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            Introduction 

 The study of injuries of the anterior cruciate 
ligament (ACL) makes up a large body of 
research into the etiology of PTA in both an ani-
mal and clinical setting. Currently, animal mod-
els using ACL transection (ACL-T) include 
dogs, sheep, cats, rabbits, guinea pigs, rats, and 
mice [ 1 – 3 ]. The fi rst reported ACL-T model was 
developed using a stab incision in a canine 
model by Pond and Nuki [ 4 ]. Subsequent studies 
in dogs and other animals have examined the 
effects of ACL-T on articular cartilage, 
synovium, gene expression, biomarkers, and 
pain, and have been used in a variety of settings 
to test various therapeutic interventions. This 
section focuses on the use of ACL-T animal 
models as a method for studying PTA, with the 
advantages, disadvantages, and relevant studies 
for each animal described below.  

    Dog Model 

 The canine model has been used extensively for 
studying the effects of ACL-T, and there are a 
variety of advantages to using dogs for osteoar-
thritis (OA) research. For instance, they have a 
slow disease progression after injury, allowing 
for long-term observation of changes that occur 
as a result of PTA. Dogs also have thick articular 
cartilage, have larger joints, are trainable, and 
have well-documented outcomes to injury mod-
els, with a pathology that mimics naturally occur-
ring arthritis. However, the high cost and public 
perception of using dogs are drawbacks to this 
model [ 1 – 3 ]. The fi rst use of dogs for an ACL-T 
model was reported by Pond and Nuki in 1973, 
which utilized a stab incision into the knee joint 
to induce ACL-T [ 4 ]. Subsequent studies followed 
using the stab incision model, focusing on areas 
such as osteophyte formation [ 5 ], biochemical 
changes and gene expression [ 6 – 9 ], mechanical 
properties [ 10 ], and imaging techniques [ 11 ]. 
Therapeutic studies examined the effect of 
inhibiting nitric oxide (NO) [ 12 ] or delivering 
licofelone [ 9 ,  13 ] as a chondroprotective agent. 
A summary of the studies utilizing the stab inci-
sion model are given in Table  6.1 .

   After the introduction of the Pond-Nuki tran-
section model (stab incision), other methods of 
ACL-T were studied. Brandt published a review 
validating the use of the canine ACL-T model for 
the study of arthritis [ 16 ], and open induction 
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models were implemented, where the ACL was 
visualized and transected either through an 
arthrotomy or arthroscopically. A wide range of 
studies followed, looking at aspects of open- 
induction ACL-T such as biochemical changes 
and gene expression [ 17 – 24 ], bone morphologi-
cal changes [ 25 – 28 ], biomarkers [ 29 – 31 ], and 
imaging techniques [ 32 ,  33 ]. O’Connor and 
coworkers published two studies looking at the 
combined effect of nerve removal and ACL-T on 
the development of PTA [ 34 ,  35 ]. Two therapeu-
tic studies used the open-induction ACL-T model, 
including a doxycycline therapy study [ 36 ] and 
an MMP inhibitor study [ 37 ]. Doom and cowork-
ers published a review of immunopathological 
mechanisms that result from the ACL-T model, 
leading to PTA [ 38 ]. A summary of the studies 
using the open-induction canine ACL-T model 
are listed in Table  6.2  below.

       Sheep Model 

 The use of sheep has not been widely utilized for 
the study of PTA; however, sheep may provide 
advantages because of their large joint size, 
which allows for the analysis of biochemical and 
biomechanical measures that may not be able to 
be performed in human subjects [ 39 – 41 ]. As with 
other large animals, sheep can readily undergo 
arthroscopic surgery and MRI observation, 
allowing for more direct translation of studies to 
the clinic. However, there are limited reagents 
and antibodies available, and until recently, a 
limited mapped genome for sheep, making it dif-
fi cult for genetic studies [ 1 – 3 ]. Furthermore, 
their large size is a disadvantage in testing novel 
pharmacologic interventions. Most studies utiliz-
ing the ACL-T model in sheep have focused on 
radiographic tracking and kinematics of 
PTA. O’Brien and coworkers examined the 
effects of immediate reconstruction of the tran-
sected ACL on cartilage degeneration and osteo-
phyte formation [ 41 ], while Atarod and coworkers 
examined the kinematic loads placed on soft tis-
sue after ACL-T in the sheep [ 39 ]. A summary of 
the use of ovine ACL-T models is in Table  6.3  
below.

       Cat Model 

 Neuromuscular control has been extensively stud-
ied in cats, as well as muscle mechanics and loco-
motion [ 42 ]. Logically, cats would be well suited to 
study interventions towards musculoskeletal dis-
eases, such as PTA that results from an ACL-T 
injury. Cats are advantageous to use because of their 
large size and known genome. However, like dogs, 
cats can be costly to house during experiments, and 
public perception and their role as companion ani-
mals discourage the use of cats for research [ 1 – 3 ]. 

 Herzog and coworkers fi rst studied the effect 
of ACL-T in cats on hindlimb loading and 
changes in articular cartilage [ 42 ]. Khalsa and 
coworkers studied the effect of severing the 
nerves associated with the joint capsule after 
ACL-T [ 43 ]. Herzog and coworkers monitored 
cats for a year, using force testing plates and 
radiographs to track kinematic and radiographic 
changes due to OA [ 44 ,  45 ]. Boyd and coworkers 
studied the changes to the periarticular bone as a 
result of ACL-T, while Clark and coworkers 
 studied the adaptive response of cartilage after 
ACL-T [ 46 ,  47 ]. A summary of the studies utiliz-
ing feline ACL-T models follow in Table  6.4 .

       Rabbit Model 

 Rabbits have been a popular model for use with 
both ACL-T and meniscus injury models because 
of their low spontaneous joint degeneration, large 
joint size, and ease in use for testing new thera-
peutic agents. Rabbits preferentially load their 
lateral side, unlike rodents, and have the capabil-
ity to spontaneous regenerate transected menisci 
with fi brous tissue, which can cause disadvan-
tages for some studies. Similarly, rabbits have 
altered joint biomechanics, potentially resulting 
in a change in disease pathology compared to 
what may be expected in other animals. However, 
rabbits have been widely used as a model for OA 
because they form lesions similar to those seen in 
clinical OA [ 1 – 3 ]. 

 The ACL-T model has been used in rabbits to 
study many aspects of PTA development. Studies 
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   Table 6.3    Ovine ACL-T models   

 Strain  ACL-T type  Surgery age  Exp. time  Results  Reference 

 Suffolk-cross  Arthrotomy + 
reconstruction 

 3–4 months  4, 20 weeks  ACL-R group had ↑ 
cartilage + osteophyte 
scores compared to 
controls; some OA 
development 

 [ 41 ] 

 Suffolk-cross  Arthroscopic  3 years  20 weeks  Load redistribution 
after ACL-T led to a 
signifi cant ↓ in both 
PCL and LCL loads; 
no change in MCL loads 

 [ 39 ] 

   Table 6.4    Feline ACL-T models   

 Strain  ACL-T type  Surgery age  Exp. time  Results  Reference 

 Outbred  Anterior 
capsulotomy 

 1–3 years  4, 12, 35 weeks  ↓ in muscle mass in ACL-T knee; ↑ in 
cell density, hexuronic acid in articular 
cartilage at weeks 12 and 35 

 [ 42 ] 

 Outbred  Lateral 
arthrotomy 

 Adult  0 days  Mechanoreceptor neurons in joint 
capsule are not affected by ACL-T 

 [ 43 ] 

 Outbred  Arthroscopic  Adult  16 weeks  Signifi cant ↑ in articular cartilage 
thickness, signifi cant ↓ in stiffness in 
ACL-T knee 

 [ 44 ] 

 Outbred  Arthroscopic  Adult  Ongoing 
(1 year) 

 ↑ in knee instability, osteophyte 
formation, articular cartilage thickness, 
joint degeneration 

 [ 45 ] 

 Outbred  Anterior 
capsulotomy 

 Adult  16 weeks, 
60 months 

 Signifi cant ↓ in cancellous bone mass, 
subchondral bone thickness at 60 
months; ACL-T intensifi ed bone 
changes compared to control 

 [ 46 ] 

 Outbred  Anterior 
capsulotomy 

 Adult  16 weeks  ↑ patellar articular cartilage, larger 
chondrocytes, more chondrocyte 
clusters, larger chondrocyte volume 
fraction; no femoral groove cartilage 
adaptation 

 [ 47 ] 

have examined articular cartilage and meniscus 
properties [ 48 – 50 ], gene expression and surface 
receptors [ 51 – 53 ], osteophytes [ 54 ], bone 
properties [ 55 ,  56 ], and imaging techniques [ 57 , 
 58 ]. The rabbit ACL-T model has also been 
used to test out therapeutics, such as HA therapy 
[ 59 ] and oral glucosamine supplements [ 60 ]. 
Furthermore, one study compared surgically 
induced ACL-T versus a blunt trauma ACL-T, 
which closely resembles clinical ACL-T in 
humans [ 61 ]. Studies using rabbit models of 
ACL-T are summarized in Table  6.5 .

       Guinea Pig Model 

 Guinea pigs have been used to study OA because 
the Hartley strain, among others, develops spon-
taneous OA beginning at 3 months of age [ 1 , 
 62 – 65 ]. Other advantages of using guinea pigs 
for the study of PTA include the fact that their 
histopathology is very similar to humans and that 
they are easy to manage during long studies. 
Disadvantages for their use include the fact that 
they preferentially load the medial side of the 
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knee joint, are mainly sedentary animals, and are 
too small to allow for use of arthroscopic tech-
niques for injury induction and observation 
[ 1 – 3 ]. 

 Recently, guinea pigs have been used to study 
the effects of PTA as well as spontaneous OA by 
looking at the effects of ACL-T such as osteo-
phytes and histopathologic changes [ 66 ], coeffi -
cient of cartilage [ 67 ], levels of lubricin in the 
joint [ 67 ,  68 ], and levels of biomarkers in syno-
vial fl uid including C2C, GAG, IL-1β, MMP-13, 
and SDF-1 [ 68 ]. The use of guinea pig ACL-T 
models in PTA studies is summarized in 
Table  6.6 .

       Rat Model 

 Rats have been increasingly used for ACL-T 
studies due to their small size, rapid speed of OA 
symptom onset, ability for pharmacological test-
ing, translational potential to human PTA, and 
low spontaneous degeneration of their knee joints 
[ 1 ,  3 ,  69 – 71 ]. Rats also have thick enough carti-
lage to allow for both partial and full cartilage 
defects, which allows for a low-cost defect model 
for OA research. Disadvantages include their 
small size for injury induction, and the rapid 
onset of disease [ 1 – 3 ]. 

 Rats have been used to examine a variety of 
different PTA outcomes. One group of studies 

focused on the articular cartilage destruction, 
subchondral bone changes, and osteophyte pro-
duction after ACL-T [ 71 – 73 ]. Another group 
introduced exercise as a therapy for reducing the 
symptoms of PTA after ACL-T [ 74 ]. Three other 
studies focused on the addition of supplements or 
inhibitors, including alendronate, which inhibits 
bone resorption, lubricin, hyaluronic acid (HA), 
and etanercept, an inhibitor of tumor necrosis 
factor alpha [ 75 – 77 ]. Finally, one group exam-
ined gene expression of different groups of OA 
progression markers, including matrix degrada-
tion, chondrocyte differentiation, and osteoclas-
tic bone markers as a way to track disease 
progression [ 69 ]. Studies utilizing rat ACL-T 
models are summarized in Table  6.7  below.

       Mouse Model 

 Mice provide a number of important advantages 
for studying OA and PTA. They are relatively 
inexpensive and easy to manage during studies, 
can incorporate genetic modifi cations, and are 
easy to use for pharmacological studies because 
of the low dosage required for effi cacy [ 1 – 3 ]. 
However, relatively few murine models have 
been developed using ACL-T, likely due to small 
size and diffi culty of the surgical approach. Mice 
also have fairly rapid onset of severe OA changes 

   Table 6.6    Guinea pig ACL-T models   

 Strain  ACL-T type  Surgery age  Exp. time  Results  Reference 

 Hartley  Medial arthrotomy  40 days  1–8 months  Osteophytes visible at 3 
months; Mankin score 
signifi cant at 4–8 months 
compared to 1 month 

 [ 66 ] 

 Hartley  Lateral arthrotomy  3 months  3, 12 months  Coeffi cient of friction of 
cartilage signifi cantly greater 
in ACL-T knees; lubricin 
levels signifi cantly less in 
ACL-T knees 

 [ 67 ] 

 Hartley  Lateral arthrotomy  3 months  9 months  Lubricin signifi cantly ↓; 
C2C, GAG, IL-1β, MMP-13, 
SDF-1 ↑ in ACL-T knees 

 [ 68 ] 

6 Anterior Cruciate Transection/Disruption Models of Post-Traumatic Arthritis
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after surgery [ 1 ,  78 ]. Mice also have thin articular 
cartilage, which has limited the use of certain 
techniques, such as MRI or gene expression stud-
ies, to study PTA. 

 One example of the use of surgical ACL-T for 
the study of PTA was in a study published by 
Glasson and coworkers. When they compared the 
effects of ACL-T and destabilization of the 
medial meniscus (DMM) on the development of 
OA, the DMM model resulted in a slower and 
less severe progression of OA. However, as an 
alternative to surgical ACL-T, recent studies have 
examined the effect of cyclic loading [ 79 ] or a 
single loading cycle [ 80 – 82 ] to induce ACL-T in 
mice. The use of murine ACL-T models in stud-
ies is summarized in Table  6.8 . A more detailed 
description of the single loading cycle to create 

ACL transection in a mouse is presented in the 
next chapter.

       Conclusions 

 In summary, transection or rupture of the ACL 
provides a reproducible model of PTA. This pro-
cedure can be performed surgically or noninva-
sively and has been demonstrated in a variety of 
different animals that range in size from the 
mouse to the sheep. The changes occurring in the 
joint appear to parallel the degenerative changes 
that occur in clinical PTA, and appear to affect all 
of the joint tissues including the cartilage, menis-
cus, bone, and synovium.     

   Table 6.7    Rat ACL-T models   

 Strain 
 ACL-T 
type  Surgery age  Exp. time  Results  Reference 

 Wistar  Medial 
arthrotomy 

 10 weeks  2, 7, 14, 21, 
28, 70 days 

 Cartilage destruction (margins) weeks 1–3; 
↑ fi brillation of central cartilage weeks 3–4; 
↑ denatured collagen type II staining present 

 [ 73 ] 

 Wistar  Medial 
arthrotomy 

 Unknown  2, 7, 14, 28, 
70 days 

 Superfi cial zone cartilage changes 
(chondrocyte death/swelling, ↑ fi brillation); 
↑ denatured collagen type II staining in 
fi brillated areas 

 [ 71 ] 

 Wistar  Medial 
arthrotomy 

 8 weeks  7, 14, 28 days  Mankin score lower for slight and 
moderate exercise at day 14; ↓ lesions in 
slight and moderate groups at day 28 

 [ 74 ] 

 Sprague- 
Dawley  

 Medial 
arthrotomy 

 20 weeks  2, 10 weeks  Alendronate (ALN) prevented ↑ bone 
formation, reduced area and instance of 
osteophytes, blocked osteoclast 
recruitment, ↓ local TGF-β release 

 [ 76 ] 

 Sprague- 
Dawley  

 Medial 
arthrotomy 

 10 weeks  1, 2, 4, 6, 10 
weeks 

 Cartilage surface damage and GAG loss 
at week 1; subchondral bone loss weeks 
2–10; osteophyte formation by week 10 in 
ACL-T 

 [ 72 ] 

 Lewis  Lateral 
arthrotomy 

 7–8 weeks  1, 4 weeks  Gene expression of lubricin ↓ in injured 
joints; ↑ TNF-α, IL-1β in synovial fl uid of 
injured joints; TNF-α inhibition = ↑ of 
cartilage-bound lubricin, ↓ sGAG release 

 [ 75 ] 

 Lewis  Medial 
arthrotomy 

 3 months  6 weeks  Lubricin and lubricin + HA groups had ↓ in 
radiographic/histologic scores of cartilage 
damage; oral lubricin ↓ cartilage damage 

 [ 77 ] 

 Sprague- 
Dawley  

 Medial 
arthrotomy 

 10 weeks  1, 2, 4, 6, 10 
weeks 

 ↑ aggrecanase-1, MMP-13 weeks 1–10; 
↑ collagen type IIA, Sox-9, VEGF, CD31 
weeks 2–4 with ↓ later; ↑ cathepsin K, 
TRAP week 2; ↑ Runx-2, osterix weeks 4–6 

 [ 69 ] 
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