ was used for both to reduce the number of parameters.
The normal stress tensor can be determined from the Coleman-Noll (Coleman

and Gurtin 1967) theory of internal variables as, S D 2@W
@C . Evaluating the

derivatives and applying the Piola transformation gives an expression for the stress
response.
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where seq
f D @W

eq
f

@


 and sneq

fk
D @W

neq
fk

@
e
k

e

k are the equilibrium and nonequilibrium axial
stress response of the collagen fiber, and � m is the isotropic matrix stress response.

To complete the model, an evolution equation must be specified for the elastic
fiber stretches 
e

k. An Eyring model, which describes stress activated viscous flow,
was used to describe the nonlinear time-dependent response of the fiber. The
evolution equation can be expressed in terms of the viscous stretch rate as follows:

P
v
k


v
k

D s0k

�0k

sinh

 
sneq

fk

s0k

!
; (14.24)
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where �0k is the characteristic viscosity and s0k is the activation stress of the fiber
for viscous flow. An effective evolution equation for the viscous deformation of the
stroma can be developed from the fiber evolution equation (14.24) as

�
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fk

D Vfk W be�1

k

	
�1
2
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k ;
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4Z ��

��
�0k

"
s0k

sneq
fk

sinh

 
sneq

fk

s0k
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3
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(14.25)

where �
neq
fk

is the nonequilibrium stress tensor for the kth nonequilibrium process
in Eq. (14.23). The tensor Vk is the effective viscosity for the kth nonequilibrium
process that relates the nonequilibrium stress of the stroma to the viscous rate
of deformation be�1

k

�� 1
2
Lvbe

k

�
be�1

k of the tissue. The anisotropy of the viscosity
tensor is derived entirely from the PDF of the collagen fiber orientation.

The model was applied to reproduce the nonlinear creep response of the cornea
measured by uniaxial tension tests at three different stress levels (Fig. 14.10a). Three
viscoelastic processes (N D 3) were used to fit the experimental data, and the
procedure to determine the parameters is described in detail in Nguyen et al. (2008).
By including stress-activated flow mechanisms, the model successfully reproduced
the dramatic increase in the creep rate with the applied stress. Figure 14.10b plots
the reduced creep and stress relaxation functions evaluated from the model for the
preferred fiber orientation and the perpendicular orientation. The reduced creep
function was evaluated by normalizing the uniaxial tension creep response with the
instantaneous strain response to the step increase in the applied stress. Similarly, the
reduced relaxation response was normalized by the instantaneous stress response
to the applied step strain. The simulations used a PDF determined from a WAXS
measurement for a location in the limbus (Boote et al. 2006; Pinsky et al. 2005).
The reduced relaxation and creep functions were identical for the stiffest and most
compliant orientations. The time dependent response of the model is independent of
orientation because the viscoelastic behavior is specified at the fiber level and each
fiber has the same viscoelastic properties.

14.4 Mechanical Function of the Collagen Fiber Anisotropy

14.4.1 The Anisotropic Limbus

The limbus is the narrow band of the cornea that joins with the sclera. It has a
collagen structure that is strongly aligned in the circumferential direction. By com-
parison, the human central cornea displays a nearly transversely isotropic collagen
structure with weak preferential alignment in the orthogonal nasal-temporal and
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Fig. 14.10 Time-dependent behavior of viscoelastic distributed fiber model. (a) The uniaxial
tensile creep response at different applied stresses comparing simulations and experiments for
bovine cornea. Reproduced from Nguyen et al. (2008) with permission from copyright holder. The
model parameters were fit to data for 100 and 500 kPa and used to predict the creep response to
300 kPa. (b) The reduced relaxation function for 
 D 1:04 and reduced creep function for 500 kPa
for the preferred fiber and perpendicular orientation. Reproduced from Nguyen et al. (2008) with
permission from copyright holder
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inferior–superior directions. The author developed a finite element modeling study
of the effect of the anisotropic collagen structure on the deformation response of
bovine cornea in response to pressure changes (Nguyen and Boyce 2011). The
distributed fiber model in Sect. 14.3.1 was used to describe the anisotropic behavior
of bovine corneal tissue. The cornea was segmented into two regions, the central
cornea and limbus, each with a different preferential fiber orientation obtained from
WAXS (Hayes et al. 2007) and dispersion parameter of the von Mises PDF for
the degree of fiber alignment. Inverse finite element analysis was used to fit the
material properties of the fibers and matrix as well as the dispersion parameters for
the two regions to the DIC displacement field measured at an inflation pressure of
53 mmHg. Results confirmed a high degree of fiber alignment in the limbus region
with a dispersion parameter k D 6, but returned a transversely isotropic central
region with a dispersion parameter k D 0. The WAXS measurements showed a
weak preferential alignment in the inferior–superior direction for the bovine cornea.
It was possible the resulting mechanical anisotropy was too subtle to detect by the
inflation tests and optimization method.

To determine the effect of the collagen anisotropy, a parameter study compared
the deformed shapes of model corneas with a strongly anisotropic limbus and
different anisotropic fiber structures in the central region, including a transversely
isotropic structure, orthogonal structure, circumferential structure, and two addi-
tional structures with a preferred orientation in either the nasal-temporal or inferior–
superior directions. Except for the transversely isotropic case, the same dispersion
parameter n D 6 was applied for the von Mises PDF for both the central cornea and
limbus to evaluate the effect of a strongly anisotropic central cornea. The results in
Fig. 14.11 calculated from a pressure loading of 53 mmHg showed that deformation
for the case with a transversely isotropic central region was localized in the strongly
anisotropic limbus. The limbus exhibited the largest displacement gradients, while
the displacement field in the central region was nearly uniform, indicate little change
in the curvature. The strong circumferential fiber reinforcement caused the tissue to
be more compliant meridionally in the limbus than the central cornea. The same
was obtained for the case with a strongly anisotropic orthogonal structure in the
central cornea. Significant shape changes were computed for the three other highly
anisotropic fiber structure. The case with a highly aligned circumferential structure
in the central cornea deformed into a conical shape. The two cases with a high
degree of fiber alignment in either the nasal-temporal or inferior–superior directions
developed a distorted deformed shape. The central cornea is the primary refractive
component of the eye, and the shape of the central cornea determines 75 % of the
unaccommodated optical power of the eye. The particular combination of a strongly
aligned circumferential collagen structure in the limbus and a nearly transversely
isotropic collagen structure in the central region may serve to preserve the shape of
the central cornea for refraction during pressure changes. The results suggest that
one function of the corneal collagen structure is to provide the cornea with a robust
design for refraction.
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Fig. 14.11 Contours of the displacement magnitude calculated at 53 mmHg for different model
collagen structures in the central bovine cornea. In all cases, the collagen fibers are highly oriented
in the circumferential orientation and along the model preferred orientations of the central cornea.
The model fiber structures are transversely isotropic (Trans ISO), orthogonal (ORTH), nasal-
temporal (NT), inferior–superior (IS), and circumferential (CIRC). Reproduced from Nguyen and
Boyce 2011 with permission of copyright holder

14.4.2 The Anisotropic Peripapillary Sclera

The peripapillary region of the sclera lies immediately adjacent to the optic nerve
head. It provides the structural support for the lamina cribrosa, which is a thin
fenestrated membrane that guides the optic nerve axons away from the eye.
WAXS measurements show that the peripapillary sclera has a high degree of
collagen alignment in the circumferential direction, which provides mechanical
reinforcements against the stress concentration caused by the presence of the more
compliant optic nerve head (Pijanka et al. 2012). The region displays a large
variation in the degree of fiber alignment. The highest degree of fiber alignment
in the peripapillary sclera of normal human eyes occurs in the superior-temporal
quadrant, while the lowest degree of fiber alignment occurs in the superior-nasal
quadrant. The degree of fiber alignment decreases dramatically away from the
peripapillary sclera and the preferred fiber orientation also becomes more spatially
heterogeneous in the midposterior region. To study the effects of the anisotropic
structure on the deformation of the optic nerve head, the author and coworkers
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Fig. 14.12 Model fiber
structure for a threshold value
of the anisotropic ratio
AR D 1:6. The black squares
indicate regions where the
PDF was obtained directly
from WAXS measurements,
while the white squares were
regions with an isotropic
PDF. Reproduced from
Coudrillier et al. (2013) with
permission from copyright
holder
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developed finite element models for specimens of the posterior sclera characterized
by inflation and WAXS experiments (Coudrillier et al. 2013). The distributed fiber
model in Sect. 14.3.1 was used to describe the mechanical behavior of the tissue,
where the WAXS data was used directly to represent the PDF of the collagen
orientation. The remaining model parameters for the collagen fiber and matrix were
determined using IFEA to fit to DIC measured displacement field of the inflation
experiments.

The effects of the spatially heterogeneous degree of alignment were examined
by comparing the optic nerve head deformations calculated for different model
representations of the collagen structure to those calculated for the physiological
collagen structure measured by WAXS. Specifically, the simulations calculated the
scleral canal expansion, posterior bowing of the lamina cribrosa, and maximum
tensile principal and shear strain in the lamina cribrosa. The model representations
of the collagen structure were created by progressively filtering out the less
anisotropic features of the WAXS measurements based on a threshold criterion
for the anisotropic ratio in Fig. 14.8. Increasing the anisotropic threshold from 1.0
(WAXS fiber structure) to 1.6 converted 71 % of the tissues of the posterior sclera to
a transversely isotropic material (Fig. 14.12); however, this did not noticeably alter
the deformation response of the optic nerve head (Figs. 14.13 and 14.14). Increasing
the filtering threshold for the anisotropic ratio beyond 1.6 began to convert the
peripapillary region to a transversely isotropic material. This caused a significant
decrease in the posterior bowing of the lamina cribrosa (Fig. 14.13), a significant
increase in the scleral canal expansion Fig. 14.14, and significant increases in the
maximum principal and shear strains of the lamina cribrosa (Coudrillier et al. 2013).
The results confirmed the conclusions of the previous micromechanical studies for
the midposterior sclera (Sect. 14.3.1) that large variations in the fiber dispersion and
preferred fiber orientation at the 0.5 mm length scale of the WAXS measurements
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Fig. 14.13 The posterior
deformation of the lamina
cribrosa for different
threshold values of the
anisotropic ratio. Reproduced
from Coudrillier et al. (2013)
with permission from
copyright holder

1 1.5 2 2.5 3 3.5 4
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Anisotropic ratio threshold value

pe
rc

en
ta

ge
 d

iff
er

en
ce

 w
ith

 th
e

ph
ys

io
lo

gi
ca

l f
ib

er
 s

tr
uc

tu
re

 m
od

el

LC posterior deformation 

Fig. 14.14 The scleral canal
expansion for different
threshold values of the
anisotropic ratio. Reproduced
from Coudrillier et al. (2013)
with permission from
copyright holder
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translate to a transversely isotropic behavior at the tissue length scale. In contrast,
the anisotropy of the peripapillary sclera plays a major role in the mechanical
behavior of the tissues of the optic nerve head. Without it, the tissues of the optic
nerve head would experience larger tensile and shear strains from the increased
hoop expansion of the scleral canal. Furthermore, spatial variation in the degree of
fiber alignment in the peripapillary sclera has a significant effect on the deformation
response of the ONH. The sclera of glaucoma eyes have an altered collagen structure
(Pijanka et al. 2012), where the maximum fiber anisotropy no longer consistently
resides in the superior-temporal sector. These alterations in the fiber structure of
the peripapillary sclera may significantly alter the biomechanical environment of
the optic nerve head, elevating the susceptibility to the development of glaucoma
damage and spurring the progression of the disease.
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14.5 Future Outlook

Tremendous advancements in experimental methods have been made in the past
decade that has enabled spatial mapping of the collagen structure and mechanical
properties of the cornea and sclera. These have in turn propelled advancements in
computational modeling of the structure–function relationship of the tissues. The
state of the art in computational models for the sclera now includes specimen-
specific geometries, maps of the fiber structure, and material properties. Despite
these recent advances, many challenges remain in experimental characterization and
computational modeling of the tissues of the eye wall. Current understanding of
the tissue structure and material behavior remains essentially 2D because experi-
mental methods such as ESPI, stereo DIC, and WAXS provide either surface or
through-thickness averaged measurements. The trend is moving towards 3D volume
characterization methods for the tissue structure and mechanical properties. WAXS
measurement of the sectioned specimens of the central cornea shows a gradient in
the degree of fiber alignment through the thickness (Abahussain et al. 2009), while
multiphoton laser scanning microscopy using second harmonic generated (SHG)
signals reveals significant interweaving of the collagen fibers in the anterior third of
the central cornea (Winkler et al. 2011) and posteriorly in the peripapillary sclera
(Pijanka et al. 2012). The degree of interweaving remains unknown and current
experiments provide more qualitative than quantitative information regarding the 3D
fiber structure. Lamellar interweaving enhances the out-of-plane tensile and shear
stiffness as well as the toughness of the tissues. These feature may be important to
the mechanical response and function of the tissues. Similar efforts are underway to
characterize the depth-dependent mechanical properties and deformation response
of the tissues to mechanical loading. Petsche et al. (2012) measured the shear mod-
ulus of sectioned specimens of the central cornea and found a gradient in the shear
modulus through the thickness that was consistent with the SHG measurements of
Winkler et al. (2011) of the 3D collagen structure. New methods such as optical
coherence elastography (Ford et al. 2011), ultrasonic elastography (Tang and Liu
2012), and digital volume correlation (Girard 2012) hold great promise to provide
3D maps of the deformation response in the tissue volume to inflation testing.
The ability to characterize through-thickness variation in structure and deformation
response is needed to accurately determine the material properties of the tissues of
the eye wall in critical regions such as the peripapillary sclera, that display large and
irregular three-dimensional variations in anatomic and microstructural features.

The development of inflation methods has focused on obtaining higher resolution
and more accurate strain mapping. High resolution and accurate methods are also
needed to map the local stress response and determine the variations in material
properties. The available methods currently are IFEA and analytical models for
thin membranes subjected to uniform pressure loading. The former is computa-
tionally intensive and unfeasible for a large number of parameters. For highly
nonlinear problems, IFEA may not return a unique set of parameters. Moreover,
the method requires accurate description of the tissue structure. Inaccuracies in
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the specimen geometry will manifest in the converged parameters returned by the
IFEA. Analytical membrane models allow evaluation of a large number specimens
for statistical comparison. The application of membrane models is limited to regions
away from the boundaries, which in the sclera precludes analysis of the peripapillary
region, and the accuracy of the models is determined by the accuracy of the
local curvature calculations. Calculating the principal curvatures requires double
differentiation of the displacement data, which amplifies the uncertainties and noise
in the displacement measurements.

Microstructural approaches have been applied successfully to model the mechan-
ical anisotropy that originates from the collagen fiber structure. Similar approaches
are needed to model the effect of elastin reinforcement in the sclera. Elastin is heav-
ily concentrated and highly oriented in the peripapillary region, yet its influence on
the stress response is not well understood. Most models for the collagen anisotropy
continue to rely on phenomenological exponential models for the mechanical
behavior of the collagen fibers for expediency. The physical significance of the
model parameters is unclear, which makes it difficult to interpret the significance
of alterations in the material properties with aging and disease development. Both
the cornea and sclera exhibit viscoelastic behavior, but few viscoelastic models have
been developed for the tissues. More fundamentally, the deformation mechanisms
underlying the strain-stiffening stress response and viscoelastic behavior are poorly
understood. Advances in structural models require development of experimental
methods to characterize the deformation of the collagen fibril and proteoglycans
relative to the tissue under applied mechanical loads, as well as the fibril-fibril and
fibril–proteoglycan interactions.

Acknowledgements The author would like to thank Dr. Michael Sacks for his invitation to write
this review. In addition, the author would like to acknowledge the support of the NEI Public
Health Service Research Grants EY021500 and the National Glaucoma Research program of the
BrightFocus Foundation.

References

Abahussain M, Hayes S, Cartwright NK, Kamma-Lorger CS, Khan JMY, Meek KM. Invest
Ophthalmol Vis Sci. 2009;50:5159.

Aghamohammadzadeh H, Newton RH, Meek KM. Structure. 2005;12:249.
Alastrué V, Calvo B, Pena E, Doblaré M. J Biomech Eng. 2006;128:150.
Andreassen TT, Simonsen AH, Oxlund H. Exp Eye Res. 1980;31:435.
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Chapter 15
Mechanical Modeling of Skin

Cees Oomens and Gerrit Peters

Abstract The chapter describes the work that was performed in the soft tissue
biomechanics laboratory at Eindhoven University of Technology on the biomechan-
ics of skin. A rationale is given for the changes from standard testing methods to
inverse methods, from in vitro to in vivo and back to in vitro testing and for the
more detailed studies on individual skin layers of the last decade. The chapter tries
to explain how our vision on testing methods and modeling changed over the years
and why the pursuit towards a complete constitutive model is still ongoing.

15.1 Introduction

When Yoram Lanir did his postdoc in California in the lab of professor Y. C. Fung,
he wrote two seminal papers about biaxial tests on rabbit skin (Lanir and Fung
1974a, b). The first paper described the equipment. The second paper extensively
described the tests on rabbit skin. Their conclusion was that biaxial testing was a
valuable technique, but that results had to be interpreted with caution. Repeatability
was an issue, swelling and the difficulty to reach an equilibrium in relaxation tests
also caused problems, but it appeared that the skin could be seen as an orthotropic,
highly nonlinear material that could be described reasonably well with Fung’s
pseudo-elastic exponential strain energy equation. At that time, they were probably
already thinking about developing microstructural models to create constitutive
equations, eventually leading to Yoram’s most cited paper from 1983 in the journal
of biomechanics on constitutive equations for fibrous connective tissues. This was
the first comprehensive paper on microstructural models for biological materials,
including the distribution of collagen fibers as well as undulation. Many papers
followed after that, with applications to other tissues like blood vessels and the
brain. Yoram Lanir kept exploring microstructural models with an increasing level
of sophistication, extending models to mixtures of solids and fluids and non-affine
deformation of fibers. When we were asked to write a chapter for this book, we
decided not to review the microstructural fibers models, because other authors have
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more experience on this, but we decided to focus on skin, the first biological material
Yoram Lanir has worked on, and focus on methods that were used over the years
to measure properties. In addition, we focus on one aspect of the microstructure;
more specific the different top layers of the skin, i.e., the epidermis with a thickness
of 100–150 �m and the stratum corneum (SC) with a thickness of 10 �m. Apart
from a series of publications on SC in the 1960s and 1970s of the last century most
studies on skin between 1970 and 2000 were on the tissue as a whole, which is
dominated by the behavior of the dermis. In the last decennium, the interest is more
focused on the very thin top layers and attempts are being made to determine the
individual properties of those layers. The reason for this is an increased interest in
the interaction of personal care products and medical instruments with the top layer
of skin, but also because of new techniques for transepidermal drug delivery.

The chapter is not a comprehensive review of the literature, but rather a chronicle
of the work that was done in our own lab in the last 30 years, including the change
in vision over the years on how mechanical testing of biological materials has to be
done, but we will give credits to work of others whenever that is opportune.

The biaxial test as performed by Yoram Lanir in the 1970s is an example of
a standard mechanical test. A displacement or velocity field is enforced, which is
independent of the material that is being tested and usually uniform in some part
of the tissue specimen. This requires homogeneous properties for the sample (i.e.,
usually small samples) and a very specific shape of the sample. The force(s) required
to obtain this field are measured. So force and displacement are known and the
material behavior can be derived from this.

There were several reasons why in the 1980s researchers started with what is now
known as inverse or numerical/experimental methods. The displacement field was
no longer uniform or known but had to be measured too. This required a numerical
model to describe the experiment and an iterative loop to fit the model on the
experiment. The advantage was that there were less restrictions to make the samples
and the method had the potential to be used in vivo. The disadvantage was the long
computing times and difficulties to interpret the outcome of experiments. We started
25 years ago with these inverse methods and attempts to measure properties of skin
and other biological tissues in vivo, returned to ex vivo studies and more or less
standard testing on small samples in the last 10 years.

15.2 Inverse Methods to Characterize Materials

The incentive for the use of inverse methods in our lab came from studies that were
done by Peters (1987) on collagenous connective tissues from the elbow region.
Peters used an imaging technique to measure the strain distribution at long slender
samples of connective tissue in a uniaxial stress test. It appeared that the strain
field was far from homogeneous and the behavior was very much affected by a
destruction of the internal coherence of the structure and the extreme anisotropy of
the tissue (Fig. 15.1).
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Fig. 15.1 Measured strain distribution on a specimen obtained from the overlaying fascia of the
extensor digitorum muscle. Only the positive principle strains are shown (Peters 1987)

Fig. 15.2 (a) Image of a prepared arm with exposed m. extensor digitorum septum. The black
dots are markers used to measure displacement. (b) Strain distributions derived from mechanically
loaded tissue in in situ test (Peters 1987)

The solution to this problem was to use much larger samples so the internal
coherence was maintained, and to measure the heterogeneous strain field and
boundary load to gain as much information as possible so that even when the
properties changed with position they could be measured (identified). This could
be extended to in situ tests in which the internal coherence of the structure was
preserved. An example of an in situ test with a structure that is left intact as much
as possible is shown in Fig. 15.2. Figure 15.2a shows a prepared arm. Exposed is
the septum extensor digitorum, which primarily consists of collagenous connective
tissue. The black dots are markers that were used to measure a displacement field
during loading by means of a two-camera system. From the marker displacements
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Fig. 15.3 Diagram for the inverse method to determine material parameters

strains can be derived. The principal strain distribution is given in Fig. 15.2b.
The length of the bars corresponds to the magnitude of the principal strain in the
direction of the bar.

By combining the measured displacement fields with detailed dedicated finite
element models, it should be possible to determine the material properties. The idea
of using displacement fields in this way was proposed earlier (Pister 1974; Distefano
1974; Yettram and Vinson 1979; Kavanagh 1972), but the required computer power
and means to measure displacement fields with sufficient accuracy on biological
materials was lacking for these pioneers.

Figure 15.3 shows a schematic of the method. An in vivo or in vitro experiment
is set up and the strain field, resulting from some loading condition, is measured.

Options to measure displacement fields were Moiré, laser-speckle interferometry
for small strains and methods using a grid of dots in combination with imaging
techniques for larger displacements. Later Digital Imaging Correlation (Sutton
et al. 1986) was the better option and for internal strain measurements Magnetic
Resonance Imaging, using tagging (Alistair and Young 1996).

The measured strain field and boundary load was compared to the calculated
strain field and boundary load based on an assumed constitutive model for the
material that was tested and initial assumptions for the parameters. These initial
assumptions were often determined from standard tests. The difference between
the computed and measured strains and forces was used to update the parameters
in an iterative loop until convergence was reached. Parameter adjustment was
usually done by means of a weighted least squares algorithm and a Newtonian or
Levenberg–Marquardt technique to find the best fit (Oomens et al. 1993).
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Although the method was used successfully in a number of applications in
our group (Meijer et al. 1999; Op den Camp et al. 1999; Hendriks et al. 2003,
2006; Cox et al. 2008; Dam 2007) and is still being used quite extensively,
it did not live up completely to the original expectations. The hypothesis was
that by adding more information to the experimental setup in the form of a full
displacement field this would give indications about the (constitutive) model error
of the system and clues on how to improve the model, more or less inspired by
similar methods that are used to identify and control dynamic systems. However,
a real understanding of how material behaves has to be obtained from a thorough
study of the microstructure of the material and the physics of the interaction between
the components. Unless the constitutive model is a proper description of these
microstructural interactions, the numerical/experimental method does not add much
to more standard techniques.

15.3 Mechanical Properties of the Stratum Corneum
and Epidermis

Most studies on skin mechanics until 2000 were on total skin. It was assumed that
the relatively thick dermis (compared to epidermis and stratum corneum) with its
collagenous structure would dominate the mechanical behavior of the skin. Apart
from a series of papers in the 1970s of the last century on stratum corneum the
mechanical properties of the top layers of the skin were hardly studied separately.
This situation changed because applications in cosmetics, personal care equipment,
and clinical applications like transepidermal drug delivery required more knowledge
on mechanical stiffness and strength and diffusion properties. Especially, the top
10–150 �m of the skin became an area of interest.

We attempted first to study these properties in vivo with noninvasive means and
making use of a numerical experimental procedure. The technique used was the
suction test. A suction device with different aperture sizes was used in combination
with ultrasound and optical coherence tomography to measure the mechanical
properties of the volar forearm skin of healthy volunteers. The shape and thickness
changes of the top layers were measured while a negative pressure was applied to
the skin by means of the suction device. The idea was that the aperture size of
the suction device could be varied and, depending on the diameter, different layers
would dominate the mechanical behavior.

The suction experiments combined with ultrasound allowed measuring the
properties of the full skin (Hendriks et al. 2003).

By using optical coherence tomography, it became possible to measure the
thickness change of the papillary layer of the skin. A two-layer finite element model
of the experimental setup was developed using Neo-Hookean material for the upper
layer (combined papillary layer and stratum corneum) and the reticular dermis,
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resulting in a very high difference in stiffness. The strain energy density function
for a Neo-Hookean model is:

W D C10 .I1 � 3/ (15.1)

with I1 is the first invariant of the left Cauchy-Green tensor B.
For the reticular dermis, C10 D 0.16 MPa was found and for the upper layers

C10 D 0.11 kPa (Hendriks et al. 2006).
Next to this, Hendriks also developed a setup to measure internal strain fields in

the epidermis by combining Digital Image Correlation (DIC) with in vivo confocal
imaging, an attempt to design a noninvasive technique to characterize the epidermis
(Hendriks 2005). Figure 15.3 shows a result with a reconstruction of displacements
at different depths.

The severe limitations and difficulties of in vivo testing and better knowledge on
skin preparation and preservation as a result of experiences with tissue engineering
formed the incentive to design novel in vitro experiments to determine properties of
stratum corneum and epidermis.

Geerligs et al. (2011a, b) developed two experimental setups: (1) micro-
indentation of very thin skin samples and (2) a technique to measure shear properties
of epidermis and stratum corneum (Fig. 15.4).

Indentation tests were carried out on ex vivo human skin. Epidermal sheets were
obtained using a dermatome. The dermatomed slices of 100 �m thickness were
cut into pieces of approximately 1 cm2. To obtain stratum corneum (SC) samples,
dermatomed skin slices of 200 �m were immersed in a solution of 0.1 % trypsin in
an incubator at 37 ıC for 2–3 h. After that, the sheets were rinsed in PBS and also
cut into pieces of approximately 1 cm2.
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Fig. 15.4 Calculated displacements at different depths under the skin surface during shear loading.
Circles represent the final position of a point and the lines represent the followed track. The pad
left of the images was moved downwards, the pad right of the images was moved upwards. Pixel
numbers are shown along the axes. Image size is 0.6–0.4 mm (Hendriks 2005)
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Fig. 15.5 (a) The top center of the triangles, highlighted by the large red points, formed by the
glyphics was chosen as indentation location on the skin samples. (b) Dermatomed skin with a set
thickness of 100 �m consisting of the epidermal layer only (Geerligs 2010)

Micro-indentation experiments were applied, using a spherical tip with a diam-
eter of 1 mm. The indentation distance and required force were measured with
resolutions of 1 nm and 1 nN, respectively. A ramp load was applied of 0.2 mN
for the SC samples and 1 mN for the epidermis. The loading/unloading rate was
0.01 mN/s with a hold phase of 30 s.

The load/displacement data were used to determine the Young’s moduli by using
an analytical solution by Oliver and Pharr (1992) and fine tuned by comparison with
a numerical model of the indentation test. No significant differences in stiffness
between the stratum corneum and viable epidermis were observed. Estimates for
the Young’s moduli were found to be 2.6 ˙ 0.6 and 1.1 C 0.2 MPa for the stratum
corneum and epidermis, respectively. The value for the epidermis was much higher
than those found in vivo by Hendriks et al. (2006) (Fig. 15.5).

The shear tests were performed with a parallel plate rheometer on samples of
stratum corneum and the viable epidermis. The method differs from standard testing
methods. To increase the torque on the upper plate of the rheometer, the sample is
placed in eccentric position (see Fig. 15.6), a technique that was first applied by van
Turnhout et al. (2005) on skeletal muscle samples and later with success repeated
on brain tissue (Hrapko et al. 2006) and aortic aneurism thrombus (Van Dam et al.
2006).

A setup was built around the sample that enabled control of the temperature
and the relative humidity. Preliminary tests were performed to determine the linear
viscoelastic range, the effect of normal loading on the sample and the time to reach
equilibrium after changes of temperature and relative humidity. The study shows
that reproducible results can be obtained for the shear properties of epidermis in
an in vitro setup. The dynamic shear modulus for stratum corneum ranged from
about 4–12 kPa, decreasing with increasing relative humidity. The values were
considerably lower than the shear modulus value based on tensile Young’s moduli
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Fig. 15.6 Eccentric configuration for rotational shear experiments. A sample with radius r1 is
rotated at a radius r with a torque M. The groove following the perimeter facilitated the positioning
of the samples

in the literature, indicating a highly anisotropic material behavior. Results for the
epidermis were of the same order of magnitude, but were less consistent possibly
due to a less well-defined tissue composition. But these shear moduli were of the
same order of magnitude as those found by Hendriks et al. (2006) in vivo.

Two years ago, we decided to extend the shear work to high deformations. Still
interested in the properties of the individual layers we decided to work with a
combination of the displacement distribution-based method that we developed and
used in the 1990s and the more standard rheometer testing in the last decade. Porcine
full thickness skin slices were used (1.2–1.6) to develop the method. Like in earlier
experiments, the samples were eccentrically placed in a plate-plate rheometer setup
and subjected to oscillatory shear strains up to 10 %. A random grey value pattern
was sprayed on the side face of the sample by means of a high performance air brush.
With a microscope and a high speed camera system, the deformation distribution of
the side face of the skin was determined using DIC. To prevent slippage, the samples
were glued to the plates.

Figure 15.7a shows an image of undeformed skin in the setup after it is sprayed
with ink. Figure 15.7b shows the skin with an undeformed and deformed grid on top,
as was reconstructed by means of DIC. From the reconstructed displacements the
local shear strain was determined along a vertical line in the middle of the sample.

The result is given in Fig. 15.8. It is clear that the shear modulus in the epidermis
is higher than in the dermis.

These are just preliminary data for a few samples of porcine skin, but it shows
that in principle the method, which is a combination of the numerical/experimental
technique we developed 20 years ago and the well-established standard rheometry,
works fine. Currently, we are improving the method, and we apply it to human skin.
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Fig. 15.7 (a) Undeformed configuration of porcine skin sample, (b) undeformed skin with a
grid projected on the skin, and (c) deformed grid with a deformed grid based on digital image
correlation projected upon the skin (adapted from Gerhardt et al. 2012)

Fig. 15.8 (a) The shear strain for three different skin samples as derived from the images by means
of Digital Image Correlation. (b) The local shear modulus for the three skin samples

15.4 Conclusion

Over the last year, our vision on how to characterize skin has evaluated from stan-
dard testing, via in vivo testing using numerical/experimental or inverse methods
to a kind of mixture between standard tests and inverse methods, but with using
well defined, small samples in in vitro setups. It has become clear that the top
layers of the skin behave very different from the dermal layer and the behavior
is highly anisotropic. Shear tests lead to orders of magnitude different results than
tensile and indentation tests. An explanation for this has to be found in studying the
microstructure and the interaction between different components.
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Chapter 16
Undesirable Anisotropy in a Discrete Fiber
Bundle Model of Fibrous Tissues

Cormac Flynn and M.B. Rubin

Abstract Lanir (J Biomech. 16(1):1–12, 1983) proposed a structural model for the
anisotropic response of fibrous tissues with fiber bundles oriented in space by a
continuous orientation distribution. Each fiber bundle was assumed to have the same
undulation distribution that characterizes its nonlinear elastic response. Recently, a
discrete fiber icosahedron model for fibrous soft tissues has been introduced, which
is based on fiber bundles parallel to the six lines that connect opposing vertices
of a regular icosahedron. Although the parameters in the icosahedron model can
be determined to match experimental data for the anisotropic response of various
tissues, the icosahedron model predicts anisotropic response when the weights of
the six fiber bundles are equal. This chapter quantifies this undesirable anisotropic
response and refers to a new icosahedron model based on a generalized invariant
which also matches experimental data and analytically reduces to an isotropic form
when the weights of the fiber bundles are equal.

16.1 Introduction

Lanir (1983) proposed a structural model for the anisotropic elastic response of
fibrous tissues which was based on the idea that the tissue is a collection of fiber
bundles that are characterized by continuous orientation and undulation distribution
functions. More specifically, it was assumed that each fiber bundle is a collection of
coiled or undulated fibers and that an individual fiber does not resist compression
or extension when it is undulated. Consequently, it resists extension only when it
is straight. Thus, the undulation distribution characterizes the nonlinear response of
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the fiber bundle to stretching. Moreover, it was assumed that undulation distribution
is independent of orientation with each fiber bundle exhibiting the same response to
extension.

Within the context of this type of structural model the strain energy function is
expressed as a double integral over the orientation and undulation distributions. Due
to nonlinearity induced by general undulation distributions, it is usually not possible
to evaluate these integrals analytically. A number of procedures for numerical
integration over a sphere have been discussed in Bazant and Oh (1986), Ehret et al.
(2010), and Itskov et al. (2010) which evaluate the integrand at a finite set of
specific orientations and which cause varying degrees of unphysical anisotropy due
to discretization.

Structural models with a finite collection of fibers have been used to study
the response of low-density materials with open cells and fiber-dominated matrix
composites (Christensen 1986; Christensen 1987). Models of this type that are based
on orientations determined by opposing vertices of a regular icosahedron and of
a dodecahedron (ten fibers) have been studied in Elata and Rubin (1994, 1995).
Also, an icosahedron model for anisotropic response of fibrous soft tissue using six
discrete fiber bundles oriented in the directions of opposing vertices of a regular
icosahedron was recently considered in Flynn et al. (2011). Specifically, in Flynn
et al. (2011) the strain energy function for each fiber bundle was assumed to be the
same function of the stretch of the fiber bundle and the strain energy of the entire
tissue was taken to be a weighted sum of the strain energies of each of the six fiber
bundles in the discrete icosahedron model. Moreover, the strain energy function was
determined by simple undulation distributions which ensure that the fiber bundle
cannot be compressed. It was shown in Flynn et al. (2011) that the weights and
the material parameters of the undulation distribution can be determined to match
large deformation experimental data for the anisotropic response of various tissues.
However, it was also noted in Flynn et al. (2011) that for the proposed undulation
distributions, the tissue response was not isotropic even when the weights of the
strain energy of each fiber bundle are the same. This means that unequal weights
cannot be interpreted as the sole contribution to anisotropy.

The objective of this chapter is to analyze this undesirable anisotropy induced
by fiber undulation distributions in a discrete icosahedron model similar to the one
discussed in Flynn et al. (2011). An outline of this chapter is as follows. Section 16.2
describes a simplified icosahedron model for which the strain energy function of
each fiber bundle is taken to be a function of the Lagrangian strain of the fiber bundle
and not its stretch. As in Flynn et al. (2011), the strain energy of the entire tissue is a
weighted sum of the strain energies of the specified fiber bundles. Section 16.3 uses
the response to isochoric extension to quantify undesirable anisotropy caused by the
nonlinearity of simple undulation distributions. The undesirable anisotropy caused
by discreteness of the icosahedron model is also analyzed in Sect. 16.4 using a
refined icosahedron model for which the strain energy function is an average of the
strain energy function for N icosahedron models with different fiber orientations.
Section 16.5 introduces a randomly oriented fiber model and Sect. 16.6 presents
conclusions.
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16.2 An Icosahedron Model of the Fiber Distribution

For an icosahedron model of the fiber distribution the six unit vectors Ni (i D 1,
2, : : : , 6) that are parallel to the six lines connecting opposing vertices of a regular
icosahedron are specified relative to the rectangular Cartesian base vectors ei (i D 1,
2, 3) by the expressions (see Fig. 16.1)
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(16.1)

Moreover, it is convenient to define the symmetric structural tensors Bi, such that

Bi D Ni ˝ Ni .no sum on i D 1; 2; : : : ; 6/ ; (16.2)

Fig. 16.1 Sketch of a regular
icosahedron showing the
vectors Ni
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where
N

denotes the tensor product operator. Then, using the work in Elata and
Rubin (1994) it can be shown that for an arbitrary second order tensor E

6X
iD1

Bi D 2 I;
6X

iD1
Bi � E D 2 E � I; (16.3a, b)

6X
iD1

.Bi ˝ Bi/ � .E ˝ E/ D
6X

iD1
.Bi � E/2 D 2

5

h
.E � I/2 C 2 .E � E/

i
; (16.3c)

where I is the second order unity tensor, A � B D tr
�
ABT

�
denotes the inner product

between two second order tensors fA, Bg and (16.3c) generalizes the inner product
operator for fourth order tensors.

Next, recall that a material point located by X in the reference configuration is
deformed to the position x in the present configuration at time t. The mapping from
the reference to present configurations, the deformation gradient F, dilatation J, and
Lagrangian strain E are given by

x D x .X; t/ ; F D @x=@X; J D det .F/ > 0; E D 1

2
.C � I/ ; C D FTF:

(16.4)

Moreover, the Lagrangian strains Ei (i D 1, 2, : : : , 6) of the material fibers in the Ni

directions are defined by

Ei D E � Bi .i D 1; 2; : : : ; 6/ : (16.5)

Now, for a compressible hyperelastic material the strain energy function W per
unit mass for the icosahedron model is specified by

0W D
6X

iD1
wif .Ei/; wi � 0;

6X
iD1

wi D 1; (16.6)

where 0 is the reference mass density, the strain energy function f of each fiber
bundle has the same form, and wi are nonnegative weighting functions. Using the
usual arguments it follows that the symmetric Piola–Kirchhoff stress S and the
Cauchy stress T associated with (16.6) are given by

S D
6X

iD1
wi

df .Ei/

dEi
Bi; T D J�1FSFT: (16.7a, b)

For the simple case of a single fiber bundle it follows that

w1 D 1 all other wi D 0; S1 D S � B1 D df .E1/

dE1
; (16.8)
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so that the stiffness K of the fiber bundle is given by

K D dS1
dE1

D d2f .E1/

dE21
: (16.9)

As discussed by Lanir (1983), the collagen fiber bundles in soft connective tissues
are typically coiled in the stress-free reference configuration and the stress response
of each fiber bundle is characterized by an undulation distribution D(x) which is
normalized so that Z 1

0

D.x/ dx D 1; (16.10)

where the fraction of fibers that are straight at the strain E is given by

Z E

0

D.x/ dx: (16.11)

Furthermore, assuming that the stiffness of each collagen fiber in the bundle is
constant Ec when the fiber is straight, the function f in (16.9) is determined by
integrating the expression

d2f .E/

dE2
D Ec

Z
0

E

D.x/ dx for E � 0: (16.12)

In this expression it is tacitly assumed that the fiber in the bundle is coiled when it
is compressed and that it makes no contribution to the stress when it is not straight
(E � 0).

To investigate undesirable anisotropy caused by nonlinearity of the undulation
distribution in the discrete icosahedron model, the weights are taken to be equal

wi D 1

6
.i D 1; 2; : : : ; 6/ ; (16.13)

and the strain energy function of the tissue is given by

0W D 1

6

6X
iD1

f .Ei/: (16.14)

16.2.1 Anisotropic Response Case I

The simplest distribution considered in Flynn et al. (2011) is a step distribution that
vanishes for x � x1 and x > x2 and is constant in the interval x1 � x � x2, such that

D.x/ D 0 for x < x1 and x > x2;

D.x/ D 1

x2 � x1
for 0 � x1 � x � x2; (16.15)
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where x1 is a nonnegative constant that characterizes the strain when the first fiber
in the fiber bundle becomes straight. It then follows that the solution fI of (16.12) is
given by

f .E/ D fI.E/ D EchE � x1i3
6 .x2 � x1/

for E � x2;

f .E/ D fI.E/ D Ec.x2 � x1/
2

6
C Ec .E � x1/ .E � x2/

2
for E > x2;

(16.16)

where the Macaulay brackets hxi are defined by

hxi D 1

2
.x C jxj/ : (16.17)

16.2.2 Isotropic Response

For the simple case when the stiffness of the collagen fiber bundle is constant Ec

and the fiber is allowed to resist compression, the strain energy function f in (16.9)
is given by

f .E/ D EcE2

2
: (16.18)

It follows from (16.3c), (16.5), and (16.14) that the associated strain energy function
for the tissue is an isotropic function of the strain E given by

0W D Ec

12

6X
iD1

E2i D Ec

30

h
.E � I/2 C 2 .E � E/

i
: (16.19)

16.2.3 Anisotropic Response Case II

In order to analyze the influence of the assumption that the fibers cannot support
compression when they are coiled, the strain energy function (16.19) is modified to
take the form

f .E/ D fII.E/ D Ec

2
hE � x1i2; 0W D Ec

12

6X
iD1

hEi � x1i2: (16.20)

Figure 16.2 plots the functions fI and fII that characterize the strain energy of the
fiber bundles associated with (16.16 and 16.20), respectively.
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Fig. 16.2 Functions fI and fII

characterizing the strain
energy of fiber bundles

16.3 An Example of Isochoric Extension

In order to prove that a strain energy function characterizes isotropic response it
is necessary to prove analytically that it depends on the strain E only through its
invariants. In contrast, it is sufficient to consider a single numerical simulation to
prove that a strain energy function exhibits undesirable anisotropy. To this end,
it is convenient to define the right-handed orthonormal triad ai in the reference
configuration with fa1, a2g being in the plane of the vectors fN1, N2 C N6g, such
that

a1 D N1; a2 D a3 � a1; a3 D a1 � .N2 C N6/

ja1 � .N2 C N6/j : (16.21)

Moreover, it can be shown that the angle ˇ between a1 and the vector (N2 C N6) is
given by

ˇ D cos�1
 p

2p
5C p

5

!
> 0: (16.22)

Then, it is possible to define another right-handed orthonormal triad of vectors Ai

parametrically in terms of the parameter ˛, such that

A1 D cos .˛ˇ/ a1 C sin .˛ˇ/ a2; A2 D � sin .˛ˇ/ a1 C cos .˛ˇ/ a2;
A3 D a3; 0 � ˛ < 1:

(16.23)

Specifically, this causes A1 to rotate about the A3 axis from the orientation a1 to the
vector a2 that is parallel to (N2 C N6) as ˛ ranges from zero to unity (see Fig. 16.3).
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Fig. 16.3 Sketch of the angle
� and triads ai and Ai of
vectors characterizing the
orientation of the sample of
material that is being loaded
in isochoric extension

Next, consider isochoric extension relative to Ai and specify F in the form

F D a A1 ˝ A1 C 1p
a
.A2 ˝ A2 C A3 ˝ A3/ ; a > 0; (16.24)

where a is the stretch of a material fiber in the A1 direction. It follows that this
deformation field can be used to examine the response of samples of the material
with different orientations in the reference configuration (characterized by the value
of ˛) to the same isochoric extension (characterized by the value of a).

Using the deformation (16.24), it is possible to calculate the value of the strain
energy as a function of fa, ˛g. In particular, when the weights wi are equal (16.13),
the strain energy function (16.14) takes the values fWI, WIIg, respectively, for the
specifications (16.16) and (16.20) with

0WI .a; ˛/ D 1

6

6X
iD1

fI .Ei/; 0WII .a; ˛/ D 1

6

6X
iD1

fII .Ei/: (16.25)

Therefore, the relative errors fERI, ERIIg in these strain energy functions for a
specific value of a and varying values of ˛ can be defined by

ERI .˛/ D WI .a; ˛/

WI .a; 0/
� 1; ERII .˛/ D WII .a; ˛/

WII .a; 0/
� 1: (16.26a, b)

In the following example it will be shown that both of the models (16.16 and
16.20) predict undesirable anisotropy even though the weights wi have been taken
to be equal (16.13). Specifically, for the example specify

x1 D 1; x2 D 4; a D 3: (16.27)
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Fig. 16.4 Errors fERI, ERIIg
quantifying the undesirable
anisotropy for the two
icosahedron models
characterized by the
undulation distributions,
(16.16) and (16.20),
respectively

Figure 16.4 plots the errors fERI, ERIIg as functions of ˛. The maximum magnitudes
of these errors are about f69 %, 34 %g, respectively, for fERI, ERIIg. Since the values
of these errors are nonzero, it follows that nonlinearity of the undulation distribution
causes undesirable anisotropy in the discrete icosahedron model. Moreover, com-
parison of (16.16) with the isotropic strain energy (16.18) indicates that anisotropy
predicted by (16.16) fi.e., ERIg is due to both the cubic dependence on strain and
the presence of the cutoff strain E D x1. In contrast, comparison of (16.20) with the
isotropic strain energy (16.18) indicates that anisotropy predicted by (16.20) fi.e.,
ERIIg is due solely to the cutoff strain E D x1.

16.4 A Refined Icosahedron Model

In order to further analyze the influence of discreteness of the icosahedron model
on undesirable anisotropy, it is convenient to define a refined icosahedron model.
Within the context of the icosahedron model described in Sect. 16.2, it is necessary
to evaluate the strain energy function for only six directions defined by the vectors
Ni in (16.1). A refined icosahedron model can be obtained by defining the strain
energy function as an average of N D 6f5(4)J�1 C 1g icosahedron models with N
structural tensors Bi associated with N fiber orientations. The value of J (D1, 2 : : : )
determines the level of refinement as discussed presently.

To this end, it is noted that vectors Ni in (16.1) can be used to define five
equilateral triangles with the following triads of vectors locating the vertices of the
triangles

fNI; NIC1; N6g for I D 1; 2; : : : ; 4; fN5; N1; N6g for I D 5; (16.28)

each of which has the same vertex located by N6. These five triangles can be
tessellated into 4J�1 equilateral triangles (J D 1, 2, : : : ) as shown in Fig. 16.5.
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Fig. 16.5 Sketch of
tessellation of an equilateral
triangle into 4J�1 equilateral
triangles

For example, a typical triangle has vertices located by the three unit vectors ci (i D 1,
2, 3) and its centroid is located by the unit vectors c defined by

c D c1 C c2 C c3
jc1 C c2 C c3j : (16.29)

Next, the proper orthogonal rotation tensor R(c) is defined which rotates the vector
N6 to the vector c counterclockwise by the angle ı about the unit direction n3, which
is normal to the N6�c plane. Specifically, define the right-handed triad of vectors ni

by the expressions

n1 D N6; n2 D c � .c � n1/n1
jc � .c � n1/n1j ; n3 D n1 � n2: (16.30)

Then, R(c) can be written in the form

R .c/ D .cos ın1 C sin ın2/˝ n1 C .– sin ın1 C cos ın2/˝ n2 C n3 ˝ n3;
(16.31)

where the acute angle ı between the vectors n1 D N6 and c is given by

ı D cos�1 .n1 � c/ : (16.32)

For each value of R(c) an additional icosahedron model is generated using the six
structural tensors Bi (i D 1, 2, : : : , 6) in (16.2) to obtain the following six additional
structural tensors

R.c/BiRT.c/ for i D 1; 2; : : : ; 6: (16.33)

The resulting refined model has N structural tensors Bi, associated with N fiber
orientations and the strain energy function is specified by

0W D 0WI .a; ˛/ D 1

N

NX
iD1

fI .Ei/; Ei D E � Bi .i D 1; 2; : : : ; N/ : (16.34)



16 Undesirable Anisotropy in a Discrete Fiber Bundle Model of Fibrous Tissues 339

In these expressions, Ei is the component of the Lagrangian strain of a fiber bundle
in the direction Bi, the function fI associated with the undulation distribution of the
fiber bundle is specified by (16.16), and the parameters f˛, ag in (16.23) and (16.24)
characterize the loading. This model has N fibers, which are equally weighted. In
this regard, it should be emphasized that the definitions of the fiber orientations
in the refined icosahedron model are different conceptually from orientations used
to obtain numerical approximations of integrals over the unit sphere, which are
weighted unequally in order to increase accuracy of integrating specific functional
forms (e.g., Ehret et al. 2010; Bazant and Oh 1985). Moreover, it is noted that since
Bi (i D 1, 2, : : : , 6) satisfy (16.3a) it follows that the refined icosahedron model has
the symmetry that

NX
iD1

Bi D 3

N
I; (16.35)

for any level of refinement J.
As an example, use is made of the specifications (16.27) and the error ERI is

defined by (16.6). Figure 16.6 shows predictions of the error ERI for different
values of refinement. Specifically, for N D 6 the results correspond to the simple
icosahedron model described in Sect. 16.2; and the other predictions correspond
to the refined icosahedron model with N D 36 for J D 1, N D 126 for J D 2, and
N D 486 for J D 3. Also, Fig. 16.7 focuses attention on the results for the higher
values of N. These results indicate that even for a relatively simple strain energy
function a large number of fibers are needed to obtain nearly isotropic material
response. At this point it is not clear why the error predicted by the refined
icosahedron model does not reduce monotonically with increased refinement.

Fig. 16.6 Reduction in the
error ERI predicted by the
refined icosahedron model for
the values N D 6, 36, 126,
486 of the number of fiber
bundles in the model
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Fig. 16.7 Reduction in the
error ERI predicted by the
refined icosahedron model for
the higher values N D 36,
126, 486 of the number of
fiber bundles in the model

16.5 Equal Area Model

It is well known that the regular polyhedron (Platonic solid) with the greatest
number of faces is the regular icosahedron with 20 faces. Consequently, with regard
to numerical integration schemes over the unit sphere, Bazant and Oh (1985) state
that “we cannot have, for a hemisphere, a numerical integration formula with more
than N D 10 regularly spaced points : : : .” Nevertheless, in this section it is of
interest to consider a model based on N oriented fibers which locate the centroids
of patches of a hemisphere that have equal areas. In particular, this model is used
in conjunction with the refined icosahedron model of the Sect. 16.4 to help quantify
the number of fibers needed to reduce the error due to unphysical anisotropy.

An approximate uniform distribution of fibers can be developed by dividing the
surface area of a hemisphere into patches that have the same areas. Specifically,
consider the unit vector N defined in terms of the spherical polar angles f� , �g by

N D N .�; �/ D sin .�/ Œcos .�/ e1 C sin .�/ e2�C cos .�/ e3: (16.36)

It follows that the upper surface of hemisphere is characterized by the ranges

0 � � � 2�; 0 � cos .�/ � 1: (16.37)

Moreover, the area A of a patch on a hemisphere with unit radius for f� , �g in the
ranges�i � � � �iC1 and ˚j � � � ˚jC1 is given by

A D .�iC1 ��i/
�
cos

�
˚j
� � cos

�
˚jC1

��
: (16.38)

Consequently, the area of this hemisphere can be divided into N D K2 equal areas
by specifying f�i,˚ jg in the forms
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�i D 2� .i � 1/

K
for i D 1; 2; : : : ; K C 1;

˚j D cos�1
	

K C 1 � j

K



for j D 1; 2; : : : ; K C 1: (16.39)

Then, the values f� i, � jg of f� , �g, which locate the centroids of these regions can
be defined by

�i D 1

2
.�i C�iC1/ for i D 1; 2; : : : ; K;

�j D cos�1
�
1

2

˚
cos

�
˚j
�C cos

�
˚jC1

���
for j D 1; 2; : : : ; K: (16.40)

Now, using these values f� i, � jg the fibers are oriented in the N directions Ni defined
by (16.36) with � taking the K values � i for each of the K values of � j. Also, the
associated structural tensors Bi are given by

Bi D Ni ˝ Ni .no sum on i D 1; 2; : : : ; N/ : (16.41)

Next, it is convenient to define the average structural tensor B by the expression

B D 1

N

NX
iD1

Bi: (16.42)

For fibers uniformly distributed over the hemisphere, it would be expected that this
average structural tensor would be a scalar times the unity tensor I. Consequently,
an error measure of uniformity can be defined in terms of the relative magnitude of
the deviatoric part B

0
of B defined by

ERB D
vuuut 9B

0 � B
0

�
B � I

�2 ; B
0 D B � 1

3

�
B � I

�
I (16.43)

Due to the result (16.35), the refined icosahedron model will predict that ERB

vanishes for all levels of refinement.
For the equal area model the strain energy function WI(a, ˛) is specified by

(16.34) and the error ERI(˛) is specified by (16.26a) using the values (16.27) and
the deformation (16.24). Figure 16.8 shows the predictions of ERI(˛) for different
values of the number N of fibers and Table 16.1 records the associated values of
the error ERB in (16.43). These results indicate that for N D 49 the equal area
model is less accurate than the refined icosahedron model for N D 36. However,
the monotonic error reduction with increasing values of N predicted by the equal
area model suggests that the fibers are more uniformly distributed in the model than
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Fig. 16.8 Reduction in the
error ERI predicted by the
equal area model for different
values of the number N of
fibers

Table 16.1 Values of the
error ERB in (16.40) predicted
by the equal area model

N ERB (%)

36 0.85
49 0.62
64 0.48
121 0.25

in the refined icosahedron model. Moreover, it is noted that the equal area model
predicts the error due to unphysical anisotropy to be less than 3 % for N D 64. Even
for this simple strain energy function, the computational effort required to evaluate
the equal area model for N D 64 is significant since the constitutive equation must
be evaluated at each Gauss point in a finite element program. An alternative model
that significantly reduces the computational effort is discussed in the next section.

16.6 Conclusions

The structural model for anisotropic elastic response of fibrous connective tissue
proposed by Lanir (1983) has the simplicity that the undulation distribution of fibers
in each fiber bundle is independent of the orientation distribution. This suggests
that the orientation distribution can be correlated to histological observations of
fiber orientations. In particular, a random orientation of fibers should lead to
isotropic response of the tissue. However, from a computational point of view it
is necessary to discretize the evaluation of the integral over the orientation region.
This discretization yields a finite number N of nonlinear strain energy functions
(characterizing fiber bundles in specified orientations) that need to be evaluated for
each strain at each material point.

The example in Sect. 16.4 considered a refined icosahedron model and the
example in Sect. 16.5 considered an equal area model. For each of these models
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Fig. 16.9 Reduction in the
error ERI predicted by the
equal area model for the
higher values N D 49, 64, 121
of the number of fiber
bundles in the model

the strain energy function needs to be evaluated for each of the N fibers. Also, the
Cauchy stress is expressed in terms of a weighted sum of N symmetric tensors Bi

defined in (16.33). It was shown in Figs. 16.7 and 16.9 that the error ERI due to
unphysical anisotropy for the refined icosahedron model is less than 5 % for N D 36
and for the uniform area model is less than 7 % for N D 49. Of course, the magnitude
of the unphysical anisotropy depends on the specific loadings considered. Moreover,
these levels of refinement cause considerable increased complexity, which may not
be justified by the accuracy and availability of experimental data.

Within the context of the icosahedron model proposed in Flynn et al. (2011) the
tissue is modeled by only six fiber bundles, each of which has the same undulation
distribution. This model can be thought of as a specific discretization of the model
in Lanir (1983). It was shown in Flynn et al. (2011) that this icosahedron model can
successfully reproduce experimental data exhibiting anisotropic response. However,
it was shown in Sect. 16.3 here that this icosahedron model exhibits significant
undesirable anisotropy when the weighting functions wi in (16.6) are equal (16.13).
This means that anisotropy in the model is influenced by both the nonlinearity of the
undulation distribution and differences in the values of the weights. Consequently,
the weights wi are not pure measures of anisotropy of the histological orientations
of fibers in the tissue.

Itskov and Ehret (2009) have proposed an alternative model of tissues which is
based on a generalized invariant of deformation determined by a weighted average
of different structural tensors. This idea has been used in Flynn and Rubin (2012)
to develop a generalized icosahedron model. Specifically, a generalized structural
tensor W is defined in terms of the weights wi and the structural tensors Bi in (16.2)
of the icosahedron model by

W D
6X

iD1
wi Bi; wi � 0; W � I D

6X
iD1

wi D 1: (16.44)
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Also, the generalized strain invariant � is defined by

� D �
C C C�1� � W � 2 � 0; (16.45)

where C is the right Cauchy–Green deformation tensor (16.4). Then, the strain
energy is taken to be a nonlinear function of � . In view of the property (16.3a)
of Bi it follows that for equal weights wi (16.13), � becomes an isotropic invariant
of C given by

� D 1

3

�
C C C�1� � I � 2 � 0: (16.46)

In particular, the response of the tissue is analytically isotropic for any nonlinear
dependence of the strain energy on � in (16.46). Moreover, it was shown in Flynn
and Rubin (2012) that when the strain energy is a simple polynomial function of � ,
the coefficients of the polynomial and the weights wi can be determined to match
large deformation experimental data for the anisotropic response of various tissues.

The advantages of this generalized icosahedron model are that the number of
material constants is small, it can be simplified to produce isotropic response exactly
and � depends on only a single structural tensor W so the constitutive response is
simple to evaluate numerically. Specifically, this is a phenomenological model that
characterizes a coupled network of fiber bundles. In this regard, the generalized
icosahedron model has the disadvantage that the nonlinear elastic response of the
model is not simply connected to an undulation distribution of each fiber bundle, as
proposed in the structural model of Lanir (1983).
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Chapter 17
Finite Element Implementation of Structural
Constitutive Models

Michael S. Sacks

Abstract It is well established that the highly nonlinear and anisotropic mechan-
ical behaviors of soft tissues are an emergent behavior of the underlying tissue
microstructure. Numerical solutions form the cornerstone in the application of
constitutive models in contemporary biomechanics. Herein, a structural constitutive
model into a finite element framework specialized for membrane tissues. Multiple
deformation modes were simulated, including strip biaxial, planar biaxial with
two attachment methods, and membrane inflation. Detailed comparisons with
experimental data were undertaken to insure faithful simulations of both the macro-
level stress–strain insights into adaptations of the fiber architecture under stress,
such as fiber reorientation and fiber recruitment. Results indicated a high degree
of fidelity and demonstrated interesting microstructural adaptions to stress and the
important role of the underlying tissue matrix.

17.1 Introduction

Traditionally, soft tissues are modeled as pseudo-hyperelastic materials using either
phenomenological or structural approaches (Criscione et al. 2003; Holzapfel and
Ogden 2009; Sacks 2000). A common phenomenological model is the Fung-type
(Fung 1993; Tong and Fung 1976), in which the strain energy function is a quadratic
exponential function of the Green-Lagrange strain tensor. The original form was
based on the observed linear relation between tissue stiffness and stress under
uniaxial conditions (Fung 1993). However, phenomenological models lack physical
interpretation and cannot, in general, be used for simulations beyond the strain range
utilized in parameter estimation. This effect has been shown to be the case even
when the strain magnitudes did not exceed the maximum values measured but where
substantially far from the available experimental data (Sun et al. 2003). While the
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underlying reasons for this still need to be elucidated, models which possess greater
links to the underlying physical mechanisms appear to be the next step.

Like any biological or synthetic biomaterial, the complex mechanical behavior
of soft tissues results from the deformations and interactions of the constituent
phases. For most soft tissues, these include collagen, elastin, muscular, and related
matrix components such as glycosaminoglycans and proteoglycans. The idea of
accounting for tissue structure into mechanical models of soft tissues goes back to
at least the work on leather mechanics in 1945 by Mitton. More contemporary work
on structural approaches followed, with growing popularity in the 1970s (Beskos
and Jenkiins 1975), with the concept of stochastic constituent fiber recruitment
developed about the same time (Soong and Huang 1973) based on related structural
studies (Kenedi et al. 1965). In part a result of the availability of the first planar biax-
ial data for soft tissues, Lanir developed the first comprehensive, multidimensional
structural constitutive model formulation (Lanir 1979). With various modifications,
Lanir et al. applied this approach to many soft tissues such as lung (Lanir 1983) and
myocardium (Horowitz et al. 1988).

By linking tissue deformation at macroscopic scale and microscopic (fiber)
scale through affine deformation assumption, the structural constitutive model can
be considered a statistical multi-scale approach. Above all, structural constitutive
modeling approaches can, in principle, provide valuable insight into tissue function.
For example, Billiar and Sacks (2000a, b) demonstrated for aortic valve leaflets that,
using a simplified leaflet structure, angular rotation of the fibers account for such
important features such as pronounced mechanical anisotropy, axial coupling, and
very large strains (>80 %) even though the tissue is composed of collagen fibers that
fail at less than �12 % strain. Later, Sacks demonstrated that with the use of only an
equi-biaxial test and the experimentally measured fiber orientation distribution, the
complete in-plane biaxial response could be simulated (Sacks 2003). More recently,
structural approaches have been used for a wide range of native and engineered
tissue applications, such as elastomeric tissue engineering scaffolds (Courtney et al.
2006), urinary bladder wall (Wognum et al. 2009), and many others (Fata et al. 2014;
Hansen et al. 2009; Hollander et al. 2011; Kao et al. 2011).

Due to the need to solve soft tissue problems that involve complex anatomical
geometries and boundary conditions, many constitutive models for soft tissues in
various forms have been implemented into a computational framework (Driessen
et al. 2007; Holzapfel et al. 1996; Prot et al. 2007; Sun and Sacks 2005; Hariton
et al. 2007). Yet, robust evaluation and rigorous validation of structural constitutive
models remain quite limited. Moreover, studies on structural model have mainly
focused on either material parameter estimation (Jor et al. 2011) or comparison with
different constitutive models (Bischoff 2006; Cortes et al. 2010; Tonge et al. 2013).
Structural models that incorporate fiber recruitment have rarely been used, largely
due to computational demands of the additional integration. Recent ability to get
detailed fiber recruitment data (e.g., Chen et al. 2011; Fata et al. 2014; Hansen et al.
2009) makes this approach all the more relevant. The deep insights that structural
models can provide, such as the role of fiber structure and kinematics, still have yet
to be fully explored by simulation.



17 Finite Element Implementation of Structural Constitutive Models 349

Since many soft tissues are relatively thin, they can be modeled using shell
or membrane elements in FE analysis, greatly speeding up the simulations. In
the present study, we implemented a planar structural constitutive model into the
commercial finite element (FE) package ABAQUS. By numerical simulation of one
single element subjected to uniaxial tension, we first revealed that matrix must
be present to prevent unrealistic tissue deformations. Flexural simulations were
utilized to estimate the matrix modulus, since the underlying collagen fibers remain
undulated due to the small extensional strains, and thus have little effect on tissue
stress development. Strip biaxial strain and equi-biaxial tension simulations were
also performed and compared with experimental collagen fiber measurements to
demonstrate the effects of initial fiber orientation distribution on fiber reorientation.
Simulation of membrane inflation tests were also applied to further test the structural
model. In addition to prediction of macroscopic mechanical response of soft tissues,
we demonstrate how the structural model can provide insights into tissue micro-
structural events.

17.2 Methods

17.2.1 Theoretical Formulation

Soft biological tissues primarily have two major load-bearing components: the
fibrous network and the nonfibrous (i.e., amorphous) ground matrix. Based on
Fung (1993), we idealize the elastic behavior of soft tissues as pseudo-hyperelastic
composite materials. Thus, the total strain energy function 	 of soft tissue at a
represent volume element (RVE) is defined using

‰
� QC� D

nX
iD1

� i
f‰

i
f C �m‰m C p .J � 1/ ; (17.1)

where 	 f and 	m are the strain energy functions for the fiber and matrix phases,
respectively, � i

f and �m are the volume fraction of fiber and matrix, respectively,

with
nX

iD1
� i

f C �m D 1, J D det
� QF
�

, and p the Lagrange multiplier to enforce

incompressibility due to soft tissue’s high water content. The contributions of the
nonfibrous components and fluid phases are assumed to be responsible for the
incompressibility of the tissue. Based on previous results (Buchanan and Sacks
2013), we model the matrix phase (which compromises all nonfibrous components)
as a single isotropic hyperelastic Neo-Hookean material with the strain energy
function‰m D C1 .IC � 3/. Here, IC is the first invariant of the right Cauchy-Green
tensor QC D QFT QF, and to be consistent with linear elasticity C1 D �=2, where � is
the shear modulus. Using S D @‰=@E, the resulting second-Piola Kirchhoff stress
is given by
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Sm D �m
C1
2
.I1 � 3/� p QC�1: (17.2)

Next, without loss of generality, we focus on a single, undulated Type I collagen
fiber type with planar structures and a plane stress state. As in related work on
collagenous tissues (Lanir 1983; Sacks 2003), we assume a linear Sf D �Ef

relationship for the individual collagen fibers

‰f .Ef/ D �

2
E2f ; (17.3)

where � is the elastic modulus of individual straight collagen fibers (Fig. 17.1a).
Due to their crimped structure, we express individual fiber’s true fiber strain using
Et D Ef�Es

1C2Es
where Es is the fiber slack strain (Fig. 17.1a). The resulting individual

collagen fiber strain energy is thus

‰f .Et/ D �

2
E2t D �

2

	
Ef � Es

1C 2Es


2
: (17.4)

To develop the first level homogenization, we define a fiber ensemble as
the collection of all fibers within the RVE with a common direction bN D�

cos .�/ sin .�/ 0
�

(Fig. 17.1b). The collective mechanical contribution from the

a

Ef

Slack region
Fiber remains crimped 

S
f

Es

b

F

η

∼

Fig. 17.1 (a) Assumed stress–strain response of a single undulated fiber. Graphical depiction of a
(b) fiber ensemble
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ensemble is represented by its strain energy 	 ens. Assuming affine deformation
(Lanir 1983; Sacks 2003), the fiber ensemble strain Eens in the directionbN is related

to the macroscopic tissue-level Green-Lagrange strain tensor QE D 1
2

� QC � QI
�

by

Eens .�/ D bNT QE bN: (17.5)

We make the distinction between fiber and ensemble strains here since individual
collagen fibers will have a different strain levels due to their undulations. Note that
the nonlinearity of the tissue evolves from the gradual recruitment of the linearly
elastic collagen fibers (Lanir 1983), and is thus a structural as opposed to a material
property.

To stochastically account for the gradual recruitment of the collagen fiber in
each fiber ensemble with strain, we define the function D(Es) over the ensemble
strain range Eens 2 ŒElb;Eub�. Here, Elb and Eub represent the lower and upper
bounds of collagen fiber ensemble recruitment strain levels, with Eub > Elb > 0

and
Z Eub

Elb

D.x/dx D 1. The ensuing fiber ensemble strain energy and stress–strain

relation are then described as the sum of individual fiber strain energies of the
ensemble weighted by the distribution of slack strains D, so that

‰ens D �

2

Z Eens

0

D.x/

	
Eens � x

1C 2x


2
dx Sens D �

Z Eens

0

D.x/
Eens � x

.1C 2x/2
dx: (17.6)

D was represented as a Beta distribution B defined over Es 2 ŒElb;Eub�,

D.x/ D
(

x˛�1.1�x/ˇ�1

B.˛;ˇ/.Eub�Elb/
; for x 2 Œ0; 1�

0; otherwise
; x D .Eens � Elb/ = .Eub � Elb/ ; (17.7)

where ˛ and ˇ are the shape factors. Note that for simplicity we chose Elb D 0,
although generally it is not (Fata et al. 2014).

In situations where computational demands are very high, we also present an
alternative formulation for the ensemble stress–strain relation using simplified expo-
nential form that emulates the recruitment behavior at both low and high strains. The
novel aspect here is that the terminal stiffness of the fiber ensemble is reproduced
for ensemble strains above Eub. This simple but important modification helps avoid
unrealistically high fiber stresses at high strains when using an exponential model
alone. For an exponential model, this becomes

Sens .Eens/ D


A
�
eB Eens � 1

�
; for Eens � Eub

A
�
eB Eub � 1�C ABeB Eub .Eens � Eub/ ; for Eens > Eub

; (17.8)

where A and B are material constants. Note that the tangent modulus is continuous
at E D Eub.
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In the final step, we homogenize the ensemble response to the tissue level by
defining the tissue strain energy as the sum of the strain energy of fiber ensembles,
weighted by the orientation distribution function (ODF) � (™). Thus, we have

‰c D
Z �=2

��=2
� .�/‰ens .Eens/ d�; (17.9)

with the normalization constraint
Z �=2

��=2
� .�/ d� D 1. In summary, the total strain

energy function of soft tissue in the RVE is expressed as

‰ D �f�

2

Z �=2

��=2
� .�/

"Z Eens

0

D.x/

	
Eens � x

1C 2x


2
dx

#
d�

C �m�m

2
.I1 � 3/C p .J � 1/ : (17.10)

For the plane stress case, the out-of-plane stress component S33 D 2@‰=@C33 D 0,
so that the Lagrange multiplier p can be determined directly from

p D ��m�mC33: (17.11)

The total second Piola-Kirchhoff stress can be thus written as

QS D �f�f

Z  =2

� =2
� .�/

�Z Eens

0

D.x/
Eens � x

.1C 2x/2
dx

� �bN ˝bN� d�

C �m�m

�QI � C33 QC�1
�
: (17.12)

for the recruitment model, and

QS D
Z �=2

��=2
� .�/ Sens ŒEens .�/�

�bN ˝bN� d� C �m�m

�QI � C33 QC�1� : (17.13)

for the simplified model (17.8).

17.2.2 Finite Element Implementation

The structural model was implemented into commercial finite element software
ABAQUS/Standard (Dassault Systèmes Simulia Corp., Providence, RI) via user-
defined material subroutine UMAT. The stress tensor components utilized in UMAT
is defined in a co-rotational coordinate system in which the local material axes
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defined in the initial configuration rotates with the material (ABAQUS 2011). Using
polar decomposition theorem (Marsden and Hughes 1983) we have QF D QR QU, where
QR is the rigid body rotation tensor and ũ is the right symmetric stretch tensor.
Also, the rotated Cauchy stress can be determined using Qt D J�1 QU QS QU and the
fourth-rank material elasticity tensor CSE are updated in the UMAT code. In the
actual implementation, QS and C

SE require integration over � 2 Œ��=2; �=2� as
well as Eens 2 ŒElb;Eub�. Since a closed form solutions are not available in general,
a numerical integration scheme was used as follows. During implementation, the
angle domain and the fiber strain domain were separated into twenty segments with
equal size. In each segment, Gaussian quadrature integration rule (Hughes 2000)
was performed with five integration points.

17.2.3 Further Model Modifications and Material
Parameter Estimation

For the present work we merged (without loss of generality) the material parameters
�m and �m for matrix component into �m, as well as �f and � for the fiber
component were also combined into �. Due to its high collagen Type I content,
generally planar tissue architecture, well-characterized structure and mechanical
properties, and previous use in structural models (Sacks 2003) made native bovine
pericardium natural choice for the representative tissue for simulations. To obtain
the value for�m, we utilized flexural data from native bovine pericardium (Mirnajafi
et al. 2005). In that study, a nearly linear moment-curvature relation has been
observed. This suggested that the collagen fibers have little effect in flexure, which
is consistent with the very low strains that occur in this deformation mode (so that
the collagen fibers remain fully undulated and only the matrix contributes). We thus
obtained �m by fitting the moment-curvature curve (Mirnajafi et al. 2005), using
methods described in the next section.

The total fiber angular distribution function is expressed as a linear combination
of Gaussian distribution and uniform distribution

� .�/ D d

2
4 exp

�
� �2

2�2

�

erf
�

�

2
p
2�

�p
2��

3
5C .1 � d/

�
: (17.14)

Equation (17.14) was chosen to allow graduations in aligned and isotropic fiber
distributions to be simulated easily. Here � denotes the standard deviation of the
Gaussian distribution function, and the error function erf() is introduced so that the
integration of the Gaussian distribution function over angle domain �2 Œ��=2; �=2�
is equal to unity. The fiber angular distribution function was obtained previous
measurements and fitting the experimental data with d D 1 (Billiar and Sacks 1997).
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One way to evaluate the robustness and accuracy of the FE implementation is
to examine applications where very large strains are known to occur, which induce
large fiber rotations and stretches. Previous experimental results have revealed that
the mechanical behavior of soft collagenous tissue is strongly dependent on gripping
methods (Waldman and Michael Lee 2002). In particular, we noted in that study that
clamps induced large rotations in the corner regions between the clamps. Thus, the
material parameters from both model forms were obtained by fitting stress–strain
curve from the equi-biaxial loading stress–strain data with suturing arrangement
from Waldman and Michael Lee (2002). This allowed us to directly compare the FE
results to the experimental findings from that study.

17.2.4 Finite Element Simulations

We start with a basic simulation of a single element under uniaxial tension to
investigate the effects of matrix. For this example, a square element was subjected
to uniaxial strain in X1 direction (Fig. 17.2a). Nodes 1 and 2 were constrained in
X2 direction, and nodes 1 and 4 were constrained in X1 direction, with uniform
displacements applied to nodes 2 and 3 in the X1 direction. The preferred fiber
orientation coincided with the X1 direction. Next, to verify minimal fiber recruitment
occurred during flexure, simulation of a bending test was performed. The “The
length and width of the specimen : : : ” length and width of the specimen used for
bending simulation is 20.0 and 3.0 mm, respectively, with the thickness of the tissue
as 0.4 mm and the span 16.0 mm (Fig. 17.2b). The loading was applied at the center
of the tissue through the middle post, with the three posts being considered as rigid
bodies. The friction coefficient was assumed to be zero for the tissue in contact with
the left and right posts.

To investigate the effects of both boundary conditions (as both localized point
and distributed loads) on fiber reorientation, we simulated native bovine pericardium
using sutures under strip biaxial tension using data from Billiar and Sacks (1997)
and equi-biaxial tension using clamped boundary conditions using data from
Waldman et al. (2002). To simulate both high and low orientations, we utilized
two levels of d (d D 1.0 and d D 0.25). For the first test, the dimensions of the
specimen were 19.2 mm � 19.2 mm and the thickness was 0.4 mm. As in the original
experiment, uniform displacements were applied on the seven suture attachment
points along each side the specimen, with the initial preferred fiber orientation set to
27ı from the X1 axis (Fig. 17.3). Two loading cases were considered; 30 % along X1

direction/0 % for the X2, and 30 % along the X2 direction/0 % along the X1. For the
clamped equi-biaxial tension test, the dimensions of the specimen were 22.0 mm �
22.0 mm (Fig. 17.4) and the thickness 0.4 mm. The tissue was stretched 10 % in X1

and X2 directions. The initial fiber orientation was assumed to be the X1 direction
(Fig. 17.3d).

As a final test, we simulated a fetal membrane (FM) inflation test using data
from Joyce et al. (2009). Uniform pressure was applied on the top surface of a
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circular membrane and only half of the tissue was modeled due to symmetry. The
radius of the circular membrane was 21.0 mm and the thickness 0.228 mm. The
tube was modeled as rigid body with an inner radius of 15.0 mm and the edge of
the tissue fixed. SALS measurements of the intact FM (Joyce et al. 2009) revealed
that the tissue contains no preferred collagen direction, therefore a uniform fiber
angular distribution function � .�/ D 1=� was utilized. The friction coefficient was
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Fig. 17.2 Effective deformations of fibers on soft tissues under three-point bending showing (a)
the moment-curvature curve relation obtained using a Neo-Hookean model with matrix only and
structural model with fiber and matrix, (b) Green Strain E11 contour, (c) Fractional ensemble fiber
recruitment contour in X1 direction

Fig. 17.3 Preferred fiber reorientation and standard deviation contour of fiber angular distribution
function from simulation under strip biaxial stretch (a) in X1 direction with d D 1.0, (b) in X1

direction with d D 0.25, (c) in X2 direction with d D 1.0, (d) in X2 direction with d D 0.25. Inset—
measured SALS data from the Billiar and Sacks 1997 study, showing very good agreement
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Fig. 17.4 (a) Azimuthal plot of the fractional ensemble fiber recruitment under different stretch
ratios, (b) total percentage of fiber recruitment contour after stretch in X1 direction, (c) total
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assumed to be zero for the contact interaction of tissue with the rigid tube. Note that
for flexural simulations, four-node quadrilateral shell elements were used, and for
all the other simulations four-node quadrilateral membrane elements were used.

17.2.5 Simulation Post-processing

To provide insights into the deformations of soft tissue microstructure under strain,
we implemented the following post-processing procedures. The following two-
dimensional form

�t .ˇ/ D � .�/

2

J2D
D � .�/

bN � QC � bN
det

h QF2D

i ; (17.15)

where J2D is the determinate of the in-plane deformation gradient. Note that � t(ˇ)

should be plotted against the deformed fiber angle ˇ D tan�1
�

F21 cos.�/CF22 sin.�/
F11 cos.�/CF12 sin.�/

�
since it refers to the deformed (convected) fiber direction. In addition to its ability
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to provide high fidelity simulations of the stress–strain behaviors, the structural
model also provides a great deal of information structural adaptation to within the
RVE. These are usually overlooked in the literature. Thus, in the present study we
defined the fractional ensemble fiber recruitment (FEFR) structural metric for a
given direction as

FEFR .�/ D
Z Eens.�/

0

D.x/dx: (17.16)

In addition, the total fiber recruitment (TFR) structural metric for a given RVE was
defined as

TFR D
Z �=2

��=2
� .�/

"Z Eens.�/

0

D.x/dx

#
d�: (17.17)

Note that both metrics are expressed using a percentile scale.

17.3 Results

17.3.1 Uniaxial Tension Simulation

Overall, we determined that the matrix had a signification effect on the simulated
deformation of soft tissue under uniaxial tension. When the tissue is modeled with
fibers only, the lateral deformation of the tissue may be unrealistic. Specifically,
since under uniaxial tension the stress component in the X2 direction is S22 DZ �=2

��=2
� .�/ Sens .Eens/ sin2 .�/ d� , with Sens D D.x/ D 0 in this direction since the

fibers cannot carry any load when compressed. Since � .�/ � 0 and sin2 .�/ � 0,
S22 must be greater than zero, yet under uniaxial tension S22 D 0, so that an
equilibrium state cannot be achieved. For example, when the element is stretched
6 % (Fig. 17.3a) the Green-Lagrange strain E11 D 0.618 and E22 D �0.0434 with
a ratio of –E22/E11 of 0.702. When the element is stretched 12 % (Fig. 17.3b), the
strain ratio –E22/E11 increased to 2.049. The deformation in X2 direction is larger
than that in X1 direction, and the element collapses to a single line when the stretch
ratio is greater than 15 %. However, when the matrix is included, the strain ratio –
E22/E11 is 0.459 and 0.424 as the element is stretched 6 % and 12 %, respectively,
so that the deformation of the element is acceptable. Thus for the present model a
matrix should be present and in sufficient quantity in the structural model to prevent
unphysical characterization of the mechanical behavior of soft tissues under uniaxial
tension.
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17.3.2 Flexural Simulations

The moment-curvature curves from FE simulation using only the isotropic neo-
Hookean model were in good agreement with the published experimental results
(Mirnajafi et al. 2005) (Fig. 17.2a). The simulation results also confirmed that
collagen fiber contributions were negligible; the moment-curvature curves from FE
simulations are the same using Neo-Hookean model and the structural model with
both fiber and matrix (Fig. 17.2). The maximum tensile strain (Green-Lagrange
strain) under bending was 0.0346 located at the bottom surface. Virtually all (>99 %)
of the fibers were still undulated in this loading configuration (Fig. 17.2), supporting
our use of these studies to determine ground matrix mechanical behavior.

17.3.3 Biaxial Test Simulations: Sutured Boundary Conditions

For the strip biaxial test stretched in the X1 direction, fiber orientation from SALS
measurements (Billiar and Sacks 1997) revealed that the overall preferred fiber
direction was reoriented towards the direction of stretch and the degree of fiber
alignment was increased. When d D 1.0 in the fiber angular density function,
the preferred fiber direction rotated only about 4ı towards the stretch direction
(Fig. 17.3a). However, for d D 0.25, the preferred fiber direction rotated about 15ı
towards the stretch direction (Fig. 17.3b), in agreement with SALS measurements
(Billiar and Sacks 1997). Around the suture points, the simulation results with
d D 0.25 (Fig. 17.3b) demonstrated that the preferred fiber direction rotated towards
the suture points, also in agreement with the SALS data (Billiar and Sacks 1997).
When the tissue was stretched in the X2 direction with d D 1.0, the overall preferred
fiber direction reoriented only about 4ı towards the stretch direction (Fig. 17.3c).
While for d D 0.25, the overall preferred fiber direction reoriented about 35.0o

towards the stretch direction (Fig. 17.3d).
When the tissue was stretched in the X1 (preferred) direction, more fibers are

recruited in the X1 direction than those in the X2 direction. For d D 0.25, the polar
FEFR plot (Fig. 17.4a) under different stretch ratios revealed the increasing FEFR
in all directions. At 
 D 1:18 the FEFR in all directions was less than 20 %. As the
stretch increased to 1.21, more than 40 % of fibers were recruited in the X1 direction.
All the fibers in the X1 direction were straightened when the strain in X1 direction
just reaches the upper bound strain at œ D 1:24, with all fibers within 24ı from the
X1 direction straightened by a stretch of 1.4. The TFR is 40 % uniformly distributed
in the center region of the soft tissue (Figs. 17.4c and 17.6b). The maximum TFR
occurs at the suture points (Fig. 17.4b, c) due to stress concentration.
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Fig. 17.5 (a) SALS data (Waldman et al. 2002), (b) preferred fiber orientation and standard
deviation contour of fiber angular distribution function from simulation with d D 0.25, (c) total
percentage of fiber recruitment contour, (d) total percentage of fiber recruitment along the diagonal
line in (c)

17.3.4 Biaxial Test Simulations: Clamped
Boundary Conditions

For the tissue with clamped boundary conditions, SALS measurements (Waldman
et al. 2002) indicated that fibers between grip faces were highly aligned due to
shearing (Fig. 17.5a). The preferred fiber orientation rotated about 37.0ı at the
corner regions from simulation with d D 0.25. The distribution of the standard
deviation of fiber density from simulation is similar to the distribution of orientation
index (OI) from SALS measurements. The structural model provided deep insights
into the deformation of fibers. All the fibers initially undulated were straightened
gradually with increasing load. Less than 1 % of fibers were recruited in the center
region of the tissue specimen and more than 70 % of fibers in the corner regions
were recruited. Along the diagonal line, the TFR is uniformly distributed around the
center region of the tissue specimen. The TFR increased dramatically at the corner
regions due to large shear strain.
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Fig. 17.6 Results from the membrane inflation simulations showing (a) preferred fiber orientation
and total percentage of fiber recruitment contour from simulation, and the azimuthal plot of the
fractional ensemble fiber recruitment of the elements located at (b) element A and (c) element
B. Note here that while increased pressure loading predictably increased the total amount of
fiber recruitment at both locations, substantial angular variations with pressure was observed at
element B

17.3.5 Membrane Inflation Simulations

Simulation results revealed that all fibers around the center dome region were
straightened (Fig. 17.6a). The preferred fiber direction in the deformed shape was
rotated to the radial direction of the tissue (Fig. 17.6a). The TFR decreased gradually
from 100 % in the center region to 32 % at the edge (Fig. 17.6a). For element A
(Fig. 17.6a) at the center of tissue, the strain is the same in each direction. Therefore
the fractional ensemble fiber recruitment is equal in each direction (Fig. 17.6b).
However for location B (Fig. 17.6a) at the tissue edge, the strain in the radial
direction is larger than that in the circumferential direction. More fibers were
recruited in the radial direction (Fig. 17.6c).
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17.4 Discussion

A framework for the implementation of a structural constitutive model for soft
tissues into a finite element framework was developed and validated. Simulation
of a single element under uniaxial tension revealed that when using fiber systems
with angular dispersion, a matrix phase must be present to prevent nonphysiolog-
ical deformations. This finding may shed insight into how the non-collagenous
components of soft tissues play an important role guiding the overall mechanical
responses. For example, Lake and Barocas (2011) studied the effects of simulated
non-fibrillar matrix using an agarose analog on the behavior of a collagen-agarose
co-gel in uniaxial tension. They reported that the Poisson’s ratio of co-gel decreased
from a range of 1.5–3.0 (with a large volume decrease) with no agarose to �0.5
(i.e., nearly incompressible) with high concentration of agarose. Thus, both the
experimental results and the present simulation results suggest that matrix phase
may have significant effects on the mechanical behavior of soft tissues. Biaxial
tension simulations demonstrated that the presence of an isotropically oriented
fiber phase can significantly affect the overall fiber orientation in the deformed
configuration. For d D 1.0, the preferred fiber orientations were far from the SALS
measurement for both strip biaxial tests and equi-biaxial tests. However, simulation
results with d D 0.25 are in good agreement with the SALS measurement. Not
surprisingly, this observation revealed that accurate measurement of the fiber ODF
is critical to the structural model. By incorporating fiber orientation distribution and
fiber recruitment distribution into the strain energy function, the structural model
can predict not only the mechanical behavior of soft tissues at the macroscopic scale,
but also fiber deformations patterns (in a statistical sense) at the microscopic scale.
The new indices introduced herein may be particularly useful in understanding
structural adaptations and could easily be used in structural optimization studies in
engineered tissue design. Moreover, the present results underscore the importance
of architecture in tissue modeling development and application.
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Chapter 18
Fibers to Organs: How Collagen Fiber
Properties Modulate the Closing Behavior
of the Mitral Valve

Chung-Hao Lee and Michael S. Sacks

Abstract We developed a micro- and macro anatomically accurate MV finite
element model by incorporating actual fiber microstructural architecture and a
realistic structure-based constitutive model. Comparative and parametric studies
were conducted to identify essential model fidelity and information for achiev-
ing desirable accuracy. More importantly, for the first time, the interrelationship
between the local fiber ensemble behavior and the organ-level MV closing behavior
was investigated using a computational simulation. These novel results indicated not
only the appropriate parameter ranges, but also the importance of the microstructural
tuning (i.e., straightening and reorientation) of the collagen/elastin fiber networks
at the microscopic tissue level for facilitating the proper coaptation and natural
functioning of the MV apparatus under physiological loading at the organ level.
The proposed computational model would serve as a logical first step toward our
long-term modeling goal—facilitating simulation-guided design of optimal surgical
repair strategies for treating diseased MVs with significantly enhanced durability.

18.1 Introduction

The mitral valve (MV) is one of the four heart valves located between the left atrium
and left ventricle, and it regulates the flow between these two respective chambers.
The MV is considered an “apparatus” (Komeda et al. 1997) with four primary
components: the anterior and posterior leaflets (MVAL and MVPL), the papillary
muscles (PMs) that project from the left ventricular wall, the chordae tendineae
that provide connections between the papillary muscles and the MV leaflets and
prevent the leaflets from prolapse during MV functioning, and the annulus that is
part of the conceptual transition between the MV leaflets and the left atrium. The
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opening of the MV allows blood flow from the left atrium to left ventricle in diastole
of the cardiac cycle. In clinical practice, MV repair and replacement are the two
options for treating MV diseases, such as mitral regurgitation (MR) presumably
caused by MV prolapse (Adams et al. 2010; Gillinov et al. 2008) and ischemic
mitral regurgitation (IMR) due to post-infarction ventricular remodeling (Gorman
and Gorman 2006). After two decades of emphasis on valve replacement, cardiac
surgeons have gradually turned to MV surgical repair (Shuhaiber and Anderson
2007; Vassileva et al. 2011) to treat valvular dysfunctions and disease. Promising
MV repair concepts include leaflet augmentation that restores leaflet mobility (Robb
et al. 2011; Kincaid et al. 2004; Jassar et al. 2012), saddle-shaped annuloplasty that
reinstates normal annular shape (Mahmood et al. 2010; Jensen et al. 2011), leaflet
resection for repairing leaflet prolapse (Carpentier et al. 1980; Carpentier 1983),
and chordal replacement for ruptured or inadequately functioning native chordae
(Frater et al. 1990; David 1999). However, recent long-term studies showed an
unsatisfactory recurrence rate of severe MR 3–5 years after surgical repair (Gillinov
et al. 2008; Braunberger et al. 2001; Flameng et al. 2003, 2008). It has been
suggested that excessive tissue stress and the resulting strain-induced tissue failure
are possible etiological factors controlling the success of MV surgical repair (David
et al. 2005; Schoen and Levy 2005). The resulting surgery-induced excessive tissue
stresses will then lead to changes in MV interstitial cell (MVIC) metabolism and
protein biosynthesis, which are essential in understanding the mechanobiological
responses at the organ, tissue, and cellular levels (Grande-Allen et al. 2005; Rabkin-
Aikawa et al. 2004; Dal-Bianco et al. 2009).

Based on these observations, we hypothesized that restoration of MV leaflet
tissue stresses in MV repair techniques that most closely approximate the normal
range would ultimately lead to improved repair durability. This would occur through
the restoration of normal MVIC biosynthetic responses and homeostatic state.
Although extant MV models represent an important step toward developing phys-
iologically realistic MV computational models, few in vitro or in vivo validations
have been thoroughly performed. Moreover, organ-level computational modeling
only gives us basic information about the deformed geometry and overall pseudo-
elastic responses. The ability to reproduce the native valve function is only the first
step, and understanding why the MV is designed, in its natural and functional way,
is essential to provide insights into the MV apparatus considering normal, patho-
logical, and optimally repaired scenarios. Therefore, a multi-scale, biomechanical
computational modeling framework could thus provide a means for accomplishing
this by connecting cellular transduction to adaptions of tissue structure and further
to organ-level mechanical responses. As a feasible first step toward our long-term
modeling goals, we aimed, in the present study, at developing an anatomically and
microstructurally accurate MV finite element model in conjunction with the direct
use of realistic MV leaflet tissue microstructure and realistic structurally-driven
constitutive model to investigate the effects of the MV leaflet microstructure and
mechanical properties on the MV closing behavior.
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18.2 Methods

We developed a comprehensive framework for modeling the MV (Fig. 18.1),
which consisted of four key components: (1) image-based organ-level geometry, (2)
incorporation of the fiber morphology, (3) realistic tissue-level mechanical behavior
characterized from available biomechanical testing data, and (4) applicable bound-
ary and loading conditions simulating MV closing mechanism. This computational
framework was then implemented, by integrating an anatomically accurate FE
model based on high-resolution micro-CT images, structurally-driven constitutive
model for describing MV leaflet mechanical behaviors, and mapping of the fiber
microstructural architecture via affine fiber kinematics, into a standard nonlinear,
large-deformation FE analysis procedure. The details of the proposed model were
provided in the subsequent sections.

Nonlinear Fitting

Constitutive Models with 
Estimated Parameters
(MV Leaflet & Chordae)

Predictive 

Nonlinear FE 

Simulations

High-Resolution 
Anatomical Images

Image Segmentation Fiber Mapping

Detailed Fiber Maps
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Applicable Boundary & 
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Organ-Level Geometry Tissue-Level Mechanical Behavior Microscopic Fiber Morphology 
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Transmural Fiber Architecture

Mechanical Testing Data
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Fig. 18.1 A schematic diagram of the proposed FE computational framework for modeling the
MV with the following four key ingredients: (1) anatomically accurate organ-level geometry
obtained from high-resolution images for construction of the computationally tractable MV FE
model, (2) constitutive models for MV components based on available mechanical testing data,
(3) microscopic fiber morphological architecture incorporated with the FE model via the mapping
based on affine fiber kinematics, and (4) applicable boundary and loading conditions
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18.2.1 Acquisition of the In Vitro MV Geometry

A fresh ovine heart from a 35 kg sheep was acquired from a local USDA approved
abattoir and imaged in a micro-CT system. The stack of 3D micro-CT images were
segmented using ScanIP (Simpleware Ltd., United Kingdom) to obtain anatomically
accurate geometry of the MV apparatus at the stress-free, 30 and 70 mmHg pressure-
loaded states. The atrial and ventricular leaflet surfaces were identified from the
segmented MV geometry at each state, and a median MV leaflet surface was
reconstructed in Geomagic Studio (Morrisville, NC, USA) based on these two
leaflet surfaces. Local MV leaflet thicknesses were determined using the distance
between the spline-parametrized atrial and ventricular surfaces and were part of
the FE input data. Then, the FE mesh at the fully-open (reference) configuration
associated with this MV leaflet median surface was generated in HyperMesh. For
idealization of the MV chordae tendineae using truss elements, 3D locations of the
landmark points, such as MV papillary muscle attaching points, points associated
with chordae branching, transitional points with distinguishable changes in cross-
sectional area, and MV leaflet attaching points, were quantified based on the
reconstructed micro-CT images. Note that the cross-sectional area of each of the
above key points was measured directly from the voxel region in the CT images and
was used for the section property of each 3D truss element. Finally, 3D positions of
fiducial markers at three loading states were obtained via a separate segmentation
mask with a distinct gray-scale threshold in ScanIP and were used in computation of
the displacement errors and served as the material points in the strain calculation as
well as the mapping of fiber architecture as will be introduced in the next subsection.

18.2.2 Quantification and Mapping of the Fiber
Microscopic Architecture

After acquisition of the micro-CT image data at various configurations, the MV
anterior and posterior leaflets were separated along the anterior and posterior
commissures and prepared for the measurement of the gross (effective) fiber
microscopic architecture using the small angle light scattering (SALS) technique
developed previously (Sacks et al. 1997). In brief, each excised, flatten MV leaflet
was placed in glycerol for dehydration and scanned in the SALS device. The
light scattering patterns were measured at 254-�m increments over the entire MV
leaflet specimen, and the measurements were analyzed to quantify the effective
fiber orientation distribution function (ODF) � (�) with the local preferred fiber
direction �f and the degree of fiber splay � f derived from the orientation index
(OI) by assuming a Gaussian distribution. Note that the OI value was defined as the
angular width in which 50 % of the total number of fibers occurs, and the fiber splay

alignment can be computed via erf
�

OI
2
p

2�f

�
� 1

2erf
�

180ı

2
p

2�f

�
D 0 (Sacks et al. 1997;

Sacks 2003).
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Fig. 18.2 A schematic diagram of the proposed technique for mapping the collagen fiber archi-
tecture onto the 3D FE mesh (MVAL as an illustration). Fiber splay microstructural morphology
was measured via the SALS technique for the flatten MV leaflet tissues at the unloaded state ˝1,
showing both the preferred fiber directions and strengths of fiber splay alignment. The measured
fiber architecture was first mapped onto the generated MVAL FE mesh at the pressure loaded
state ˝ t via the mapping based on affine fiber kinematics and using the deformation gradient
t
1 .F2D/ computed from the fiducial marker positions between states˝1 and˝ t. The corresponding
fiber microstructural architecture was then transformed onto the MVAL FE mesh at the reference
state ˝0 using 0

t .F2D/ to obtain element local material axes and the degree of fiber splay for the
simplified structural constitutive model

To incorporate the measured fiber microstructural architecture with the con-
structed MV FE model, we developed the following two-stage mapping algorithm
(Fig. 18.2) based on affine fiber kinematics (Lee et al. 2015; Lee et al. n.d.). Briefly,
the fundamental property of affine fiber kinematics states that the total number of
fibers remains constant within an infinitesimal angular element undergoing given
in-plane deformation F2D, and the fiber ODF at the deformed configuration �(ˇ)
can then be related to the ODF at the reference state �(�) by

� .ˇ/ D � .�/
N .�/ � ŒC2DN .�/�

J2D
D � .�/


2N
J2D

; (18.1)

where N(�) denotes the unit vector of the local fiber axis at the undeformed
configuration, C2D D (F2D)T(F2D) is the right Cauchy–Green deformation tensor,
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J2D is the determinant of the in-plane deformation gradient, and 
N is the stretch
ratio along N. The fiber angle at the current configuration can be computed by

ˇ D tan�1 ŒF21 cos .�/C F22 sin .�/ =F11 cos .�/C F12 sin .�/� : (18.2)

This rendered the general framework for describing the fiber microstructural
architecture with tissue-level deformations. The MV leaflets at the unloaded, full
pressure loaded (where the SALS measurements were made), and fully-open state
are ˝1, ˝ t, and ˝0, respectively, with the corresponding local material axesn
e.1/1 
 Œ1;0� ; e.1/2 
 Œ0;1�

o
,
˚
et

1; e
t
2

�
and

˚
e0

1; e
0
2

�
, respectively. Since the fiber

architectural measurements were made after the MV leaflets were fixed under
70 mmHg hydrostatic pressure, the local material axes at state �t were determined
by using the in-plane deformation gradient t

1 .F2D/ computed based on the fiducial
marker positions between state ˝ t and state ˝1

et
1Dt

1 .F2D/ � e.1/1 and et
2Dt

1 .F2D/ � e.1/2 : (18.3)

Therefore, we reached the fiber dispersion and local material axes for both leaflets
at the pressure-loaded state ˝ t. Following the similar procedure, the corresponding
fiber ODF and fiber angle at the reference state ˝0, which can be incorporated with
a structure-based constitutive model as introduced in the subsequent section and
served as part of the FE input, were calculated via the reverse affine mapping in
the second step of our mapping algorithm using the in-plane deformation gradient
0
t .F2D/ computed from the fiducial marker positions at states ˝ t and ˝0.

18.2.3 Constitutive Models for the MV Apparatus

We employed an incompressible, transversely isotropic simplified structural model
(SSM) in this work to simulate the in vitro passive mechanical behaviors of the
MV leaflet tissues by assuming a homogeneous pseudo-hyperelastic, collagenous
fiber-reinforced composite material (Sacks 2003; Fung 1993; Lanir 1983; Fan and
Sacks 2014). The adopted SSM enables the integration of the tissue composition
and structure into the function and mechanics of the MV leaflet tissues and allows
the full in-plane coupling responses within physiological loading range and the
direct use of the mapped fiber microstructural architecture. In brief, the MV leaflet
tissues are assumed to consist of two major load-bearing components, a ground
matrix material with nonfibrous substances and water and an effective fibrous
material model that homogenized the elastin and type-I collagen fibers, and the
corresponding total strain energy function (SEF) 	 is expressed as
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‰leaflet D ‰m C‰ens D
Z �=2

��=2
� .�/‰f ŒEf .�/� d� C �m

2
.I1 � 3/C p .J � 1/ ;

(18.4)

where 	m is the SEF associated with the matrix component using a neo-Hookean
material with the neo-Hookean constant �m responsible for the low-strain response
and the incompressibility of the planar tissues, 	 ens is the SEF associated with the
effective fiber networks as the sum of the SEF of each individual fiber 	 f, � (�)
is the ODF of the fiber ensembles, Ef .�/ D NT .�/EN .�/ is the effective fiber
strain, N .�/ D Œcos .�/ ; sin .�/ ; 0�T, E D .C � I/ =2 is the Green-Lagrange strain
tensor, C D FTF is the right Cauchy–Green deformation tensor, F is the deformation
gradient tensor, I is the identity tensor, I1 D trace .C/, J D det .F/, and p is the
Lagrange multiplier to enforce the incompressibility of the planar tissues. Based on
the pseudo-hyperelastic formation (Fung 1993), the second Piola–Kirchhoff stress
tensor Sleaflet can be derived by

Sleaflet D @‰leaflet

@E
D
Z �=2

��=2
� .�/ Sf ŒEf .�/�N .™/˝ N .�/ d� C �m

�
I � C33C�1� :

(18.5)

Here, C33 D 1=
�
C11C22 � C2

12

�
is the consequence of the incompressibility

condition, p D ��mC33 is derived from the plane–stress condition (Sleaflet
33 D 0),

and ˝ denotes the dyadic tensor product. In this work, we adopted an exponential
model with a terminal stiffness for highly nonlinear fiber stress–strain behavior (Fan
and Sacks 2014)

Sf .Ef/ D


c0 Œexp .c1Ef/� 1� for Ef � Eub

c0 Œexp .c1Eub/ � 1�C c0c1 exp .c1Eub/ .Ef � Eub/ for Ef > Eub:

(18.6)

Herein, Sf is the fiber stress, c0 and c1 are material constants, and Eub is the cutoff
fiber strain above which a linear fiber tangent modulus is considered. The effective
fiber ODF was expressed by a Gaussian distribution function:

� .�/ D
exp

h
� .���/2

2�2

i

erf
�

�
2
p

2�

�p
2��

; (18.7)

where � 2 Œ��=2;C�=2�, and
Z �=2

��=2
� .�/ d� D 1. The Cauchy stress tensor can

then be obtained by the push-forward operation ¢ leaflet D FSleafletFT.
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For modeling the MV chordae tendineae, we adopted an incompressible,
isotropic hyperelastic material with the following stress–strain relationship

Schordae D @‰chordae

@E11
D C10 Œexp .C01E11/� 1� ;E11 > 0; (18.8)

where E11 D 1
2

�
F211 � 1� is the uniaxial strain of the chordae tendineae, and C10 and

C01 are the material constants.

18.2.4 Parameter Estimation Based on the Inverse
Modeling Approach

For characterization of the planar mechanical behavior of the ovine MV leaflet
tissues, we employed load-controlled biaxial testing protocols previously developed
(Grashow et al. 2006). In brief, square central regions (20 mm x 20 mm) of ovine
MV anterior and posterior leaflets were dissected, submerged in isotonic saline,
and then connected to the biaxial testing equipment with the tissue-preferred fiber
(circumferential, C) and cross-preferred fiber (radial, R) directions approximated
aligned with the device axes. The stress and strain behaviors in the two directions
under equi-biaxial loading were recorded and used for the following parameter
estimation. Note that the shear strains in this study were negligible.

To estimate the model parameters associated with the SSM, we adopted an
inverse modeling approach based on the nonlinear fit of the stress–strain curves
between the simulated results and the biaxial testing data. Briefly, the SSM was first
implemented in FE software ABAQUS (SIMULIA, Dassault Systèmes, Providence,
RI, USA) via the user-defined material subroutine (cf. details in Fan and Sacks
2014). The equi-biaxial loading protocol was then modeled, and the simulated
stress–strain behaviors in both circumferential and radial directions were compared
to the experimental data for characterizing the material parameters by iteratively
minimizing the errors of the stress–strain curves between the simulation results
and experimental data. Similarly, the uniaxial stress–strain behavior of the chordae
tendineae was simulated by three-dimensional truss elements (T3D2). Prescribed
force and fixed boundary condition were applied on the opposite ends of the truss
element, respectively. The simulated stress–strain curves of both the basal and
marginal chordae were compared to available uniaxial testing data (Ritchie et al.
2006), and parameters C10 and C01 were then characterized.
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18.2.5 Finite Element Simulations of the MV Closing Behavior

We first assumed that the interaction between blood flow and the MV apparatus
is idealized by transvalvular surface pressure loads acting on the MV leaflets, and
the effect of the left ventricular contraction on the MV mechanics is mimicked by
prescribed boundary motions of the MV annulus and PMs. Alterations of the MV
stress and strain fields in response to external loading were of the interest in the
current study, and simulations of MV closure were performed in ABAQUS. Nodal
displacements and rotations, and elemental strain and stress fields were the primary
output from the simulations and were post-processed via a Python script to compute
the predicted fiducial marker 3D positions as well as the in-surface maximum and
minimum principal stretches compared with the in vitro data at 30 and 70 mmHg
transvalvular pressures. The following FE modeling specifications were considered:

1. Explicit dynamics was utilized as a more general computational framework for
future extensions, such as in vivo modeling and surgical simulations. Proper mass
scaling (dt D 1 x 10�6) of the inertial effects was employed to simulate the quasi-
static behavior associated with the in vitro experimental condition.

2. Shell (S4) and 3D uniaxial truss (T3D2) elements were used for the MV leaflets
and chordae, respectively.

3. Spatially varied, element-based thicknesses determined from anatomically accu-
rate micro-CT images were supplied as part of input using DISTRIBUTION
TABLE (length).

4. Element-based local material coordinate obtained from the mapped preferred
fiber directions was defined using ORIENTATION feature along with DISTRI-
BUTION TABLE (coor3d).

5. User-defined subroutine VUSDFLD was adopted to specify element-based fiber
splay dispersion � .

6. Constitutive models of the MV apparatus were implemented in user-defined
subroutine VUMAT.

7. AMPLITUDE feature in conjunction with DSLOAD was used to prescribe the
transvalvular pressure loading.

8. Although clamped boundary conditions were considered in the in vitro experi-
ments, subroutine VDISP was implemented for prescribing displacement bound-
ary conditions of the MV annulus and PM tips.

9. General self-contact algorithm was adopted for handling the coaptation and
interactions of the MV leaflets during MV closing process, and a separate
element set consisting of all leaflet elements is defined for treating both leaflets as
a contiguous entity and their faces toward the left atrium as potential contacting
surfaces. A surface interaction/behavior with a sliding-friction coefficient of 0
(frictionless) and a linear pressure-overclosure coefficient of 0.5.
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18.2.6 Comparative and Parametric Studies

In addition to thorough validations with extensive in vitro data, we further investi-
gated the effect of the MV leaflet structural property on the numerically predicted
closing behavior of the MV through simulations of the following four perturbations
with an increasing level of modeling fidelity: level I—an exponential-type isotropic
material (� D 180ı), level II—a transversely isotropic material with uniformly
curvilinear fiber directions1 and identical fiber dispersions, level III—a transversely
isotropic material with uniformly curvilinear fiber directions and mapped fiber
dispersions based on (18.1), and level IV—a transversely isotropic material with
mapped fiber directions and mapped fiber dispersions based on the proposed
mapping algorithms. Comparisons of the numerically predicted displacements and
in-plane principal stretches were made among these four cases to examine whether
a higher model fidelity yielded more accurate solutions. Moreover, we conducted
a series of parametric studies on how the micromechanical ensemble fiber stress–
strain behavior (Fig. 18.5) affects the predicted MV deformations (Fig. 18.5), von
Mises stress field, and the deformed fiber architecture (represented by NOI values)
subject to transvalvular pressure loading up to 100 mmHg.

18.3 Results

18.3.1 FE Model Information

The final FE model constructed in this study for the native ovine MV was
composed of 6836 nodes (6720 nodes corresponding to the MV leaflets; 192
nodes representing the MV annulus; and 16, 39, 48, and 13 nodes associated
with the chordae branching points, chordae transitional points, leaflet attachment
points, and papillary muscle tips, respectively), 6528 leaflet elements (2176 and
4352 four-node shell elements for the MVAL and MVPL, respectively), and 297
chordae tendineae 3D truss elements. For the anatomical information about the
MV chordae tendineae, 4 and 2 intermediary chordae attaching to the leaflet
belly regions were identified for the MVAL and MVPL, respectively, and 6 and
2 basal chordae were reconstructed for the MVPL and two commissure regions,
respectively. Each of the above intermediary and basal chordae contained various
numbers of marginal chordae branches attaching to the free-edge of the MV leaflets.
Note that 189 nodes on the MV leaflet shell elements were connected with the
above-mentioned leaflet attachment points in a fork fashion (Fig. 18.5) to avoid the

1A convective curvilinear cylindrical coordinate was adopted to describe the contiguous MV leaflet
entity, and fiber directions were assumed to be all uniformly aligned with the circumferential
direction in this coordinate system for the case study associated with uniformly curvilinear fiber
directions.
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stress concentration via the single-node attachment of the chordae truss elements
to the leaflet elements. Element-based thicknesses determined from the median
leaflet surfaces were 1.11 ˙ 0.29 and 0.93 ˙ 0.22 mm for the MVAL and MVPL,
respectively.

18.3.2 Fiber Microstructural Mapping

The measured fiber microstructural information, including the preferred fiber
direction �f and the OI value, was mapped onto the FE mesh of both leaflets
(Fig. 18.3., top panel), accounting for the transformation and deformation between
the excised state ˝1 and the in vitro pressure-loaded state ˝ t. Note that the gross
fibers were fairly continuous for the MVAL and MVPL, which provide smooth local
material axes for contiguous leaflet elements, with higher aligned fibers observed in
the central regions of both leaflets which sustain the greater amount of stretching
under pressure loading. The fiber architecture associated with the FE mesh at the
reference configuration (state ˝0) was determined by the affine-transformation
reverse mapping (Fig. 18.3, bottom panel). Clearly, the gross fibers were less aligned
at state ˝0, whereas the fibers at state ˝ t were re-oriented due to stretches in
both circumferential and radial direction, and became better aligned during the MV
closing process.

18.3.3 Effects of Local Ensemble Fiber Mechanical
Behavior on the MV Closure

We found that increasing curvature of the microscopic fiber stress–strain rela-
tionship led to earlier contact interaction and coaptation of both anterior and
posterior leaflets at lower transvalvular pressure loading which corresponds to the
low stress–strain region primarily governed by material parameter �m, and less
leaflet deformation toward the atrial chamber at higher pressure loading which
is predominantly influenced by the progressive engagement of the straightening
of collagen and elastin fiber networks (Fig. 18.4). This finding underscores the
importance of adopting a microstructurally-informed constitutive model, which is
able to capture both the long toe-region and the rapid growth region in material
nonlinearity of the MV leaflet tissue’s overall stress–strain behavior, for simulating
physiological deformed profiles of the functioning MV. The predicted von Mises
stress field and the NOI values at 100 mmHg transvalvular pressure were compared
among these models (Fig. 18.4), and the results showed that a linear ensemble fiber
stress–strain model (red in Fig. 18.4) yielded lower tissue stresses and better aligned
fibers typically in the central regions of both leaflets compared to the current model
(blue in Fig. 18.4) and a fiber stress–strain model with much larger curvature (green
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in Fig. 18.4), suggesting an important balancing between microscopic straightening
and realignment of collagen fiber network and the overall tissue-level stresses for
maintaining proper functioning of the MV apparatus. These results highlight the
essential role of the microscopic fiber mechanical properties played in the MV
closing behavior as well as in preserving the realistic deformed geometry of the
MV leaflets under physiological loading.

18.4 Discussion

18.4.1 Overall Findings and Implications

In this study, we developed a finite element computational model for analyses
of the MV closure, which comprised of an anatomically accurate organ-level
geometry reconstructed from high-resolution micro-CT images, the incorporation
of the measured microscopic fiber morphology, and a realistic structure-based

MVAL 
(deformed configuration, pressure loaded state)

Normalized Orientation Index NOI (%)

706050403020

(less aligned) (well aligned)

MVAL 
(reference configuration, fully open state)

MVPL 
(reference configuration, fully open state)

MVPL 
(deformed configuration, pressure loaded state)

Fig. 18.3 Results of the mapped fiber microstructural architecture for the MV FE mesh at the
pressure loaded state ˝ t (top panel) and at the unloaded/reference state ˝0 (bottom panel).
Dashed lines denote element-based local material axis direction and the color contour repre-
sents the strength of fiber splay. Note that the normalized orientation index is computed by
NOI D (90ı�OI)/90ı
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Normalized Orientation Index NOI (%)

706050403020
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30 mmHg 40 mmHg 50 mmHg

60 mmHg 80 mmHg 100 mmHg

MVAL

MVPL

Fig. 18.4 Progressive predicted NOI values of the MV leaflets at various transvalvular pressure
levels

constitutive model for direct employment of the fiber orientation and fiber splay
dispersion. The proposed computational model addressed some of the challenges
in the state-of-the-art MV modeling field (Choi et al. 2014; Wang and Sun 2013;
Mansi et al. 2012; Stevanella et al. 2011; Votta et al. 2008) with our substantial
improvements, such as the capability of reconstructing all the main components
of the MV apparatus, a more detailed and precise description of the MV leaflet
thicknesses, a better idealization of the chordae tendineae structures with realistic
key points and cross-section areas identified, and the detailed mapping of actual
fiber microstructure. More importantly, for the first time, we investigated the
interrelationship between the local fiber ensemble mechanical behavior and the
MV closing behavior (Fig. 18.4) via computer simulations. These novel results
indicated not only the appropriate parameter ranges but also the importance of the
microstructural tuning (like straightening and reorientation) of the collagen/elastin
fiber networks at the microscopic tissue level for facilitating the proper coaptation
and natural functioning of the MV apparatus under physiological loading at the
organ level. Understanding the important underlying mechanisms of the normal MV
allows us to reiterate and design the surgical repair procedures, and, in the meantime,
maintain the above physiological loading scenario. Furthermore, the proposed
computational framework with reasonable future extensions, as will be discussed
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Fig. 18.5 Comparison of the predicted von Mises stress and predicted normalized orientation
index (NOI) of the MV leaflets considering different curvatures of the ensemble fiber stress-strain
relationship at 100 mmHg transvalvular pressure

in the subsequent section, will serve as the basis for utilizing simulations (1) to
better understand the MV biomechanics and physiological functionality, including
how the MV respond to disease- or repair-induced stress alteration particularly
associated with the hypo- and hyper-physiological states, (2) to gain better insight
into the remodeling of the MV due to disease progression and surgical intervention,
and (3) to ultimately provide guideline for improving treatment strategies and
surgery planning. Any such modeling effort would essentially depend on currently
unavailable quantitative data for determination of the local stresses at the cellular,
tissue, and organ levels within complex functioning physiological systems.

18.4.2 Conclusions

In summary, we have developed a computational framework for modeling of
the functioning MV and successfully implemented a computational model into
the nonlinear FE simulation procedure, which included micro- and meso scale
anatomically accurate geometry of the MV apparatus, mapped fiber microstructural
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architecture, and a structure-based constitutive model directly integrated with
tissue microstructure. This computational model, to our knowledge, is the first
of this kind that has been thoroughly validated with extensive in vitro data for
its model accuracy and robustness. This study underscored in parametric studies
appropriate parameter ranges and micromechanical fiber responses for representing
the proper coaptation and natural functioning behaviors of the MV apparatus under
physiological loading. Understanding the underlying mechanisms of the normal MV
could help in reiterating and designing surgical repair procedures for maintaining the
proper physiological loading scenario. Finally, the computational model developed
in this work serves as an important first step toward our long-term modeling goals,
which are to employ computer simulations for assessing the performance of existing
MV repair techniques and to provide insightful guidance in the design of optimal
surgical repair strategies for treating diseased MVs with better restored functionality
and improved long-term durability.
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Chapter 19
Mesoscale Structural Models in the Growing
Pulmonary Artery

Bahar Fata, Will Zhang, Rouzbeh Amini, and Michael S. Sacks

Abstract We utilized the extensive experimental measurements of the growing
ovine PA from our previous study (J. Biomech Eng. 2013 Jul 1;135(7):71010–
12) to develop a structural constitutive model for the PA wall tissue. Novel to the
present approach was the treatment of the elastin network as a distributed fiber
network rather than a continuum phase. We then utilized this model to delineate
structure–function differences in the PA wall at the juvenile and adult stages.
Overall, the predicted elastin exhibited minor regional differences moduli remained
largely unchanged with age and region (in the range of 150–200 kPa). Similarly,
the predicted collagen moduli ranged from �1600 to 2700 kPa in the four regions
studied in the juvenile state. Interestingly, we found for the medial region that
the elastin and collagen fiber splay underwent opposite changes (collagen standard
deviation juvenile D 17ı to adult D 28ı, elastin standard deviation juvenile D 35ı to
adult D 27ı), along with a trend toward more rapid collagen fiber strain recruitment
with age, along with a drop in collagen fiber moduli, which went from 2700 kPa
for the juvenile stage to 746 kPa in the adult. These changes were likely due to the
previously observed impingement of relatively stiff ascending aorta on the growing
PA medial region. Intuitively, the effects of the local impingement would be to lower
the local wall stress, consistent with the observed decrease in collagen modulus.
This result suggests that during the postnatal somatic growth period local stresses
can substantially modulate regional tissue microstructure and mechanical behaviors
in the PA. We further underscore that our previous studies indicated an increase in
effective PA wall stress with postnatal maturation. When taken together with the fact
that the observed changes in mechanical behavior and structure in the growing PA
wall were modest in the other three regions studied, our collective results suggest
that the majority of the growing PA wall is subjected to increasing stress levels with
age without undergoing major structural adaptations. This observation is contrary
to the accepted theory of maintenance of homeostatic stress levels in the regulation
of vascular function, and suggests alternative mechanisms might regulate postnatal
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somatic growth. Understanding the underlying mechanisms will help to improve
our understanding of congenital defects of the PA and lay the basis for functional
duplication in their repair and replacement.

19.1 Introduction

Congenital abnormalities of pulmonary artery often necessitate surgical repair or the
use of autologous tissue and synthetic biomaterials as vascular grafts (Kogon et al.
2009; Ono et al. 2007; Rosenberg et al. 1987). The patency of synthetic conduit
replacements remains limited, often requiring further surgical re-interventions due
to lack of adaptation to the normal growth of the child and/or functional failure of
the graft (Mayer 1995). The autologous conduit replacements are limited in supply
and may not adjust to different flow environment of the graft site. Above all, an
optimal vascular replacement should be able to accommodate somatic growth and
closely mimic the structure, function, and physiologic function of the native vessel.
In recent years, there has been a growing interest in the development of a living,
autologous tissue graft that could address the critical need for growing substitutes
for the repair of congenital cardiac defects (Cho et al. 2009; Hoerstrup et al. 2006;
Shinoka et al. 1998; Mol et al. 2009), especially the pulmonary valve and artery
(PA). The engineering foundation of such novel approaches must thus rest on an
understanding of changes in the structure–function relationship that occur during
postnatal maturation. Moreover, the distensibility of great arteries are important
determinants of ventricular afterload and eventual dysfunction in the pulmonary
hypertension, as well as many congenital defects (Wang and Chesler 2011). Yet,
relatively little is known of the postnatal somatic growth characteristics of the PA.

In general, the altered mechanical properties of the great arteries are primarily
associated with remodeling of the collagen and elastin fiber networks. For example,
biochemical studies in animals have shown a significant upsurge in the collagen
and elastin synthesis and mass, as well as reorganization in hypertensive pulmonary
arteries (Ooi et al. 2010; Poiani et al. 1990). The perinatal period is associated with
significant elastin and collagen accumulation in the pulmonary trunk and aorta in
preparation for a marked postnatal increase in arterial pressure (Leung et al. 1977;
Langille et al. 1990). It is well known that newborn animals develop more severe
pulmonary hypertension than adults with dramatic vascular changes (Tucker et al.
1984), possibly due to the elastin and collagen synthesis being particularly sensitive
to modulation by hypoxia during this time of rapid growth. Lammers et al. (2008)
have delineated the prominent role of elastin in the alteration of pulmonary artery
mechanics in hypertensive calves. Moreover, structural and degradative alterations
of medial elastin are found to be a major contributing factor in physiological
phenomena such as aging, and the initiation and development of cardiovascular
disease, such as aortic aneurysms (Mceniery et al. 2007; Schwartz et al. 1991).

We have recently demonstrated complex patterns of spatial growth in the growing
ovine PA (Fata et al. 2013a; Gottlieb et al. 2013). Our results indicated that the
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spatial and temporal surface growth deformation patterns of both arteries were
heterogeneous, including an increase in taper in both arteries and increase in
cross-sectional ellipticity of the PA. Interestingly, contact between the PA and
AA resulted in increasing spatial heterogeneity in postnatal growth, with the
PA demonstrating the greatest changes. Results of this study clearly underscored
the fact that functional growth of the PA during postnatal maturation involves
complex geometric adaptations. In a parallel study, we quantified the structural and
biomechanical properties over the same age period (Fata et al. 2013b). Here, the PA
wall demonstrated significant mechanical anisotropy, except in the posterior region
where it was nearly isotropic, and overall modest changes in regional mechanical
properties with growth. Perhaps our most interesting finding was that we found
that the PA wall thickness was maintained over the entire growth period in spite
of the substantial increase in vessel diameter. This suggests that the PA grows by
in-plane tissue accumulation only, resulting in a 40 % average increase in hoop
stress over the growth period. Therefore, unlike the arterial wall remodeling due to
hypertension (Ooi et al. 2010; Poiani et al. 1990; Tozzi et al. 1994), there is not
strictly held homeostatic maintenance of wall stress during the postnatal growth
period. This rather surprising result opens the door for many questions, such as if
there are alterations in the effective moduli of the collagen and elastin networks
during the growth period.

To begin to address these questions, one can utilize constitutive models which
incorporate several important aspects of the underlying microstructure. Structurally
based models can help elucidate the mechanisms governing the structure–function
relationship of biological tissues and elucidate what happens during the remodeling
period. Such approaches have been utilized for arterial tissue remodeling (Hollander
et al. 2011; Hansen et al. 2009), as well as the PA (Hunter et al. 2006; Zhang et al.
2007; Kao et al. 2011). However, the models developed so far have not addressed
the mechanical behavior of normal growing vessels from the early juvenile to the
adult states, either as a contiguous growth model or as a set of quasi-static steps.
Moreover, the reliability of such models considerably depends on the accurate
quantification of organization and load-bearing behavior of fibrous components
of the tissue. In the case of the PA, these are collagen, elastin, and to a lesser
extent, smooth muscle as the mechanically significant structural components. Thus,
the elastin and collagen structure–function relationship of the normal PA and in
connection to growth changes need to be utilized in such models.

In the present study, we utilized the extensive experimental measurements of
the growing PA to develop a structural model for the PA in the juvenile and adult
states. Novel to this approach was the explicit treatment of the elastin phase as a
population of fibers as opposed to single material phase as in other studies of the
PA. The developed constitutive model also took account of contributions of the
ground matrix, consisting of smooth muscle cells and other noncellular materials.
When applied to the available data, we demonstrate that we were able to delineate
the structure–function relationship of PA wall in the postnatal growth period in the
juvenile and adult states.
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19.2 Methods

19.2.1 Mechanical and Structural Data

Extensive structural and biaxial mechanical properties and collagen and elastin
fiber architecture measurements from four regions of the PA wall were taken from
Fata et al. (2013b) (Fig. 19.1a). These data included elastin, collagen, and smooth
muscle mass fractions obtained histologically (Fig. 19.1b). In addition to these data,
collagen recruitment of the medial region (Fig. 19.1b) was available from Fata et al.
(2013b). Details of the exact available data and its pre- and post-processing are given
in the following.

19.2.2 Considerations and Assumptions

While the PA is a multilayered structure (Fig. 19.1b) undergoing continuous
growth, to make the present problem tractable we model the PA wall as a single
homogenized layer at two quasi-static time points of postnatal growth: juvenile and
adult. This is in part based on our previous observations that no changes in relative

Fig. 19.1 (a) 3D reconstruction of the ovine ascending aorta (AA) and the pulmonary artery
showing the pulmonary trunk (PT) view, with the white dashed box indicating area of contact
between the two great vessels. Also shown are the posterior, anterior, lateral, and medial regions
of the PA. (b) Transmural micrograph of the ovine PA and volume fraction results of the PA at the
juvenile and adult states. Note that all regions demonstrated an increase in collagen mass with age,
with the medial region indicating the largest mass fraction in the adult state
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thickness of individual layers and total wall thickness were observed in the growing
PA (Fata et al. 2013b). Next, the following comprehensive set of assumptions were
observed.

1. The general form of the constitutive model was assumed to be maintained during
the postnatal maturation period. This assumption is partially supported by the
fact that the stress–strain curve shapes were conserved with growth (Fata et al.
2013b).

2. The collagen and elastin fiber networks are considered to be the mechanically
dominant components compared to the inactive smooth muscle cells (Zulliger
et al. 2004).

3. Both elastin and collagen fibers bear load only along their fiber axes and have
negligible resistance to compressive forces.

4. The elastin–collagen mechanical interactions were ignored and the net tissue
response is considered to be the sum of the individual constituent responses only.

5. The contribution of both fiber systems is in the plane of the wall, with the radial
mechanical behavior of the artery governed by the incompressible muscle and
ground matrix constituents.

6. The load required to straighten the collagen fibers is negligible compared to the
load transmitted by elastin or stretched collagen. Thus, collagen bears load only
when completely straight.

7. Based on the finding of Zulliger et al. (Lanir 1983), the contribution of inactive
smooth muscle tone to load bearing structures was assumed to be very small
compared to the fibers, and are thus modeled as a single material phase assuming
an isotropic response.

19.2.3 Tissue Level Strain Energy Function

The tissue level pseudo-hyperelastic strain energy density 	 (Fung 1993) of a
representative volume element (RVE), which is assumed to be small enough
so that the deformation gradient tensor F is homogenous (i.e., does not locally
depend on position), yet large enough to allow local averaging of the constituent
microstructure. We further assume the mechanical contributions of elastin (e),
collagen (c), and smooth muscle (m) are weighted by their respective volume
fractions ®

‰ .C/ D �c‰c .C/C �e‰e .C/C �m‰m .C/ ; (19.1)

where C D F�FT is the left Cauchy–Green stretch tensor. The tissue level response
in terms of the second Piola–Kirchhoff stress tensor S is derived using

S D @‰

@E
� p � C�1 D �c

@‰c

@E
C �e

@‰e

@E
C �m

@‰m

@E
� pC�1; (19.2)
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where E D (C-I)/2 is the Green–Lagrange strain tensor and I the identity tensor,
along with the Lagrange multiplier p to enforce incompressibility.

We develop the strain energy function for each tissue phase as follows. First,
based on assumption 7 above, we model the muscle component as a Neo-Hookean
material with small shear modulus. This is consistent with the inactivated state of
the tissue investigated. Using a shear modulus of �m D 1 kPa (divided by two to be
consistent with linear elasticity), the second Piola–Kirchhoff stress for the nonviable
smooth muscle and nonfibrous ground matrix phases and water is given by

Sm D �m
�m

2
.I1 � 3/� pC�1: (19.3)

The contributions of the non-fibrous components and fluid phases are assumed
to be responsible for the incompressibility of the tissue. Details for the fibrous
components are given in the following.

19.2.4 Constitutive Model for Elastin

Novel to this study is the approach to model the elastin network as discrete fibers
oriented in the plane of the tissue, rather than a material phase (e.g., Kao et al.
2011). This has been made possible by the quantification of the elastin structure
in Fata et al. (2013b). The results from Fata et al. (Fata et al. 2013b) and related
studies (Hunter et al. 2006; Zhang et al. 2007; Kao et al. 2011) suggest that a linear
S–E relation is observed in the low stress region. We assume that elastin dominates
the low stress. This assumption was further supported in our previous study that
collagen recruitment does not occur until strain range of the low stress region was
exceeded (Fata et al. 2013b). Thus we utilize the following elastin fiber strain energy

‰f
e .Ef/ D �e

2
E2f ; (19.4)

where �e is the effective elastin fiber modulus. Assuming affine transformation for
the RVE, the elastin fiber strain Ef was derived from the bulk tissue strain using
Ef D NT E N, where N .�/ D cos .�/bX1 C sin .�/bX2 with � measured from the
circumferential axis (Fig. 19.1a). Next, measured elastin orientation distributions
from the multiphoton imaging data from Fata et al. (2013b) were normalized to unit
area to obtain �

0

e(�) (Fig. 19.2). Next, since elastin fibers to not appear to undergo
any type of recruitment the initial expression for the total elastin stress is given by

Se .E/ D �e
@‰e

@Ef

@Ef

@E
D �e

Z
�

� 0
e .�/ Sf

e .Ef/
@Ef

@E
d� D �e�e

Z
�

� 0
e .�/Ef N ˝ Nd�:

(19.5)



19 Mesoscale Structural Models in the Growing Pulmonary Artery 389

Fig. 19.2 Final average elastin and collagen measured orientation distributions and the Modified
Beta distribution probability distribution fits in the juvenile and adult states

However, in the multiphoton images of the PA wall, elastin appeared both as
oriented fibrous and sheet-like isotropic structures. These contiguous sheet-like
structures, although visualized, were not reliably quantifiable in terms of mass
fraction. Supportive evidence of their mechanical contribution came from the low
stress regions where we observed significant stress development in the longitudinal
direction, even though there were no measurable elastin fibers aligned in the
longitudinal direction in the juvenile and adult states (Fig. 19.2). Therefore, we
modified (19.5) to model the elastin fiber network as the sum of an oriented phase of
a measured orientation function �

0

e(�) and an isotropic, randomly distributed fiber
phase. Thus, the total fiber orientation distribution function is

�e .de; �/ D de � � 0
e .�/C .1 � de/ =�: (19.6)

The resulting final expression for the elastin phase stress is given by

Se D �e�ede

Z
�

�e .�e; �e;de; �/Ef .E; �/N ˝ Nd�; (19.7)

with �e and � 0
e taken from experimental measurements (Figs. 19.1 and 19.2,

respectively) and �e and de estimated from the biaxial mechanical data, as detailed
in the following sections.
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19.2.5 Constitutive Model for Collagen

Following Lanir (1983), we treat collagen fibers with a common orientation as a
fiber ensemble that undergoes a uniaxial strain Eens D NT E N. As in related work
on collagenous tissues (Lanir 1983; Sacks 2003), we assume a linear fiber stress–
strain relationship for individual collagen fibers

‰f
c .Ef/ D �c

2
E2f ; (19.8)

where �c is the elastic modulus of individual straight collagen fibers. Due to their
crimped structure, we express individual collagen fiber’s true fiber strain using
Et D Eens�Es

1C2Es
where Es is the collagen fiber slack strain. The resulting individual

collagen fiber strain energy is then

‰f
c .Et/ D �c

2
E2t : (19.9)

While it is evident that Eens D Ef, we make the distinction between fiber and
ensemble strains here since individual collagen fibers will have a different strain
levels due to their undulations.

Next, we account for the gradual recruitment of the collagen fiber in each
fiber ensemble with strain stochastically using the function D D D(Es), defined
over the ensemble strain range Eens 2 ŒElb;Eub�, where Elb and Eub represent the
lower and upper bounds of collagen fiber ensemble recruitment strain levels, with
Eub > Elb > 0. The ensuing fiber ensemble strain energy and stress–strain relation
are then described as the sum of individual fiber strain energies of the ensemble
weighted by the distribution of slack strains D, as

‰ens
c D �c

2

Z Eens

0

D.x/

	
Eens � x

1C 2x


2
dx; Sens

c D �c

Z Eens

0

D.x/
Eens � x

.2x C 1/2
dx;

(19.10)

where
Z Eub

Elb

D.x/dx D 1. A scaled Beta distribution B(˛,ˇ) was used for D as

follows:

D.x/ D
(

x˛�1.1�x/ˇ�1

B.˛;ˇ/.Eub�Elb/
; for x 2 �0; 1Œ

0; otherwise

x D .Eens � Elb/ = .Eub � Elb/ ; (19.11)

where ˛ and ˇ are the shape constants with mean �r and standard deviation � r

determined using
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�0
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The resulting total collagen fiber phase second Piola–Kirchhoff stress is the sum of
individual fiber second Piola-Kirchhoff stress weighted by the angular probability
function �c

Sc D �c�c

Z
�

�c .�/

�Z Eens

0

D .�r; �r; x/
Eens � x

.2x C 1/2
dx

�
N ˝ N d�: (19.13)

19.2.6 Complete Constitutive Model Form

Since complete structural information was only available from the medial region,
some final modifications were necessary to provide maximum fitting flexibility and
to facilitate numerical computations. As for the treatment for elastin we simulated
the measured collagen fiber orientation distribution using

�c .�c; �c; dc/ D dc � � 0
c .�c; �c/C .1 � dc/

�
; (19.14)

where the oriented component � 0
c is modeled using a Beta probability distribution

function with mean (�c) and standard deviation (�c), along with a weighting term
(dc). Note that when applied to the measured medial region data the collagen
baseline response given by dc serves only to improve the model by quantifying
randomly oriented collagen fibers observed in the actual measured data (Fata et al.
2013b, Fig. 19.2). Thusly, by combining (19.2, 19.3, 19.6, and 19.12), we have the
final expression for the total second Piola–Kirchhoff stress S for the PA wall

S D �c�c

Z
�

�c .�c; �c; dc; �/

�Z Eens

0

D .�r; �r; x/
Eens � x

.2x C 1/2
dx

�
N ˝ N d�

C �e�ede

Z
�

�e .�e; �e; de; �/Ef .E; �/N ˝ N d�

C �m
�m

2
.I1 � 3/� p � C�1: (19.15)

The final model has a total of 12 parameters.
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19.2.7 Model Parameter Estimation

Direct parameter estimation for such a highly nonlinear model would be ill-
advised with respect to uniqueness and confidence of a global minimum. Rather,
we developed the following systematic means to obtain optimal parameter values
by dividing the total model parameter estimation effort into the determination of
the effective fiber properties, followed by the complete in-plane behavior. For the
medial region, due to the availability of the requisite data, we only had to fit the
collagen and elastin moduli and de. Moreover, while important regional differences
were observed in the measured biomechanical responses (Fata et al. 2013b), the
overall qualitative shapes of the stress–strain curves were similar. We thus utilized
both the predicted and measured responses of the medial region as initial estimates
for the remaining three regions. Details of the fitting approach are provided in the
following.

As presented in our work on pericardium (Sacks 2003), when utilizing a
structural model intrinsic fiber ensemble responses (i.e., the Sens–Eens relation) can
be successfully determined directly from an equi-biaxial strain loading path (that
is, Sens D S11 C S22, Eens D E11 D E22, E12 D 0) since there are no fiber rotations in
this kinematic mode. This simple method allows one to directly fit fiber moduli
and recruitment model parameters independent of fiber splay (and its associated
parameters). However, the available mechanical testing data (Fata et al. 2013b)
was performed under stress control with no equi-biaxial strain data available
(Fig. 19.3a). To obtain these data, we interpolated the equi-biaxial response from
the experimentally acquired multi-protocol data using bicubic Hermite elements
to fit the second Piola–Kirchhoff stress surfaces. Smoothness of the surface was

Fig. 19.3 (a) Results of the bicubic Hermite surface interpolation of the second Piola–Kirchhof
stress biaxial test responses to allow interpolation of an equi-biaxial strain path, shown here in
red. (b) Fit of the medial region collagen fiber recruitment using a Beta cumulative distribution
function for both juvenile and adult states, revealing both an excellent fit to the data along with a
trend toward more rapid recruitment with strain in the adult stage
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Fig. 19.4 Fiber ensemble stress–strain results for the interpolated equi-biaxial strain path
responses for all four regions at both age time points

enforced in the Sobolev norm (Smith et al. 2000). An interpolated protocol where
E11 D E22 from the resulting surface was used to simulate the equi-biaxial response
(Fig. 19.3a).

Initial inspections of the Sens–Eens responses revealed a noticeable and consistent
increase in stiffness for Sens � 20 kPa, corresponding to Eens Š 0.30 (Figs. 19.4
and 19.5). When compared to the available collagen fiber recruitment data for the
medial region (Fig. 19.3b), it was observed that collagen engagement also initiated
at E Š 0.30. We thus attributed the change in total fiber ensemble stiffness to the
initiation of collagen fiber recruitment, so that Elb could be directly determined
from the experimental data for each specimen, removing this parameter from the
fitting procedures. Moreover, this finding indicated that for fiber ensemble strains
below Elb, (i.e., Eens2[0,Elb[), the Sens–Eens responses are completely dominated by
elastin only (i.e., no collagen contribution). By taking the difference between the
circumferential (S11) and the longitudinal (S22) components S� from (19.15), with
the collagen phase removed since it is assumed that it does not bear load under
equi-biaxial strain, we obtain

S� D S11 � S22 D de�e�e

Z
�

� 0
e .�c; �c/Ef

�
cos2� � sin2�

�
d�; (19.16)
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Fig. 19.5 Fiber ensemble tangent modulus–strain results for the interpolated equi-biaxial strain
path responses for all four regions at both age time points. Note here the sharp increase in stiffness
due to collagen fiber engagement (arrows). Note too the decreases in stiffness with age in the
lateral and medial regions

following a similar procedure developed in Sacks (2000). The corresponding cost
function for fitting the Sens–Eens for Eens2[0,Elb[is simply

SSE D
X

i

�
S� �

�bS11;i �bS22;i
��2 C

��
Saniso
11 C Siso

11

� �bS11;i
�2

C
��

Saniso
22 C Siso

22

� �bS22;i
�2
: (19.17)

This procedure allowed the parameters de and �e to be estimated directly from the
interpolated equi-biaxial data, rather than in the full model.

Next, to further facilitate fitting of the medial region data only, we approximated
the measured average collagen fiber recruitment probability distribution from Fata
et al. (2013b) using (19.10) to determine �r, � r, Elb, and Eub directly (Fig. 19.3b).
The resulting parameters were shifted to match Elb as estimated by the equi-biaxial
strain interpolation described above on a per specimen basis, while keeping the span
of the distribution constant. The respective parameters are then used as constants for
the model. For the remaining 3 regions, Elb was estimated directly from the equi-
biaxial data using the distinct increase in tangent modulus (TM) observed when
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the collagen recruitment initiated as described above. The remaining recruitment
parameters from the medial region were used as the initial guess during optimization
with Elb fixed, since it was determined directly.

A custom written Mathematica program (Wolfram Research Corp.) was devel-
oped and utilized to fit the complete model (19.15) to the multi-protocol mechanical
stress–strain data (Fig. 19.3a). A stepwise approach was used to reduce com-
putational cost and increase the rate of convergence as follows. First, using the
parameters obtained from the equi-biaxial strain data over the full measured strain
region, we used three protocols (numbers 3–5, Fig. 19.3a), then five protocols
(numbers 2–6, Fig. 19.3a) were fitted sequentially, with the best fit parameter from
the prior step used as the initial guess for the current optimization. This approach
also improved convergence to the global minimum using a gradient approach
without the need of time-intensive genetic algorithms. The interior point method
was chosen for its self-concordant barrier function, allowing us to easily constraint
the parameters under the Karush–Kuhn–Tucker conditions. The predictive quality
of the fit was examined by comparing the predicted response to the data for the
remaining two protocols (numbers 1 and 7, Fig. 19.3a).

19.3 Results

19.3.1 Post-processed Structural and Mechanical Data

The averaged fiber orientation distribution data of elastin and collagen fibers were
well fit by their respective modified Beta probability distribution functions (19.6
and 19.14, respectively), with r2 > 0.94 (Fig. 19.2). Next, (19.11) (the modified
Beta density function for collagen recruitment) provided an accurate representation
of the mean measured collagen recruitment data of juvenile (r2 D 0.97) and adult
(r2 D 0.98) specimens, respectively (Fig. 19.3b). This last result provided important
evidence to support the use of (19.11) to represent collagen fiber recruitment with
ensemble strain for the ovine PA at both the juvenile and adult stages.

The interpolated equi-biaxial responses demonstrated excellent consistency
within each region and age group, for both the stress (Fig. 19.4) and tangent moduli
(Fig. 19.5). In all four regions and two ages, the initiation of collagen recruitment
was clearly marked (Fig. 19.5) at Eens D �0.30. Consistent with our previous study
(Fata et al. 2013b), the anterior and posterior regions demonstrated minimal changes
in tangent moduli with age, whereas the lateral and medial regions both showed a
decrease in maximum stiffness (Fig. 19.5). Since no fiber rotations can occur for
equi-biaxial strain loading path, the observed decrease in regional tissue stiffness
must be due to changes in either fiber moduli or collagen fiber recruitment. Next,
from these data the corresponding Elb were obtained as transition points in the
tangent modulus–strain relations (Fig. 19.5), which demonstrated no changes with
age and only significant differences between the lateral and medial groups.
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Fig. 19.6 (a) Constitutive model fit to the average five-protocol biaxial stress–stretch data
(protocols 2–6, see inset) of juvenile and adult medial PA wall specimens. (b) Predicted fit results
to protocols 1 and 7 (see inset), showing excellent agreement

19.3.2 Overall Fit Results

When applied to the medial region data, the complete model (19.15) demonstrated
an excellent quality of fit to all protocols used (r2 � 0.99, protocols 2–6, Fig. 19.6).
Moreover, when applied to measured strains from the “outer” protocols (numbers
1 and 7, Fig. 19.6), the excellent predictive capabilities were apparent (Fig. 19.6b).
Interestingly, no apparent differences in fit quality or values for the ke and kc were
observed when either the actual measured or interpolated fiber splay data (Fig. 19.2)
were used. This last result suggested that the Beta distribution approximation to the
fiber splay is sufficient to capture the tissue response. Finally, equivalent quality fits
were obtained for the remaining three regions for all mechanical data measured.

19.3.3 Regional Differences

In the juvenile state, key model parameters exhibited differences between all four
regions of the PA. For the predicted fiber splay responses, the posterior region
had the lowest elastin de value of �0.5, followed by increasing values for the
remaining three regions (�0.5 to �0.75). In contrast, the collagen dc values did not
appear to exhibit marked regional differences (all about 0.7–0.8, Fig. 19.7b). Similar
trends were found for the actual dispersion �e and �c with only the medial region
exhibiting substantial differences from the other regions, especially for elastin. It
is also interesting to note that the collagen and elastin fiber splays were neither
similar in value nor exhibited similar regional differences, and thus appear to be
structurally decoupled. Collagen fiber recruitment followed similar trends, with
the posterior region’s mean recruitment being the smallest, followed by increasing
values in order of anterior, lateral, and medial regions. In contrast, the recruitment
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Fig. 19.7 Predicted collagen (�c) and elastin (�e) fiber moduli regions at both age time points.
The most drastic changes were for the elastin modulus ke increasing by �50 % and the collagen
modulus kc decreasing to only �25 % of the juvenile value in the medial region

standard deviation demonstrated that the medial region was larger and thus recruited
over a larger strain range. Regional differences in collagen and elastin moduli in the
juvenile state were generally similar, with elastin in the range of 150–200 kPa and
collagen from �1600 to 2700 kPa (Fig. 19.7).

19.3.4 Effects of Age

No major differences were found between the juvenile and adult PA in the posterior,
anterior, and lateral regions for most model parameters. Some difference is found
between elastin modulus for the anterior region (p < 0.035). However, this is only
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a 14 % drop in stiffness than the adult anterior region, which does not produce
significant difference in the tissue level biomechanics (Fig. 19.5). Slight differences
are seen in the equi-biaxial strain data for the lateral region. This is due to the
mass fraction difference (Fig. 10) and difference in the amount of fibrous elastin;
the difference fails to be statistically significant (p < 0.11). For the adult PA, we
found the regional differences to be generally similar to the juvenile PA. While some
trends were apparent in de and dc, these were not marked. For the fiber dispersion
�e and �c, only the lateral and medial �c demonstrated regional differences in
the adult state. Similar responses were found for the recruitment parameters. The
anterior region had a highest �r for the adult largely due to a slight increase with
age (p < 0.12) and the drop in the medial region with age. No other major regional
differences were found in the adult comparing to the juvenile.

The primary finding for age-related changes was for the collagen and elastin
moduli in the medial region (Fig. 19.7). While the elastin modulus for this region
only modestly increased from �150 to 225 kPa, the collagen modulus dropped
from 2711 kPa for the juvenile to slightly more than one quarter of its value
at 747 kPa for the adult (p < 0.022, Fig. 19.7). Corresponding histological and
structural measurements also demonstrated (1) a 47 % increase in volume fraction
of collagen (Fig. 19.1c) and (2) a significant drop in elastin splay (p < 0.00002) a
60 % increase in the percentage of collagen splay (Fig. 10). Interestingly as well,
both predicted �r and � r decreased with age in the medial region, in agreement
with the observed more rapid measured collagen fiber recruitment for this region
(Fig. 19.3b). Collectively, the modeling results suggest substantial tissue remodeling
in the medial region with age, whereas the other three measured regions were largely
stable with age.

19.4 Discussion

19.4.1 Overall Findings

Overall, the predicted elastin moduli remained largely unchanged with age and
compared well with between the four regions studied, lying within a relatively
narrow range of 150–200 kPa. Similarly, the predicted collagen moduli ranged from
1600 to 2700 kPa in the four regions studied in the juvenile state. However, major
age effects were found in the medial aspect of the PA wall (Fig. 19.1). In this
region, we observed that the elastin and collagen fiber splay underwent opposite
changes, with the collagen standard deviation juvenile D 17ı to adult D 28ı, elastin
standard deviation juvenile D 35ı to adult D 27ı. In parallel, we observed more
rapid collagen fiber strain recruitment with age in this similar to that observed
experimentally (Fata et al. 2013b), but these were not statistically significant.

Clearly, the most profound changes in this region were observed for the collagen
fiber moduli, which went from 2700 kPa for the juvenile stage to 746 kPa in the
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adult (Fig. 19.7). These changes were likely due to the impingement of relatively
stiff ascending aorta on the growing PA medial region, and were apparently a local
effect. Intuitively, the effects of the local impingement would be to lower the local
wall stress, consistent with the observed decrease in collagen modulus. While this
change was in part driven by the observed increase in total tissue elastin volume
fraction relative to the collagen volume fraction (Fig. 19.1c), these changes were
also a direct result of the changes in local tissue structure.

The results of the present study extend these studies by utilizing a detailed
mesoscale (i.e., bulk fiber level) structural model, coupled with extensive exper-
imental measures, to obtain further insight into the PA remodeling process. This
approach was taken since altered mechanical properties of arteries are critically
associated with microstructural remodeling (Humphrey 2009; Ambrosi et al. 2011).
The mechanical loading–deformation relation of elastin and collagen fibers is
fundamental to understanding the underlying microstructural mechanisms of arterial
tissue behavior. Structurally motivated models, such as used herein, incorporate
significant mechanical aspects of the underlying microstructure to better predict
the mechanical behavior and understand the mechanisms governing the structure–
function relationship of biological tissues. The present constitutive model takes
account of contributions of the collagen component, elastin or elastic fibers, ground
matrix consisting of smooth muscle cells and other noncellular materials, along with
detailed in-plane biaxial mechanical behaviors (Fata et al. 2013b) (Figs. 19.1, 19.2,
19.3, 19.4, and 19.5).

As observed in our geometric studies (Fata et al. 2013a; Gottlieb et al. 2013),
the focal changes observed in the medial region are likely due to the impingement
of relatively stiff ascending aorta on the growing PA. This effect is likely more
pronounced since these two great vessels are held together within a connective
tissue sheath (J.E. Mayer, Jr., private communication). Intuitively, the effects of
the local impingement would be to lower the local wall stress. If so, then this
would be consistent with the observed decrease in collagen modulus. However,
it does not explain the concomitant increase in elastin modulus. Clearly, some
type of compensatory mechanism is in play here, but the nature of which remains
unknown. What can be said with some certainty is that, during the postnatal somatic
growth, local stresses can substantially modulate the development of regional tissue
microstructure and mechanical behaviors in the PA.

In our parallel study on the corresponding mechanical properties (Fata et al.
2013b) the medial and lateral locations experienced local, moderate increases in
anisotropy. Moreover, the PA thickness remained constant with growth. When this
fact is combined with the observed stable overall mechanical behavior and increase
in vessel diameter with growth, a simple Laplace Law wall stress estimate suggests
an increase in effective PA wall stress with postnatal maturation. This observation
is contrary to the accepted theory of maintenance of homeostatic stress levels in
the regulation of vascular function, and suggests alternative mechanisms regulate
postnatal somatic growth.
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The present study extends our previous investigations into postnatal PA growth.
As observed in our geometric studies (Fata et al. 2013a; Gottlieb et al. 2013), the
focal changes observed in the medial region are likely due to the impingement of
relatively stiff ascending aorta on the growing PA. Intuitively, the effects of the local
impingement would be to lower the local wall stress. If so, then this would be consis-
tent with the observed decrease in collagen modulus. However, it does not explain
the concomitant increase in elastin modulus. Clearly, some type of compensatory
mechanism is in play here, but the nature of which remains unknown. What can be
said with some certainty is that, during the postnatal somatic growth, local stresses
can substantially modulate the development of regional tissue microstructure and
mechanical behavior in the PA. However, this finding should be taken in light
that we observed relatively stable overall mechanical behavior over most of the
PA with growth. As the PA thickness remained constant with growth, a simple
Laplace Law wall stress estimate suggests an increase in effective PA wall stress
with postnatal maturation. This observation is contrary to the accepted theory of
maintenance of homeostatic stress levels in the regulation of vascular function, and
suggests alternative mechanisms regulate postnatal somatic growth. Understanding
the underlying mechanisms, including incorporating important structural features
during growth, will help to improve our understanding of congenital defects of the
PA and lay the basis for functional duplication in their repair and replacement.
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Chapter 20
A Microvascular Model in Skeletal
Muscle Fascia

Frank G. Jacobitz, Niki L. Yamamura, Adam M. Jones,
and Geert W. Schmid-Schönbein

Abstract This study considers the microcirculation in skeletal muscle fascia.
Simulations are performed using a comprehensive approach to the problem with
realistic reconstruction of the microvasculature, blood rheology and vessel wall
properties, and Stokes flow in the microvessels. The simulation results provide
detailed network displays of basic hemodynamic parameters. For example, an
approximately normal distribution was found for the hematocrit. High hematocrit
values are observed in areas with low blood perfusion, e.g., in the peripheral regions
of the network. A range of velocity values was found in the capillary vessels of the
network, in contrast to experimental observations which suggest a relative narrow
distribution of capillary velocities. This finding points to the need of an improved
treatment of mechanisms for the control of vessel diameter. A local mechanism
based on the shear stress is proposed for future studies of the microcirculation.

20.1 Introduction

Since the introduction of morphological and rheological models in the 1970s,
biomechanical analysis of blood flow in microvascular networks has made major
progress. Using realistic reconstructions of the network topology and models of
blood properties in narrow blood vessels, an increasing level of detail is analyzed
and predictions are critically tested by experiments. The analysis is organ specific
and serves as the first level of a more comprehensive quantitative description of
mass transport, metabolism, and specific physiological functions. Microvascular
blood rheology (Pries and Secomb 2005), pressure-dependent response, shear
stress response, metabolic regulation, hematocrit distribution in microvessels and at
bifurcations (Pries et al. 1990), the endothelial surface layer (glycocalyx) (Pries and
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Secomb 2005), acute adaptive mechanisms by pressure and wall shear stress (Pries
et al. 2001) have been subject to analysis. Several details of the static and dynamic
aspects of hemodynamics in skeletal muscle have been studied (Schmid-Schönbein
1988; Lee et al. 1994).

Skeletal muscle is surrounded by a fascia which consists of a connective tissue
with a collagen network and fibers that integrate into the extracellular matrix of
the skeletal muscle fibers. The fascia in many muscles has its own microvascular
network that is positioned parallel (without direct connections) to the microvascu-
lature of the skeletal muscle although the feeding arterioles and draining venules
of the fascia connect to those of skeletal muscle microvasculature. The fascia
microcirculation contains the major vessel classes encountered in skeletal muscle,
e.g., arcade arterioles and venules, terminal arterioles and collecting venules, but
a relatively sparse capillary network compared to that of skeletal muscle (Stokke
1999). The details are distinctly different between the two tissues.

In this study of the microcirculation, a computational approach is used in the
fascia of rat spinotrapezius muscle with account for the shear- and hematocrit-
dependent rheology of blood. The simulations are based on a realistic network
reconstructions derived from microscopic images of the fascia. The model includes
fundamental aspects about passive properties of microvessels (Skalak and Schmid-
Schönbein 1986a, b) as well as active myogenic constriction in arterioles (Lee and
Schmid-Schönbein 1996). We also present the development of a software tool to
perform a spatial analysis of the hemodynamic results. This tool provides local
information about the flow properties within a spatial microvessel network map in
order to optimize the comparison with experiments. We conclude with a discussion
of the flow in capillaries, taking into account the unusual influence of white blood
cells and the pseudopod formation in endothelium on the hemodynamics in a
capillary network.

20.2 Simulation of Blood Flow in Fascia Microcirculation

In the following section, we present the methods of analysis, including a description
of the rat spinotrapezius muscle fascia network, the models for vessel elasticity and
blood rheology, the numerical method to compute the flow in the network, and the
post-processing tool to display spatial information in a network map.

20.2.1 Rat Spinotrapezius Muscle Fascia

The microcirculation in adult muscle fascia, similar to muscle per se, contains a
network structure of distinct vascular segments that include the arcade arterioles,
transverse arterioles, capillaries, collecting venules, and arcade venules, similar to
the one found in skeletal muscle (Stokke 1999). Contrary to muscle, the capillary
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vessels have no preferred direction in the muscle fascia, but form a mesh-like
structure. We reconstructed these networks in several specimen and developed
topological parameters that represent ensemble averages (Stokke 1999).

In the following, we will focus on a single capillary network in the fascia. It is
supplied by a single terminal (transverse) arteriole but drained by multiple collecting
venules, typical for capillary networks. The particular capillary bundle considered in
this study consists of 286 vessels interconnected at 190 nodes. The capillary vessels
are linked periodically to avoid any regions with reduced blood flow.

20.2.2 Vessel Elasticity

Blood vessels have passive viscoelastic properties and their diameter depends
nonlinearly on transmural pressure. In the present simulations, we focus on the
elastic nonlinear vessel expansion as a function of blood pressure (Skalak and
Schmid-Schönbein 1986a, b). In addition, arterioles contain vascular smooth muscle
and actively contract in response to blood pressure (Davis 1963; Meininger and
Davis 1992). Here, a myogenic constriction for pressures above a threshold value of
40 mmHg is assumed (Lee and Schmid-Schönbein 1996).

20.2.3 Blood Rheology

Blood is a complex non-Newtonian fluid and its apparent viscosity is determined
by vessel diameter, hematocrit, and shear. The vessel diameter and hematocrit
dependence of the apparent viscosity of blood is captured by a model developed
by Pries et al. (1990), referred to as the Pries model in the following. This model
determines the apparent viscosity of blood �app from the plasma viscosity �plasma

and an empirical factor �P used to describe diameter and hematocrit dependence:

�app D �plasma �P (20.1)

where

�P D 1C �
eHd ˛ � 1� = �e0:45 ˛ � 1� �110 e�1:424 D C 3 � 3:45e�0:035 D

�
(20.2)

and

˛ D 4=
�
1C e�0:593.D�6:74/� (20.3)

Here Hd is the discharge hematocrit. The tube hematocrit Ht is related to the
discharge hematocrit through the following relationship:

Ht D Hd
�
Hd C .1 � Hd/

�
1C 1:7e�0:415 D � 0:6e�0:011D

��
(20.4)
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The model uses the following expression for velocity of blood:

v D .0:4 � D � 1:9/ � 1000 (20.5)

The Pries model does not consider the shear thinning of blood. An improved model
for the apparent viscosity of blood to include the shear thinning of blood was
developed by Jacobitz et al. (2009). A comprehensive set of measurements on the
shear rate dependence of apparent viscosity of blood was provided by Lipowsky
et al. (1980) from in vivo measurements in the mesentery of the cat. Using these
results, the apparent viscosity of blood, �app, as a function of shear rate

� D .8 � v/ =D (20.6)

was determined in form of the following expression (referred to as shear model):

�app D �plasma�P �shear (20.7)

�shear is a shear factor describing the shear thinning effect of blood as a function of
the shear rate:

�shear D A0 C A1�A2 (20.8)

where � is the shear rate (20.6). The coefficients A0, A1, and A2 and their dependence
on the hematocrit are

A0 D 1 � 0:29688 H2
t (20.9)

A1 D 19:7182 Ht (20.10)

A2 D �0:68131 (20.11)

by optimal fit to Lipowsky’s experimental data. The results of the model were
validated by comparison with the shear dependence of the apparent viscosity of
blood observed in viscometer measurements (Chien et al. 1970).

In the simulations, the hematocrit is found from the cell-plasma phase-separation
at each bifurcation. The fraction of red blood cell flow is higher for larger daughter
vessels, leading to a decreased hematocrit in the smaller daughter vessel (Schmid-
Schönbein et al. 1980; Pries et al. 1990).

20.2.4 Network Simulation

At the level of the muscle fascia we have low Reynolds Number Stokes flow in
each microvessel. The velocity profile is assumed to be parabolic but with apparent
viscosity given by the shear model (20.7). The application of Kirchhoff’s Law
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(mass conservation) at each bifurcation of microvessels results in a system of linear
equations, which is solved using a sparse matrix solver. Nonlinear effects introduced
by blood rheology and vessel elasticity are accounted for by an iterative approach
(Jacobitz et al. 2009). Typically, a convergent solution is obtained after just a few
iterations (about 5 iterations to obtain 3 significant digits in the results).

20.2.5 Implementation of Spatial Microhemodynamic Display

A black-and-white micrograph of the blood vessel network was digitized (JPEG
format) and converted into a matrix (Matlab), which contained the node positions.
This matrix was then exported (Excel format) and used to create a second matrix
which contained the spatial microvessel positions. A data file (Excel) containing
start and end node coordinates was used to number the blood vessels (1–286). The
pixels that made up each blood vessel were designed to contain the blood vessel
assignment number. Code was then written (Matlab) that used the blood vessel
matrix and the vessel data file, which also contained other information about the
vessel network including mean pressure, velocity, diameter, hematocrit, shear, and
viscosity from the simulations to create the spatial representation for the entire
vessel network.

The sample code diagram (Fig. 20.1) shows how the spatial representation
of pressure in the vessel network was created. The code serves to read in the
information from the data file for pressure (using the vessel network matrix as the

Fig. 20.1 Sample code for the spatial representation of pressure
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map for location of each vessel) and enters each value of the pressure data file into
the appropriate location in a final pressure matrix. This pressure matrix was then
converted into an image and a specific color map (called “Jet”) was used to help
visualize the pressure changes across the network.

20.3 Results

In this section, first the results from simulations of the microcirculation in rat
spinotrapezius muscle fascia are presented. Then, the velocity distribution in a
capillary network is discussed and a model for local velocity control is described.
The model is based on wall shear stress and justified by the study of endothelial
pseudopods. Finally, a rheological control of capillary flow is briefly addressed.

20.3.1 Hemodynamics in Fascia Microcirculation

Figure 20.2 shows the mean pressure distribution in a vessel network in muscle
fascia with an arteriolar pressure of 100 mmHg and a venular pressure of 20 mmHg.
The mean pressure in each vessel is shown as the average of inflow and exit
pressures. The majority of the mean pressure values are close to 24 mmHg (left
histogram of the Fig. 20.1). The vessel map (right part of Fig. 20.1) shows that the
highest pressures are concentrated at the center of the vessel network, which is at
the location of the transverse arteriole. The pressure decreases as the blood flows
further from the transverse arteriole and this can be seen by the colors in the spatial
representation changing from dark red at the center to lighter red, orange, yellow,
green, light blue, and finally to dark blue. The lowest pressures are observed at the
top and bottom edges of the network, where the collecting venules are located.

Fig. 20.2 Mean pressure (mmHg) histogram (left) and structure (right) for the microvessels of the
capillary bundle
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Fig. 20.3 Velocity (mm/s) histogram (left) and structure (right) for the microvessels of the
capillary bundle

Fig. 20.4 Diameter (microns) histogram (left) and structure (right) for the microvessels in the
capillary bundle

Figure 20.3 presents the mean velocity distribution in the vessel network. The
histogram (left) indicates a log-normal distribution of velocities in the network.
The vessel map (right) indicates that the highest velocities are at the center, where
the blood enters the capillary bundle through the transverse arteriole. The velocity
slows as it travels further through the bundle. Low velocities are obtained in the
collecting venule as well as in capillaries away from the inflow and outflow vessels
of the bundle.

Figure 20.4 shows the distribution of vessel diameter in the muscle fascia
network. The histogram (left) indicates that capillaries with a vessel diameter of
about 9 �m are the most frequently observed vessels in the bundle. A log-normal fit
to the histogram is given for comparison. The vessel map (right) clearly indicates the
location of the transverse arteriole in the center of the bundle with vessel diameters
ranging from about 15 to 21 �m. The collecting venule has vessel diameters larger
than 30 �m. The muscle fascia shows a larger range of diameter values due to an
extensive collecting venular vessel system characterized by microvascular loops, a
feature found in the fascia but less in the skeletal muscle per se.

Figure 20.5 shows the hematocrit distribution in the capillary bundle. The
histogram (left) indicates an approximately normal distribution of hematocrit values
in the network. The simulations were performed with an inflow hematocrit of 0.35



410 F.G. Jacobitz et al.

Fig. 20.5 Hematocrit histogram (left) and structure (right) for the microvessels in the capillary
bundle

Fig. 20.6 Shear rate (1/s) histogram (left) and structure (right) for the microvessels in the capillary
bundle

into the transverse arteriole and a large number of vessels reflect this value. The
vessel map (right) generally shows high hematocrit values in regions with low
velocities and low hematocrit values in regions with high velocities.

Figure 20.6 shows the shear rate distribution in the capillary bundle. A log-
normal fit is added to the histogram (left). High shear rates are generally found
in arterioles and capillary vessels with high velocity. Lower shear rates are found
in venules, venule loop vessels, and capillaries away from the inflow and outflow
vessels of the bundle.

Figure 20.7 presents the apparent viscosity in the capillary bundle. The compu-
tational values in the histogram are closely fit by a log-normal distribution (left).
The blood plasma has a viscosity of 1.4 cP and the apparent viscosity is computed
from vessel diameter, hematocrit, and shear rate using the shear model presented
above. A few capillaries show apparent viscosity values of about 1.4 cP and these
vessels correspond to those with low hematocrit. Generally, the apparent viscosity
is highest in venule loop vessels as well as in the collecting venule. The vessels
are characterized by large diameter and low shear rate. Despite its larger vessel
diameter, the high shear rate in the transverse arteriole results in apparent viscosity
values similar to those observed in capillaries. In the transverse arteriole, the shear
thinning effect counteracts the apparent viscosity increase caused by the larger
diameter.
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Fig. 20.7 Apparent viscosity (cP) histogram (left) and structure (right) for the microvessels in the
capillary bundle

20.3.2 The Velocity Distribution in Capillary Network

The current analysis brings to light that the velocity in individual vessels of
a network of capillaries varies considerably from one vessel to the next. The
velocities in these narrow vessels are exquisitely sensitive to the diameter one
obtains from analysis of the network images, largely due to the low Reynolds
number characteristics in such vessels with a pressure-flow relationship that has a
strong diameter dependence (e.g., the fourth order dependence in Poiseuille’s Law).

Yet, measurements of capillary velocities in a healthy microvascular network
show a narrow distribution with lower variance as compared to the capillary velocity
distribution in networks obtained from image reconstructions (Scheidler 2007).
A major reason for this discrepancy needs to be looked for in the measurement
accuracy to determine capillary diameters. Fractions of a micrometer make a
difference in the velocity inside capillaries, especially if they fall into the large
class of vessels below 10 �m. In fact the narrower a capillary, the more accurate
diameters need to be measured to obtain a realistic picture of the hemodynamics in
such a vessel. Several issues surrounding the limitations of current technology to
make such measurements have been discussed (Ellis et al. 1983).

Direct observation of a capillary network, for example in skeletal muscle with
many capillaries arranged in parallel to skeletal muscle fibers, shows that in healthy
muscle the red cell velocity is remarkably uniform from one capillary to the next
(Tyml and Cheng 1995), with network variances (standard deviation/mean velocity)
in the range of 25–30 % (Scheidler 2007). This relatively low variance is preserved
during vasomotor cycles or during acute application of an arteriolar vasodilator
(papaverine) indicating that the control mechanisms are inherent to the capillary
network and independent of the controls of blood flow in the arterioles or the
venules.

The variance in capillary velocity is significantly increased in the capillary net-
work of an animal with chronic disease (e.g., hypertension and metabolic syndrome;
Scheidler 2007) or during aging (Tyml et al. 1992). The variance in capillary red
cell velocity is also increased when nitric oxide is inhibited pharmacologically.
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These observations suggest that there may be a mechanotransduction mechanism
that serves to adjust red cell velocity in capillaries per se. The mechanisms need
to have a “fine control” over diameters to achieve the remarkable uniformity of the
velocity in a network irrespective of a particular branching pattern.

While being influenced by many factors (e.g., glycocalyx, membrane ion trans-
porters, membrane receptors) the mechanotransduction mechanisms fundamentally
depend on shear stress on the endothelium or on local pressure. Whatever the
mechanisms, they are operational in different regions of a capillary network at
higher and lower hydrostatic pressures (e.g., closer to the arteriolar inflows versus
the venular outflows, respectively). This evidence suggests that less the pressure and
may be more the fluid shear stress is involved.

Wall shear stress controls the thickness of the endothelium in vitro (Barbee et al.
1994; Sato et al. 2000). Thus, there is a possibility that the radius of a capillary,
a, may depend on fluid shear stress on the capillary endothelium. An increase in
fluid shear stress over a limited physiological range causes a reduction of the lumen
diameter and vice versa. Thus the fluid shear stress on the endothelium in a capillary,
�W, is inversely proportional to the radius a such that

�W � 1=a˛ (20.12)

For example, for ˛D 1, we hypothesize there exists an optimal wall shear stress,
�O, and an optimal lumen radius, aO, such that

�W D aO �O=a (20.13)

If we note that for a Newtonian fluid with viscosity �, the mean velocity for a
volumetric flow rate Q, vM D Q/� a2, is given by

vM D � �a2=8�� .@p=@z/ (20.14)

where @p/@z is the pressure gradient and the wall shear stress is

�W D � .a=2/ .@p=@z/ D 4 � vM=a (20.15)

Then in such a vessel the mean velocity assumes an optimal value

vMO D aO tO=8� (20.16)

This optimal mean velocity vMO depends only on the optimal shear stress �O and
the associated optimal lumen radius aO without dependence on the local pressure
gradient @p/@z. Thus it is possible that all capillaries in a network of microvessels
that adjust their diameter according to the condition outlined in (20.13) reach the
same mean velocity and thus similar red cell velocities. The capillary radius aO
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and an optimal shear stress �O are independently adjusted quantities, but their
combination serves to adjust capillary velocities to an optimal configuration. The
molecular mechanism is currently unknown, but the phenomenon of a capillary
velocity with small statistical variance suggests it does exist.

20.3.3 Capillary Endothelium Pseudopod Formation

A suggestion that fluid shear stress controls the morphology of capillaries comes
from the study of endothelial pseudopods. While pseudopods generated by actin
polymerization on endothelial cells have relatively minor influence on the hemo-
dynamics in vessels outside the microcirculation, in capillaries with single file
blood cells their presence has a dramatic effect on the hemodynamics (Lee and
Schmid-Schönbein 1995). Endothelial pseudopods reaching into the lumen of a
capillary reduce the plasma velocity to zero inside the narrow capillary lumen,
dramatically raising the hemodynamic resistance. Cessation of fluid shear stress
leads to formation of capillary pseudopods, especially at the junctions between
endothelial cells (Hueck et al. 2008). Shear stress on the endothelium serves to
attenuate formation of pseudopod projections as well as to reduce the length of
existing pseudopods. The process directly involves the endothelial cytoskeleton
and the ability to regulate actin polymerization via membrane receptor sensors
(Moazzam et al. 1997; Makino et al. 2006). In the capillary network this important
regulation mechanism is unexplored.

20.3.4 Rheological Control of Capillary Flow

Under normal physiological conditions the rheological properties of blood in large
vessels are dominated by the high volume fraction of red cells. Removal of white
cells or platelets during a viscosity measurement using a flow field that has large
dimensions compared to those of red cells or white cells has a negligible influence
on apparent viscosity.

But white cells cannot be neglected in capillaries with single file flow of blood
cells. Even the relatively low number of white blood cells (compared to red cells)
leads to a major effect on the hemodynamic resistance if blood is flowing through
capillaries. This is due to the effect that white cells have on the motion of red cells,
less the white cells by themselves (Helmke et al. 1997). The concentric position
of red cells in a capillary, determined by the fluid film between its membrane
and the endothelium, is disturbed by the presence of white cells that due to their
larger size and higher cell stiffness move with a lower axial velocity than the red
cells (Thompson et al. 1989). The consequence of this inequality in red and white
cell motion is accumulation and tumbling of red cells upstream of white cells in
capillaries, and an increase in their apparent viscosity. The effect of this form of cell
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interaction in capillaries is strong and causes a major change of the hemodynamic
resistance (Helmke et al. 1997), especially if the white cells are activated and form
pseudopods, as is seen in inflammatory states.

20.4 Summary and Outlook

Modeling of microvascular blood flow has made significant progress. Yet, we have
only seen the beginning of an analysis that will eventually include a large number
of cell control mechanisms both on the side of the blood cells and on the side of the
endothelium and the pericytes that form the capillary wall. There is a bright future to
this field of investigation, especially if applied to disease. Many diseases manifest
themselves first at the capillary level, be it from reduced capillary perfusion to a
dramatic and complete loss of capillaries, as seen in rarefaction (Tran et al. 2011).
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Chapter 21
Network Approaches to the Mechanical Failure
of Soft Tissues: Implications for Disease
and Tissue Engineering

Béla Suki and Arnab Majumdar

Abstract Damage and mechanical failure of soft tissues can lead to diseases and
even life threatening conditions including the failure of prosthetic heart valves,
capillary stress failure, tissue destruction in pulmonary emphysema, and vessel wall
aneurysms. Microscale damage occurs when mechanical forces in the tissue are
sufficiently high to rupture intercellular connections or enzymatically weakened
extracellular matrix (ECM) elements. When the microscale damage reaches a
critical amount, tissue or organ failure can happen. In this chapter, we first briefly
review the failure of the main constituents of tissues including molecules, cells,
elastin, collagen, and proteoglycans. We then discuss failure of tissues modeled as
complex networks of these constituents. A key concept here is percolation, a process
where network elements reach from one boundary of the network to another. We
show that when a certain type of fiber percolates the tissue, the rupture process
of the network is primarily governed by the failure properties of the individual
fibers. When the main fiber component does not percolate, the failure stress is still
dominated by the stiffness of the fiber, but the failure strain emerges as a network
phenomenon. Finally, we conclude by proposing some general concepts of how to
potentially minimize the risk of failure and best repair a damaged network.

21.1 Introduction

With the realization that “from molecules to organisms, everything must obey the
laws of mechanics” (Fung 1993), biomechanics has evaded virtually all of life
sciences including physiology, biology, and pathology. Perhaps the most important
concept in biomechanics is that the biomechanical properties of biological tissues
play fundamental roles in the normal functioning of virtually all connective tissue,
organ, and organism. These biomechanical properties are critical determinants of
how mechanical interactions of the body with the environment produce physical
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forces at the fiber, cell, and single molecule levels. Consequently, many studies
have explored and modeled the mechanical properties of various tissues and cells
at multiple length scales (Fung 1993, 1997; Humphrey and Delange 2004).

Characterization of the macroscopic mechanical properties of living tissues
and organs requires establishing mathematical relations, called the constitutive
equations, linking the mechanical response such as stress to a change in the size
and/or shape of a body usually given in terms of strain. Realistic constitutive
equations are nonlinear and time dependent giving rise to viscoelastic behavior. A
major advance in biomechanics occurred when Yoram Lanir introduced structure–
function relations which formulate the constitutive equations in terms of the
microstructure and the properties of the constitutive elements (Lanir 1983). Because
of the complexity in the microstructure of tissues, often statistical descriptions are
invoked in deriving constitutive equations (Lokshin and Lanir 2009) which can be
based on microscopic imaging of the structure and measurement of the stress–strain
relations of the constituents in isolation.

An important area of biomechanics that has received considerably less attention
is related to damage and mechanical failure of tissues. Damage usually appears
first at the microscale and can occur under a variety of normal conditions such as
sport injuries or labor. When the microscale damage exceeds a critical amount,
the consequences can reach the macroscopic level eventually leading to failure.
In diseases, microdamage can also percolate to the macroscopic level and result
in abnormal function or total failure of a tissue or organ culminating in life
threatening conditions. For example, capillary stress failure in the lung can occur
during severe exercise in athletes or in animals bred for high aerobic activity (West
2000). Capillary failure can also be induced by mechanical ventilation of patients
suffering from acute lung injury (Bland et al. 1989). During normal pregnancy, the
membrane surrounding the fetus has a protective role, but premature membrane
rupture occurs in 5–10 % of pregnancies with an increased perinatal morbidity and
mortality (Joyce et al. 2009). In diseases such as vascular aneurysm and pulmonary
emphysema, the extracellular matrix (ECM) undergoes proteolytic digestion and
because both the vessels and the lung operate under a preexisting mechanical stress
condition, also called prestress, the weakened fibrils and fibers can rupture leading to
severe conditions including death (Suki et al. 2003; Vorp 2007). Implanted tissue-
engineered constructs such as prosthetic heart valves can also undergo digestion
and subsequent failure (Lee et al. 2001). Similarly, atherosclerotic plaques are
exposed to high stresses, and following enzymatic digestion, plaque rupture can
occur suddenly triggering acute coronary syndromes such as angina or myocardial
infarction (Arroyo and Lee 1999).

Despite the obvious importance of damage and failure in both healthy and
diseased tissue, the corresponding processes at the microscale are much less
understood than those during large but continuous deformations of tissues. While
various continuum approaches to modeling damage have been proposed (Christian
Gasser 2011; Ito et al. 2010; Volokh 2008), the ECM is heterogeneous with
the cells and fibers forming a network embedded in a proteoglycan (PG) gel.
Therefore, a better understanding of the network organization of the ECM, and how
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its components contribute to the failure process should provide insight into the
progression of diseases. This chapter focuses on network approaches to mechanical
failure of soft fibrous tissues. First, we will describe the general structure and failure
properties of the main constituents of soft tissues including molecules, elastin,
collagen, PGs, and cells. Next, we will consider a process called percolation that
has relevance to the mechanics of failure. Several examples of failure will then be
described in light of networks and percolation both numerically and analytically
including published as well as new results. Finally, we will propose some general
concepts of how one could potentially minimize the risk of failure and best repair a
damaged network.

21.2 Failure of Molecules, ECM Components,
Cells, and Tissues

Tissues are composed of biomolecules which organize themselves to form larger
ECM constructs such as fibrils and fibers as well as cells. The main components
that form the complex structural network of the ECM are elastin, collagen, and
PGs. Both cells and ECM components are necessary for tissues to function properly.
Additionally, tissues can also contain other smaller molecules such as fibronectin,
laminin, and various microfibrils. However, from the point of view of mechanics,
elastin and collagen are the key fibrous proteins capable of carrying loads and
resisting tension (Kielty et al. 2002; Silver et al. 2003). The PGs make up the gel
in which elastin and collagen fibers as well as cells are embedded. The PGs are
necessary for the stability of the ECM and for functional cell–ECM interactions
(Carey 1991). Varying the structure and composition of the ECM has major effects
on its mechanical (Angele et al. 2004; Black et al. 2008; Marque et al. 2001; Suki
et al. 2005; Tanaka et al. 2001) as well as failure properties (Billiar et al. 2005; Black
et al. 2008; Donovan et al. 1990; Ito et al. 2005; Jesudason et al. 2007; Joyce et al.
2009; Kononov et al. 2001; Ritter et al. 2009; Vorp et al. 2003; Wilson et al. 1998).

21.2.1 Failure of Molecules

At the molecular level, the physical process of rupture of a single bond has only been
recently elucidated (Chen and Chu 2005; Dias et al. 2005). The essence of these
theories is that two particles (atoms or molecules) are held together via a specific
bond characterized by for example the Lennard–Jones potential. When the molecule
is held at a given strain, rupture of bonds can occur as a result of thermal agitation.
Under most physiological conditions, however, rupture is triggered by stretching
or mechanical forces. During stretching of a molecule, the energy landscape of the
bond gradually tilts and elongation proceeds by internal ruptures and subsequent
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unfolding events (Oroudjev et al. 2002). Full rupture occurs when the stretching
of the bond exceeds a critical level, or a critical bond strain, beyond which the
likelihood of rebinding is negligible. The force at rupture (failure force) is a random
variable with a distribution that is similar to a Gaussian. The average failure force
depends on the temperature and is a complicated logarithmic function of the loading
rate (Dias et al. 2005). Thus, the rupture of a single molecular bond can generate a
distribution of failure forces. Alternatively, studying the rate dependence of rupture
forces can reveal the complex energy landscape of molecular bonds (Evans 2001).

21.2.2 Failure of ECM Components

The mechanism of failure in more complex hierarchical structures such as fibrils,
fibers, cells, and entire tissues is more complicated. Among the main structural
constituents of the ECM, collagen has the highest stiffness and failure stress. Indeed,
to elucidate the mechanism of arterial aneurysm, it was found that pressurized
vessels treated with elastase dilated, but never ruptured, whereas those treated with
collagenase dilated still more and eventually ruptured in every case (Dobrin and
Anidjar 1991). What structure is responsible for the failure of a collagen fiber? The
subunits of type I collagen, the most abundant structural protein in tissues, form
a triple helix. Several molecules assemble into fibrils and the failure properties of
such fibrils depend on the length and diameter of the fibril and the cross-link density
(Tang et al. 2010). Fibrils can assemble into microfibrils which show substantial
hierarchical complexity with lateral packing of molecules that can exhibit fluid-
like disorder (Holmes et al. 2001). The fibrils can further organize into thicker
fibers through cross-linking and these fibers go on to form random (lung tissue,
cartilage) or quasi-deterministic (tendon) networks within an organ. Molecular
dynamic simulations suggest that the failure strain of fibrils range from 6 to 40 %
and failure stresses increase from 0.5 to 5 GPa with increasing cross-link density
(Tang et al. 2010). Experiments show that the ultimate tensile strength of fibrils is
about 0.5 MPa nearly independent of fibril diameter in the range from 20 to 40 nm
(Christiansen et al. 2000).

Elastin, another essential load bearing component of the ECM, is resilient over a
large range of strains and provides elasticity to tissues. It is notable that the stiffness
of elastin is at least two orders of magnitude smaller than that of collagen (Fung
1993). This is likely a result of the amorphous nature of elastin compared to the
more regular organization of collagen fibers. The tropoelastin has two major types
of alternating domains, the hydrophilic helical domains and the hydrophobic lysine-
rich domains. These nonrandom, regularly repeating structures exhibit dominantly
entropic elasticity by means of damping of internal chain dynamics on extension
(Urry and Parker 2002). The failure behavior of purified elastin is similar to that of
amorphous, noncrystallizing elastomers and exhibits a strong viscoelastic behavior
(Lillie and Gosline 2002). In the normal range of temperatures and hydration levels,
the failure stress of elastin is between 1 and 2 MPa and the failure strain is at least
200 % (Lillie and Gosline 2002).
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The ECM also contains a significant amount of gel-like PGs (Hukins 1984)
which change during maturation and disease (Juul et al. 1993). Critical constituents
of this matrix are the glycosaminoglycans (GAGs) which are long chains of repeat-
ing disaccharide units that are variably sulfated and highly charged. Proteoglycans
can also associate ionically with one another to form large aggregates that exhibit
a high level of hierarchical organization. The majority of studies on proteoglycan
mechanics have been carried out in cartilage. The elastic modulus of the cartilage
tissue measured using the indentation atomic force microscopy at the nanometer
scale is around 20 kPa and is related to the GAG content of the tissue (Stolz et al.
2004). Molecular dynamics simulations suggest that the GAG chains can take up
significant strains (>800 %) and can transfer stress from one collagen fibril to a
neighboring one (Redaelli et al. 2003). However, the failure force between two
hyaluronan and its binding protein is very small, only 40 pN (Liu et al. 2004).
Another important function of PGs is that they can oppose the folding of large
and stiff fibers toward the direction of strain with their compressive resistance
(Cavalcante et al. 2005). As discussed below, this mechanism plays an important
role in the failure of complex tissues.

21.2.3 Failure of Cells and Tissues

The second large class of tissue constituents is the adherent cells. Most cells in
the body are continuously exposed to various forms of mechanical forces which
deform the cells and trigger biological responses (Ingber 2006). Under abnormal
conditions, mechanical forces can exceed the failure threshold of the cells and they
either release their attachments to each other and/or the ECM or they rupture. There
are little experimental data on the mechanisms of cell rupture. Under compressive
loading, the membrane bulges out, and depending on the cell type, bursting failure
occurs around 40–80 % strain (Nguyen et al. 2009; Peeters et al. 2005; Stenson
et al. 2011). The corresponding bursting force in mouse myoblast is around 9 �N
(Peeters et al. 2005) whereas the circumferential stress at failure in yeast cells is
115 MPa (Stenson et al. 2011). Molecular dynamics simulations suggest that biaxial
tension in the membrane causes pore formation at membrane forces between 150
and 400 pN depending on the strain rate (Koshiyama and Wada 2011).

These components also interact with each other by forming bonds of varying
strength. When the tissue is exposed to supraphysiological forces, it is possible
that the inter-constituent bonds start to break before the constituents themselves
fail. Figure 21.1a demonstrates the rich features of the failure stress–strain curve
in an engineered tissue sheet. In diseases, the tissues can undergo remodeling and
enzymatic digestion weakening the structural integrity of the constituents as well
as eliminating some of the bonds among them. In such cases, normal physiological
forces might be sufficient to produce damage and ultimately failure. Figure 21.1b
compares the failure of normal lung tissue with that of emphysematous tissue. In
the next section, we will consider several network models where the failure process
of tissues with varying constituent types and amounts is simulated.
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Fig. 21.1 Failure
stress–strain curves of an
engineered elastin sheet
(a) and a lung tissue piece
obtained from a control
mouse and a mouse that had
been treated with porcine
pancreatic elastase (b). With
permission from Black et al.
(2005) and Ito et al. (2005)

21.3 Homogeneous Network Models of Failure

21.3.1 Percolation

In this section, we introduce the concept of percolation (Stauffer and Aharony
1992) and apply it to tissue failure. Consider a simple square lattice in which each
pair of neighboring nodes are either connected by a bond with probability p or
disconnected with probability (1 � p). A cluster is defined as the set of connected
bonds. Percolation is concerned with the properties of these clusters, including
their size and organization. As p increases from 0 (disconnected lattice) to 1 (fully
connected lattice), the mean size of the clusters increases, and there is a point at
which a large cluster spans the lattice providing full connectivity from one side to
the other. The transition from a system of disconnected clusters to a system with a
connected cluster spanning the system occurs when p crosses a critical percolation
threshold pc. The structure of the incipient percolation cluster at p D pc is a self-
similar fractal. Percolation has been applied to the gelation of bronchial mucus
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(McCullagh et al. 1995), to explain airway opening in the lung (Barabasi et al.
1996), the progression of symptoms in pulmonary emphysema and fibrosis (Bates
et al. 2007), and the mechanics and failure of the ECM (Black et al. 2008; Ritter
et al. 2009).

With regard to damage and failure, let us consider a model of the tissue as a
lattice of elastic springs. As the lattice is diluted from its intact state (p D 1) by
decreasing p, springs are gradually removed, and as p approaches pc, fewer and
fewer bonds hold the network together. Just under pc, the network loses its integrity
and falls apart or depercolates corresponding to tissue failure. Alternately, consider
the process of stretching a network of springs. If each spring represents a fiber, then
the failure of individual fibers can be thought of as a stochastic process with a failure
probability of (1 � p) which increases as the local strain on the fiber increases.
This process can mimic the rupture of the tissue, implying that there will be a
critical level of strain or stress, corresponding p D pc, at which the network suddenly
separates into two subnetworks representing tissue failure. This is indeed often seen
in experiments as the stress suddenly drops to zero (Fig. 21.1). We note that pc for an
elastic network is larger than pc for pure topological percolation due to the folding
or alignment of the bonds before they begin to stretch. By including a torsional
spring, called bond bending, that resist folding, the elastic and geometric pc will be
the same (Stauffer and Aharony 1992).

As another application of percolation to tissue failure, consider the coalescence
of cracks or voids, rather than the connectivity of fibers. An intact tissue lacks voids
and each fiber failure introduces a void. If the failures are random and independent
of each other, the voids are mostly small, comprising single failures, until the
network is sufficiently diluted such that the voids begin to coalesce. On the other
hand, if the failures occur near an existing void with a high probability, clusters
of voids grow quickly until a percolating cluster of voids physically separates the
tissue.

The concept of percolation provides a rich scaling description of the system near
the percolation threshold which as we have seen corresponds to tissue failure. The
percolation threshold pc depends on the underlying network topology, especially
its local and long-range connectivity. The behavior of the network is critically
dependent on the distance from pc. For example, the elastic modulus G scales as
(p � pc)f while the typical size of a cluster � scales as (p � pc)! where f and ! are
scaling exponents. These exponents describe the mechanical and structural behavior
of the tissue as it approaches failure and can be calculated for networks with or
without bond bending forces (Sahimi and Arbabi 1993).

21.3.2 Network Damage: Effects of Mechanical Forces

The simplest process of depercolation is a purely random removal of bonds, possibly
mimicking enzymatic digestion of an unstressed tissue comprising of identical
fibers. However, most tissues in the body are under a prestress. Consequently,
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as loading continues, failure of one fiber can result in the redistribution of the stress
the fiber carried among the neighboring fibers causing a spatially correlated failure
process (Parameswaran et al. 2011). In our first example, we compare the random
and the correlated degradation of lung tissue during the progression of emphysema.
The lung parenchyma is composed of myriads of alveolar walls each composed
of elastin, collagen PGs, and cells. At scales larger than an alveolus and away
from major airways, the tissue can be thought of as a network of septal walls with
nearly identical properties. During the progression of emphysema, alveolar walls
are lost leading to a heterogeneous structure with a reduced surface area for gas
exchange. The question is whether the progression of emphysema can be modeled
as a depercolation process and if so what can we learn about the disease from the
modeling exercise.

In a recent study, respiratory compliance C was correlated with biochemical
and structural parameters of the mouse lung before and after elastase-induced
emphysema (Hamakawa et al. 2011). Interestingly, C did not correlate with bulk
measures of soluble type I collagen, type III collagen, or elastin. There was,
however, a strong association between C and the mean equivalent diameter of
airspaces (D) obtained from histology, and an even stronger relation between C and
an index representing the area weighted mean diameter (D2) with r2 values of 0.675
(p < 0.01) and 0.933 (p < 0.001), respectively (Fig. 21.2a). Since D2 includes higher
order moments of the distribution of D, it is highly sensitive to heterogeneities.
The strong correlations provide evidence that it is not the mean airspace size, but
its heterogeneity that primarily determines function as characterized by C. Further
insight can be gained by examining how function emerges from the underlying
structure, when heterogeneity is generated in various ways. To do this, a 2D
rectangular network of linear elastic springs was used to predict the above structure–
function relations (Hamakawa et al. 2011). A uniform negative pressure was applied
at the boundaries of the network to mimic pleural pressure, which generated tensile
forces on the springs. Damage in the tissue during emphysema progression was then
simulated in 3 different ways at subsequent iterations: (1) springs were uniformly
weakened, (2) springs were randomly eliminated, and (3) springs carrying high
force were eliminated based on previous findings (Kononov et al. 2001). The
network configuration was obtained by minimizing the total energy of the system
using simulated annealing (Cavalcante et al. 2005). The 2D compliance C of the
network was calculated and the iterations were repeated until C increased by 2,
the increase seen in the data (Fig. 21.2a). Following proper normalization, the
simulations can be compared to the data. Each of these mechanisms produces an
approximately linear relation between C and D2 but the slopes of these relations are
different (Fig. 21.2b). The simulations corresponding to the force-based destruction
approximates best the experimental data. These results suggest that damage in
the lung is produced by a process similar to correlated percolation due to the
effects of mechanical forces and this has been corroborated using 3D networks
(Parameswaran et al. 2011). Furthermore, producing a few large defect holes has
a much stronger effect on function than uniformly weakening the alveolar walls.
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Fig. 21.2 Structure–function
relations obtained in saline
control and porcine
pancreatic elastase-treated
mice. (a) Respiratory
compliance, C, as a function
of the mean equivalent
diameter (D) or the area
weighted mean equivalent
diameter (D2).
(b) Comparison of
structure–function relation
from a homogeneous network
model with various digestion
processes and from
experiments. Experimental
data were normalized with
the mean value of C and D2

of control mice. Each black
square corresponds to data of
a single mouse. The symbols
corresponding to the various
model cases represent model
outputs normalized by the
output of the base-line model.
The data and simulations are
from Hamakawa et al. (2011)
with permission

21.4 Two-Phase Networks

In this section, we will consider forced rupture tests applied to various networks.
First, we note that the model in the previous section was a network with homo-
geneous constituents. At a smaller scale than the whole lung, however, it may be
necessary to account for the different properties of the constituents of the tissue. For
simplicity, we consider a network of two constituents only, a soft element such as
PGs and a stiff element such as elastin or collagen. We also assume that the failure
strain of the two components differ significantly. The full network corresponding
to p D 1 is now a mixture of the two constituents and the relative fraction of each
is characteristic of the particular tissue we wish to model. In such a system, we
need to consider whether one of the constituents percolates before any rupture is
induced by the failure test. The reason is that the failure process and the failure stress
and strain will critically depend on the organization of the network. For example,
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if the constituent with a low failure strain percolates through the network, then
upon stretching the network, these elements will eventually rupture along their
connected cluster. However, if neither constituent percolates, the failure process
cannot be predicted from the properties of the individual components. Instead, a
failure threshold emerges as a network phenomenon (Ritter et al. 2009).

21.4.1 Networks with Percolating Constituents

Consider a tissue with layers that have different constituents. For example, an
arterial wall segment that has a layer of stiff collagen that fails at a low strain
sandwiched between two layers of identical but softer constituents that have a much
higher failure strain such as elastin. For simplicity, we assume that the stiffness
or spring constant of the two components are the same but the middle layer fails
at a mean strain of 0.1 (uniform distribution between 0.09 and 0.11) whereas the
two outer layers have failure strain of 0.6. In the unstretched configuration, the
initial lengths of the springs are set to have a narrow distribution and the network
is submitted to a uniaxial failure test (Fig. 21.3a). At low strains, ", the fibers begin
to fold toward the horizontal direction slightly increasing stress (top network in
Fig. 21.3b). Beyond "D 0.1, the fibers become more and more stretched and around
"D 0.2, fibers in the middle layer start to fail with a full failure at "D 0.3 (second
network in Fig. 21.3b). As the network is stretched further, no rupture occurs until

Fig. 21.3 Stress–strain failure curves and network configurations of a two-phase model with a
layer of percolating springs that have a failure strain five times lower than the rest of the springs.
(a) The black line corresponds to a network in which the layer is horizontal and the red line
corresponds to a network in which the layer is vertical. Stretching proceeds in the horizontal
direction. (b) Snapshots of the network configurations corresponding to the black line in (a) at
the points marked by numbers along the stress–strain curve. The colors are proportional to strain;
blue is low and red is high strain
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the peak stress is reached at "D 0.65 (third network). Beyond this limit, the outer
layers begin to break down and the stress drops to zero (bottom network just before
failure).

The conclusion from this simulation is that in a two-phase network with
percolating constituents, the layer that has the higher failure strain threshold
determines the ultimate strength and failure strain of the network whereas the
weaker constituent can contribute to features of the stress–strain curve at lower
strains. Furthermore, a higher failure strain of the stronger component generally
results in a smaller fraction of the full strain range dominated by folding. This leads
to a closer agreement between the strain at the peak stress and the failure strain of
the individual constituent (0.65 vs. 0.6). However, the failure strain of the network
can substantially differ from that of the individual components, which is 0.85 in this
particular network. It is also interesting to note that our network is anisotropic. If the
network was stretched in the vertical direction, then the failure strain of the weaker
element would have dominated the stress–strain curve. Indeed, simulations show
that in this case, the peak stress occurs at "D 0.2 and the network fails at "D 0.32
(red curve in Fig. 21.3a). As we shall see, in the absence of percolation, the situation
is drastically different.

21.4.2 Networks with Non-percolating Constituents

In this section, we consider a two-phase network with non-percolating elements as a
model of a sheet of elastin embedded in PGs. Before introducing the model, we note
that two groups reported similar results related to the failure of tissues composed
primarily of elastin and PGs using tissue-engineered ECM constructs (Black et al.
2005) and the inferior mesenteric vein of patients with abdominal aortic aneurysm
(Goodall et al. 2002). In both tissues, elastin degradation led to a significant decrease
in peak stress during a failure test. Surprisingly, the failure strains were in the range
of 60–120 %, much lower than the 200 % failure strain of elastin. Furthermore, in
both studies elastin degradation had no effect on the failure strain. In the previous
section we saw that if the elastin fibers percolate, we would expect the failure strain
of the composite to be near that of elastin. On the other hand, if elastin does not
form a percolating network, the failure of PG bridges between the elastin fibers
should reduce the global failure strain of the ECM below that of elastin. To test this
hypothesis, we developed a novel spring network model, the Zipper Network Model
(ZNM) (Ritter et al. 2009).

The model is a hexagonal network of linear springs mimicking the stiffness of
elastin and PGs. The network also contains torsional springs, which resist angular
rotation of the springs around their pin joints. The total elastic energy, E, of the
network is given by E D ½ † (k�l2 C b�™2) where 4l is the change in length of
the spring, k is the spring constant, b is the angular spring or bond bending constant,
and 4� is the change in angle between two springs from the stress-free initial angle.
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Fig. 21.4 Left: Images of the
ZNM being stretched to
various strains. The elastin
fibers are drawn as thick lines
and the PGs as thin lines.
Note that the elastin does not
percolate across the network.
The color scale shows the
relative forces on each spring.
Right: Phase contrast images
of a region of an engineered
tissue construct sample
undergoing failure taken at
strains comparable to those in
the network model on the left
panel. With permission from
Ritter et al. (2009)

The summation runs through all linear and bond bending springs. Bond bending
resists the springs from aligning with the direction of strain and is related to the
compressibility of the PGs (Cavalcante et al. 2005).

The springs corresponding to elastin and PG have a k value of 6 and 2 (arbitrary
units) and strain failure threshold of 200 % and 0.5 %, respectively. The bond
bending constant is b D 0.1. The springs are arranged such that there are long fibers
of elastin springs which are embedded in a network of PG springs (Fig. 21.4). Note
that the elastin fibers do not percolate across the tissue; instead, they reach about ¾
of the way across and overlap from opposite sides creating a “zipper-like” formation.
A small amount of variability was introduced in the initial length of the springs.
Failure of the ZNM was simulated by stretching it in steps of 5 % until failure and
solving the network by minimizing E at each step.

The ZNM was also used to test a phenomenon referred to as avalanching. This
occurs when the breaking of one spring leads to a condition that causes other
springs to break without the network being further stretched. Without avalanching,
increasing strain step sizes leads to increasing peak stress and failure strain. During
avalanching, however, the model was insensitive to step size. Since the peak stress
and failure strain should not depend on how the stress–strain curve is recorded,
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the more realistic avalanching was kept throughout. We note that avalanching is a
dynamic phenomenon that reduces the overall stress in the material. For example,
the sudden drop in stress at 0.5 strain in Fig. 21.1a is due to avalanching. In reality,
the redistribution of stress after the failure of a fiber depends on the loading rate
of the test. As the loading rate increases, the sequence of ruptures in an avalanche
is interrupted by the next avalanche. Consequently, the failure gradually becomes
similar to a depercolation process in which the weakest bonds are sequentially
eliminated each opening an isolated void in the network.

Network configurations of the ZNM during a failure test are shown in Fig. 21.4
together with images obtained during the digestion of an engineered tissue sheet.
During stretch, the elastin fibers gradually become straight while carrying most
of the forces in the network as the colors demonstrate. Above 35 % strain, the
maximum strain on PGs fluctuates near 0.5 % (data not shown) as more and more
PGs reach failure. It is thus the failure of the PG bridges that eventually leads to a
complete network failure at 100 % macroscopic strain. To mimic elastin digestion,
half of the elastin fibers were cut into two fragments. This resulted in an elimination
of only 3.1 % of the elastin springs from the network. Figure 21.5 compares the
stress–strain curves for a control and an elastin-digested failure simulation. The peak
stress significantly decreased by about 40 % (p < 0.001) while the failure strain of the
network was 109 ˙ 9 % and did not change with digestion similar to experimental

Fig. 21.5 Stress–strain curves from the ZNM with and without simulated elastase digestion.
Notice that the peak stress and the failure stress can be different. Additionally, the two curves
show many small drops in stress that run parallel because these correspond to the failure of PG
bridges and initial ZNM was the same in both cases except that in the digestion simulation the
elastin was fragmented. With permission from Ritter et al. (2009)
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data (Black et al. 2005). The effects of graded digestion of PGs on the stress–strain
curves of the network were also calculated. The model predicted that the removal
of 60 % of PG springs decreased the peak stress and the failure strain by only 29 %
and 15 %, respectively (p < 0.05). These simulations were then compared digestion
of the sheets with trypsin that eliminates the core protein of PG without digesting
elastin. After 30 min, the stiffness in trypsin-digested samples dropped significantly
to about 75–80 % of baseline. The trypsin digestion led to 31 and 29 % drop in peak
stress and failure strain. Furthermore, biochemical analysis showed that the trypsin
digestion eliminated 65 % of chondroitin sulfate and 45 % of heparin sulfate from
the samples (Ritter et al. 2009).

In summary, simulations using the two-phase ZNM with non-percolating elastin
fibers resulted in the following main conclusions. First, the mechanism of failure
is a gradual straightening of the elastin fibers followed by pulling them out of the
PG matrix by successively breaking the PG bridges, a novel network phenomenon.
Second, the ZNM correctly reproduced the failure properties of the ECM sheets
containing elastin and PGs, such that the network fails at approximately 100 %
strain while keeping elastin at its known failure strain of 200 %. The ZNM also
accounted for previous experimental results that elastin digestion decreases peak
stress but not failure strain in engineered ECM sheets (Black et al. 2005) and native
vessels (Goodall et al. 2002). Finally, an important result of the network analysis is
that elastin carries the load and determines the peak stress, whereas PGs reduce the
failure strain of the network.

21.4.3 Analytical Modeling

Analytical modeling of failure processes of multi-phase tissues is difficult. Some
results can be obtained by simplifying the ZNM as a block consisting of a single
zipper of N staggered elastic fibers (e.g., elastin) with spring constant kF, held
together by short bridges (e.g., PGs) with spring constant kB (Fig. 21.6). Let us
assume that the bridges are stiffer than the fibers (kB > kF), since the fibers are much
longer than the bridges. This arrangement ensures that neither the elastic fibers nor
the bridges percolate. As the network is stretched, part of the macroscopic strain
is transferred to the bridges. A bridge ruptures once its local strain exceeds the
strain threshold, "B, which is much smaller than that of the fibers. With increasing
macroscopic strain, a sequence of bridge ruptures eventually leads to complete
failure.

We analytically calculate the strain on each bridge in a block for increasing N as
a function of the macroscopic strain and the ratio of spring constants (
D kB/kF).
When the maximum strain among the bridges exceeds "B, it ruptures. Once a rupture
occurs, a block either separates into two smaller blocks which are mechanically
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Fig. 21.6 Force–strain curve and the fraction of surviving bridges of the network undergoing
failure when stretched along its fiber orientation

independent or becomes a single smaller block if the rupture occurs at the edge
of the block. Ruptures can occur in avalanches as in the ZNM leading to multiple
bridges breaking simultaneously.

The failure strain of a network of N bridges can be written as a ratio of
polynomials in 
, suggesting that the stiffness ratio of bridges and fibers is the
primary determinant of the failure pattern. We find that for small N, the maximum
extension is always seen by bridges at the edges of the block and thus the sizes
of blocks tend to decrease by one. Blocks with even number of fibers N tend
to have higher maximum bridge extension than blocks with (N C 1) fibers and
consequently tend to break down immediately. The force–length relationship during
the breakdown shows sharp drops at distinct macroscopic strains, consistent with
experimental and simulation results (Figs. 21.1 and 21.5). The sequence of events
preceding complete failure can thus be linked to the mechanical relation among the
constituents.
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21.5 Network Repair

In this section we discuss the possibility of targeted network repair and demonstrate
its possible utility to treat pulmonary emphysema. As demonstrated in Fig. 21.2,
percolation can link microscopic alterations in lung parenchymal structure (D or
D2) to measurable clinical parameters (C), which in turn is closely related to
symptoms. Since percolation deals with geometric connectivity within a structure,
the macroscopic properties of the lung that contribute to physiologic function, and
hence quality of life, are to a large extent determined by how the emphysematous
lesions are linked together across the parenchyma. Let us suppose that we are able
to repair or regenerate damaged tissue that we model by adding back a spring into
network which would decrease C and increase its inverse, the bulk modulus B. There
are a large number of ways in which the individual springs could be repaired or
replaced, not all of which will lead to the same time course of symptomatic relief.
This opens up the possibility of identifying optimal strategies for targeted delivery
of therapies. We will assume that the repair is ideal in the sense that it returns a
local region of tissue to normality without adverse biological side effects. In the
case of emphysema it means that we can either regenerate alveolar walls or insert
engineered parenchymal tissue into the lung at desired locations. We will assess the
functional consequences of these in silico therapies in terms of their effects on B
during both random and targeted repair or replacement of springs (Suki et al. 2007).

The comparison of random and targeted repair of an emphysematous network
is shown in Fig. 21.7. We begin with a network containing 312 holes of area
A D 1810 ˙ 12650 (Fig. 21.7a) and B D 0.622. By inserting 8 springs at random
locations (Fig. 21.7b), we increase recoil and reduce heterogeneity to obtain
B D 0.824 and A D 1751 ˙ 6254. Adding 3 or 4 springs at targeted sites designed to
divide large holes into smaller ones gives only modest improvements of B D 0.778
and B D 0.802, respectively, which is still not as good as the 8 random springs. We
do better with 5 targeted replacements to obtain B D 0.851 and A D 1766 ˙ 4909
(Fig. 21.7c). Thus, we gain improvement over the random approach with smaller
amount of tissue repair. It can be shown that in the case of fibrosis, a similar
targeted approach provides a spectacular improvement over the random repair (Suki
et al. 2007). Of course, there are multiple ways one can bridge a large hole with
a single spring, and initial modeling suggests that the best approach may be to
maximize both the distance that an added spring bridges and the increase it causes
in local strain energy within the network. Selecting a site for repair may, in the
future, also be guided by macro- or microimaging. For example, specific features of
low attenuation areas on lung CT images may help in the optimization process. In
principle, it should be possible to map a CT image into an elastic network which
could subsequently be used to test the effectiveness of various repair procedures
without having to carry them out in a patient. As a general concept, we propose
that in order to optimally repair the functionality of a damaged tissue or organ, the
design of local interventions must also take into account the redistribution of forces
in the global network.
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Fig. 21.7 Modeling the
repair of the emphysematous
lung. The colors are related to
the force the elements carry
as in Fig. 21.3. (a) Shows the
initial configuration with the
fraction c of missing springs
c D 0.034 and the bulk
modulus B D 0.635.
(b) Shows the configuration
of the network following
random repair with c D 0.027
and B D 0.824. (c) Shows the
configuration of the network
following targeted repair with
c D 0.03 and B D 0.851. With
permission from Suki et al.
(2007)

21.6 Conclusions

In this chapter, we summarized recent modeling efforts using network approaches
to the biomechanical problem of tissue failure. However, we did not consider
several issues that may influence the failure process. For example, boundaries that
resemble the shapes of tissues and organs likely alter the failure stress and strain
due to stress concentration at locations of small radius of curvature. Incorporation of
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more realistic heterogeneous structural elements such as blood vessels and airways
could also change the failure properties. The extent to which the presence of such
structures influence failure depends on whether or not they percolate, leading to yet
another percolation-like phenomenon. If the tissue undergoes cyclic stretching such
as the lung or blood vessels, several other mechanisms may influence failure such
as fatigue, viscoelastic hysteresis, and the presence of interstitial fluid. Additionally,
since peak stretches of tidal breathing as well as systolic blood pressure fluctuate on
a cycle by cycle basis, the corresponding variations in peak stresses may accelerate
fatigue and hence failure in an already damaged tissue. We also note that local
failure inside the tissue substantially alters the regional distribution of strain which
in turn has a significant impact on subsequent cellular remodeling of the tissue
via mechanotransduction (Ingber 2006) potentially leading to pathological tissue or
organ function. Finally, more advanced multiscale models could incorporate further
details at the fiber and fibril levels as well as include the effects of enzyme diffusion,
binding, and cleaving as a function of the tensile force along the fibers (Araujo et al.
2011).

Network models do have advantages over the more traditional biomechanical
approaches using continuum models and strain energy functions in that they
allow us to easily incorporate structural heterogeneity and anisotropy, important
characteristics of biological tissues, without assuming affine deformations. Despite
the limitations of the network approach that analytical solutions may not exist and
simulations can require significant computational efforts, the results have significant
implications for the understanding of failure processes in normal and diseased
tissues. For example, network modeling suggests a key role for the matrix and PGs
in failure biomechanics. Additionally, in designing tissue-engineered materials, it is
important to match the mechanical properties of the native tissue for the replacement
tissue to function properly in the body. Furthermore, the replacement tissue should
be able to withstand the naturally occurring stresses and strains even during diseases
with proteolytic activity. Network modeling provides an understanding of what
components and organizational features of the ECM determine the failure properties
and hence may offer a rational basis for future design of engineered materials with
target functional mechanical properties.
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Chapter 22
A Microstructurally Based Multi-Scale
Constitutive Model of Active Myocardial
Mechanics

Adarsh Krishnamurthy, Benjamin Coppola, Jared Tangney,
Roy C.P. Kerckhoffs, Jeffrey H. Omens, and Andrew D. McCulloch

Abstract Contraction of cardiac muscle cells provides the work for ventricu-
lar pumping. The primary component of this contractile stress development in
myocardium acts along the axis of the myofilaments; however, there may be a
component directed transversely as well. Biaxial testing of tonically activated
cardiac tissue has shown that myocardium can generate active stresses in the
transverse direction that are as high as 50 % of those developed along the fiber
axis. The microstructural basis for this is not clear. We hypothesized that transverse
active stresses are generated at the crossbridge and myofilament lattice scales
and transmitted via the myocardial laminar sheets as plane stress objects. To test
this hypothesis, we developed a multi-scale constitutive model accounting for
crossbridge and myofilament lattice structures as well as multicellular myofiber and
sheet angle dispersions. Integrating these properties in a finite element model of an
actively contracting myocardial tissue slice suggested that these mechanisms may
be sufficient to explain the results of biaxial tests in contracted myocardium.

22.1 Introduction

It is well known that cardiac muscle fibers develop active force along the longi-
tudinal myofibril axis of the myocyte. Both the actin and myosin filaments are
oriented along the myofibrils, and it is their relative motions that lead to muscle fiber
shortening and thickening. However, the acto-myosin crossbridges are not oriented
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parallel to the myofilaments. Structural studies suggest that the actin-binding region
of myosin when the crossbridge is in the strongly bound state forms an acute angle
between the binding site on actin and the backbone of the thick filament (Huxley
1985; Huxley and Kress 1985). Theoretical analysis suggests that this may give rise
to a significant component of force radial to the myofilament long axis (Schoenberg
1980a, b; Zahalak 1996). The magnitude of this radial component likely depends
on this binding angle, the filament spacing, and the sarcomere length. In biaxial
tests of an isolated myocardial tissue preparation, Lin and Yin (1998) showed that
the multicellular myocardium can generate significant systolic transverse stresses
(greater than 40% of those in the fiber direction). They concluded that fiber angle
variations within the specimens alone would be insufficient to explain transverse
stresses of this magnitude, thus implicating an active cellular mechanism for
transverse tension generation. Finite element models of the heart have traditionally
used uniaxial active stress models (Guccione and McCulloch 1993; Hunter et al.
1998). However, it has been shown that the inclusion of transverse active stress
in models of ventricular mechanics significantly improves the agreement between
predicted systolic wall strains and experimentally measured deformations in the
intact heart (Usyk et al. 2000).

Thus, there is a need for microstructurally derived constitutive models to link
crossbridge models of tension development in sarcomeres to tissue-scale models
of systolic myocardial wall stress development. Here we consider structural mech-
anisms at four different scales of myocardial organization of multi-axial systolic
stress development and derive a hierarchical multi-scale microstructural model of
anisotropic systolic myocardial stress–strain relations. We assume that the input
to such a model is a lumped parameter model of calcium-dependent myofilament
activation and crossbridge interactions such as Markov model described recently
(Campbell et al. 2010). This model in turn could be activated by a model of dynamic
myocyte depolarization and excitation–contraction coupling such as the model by
Campbell et al. (2009). The twitch tension developed in these models depends on
processes at the crossbridge, sarcomere, and whole cell scales. However, we can
use the computed tension to derive the force in a single average crossbridge, for
the purposes of deriving a microstructural model of three-dimensional myocardial
active stresses.

We consider mechanisms at four scales: (1) In the single crossbridge scale, we
consider the two-dimensional static equilibrium of a strongly bound crossbridge to
resolve the crossbridge stiffness into longitudinal and transverse components, using
a similar approach to that proposed by Schoenberg (1980a, b) and accounting for
changes in lattice spacing with sarcomere length; (2) At the intracellular scale, we
consider the hexagonal arrangements of thick and thin filaments in the organized
myofilament lattice to derive how active stresses are developed anisotropically
within myocytes; (3) At the multicellular single laminar sheet scale, we integrate
these anisotropic stress tensors within a laminar sheet to derive the tissue-scale
effects of dispersion of myofibers about the mean fiber orientation (Karlon et al.
1998); and (4) finally we consider the effects of distributions of myocardial
laminae and their orientations within the myocardium on orthotropic systolic stress
development (LeGrice et al. 1995).
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In order to test the resulting multi-scale microstructural constitutive law, we
integrated it into a three-dimensional finite element model. The model includes
measurements of fiber-sheet distributions in one dog. The stresses developed in the
model were then compared with those in the biaxial tests performed in tonically
activated rabbit myocardium by Lin and Yin (1998).

22.2 Methods

22.2.1 Histological Measurements

The histological measurements used in the current model were taken from a canine
heart used in a previous study in our laboratory (Coppola et al. 2007). All animal
studies were performed according to the National Institutes of Health Guide for the
Care and Use of Laboratory Animals. All protocols were approved by the Animal
Subjects Committee of the University of California, San Diego, which is accredited
by the American Association for Accreditation of Laboratory Animal Care. An
adult mongrel dog was instrumented as described in detail in Coppola et al. (2007).
The heart was fixed in situ at end-diastolic pressure with 2.5% gluteraldehyde and
stored in 10% formalin. The heart was then sectioned for histology as previously
described (Ashikaga et al. 2004). These sections are cut perpendicular to the mean
fiber direction so that the sheet angle ˇ can be visualized directly. Sheet angles were
measured at each transmural depth using the method of Karlon et al. (1998). Ten
10-�m sections were analyzed ( 50–70 sheet angles per section) for a total of about
600 measurements of the sheet angle, ˇ, across the wall thickness. These sheet angle
populations were incorporated into the finite element model.

22.2.2 Crossbridge Mechanics

The static equilibrium of the strongly bound myosin molecule based on a 2D
simplification of the model originally proposed by Schoenberg (1980a, b) was used
to resolve crossbridge tension into axial and transverse (radial) components. The
axial and radial stiffnesses of the structure were then derived and used to compute
the resulting axial and radial stresses in the hexagonal sarcomere lattice model.

Tension in the elastic S2 segment is resolved into axial and transverse compo-
nents using a two-dimensional force and moment balance derived from the geometry
shown in Fig. 22.1 and assuming no net moment at the attachment of the S1 head
to the thin filament. To derive crossbridge stiffness components, the lattice spacing
of the crossbridge model is displaced by a small value and the resulting change in
the axial and radial forces is obtained (Fig. 22.1). This change in force is then used
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Fig. 22.1 Computing the crossbridge stiffness in the axial and radial direction based on the
geometry of the myosin S2 segment. The myosin S2 segment makes an angle ˛ with the thick
filament of myosin

to derive the instantaneous stiffnesses in the two directions (Tangney et al. 2013). It
can be shown that the transverse to fiber crossbridge stiffness-ratio is

Kt

Kf
D lS2 � l0cos2˛

lS2 � l0sin2˛
(22.1)

where lS2 is the length of the S2 segment of the crossbridge, l0 is the resting length
of the crossbridge considering the S2 segment to be a linear spring, and ˛ is the
angle between the S2 segment and the thick filament of the myosin molecule.

22.2.3 Lattice Model

A hexagonal lattice model of the sarcomeres was used to derive transverse and axial
stresses as a function of the lattice spacing and crossbridge stiffness components.
The lateral force interactions in a myofilament lattice due to crossbridge formation
between thick and thin filaments can be analyzed in two perpendicular planes: one
parallel to the axis of the sarcomeres, and one perpendicular to the axis of the
sarcomeres. Figure 22.2a shows the cross-section in this perpendicular plane. We
make use of energy conservation in a hexagonal unit cell of width �0 and axial
length ı0 consisting of three pairs of crossbridges as shown in Fig. 22.2b to derive
the resultant axial and radial stress components. For this analysis, the three pairs of
crossbridges are assumed to be in the same plane.

The complete derivation for the strain analysis is given in Tangney et al. 2013.
In terms of the ratio of the transverse to the radial stiffness (Kt/Kf) derived from
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Fig. 22.2 (a) Lattice structure showing the cross-section of the thick myosin filaments (red) and
the thin actin filaments (blue) in a 2D view. The section consists of three pairs of crossbridges. A
single unit cell used for the analysis with six crossbridges is highlighted in yellow. (b) Axial view
of sarcomeres showing three sets of three pairs of crossbridges spaced 120ı apart. The unit cell
consisting of three pairs of crossbridges and axial length ı0 is marked in yellow

the crossbridge analysis, the ratio of the stresses in the radial direction to the axial
direction derived for the lattice is

! D St

Sf
D 1

2

	
�

ı0



Kt

Kf
(22.2)

22.2.4 Active Systolic Stress

We use the stress ratio derived from the previous section to derive the active stress
tensor at the tissue level. At each integration point of the finite element model, the
active fiber stress of a myocyte is calculated from the Guccione activation model
(Guccione and McCulloch 1993) as a function of sarcomere length and time. From
this fiber stress, Sf, we use (22.2) to obtain the transverse stress St D ! • Sf at the
single myocyte scale. We assume the resulting myocyte systolic active stress is
transversely isotropic. Now considering myocytes distributed within a planar sheet
assumed to behave as a plane stress element due to weak sheet-sheet coupling, then
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there can be no stress acting in the sheet-normal direction. Therefore, contribution
of a single myocyte directed parallel to the mean fiber orientation within a sheet is

T D
2
4 Sf 0 0

0 ! � Sf 0

0 0 0

3
5 with respect to W fef; es; eng (22.3)

where ef represents the fiber direction, es represents the within-sheet direction, and
en represents the cross-sheet direction associated with this individual sheet.

We assume that all myofibers within a sheet are parallel to the plane of the sheet
but are distributed with an angular distribution f (®) with respect to the mean fiber
direction (see Fig. 22.3a). Taking into account this distribution, the stresses in this
single sheet can be obtained by integrating:

Tsheet D
Z �=2

��=2
R' � T � RT

' � f .'/ � d'

R' D
2
4�

cos .'/ sin .'/ 0
sin .'/ cos .'/ 0

0 0 1

3
5 with respect to W fef; es; eng

(22.4)

Fig. 22.3 Description of angles in model. (a) Schematic representation of a single sheet. e
0

f
represents the sheet mean fiber axis, es represents the direction transverse to the fiber direction but
within the sheet, and en represents the sheet-normal direction (across the thickness of the sheet). ®
represents the deviation of a single myocytes fiber axis relative to the mean fiber axis. ® is measured
in the (e

0

f, es) plane. (b) Schematic representation of several sheets. ef represents the tissue mean
fiber axis, er represents the radial direction, and ec is perpendicular to both (ec D er � ef). Each
sheet has a sheet mean fiber axis at an angle � to the tissue mean fiber axis, in the (ef , er) plane.
Each sheet also has an angle ˇ, which is in the (ec, er) plane
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where f (®) represents the distribution of ®, which we define to have a mean of zero.
Tsheet remains a plane stress, but it is no longer a diagonal tensor in general. In other
words, there may be a shear stress component due to the dispersion of ® within the
sheet. However, if the distribution is symmetric, the shear terms cancel out making
the tensor diagonal.

In the finite element formulation, stresses are integrated at the tissue scale. At
this scale, there are many sheets. Each sheet has an orientation associated with it,
which can be described as a function of two angles: ˇ, which is the histologically
measured sheet angle (Costa et al. 1999) and � , which is the angle relative to the
mean fiber direction (about the sheet direction). For an illustration of these angles,
see Fig. 22.3b. Now the stress at the tissue level can be integrated:

Ttissue D
“

R�RˇTsheetRT
ˇRT

� f .�/ f .ˇ/ d�dˇ

Rˇ D
2
4 1 0 0

0 sin .ˇ/ cos .ˇ/
0 � cos .ˇ/ sin .ˇ/

3
5 ; R� D

2
4 cos .�/ 0 sin .�/

0 1 0

� sin .�/ 0 cos .�/

3
5

with respect to W fef; ec; erg

(22.5)

where ef represents the fiber direction, er represents the radial (transmural) direction,
and ec represents the cross-fiber direction (ec D er � ef) associated with the bulk
tissue; f (�) and f (ˇ) represent the distributions of � and ˇ, respectively. Note that
the different format of Rˇ is consistent with Costa’s definition (Costa et al. 1999).

The angles ®, � , and ˇ change through time as the heart deforms. In other words,
they are functions of Lagrangian strain (E), as shown in the Appendices 1 and 2.
Because these quantities vary through time, the integration has to be performed
at each time step of the finite element solver. However, if we assume there is no
interaction between the angles, the integration terms can be separated and can be
evaluated by evaluating the following definite integrals:

Icos2 � D
Z �=2

��=2
cos2� f .�/ d�

Icos � D
Z �=2

��=2
cos � f .�/ d�

Isin2 � D
Z �=2

��=2
sin2� f .�/ d�

(22.6)

where f represents a Von-Mises distribution for the angles and � represents � , ˇ,
or ®. In addition, as shown in the Appendix 2, the effect of the strain on these
distributions is not significant in the range of strains experienced by a typical
myocardial tissue. Hence, these functions can be pre-computed before attempting
to solve the finite element problem.

Finally, (22.5) can be expanded in terms of the distributions of the angles in the
reference configuration. The equations for all six independent terms of the stress



446 A. Krishnamurthy et al.

tensor look similar and are of the following form:

Ttissue .j; k/ D Sf:Fjk .Ii .�/ ; !/

where i D cos2�; cos �; sin2� � D ˇ; '; �
(22.7)

Fjk are pre-computable functions of the angle distributions. The actual form of these
functions is given in the Appendix 1.

22.2.5 Simplifying Assumptions

In addition to the assumptions inherent to the construction of the model, a few
additional simplifying assumptions were made. Because we have no detailed
measurements of the angles ® and � , these angles were replaced with a Von-Mises
distribution centered about 0ı with a fiber dispersion standard deviation of 12ı
(Karlon et al. 1998). This simplifies the resulting model due to the symmetry of
these distributions, making the active stress tensor diagonal.

22.2.6 Finite Element Computational Model

The crossbridge and lattice models were derived analytically with MATLAB code
utilizing a symbolic library. The resulting code was then implemented into the
laboratory’s custom finite element modeling environment (Continuity 6.3, www.
continuity.ucsd.edu).

The active contraction in a continuum tissue was simulated with a nonlinear
finite element model of a tissue slab. The chosen model includes passive material
properties and a biophysically based tension generation. It is a 27-node, 8-element
mesh of a tissue sample, which is synchronously activated.

Myocardial stresses are determined at each integration point within the finite
element mesh by a summation of passive stress (due to distension) and active stress
(due to crossbridge cycling). The passive stress model described by Guccione et al.
(1991) is used as is. The active stresses are determined by the model described in
the previous section.

To simulate equi-biaxial tests, the tissue was first activated to maximum active
tension corresponding to the strong attachment of all crossbridges. This gives a new
geometry where the passive stresses generated in the tissue are in equilibrium with
the generated active stresses (Fig. 22.4). This geometry was then stretched equi-
biaxially to generate curves similar to those reported by Lin and Yin (1998). Volume
conservation was enforced using a semi-incompressible penalty formulation (Doll
and Schweizerhof 2000).

www.continuity.ucsd.edu
www.continuity.ucsd.edu
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Fig. 22.4 Simulation of equi-biaxial stretch. The sample is first activated fully to obtain the
geometry corresponding to the fully activated state (middle). The geometry is then stretched equally
to simulate an equi-biaxial stretch

22.3 Results

22.3.1 Sheet Angle Measurements

Automated measurements of sheet angle were performed on 10�m sections at every
1 mm depth through the ventricular wall (ten depths). Figure 22.5 shows an example
of one section, as well as the results of the automated processing scheme, which was
performed as described by Karlon et al. (1998). Results from the subendocardial and
subepicardial regions are shown in Fig. 22.6. Note that there is substantial dispersion
about the mean sheet angle (� > 10ı), particularly deeper in the wall.

For our simulations, we used the average dispersion data from these distributions.
The average standard deviation of the dispersion is found to be about 30ı.
This corresponds to a concentration parameter (�) value of 4 in the Von-Mises
distribution. However, we did not include the bimodal distribution of sheets in our
simulations since we were interested only in biaxial tests in isolated myocardial
tissue.

22.3.2 Lattice Model

The effect of the lattice spacing on the transverse to fiber stress ratio was computed
using the crossbridge and lattice model at typical lattice-spacing values (Julian et al.
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Fig. 22.5 Automated measurements of the sheet angle ˇ. (a) 10 �m section of myocardium
cut perpendicular to fiber angles. Gaps in tissue represent cleavage planes between myocardial
sheets, which have opened up as tissue was allowed to desiccate for 10 min. In this image, two
distinct populations of sheets are present. (b) Enlarged view of tissue section showing automated
measurements of sheet angle. The region of interest for each measurement was 76 �m2

1978; Schoenberg 1980a, b; Rayment et al. 1993). The lattice spacing is measured
as the distance between adjacent actin and myosin filaments. The parameter values
used for the crossbridge model are tabulated in Table 22.1. It can be seen that the
radial to axial stress ratio is nonlinearly dependent on the lattice spacing.

It can be seen from Fig. 22.7 that this ratio of stresses depends on the length of
the myosin S2 segment at lattice spacing corresponding to the unloaded sarcomere
length. This length determines the angle the S2 segment makes with the myosin
thick filament and hence in turn mediates the transverse force generated by the
crossbridge.
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Fig. 22.6 Experimental
distributions of the sheet
angle ˇ. Rose plots (circular
histograms) showing the
distribution of the sheet angle
ˇ in the sub-epicardium (a)
and sub-endocardium (b).
0ı/180ı indicates that the
sheet lie along the radial
direction. It is clear that this
animal has a second
population of sheet angles in
the sub-endocardium

22.3.3 Finite Element Model

The effect of fiber dispersion was tested using a finite element computational model
of a rectangular slab of myocardium. The dimensions of the slab relative to the
actual wall thickness of the heart are small such that sheet angle does not vary within
the slab. The final form of the active stress-coupling model is given in Appendix 1.
Equi-biaxial stretch in a fully activated myocardial tissue was simulated. Three
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Table 22.1 Parameter values for the crossbridge and lattice model

Parameter Description Value Reference

l0 Resting S2 segment length 12 nm Williams et al. (2010)a

lS20 S2 segment length at reference lattice
spacing

16–20 nm

lS1 S1 segment length 11 nm Schoenberg (1980a, b)a

˛S1 Angle of S1 attachment 45ı Julian et al. (1978)
ı0 Axial distance of three myosin head

pairs
43.5 nm Craig and Woodhead (2006)

�0 Lattice spacing at unloaded sarcomere
length

19 nm

aValues projected to 2D from a 3D model

Fig. 22.7 Plot of the transverse to axial stress ratio as a function of lattice spacing between the
actin and myosin filaments. This ratio is also a function of the length of the S2 myosin segment at
reference lattice spacing as shown by the family of curves

simulations at sheet angles 0ı, 45ı, and 90ı with respect to the second stretch
direction were performed. Figure 22.8 shows the total stresses in the fiber and cross-
fiber direction for the three sheet angles. It can be seen that the ratio of the cross-fiber
to fiber stress varies depending on the sheet angle orientation. These may explain
some of the variations in the experimental measurements by Lin and Yin (1998). In
addition, this shows that the angle of the sheet relative to the applied stretch has a
large effect on the total generated stress.
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Fig. 22.8 Total fiber and
cross-fiber stresses for three
sheet angle orientations: 0ı

(a), 45ı (b), and 90ı (c). It
can be seen that the ratio of
the transverse to fiber stresses
varies with the sheet angles

Figure 22.9 shows the active normal stresses generated in sheet coordinates as a
function of the equi-biaxial stretch with the sheets parallel to the stretch plane. The
experimental measurements given by Lin and Yin (1998) at one equi-biaxial stretch
level are shown as points. It can be seen that on an average, the cross-fiber (sheet)
stresses were around 40% of the fiber stresses and the stresses in the sheet-normal
direction were around 10% of the fiber stresses. The active stress generated in the
sheet-normal direction is only due to dispersion in the sheet angles.
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Fig. 22.9 Active fiber, cross-fiber, and sheet-normal stress generated in the tissue during equi-
biaxial stretch. The experimental values from Lin and Yin (1998) at an equi-biaxial stretch of 1.16
are marked with dots

22.4 Discussion

In this study, we derive a multi-scale mathematical model to investigate the
relationship between active force development within the sarcomere of a cardiac
myocyte and stress transverse to the fiber orientation at the tissue level. The
model incorporates structural dispersion including histological measurements of
sheet orientation, and incorporates crossbridge and sarcomere lattice geometry.
The results of the finite element model are compared with measured experimental
stress in biaxial deformation tests. The results suggest that these mechanisms can
explain the source of forces generated transverse to the fiber direction in myocardial
tissue.

The transverse force generation in the crossbridge model is sensitive to the
parameters of the model, such as the length of the S1 and S2 segments. While esti-
mates for these quantities vary between publications and muscle types and species,
they are measurable microstructural properties rather than arbitrary parameters.

Our analysis suggests that the strain dependence of fiber and sheet dispersion is
very small and unlikely to affect the analysis. However, the strain dependence on
lattice spacing gives rise to larger transverse stresses at larger lattice spacing. In the
current model, we assume, based on electron microscopy and X-ray crystallography,
that lattice spacing is only determined by fiber strain because the lattice isotropically
expands in the transverse direction as sarcomeres shorten to maintain approximately
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constant sarcomere volume. This implies that anisotropic macroscopic strains in the
myocardium must be accommodated either by rearrangement of myofibrils within
myocytes, myocytes within sheets, or sheets within the tissue.

Since we consider the sheet to be a plane stress object, transverse stresses are
not transmitted in the sheet-normal direction. The only mechanism of active stress
generation in the sheet-normal direction in our model is through sheet dispersion.
This is probably not completely accurate there is some form of inter-sheet coupling
that can transmit active stresses in the sheet-normal direction. Myocardial sheets
have also been shown to have unique passive material properties. For instance, they
are stiffer within the plane of the sheet than across it (Dokos et al. 2002). Despite
this, it has been shown that simulations of systole are insensitive to changes in
parameters controlling passive sheet properties (Usyk et al. 2000).

In conclusion, we have developed a mathematical model linking scales from the
myofilament crossbridge up to the tissue-scale myocardial continuum. The stress
developed transverse to the myofilaments, in combination with dispersions of the
muscle fibers and sheets, leads to significant transverse stress at the tissue level
found in previous experimental tests. The transverse active stress development in
the tissue depends on structural geometry at multiple scales in the tissue. The
orientation of the sheets relative to tissue deformation plays an important role
in the total stress that is measured experimentally. The strain dependence of the
transverse stress developed at the crossbridge level is significant while the strain
dependence on the dispersion is found to be small as shown in the Appendix 2.
Thus, we have developed a microstructurally based multi-scale model of active
myocardial mechanics that takes into account the crossbridge and sarcomere lattice
geometry and the myocardial sheet structure. Such a theoretical model can be easily
incorporated into realistic ventricular geometry to simulate cardiac function that
match closely with experimental observations.

Acknowledgement Supported by NIH grants 5P01HL46345, GM103426, 1R01HL96544,
GM094503, 1RO1HL091036, and 1R01HL105242.

A.1 Appendix 1: Fiber-Sheet Dispersion Effects
on Active Stress

Here we give details of the derivation of the fiber-sheet dispersion effects on active
stress from (22.5). We used a Von-Mises distribution for the three angles. The
probability density of a Von-Mises distribution is given by the following equation:

f .�/ D e� cos �

2�I0 .�/
(22.8)
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where I0 is the modified Bessel function of order 0 and � is called the concentration
parameter that controls the standard deviation of the distribution. The components
of the stress tensor can be computed to be
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(22.9)

where the integrals I can be computed numerically from the distribution. For a
standard dispersion of 12ı for ® and � , and a 30ı for b, we get the active stress
components to be given by

T11 D Sf Œ0:067 ! C 0:924�

T22 D Sf Œ0:201 ! C 0:008�

T33 D Sf Œ0:724 ! C 0:067�

(22.10)

These equations were then used in the finite element model and the k computed
from the lattice model is used as the input to these models.

A.2 Appendix 2: Strain Dependence of Angle
Distributions

In continuum mechanics, deformations of bodies create changes in angles. For
example, consider the two-dimensional example in Fig. A.1. Suppose the fibers in
this tissue are originally oriented at an angle �0. After undergoing deformation, this
angle is represented by � . The relationship between � and �0 can be derived from
continuum mechanics principles (Fung 1993), and is given by:
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Fig. A.1 Schematic diagram representing the change in angle � as a body deforms. In this
example, due to horizontal shortening and vertical lengthening, � > �0. The angle would also be
affected by shearing deformation (not shown)
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In terms of the strain components E, the cos(� ) can be computed from the
equation,

cos � D .2E11 C 1/ cos �0 C 2E12 sin �0p
.2E11 C 1/

r�
2E11cos2�0 C 4E12 sin �0 cos �0 C 2E22sin2�0 C 1

(22.12)

In order to understand the strain dependence of the fiber dispersion functions,
several numerical experiments were performed. Samples of 5000 angles were drawn
from a Von-Mises distribution of known �, the concentration parameter, which gives
a standard deviation of 12ı. The change in the angle � is computed for different
values of biaxial strains, and the new standard deviation and the › parameter were
computed for the resulting distribution (Fig. A.2). This was then compared with
directly computing the change in the standard deviation angle using (22.12). It can
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Fig. A.2 Effect of strain on fiber distribution. A positive transverse strain increases the standard
deviation of the angle distribution while a positive fiber strain decreases the standard deviation

be seen from Figs. A.3 and A.4 that the predicted standard deviations are within few
degrees of the predicted values. Under shear strain, the mean is not zero, but this
deviation in the mean is <2ı for reasonable shear strains.

Next, the strain dependence of the active stress components was computed.
The concentration parameter was varied from 10 to 40 for ® and � , and from 2
to 10 for the sheet angle ˇ. These correspond to a standard deviation of 18ı–9ı
for ® and � , and 48ı–18ı for ˇ, respectively. It can be seen from Fig. A.5 that
the strain dependence is very small for practical values of standard deviation of
fiber dispersion and strains. Consequently, the strain dependence can be ignored for
typical strains in a myocardium. In addition, if the strain values are extreme, the
strain dependence can be incorporated by computing the new standard deviation
of the distribution and using the concentration parameter that corresponds to this
standard deviation value in the simulations.
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Fig. A.3 Comparison of
actual standard deviation with
predicted values for different
strains
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Fig. A.4 Effect of combined
biaxial strains on standard
deviation and its prediction
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Fig. A.5 Effect of the
concentration parameter � on
the diagonal components of
the active stress tensor. It can
be seen that the strain
dependence is very small and
we can ignore it for practical
simulations
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