
Chapter 11
Zoonotic Disease, Avian Influenza,
and Nonautonomous Models

11.1 Introduction

Zoonotic diseases are contagious diseases that are transmitted between animals and
humans. These diseases are caused by bacteria, viruses, parasites, fungi, and prions
that are carried by animals and insects.

Zoonotic diseases include vector-borne diseases but also diseases transmitted by
vertebrate animals. For some zoonotic diseases, humans are a host that can pass on
the pathogen to the animals or to the environment, while for others, the humans are a
dead-end host. Examples of the first type are cholera, ebola, and malaria. Examples
of the second kind are Rift Valley fever, hantavirus, West Nile virus, and avian
influenza.

Zoonotic diseases play a very important role among human communicable dis-
eases. In a review of more than 1400 pathogens known to infect humans, it was
found that more than 61% were zoonotic [149]. Zoonotic diseases often serve as a
starting point of many pathogens that jump the species barrier and become effec-
tively human-to-human transmissible. Such diseases are called emergent diseases.

One of the most dangerous zoonotic pathogens is avian influenza H5N1. Avian
influenza is transmitted from birds to humans. As of May 2014, H5N1 has infected
more of 600 humans, 60% of whom have died. Besides the high mortality, what
makes H5N1 dangerous is the possibility for the pathogen to mutate or reassort into
a highly human-to-human transmissible flu pathogen with high mortality. In such a
case, a world pandemic would occur, but since humans have no prior exposure to the
H5 subtype of influenza A, mortality may be higher than it was in the 2009 H1N1
pandemic, caused by the “swine flu.”
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11.2 Modeling Avian Influenza

Modeling zoonotic diseases in general, and avian influenza in particular, involves
modeling transmission in several species. Many of the zoonotic diseases involve
multiple species. For instance, the avian influenza pathogen infects wild birds, do-
mestic birds, humans, and many animal species such as pigs and cats. One has to
decide which species are important to the transmission.

In the case of avian influenza, we typically want to address questions related
to human health. Humans are a dead-end host for H5N1, but H5N1 transmits to
humans from domestic birds. It transmits effectively in birds and is endemic in the
poultry populations in some countries.

11.2.1 Simple Bird–Human Avian Influenza Model

One of the simplest models of avian influenza (AI) was proposed by Iwami [80],
following whom, we model transmission in poultry and the spillover to humans.
H5N1 is very deadly for chickens. Mortality reaches 90–100% typically within 48 h
[40]. This suggests that a simple SI model with disease-induced mortality is a good
tool to model the transmission within poultry.

Domestic Birds:
{

S′d(t) = Λd −βdSdId −μdSd ,
I′d(t) = βdSdId − (μd +νd)Id ,

(11.1)

where Sd is the number of susceptible birds, Id is the number of infected birds, Λd

is the recruitment rate, μd is the poultry natural death rate, νd is the disease-induced
death rate, and βd is the transmission coefficient among poultry. Humans become
infected from touching infected uncooked poultry products. The spillover model for
humans takes the form

Humans:
{

S′(t) = Λ −βSId −μS,
I′(t) = βSId − (μ +ν)I, (11.2)

where S is the number of susceptible humans, I is the number of infected humans,
Λ is the recruitment rate for humans, μ is the human natural death rate, ν is the
disease-induced death rate for humans, and β is the transmission coefficient from
infected poultry to humans.

The dynamics of the solutions to model (11.1)–(11.2) are not very different from
those of the SI poultry model. The model has a reproduction number

Rd =
Λdβd

μd(μd +νd)
.

If Rd < 1, then all solutions approach the disease-free equilibrium: E0 =(Λd
μd
,0, Λ

μ ,0).
If Rd > 1, then all solutions approach the endemic equilibrium E ∗ = (S∗d , I

∗
d ,S

∗, I∗),
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where

S∗d =
μd +νd

βd
, I∗d =

μd

βd
(Rd −1) , S∗ =

Λ
β I∗d +μ

I∗ =
βS∗I∗d
μ +ν

.

We see that if β �= 0, then the outcome of the disease in humans is a direct conse-
quence of the outcome of the disease in poultry.

11.2.2 Parameterizing the Simple Avian Influenza Model

One of the main ingredients in developing models is determining reasonable param-
eter values for the model. We fix the time unit in years. The reason for that will
become clear later. Determining parameters is typically done through fitting. Model
(11.1)–(11.2) has eight parameters and four unknown initial conditions. The main
data source is the cumulative number of H5N1 human cases given by the World
Health Organization [166]. We give the data in Table 11.1.

Table 11.1 Number of cumulative human cases of H5N1 in units 105

Year Time Cases Year Time Cases

2005 0 0.00047 2010 5 0.00467
0.5 0.00108 5.5 0.005

2006 1 0.00148 2011 6 0.00516
1.5 0.00229 6.5 0.00562

2007 2 0.00263 2012 7 0.00576
2.5 0.00318 7.5 0.00607

2008 3 0.00351 2013 8 0.00610
3.5 0.00387 8.5 0.00633

2009 4 0.00395 2014 9 0.0065
4.5 0.00436

If the data are taken at half-year intervals, that will give 19 data points, poten-
tially not enough to fit all parameters and initial conditions. A better approach is
to predetermine some of the parameters. The Food and Agriculture Organization
of the United Nations (FAO) publishes statistics on livestock [58]. FAO gives that
in 2012, there were 24 billion units of poultry worldwide [58]. We set the world’s
poultry population at 2400×107. Iwami [81] gives the mean lifespan of poultry to
be two years. That translates into μd = 0.5. Since the entire population Λd/μd is
equal to 2400 we have Λd = 1200 in units of 107 per year. Iwami [81] also uses
mean infectious period for domestic birds of 10 days, that is, νd = 36.5 years−1.

The natural lifespan of humans throughout the world varies significantly from
country to country. We take an average value of human lifespan to be 65 years.
Therefore, μ = 1/65. The world human population has been on average approxi-
mately 6.5 billion over these 10 years. That gives a value of Λ = 1000 births per
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year in units of 105 individuals. Finally, we preestimate some of the initial condi-
tions: Sd(0) = 2400, I(0) = 0.0007 and S(0) = 65000.

Alternatively, one can get the information about the poultry and the human pop-
ulation of only the affected countries, of which there are 16. Data exist in the same
data sources. This is left as an exercise (see Problem 11.1).

To determine βd , β , Id(0), we fit the model (11.1)–(11.2) to the data, and we esti-
mate Id(0) = 0.3936, β = 0.000000035327684, and βd = 0.015489231377. The fit
is given in Fig. 11.1. The Matlab code that executes the fitting is given in the
appendix.

2006 2007 2008 2009 2010 2011 2012 2013 2014
time

200

300
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600
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Fig. 11.1 Fit of model (11.1)–(11.2) to cumulative number of human cases of H5N1 given in
Table 11.1

The estimated reproduction number with the fitted data is Rd = 1.00471.

11.2.3 Evaluating Avian Influenza Control Strategies

Control strategies that are currently in place have the goal of delaying or preventing
the emergence of a pandemic H5N1 strain. These measures currently involve the
following [108]:

• Vaccination of poultry;
• Culling/destroying infected and potentially exposed poultry;
• Reducing contact with poultry by wearing protective gear;
• Isolation of humans infected with H5N1 and tracing the source of infection of

the isolated individuals;
• Increasing biosecurity of poultry rearing;
• Education of poultry workers and health personnel.
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Multiple control measures are applied differently in different countries. Evaluat-
ing their overall effectiveness is not a trivial task. Typically, this is done by collect-
ing the opinions of experts. Here we present a more objective approach. Suppose the
goal of the control measures is to reduce the number of cases of H5N1 in humans,
that is, the goal is to minimize I∗. Each of the control measures impacts certain par-
ameter values. We evaluate the change that a 1% change in a parameter p makes on
I∗ through the concept of elasticity. Recall that the elasticity of I∗ with respect to
the parameter p is given by

εp =
∂ I∗

∂ p
p
I∗
, (11.3)

where

I∗ =
Λ

μ +ν
β μd(Rd −1)

β μd(Rd −1)+μβd
.

We use Mathematica to compute the elasticities with the above-evaluated parame-
ters. The elasticities are listed in Table 11.2.

Table 11.2 Table of elasticities of I∗

Parameter Elasticity Parameter Elasticity

βd 212.454 β 1
μd −215.338 μ − 1.00042
νd −210.569 ν − 0.999579
Λd 213.454 Λ 1

From this table, we see directly that control measures that are applied to poultry
and affect poultry parameters are much more effective in influencing the prevalence
in humans than control measures applied to humans. This result seems robust and
independent of the model [108]. To compare the control measures, we determine
which parameters each control measure would affect. For instance, culling affects
μd and νd . Culling with repopulation affects μd , νd , and Λd . Vaccination affects βd

and νd . Wearing protective gear affects β . We define the overall effect of the control
measure to be the sum of efficacies of the effect of the measure on each affected
parameter. For instance, culling with repopulation increases Λd and increases μd

and νd . Hence, the overall efficacy is 213.454− 210.569− 215.338 = −212.453.
We will take this number as an absolute value. We summarize the overall effects
of each control measure in Table 11.3. The affected parameters in the educational
control measure are hard to pinpoint and are omitted.

Table 11.3 suggests that culling without repopulation is the most effective strat-
egy, but it is rarely applied. Without it, culling with repopulation and biosecurity
are the two most efficient strategies, followed by vaccination. The low rank of
vaccination comes from the fact that vaccination leads to asymptomatic diseases
and increases the lifespan of infected poultry. At low levels, vaccination effectively
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Table 11.3 List of control measures and their efficacies

Control measure Affected parameters Overall efficacy Rank

Culling w/o repopulation μd , νd 425.907 1
Culling with repopulation μd ,νd ,Λd 212.453 3
Vaccination βd , νd , β 2.885 4
Biosecurity βd 212.454 2
Protective gear β 1 5
Isolation ν 0.999579 6

supports higher prevalence. One caveat that we should mention is that the actual
control measures do not necessarily affect all parameters with 1% change. Pinpoint-
ing the exact change is not trivial.

11.3 Seasonality in Avian Influenza Modeling

It has been known for a long time that human influenza exhibits seasonality in the
temperate zones. In more tropical climates, human flu shows more complex patterns.
The reasons for the human flu seasonality remain unknown.

Avian influenza H5N1 affects many countries with different climates, and yet
it exhibits seasonality similar to the human flu in temperate climates. This can be
easily seen from the monthly human cases in Fig. 11.2.

Figure 11.2 shows that most of the cases occur in the period from December
through March, and there are very few cases in the summer months. Moreover, in
humans, seasonality can also be observed in H5N1 poultry outbreaks. To capture
seasonality, we have to measure t in days or in months. Our preference will be to
measure t in days.

11.3.1 An Avian Influenza Model with Seasonality

The cause of seasonality in H5N1 is completely unknown. Some authors have
hypothesized that seasonality is intrinsic and should be modeled with autonomous
models whose endemic equilibria can be destabilized and exhibit oscillations [107].
A more likely scenario is that seasonality is extrinsic. Perhaps the transmission rate
βd is not a constant, but a periodic function of t, or the survivability of H5N1 in
the environment is periodic. A recent study considered a number of potential extrin-
sic mechanisms and their combinations as possible drivers of seasonality in H5N1
[157]. The study performed model selection on the resulting seven models and found
out that Iwami’s model with periodic transmission rate is the best fit to the cumula-
tive number of human cases. We introduce that model here:
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Fig. 11.2 Number of human cases of H5N1 by month. Data taken from [166]

Domestic Birds:
{

S′d(t) = Λd −βd(t)SdId −μdSd ,
I′d(t) = βd(t)SdId − (μd +νd)Id ,

(11.4)

where the parameters have the same meanings as above. Seasonality is captured
through a periodic transmission rate given by the periodic function

βd(t) = κ1 sin

(
2π
365

(t +ω)

)
+κ2. (11.5)

Here κ1 is the amplitude, ω is the horizontal shift, and κ2 is the vertical shift. We
want κ1 < κ2, so that βd(t)> 0. The spillover model for humans takes the form

Humans:
{

S′(t) = Λ −βSId −μS,
I′(t) = βSId − (μ +ν)I. (11.6)

Model (11.4)–(11.6) is well justified. As before, it can be fitted to the cumulative
number of human cases of H5N1. We show the fit in Fig. 11.3, where we fitted
the data through December 2009. These data are called calibration data. Then we
extended the solution and plotted it alongside the incoming new data, called test
data. It can be seen that the model describes well the incoming new data.

Model (11.4)–(11.6) is a model whose parameter βd is an explicit function of the
independent variable t. We have not considered models of this type before. Recall,
however, that models in which one or more parameters are given functions of the
independent variable are called nonautonomous.
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An important class of nonautonomous models consists of those in which the
parameters are periodic functions of the independent variable.

Definition 11.1. Models in which one or more parameters are periodic functions of
the independent variable are called periodic or seasonally forced models.

0 500 1000 1500 2000 2500

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Time ( day  since 01/ 01 /2005)

Calibration Data
Test Data
Model Prediction

C
u
m

u
la

ti
ve

n
u
m

b
er

o
f

h
u
m

an
ca

se
s 

( 
 1

05
)

Fig. 11.3 Cumulative number of human cases of H5N1 in days

Methods for nonautonomous models include the Poincaré map and Floquet
theory. We direct the reader to the many excellent books that cover this topic [155].

11.3.2 Tools For Nonautonomous Models

There are many tools that are designed to facilitate the study of nonautonomous
periodic dynamical systems. Nonautonomous periodic dynamical systems are to a
large extent analogous to autonomous dynamical systems. Here we explore two such
tools.

11.3.2.1 The Poincaré Map

The Poincaré map was developed to study the intersection of the solution flow of a
periodic orbit with the transversal cross section S. It is a tool for investigation of the
n-dimensional dynamical system

x′ = f (t,x). (11.7)
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The Poincaré map is defined as the point of return of the periodic orbit to S.

Suppose the flow φ generated by (11.7) is T -periodic, that is, φ(t +
T,x0) = φ(t,x0), and the cross section S of dimension n−1 is transversal
to the vector field. Then the Poincaré map P(x) : V ⊂ S → S associates
point x0 in V with its point P(x0) of the first return of the flow to S (see
Fig. 11.4).

Fig. 11.4 A schematic description of the Poincaré map

The Poincaré map is relatively simple to study, but on the other hand, many of its
properties are correlated to the properties of the flow. For instance, the stability of x
of the map P(x) corresponds to the stability of the solution flow φ(t,x). If the solu-
tion flow has n (m) eigenvalues with negative (positive) real part, then the linearized
map DP(x) has n (m) eigenvalues with modulus smaller (bigger) than one [155].
We utilize this property of the Poincaré map below.
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11.3.2.2 Floquet Theory

Floquet theory provides another tool for investigating the local stability of solutions
of periodic dynamical systems. Let

x′ = A(t)x, x(0) = x0, (11.8)

be a linear nonautonomous periodic system, that is, A(t +T ) = A(t).

Definition 11.2. A matrix

Φ(t) = [x1(t), . . . ,xn(t)],

where each column vector x j(t) is an independent solution of x′ = A(t)x, is called a
fundamental matrix of x′ = A(t)x.

By definition,

Φ ′(t) = A(t)Φ(t).

Theorem 11.1 (Floquet). Each fundamental matrix of the T -periodic system x′ =
A(t)x can be written as

Φ(t) = P(t)eBt ,

where P(t) is T -periodic, P(t +T ) = P(t), and B is an n×n constant matrix.

The proof of this theorem can be found in [155] and is omitted. The following
corollary shows the connection between a nonautonomous periodic linear system
and the corresponding autonomous linear system.

Corollary 11.1. The periodic system x′ = A(t)x is equivalent to the constant-
coefficient system y′ = By.

Definition 11.3. The matrix C = eBT is called a monodromy matrix. The eigenvalues
λ of the matrix B are called Floquet exponents. The eigenvalues ρ = eλT of the
matrix C are called characteristic multipliers.

11.3.2.3 Overview of Methods for Computing R0 in Periodic Models

When a nonautonomous system of differential equations is large, the analytical form
of the reproduction number is difficult to compute. In this case, approximate meth-
ods must be used. Approximate methods compute an approximate value for the
reproduction number. There are two types of approximate methods: analytical and
computational. Among the analytical approximate methods is a method developed
by Bacaër [19]. With this method, one calculates successive approximations of the
reproduction number. Of course, analytically, one can compute perhaps two or three
approximations, but these seem to be good enough. The advantage of the method is
that one obtains an explicit formula for the approximate R0.
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The reproduction number for periodic models has been more carefully defined
in [164], in which the author proves its threshold properties and also gives an algo-
rithm for its numerical computation. We notice that these results hold only when the
coefficients of the nonautonomous model are periodic.

Another approach to computing the reproduction number is discussed in [45].
This approach is both approximate and exact for simpler models. The exact approach
is very reminiscent of the approach we use below in this chapter for the computa-
tion of the reproduction number. Further discussion of the reproduction numbers
including examples in which these computed reproduction numbers fail to provide
a threshold for seasonally forced models can be found in [103].

11.3.3 Analyzing the Avian Influenza Model with Seasonality

Analyzing nonautonomous models is harder than analyzing autonomous models.
For most of the nonautonomous models, even computing the reproduction number
is a nontrivial task, and numerical methods must be used.

The model for domestic birds (11.4) can be separated from the full systems and
investigated independently. The model is simple enough so that we can compute the
reproduction number. The disease-free equilibrium of the model is time-independent
and is given by E0 = (Λd

μd
,0). We linearize around the disease-free equilibrium. Let

x(t) be the perturbation of Sd , and y(t) the perturbation in Id . After dropping the
quadratic terms and using the equations for the disease-free equilibrium to simplify,
the system for the perturbations becomes

⎧⎪⎨
⎪⎩

x′(t) =−βd(t)
Λd

μd
y(t)−μdx(t),

y′(t) = βd(t)
Λd

μd
y(t)− (μd +νd)y(t).

(11.9)

The second equation separates from the first. It is a linear equation with nonconstant
coefficients. It can be solved explicitly. The solution is given by

y(t) = y(0)e

∫ t

0

(
βd(s)

Λd

μd
− (μd +νd)

)
ds
. (11.10)

To define the basic reproduction number, we first introduce the average of a per-
iodic function over its period.

Definition 11.4. If f (t) is a periodic function of period T , then the average of f is
given by

< f >=
1
T

∫ T

0
f (s)ds
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Proposition 11.1. If f (t) is a periodic function of period T , then

lim
t→∞

1
t

∫ t

0
f (s)ds =< f > .

Proof. Let t ∈ [nT,(n+1)T ). Then t = nT + ε , where ε ∈ [0,T ). Furthermore,

∫ t

0
f (s)ds =

∫ nT

0
f (s)ds+

∫ nT+ε

nT
f (s)ds = n

∫ T

0
f (s)ds+

∫ ε

0
f (s)ds.

Dividing by t = nT + ε and taking the limit n → ∞, we have

lim
t→∞

1
t

∫ t

0
f (s)ds =

1
T

∫ T

0
f (s)ds.

This completes the proof. �	
Returning to Eq. (11.10), we see that

y(t) = y(0)e

⎛
⎝1

t

∫ t

0

(
βd(s)

Λd

μd
− (μd +νd)

)
ds

⎞
⎠ t

≈ y(0)e
(<βd>

Λd
μd

−(μd+νd))t

(11.11)

for t large enough. The expression on the right-hand side goes to ±∞ if and only if

< βd >
Λd

μd
− (μd +νd)> 0.

That prompts us to define the following reproduction number:

R0 =
< βd > Λd

μd(μd +νd)
. (11.12)

We note that βd(t) is periodic with period 365 days. Hence T = 365. Clearly, we
have the following traditional result:

Proposition 11.2. If R0 < 1, then y(t) → 0, and the disease-free equilibrium is
locally asymptotically stable. If R0 > 1, then |y(t)| → ∞, and the disease-free equi-
librium is unstable.

Furthermore, we can show that the disease-free equilibrium is globally stable.
Indeed, we have the following result.

Proposition 11.3. If R0 < 1, then Id(t)→ 0 as t → ∞.

Proof. Adding the two equations, we have N′
d(t) = Λd − μdNd − νdId , where

Nd = Sd + Id . This implies that N′
d(t) ≤ Λd − μdNd . We have shown before that in

this case, limsupt Nd(t)≤ Λd
μd

. Given ε > 0 such that
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R0(ε) =
< βd >

(
Λd
μd

+ ε
)

μd +νd
< 1,

there exists t0 such that for every t > t0, we have Nd(t) <
Λd
μd

+ ε . Since βd(t) is

periodic, we can take t0 = nT and move the dynamical system so that Nd(t)<
Λd
μd

+ε
is valid for all t > 0. Considering the equation for Id , we have

I′d(t)≤ [β (t)
(

Λd

μd
+ ε

)
− (μd +νd)]Id(t).

Solving this linear inequality, we have

Id(t)≤ Id(0)e

∫ t

0
[β (s)

(
Λd

μd
+ ε

)
− (μd +νd)]ds

.

Thus, if R0(ε)< 1, we have Id(t)→ 0 as t → ∞. �	

11.3.4 The Nonautonomous Avian Influenza Model with νd = 0

The nonautonomous model (11.4) is very simple but capable of very complex
behavior. To remove some of that complexity, in this subsection we analyze the
model with νd = 0. In this special case, the model can be reduced from a system of
two equations to a single equation. In particular, we consider the system

Domestic Birds:
{

S′d(t) = Λd −βd(t)SdId −μdSd ,
I′d(t) = βd(t)SdId −μdId .

(11.13)

Adding the two equations, we obtain the equation of the total population size:

N′
d(t) = Λd −μdNd .

We know that the solution satisfies Nd(t) → Λd
μd

. Let us assume for simplicity that

Sd(0)+ Id(0) =
Λd
μd

. Then Nd(t) =
Λd
μd

for all t. In this case,

Sd(t) =
Λd

μd
− Id(t).

From the second equation in (11.13) we obtain the following single equation in Id :

I′d(t) = βd(t)(Nd − Id(t))Id(t)−μdId(t), (11.14)
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where to simplify notation, we have set Nd = Λd
μd

. It can be shown as before that the
reproduction number of this model is (see Problem 11.3)

R0 =
< βd > Λd

μ2
d

,

and the disease-free equilibrium is E0 =(0). Equation (11.14) is a periodic Bernoulli
equation [151] and has been studied before.

The main result for that equation is that it has a unique periodic solution ξ (t)
if R0 > 1. This periodic solution is globally asymptotically stable. We state these
results in the following theorems:

Theorem 11.2. Let βd(t) be periodic of period T . Assume also R0 > 1. Then equa-
tion (11.14) has a unique periodic solution ξ (t).
Proof. We consider Eq. (11.14) on the domain Ω = {Id : Id ∈ [0,Nd ]}. To show the
existence of a periodic solution, we use the Poincaré map P . The Poincaré map
P maps the interval [0,Nd ] into itself. The Poincaré map is defined as follows. Let
Id(0) = I0. Then

P(I0) = Id(T, I0),

where Id(t, I0) is the solution of Eq. (11.14) that starts at I0. In other words, P
corresponds to the initial value I0, the value of the solution at time t = T . Because of
the properties of solutions to ODEs, the Poincaré map is one-to-one. Furthermore,
it can be shown that it is continuously differentiable. It is not hard to show that
P(0) = 0 and P(Nd)< Nd . The number Ip ∈ [0,Nd ] is an initial value of a periodic
solution if and only if P(Ip) = Ip, that is, if and only if Ip is a fixed point of the
Poincaré map. Therefore, in order to show existence of a positive periodic solution
of Eq. (11.14), we have to show that the Poincaré map has a fixed point. Define

v(t) =
∂ Id

∂ I0
(t, I0).

Then the derivative of the Poincaré map is given as follows:

P ′(I0) =
∂ Id

∂ I0
(T, I0) = v(T ).

To obtain the derivative of the Poincaré map, we differentiate equation (11.14) with
respect to I0. In this case, we obtain a differential equation in v:

v′(t) = v(t)[βd(t)(Nd − Id(t, I0))−μd −βd(t)Id(t, I0)]. (11.15)

Differentiating the initial condition Id(0) = I0 with respect to I0, we obtain that
v(0) = 1. The differential equation for v can be solved, which gives the following
expression for the derivative of the Poincaré map:

P ′(I0) = e
∫ T

0 [βd(t)(Nd−Id(t,I0))−μd−βd(t)Id(t,I0)]dt .
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Clearly P ′(I0)> 0, and hence the Poincaré map is increasing. Thus, if I1 and I2 are
two initial conditions satisfying I1 < I2, then we have P(I1)<P(I2). Furthermore,

P ′(0) = eT (<βd>Nd−μd).

Since R0 > 1, this means that the exponent is positive. Therefore, P ′(0)> 1. Hence
for I0 small enough,

P(I0)−P(0)
I0

≈P ′(0)> 1.

That implies that for I0 small enough, P(I0)> I0. Since, P(Nd)< Nd , this means
that the function P(I0)− I0 changes sign in the interval (0,Nd). Hence, there must
exist Ip such that it becomes zero, that is, P(Ip) = Ip.

To show uniqueness, we assume there are two distinct periodic solutions Ip1 and
Ip2 . Without loss of generality, we may assume Ip1 < Ip2 . First, we note that if Ip is
a periodic solution that satisfies model (11.14), then (see Problem 11.5)

∫ T

0
[βd(t)(Nd − Id(t, Ip))−μd ]dt = 0. (11.16)

Second, for Ip1 and Ip2 , we have

|Ip1 − Ip2 |= |P(Ip1)−P(Ip2)|= |P ′(Im)||Ip1 − Ip2 |, (11.17)

where Im satisfies Ip1 < Im < Ip2 . Furthermore, we have

P ′(Im) =e
∫ T

0 [βd(t)(Nd−Id(t,Im))−μd−βd(t)I(t,Im)]dt

< e
∫ T

0 [βd(t)(Nd−Id(t,Ip1 ))−μd−βd(t)Id(t,Im)]dt

< e−
∫ T

0 [βd(t)Id(t,Im)]dt < 1. (11.18)

Thus, we obtain a contradiction with (11.17). The contradiction is a result of the
assumption that we have two distinct positive periodic solutions. �	
Theorem 11.3. Let βd(t) be periodic of period T . Assume also R0 > 1. Then the
unique periodic solution ξ (t) of Eq. (11.14) is globally stable, that is, if Id(t, I0) is
any solution starting from Id(0) = I0, then

lim
t→∞

|Id(t, I0)−ξ (t)|= 0. (11.19)

Proof. To complete the proof of the theorem, we have to establish the convergence
to the periodic solution. We again assume R0 > 1, and we consider the solutions
of Eq. (11.14). Let Id(t) be an arbitrary solution starting from the initial condition
Id(0) = I0. We recall that Ip is the initial condition for the periodic solution. We
assume that Ip �= I0. We have two choices, P(I0)> I0 and P(I0)< I0. We assume
P(I0) < I0. The other case can be addressed in a similar way. Since the Poincaré
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map is increasing, we have Pn(I0) < Pn−1(I0). Hence the sequence Pn(I0) is a
decreasing sequence. Since it is bounded from below, it must converge to a limit:

lim
n→∞

Pn(I0) = I∞.

It is not hard to see that the number I∞ is a fixed point of the Poincaré map P(I∞) =
I∞. But the Poincaré map of model (11.14) has only two fixed points, I∞ = 0 and
I∞ = Ip. Assume that I∞ = 0. Then for some N, the number PN(I0) is small enough
that from the properties of the Poincaré map, we have PN+1(I0)>PN(I0), which
contradicts the fact that the sequence is decreasing. Therefore, I∞ = Ip. Conse-
quently, the limit (11.19) holds. This completes the proof of the theorem. �	

11.3.5 The Full Nonautonomous Avian Influenza Model

The nonautonomous model with νd �= 0 is a two-dimensional system and cannot be
reduced to a single equation. Unlike autonomous two-dimensional models, which
can exhibit only oscillations, two-dimensional nonautonomous models are capable
of exhibiting chaotic behavior. This is the case with model (11.4). For small νd ,
the unique oscillatory solution is still stable, but as νd increases, period-doubling
occurs, and the solution transitions to a chaotic solution. This can be seen in the
bifurcation diagram in Fig. 11.5.

The chaotic solution exhibits the pattern typical for H5N1 outbreak. We show
this in Fig. 11.6

Acknowledgements The author thanks Necibe Tuncer for help with fittings.

Appendix

In this appendix, we include Matlab code that fits model (11.1)–(11.2) to the data in
Table 11.1.

1 function Ch11fitting_model1
2

3 clear all
4 close all
5 clc
6

7 load AFluDatCumHalf14.txt %Imports the data file
8

9 tdata = AFluDatCumHalf14(:,1);
10 qdata = AFluDatCumHalf14(:,2);
11
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Fig. 11.5 Period-doubling and transition to chaos as νd increases. Parameters for the Figure are
ΛD = 1020, μd = 1/(2∗356), κ1 = 0.00005111486, κ2 = 0.00032621758, ω = 127
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Fig. 11.6 Chaotic solution exhibits outbreak pattern. Parameters as in Fig. 11.5. In addition,
νd = 0.35
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12 tforward = (0:0.01:9)';
13 tmeasure = [1:50:901]';
14

15 format long
16

17 function dy = model_1(t,y,k)
18

19 Lb = 1200;
20 L = 1000;
21 mb = 1/2;
22 nb = 36.5;
23 mu = 1/65;
24 nu = 36.5;
25

26 dy = zeros(5,1);
27

28 dy(1) = Lb -k(1)*y(1)*y(2)-mb*y(1);
29 dy(2) = k(1)*y(1)*y(2)-(nb+mb)*y(2);
30 dy(3) = L - k(2)*y(3)*y(2)-mu*y(3);
31 dy(4) = k(2)*y(3)*y(2)-(mu+nu)*y(4);
32 dy(5) = k(2)*y(3)*y(2);
33

34 end
35

36 function q = model1(k,tdata)
37

38 [T,Y] = ode23s(@(t,y)(model_1(t,y,k)),tforward,
39 [2400 k(3) 65000 0.0007 ...

.0007]);
40

41 q = Y(tmeasure(:),5);
42

43 end
44

45 k = [0.0158 0.00000001063 0.9]; % Initial values for ...
parameters

46

47 lb = [0.0 0.0 0.0];
48

49

50

51 for i = 1:5
52

53 [k,resnorm] = lsqcurvefit(@model1,k,tdata,qdata,lb,[],...
54 optimset('Disp','iter','TolX',10ˆ(-20),'TolFun',10ˆ(-20)))
55 end
56

57

58 [T,Y] = ode15s(@(t,y)(model_1(t,y,k)),tforward,[2400 ...
59 k(3) 65000 .0007 .0007]);
60

61

62

63 figure(1)
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64

65 plot(tdata,qdata,'r.');
66 hold on
67 plot(tforward,Y(:,5),'b-');
68

69

70 end
71

72 end

Problems

11.1. For model (11.1)–(11.2), obtain a list of the countries that have human cases
from the main source of data [166]. Use [58] to obtain the number of poultry units
for these countries. Use [167] to determine the human population of the affected
countries. Parameterize model (11.1)–(11.2) with these data.

11.2. Consider the AI model with pandemic strain [80]

Domestic Birds:
{

S′d(t) = Λd −βdSdId −μdSd ,
I′d(t) = βbSdId − (μd +νd)Id .

(11.20)

The spillover model for humans with pandemic strain takes the form

Humans:

⎧⎨
⎩

S′(t) = Λ −βSId −βZSZ −μS,
I′(t) = βSId − (μ +ν +ρ)I,
Z′(t) = ρI +βZSZ − (μ +νZ)Z.

(11.21)

where Z is the number of individuals infected by the pandemic strain.

(a) Compute the reproduction numbers of the avian and the pandemic strains.
(b) Fit the model to the data in Table 11.1. Take νz = 36.5. Estimate the reproduction

numbers from the fit. The reproduction number of the pandemic strain should
be between 1.5 and 3.

(c) Compute the invasion number of the pandemic strain.
(d) Compute the elasticity of the pandemic invasion number with respect to I∗d .

Culling facilitates invasion, but how pronounced is that effect?

11.3. Consider the reproduction number

R0 =
< βd > Λd

μ2
d

.

Using the periodicity properties of sin, simplify it as much as possible.
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11.4. Show that model (11.14) has as a reproduction number

R0 =
< βd > Λd

μ2
d

.

11.5. Prove equality (11.16).

11.6. Let β (t), μ(t), and γ(t) be periodic with period T . Consider the model

I′(t) = β (t)(1− I(t))I(t)− (μ(t)+ γ(t))I(t).

(a) Compute the reproduction number of this model.
(b) Show that R0 computed in (a) gives a threshold, that is, the DFE is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.
(c) Sow that the DFE is globally asymptotically stable if R0 < 1.

11.7. Let β (t), μ(t), and γ(t) be periodic with period T . Consider the model (see
Problem 11.6)

I′(t) = β (t)(1− I(t))I(t)− (μ(t)+ γ(t))I(t).

(a) Show that the model has a unique periodic solution if R0 > 1.
(b) Show that the periodic solution is globally asymptotically stable.

11.8. Let β (t), μ(t), and γ(t) be periodic with period T . Consider the two-strain
model

I′1(t) = β1(t)(1− I1(t)− I2(t))I1(t)− (μ1(t)+ γ1(t))I1(t),
I′2(t) = β2(t)(1− I1(t)− I2(t))I2(t)− (μ2(t)+ γ2(t))I2(t).

(11.22)

(a) Define the reproduction number of each strain.
(b) Let ξ1(t) and ξ2(t) be the periodic solutions of strain one alone and strain two

alone. Define the invasion numbers of strain one and strain two.

Hint: You have to look at the stability of the solution (ξ1(t),0). Define the Floquet
exponent for strain two and read off the invasion number.
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