
Chapter 16
Discrete Epidemic Models

16.1 Single-Species Discrete Population Models

The continuous population models that we have considered in previous chapters
model population and epidemic processes that occur continuously in time. In partic-
ular, they assume that births and deaths in the population occur continuously. This
assumption is true for the human population, but many insect and plant populations
have discrete, nonoverlapping generations. Such populations reproduce during spe-
cific time intervals of the year. Consequently, population censuses are taken at those
specific times. As a result, modeling such populations and the distribution of dis-
ease in them should happen at discrete times. In this chapter we introduce discrete
single-species population and epidemic models.

16.1.1 Simple Discrete Population Models

We assume that we measure the population at discrete, equally spaced, moments of
time: t0, t1, . . . , tn, . . . , and we find that the population numbers at these moments of
time are Nt , where t takes the values of t0, t1, . . . , tn, . . . . For simplicity, we will set
Ntn = Nn. Thus, the population size is described by a sequence: N1,N2, . . . ,Nn, . . . .
A discrete population model can be written in the following general form:

Nn+1 =F (Nn), (16.1)

where F is a specified function of Nn. That is, if we know the population size at
time tn, the model tells us what the populations size at time tn+1 should be. Such a
model is equipped with a given initial condition: the population size N0 at time t0 is
given. Another way to rewrite Eq. (16.1) is

Nn+1 = Nn f (Nn). (16.2)
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416 16 Discrete Epidemic Models

The function f (Nn) is called a fitness function or per capita rate of population
growth or net reproduction rate.

Definition 16.1. Equations of the form (16.1) are called difference equations.

Such difference equations are of first order, because they contain only one time step.
They are also autonomous, because F does not depend explicitly on the time tn. The
simplest discrete population model is derived under the assumption that individuals
die with constant probability d. Furthermore, we assume that b individuals are born
per individual in the population. The model then becomes

Nn+1 = Nn +bNn −dNn,

that is, the number of individuals at the time step tn+1 is the number from the time
step tn plus those who have been born, minus those who have died. Defining R =
1+b−d, we obtain the following linear discrete equation of population growth:

Nn+1 =RNn. (16.3)

The parameter R is called the net reproduction number. We note that R > 0, since
b and d are probabilities and are less than one. Model (16.3) is a discrete ana-
logue of the Malthusian equation. Equation (16.3) is a special case of Eq. (16.2)
with f (Nn) =R. Model (16.3) can be solved. Given initial population size N0, we
have

N1 =RN0,
N2 =RN1 =R2N0,
...
Nn =RNn−1 =RnN0.

(16.4)

If R > 1, then each individual on average leaves more than one descendant, and the
population grows geometrically. If R < 1, then each individual leaves fewer than
one descendant, and the population declines geometrically. If R = 1, the population
remains constant. These model predictions are valid under the assumption that the
resources are unlimited.

In practice, populations do not experience unlimited growth, so models that pre-
dict asymptotically bounded growth are more realistic. One such model is the dis-
crete analogue of the logistic equation. To derive such an analogue, we approximate
the continuous time derivative with Nn+1 −Nn, assuming that the time step is equal
to one. Thus the discrete logistic equation takes the form

Nn+1 = Nn + rNn

(
1− Nn

K

)
. (16.5)

First we factor Nn and r+1. Furthermore, we make the following changes in depen-
dent variables and parameters:

yn =
r

r+1
Nn

K
a = r+1.
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We obtain a classical form for the discrete logistic equation:

yn+1 = ayn(1− yn).

This method for producing discrete equations is not foolproof, however. The dis-
crete logistic equation above is not well posed, in the sense that its solutions can
become negative. This is not hard to see. Suppose we start from y0 = 0.5 and a = 6.
Then y1 = 1.5. Consequently, y2 < 0. Thus, the logistic equation is not a very good
discrete population model.

We can derive a discrete version of the simplified logistic model. Suppose the
population increases in each time interval by a constant amount Λ , and that γ ≤ 1 is
the probability for survival of individuals to the next time period. Then the simpli-
fied logistic model takes the form

Nn+1 = Λ + γNn. (16.6)

This model can also be solved explicitly:

N1 = Λ + γN0,
N2 = Λ + γ(Λ + γN0) = γ2N0 +(1+ γ)Λ ,
...
Nn = γnN0 +(1+ γ + · · ·+ γn−1)Λ .

(16.7)

Hence,

Nn =

⎧⎨
⎩

N0 +Λn, γ = 1,

γn
(

N0 − Λ
1− γ

)
+

Λ
1− γ

, γ < 1.
(16.8)

Other discrete population models have been proposed that guarantee that the pop-
ulation remains positive for all times. One such model, proposed by Bill Ricker
[138], is the Ricker model:

Nn+1 = Nner(1− Nn
K ). (16.9)

Another model also widely used is the Beverton–Holt model [23], also called
the Verhulst equation:

Nn+1 =
rNn

A+Nn
. (16.10)

A generalization of the Beverton–Holt model can be made that is known as the
Hassell equation [72]:

Nn+1 =
rNn

(A+Nn)b , (16.11)

where b > 0 is a positive parameter.
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16.1.2 Analysis of Single-Species Discrete Models

Difference equations also have solutions that do not depend on time, called equilib-
ria. Since the solution does not depend on time, all members of the sequence have
the same value, that is, we have

Nn = N∗ for all n ≥ 0.

Consequently, equilibria of the difference equation (16.1) must satisfy N∗ =F (N∗).

Definition 16.2. A value N∗ that satisfies

N∗ =F (N∗)

is called a fixed point of the function F .

Example 16.1. Consider the equilibria of the logistic equation

N∗ = N∗+ rN∗
(

1− N∗

K

)
.

The solutions of this equation are N∗
1 = 0 and N∗

2 = K, that is, the equilibria in the
discrete case are exactly the same as in the continuous case. The equilibrium N∗

1 = 0
is called a trivial equilibrium, while the equilibrium N∗

2 = K is called a nontrivial
equilibrium.

To describe the behavior of the solutions near an equilibrium, we use again a
process called linearization. Let N∗ be the equilibrium, and un the perturbation of
the solution from the equilibrium, that is,

Nn = N∗+un.

Substituting this equation into Eq. (16.1), we have un+1 + N∗ = F (un + N∗).
Expanding F in a Taylor series and neglecting all terms containing powers of un

greater than one, we obtain

un+1 +N∗ =F (N∗)+F ′(N∗)un.

Recall that since N∗ is an equilibrium, we have N∗ =F (N∗). Hence, we obtain the
following linearized equation:

un+1 =F ′(N∗)un. (16.12)

We note that F ′(N∗) is a fixed number, which may be positive or negative. If we
consider

un+1 = |F ′(N∗)|un, (16.13)
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then Eq. (16.13) is exactly the discrete Malthus equation. Consequently, we have the
following:

1. If |F ′(N∗)|< 1, then un → 0. Hence, Nn−N∗ → 0 and Nn → N∗. This is the case
if N0 is close enough to N∗, that is, this result is local. In this case, we call N∗
locally asymptotically stable.

2. If |F ′(N∗)| > 1, then un → ∞. Hence Nn −N∗ → ∞, and Nn diverges from N∗.
This is the case if N0 is close enough to N∗. In this case, we call N∗ unstable.

We note that if |F ′(N∗)|= 1, we cannot draw conclusions from the local analysis.
We summarize the above discussion in the following theorem:

Theorem 16.1. The equilibrium N∗ of the discrete equation (16.1) is locally asymp-
totically stable if and only if |F ′(N∗)|< 1. The equilibrium N∗ of the discrete equa-
tion (16.1) is unstable if and only if |F ′(N∗)|> 1.

To illustrate the use of the theorem above, we consider the local stability of the
equilibria of the logistic equation.

Example 16.2. In the case of the logistic equation (16.5), the function F is given by

F (N) = N + rN

(
1− N

K

)
.

The derivative is given by

F ′(N) = 1+ r

(
1− N

K

)
− r

K
N.

In the case of the trivial equilibrium N∗ = 0, we have

F ′(0) = 1+ r > 1.

Consequently, the trivial equilibrium is always unstable. Now we consider the non-
trivial equilibrium N∗ = K. We have

F ′(K) = 1− r.

So if |1− r| < 1, or equivalently, if 0 < r < 2, then the nontrivial equilibrium is
locally asymptotically stable.

When r > 2, simulations suggests that the logistic equation can experience very
complex behavior. To investigate this behavior through simulations, we will study
the nondimensionalized version of the logistic equation:

yn+1 = ρyn(1− yn). (16.14)

Recall that ρ = 1+ r, so we can expect complex behavior for ρ > 3. We notice that
the corresponding equilibria of the nondimensional logistic model are y∗ = 0 and
y∗ = 1. The first complexity that appears is a 2-cycle.
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Fig. 16.1 The figure shows time series of the model yn+1 = ρyn(1− yn) for different values of ρ .
The first figure shows a two-cycle with ρ = 3.43. The second figure on the top line shows a 4-cycle
with ρ = 3.47. The left figure on the bottom row shows an 8-cycle with ρ = 3.58. The right figure
on the bottom row shows chaos with ρ = 3.7

Definition 16.3. A 2-cycle of model (16.1) is a system of two solutions y1 and y2

such that

y1 =F (y2),
y2 =F (y1).

(16.15)

In model (16.14), F (y) = ρy(1− y). As ρ increases, the system experiences a pro-
cess, called period-doubling, to a 4-cycle. Similarly, a 4-cycle of model (16.14) is a
system of four solutions y1, y2, y2, y4 such that

y1 =F (y4),
y2 =F (y1),
y3 =F (y2),
y4 =F (y3).

(16.16)

Further period-doubling occurs to an 8-cycle. The period-doubling continues un-
til the system begins to exhibit chaos. We illustrate period-doubling and chaos in
Fig. 16.1.

We need single-species discrete population models to capture the demographic
processes in epidemic models. Many books focus on single-species discrete models
and provide an excellent introduction to these models (for instance, see [27, 90]).
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16.2 Discrete Epidemic Models

Just like single-species population models, discrete epidemic models can also be
obtained from a discretization of the continuous epidemic models. However, this ap-
proach results in models that have issues like those of the discrete logistic equation.
To avoid these problems, a modeling approach specific to discrete models should be
taken. We follow here the approach of Castillo-Chavez and Yakubu [39].

16.2.1 A Discrete SIS Epidemic Model

We begin with a general population model

Nn+1 = f (Nn)+ γNn, (16.17)

where γ < 1 is the probability of survival to the next time period, and f (Nn) is a
recruitment function. We assume that the disease does not affect the population dyn-
amics, that is, we assume that the disease is nonfatal and does not affect the birth
process. We will build an SIS epidemic process on top of the demographic process.
We denote by Sn and In the susceptible and infected individuals at time tn. Individ-
uals survive with probability γ < 1 (die with probability 1− γ) in each generation.
Infected individuals recover with probability 1−σ (do not recover with probability
σ < 1) in each generation. In each generation, susceptible individuals become inf-
ected with probability 1−G (remain susceptible with probability G). The function
G is a function of the prevalence In/Nn, which is weighted with coefficient α . The
model assumes a sequential process: at each generation, γSn susceptibles survive,
and the surviving susceptibles become infected with probability 1−G. Similarly,
γIn infected individuals survive, and the surviving ones recover with probability
(1−σ):

Sn+1 = f (Nn)+ γSnG

(
αIn

Nn

)
+ γ(1−σ)In,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In. (16.18)

The function G must satisfy the following conditions:

1. G : [0,∞)→ [0,1].
2. G(0) = 1.
3. G is a monotone decreasing function with G′(x)< 0 and G′′(x)≥ 0.

An example of such a function that we will use is G(x) = e−x. Another example is
G(x) = A/(x+A). Adding the two equations in system (16.18) gives Eq. (16.17).
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16.2.2 Analysis of Multidimensional Discrete Models

In this subsection, we introduce the techniques that help us analyze systems of dis-
crete equations. Suppose that we are given the following system:

xn+1 =F (xn), (16.19)

where x is an M-dimensional vector of variables. As before, an equilibrium of
system (16.19) is the solution of the problem

x∗ =F (x∗).

To find the behavior of the solutions near an equilibrium, we use linearization. We
set xn = un +x∗. We obtain the following linear system:

un+1 = J(x∗)un, (16.20)

where J is the Jacobian of the system, that is,

J(x∗) =

⎛
⎜⎜⎜⎜⎝

∂F1

∂x1
. . .

∂F1

∂xM
...

∂FM

∂x1
. . .

∂FM

∂xM

⎞
⎟⎟⎟⎟⎠ |x=x∗ . (16.21)

Definition 16.4. An equilibrium point x∗ is said to be locally asymptotically stable
if there exists a neighborhood U of x∗ such that for each starting value x0 ∈ U ,
we get

lim
n→∞

xn = x∗. (16.22)

The equilibrium point x∗ is called unstable if x∗ is not (locally asymptotically)
stable.

The limit (16.22) holds if for system (16.20), we have limn→∞ un = 0. The follow-
ing theorem gives the conditions for convergence of solutions of the linear system
(16.20) to zero:

Theorem 16.2. Let J be an M×M matrix with ρ(J)< 1, where

ρ(J) = max{|λ | : λ is an eigenvalue of J}.

Then every solution of (16.20) satisfies

lim
n→∞

un = 0.

If ρ(J)> 1, then there are solutions that go to infinity.
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This implies the following criterion for stability of an equilibrium x∗ of system
(16.19).

Theorem 16.3. Consider the nonlinear autonomous system (16.19). Suppose F :
D → D , where D ⊂ RM and D is an open set. Suppose F is twice continuously
differentiable in some neighborhood of a fixed point x∗ ∈D . Let J(x∗) be the Jaco-
bian matrix of F evaluated at x∗. Then the following hold:

1. x∗ is locally asymptotically stable if all eigenvalues of J(x∗) have magnitude less
than one.

2. x∗ is unstable if at least one eigenvalue of J(x∗) has magnitude greater than one.

The Routh–Hurwitz criterion will not be helpful here in determining which mat-
rices are stable, since Routh–Hurwitz identifies matrices whose eigenvalues lie in
the left half of the complex plane. However, there is an analogous criterion that can
help determine whether the spectral radius of a matrix is smaller than one. This
criterion is called the Jury conditions. Let

p(λ ) = |J−λ I|= aMλ M + · · ·+a1λ +a0,

where aM = 1. To introduce the Jury conditions, we first have to introduce the Jury
array. The Jury array is composed as follows: First we write out a row of the
coefficients, and then we write out another row with the same coefficients in rev-
erse order. The first two rows of the Jury array are composed of the coefficients of
the polynomial p(λ ) above. Once we have the first two rows of the a coefficients, the
next two rows are of the b coefficients, and so on. We obtain the array of Table 16.1,
where the b coefficients, c coefficients, etc., are composed as follows:

Table 16.1 Jury array

Number Coeff. Coeff. Coeff. Coeff. Coeff.

(1) a0 a1 . . . aM−1 aM

(2) aM aM−1 . . . a1 a0
(3) b0 b1 . . . bM−1
(4) bM−1 bM−2 . . . b0
...

...
...

...

(2M-3) v0 v1 v2

bk =

∣∣∣∣ a0 aM−k

aM ak

∣∣∣∣ ck =

∣∣∣∣ b0 bM−1−k

bM−1 bk

∣∣∣∣ dk =

∣∣∣∣ c0 cM−2−k

cM−2 ck

∣∣∣∣ .
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Jury Conditions
The Jury conditions require all of the following conditions to be met. If
all the conditions are satisfied, then the spectral radius of the matrix is
less than one, and the matrix is stable:

1. p(1)> 0.
2. (−1)M p(−1)> 0.
3. |a0|< aM .
4. Once the Jury array has been composed, the Jury conditions also re-

quire
|b0|> |bM−1|,
|c0|> |cM−2|,
|d0|> |dM−3|.

...

(16.23)

In the case M = 1, the Jury conditions do not apply, but in this case, the eigen-
value is known explicitly, and its magnitude can be compared with one. In the cases
M = 2,3,4, we write the Jury conditions in Table 16.2.

Table 16.2 Jury Conditions

Degree Condition Condition Condition Condition Condition

M = 2 p(1)> 0 p(−1)> 0 |a0|< 1
M = 3 p(1)> 0 p(−1)< 0 |a0|< 1 |a2

0 −1|> |a0a2 −a1|
M = 4 p(1)> 0 p(−1)> 0 |a0|< 1 |a2

0 −1|> |a0a3 −a1| |b2
0 −b2

3|> |b0b2 −b3b1|

16.2.3 Analysis of the SIS Epidemic Model

In this section, we analyze model (16.18) with a specific fertility function. In par-
ticular, we choose the discrete simplified logistic model, where we know that the
population tends to a constant size as n → ∞. We will study the following epidemic
model with a general force of infection G:

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1−σ)In,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In.

(16.24)
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Fig. 16.2 The figure shows the two functions on the two sides of Eq. (16.27). Here α = 0.9, σ =
0.9, γ = 0.9, and N = 10

The equilibria of the system above satisfy

S = Λ + γSG

(
αI
N

)
+ γ(1−σ)I,

I = γS

(
1−G

(
αI
N

))
+ γσ I.

(16.25)

Adding the equations, we have N = Λ + γN. Hence N = Λ/(1− γ). The system
clearly has the disease-free equilibrium E0 = (N,0). To find the endemic equilibria,
we write S = N − I and substitute in the equation for I:

(1−σγ)I = γ(N − I)

(
1−G

(
αI
N

))
. (16.26)

This is a nonlinear equation for I. It has I = 0 as a solution. We need to find a
condition under which this equation has a nonzero solution. The equation can be
rewritten also as

(1−σγ)
I

N − I
= γ

(
1−G

(
αI
N

))
. (16.27)

The function on the right is increasing and concave down. The function on the
left is increasing and concave up, tending to infinity as I → N. Besides the common
point at zero, these functions have another unique common point if and only if the
slope at zero of the function on the left is smaller than the slope at zero of the
function on the right (see Fig. 16.2), that is, if

(1−σγ)<−αγG′(0).
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This condition gives the reproduction number. We define

R0 =
−αγG′(0)
(1−σγ)

. (16.28)

We note that the reproduction number is positive, since G′(0) < 0. We summarize
these results in the following proposition:

Proposition 16.1. Assume R0 < 1. Then model (16.24) has only the disease-free
equilibrium E0 = (N,0). If R0 > 1, then model (16.24) has the disease-free equilib-
rium and a unique endemic equilibrium E ∗ = (S∗, I∗), where I∗ > 0 is the unique
positive solution of Eq. (16.27) and S∗ = N − I∗.

We use the theoretical results in the previous subsection to establish the local stabil-
ity of equilibria. The following theorem summarizes the results:

Theorem 16.4. The disease-free equilibrium is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1. The endemic equilibrium is locally asymptotically
stable if R0 > 1.

Proof. We begin by computing the generic form of the Jacobian:

J =

⎛
⎜⎜⎝

γG

(
αI
N

)
− γα

SI
N2 G′

(
αI
N

)
γα

[
S
N
− SI

N2

]
G′

(
αI
N

)
+ γ(1−σ)

γ
(

1−G

(
αI
N

))
+ γα

SI
N2 G′

(
αI
N

)
−γα

[
S
N
− SI

N2

]
G′

(
αI
N

)
+ γσ

⎞
⎟⎟⎠ ,

(16.29)

where we recall that N = S+ I. To find the stability of the disease-free equilibrium,
we evaluate the Jacobian at the disease-free equilibrium:

J(E0) =

(
γG(0) γαG′ (0)+ γ(1−σ)

γ (1−G(0)) −γαG′ (0)+ γσ

)
. (16.30)

The characteristic equation now becomes |J(E0)− λ I| = 0. Recall that G(0) = 1,
so the characteristic determinant is upper triangular, and the eigenvalues are λ1 = γ
and λ2 = −γαG′ (0)+ γσ . Both eigenvalues are positive, and λ1 is by assumption
less than one, while λ2 is less than one if and only if R0 < 1.

To determine the stability of the endemic equilibrium, we first observe that from
equality (16.26), we have the following inequality:

(1− γσ)>−γ(1−G(
αI∗

N∗ ))−αγ
S∗

N∗ G′(
αI∗

N∗ ). (16.31)
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This inequality simply says that at the point where the two curves intersect, the slope
of the left one is larger than the slope of the right one. This is easy to see from their
graphs. The characteristic polynomial is given by

|J−λ I|=

∣∣∣∣∣∣∣∣
γG

(
αI
N

)
− γα

SI

N2 G′
(

αI
N

)
−λ γα

[
S
N
− SI

N2

]
G′

(
αI
N

)
+ γ(1−σ)

γ
(

1−G

(
αI
N

))
+ γα

SI

N2 G′
(

αI
N

)
−γα

[
S
N
− SI

N2

]
G′

(
αI
N

)
+ γσ −λ

∣∣∣∣∣∣∣∣
.

(16.32)

We can manipulate the determinant to simplify the characteristic polynomial. In
particular, adding the first line to the second, we have

|J−λ I|=
∣∣∣∣∣∣
γG

(
αI∗

N∗

)
− γα

SI

N2 G′
(

αI∗

N∗

)
−λ γα

[
S∗

N∗ −
S∗I∗

N∗2

]
G′

(
αI∗

N∗

)
+ γ(1−σ)

γ −λ γ −λ

∣∣∣∣∣∣= 0.

(16.33)

Factoring out γ −λ , we see that one of the eigenvalues is λ1 = γ . This eigenvalue
is positive and less than one. The second eigenvalue is obtained from the remaining
determinant∣∣∣∣∣∣
γG

(
αI∗

N∗

)
− γα

SI
N2 G′

(
αI∗

N∗

)
−λ γα

[
S∗

N∗ −
S∗I∗

N∗2

]
G′

(
αI∗

N∗

)
+ γ(1−σ)

1 1

∣∣∣∣∣∣= 0.

(16.34)

This gives, after some simplification,

λ2 =−γ
(

1−G

(
αI∗

N∗

))
−αγ

S∗

N∗ G′
(

αI∗

N∗

)
+ γσ .

Inequality (16.31) implies that λ2 < 1. Furthermore, λ2 >−γ
(

1−G
(

αI∗
N∗

))
>−1.

Hence |λ2|< 1, and the endemic equilibrium is locally asymptotically stable. 	

In this SIS example, we did not necessarily need the Jury conditions, because the
two-equation model can be reduced to a single equation if we take into account the
fact that the total population size is asymptotically constant.

16.3 Discrete SEIS Model

One can formulate discrete variants of all classical continuous epidemic models.
In this section, we formulate a discrete version of an SEIS model that consists of
three equations: one for the susceptible Sn, one for the exposed En, and one for the
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infectious In individuals. We will use again an asymptotically constant population
size and a general function for the force of infection. The model takes the form

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1−δ )In,

En+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσEn,

In+1 = γ(1−σ)En + γδ In, (16.35)

where γ is the probability of survival to the next time period, 1−σ is the probability
of progression to infectiousness, and 1−δ is the probability of recovery. Again, the
function G must satisfy the following conditions:

1. G : [0,∞)→ [0,1].
2. G(0) = 1.
3. G is a monotone decreasing function with G′(x)< 0 and G′′(x)≥ 0.

Equilibria are solutions of the following system:

S = Λ + γSG

(
αI
N

)
+ γ(1−δ )I,

E = γS

(
1−G

(
αI
N

))
+ γσE,

I = γ(1−σ)E + γδ I. (16.36)

Adding the three equations, we have N = Λ + γN. This gives the equilibrium total
population size N = Λ/(1− γ). The system has the disease-free equilibrium E0 =
( Λ

1−γ ,0,0). Problem 16.4 asks you to compute the reproduction number, which is
given by the following expression:

R0 =
−αγ2(1−σ)G′(0)
(1−σγ)(1−δγ)

. (16.37)

Problem 16.4 asks you to establish the following proposition:

Proposition 16.2. If R0 < 1, then the disease-free equilibrium is locally asymptoti-
cally stable. If R0 > 1, the disease-free equilibrium is unstable, and there is a unique
endemic equilibrium.

To obtain the equation for the endemic equilibrium, we express E in terms of I from
the last equation in system (16.36): E = QI, where

Q =
1− γδ

γ(1−σ)
.
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We can express S in terms of I: S = N −QI − I. We replace these values in the
second equation to obtain an equation for I:

(1− γσ)QI = γ(N − (Q+1)I)

(
1−G

(
αI
N

))
. (16.38)

Every value of I that solves Eq. (16.38) gives an equilibrium E = (S∗,E∗, I∗). As be-
fore, it can be seen that the equation above has a unique nontrivial equilibrium
I∗ > 0. At the unique endemic equilibrium, the slopes of the two curves are related
as follows:

(1− γσ)Q >−γ(Q+1)

(
1−G

(
αI∗

N

))
−αγ

S∗

N
G′

(
αI∗

N

)
. (16.39)

Replacing the value of Q and taking a common denominator leads to the inequality

(1− γσ)(1− γδ ) > −γ(1− γδ + γ(1−σ))

(
1−G

(
αI∗

N

))

− αγ2(1−σ)
S∗

N
G′

(
αI∗

N

)
. (16.40)

Now we are ready to establish a partial result on the stability of the endemic equi-
librium:

Proposition 16.3. Assume R0 > 1. If

σ +δ +G

(
αI∗

N

)
−1 > 0,

then the unique endemic equilibrium E = (S∗,E∗, I∗) is locally asymptotically
stable.

Proof. The Jacobian at the endemic equilibrium is given by

J =

⎛
⎜⎜⎜⎜⎝

γG

(
αI
N

)
−A −A γα

S
N

G′
(

αI
N

)
−A+ γ(1−δ )

γ
(

1−G

(
αI
N

))
+A γσ +A −γα

S
N

G′
(

αI
N

)
+A

0 γ(1−σ) γδ

⎞
⎟⎟⎟⎟⎠ ,

(16.41)

where A = γα SI
N2 G′ (αI

N

)
. We consider the characteristic equation |J − λ I| = 0.

Adding the first and the third rows in the determinant to the second row, we obtain
∣∣∣∣∣∣∣∣
γG

(
αI
N

)
−A−λ −A γα

S
N

G′
(

αI
N

)
−A+ γ(1−δ )

γ −λ γ −λ γ −λ
0 γ(1−σ) γδ −λ

∣∣∣∣∣∣∣∣
= 0. (16.42)
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Factoring out γ−λ , we see that the first eigenvalue is λ1 = γ . This eigenvalue is pos-
itive and less than one. The remaining eigenvalues are solutions of the characteristic
equation
∣∣∣∣∣∣∣∣
γG

(
αI
N

)
−A−λ −A γα

S
N

G′
(

αI
N

)
−A+ γ(1−δ )

1 1 1
0 γ(1−σ) γδ −λ

∣∣∣∣∣∣∣∣
= 0. (16.43)

From here we obtain the quadratic polynomial

p(λ ) = λ 2 − (γδ + γG− γ(1−σ))λ

+ [−γ2(1−σ)G+αγ2(1−σ)
S
N

G′

+ γ2(1−σ)(1−δ )+ γ2δG] = 0, (16.44)

where G and G′ have the usual argument. We can write the polynomial as p(λ ) =
λ 2 +a1λ +a0. Rewriting inequality (16.40) as

αγ2(1−σ)
S∗

N
G′

(
αI∗

N

)
> − γ(1− γδ + γ(1−σ))

(
1−G

(
αI∗

N

))

− (1− γσ)(1− γδ ), (16.45)

we will use it to bound the polynomial from below. Applying this inequality to the
constant term of the polynomial p(λ ), we have

p(λ ) > λ 2 − (γδ + γG− γ(1−σ))λ
+ [−γ2(1−σ −δ )G− γ(1− γδ + γ(1−σ))(1−G)

− (1− γσ)(1− γδ )+ γ2(1−σ)(1−δ )]
= λ 2 − (γδ + γG− γ(1−σ))λ
+ [γ2(1−σ −δ )(1−G)− γ(1− γδ + γ(1−σ))(1−G)

− (1− γσ)(1− γδ )+ γ2σδ ].
(16.46)

On combining the coefficients of the two terms (1−G), the above right-hand side
simplifies to

p(λ )> λ 2 − (γδ + γG− γ(1−σ))λ − γ(1−G)−1+ γδ + γσ .

We need to check the Jury conditions. Clearly, p(1)> 0. Furthermore, according to
our assumption,

p(−1)> 2γ(δ +σ +G−1)> 0.
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Finally, we need to show that the constant term of the polynomial p(λ ) satisfies
|a0|< 1. We bound the constant term from above and from below:

a0 >−γ(1−G)−1+ γδ + γσ = γ(δ +σ +G−1)−1 >−1.

In addition, if 1−δ −σ > 0, then

a0 < γ2(1−δ )(1−σ)− γ(1−δ −σ)G < 1.

If 1−δ −σ < 0, we have

a0 < γ2(1−δ −σ)(1−G)+ γ2σδ < γ2σδ < 1.

We conclude that |a0|< 1. The Jury conditions now imply that the endemic equilib-
rium is stable. 	

In conclusion, discrete models look simpler and perhaps more natural, but their anal-
ysis is far more complicated than the analysis of continuous models. Furthermore,
even very simple single-species discrete models are capable of exhibiting very com-
plex, even chaotic, dynamics.

16.4 Next-Generation Approach for Discrete Models

As the discrete models become more and more realistic, computation of R0 be-
comes harder or impossible to do via the Jacobian approach. In analogy with the
continuous case, a version of the next-generation approach for discrete models was
developed [9].

16.4.1 Basic Theory

To introduce the next-generation approach for discrete models, let x = (x1, . . . ,xm)T

be the vector of dependent variables, and let

xn+1 = F(xn) n = 0,1, . . .

be the dynamical system over discrete time intervals with F : Rm
+ −→ R

m
+ and F ∈

C1(Rm
+). As in the continuous case, we order the variables so that the first k < m,

denoted by y = (y1, . . . ,yk)T , are the infected states such as exposed, infectious,
isolated, and the remaining m−k states z= (zk+1, . . . ,zm)T are the uninfected states,
such as susceptible, recovered, vaccinated. In this case, the system can be written as

(
yn+1

zn+1

)
=

(
F0(xn)
F1(xn)

)
. (16.47)
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We assume that there exists a unique disease-free equilibrium where y = 0, and
therefore the disease-free equilibrium is given by (0,z∗)T . Furthermore, linearizing
the discrete system around the disease-free equilibrium gives

ξn+1 = Jξn,

where ξn is the vector of perturbations, and J is the Jacobian evaluated at the disease-
free equilibrium. The m×m Jacobian has the following form:

J =

(
F +T 0

A C

)
, (16.48)

where k× k submatrices F and T are nonnegative, 0 is the zeroth matrix. Further-
more, we assume that F + T is irreducible. Matrix F is a result of differentiation
and evaluation at the disease-free equilibrium of the new infections, and matrix T
is the result of differentiation and evaluation at the disease-free equilibrium of the
transition states (recovery, death). The submatrix F is known as the fertility matrix,
and T as the transition matrix. We assume that the disease-free equilibrium is loc-
ally asymptotically stable, that is ρ(C)< 1, where ρ(C) is the spectral radius of C.
In addition, we require ρ(T ) < 1. Since J is block-triangular, the stability of the
disease-free equilibrium depends on the eigenvalues of F +T . The next-generation
matrix is

Q = F(I −T )−1,

where I is the k×k identity matrix. The basic reproduction number is defined as the
spectral radius of the matrix Q, that is,

R0 = ρ(F(I −T )−1).

16.4.2 Examples

In this subsection, we introduce several more complex discrete epidemic models
and use the next-generation approach to compute the reproduction number.

16.4.2.1 SEIS Model

As a first example, we illustrate the theory on example (16.35). For this model, the
infected vector is y = (E, I)T , and the uninfected vector is z = (S). Arranging the
system so that the first equations are for the infected variables, we have
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En+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσEn,

In+1 = γ(1−σ)En + γδ In,

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1−δ )In.

(16.49)

The disease-free equilibrium is given by (0,0, Λ
1−γ ). The Jacobian is given by

J =

⎛
⎝ γσ −γαG′(0) 0

γ(1−σ) γδ 0
0 γαG′(0)+ γ(1−δ ) γ

⎞
⎠ . (16.50)

First, C = (γ) and ρ(C) = γ < 1. The Jacobian is block-triangular. The important
step is to identify the matrices F and T . The new infections term is associated with
the function G. Hence the matrix F is given by

F =

(
0 −γαG′(0)
0 0

)
. (16.51)

We notice that the entries in F are nonnegative, since G′(0) < 0. The transition
matrix T is given by

T =

(
γσ 0

γ(1−σ) γδ

)
. (16.52)

Using Mathematica, we can invert I −T to obtain

(I −T )−1 =

⎛
⎜⎝

1
1− γσ

0

γ(1−σ)

(1− γδ )(1− γσ)

1
1− γδ

⎞
⎟⎠ . (16.53)

Hence,

F(I −T )−1 =

⎛
⎝ −γ2αG′(0)(1−σ)

(1− γδ )(1− γσ)

−γαG′(0)
1− γδ

0 0

⎞
⎠ . (16.54)

The spectral radius of the above matrix gives the reproduction number

R0 =
−γ2αG′(0)(1−σ)

(1− γδ )(1− γσ)
.

16.4.2.2 A Two-Patch SIS Model

In this subsection we introduce a two-patch SIS model based on the one-patch SIS
model (16.18). We assume that the movement occurs after the infection and recovery
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process. Individuals move from patch one to patch two with probability d1 and vice
versa with probability d2. We furthermore assume that the probability of survival of
individuals in both patches is the same. This assumption can be easily relaxed.

The SIS model with movement takes the form

S1
n+1 = (1−d1)[Λ1 + γS1

nG1

(
α1I1

n

N1
n

)
+ γ(1−σ1)I

1
n ]

+d2[Λ2 + γS2
nG2

(
α2I2

n

N2
n

)
+ γ(1−σ2)I

2
n ],

I1
n+1 = (1−d1)[γS1

n

(
1−G1

(
α1I1

n

N1
n

))
+ γσ1I1

n ]

+d2[γS2
n

(
1−G2

(
α2I2

n

N2
n

))
+ γσ2I2

n ],

S2
n+1 = +d1[Λ1 + γS1

nG1

(
α1I1

n

N1
n

)
+ γ(1−σ1)I

1
n ]

+(1−d2)[Λ2 + γS2
nG2

(
α2I2

n

N2
n

)
+ γ(1−σ2)I

2
n ],

I2
n+1 = d1[γS1

n

(
1−G1

(
α1I1

n

N1
n

))
+ γσ1I1

n ]

+(1−d2)[γS2
n

(
1−G2

(
α2I2

n

N2
n

))
+ γσ2I2

n ]. (16.55)

We begin by determining the disease-free equilibrium. It is given by E0 =(S1,0,S2,0),
where S1 and S2 are solutions of the following system:

S1 = (1−d1)[Λ1 + γS1]+d2[Λ2 + γS2],
S2 = d1[Λ1 + γS1]+ (1−d2)[Λ2 + γS2].

(16.56)

First, we see that

N = S1 +S2 =
Λ1 +Λ2

1− γ
.

Solving system (16.56), we obtain

S1 =
(1− (1−d2)γ)[(1−d1)Λ1 +d2Λ2]+d2γ [d1Λ1 +(1−d2)Λ2]

Δ
,

S2 =
d1γ [(1−d1)Λ1 +d2Λ2]+ (1− (1−d1)γ)[d1Λ1 +(1−d2)Λ2]

Δ
,

(16.57)

where Δ = (1− (1−d1)γ)(1− (1−d2)γ)−d1d2γ2. The matrix C is given by

C =

(
(1−d1)γ d2γ

d1γ (1−d2)γ

)
. (16.58)
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It is not hard to show that ρ(C) = γ < 1. Next, we construct the matrix F +T :

F +T =

(
(1−d1)[−γα1G′

1(0)+ γσ1] d2[−γα2G′
2(0)+ γσ2]

d1[−γα1G′
1(0)+ γσ1] (1−d2)[−γα2G′

2(0)+ γσ2]

)
. (16.59)

The matrix F consists of all terms that involve G′; the matrix T consists of all
remaining terms. Therefore,

F =

(−(1−d1)γα1G′
1(0) −d2γα2G′

2(0)
−d1γα1G′

1(0) −(1−d2)γα2G′
2(0)

)
, (16.60)

and the matrix I −T is given by

I −T =

(
1− (1−d1)γσ1 −d2γσ2

−d1γσ1 1− (1−d2)γσ2

)
. (16.61)

To invert I − T , we compute the determinant Δ = (1 − (1 − d1)γσ1)(1 − (1 −
d2)γσ2)−d1d2γ2σ1σ2. Hence,

(I −T )−1 =
1
Δ

(
1− (1−d2)γσ2 d2γσ2

d1γσ1 1− (1−d1)γσ1

)
. (16.62)

The next-generation matrix takes the form

F(I −T )−1 =
1
Δ

(
A B
C D

)
, (16.63)

where

A =−(1−d1)γα1G′
1(0)[1− (1−d2)γσ2]−d1d2γ2σ1α2G′

2(0),
B =−(1−d1)d2γ2σ2α1G′

1(0)−d2γα2G′
2(0)[1− (1−d1)γσ1],

C =−d1γα1G′
1(0)[1− (1−d2)γσ2]−d1(1−d2)γ2σ1α2G′

2(0),
D =−d1d2γ2σ2α1G′

1(0)− (1−d2)γα2G′
2(0)[1− (1−d1)γσ1].

(16.64)

The reproduction number is given by

R0 = ρ(F(I −T )−1) =
A+D+

√
(A−D)2 +4BC
2Δ

.

We note that in this example, it would have been impossible to compute R0 with
the Jacobian approach.

16.4.2.3 A Discrete SARS Model

In this section, we consider a discrete SARS model with quarantine and isolation.
Let Sn denote the susceptibles, En the exposed, In the individuals showing symp-
toms, Qn the quarantined, Jn the isolated, and Rn the recovered individuals. In SARS,
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the exposed individuals are infectious with reduced infectivity. The coefficient of re-
duction is q. The model takes the form

Sn+1 = Λ + γα1SnG

(
In +qEn

Nn −Qn − Jn

)
+ γρ(1−α1)Sn + γα4(1−η1)Qn,

En+1 = γα1Sn

(
1−G

(
In +qEn

Nn −Qn − Jn

))
+ γEn(α2σ +(1−α2)ρ),

In+1 = α2γ(1−σ)En + γIn(α3σ +(1−α3)r2),

Qn+1 = γ(1−ρ)((1−α1)Sn +(1−α2)En)+ γQn(α4η1 +(1−α4)η2),

Jn+1 = α3γ(1−σ)In +(1−α4)γ(1−η2)Qn + γr1Jn,

Rn+1 = γ(1− r1)Jn + γ(1−α3)(1− r2)In + γRn, (16.65)

where the parameters are given in Table 16.3.

Table 16.3 Parameter meanings

Parameter Meaning Parameter Meaning

Λ Recruitment γ Probability of survival
q Reduction in infectivity for exposed 1−ρ Probability of quarantine
1−σ Probability of isolation αi Convex combination coefficients
1− r1 Probability of recovery of isolated 1− r2 Probability of recovery of infected
1−η1 Probability of ending quarantine to

susceptible class
1−η2 Probability of ending the

quarantine to isolated class

We apply the next-generation approach to compute the reproduction number. The
disease-free equilibrium is given by E0 = (S∗,0,0,0,0,0), where

S∗ =
Λ

1− γ
.

The vector of infected classes is (E, I,Q,J). Hence, the matrix F +T is given by

F +T =

⎛
⎜⎜⎜⎜⎝

−γα1qG′(0)+α2γσ +(1−α2)γρ −γα1G′(0) 0 0

α2γ(1−σ) γ(α3σ +(1−α3)r2) 0 0

γ(1−ρ)(1−α2) 0 γ(α4η1 +(1−α4)η2) 0

0 α3γ(1−σ) γ(1−α4)(1−η2) γr1

⎞
⎟⎟⎟⎟⎠ .

(16.66)

The matrix F is written as F =( fi j), where f11 =−γqα1G′(0) and f12 =−γα1G′(0),
while the remaining entries are zero. The matrix I −T is given by
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I −T =

⎛
⎜⎜⎜⎜⎝

1−α2γσ − (1−α2)γρ 0 0 0

−α2γ(1−σ) 1− γ(α3σ +(1−α3)r2) 0 0

−γ(1−ρ)(1−α2) 0 1− γ(α4η1 +(1−α4)η2) 0

0 −α3γ(1−σ) −γ(1−α4)(1−η2) 1− γr1

⎞
⎟⎟⎟⎟⎠ .

(16.67)

Because of the structure of F , only the first 2×2 block of (I−T )−1 is important for
the reproduction number. Because of the block-triangular form of I − T , that first
2×2 block of (I −T )−1 is obtained from inverting the first 2×2 block of (I −T ).
Thus we have

(I −T )−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1−α2γσ − (1−α2)γρ

0 0 0

α2γ(1−σ)

Δ
1

1− γ(α3σ +(1−α3)r2)
0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠
, (16.68)

where Δ = (1 − α2γσ − (1 − α2)γρ)(1 − γ(α3σ + (1 − α3)r2)). The matrix
F(I −T )−1 has a very simple form, whose principal eigenvalue is not hard to deter-
mine. Hence, the reproduction number is given by

R0 = ρ(F(I −T )−1) =
−γα1qG′(0)

1−α2γσ − (1−α2)γρ
+

−α1γG′(0)α2γ(1−σ)

Δ
.

The first term of the reproduction number gives the number of secondary infections
produced by an exposed individual; the second term gives the number of secondary
infections produced by an infectious individual.

Problems

16.1. Ricker Model
Consider the Ricker model (16.9).

(a) Find the equilibria of the Ricker model.
(b) Determine the stability of the equilibria of the Ricker model.
(c) Does the Ricker model have 2-cycles?
(d) Does the Ricker model exhibit chaos?

16.2. Beverton–Holt Model
Consider the Beverton-Holt model (16.10).

(a) Find the equilibria of the Beverton–Holt model.
(b) Determine the stability of the equilibria of the Beverton–Holt model.
(c) Does the Beverton–Holt model have 2-cycles?
(d) Does the Beverton–Holt model exhibit chaos?
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16.3. Hassell Model
Consider the Hassell model (16.11).

(a) Find the equilibria of the Hassell model.
(b) Determine the stability of the equilibria of the Hassell model.
(c) Does the Hassell model have 2-cycles?
(d) Does the Hassell model exhibit chaos?

16.4. SEIS Epidemic Model
Consider the discrete SEIS model (16.35).

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, there is a unique endemic equilibrium.

16.5. SI Epidemic Model
Consider the following SI epidemic model:

Sn+1 = Λ + γSnG

(
αIn

Nn

)
,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In,

(16.69)

where G has the same properties as in the text and σ < 1.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?

16.6. SIRS Epidemic Model
Consider the following SIRS epidemic model:

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1−δ )Rn,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In,

Rn+1 = γ(1−σ)In + γδRn, (16.70)
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where G has the same properties as in the text.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, then there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?

16.7. SIS Epidemic Model with Environmental Transmission
Consider the following SIS epidemic model with environmental transmission:

Sn+1 = Λ + γSne−
αIn
Nn

−βPn + γ(1−σ)In,

In+1 = γSn

(
1− e−

αIn
Nn

−βPn
)
+ γσ In,

Pn+1 = ρIn +δPn, (16.71)

where Pn is the amount of the pathogen in the environment.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, then there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?

16.8. SIRS Epidemic Model with Vaccination
Consider the following SIRS epidemic model:

Sn+1 = Λ +ργSnG

(
αIn

Nn

)
+ γ(1−δ )Rn +(1−ρ)γψSn,

In+1 = ργSn

(
1−G

(
αIn

Nn

))
+ γσ In,

Rn+1 = γ(1−σ)In +(1−ρ)γ(1−ψ)Sn + γδRn, (16.72)

where G has the same properties as in the text.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?
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16.9. SIS Epidemic Model with Two Strains
Consider the following SIS epidemic model with two strains:

Sn+1 = Λ + γSne−(α1In+α2Jn) + γ(1−σ1)In + γ(1−σ2)Jn,

In+1 = γ
α1SnIn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ γσ1In,

Jn+1 = γ
α2SnJn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ γσ2Jn,

(16.73)

where In denotes infection with strain one, and Jn denotes infection with strain two.

(a) Derive the reproduction numbers of strain one and strain two R1 and R2. Set
R0 = max{R1,R2}.

(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium
is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R1 > 1, there is a unique endemic equilibrium corresponding to
strain one. Show that if R2 > 1, there is a unique endemic equilibrium corre-
sponding to strain two.

(d) Consider the stability of the endemic equilibrium corresponding to strain one.
When is it stable?

16.10. SIS Epidemic Model with Two Strains and Mutation
Consider the following SIS epidemic model with two strains:

Sn+1 = Λ + γSne−(α1In+α2Jn) +ργ(1−σ1)In + γ(1−σ2)Jn,

In+1 = γ
α1SnIn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ργσ1In +(1−ρ)μγIn,

Jn+1 = γ
α2SnJn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ γσ2Jn +(1−ρ)(1−μ)γIn,

(16.74)

where In denotes infection with strain one, and Jn denotes infection with strain two.

(a) Derive the reproduction numbers of strain one and strain two R1 and R2. Set
R0 = max{R1,R2}.

(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium
is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R1 > 1, there is a unique endemic equilibrium corresponding to
strain one. Show that there is a unique coexistence equilibrium.

(d) Consider the stability of the endemic equilibrium corresponding to strain one.
When is it stable?
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