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Introduction

The study of injuries of the anterior cruciate
ligament (ACL) makes up a large body of
research into the etiology of PTA in both an ani-
mal and clinical setting. Currently, animal mod-
els using ACL transection (ACL-T) include
dogs, sheep, cats, rabbits, guinea pigs, rats, and
mice [1-3]. The first reported ACL-T model was
developed using a stab incision in a canine
model by Pond and Nuki [4]. Subsequent studies
in dogs and other animals have examined the
effects of ACL-T on articular -cartilage,
synovium, gene expression, biomarkers, and
pain, and have been used in a variety of settings
to test various therapeutic interventions. This
section focuses on the use of ACL-T animal
models as a method for studying PTA, with the
advantages, disadvantages, and relevant studies
for each animal described below.
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Dog Model

The canine model has been used extensively for
studying the effects of ACL-T, and there are a
variety of advantages to using dogs for osteoar-
thritis (OA) research. For instance, they have a
slow disease progression after injury, allowing
for long-term observation of changes that occur
as a result of PTA. Dogs also have thick articular
cartilage, have larger joints, are trainable, and
have well-documented outcomes to injury mod-
els, with a pathology that mimics naturally occur-
ring arthritis. However, the high cost and public
perception of using dogs are drawbacks to this
model [1-3]. The first use of dogs for an ACL-T
model was reported by Pond and Nuki in 1973,
which utilized a stab incision into the knee joint
to induce ACL-T [4]. Subsequent studies followed
using the stab incision model, focusing on areas
such as osteophyte formation [5], biochemical
changes and gene expression [6-9], mechanical
properties [10], and imaging techniques [11].
Therapeutic studies examined the effect of
inhibiting nitric oxide (NO) [12] or delivering
licofelone [9, 13] as a chondroprotective agent.
A summary of the studies utilizing the stab inci-
sion model are given in Table 6.1.

After the introduction of the Pond-Nuki tran-
section model (stab incision), other methods of
ACL-T were studied. Brandt published a review
validating the use of the canine ACL-T model for
the study of arthritis [16], and open induction
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6 Anterior Cruciate Transection/Disruption Models of Post-Traumatic Arthritis 65

models were implemented, where the ACL was
visualized and transected either through an
arthrotomy or arthroscopically. A wide range of
studies followed, looking at aspects of open-
induction ACL-T such as biochemical changes
and gene expression [17-24], bone morphologi-
cal changes [25-28], biomarkers [29-31], and
imaging techniques [32, 33]. O’Connor and
coworkers published two studies looking at the
combined effect of nerve removal and ACL-T on
the development of PTA [34, 35]. Two therapeu-
tic studies used the open-induction ACL-T model,
including a doxycycline therapy study [36] and
an MMP inhibitor study [37]. Doom and cowork-
ers published a review of immunopathological
mechanisms that result from the ACL-T model,
leading to PTA [38]. A summary of the studies
using the open-induction canine ACL-T model
are listed in Table 6.2 below.

Sheep Model

The use of sheep has not been widely utilized for
the study of PTA; however, sheep may provide
advantages because of their large joint size,
which allows for the analysis of biochemical and
biomechanical measures that may not be able to
be performed in human subjects [39-41]. As with
other large animals, sheep can readily undergo
arthroscopic surgery and MRI observation,
allowing for more direct translation of studies to
the clinic. However, there are limited reagents
and antibodies available, and until recently, a
limited mapped genome for sheep, making it dif-
ficult for genetic studies [1-3]. Furthermore,
their large size is a disadvantage in testing novel
pharmacologic interventions. Most studies utiliz-
ing the ACL-T model in sheep have focused on
radiographic  tracking and kinematics of
PTA. O’Brien and coworkers examined the
effects of immediate reconstruction of the tran-
sected ACL on cartilage degeneration and osteo-
phyte formation [41], while Atarod and coworkers
examined the kinematic loads placed on soft tis-
sue after ACL-T in the sheep [39]. A summary of
the use of ovine ACL-T models is in Table 6.3
below.

Cat Model

Neuromuscular control has been extensively stud-
ied in cats, as well as muscle mechanics and loco-
motion [42]. Logically, cats would be well suited to
study interventions towards musculoskeletal dis-
eases, such as PTA that results from an ACL-T
injury. Cats are advantageous to use because of their
large size and known genome. However, like dogs,
cats can be costly to house during experiments, and
public perception and their role as companion ani-
mals discourage the use of cats for research [1-3].
Herzog and coworkers first studied the effect
of ACL-T in cats on hindlimb loading and
changes in articular cartilage [42]. Khalsa and
coworkers studied the effect of severing the
nerves associated with the joint capsule after
ACL-T [43]. Herzog and coworkers monitored
cats for a year, using force testing plates and
radiographs to track kinematic and radiographic
changes due to OA [44, 45]. Boyd and coworkers
studied the changes to the periarticular bone as a
result of ACL-T, while Clark and coworkers
studied the adaptive response of cartilage after
ACL-T [46, 47]. A summary of the studies utiliz-
ing feline ACL-T models follow in Table 6.4.

Rabbit Model

Rabbits have been a popular model for use with
both ACL-T and meniscus injury models because
of their low spontaneous joint degeneration, large
joint size, and ease in use for testing new thera-
peutic agents. Rabbits preferentially load their
lateral side, unlike rodents, and have the capabil-
ity to spontaneous regenerate transected menisci
with fibrous tissue, which can cause disadvan-
tages for some studies. Similarly, rabbits have
altered joint biomechanics, potentially resulting
in a change in disease pathology compared to
what may be expected in other animals. However,
rabbits have been widely used as a model for OA
because they form lesions similar to those seen in
clinical OA [1-3].

The ACL-T model has been used in rabbits to
study many aspects of PTA development. Studies
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6 Anterior Cruciate Transection/Disruption Models of Post-Traumatic Arthritis 67

Table 6.3 Ovine ACL-T models

Strain ACL-T type Surgery age Exp. time Results Reference
Suffolk-cross Arthrotomy + 3—4 months 4,20 weeks ACL-R group had 1 [41]
reconstruction cartilage + osteophyte
scores compared to
controls; some OA
development
Suffolk-cross Arthroscopic 3 years 20 weeks Load redistribution [39]
after ACL-T led to a
significant | in both
PCL and LCL loads;
no change in MCL loads
Table 6.4 Feline ACL-T models
Strain ACL-T type Surgery age  Exp. time Results Reference
Outbred  Anterior 1-3 years 4,12, 35 weeks | in muscle mass in ACL-T knee; 1 in [42]
capsulotomy cell density, hexuronic acid in articular
cartilage at weeks 12 and 35
Outbred  Lateral Adult 0 days Mechanoreceptor neurons in joint [43]
arthrotomy capsule are not affected by ACL-T
Outbred  Arthroscopic ~ Adult 16 weeks Significant 1 in articular cartilage [44]
thickness, significant | in stiffness in
ACL-T knee
Outbred ~ Arthroscopic ~ Adult Ongoing 1 in knee instability, osteophyte [45]
(1 year) formation, articular cartilage thickness,
joint degeneration
Outbred  Anterior Adult 16 weeks, Significant | in cancellous bone mass, [46]
capsulotomy 60 months subchondral bone thickness at 60
months; ACL-T intensified bone
changes compared to control
Outbred  Anterior Adult 16 weeks 1 patellar articular cartilage, larger [47]

capsulotomy

have examined articular cartilage and meniscus
properties [48-50], gene expression and surface
receptors [51-53], osteophytes [54], bone
properties [55, 56], and imaging techniques [57,
58]. The rabbit ACL-T model has also been
used to test out therapeutics, such as HA therapy
[59] and oral glucosamine supplements [60].
Furthermore, one study compared surgically
induced ACL-T versus a blunt trauma ACL-T,
which closely resembles clinical ACL-T in
humans [61]. Studies using rabbit models of
ACL-T are summarized in Table 6.5.

chondrocytes, more chondrocyte
clusters, larger chondrocyte volume
fraction; no femoral groove cartilage
adaptation

Guinea Pig Model

Guinea pigs have been used to study OA because
the Hartley strain, among others, develops spon-
taneous OA beginning at 3 months of age [I,
62—65]. Other advantages of using guinea pigs
for the study of PTA include the fact that their
histopathology is very similar to humans and that
they are easy to manage during long studies.
Disadvantages for their use include the fact that
they preferentially load the medial side of the
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6 Anterior Cruciate Transection/Disruption Models of Post-Traumatic Arthritis 69

Table 6.6 Guinea pig ACL-T models

ACL-T type
Medial arthrotomy

Strain Surgery age

Hartley 40 days

Hartley Lateral arthrotomy 3 months

Hartley Lateral arthrotomy 3 months

knee joint, are mainly sedentary animals, and are
too small to allow for use of arthroscopic tech-
niques for injury induction and observation
[1-3].

Recently, guinea pigs have been used to study
the effects of PTA as well as spontaneous OA by
looking at the effects of ACL-T such as osteo-
phytes and histopathologic changes [66], coeffi-
cient of cartilage [67], levels of lubricin in the
joint [67, 68], and levels of biomarkers in syno-
vial fluid including C2C, GAG, IL-1p3, MMP-13,
and SDF-1 [68]. The use of guinea pig ACL-T
models in PTA studies is summarized in
Table 6.6.

Rat Model

Rats have been increasingly used for ACL-T
studies due to their small size, rapid speed of OA
symptom onset, ability for pharmacological test-
ing, translational potential to human PTA, and
low spontaneous degeneration of their knee joints
[1, 3, 69-71]. Rats also have thick enough carti-
lage to allow for both partial and full cartilage
defects, which allows for a low-cost defect model
for OA research. Disadvantages include their
small size for injury induction, and the rapid
onset of disease [1-3].

Rats have been used to examine a variety of
different PTA outcomes. One group of studies

Exp. time
1-8 months

3, 12 months

9 months

Reference

[66]

Results

Osteophytes visible at 3
months; Mankin score
significant at 4-8 months
compared to 1 month
Coefficient of friction of [67]
cartilage significantly greater
in ACL-T knees; lubricin
levels significantly less in
ACL-T knees

Lubricin significantly |;
C2C, GAG, IL-1p, MMP-13,
SDF-1 1 in ACL-T knees

[68]

focused on the articular cartilage destruction,
subchondral bone changes, and osteophyte pro-
duction after ACL-T [71-73]. Another group
introduced exercise as a therapy for reducing the
symptoms of PTA after ACL-T [74]. Three other
studies focused on the addition of supplements or
inhibitors, including alendronate, which inhibits
bone resorption, lubricin, hyaluronic acid (HA),
and etanercept, an inhibitor of tumor necrosis
factor alpha [75-77]. Finally, one group exam-
ined gene expression of different groups of OA
progression markers, including matrix degrada-
tion, chondrocyte differentiation, and osteoclas-
tic bone markers as a way to track disease
progression [69]. Studies utilizing rat ACL-T
models are summarized in Table 6.7 below.

Mouse Model

Mice provide a number of important advantages
for studying OA and PTA. They are relatively
inexpensive and easy to manage during studies,
can incorporate genetic modifications, and are
easy to use for pharmacological studies because
of the low dosage required for efficacy [1-3].
However, relatively few murine models have
been developed using ACL-T, likely due to small
size and difficulty of the surgical approach. Mice
also have fairly rapid onset of severe OA changes
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Table 6.7 Rat ACL-T models
ACL-T

Strain type Surgery age  Exp. time

Wistar Medial 10 weeks 2,7,14, 21,
arthrotomy 28, 70 days

Wistar Medial Unknown 2,7, 14, 28,
arthrotomy 70 days

Wistar Medial 8 weeks 7, 14, 28 days
arthrotomy

Sprague-  Medial 20 weeks 2, 10 weeks

Dawley arthrotomy

Sprague-  Medial 10 weeks 1,2,4,6,10

Dawley arthrotomy weeks

Lewis Lateral 7-8 weeks 1, 4 weeks
arthrotomy

Lewis Medial 3 months 6 weeks
arthrotomy

Sprague-  Medial 10 weeks 1,2,4,6,10

Dawley arthrotomy weeks

after surgery [1, 78]. Mice also have thin articular
cartilage, which has limited the use of certain
techniques, such as MRI or gene expression stud-
ies, to study PTA.

One example of the use of surgical ACL-T for
the study of PTA was in a study published by
Glasson and coworkers. When they compared the
effects of ACL-T and destabilization of the
medial meniscus (DMM) on the development of
OA, the DMM model resulted in a slower and
less severe progression of OA. However, as an
alternative to surgical ACL-T, recent studies have
examined the effect of cyclic loading [79] or a
single loading cycle [80-82] to induce ACL-T in
mice. The use of murine ACL-T models in stud-
ies is summarized in Table 6.8. A more detailed
description of the single loading cycle to create

K.A. Kimmerling and F. Guilak

Reference
[73]

Results

Cartilage destruction (margins) weeks 1-3;
1 fibrillation of central cartilage weeks 3—4;
1 denatured collagen type II staining present
Superficial zone cartilage changes
(chondrocyte death/swelling, 1 fibrillation);
1 denatured collagen type II staining in
fibrillated areas

[71]

Mankin score lower for slight and
moderate exercise at day 14; | lesions in
slight and moderate groups at day 28
Alendronate (ALN) prevented 1 bone
formation, reduced area and instance of
osteophytes, blocked osteoclast
recruitment, | local TGF-p release

[74]

[76]

Cartilage surface damage and GAG loss [72]
at week 1; subchondral bone loss weeks
2-10; osteophyte formation by week 10 in
ACL-T

Gene expression of lubricin | in injured
joints; T TNF-a, IL-1f in synovial fluid of
injured joints; TNF-a inhibition=1 of
cartilage-bound lubricin, | sGAG release
Lubricin and lubricin+HA groups had | in
radiographic/histologic scores of cartilage
damage; oral lubricin | cartilage damage

1 aggrecanase-1, MMP-13 weeks 1-10;

1 collagen type IIA, Sox-9, VEGF, CD31
weeks 2—4 with | later; 1 cathepsin K,
TRAP week 2; 1 Runx-2, osterix weeks 4-6

[75]

(77

[69]

ACL transection in a mouse is presented in the
next chapter.

Conclusions

In summary, transection or rupture of the ACL
provides a reproducible model of PTA. This pro-
cedure can be performed surgically or noninva-
sively and has been demonstrated in a variety of
different animals that range in size from the
mouse to the sheep. The changes occurring in the
joint appear to parallel the degenerative changes
that occur in clinical PTA, and appear to affect all
of the joint tissues including the cartilage, menis-
cus, bone, and synovium.
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Table 6.8 Murine ACL-T models

71
Results Reference
Severe OA compared to DMM [78]
model; subchondral bone erosion
of the tibial plateau; chondrogenesis
of joint capsule
Rapid trabecular bone loss by 7 days; [80]

mild OA detected by day 56
Loss of trabecular bone by 10 days;

[81]

Strain ACL-T type  Surgery age  Exp. time

129S6/SvEv Medial Unknown 4, 8 weeks
arthrotomy

C57BL/6N Tibial 10 weeks 1,3,7, 14,
compression 28, 56 days

C57BL/6N Tibial 10 weeks 0, 10 days;
compression 12, 16 weeks

FVB Cyclic axial 3 months 1, 8 weeks
loading

C57BL/6 Tibial 8 weeks 5,9, 14 days
compression
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