
Chapter 3
The SIR Model with Demography: General
Properties of Planar Systems

3.1 Modeling Changing Populations

Models that do not explicitly include births and deaths occurring in the population
are called epidemic models without explicit demography. They are useful for epi-
demic modeling on a short time scale, particularly for modeling epidemic outbreaks
such as influenza. Omitting population change requires that the disease develop on
a much shorter time scale than the period in which significant change in the popula-
tion size can occur (such as births and deaths). This is valid for fast diseases like the
childhood diseases and influenza. On the other hand, there are slow diseases, such
as HIV, tuberculosis, and hepatitis C, that develop for a long period of time even on
an individual level. In this case, the total population does not remain constant for
long periods of time, and the demography of the population cannot be ignored.

To incorporate the population change in epidemic models, we need population
models of the growth of the human population. There are several classical popula-
tion models that are typically considered in the literature.

Population growth is the rate of change in a population over time, and it can
be approximated as the change in the number of individuals of any species in a
population per unit time. The study of growth and change of human populations is
called demography. Modeling and projecting the growth of human populations is in
general not a simple matter, but for the purposes of epidemic modeling, we will use
several simple population models.

3.1.1 The Malthusian Model

The Malthusian model, sometimes called the exponential model, is essentially
an exponential growth model based on the assumption that the rate of change
of a population is proportional to the total population size. The model is named
after the Reverend Thomas Malthus (1766–1834), who authored An Essay on
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the Principle of Population, one of the earliest and most influential books on
populations. The Malthusian model is based on the following assumptions: (1) All
individuals are identical, that is, they are not classified by age, sex, or other charac-
teristics. (2) The environment is constant in space and time, in particular, resources
are unlimited. With these assumptions, if N(t) is the total population size, and b is
the per capita birth rate, while μ is the per capita death rate, then the Malthusian
model becomes

N′(t) = bN(t)−μN(t) = rN(t), (3.1)

where r = b− μ is the population growth rate. The solution to this equation is an
exponential N(t) = N(0)ert . The population is growing exponentially if r > 0, dec-
reasing exponentially if r < 0, and constant if r = 0.

We compare the performance of population models with world population data.
Table 3.1 gives the world’s human population since 1950.

Table 3.1 World population size 1950–2010a

Year Population Year Population

1950 2,556,505,579 1980 4,452,686,744
1952 2,635,724,824 1982 4,615,366,900
1954 2,729,267,486 1984 4,776,577,665
1956 2,834,435,383 1986 4,941,825,082
1958 2,947,380,005 1988 5,114,949,044
1960 3,042,389,609 1990 5,288,828,246
1962 3,139,645,212 1992 5,456,405,468
1964 3,280,890,090 1994 5,619,031,095
1966 3,420,438,740 1996 5,779,990,768
1968 3,562,227,755 1998 5,935,741,324
1970 3,712,813,618 2000 6,088,683,554
1972 3,867,163,052 2002 6,241,717,680
1974 4,017,615,739 2004 6,393,120,940
1976 4,161,423,905 2006 6,545,884,439
1978 4,305,496,751 2008 6,700,765,879
– – 2010 6,853,019,414

a Data taken from http://www.census.gov/ipc/www/idb/worldpop.php

With the simple population models in this section, many methods for estimating
the parameters can work. One of the most powerful methods, however, is calibra-
tion or curve fitting. Curve fitting is the process of identifying the parameters of a
curve, or mathematical function, that has the best fit to a series of data points. We
discuss more thoroughly fitting epidemic models to data in Chap. 6. Here we only
compare the population models with the available data.

Calibration is greatly expedited through the use of software such as Mathematica,
Matlab, or R to fit the model to the data. For the Malthusian model, we have an
explicit solution, and we can fit the solution function to the data. Since the initial
condition for the data is not at zero, the solution to the Malthus model becomes
N(t) = Aer(t−1950). We fit both A and r. Fitting in Mathematica can be done with the

http://www.census.gov/ipc/www/idb/worldpop.php
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command NonlinearModelFit. The result of the fit of the world population
data to the Malthusian model is given in Fig. 3.1, where the population is taken in
millions.
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Fig. 3.1 World population data alongside Malthusian model predictions. The estimated values of
the parameters are A = 2676.29 and r = 0.0163. The least-squares error of the fit is E = 402,533

3.1.2 The Logistic Model as a Model of Population Growth

The Malthus model assumes that the population’s per capita growth rate is constant
and that the population has unlimited resources by which to grow. In most cases,
however, populations live in an environment that has a finite capacity to support only
a certain population size. When the population size approaches this capacity, the per
capita growth rate declines or becomes negative. This property of the environment
to limit population growth is captured by the logistic model. The logistic model
was developed by the Belgian mathematician Pierre Verhulst (1838), who suggested
that the per capita growth rate of the population may be a decreasing function of
population density:

1
N(t)

N′(t) = r

(
1− N

K

)
,

which gives the classical logistic model that we studied in Chap. 2. At low densi-
ties N(t) ≈ 0, the population growth rate is maximal and equals r. The parameter
r can be interpreted as the population growth rate in the absence of intraspecific
competition. The population growth rate declines with population number N and
reaches 0 when N = K. The parameter K is the upper limit of population growth,
and it is called the carrying capacity of the environment. It is usually interpreted
as the quantity of resources expressed in the number of organisms that can be sup-
ported by those resources. If population number exceeds K, then population growth
rate becomes negative, and population declines. The logistic model has been used
unsuccessfully for the projection of human populations. The main difficulty appears
to be determining the carrying capacity of a human population. It is believed that
human populations do not have a carrying capacity, and even if they do, that the
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carrying capacity is not constant. For those reasons, the logistic model is rarely
used to model human populations. However, when compared to population data, the
logistic equation usually performs admirably in modeling the data for short periods
of time. We use the logistic model to model the world population data. The results
are given in Fig. 3.2.
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Fig. 3.2 World population data alongside logistic model predictions. The estimated values of the
parameters are K = 13,863.9 and r = 0.0247. The least-squares error of the fit is E = 56,659.3

3.1.3 A Simplified Logistic Model

The third model of population growth is a simplified version of the logistic model. It
assumes constant birth rate, independent of population size. It also assumes constant
per capita death rate. The model becomes

N′(t) = Λ −μN.

Here Λ is the total birth rate, and μ is the per capita natural death rate. Then μN is
the total death rate. This model can be solved. The solution is

N(t) = N0e−μt +
Λ
μ
(1− e−μt).

It is not hard to see that if t → ∞, then N(t) → Λ
μ . This limit quantity is called

the limit population size. The simplified logistic model is the one most often used
to model population dynamics in epidemic models. However, its performance with
data is modest. We illustrate how the simplified logistic model fits the world pop-
ulation data in Fig. 3.3. We saw in Chap. 2 that if T is the time spent is a class (or
a compartment), then the per capita rate at which the individuals leave that class
(compartment) is given by 1

T . So if the per capita recovery rate was α , then

α =
1
T
,
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Fig. 3.3 World population data alongside the simplified logistic model predictions. The estimated
values of the parameters are μ = 5.54 × 10−12 and Λ = 68.5, and we have preset N(1950) =
2556.5. The least-squares error of the fit is E = 703,482

or equivalently, 1
α is the time spent in the infectious compartment. Similar reason-

ing can be applied to the compartment “life.” If μ is the natural death rate, then 1/μ
should be the average lifespan of an individual human being. From fitting the sim-
plified logistic model to world data, we estimated μ = 5.54×10−12, which gives a
lifespan of 1.8× 1011 years—quite unrealistic. If the lifespan is limited to biologi-
cally realistic values, such as a lifespan of 65 years, then the fit becomes worse.

3.2 The SIR Model with Demography

To incorporate the demographics into the SIR epidemic model, we assume that all
individuals are born susceptible. Individuals from each class die at a per capita death
rate μ , so the total death rate in the susceptible class is μS, while in the infective
class, it is μI, and in the removed class, it is μR. The epidemic model with demog-
raphy becomes

S′(t) = Λ −β IS−μS,

I′(t) = β IS−αI −μI,

R′(t) = αI −μR. (3.2)

We add the three equations to obtain the total population. The model of the total
population is N′(t) = Λ − μN, where N = S + I + R. The population size is not
constant, but it is asymptotically constant, since N(t)→ Λ

μ as t → ∞.
When the population is nonconstant and the incidence is proportional to the prod-

uct of I and S, we say that the incidence is given by the law of mass action, analo-
gously to terms from chemical kinetic models, whereby chemicals react by bumping
randomly into each other. For this reason, this incidence is called the mass action
incidence:
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mass action incidence = βSI.

Another type of incidence that is very commonly used in epidemic models is the
standard incidence. It is similar to the mass action incidence, but it is normalized
by the total population size. In particular,

standard incidence =
βSI
N

.

The mass action incidence and the standard incidence agree when the total pop-
ulation size is a constant, but they differ if the total population size is variable. Mass
action incidence is used in diseases for which disease-relevant contact increases
with an increase in the population size. For instance, in influenza and SARS, con-
tacts increase as the population size (and density) increase. Standard incidence is
used for diseases for which the contact rate cannot increase indefinitely and is lim-
ited even if the population size increases. This is the case in sexually transmitted
diseases, where the number of contacts cannot increase indefinitely.

We notice as before that the first two equations in (3.2) are independent of the
third, and we consider the two-dimensional system

S′(t) = Λ −β IS−μS,

I′(t) = β IS−αI −μI, (3.3)

where R = N −S− I. Mathematically, the SIR system can be written in the general
form

S′(t) = f (S, I),

I′(t) = g(S, I). (3.4)

This is a system of differential equations with two equations and the two unknowns S
and I. The incidence term makes both f and g nonlinear functions. So system (3.4)
is a nonlinear system of differential equations. System (3.4) is also autonomous,
since f and g do not depend explicitly on the time variable; that is, the coefficients
of system (3.3) are constants and not functions of time.

What are the units of the quantities in this model? Since S is measured in number
of people, it follows that S′ is measured in number of people per unit of time. The
total birth rate Λ is measured in number of people born per unit of time. The per
capita death rate μ is measured in [unit of time]−1. Thus, μS is measured again in
number of people per unit of time. The most difficult term is β IS. Since the force of
infection β I is a per capita rate, it has units [time]−1. Consequently, the transmission
coefficient β must have units of [number of people× time]−1.
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A customary transformation of the system (3.3) that simplifies the system and
reduces the number of parameters is often performed. There is a simplification that
consists in a change of variables that transforms both the independent variable and
the dependent variables into nondimensional quantities. Hence, we say that we have
transformed the system into a nondimensional form.

Two parameters have units [unit of time]−1: α and μ . Since t is in [unit of time],
we have to multiply t by one of the rates to obtain a unitless quantity. It is best
to define τ = (α + μ)t. Observe that τ is a dimensionless quantity. Because of
the nature of the change, this change will remove the parameter multiplying I. Let
N(t) = N( τ

α+μ ) = N̂(τ). Similarly, I(t) = Î(τ). By the chain rule, we have

dŜ
dτ

=
1

α +μ
dS
dt

,

dÎ
dτ

=
1

α +μ
dI
dt

.

(3.5)

We rescale the Ŝ and Î variables with the total limiting population size. Hence x(t) =
μ Ŝ
Λ and y(t) = μ Î

Λ . The new dependent variables x(τ) and y(τ) are also dimensionless
quantities. The system for them becomes

x′ = ρ(1− x)−R0xy,
y′ = (R0x−1)y,

(3.6)

where

ρ = μ/(α +μ) R0 =
Λβ

μ(α +μ)
are both dimensionless parameters. The notation R0 is not random. As we will see
later, this dimensionless quantity is indeed the reproduction number. Notice that we
have reduced the number of parameters from five to two. The dimensionless form of
the SIR model with demography is equivalent to the original one, since the solutions
of both systems have the same long-term behavior.

3.3 Analysis of Two-Dimensional Systems

We cannot solve the SIR model with demography analytically, but we can obtain
some information about the behavior of the solutions. The long-term behavior of
the solutions is particularly important from an epidemiological perspective, since
we would like to know what will happen to the disease in the long run: will it die
out, or will it establish itself in the population and become endemic?
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3.3.1 Phase-Plane Analysis

We write the system (3.6) in general form

x′ = f (x,y),
y′ = g(x,y),

(3.7)

where f (x,y) = ρ(1− x)−R0xy and g(x,y) = (R0x−1)y. To answer the question
above, we have to investigate the long-term behavior of the solutions. Instead of con-
sidering x(τ) and y(τ) as functions of τ , or equivalently, S(t) and I(t) as functions
of t, we treat τ as a parameter and consider the curves in the (x,y)-plane, obtained
from the points (x(τ),y(τ)) as τ varies as a parameter. By considering the solution
curves in the (x,y)-plane, we say that we are considering the phase plane.

Definition 3.1. Curves in the phase plane representing the functional relation
between x and y, with τ as a parameter, are called orbits or trajectories.

The long-term behavior of the trajectories depends largely on the equilibrium
points, that is, on time-independent solutions of the system. Equilibrium points are
solutions for which x′ = 0 and y′ = 0.

Definition 3.2. All points (x∗,y∗), where x∗ and y∗ are constants that satisfy the
system

f (x∗,y∗) = 0,

g(x∗,y∗) = 0, (3.8)

are called equilibria or singular points.

For the dimensionless SIR model with demography, we have

ρ(1− x)−R0xy = 0,

(R0x−1)y = 0. (3.9)

We have that if y = 0, that is, there are no infectives, then x = 1; that is, everyone
is susceptible. This gives the first equilibrium in the (x,y)-plane, (1,0). This is the
disease-free equilibrium. The disease-free equilibrium is also a boundary equilib-
rium, since it lies on the boundary of the feasible region x ≥ 0, y ≥ 0. If y �= 0,
then from the second equation, we have x = 1/R0. From the first equation, we have
y = ρ(1−1/R0). Thus the second equilibrium is the point

E =

(
1
R0

,ρ
(

1− 1
R0

))
.

This is the endemic equilibrium. The endemic equilibrium exists only in the case
R0 > 1. This equilibrium is also called an interior equilibrium.
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System (3.6) allows us to compute the slope at each point of a trajectory in the
(x,y)-plane. The parameter τ can be eliminated by dividing the equations in system
(3.6):

dy
dx

=
g(x,y)
f (x,y)

.

This quotient is defined for all points in the (x,y)-plane except the equilibria. For
any nonequilibrium point (x0,y0) in the phase plane, we can compute the expression

dy
dx

|(x0,y0) =
g(x,y)
f (x,y)

which gives the slope of the trajectory in the (x,y)-plane, with tangent vector

( f (x0,y0),g(x0,y0))
T .

This vector also gives the direction of the trajectory. The tangent vector is not def-
ined at the equilibria, since the flow stops at those points and they are fixed points.
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Fig. 3.4 The vector field of the dimensionless SIR model alongside solutions of the model for
several initial conditions

The collection of tangent vectors defines a direction field. The direction field
can be used as a visual aid in sketching a family of solutions called a phase-plane
portrait or a phase-plane diagram. A phase-plane portrait of the dimensionless
SIR model is given in Fig 3.4. The creation of the whole phase portrait is a tedious
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job and is done only by computer. An easier method to obtain information about
the direction of the flow is to analyze the direction of the flow along the x-zero and
y-zero isoclines, or nullclines.

Definition 3.3. The x-zero isocline or x-nullcline for the system (3.7) is the set of all
points in the (x,y)-plane satisfying

f (x,y) = 0.

The y-zero isocline or y-nullcline for the system (3.7) is the set of all points in the
(x,y)-plane satisfying

g(x,y) = 0.

We can determine the nullclines for the dimensionless SIR model. Setting
ρ(1− x)−R0xy = 0 gives the x-nullcline

y =
ρ
R0

1− x
x

.

Setting (R0x− 1)y = 0 gives two y-nullclines: y = 0, which is the x-axis, and the
vertical line x = 1

R0
. The points where an x-nullcline intersects a y-nullcline give the

equilibrium points of the system. There are two scenarios for the SIR dimensionless
system.

R0 < 1 In this case, there is only one intersection of an x-nullcline and a
y-nullcline. The x-nullcline intersects the y-nullcline y = 0 at the point
(1,0), the disease-free equilibrium. Since 1/R0 > 1, the y-nullcline
x = 1/R0 does not intersect the x-nullcline in the positive quadrant.

R0 > 1 In this case, there are two intersections of an x-nullcline and a y-nullcline.
In the first intersection, the x-nullcline intersects the y-nullcline y = 0
at the point (1,0), which represents the disease-free equilibrium. In the
second intersection, since 1/R0 < 1, the y-nullcline x = 1/R0 inter-
sects the x-nullcline 1/R0 < 1 at the point E , which gives the endemic
equilibrium.

To determine the direction of the vector field along the nullclines, we can use the
following general rules:

1. On the x-nullclines, the tangent vector is

(0,g(x0,y0))
T

and is parallel to the y-axis. The direction of the tangent is given by the sign of
g(x0,y0). If g(x0,y0)> 0, the direction vector points upward. If g(x0,y0)< 0, the
directional vector points downward.

2. On the y-nullclines, the tangent vector is

( f (x0,y0),0)
T
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and is parallel to the x-axis. The direction of the tangent vector is determined by
the sign of f (x0,y0). If f (x0,y0) > 0, the direction vector points to the right. If
f (x0,y0)< 0, the direction vector points to the left.

We determine the direction field along nullclines for the dimensionless SIR
model. We consider the case R0 > 1. The case R0 < 1 is similar. The results are
illustrated in Fig. 3.5.

1. On the x-nullcline, the tangent vector is (0,g(x0,y0))
T , where (x0,y0) is a point

on the nullcline. The tangent vector is parallel to the y-axis. Since g(x0,y0) =
(R0x0 − 1)y0 and y0 > 0, the sign of g(x0,y0) is determined by the first term
in the product. Thus, if x0 < 1/R0, then g(x0,y0) < 0, and the vector points
downward. If x0 > 1/R0, then g(x0,y0)> 0, and the vector points upward.

2. On the y-nullclines, the tangent vector is ( f (x0,y0),0)T , where (x0,y0) is a point
on a y-nullcline. The tangent vector is parallel to the x-axis. Since there are two
y-nullclines, we consider two cases:
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Fig. 3.5 Phase-plane analysis of the dimensionless SIR model. Nullclines and the direction of the
vector field along them

y = 0 On the nullcline y = 0, f (x0,y0) = ρ(1− x0). We have f (x0,y0) > 0
if x0 < 1, and the tangent vector points to the right. Furthermore, we
have f (x0,y0)< 0 if x0 > 1, and the tangent vector points to the left.

x = 1
R0

On the y-nullcline x = 1
R0

, we have f (x0,y0) = ρ
(

1− 1
R0

)
− y0. We

have that y0 > ρ
(

1− 1
R0

)
if the point (x0,y0) is on the y-nullcline
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above the intersection of the y-nullcline with the x-nullcline. Hence,
f (x0,y0) < 0, and the tangent vector points to the left. Furthermore,

we have that y0 < ρ
(

1− 1
R0

)
if the point (x0,y0) is on the y-nullcline

below the intersection of the y-nullcline with the x-nullcline. Hence,
f (x0,y0)> 0, and the tangent vector points to the right.

3.3.2 Linearization

Just as with first-order nonlinear equations, we can obtain information about the
behavior of the solutions near an equilibrium through linearization. If (x∗,y∗) is
an equilibrium, we consider the perturbation of a solution starting from an initial
condition close to the equilibrium:

u(τ) = x(τ)− x∗ v(τ) = y(τ)− y∗.

We note again that u(τ) and v(τ) are functions of τ but are not necessarily nonneg-
ative. Writing x(τ) = u(τ)+ x∗, y(τ) = v(τ)+ y∗, and substituting in the original
system, we obtain

u′ = f (u+ x∗,v+ y∗),
v′ = g(u+ x∗,v+ y∗). (3.10)

Assuming that f and g have at least second-order continuous partial derivatives, we
expand in a Taylor series using the theorem for functions of two variables. We show
that expansion for f ; the process for g is the same.

f (u+ x∗,v+ y∗) = f (x∗,y∗)+ fx(x
∗,y∗)u(τ)+ fy(x

∗,y∗)v(τ)
+ fxx(x

∗,y∗)u2(τ)/2+ fxy(x
∗,y∗)u(τ)v(τ)

+ fyy(x
∗,y∗)v2(τ)/2+ · · · . (3.11)

The terms with the second partial derivatives are multiplied by u2, uv, and v2, all
second-order terms in the perturbations. If the perturbations are small, u ≈ 0 and
v ≈ 0, then the second-order terms are even smaller, so we may ignore them. Thus,

u′ ≈ f (x∗,y∗)+ fx(x∗,y∗)u(τ)+ fy(x∗,y∗)v(τ),
v′ ≈ g(x∗,y∗)+gx(x∗,y∗)u(τ)+gy(x∗,y∗)v(τ).

(3.12)

Since (x∗,y∗) is an equilibrium, f (x∗,y∗) = 0 and g(x∗,y∗) = 0. We obtain the lin-
earized system

u′ = fx(x∗,y∗)u(τ)+ fy(x∗,y∗)v(τ),
v′ = gx(x∗,y∗)u(τ)+gy(x∗,y∗)v(τ).

(3.13)
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The matrix of the partial derivatives of the functions f (x,y) and g(x,y) is called the
Jacobian matrix. The matrix of the system above is the Jacobian matrix evaluated at
an equilibrium (x∗,y∗). All entries of this matrix are given constants:

J =

(
fx(x,y) fy(x,y)
gx(x,y) gy(x,y)

)
|x=x∗,y=y∗ (3.14)

An important result, called the Hartman–Grobman theorem justifies draw-
ing conclusions about a nonlinear system from studying the linearized system. The
Hartman–Grobman theorem says roughly that the solutions of an n×n autonomous
system of ordinary differential equations in a neighborhood of a steady state look
“qualitatively” just like the solutions of the linearized system (3.13) near the point
(0,0). This result holds only when the equilibrium is a hyperbolic equilibrium,
that is, when none of the eigenvalues of J have zero real part.

3.3.3 Two-Dimensional Linear Systems

The linearized system (3.13) can be written in the form

u′ = au(τ)+bv(τ),
v′ = cu(τ)+dv(τ), (3.15)

where a,b,c,d are given constants. The system (3.15) is a two-dimensional linear
homogeneous system. The behavior of solutions of such systems has been com-
pletely studied. In this subsection, we review what is known about two-dimensional
linear systems. The equilibria of linear two-dimensional systems are solutions to the
linear system of equations

au(τ)+bv(τ) = 0,

cu(τ)+dv(τ) = 0. (3.16)

Such systems always have (0,0) as a solution. The equilibrium (0,0) is the only
equilibrium if the matrix

A =

(
a b
c d

)
(3.17)

of the system is invertible, that is, DetA �= 0. We will assume that this condition
holds, because if it doesn’t, there is a continuum of equilibria. Thus, we assume that
ad − bc �= 0. If the matrix A is obtained from the linearization and is the Jacobian
evaluated at an equilibrium (x∗,y∗), the condition DetJ �= 0 means that the equi-
librium is isolated; that is, there is a disk around it that does not contain other
equilibria. Looking for exponential solutions of the linearized system (3.15), we set

u(τ) = ūeλτ v(τ) = v̄eλτ ,
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where ū and v̄ are nonzero constants. Substituting in the system and canceling eλτ ,
we obtain the following system for ū and v̄:

aū+bv̄ = λ ū,
cū+dv̄ = λ v̄.

(3.18)

This is a linear homogeneous system for ū and v̄. We want this system to have a
nonzero solution, since our perturbations should be nonzero. This can happen only
if the determinant of the system is zero, so we have

∣∣∣∣a−λ b
c d −λ

∣∣∣∣= 0. (3.19)

By expanding the determinant (a−λ )(d−λ )−bc= 0, we obtain the characteristic
equation of the linearized system:

λ 2 − pλ +q = 0, (3.20)

where p = a+ d = TrJ, and q = ad − bc = DetJ. Thus p is the trace and q is the
determinant of the Jacobian matrix. The solutions of the characteristic equation are
called the eigenvalues of the Jacobian matrix. The main question that we address is
when the perturbations u and v approach zero, in which case the equilibrium (x∗,y∗)
will be locally asymptotically stable. Given the eigenvalues, we have three cases for
the solution of the system of perturbations (3.15).

Case 1 The eigenvalues of the Jacobian are real and distinct, say λ1 and λ2. In this
case, the solution of the system (3.15) is given by

u(τ) = C1eλ1τ +C2eλ2τ ,

v(τ) = C3eλ1τ +C4eλ2τ , (3.21)

where C1, . . . ,C4 are arbitrary constants. Clearly, in this case, u → 0 and
v → 0 if and only if λ1 < 0 and λ2 < 0.

Case 2 The eigenvalues of the Jacobian are real and equal, say λ . In this case, the
solution of the system (3.15) is given by

u(τ) = C1eλτ +C2τeλτ ,

v(τ) = C3eλτ +C4τeλτ , (3.22)

where C1, . . . ,C4 are arbitrary constants. Clearly, in this case, u → 0 and
v → 0 if and only if λ < 0.

Case 3 The eigenvalues of the Jacobian are complex conjugates, say λ1 = ξ +η i
and λ2 = ξ − η i. In this case, the real solution of the system (3.15) is
given by

u(τ) = C1eξ τ sinητ +C2eξ τ cosητ ,
v(τ) = C3eξ τ sinητ +C4eξ τ cosητ , (3.23)
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where C1, . . . ,C4 are arbitrary constants. Clearly, in this case, u → 0 and
v → 0 if and only if ξ < 0; that is, the eigenvalues have negative real part.

We summarize this result in the following widely used theorem.

Theorem 3.1. A necessary and sufficient condition for an equilibrium to be locally
asymptotically stable is that all eigenvalues of the Jacobian have negative real part.

For two-dimensional systems, there is a simple necessary and sufficient condition
that all eigenvalues of a matrix have negative real part.

Theorem 3.2. Assume that J is a 2× 2 matrix with constant entries and DetJ �= 0.
Assume that J has been obtained as a linearization around the equilibrium (x∗,y∗).
Then the equilibrium (x∗,y∗) is locally asymptotically stable if and only if

TrJ < 0 and DetJ > 0.

The equilibrium (x∗,y∗) is unstable if and only if

TrJ > 0 or DetJ < 0.

Remark 3.1. The asymptotic stability of the equilibrium (x∗,y∗) of the nonlinear
system is equivalent to the asymptotic stability of the (0,0) equilibrium of the lin-
ear system obtained from the linearization around the equilibrium (x∗,y∗). The only
exception occurs when Tr J = 0 and Det J > 0. In this case, the characteristic equa-
tion has eigenvalues with zero real part. Consequently, the (0,0) equilibrium of the
linear system may be stable, but there are no implications for the stability of the
(x∗,y∗) equilibrium of the nonlinear system.

The origin of a two-dimensional linear system can be classified as one of four types:
node, spiral, saddle, or center. In addition, the origin can be classified as stable or
unstable. This classification depends on whether the eigenvalues are real or complex,
positive or negative when real, or with positive or negative real part when complex.
We have the following cases:

Node The origin is said to be a node if the eigenvalues are real and of the same
sign. If the two eigenvalues are negative, the node is a stable node. If both
eigenvalues are positive, the node is an unstable node. If the eigenvalues
are real and equal, the node that corresponds to them is called degenerate.
If two eigenvectors correspond to the double eigenvalue, the degenerate
node is called proper. If only one eigenvector corresponds to the double
eigenvalue, the degenerate node is called improper.

Saddle The origin is a saddle if the eigenvalues are real and of opposite sign.
A saddle is always unstable.

Spiral The origin is a spiral (or focus) if the eigenvalues are complex with
nonzero real part. If the real part is negative, the focus is a stable focus; if
the real part is positive, the focus is an unstable focus.
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Center The origin is a center if the eigenvalues are complex with zero real part
(purely imaginary). In this case, every orbit is periodic. The center is stable
but not asymptotically.

The type of the equilibrium can be inferred from the coefficients of the characteristic
equation (3.20). See Table 3.2.

Table 3.2 Relations between the coefficients of the characteristic equation and the type of the
equilibrium

Coefficients Trace and determinant Type

q < 0 DetJ < 0 Saddle (unstable)
q > 0, p < 0, Δ = p2 −4q ≥ 0 DetJ > 0, Tr J < 0 Stable node
q > 0, p < 0, Δ = p2 −4q < 0 DetJ > 0, Tr J < 0 Stable focus
q > 0, p > 0, Δ = p2 −4q ≥ 0 DetJ > 0, Tr J > 0 Unstable node
q > 0, p > 0, Δ = p2 −4q < 0 DetJ > 0, Tr J > 0 Unstable focus
q > 0, p = 0 DetJ > 0, Tr J = 0 Center

3.4 Analysis of the Dimensionless SIR Model

We saw that the dimensionless SIR model (3.6) has two equilibria. The disease-
free equilibrium (1,0) always exists, while the endemic equilibrium E exists only if
R0 > 1.

3.4.1 Local Stability of the Equilibria of the SIR Model

The local stability of equilibria is determined by the eigenvalues of the Jacobian
computed at that equilibrium. The Jacobian of the dimensionless SIR model at an
equilibrium (x∗,y∗) is

J =

(−ρ −R0y∗ −R0x∗
R0y∗ R0x∗ −1

)
. (3.24)

To obtain the stability of the disease-free equilibrium, we evaluate J at (1,0):

J =

(−ρ −R0

0 R0 −1

)
. (3.25)

The two eigenvalues are λ1 = −ρ and λ2 = R0 − 1. Since the matrix is upper tri-
angular, the eigenvalues are the diagonal entries of the matrix. The first eigenvalue
is clearly negative. The second eigenvalue is negative if R0 < 1. In this case, the
disease-free equilibrium is a stable node. The second eigenvalue λ2 is positive if
R0 > 1. In this case, the disease-free equilibrium is unstable. It is a saddle.
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The next step is to investigate the local stability of the endemic equilibrium. We
consider the Jacobian at the endemic equilibrium:

J =

(−ρ −R0y∗ −R0x∗
R0y∗ R0x∗ −1

)
. (3.26)

We notice that from the equilibrium equations we have R0x∗ −1 = 0. The Jacobian
becomes

J =

(−ρ −R0y∗ −R0x∗
R0y∗ 0

)
. (3.27)

By inspection, the trace of this matrix is negative, Tr J =−ρ −R0y∗ < 0. The deter-
minant is given by DetJ =R2

0 x∗y∗ > 0. By Theorem 3.2, the endemic equilibrium
is locally asymptotically stable.

To determine the type of the endemic equilibrium, we consider the characteristic
equation ∣∣∣∣−ρ −R0y∗ −λ −R0x∗

R0y∗ −λ

∣∣∣∣= 0. (3.28)

Expanding the determinant, we obtain the characteristic equation of the endemic
equilibrium:

λ 2 +(ρ +R0y∗)λ +R2
0 x∗y∗ = 0.

Since the endemic equilibrium is explicitly known, we can express the coefficients
of the characteristic equation in terms of the parameters of the system:

ρ +R0y∗ = ρ +R0ρ
(

1− 1
R0

)
= ρR0,

R2
0 x∗y∗ = R2

0
1
R0

ρ
(

1− 1
R0

)
= ρ(R0 −1). (3.29)

The characteristic equation becomes

λ 2 +ρR0λ +ρ(R0 −1) = 0.

Hence the roots of the characteristic equation are λ1,2 = (−ρR0 ±
√

Δ)/2, where
Δ = (ρR0)

2 − 4ρ(R0 − 1). Hence if Δ > 0, the characteristic equation has two
negative real roots, and the endemic equilibrium is a stable node. If Δ < 0, then the
characteristic equation has two complex conjugate roots with negative real part. The
endemic equilibrium in this case is a stable focus. The dependent variables x(τ) and
y(τ) tend to the endemic equilibrium through damped oscillations (see Fig. 3.6).
We can compute an approximate period of the oscillation by noting that the mean
infectious period 1

α is much shorter than the mean lifespan 1
μ . That implies that

α 	 μ and ρ ≈ 0. Hence ρ2 is very small and can be neglected. Neglecting the
quadratic roots for ρ from the expression for the roots of the characteristic equa-
tion, we obtain λ1,2 =−ρR0/2± i

√
ρ(R0 −1) = ξ ±η i. Then the solutions of the

linearized problem are of the form Ceξ τ cosητ , that is, functions that oscillate with
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Fig. 3.6 Damped oscillations in the proportion of infectives x(τ) of the dimensionless SIR model;
ρ = 0.01, R0 = 2

decreasing amplitude and approximate period equal to 2π/η . Thus, the solution
exhibits damped oscillations with period T given by

T =
2π√

ρ(R0 −1)
.

The following theorem summarizes the results on existence and stability of equilib-
ria of the SIR model with demography.

Theorem 3.3. Assume R0 < 1. Then there exists a unique equilibrium, the disease-
free equilibrium (1,0), which is locally stable. If R0 > 1, there are two equilibria:
the disease-free equilibrium (1,0), which is unstable, and the endemic equilibrium
E , which is locally asymptotically stable.

3.4.2 The Reproduction Number of the Disease R0

The expression for R0 in terms of the original parameters of the system is

R0 =
βΛ

μ(α +μ)
.

The parameter R0 is the reproduction number of the disease.
Epidemiologically, the reproductive number of the disease tells us how many sec-

ondary cases one infected individual will produce in an entirely susceptible popula-
tion during its period as an infective. Can we see this in the expression that gives R0?

1. Notice that a population that consists of only susceptible individuals has Λ
μ indi-

viduals in the long run.
2. Notice that α + μ is the rate at which individuals leave the infective class. This

means that the average time spent as an infective individual is 1
α+μ time units.
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3. The number of transmissions per unit of time is given by the incidence rate β IS.
If there is only one infective, I = 1, and everybody else is susceptible, S = Λ

μ ,

then the number of transmissions by one infective per unit of time is βΛ
μ .

4. Thus, the number of transmissions that one infective individual can make during
the entire time he/she remains infective if everybody else is susceptible is

βΛ
μ(α +μ)

.

And this is exactly R0.

The reproduction number of the disease has the following threshold role:

1. If R0 < 1, then there exists only the disease-free equilibrium. It can be shown
that it is attractive, so that every solution of the ODE system approaches this
equilibrium, and the disease disappears from the population.

2. If R0 > 1, then there are two equilibria: the disease-free equilibrium and the
endemic equilibrium. The disease-free equilibrium is not attractive in the sense
that solutions of the ODE system that start very close to it tend to move away.
The endemic equilibrium is attractive, so that solutions of the ODE system app-
roach it as time goes to infinity. Thus, in this case, the disease remains endemic
in the population.

3.4.3 Forward Bifurcation

The expression for the endemic equilibrium E shows that the dimensionless quantity
corresponding to infective individuals y∗ is a function of the disease reproduction
number R0. It is customary to plot the infective individuals (or y∗) as a function
of R0 in the positive (x,y)-plane, where the x-axis is the reproduction number R0,
and the y-axis is the equilibrium level of the infective individuals y∗. This produces a
bifurcation diagram called a forward bifurcation diagram, since the endemic equi-
librium bifurcates “forward” and exists only for values of the reproduction number
greater than one. We have

y∗ =

{
0 for all R0 < 1

ρ
(

1− 1
R0

)
R0 > 1.

(3.30)

The plot is given in Fig. 3.7.
We plot the locally stable equilibria with solid lines and the unstable equilibria

with dashed lines. Hence, since the disease-free equilibrium y∗ = 0 is locally asymp-
totically stable for R0 < 1, it is plotted with a solid line. The endemic equilibrium
is also locally asymptotically stable for R0 > 1 and is also plotted with a solid line.
The disease-free equilibrium is unstable for R0 > 1, and it is plotted with a dashed
line.
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Fig. 3.7 Forward bifurcation diagram with respect to the reproduction number. Continuous lines
denote stable equilibria. Dashed lines denote unstable equilibria

3.5 Global Stability

An equilibrium is called globally stable if it is stable for almost all initial conditions,
not just those that are close to it. Global stability of an equilibrium cannot always
be proved. An equilibrium that is locally stable may be globally stable if there are
no other locally stable equilibria coexisting with it. For the SIR model, we have two
cases. In the case R0 < 1, the disease-free equilibrium is the only equilibrium, and it
is locally asymptotically stable. It may be expected that it is also globally stable. We
establish that in the next subsection. In the case R0 > 1, the endemic equilibrium is
the only locally stable equilibrium, so we may expect that it is also globally stable.
We establish that later.

3.5.1 Global Stability of the Disease-Free Equilibrium

Global stability of the disease-free equilibrium can be established for many models,
particularly for models for which the disease-free equilibrium is the only equilib-
rium when R0 < 1. We note that global stability of the disease-free equilibrium
cannot be established for all models. Establishing global stability for the SIR model
is perhaps possible through many different techniques. We present one that works
well for many models, including partial differential equation models.

Theorem 3.4. Assume R0 < 1. Then the disease-free equilibrium is globally stable.

Proof. Working again with the dimensionless SIR model (3.6), we first notice that
if x(0)> 1, then x′(τ)< 0, so x(τ) is a decreasing function if x > 1. Assume τ0 > 0
exits such that x(τ0) = 1; then x′(τ0) < 1 and x(τ) ≤ 1 for all τ ≥ τ0. If x(0) ≤ 1,
we may take τ0 = 0. We consider the equation for y(τ):

y′(τ) = (R0x−1)y(τ). (3.31)
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For τ ≥ τ0, we have

y′(τ)≤ (R0 −1)y(τ).

Integrating, we have y(τ)= y(τ0)e(R0−1)(τ−τ0). Hence if R0 < 1, then limτ→∞ y(τ)=
0. It is somewhat more cumbersome to see that x → 1. First, we notice that
limsupτ→∞ x ≤ 1. We need limsup, since we do not know that the limit actually
exists. From the equation for x, we have

x′ ≤ ρ(1− x),

which can be solved in the same way as the corresponding equality would be solved.
We have

x(τ)≤ e−ρτ x(0)+ρ
∫ τ

0
e−ρ(τ−s)ds.

Hence limsupτ→∞ x ≤ 1. On the other hand, since limτ→∞ y = 0, this implies that
for every ε , there exists τ0 > 0 such that y ≤ ε for τ > τ0. For these values of τ , we
have

x′ ≥ ρ(1− x)− εR0x.

Integrating the inequality, we obtain

x(τ)≥ e−(ρ+εR0)τ x(0)+ρ
∫ τ

0
e−(ρ+εR0)(τ−s)ds.

This inequality implies that

liminf
τ→∞

x ≥ ρ
ρ + εR0

.

Since the inequality holds for every ε , this means that liminfτ→∞ x≥ 1. Furthermore,
the liminf and the limsup are the same, the limit as τ → ∞ of x exists, and

lim
τ→∞

x = 1.

This completes the proof of the global stability of the disease-free equilibrium. ��

3.5.2 Global Stability of the Endemic Equilibrium

We consider again the dimensionless SIR model

x′ = ρ(1− x)−R0xy,
y′ = (R0x−1)y.

(3.32)
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This is a planar system. There is theory developed specifically for planar systems
that can facilitate understanding of the solution behavior and the proof of global sta-
bility. To introduce the main results of that theory, consider a general planar system

x′ = f (x,y) x(0) = u0
1,

y′ = g(x,y) y(0) = u0
2.

(3.33)

Let u(t) = (x(t),y(t)) be a solution curve with initial condition u0 = (u0
1,u

0
2).

Definition 3.4. The omega limit set of the point u0, denoted by ω(u0), consists of
all points a ∈ R2 for which there is a sequence t j, j = 1,2, . . . , such that

u(t j)→ a t j → ∞.

Definition 3.5. A homoclinic orbit is a trajectory of a flow of a dynamical system
that joins a saddle equilibrium point to itself. A heteroclinic orbit (sometimes called
a heteroclinic connection) is a path in phase space that joins two different equilib-
rium points.

A manifold is a mathematical space that on a small scale resembles Euclidean space
of a specific dimension. For instance, a line and a circle are one-dimensional mani-
folds, while a plane and a sphere are two-dimensional manifolds.

Definition 3.6. A separatrix is a phase curve that meets a hyperbolic equilibrium
point or connects the stable and unstable manifolds of a pair of equilibrium points.
A separatrix marks a boundary between sectors with phase curves with different
properties.

Definition 3.7. A separatrix cycle consists of the union of a finite number of equi-
libria p j for j = 1, . . . ,m and separatrices Γj such that the flow on Γj is from p j to
p j+1 and pm+1 = p1.

Definition 3.8. A compound separatrix cycle or a graphic is the union of a finite
number of compatibly oriented separatrix cycles.

The types of omega limit sets for an arbitrary orbit of a planar system is given by
the following theorem.

Theorem 3.5 (Poincaré–Bendixson Trichotomy). Assume that X ⊆ R2, where X
is an open set, contains only finitely many equilibria. Let u(t) be a solution in X that
is defined and bounded on [0,∞) with ω(u0)⊆ X. Then one of the following holds:

1. ω(u0) consists of an equilibrium.
2. ω(u0) is a periodic orbit.
3. ω(u0) a graphic.

Assume that X is the open first quadrant. If R0 > 1, then the dimensionless SIR
model has a unique equilibrium in X , the endemic equilibrium. Hence, the omega
limit set of every initial point in X is the endemic equilibrium, a potential periodic
orbit, or a graphic. To rule out possible periodic orbits and graphics inside X , one
can use the Dulac–Bendixson criterion, which applies to planar systems only.
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Theorem 3.6 (Dulac–Bendixson Criterion). Let Z ⊆ X be open and simply con-
nected. Assume the following:

1. The functions f and g are continuously differentiable on Z.
2. There exists a function D : Z → R, continuously differentiable on Z, such that

∂ (D f )
∂x

+
∂ (Dg)

∂y

is either strictly positive almost everywhere on Z or strictly negative almost ev-
erywhere on Z.

Then Z contains no periodic orbits or graphics.

Definition 3.9. The function D is called the Dulac function.

If D ≡ 1, then the Dulac criterion is refereed to as the Bendixson criterion.

Theorem 3.7. Assume R0 > 1. The system (3.6) has no periodic orbits or graphics
in R2

+.

Proof. We will apply the Dulac–Bendixson criterion. Let Z = X be the open first
quadrant. Let f (x,y) = ρ(1− x)−R0xy and g(x,y) = (R0x− 1)y. Applying the
Dulac–Bendixson criterion directly with D = 1 gives

∂ f
∂x

+
∂g
∂y

=−ρ −R0y+R0x−1.

This expression has unspecified sign, which potentially may change. The term that
disrupts the definiteness of the sign is R0x. Thus, we have to “eliminate” this term.
This suggests that we use D(x,y) = 1/y. We take Z to be the open first quadrant.
Then D is continuously differentiable in Z. Furthermore, we have

∂D f
∂x

+
∂Dg
∂y

=−ρ
y
−R0 < 0.

Thus, the system has no periodic orbits or graphics in the open first quadrant. This
implies that choices two and three of the Poincaré–Bendixson theorem are ruled out
as an option. ��
The next theorem shows the global stability of the endemic equilibrium for system
(3.6).

Theorem 3.8. Assume R0 > 1. The endemic equilibrium (x∗,y∗) of system (3.6) is
globally stable whenever I(0)> 0.

Proof. We apply Poincaré-Bendixson theorem. First, we have to show that all so-
lutions of system (3.6) are bounded. To see this, we add the two equations in (3.6).
Set ρ̂ = min{ρ ,1}. Then

x′+ y′ ≤ ρ − ρ̂(x+ y).
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Hence,

x+ y ≤ κe−ρ̂t +
ρ
ρ̂
(1− e−ρ̂t),

where κ is the value of the initial condition. We obtain that

limsup
t

(x+ y)≤ ρ
ρ̂
,

that is, solutions remain bounded. We conclude that the first quadrant is positively
invariant with respect to the solutions of (3.6) and contains the omega limit set
of every initial condition. Therefore, we can apply Poincaré–Bendixson theorem.
When R0 > 1, if y(0) = 0, then the solutions will stay on the x-axis and converge
to the disease-free equilibrium. If y(0) > 0, that is, u0 = (x(0),y(0)) ∈ X , then we
claim that the disease-free equilibrium does not belong to the omega limit set of u0.
Suppose the disease-free equilibrium belongs to ω(u0). Then, since the disease-free
equilibrium is an unstable saddle, it has a stable manifold that is given by the x-axis.
That is the case, because each solution that starts from y(0) = 0, that is, that starts on
the x-axis, stays on the x-axis and converges to the disease-free equilibrium. Hence,
the stable manifold of the disease-free equilibrium is not in X . Hence, ω(u0) would
have to contain another equilibrium, namely the endemic equilibrium. But since the
endemic equilibrium is locally asymptotically stable, every solution that gets close
to it, stays close to it. Therefore, the disease-free equilibrium does not belong to
ω(u0). Hence, the omega limit set of u0 consists of the endemic equilibrium only.
All solutions with I(0)> 0 converge to the endemic equilibrium. ��

3.6 Oscillations in Epidemic Models

In the previous sections, we saw that the most basic SIR epidemic model has a
unique endemic equilibrium, which is globally stable if R0 > 1. This means that
every solution converges to a stationary state. On the other hand, many times, the
incidence or the prevalence data of various diseases exhibit periodicity. This is par-
ticularly true of childhood diseases. For instance, data on measles in New York City
for the period 1928–1963 suggests that the disease persisted in the form of peri-
odic outbreaks. That can be clearly seen from the monthly case data on measles for
New York City, illustrated in Fig. 3.8.

Can simple epidemic models capture the oscillations exhibited in data? That
would be the case if the epidemic model had a stable periodic solution. System
(3.7) has a periodic solution (or a cycle) if there is an orbit (x(t),y(t)) such that
x(t +T ) = x(t) and y(t +T ) = y(t) for some appropriate value T , called the period.
The cycle is stable if solutions that start from close initial conditions converge to the
cycle. It is well known that ODE models that reduce to a one-dimensional dynam-
ical system do not have cycles, and cannot capture oscillations in data. However,
planar ODE systems, including planar epidemic models, can exhibit periodicity.
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Fig. 3.8 Monthly case data for measles for New York City in the period 1928–1963. The data are
given as data points. The continuous curve is an interpolation. The figure clearly shows recurrent
outbreaks

The periodic solutions typically arise from a single endemic equilibrium that loses
stability through a bifurcation called a Hopf bifurcation. Hopf bifurcations occur
when a pair of complex conjugate eigenvalues of the linearization around a nontriv-
ial fixed point cross the imaginary axis of the complex plane with nonzero speed. In
that case, a stable limit cycle may bifurcate from the fixed point, which at the same
time loses stability. Hopf bifurcations occur in planar ODE systems as well as in
higher-dimensional systems.

The existence of a periodic solution can be deduced from the Hopf bifurcation
theorem, which we state below for planar systems. To introduce the theorem, we
need to restate the problem (3.7) to include a parameter. We write the system (3.7)
in the form

x′ = f (x,y; μ),
y′ = g(x,y; μ), (3.34)

where we explicitly acknowledge that f and g depend on the parameter μ . Further-
more, let (x∗(μ),y∗(μ)) be an equilibrium of the system (3.34) that also depends on
the parameter. We linearize the system (3.34) around the equilibrium (x∗(μ),y∗(μ)).
The Jacobian of the linearization is given by

J(x∗(μ),y∗(μ)) =
(

fx(x∗,y∗; μ) fy(x∗,y∗; μ)
gx(x∗,y∗; μ) gy(x∗,y∗; μ)

)
. (3.35)

Assume that the Jacobian has eigenvalues λ± = α(μ)± iβ (μ), where i =
√−1. In

terms of the trace of the Jacobian, TrJ, and determinant of the Jacobian, DetJ, the
eigenvalues are given by

λ± =
TrJ±

√
(TrJ)2 −4DetJ

2
. (3.36)
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For a Hopf bifurcation to occur, we must have, for some parameter value μ = μ0,
that the following conditions hold:

TrJ(x∗(μ0),y
∗(μ0)) = 0,

DetJ(x∗(μ0),y
∗(μ0)) > 0. (3.37)

When these conditions are satisfied, the eigenvalues of the Jacobian are purely imag-
inary. If in addition to the above conditions, the transversality condition is satisfied,

d
dμ

α(μ)|μ=μ0
= d �= 0, (3.38)

then a Hopf bifurcation occurs at the bifurcation point (x∗(μ0),y∗(μ0); μ0). At such
a Hopf bifurcation for some μ near μ0, small-amplitude oscillations (limit cycles)
bifurcate from the equilibrium solution. The amplitude of these oscillations ap-
proaches zero as μ approaches μ0. Hopf theory guarantees the existence of such
periodic orbits for μ ≈ μ0 only; it does not guarantee the existence of the oscilla-
tions for μ farther away from μ0.

To state the Hopf bifurcation theorem, we rewrite system (3.34) in the form

x′ = j11(μ)x+ j12(μ)y+ f1(x,y; μ),
y′ = j21(μ)x+ j22(μ)y+g1(x,y; μ), (3.39)

where j11(μ)= fx(x∗,y∗; μ), j12(μ)= fy(x∗,y∗; μ), j21(μ)= gx(x∗,y∗; μ), j22(μ)=
gy(x∗,y∗; μ). The complete Hopf bifurcation theorem, which is given below, gives
also a third condition that is rarely checked.

Theorem 3.9 (Hopf Bifurcation Theorem). Let f and g in (3.34) have continuous
third-order derivatives in x and y. Assume that (0,0) is an equilibrium of (3.39) and
that the Jacobian matrix J defined by (3.35) is valid for all values of μ ≈ μ0. In
addition, assume that the eigenvalues of J are α(μ)± iβ (μ). Suppose in addition
that for μ = μ0, the following conditions hold:

1. Nonhyperbolicity condition: α(μ0) = 0 and β (μ0) = ω �= 0.
2. Transversality condition: the eigenvalues cross the imaginary axis with nonzero

speed

d
dμ

α(μ)|μ=μ0
= d �= 0. (3.40)

3. Genericity condition: a �= 0, where

a =
1

16
( fxxx + fxyy +gxxy +gyyy)

+
1

16ω
( fxy( fxx + fyy)−gxy(gxx +gyy)− fxxgxx + fyygyy) ,

(3.41)

where fxy =
∂ 2 f
∂x∂y |μ=μ0(x

∗,y∗), etc.

Then system (3.34) has a periodic solution for μ > μ0 if ad < 0 and for μ < μ0 if
ad > 0. In the case ad < 0, the bifurcation is called supercritical, and the bifurcating



3.6 Oscillations in Epidemic Models 59

periodic solution is stable. In the case ad > 0, the bifurcation is called subcritical,
and the bifurcating periodic solution is unstable. An approximate period of the pe-
riodic solution is given by

T =
2π
ω

.

Before we continue with an example of Hopf bifurcation, we summarize the
options for the stability of an equilibrium in a planar system based on the use of
the trace and the determinant of the Jacobian. This theorem gives a quick and very
efficient way to deduce the stability of an equilibrium.

Theorem 3.10. Consider the planar system

x′ = f (x,y),
y′ = g(x,y),

(3.42)

and let (x∗,y∗) be an equilibrium of that system. Then the Jacobian of system (3.42)
evaluated at that equilibrium is given by

J(x∗,y∗) =
(

fx(x∗,y∗) fy(x∗,y∗)
gx(x∗,y∗) gy(x∗,y∗).

)
. (3.43)

The following results give the stability of the equilibrium (x∗,y∗):

1. Equilibrium (x∗,y∗) is locally asymptotically stable if and only if TrJ < 0 and
DetJ > 0.

2. Equilibrium (x∗,y∗) is a saddle if and only if DetJ < 0.
3. Equilibrium (x∗,y∗) loses stability and undergoes Hopf bifurcation if and only if

for some value of the parameter μ , called μ0, the following hold:

TrJ(x∗(μ0),y
∗(μ0)) = 0,

DetJ(x∗(μ0),y
∗(μ0)) > 0. (3.44)

In addition, we must also have

dTrJ
dμ

|μ=μ0 �= 0.

To illustrate the application of the Hopf bifurcation theorem, we consider a sim-
ple modification of the SIR model (3.3). Assume that the transmission coefficient of
infection β is not constant but linear in the number of infecteds: β (1+νI), where
ν > 0 is a parameter. This means that either the contact rate increases with the
number of infectious individuals or the probability of transmission does so. Thus,
new infections occur at a much faster pace compared to the standard mass action
incidence. The model becomes [6]

S′(t) = Λ −β (1+νI)IS−μS,

I′(t) = β (1+νI)IS− (α +μ)I, (3.45)
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where we have omitted the equation for recovered individuals R. We will investigate
this model without nondimensionalizing it. The total population size N = S+ I +R
satisfies N′ = Λ − μN. We assume that the initial total population size is given by

N0 = S0+ I0+R0. The disease-free equilibrium E0 =
(

Λ
μ ,0

)
of model (3.45) always

exists. The reproduction number of the model (3.45) is given by

R0 =
Λβ

μ(μ +α)
. (3.46)

It can be shown (see Problem 3.3) that the disease-free equilibrium is locally stable
if R0 < 1 and unstable if R0 > 1.

The endemic equilibria of the system are solutions to the following system:

Λ −β (1+νI)IS−μS = 0,

β (1+νI)S− (α +μ) = 0. (3.47)

From the second equation, we see that β (1+νI)S = (α +μ). Substituting this ex-
pression into the first equation, we can express S in terms of I:

S =
Λ
μ
− μ +α

μ
I. (3.48)

Hence, substituting in β (1+ νI)S = (α + μ), we obtain the following quadratic
equation for I:

(1+νI)

[
Λ
μ
− μ +α

μ
I

]
=

μ +α
β

. (3.49)

If we denote by f (I) the parabola on the left-hand side of (3.49), then the endemic
equilibria of model (3.45) are given by the intersections of the parabola with the
horizontal line y = (μ +α)/β (see Fig. 3.9). If f (0)> (μ +α)/β , or equivalently,
if R0 > 1, then there is always a unique (positive) equilibrium E ∗ = (S∗, I∗). That
is the scenario that is shown in Fig. 3.9. If f (0) < (μ +α)/β , or equivalently, if
R0 < 1, then there may be two equilibria if the maximum of the parabola occurs
to the right of the y-axis and the horizontal line lies below the maximum of the
parabola. Since the maximum of the parabola is achieved at

Im =
1

2ν

[
Λν

μ +α
−1

]
,

the maximum of the parabola is to the right of the y-axis if and only if Im > 0. Hence,
there will be two endemic equilibria if the maximum of the parabola is above the
horizontal line, that is, if

(1+νIm)

[
Λ
μ
− μ +α

μ
Im

]
>

μ +α
β

. (3.50)
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Fig. 3.9 The graph shows intersections of the function f (I) with the horizontal line y= (μ +α)/β
in Eq. (3.49). Each intersection gives one nontrivial equilibrium of the model (3.45). The figure
shows the case R0 > 1, and there is a unique (positive) equilibrium I∗

If two endemic equilibria exist, we denote them by E1 = (S∗1, I
∗
1 ) and E2 =

(S∗2, I
∗
2 ), where I∗1 < I∗2 and the corresponding value of S is computed from (3.48).

The stability of the equilibria is given by the Jacobian

J =

(−β (1+νI)I−μ −βνIS− (μ +α)
β (1+νI)I βνIS

)
, (3.51)

where we have used the equality β (1+ νI)S = (α + μ) to simplify the Jacobian.
The characteristic equation of the Jacobian |J −λ I| = 0 is a quadratic polynomial
in λ given by

λ 2 +Bλ +C = 0, (3.52)

where B and C are given by

B = μ +β (1+νI)I−βνIS

C = β (1+νI)I(μ +α)−μβνIS, (3.53)

and I is any equilibrium. We note that the endemic equilibria differ in the slope of
the tangent line to the curve of f (I) at each equilibrium. In particular, if R0 > 1,
the slope of the tangent at the equilibrium satisfies f ′(I∗) < 0. When there are two
equilibria, we have f ′(I∗1 )> 0 while f ′(I∗2 )< 0. The slope of f (I) is given by

f ′(I) =
μ +α

μ

[
Λν

μ +α
−1−2νI

]
.

On the other hand, C can be rewritten in the form (where S has been replaced with
(3.48))
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C = (μ +α)β I

[
1+2νI − Λν

μ +α

]
.

It is evident from the above two expressions that the sign of C is opposite the sign of
f ′(I). Hence, if R0 > 1, the unique endemic equilibrium I∗ gives C > 0. When R0 <
1 and there are two equilibria, we have for the lower one C < 0 and for the upper
one C > 0. Hence, when two equilibria are present, the lower one E1 is unstable,
since C < 0 means that the characteristic equation (3.52) has one positive and one
negative root. The local stability of E ∗ and E2 depends on the sign of B. If B > 0,
then each of these equilibria is stable. However, for some value of the parameter
ν = ν0, we may have

μ +β (1+ν0I)I −βν0IS = 0,

and then a Hopf bifurcation may occur. To see that this condition may hold, we
exhibit a specific numerical example. To decide on parameter values, we first decide
on a time unit. We will measure time in years. Since 1/μ gives an average lifespan
of individuals, if we take μ = 0.2, that will give a lifespan of 5 years. For the human
population, that lifespan will be adequate for some childhood diseases. The lifespan
can describe well many animal populations. Furthermore, 1/α corresponds to a
duration of infectiousness. Hence, if we take α = 26, that will correspond to duration
of infectiousness of about 2 weeks. The remaining parameters are taken as β =
0.005 and Λ = 1250. We think of B(ν) = μ + β (1+ νI)I − βνIS as a function
of the parameter ν . Since these parameters give R0 = 1.19275, we focus on the
stability of the endemic equilibrium E ∗. We note that I∗ and S∗ are also functions of
ν . We plot B(ν) against ν in Fig. 3.10.

We check the transversality condition for E ∗ also numerically. We notice that the
real part of the eigenvalues of (3.52) is given by

ℜ(λ ) =
−(μ +β (1+νI)I−βνIS)

2
.

0.0006 0.0007 0.0008 0.0009 0.0010
n

−0.05

0.05

0.10

B( n )

Fig. 3.10 The graph of B(ν) shows clearly that B changes sign as the parameter ν passes through
the critical value ν0 = 0.000846293
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To differentiate ℜ(λ ) with respect to ν , we have to differentiate B(ν) with respect
to ν and evaluate the results at ν = ν0. Figure 3.10 suggests that

dB(ν)
dν

|ν=ν0 < 0.

Differentiating the real part of the roots of the characteristic equation (3.52), we
have

∂ℜ(λ )
∂ν

=−1
2

dB(ν)
dν

|ν=ν0 > 0.
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Fig. 3.11 The graph shows oscillations in the (S, I)-plane that converge to a periodic orbit. Initial
conditions are S(0) = 40,000, I(0) = 15. The plot is made for t ≥ 200

Hence, the transversality condition is satisfied. Assuming a �= 0, we may con-
clude from the Hopf bifurcation theorem that a periodic solution bifurcates from
the stable endemic equilibrium E ∗. We cannot conclude that the bifurcation is su-
percritical or subcritical without computing a. Therefore, we do not know whether
the bifurcating solution is stable. We checked the stability of the bifurcating os-
cillatory solution numerically. We chose ν = 0.00117. The equilibrium is given
by E ∗ = (5191,8). The real part of the roots of the characteristic equation is
ℜ(λ ) = 0.054228. From the simulations we performed, it appears that the bifur-
cating oscillatory solution in this case is stable (see Fig. 3.11), and the number of
susceptible and infected individuals tend to a periodic orbit.

Problems

3.1. Census data for the population of the United States (in millions) are given in
Table 3.3. Fit each of the three population models, Malthus model, logistic model,
and constrained logistic model, to the data and determine the least-squares error.
Which model fits the data best?
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Table 3.3 Population of the US (in millions)

Year Population (million) Year Population (million)

1790 3.9 1910 92.0
1800 5.3 1920 105.7
1810 7.2 1930 122.8
1820 9.6 1940 131.7
1830 12.9 1950 150.7
1840 17.1 1960 179.0
1850 23.1 1970 205.0
1860 31.4 1980 226.5
1870 38. 6 1990 248.7
1880 50.2 2000 281.4
1890 62.9 2010 310.0
1900 76.0 – –

3.2. Consider the following SIS epidemic model with disease-induced mortality γ:

S′ = Λ −β IS+αI −μS,

I′ = β IS− (α + γ +μ)I, (3.54)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is the recovery rate, Λ is the birth rate, μ is the natural death rate.

(a) Sketch the nullclines of the system and the direction of the vector field along
them. Confirm your results by plotting the vector field with solutions.

(b) Determine the reproduction number and equilibria of the system.
(c) Calculate the Jacobian of each equilibrium and determine the stability.
(d) Use the Dulac criterion to rule out periodic solutions.
(e) Use the Poincaré–Bendixson theorem to show convergence to equilibrium.

3.3. Consider model (3.45):

S′(t) = Λ −β (1+νI)IS−μS,

I′(t) = β (1+νI)IS− (α +μ)I, (3.55)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is the recovery rate, Λ is the birth rate, μ is the natural death rate,
and ν is a proportionality constant.

(a) Derive the reproduction number R0 for that model.

(b) Show that the disease-free equilibrium
(

Λ
μ ,0

)
is locally stable if R0 < 1 and

unstable if R0 > 1.
(c) Argue that if R0 > 1, there is always a unique endemic equilibrium.
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3.4. Non-dimensionalization
Consider the SIS model with saturating incidence in the size of the susceptibles.

S′(t) = Λ − β IS
1+σS

+αI −μS,

I′(t) =
β IS

1+σS
− (α +μ)I. (3.56)

(a) What are the units of the parameters?
(b) Rescale the system above into a nondimensional system both in the time vari-

able and in the dependent variables.
(c) Determine conditions for the existence of an endemic equilibrium.

3.5. Multiple Equilibria
Consider the following SIS epidemic model with disease-induced mortality γ:

S′ = Λ − β IS
A+ I2 +αI −μS,

I′ =
β IS

A+ I2 − (α + γ +μ)I, (3.57)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is the recovery rate, Λ is the birth rate, μ is the natural death rate.

(a) Determine the reproduction number and equilibria of the system.
(b) Sketch the nullclines of the system and the direction of the vector field along

them. Confirm your results by plotting the vector field with solutions.
(c) Calculate the Jacobian of each equilibrium and determine the stability.
(d) Use the Dulac criterion to rule out periodic solutions.

3.6. Fox Rabies
The following model has been proposed to model fox rabies [26]:

S′ = rSe−aS −β IS−μS,

I′ = β IS− (α +μ)I, (3.58)

where S is the number of susceptibles, I is the number of infected, β is the transmis-
sion rate, α is the disease-induced death rate, r and a are constants associated with
declining with population size per capita birth rate re−aS, and μ is the natural death
rate.

(a) Determine the reproduction number and equilibria of the system.
(b) Sketch the nullclines of the system and the direction of the vector field along

them. Confirm your results by plotting the vector field with solutions.
(c) Calculate the Jacobian of each equilibrium and determine the stability.
(d) Use the Dulac criterion to rule out periodic solutions.
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3.7. Hopf Bifurcation
The following model has been proposed to model the saturating contact rate:

S′ = rS

(
1− S

K

)
− β IS

1+αS
−μS,

I′ =
β IS

1+αS
− (γ +μ)I, (3.59)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is a parameter that measures the inhibitory effect, γ is the recovery
rate, r and K are constants associated with the logistic population growth, and μ is
the natural death rate.

(a) Determine the reproduction number and equilibria of the system.
(b) Calculate the Jacobian of each equilibrium and determine the stability.
(c) Use the Hopf bifurcation theorem to show the presence of periodic solutions.

Use a computer algebra system to graph the periodic solution in the phase plane
together with the vector field.
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