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As with reading, poor mathematics learning in 
school is associated with serious, lifelong dif-
ficulties (e.g., National Mathematics Advisory 
Panel (NMAP) 2008; Rivera-Batiz 1992), and 
the prevalence of mathematics difficulty is as 
high, with 5–9 % of the population experiencing 
such problems (e.g., Dirks et  al. 2008; Shalev 
et al. 2000). Moreover, although the prevalence 
and lifelong debilitating consequences are simi-
lar for learning disabilities in mathematics and 
reading, mathematics has received much less 
emphasis than reading. This is the case not only 
in research but also in school practice. That is, 
schools are much more likely to provide Tier 2 
intervention in reading than in mathematics.

At the same time, mathematics difficulty 
may require more attention than reading dif-
ficulty in both research and schools. This is 
because mathematics difficulty is potentially 
more complicated and difficult to address, 
given that the mathematics curriculum is orga-
nized into many more strands that are presumed 
to represent different component skills. In read-
ing, measurement studies (e.g., Mehta et  al. 
2005) provide the basis for five-component 
reading skills: phonological awareness, decod-
ing, fluency, vocabulary, and comprehension. 
In mathematics, measurement studies are yet to 
be conducted, but the assumption reflected in 
the curriculum is that many more component 
skills exist. For example, just considering the 

elementary school grades, one major focus is 
whole numbers, which is subdivided into cur-
ricular strands: concepts, numeration, basic 
facts, algorithmic computation, and word prob-
lems. Another major focus is fractions, which 
includes common fractions, decimals, and pro-
portions and has its own set of subdomains: 
part–whole understanding, measurement inter-
pretation, calculations, and word problems. As 
reflected in the Common Core State Standards 
(National Governors Association Center for 
Best Practices 2010), however, algebra is yet 
another major curricular strand at the elementa-
ry school level. This is a complicated curricular 
scope, and it is unclear whether strengthening 
performance in one domain can be expected to 
transfer to other components. Failure to pro-
duce strong performance across curricular com-
ponents, as has been sometimes assessed and 
demonstrated, creates additional challenges for 
Tier 2 mathematics intervention (beyond those 
that are relevant for Tier 2 reading intervention) 
to circumvent the need for ongoing Tier 2 sup-
port in mathematics.

In this chapter, we focus is on the mathemat-
ics side of Tier 2 intervention. First, we provide 
an overview of the design principles involved 
in effective Tier 2 intervention and illustrate 
their application in a validated tutoring pro-
gram for addressing students’ difficulty with 
word problems. Then, we discuss more recent 
innovations in Tier 2 intervention by focusing 
on early arithmetic skill at first grade and on 
conceptual understanding and procedural skill 
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with fractions at fourth grade. The chapter con-
cludes with a discussion of the limitations of 
Tier 2 intervention research in mathematics and 
identifies areas for future research.

Principles of Effective Tier 2 
Intervention

Six Design Principles

As conceptualized elsewhere (Fuchs et al. 2008), 
six design principles are central to the provision 
of effective Tier 2 intervention in mathematics. 
The first is instructional explicitness. Many typi-
cally developing students profit from the general 
education mathematics program that typically re-
lies, at least in part, on a constructivist, inductive 
approach to instruction, in which teachers avoid 
explicitly explaining the nature of concepts or 
procedures for solving mathematics problems. 
Instead, teachers encourage students to discover 
conceptual understanding and methods for prob-
lem solution, with the hope that this will lead to 
deeper understanding and longer retention. Stu-
dents who accrue serious mathematics deficits, 
however, fail to profit from such an approach in 
ways that result in understanding of the structure, 
meaning, and operational requirements of math-
ematics. A meta-analysis of 58 mathematics stud-
ies (Kroesbergen and Van Luit 2003) revealed 
that students with mathematics difficulty ben-
efited more from explicit instruction than from 
discovery-oriented methods. Therefore, effective 
intervention for students with mathematics re-
quires explicit, didactic instruction in which the 
teacher provides detailed explanations.

Explicitness is important, but it is not suffi-
cient. A second and often overlooked principle 
of effective mathematics intervention is in-
structional design that minimizes the learning 
challenge. The goal is to anticipate and elimi-
nate misunderstandings with precise explana-
tions and with the use of carefully sequenced 
instruction so that the achievement gap can be 
closed as quickly as possible. This is especially 
important given the ever-changing and multiple 
demands of the mathematics curriculum.

The third principle of effective mathematics 
intervention is the requirement that instruction 
provide a strong conceptual basis for proce-
dures. Supplemental intervention has a history 
of emphasizing systematic practice, a criti-
cal and fourth principle of effective practice. 
Yet, supplemental intervention has sometimes 
neglected the conceptual foundation of math-
ematics, and such neglect can cause confusion, 
learning gaps, and a failure to maintain and 
integrate previously learned content. In terms 
of systematic practice, note that this practice 
needs to be rich in cumulative review, the fifth 
principle of effective intervention.

The sixth principle concerns the need to 
incorporate motivators to encourage students 
to work hard and regulate their attention and 
behavior. Students with learning difficulty 
often display attention, motivation, and self-
regulation difficulties, which may adversely 
affect their behavior and learning (e.g., Fuchs 
et  al. 2005, 2006). By the time students enter 
Tier 2 intervention, they have experienced fail-
ure, causing many to avoid the emotional stress 
associated with learning mathematics. They 
no longer try for fear of failing. Therefore, 
intervention must incorporate systematic self-
regulation strategies and motivators; for many 
students, tangible reinforcers are required. See 
Table 1 for a summary of the six design prin-
ciples along with examples from each of the 
three Tier 2 mathematics interventions dis-
cussed below.

Illustrating the Six Design Principles with 
Pirate Math  To illustrate these six design 
principles for effective Tier 2 intervention, we 
describe a validated tutoring program called 
Pirate Math (e.g., Fuchs et  al. 2009). Pirate 
Math is designed to address arithmetic as 
well as word-problem difficulty, while build-
ing procedural calculation and early algebraic 
knowledge. We incorporated a pirate theme 
because in this schema-broadening instructional 
program, students are taught to represent the 
underlying structure of word-problem types 
using algebraic equations. “They find X, just 
like Pirates find X on treasure maps.”
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Pirate Math comprises four units: an intro-
ductory unit, which addresses mathematics 
skills foundational to solving word problems, 
and three word-problem units, each focused on 

a different type of word problem. Every tutor-
ing lesson is scripted. Scripts are studied; they 
are not read or memorized. Pirate Math runs for 
16 weeks, with 48 sessions (three per week). 

Table 1   Implications for practice
Six principles of effec-
tive intervention

Examples from
Pirate Math (grades 2–3)

Examples from
Galaxy Math (grade 1)

Ex3amples from fraction 
challenge (grade 4)

Instruction is systematic 
and explicit

Scaffolded instruction on 
underlying structure of 
three word-problem types 
and solution strategies; all 
lessons include modeling, 
guided practice, indepen-
dent practice, and cor-
rective feedback; simple 
language is used for expla-
nations, with frequent 
checks on understanding

Scaffolded instruction on 
arithmetic principles with 
manipulatives, number 
lines, and paper and pencil 
activities; all lessons 
include modeling, guided 
practice, independent 
practice, and corrective 
feedback; simple language 
is used for explanations, 
with frequent checks on 
understanding

Scaffolded instruction on 
fraction magnitude with 
manipulatives, number 
lines, and paper and 
pencil activities; all 
lessons include model-
ing, guided practice, 
independent practice, 
and corrective feedback; 
simple language is used 
for explanations, with 
frequent checks on 
understanding

Instructional design 
minimizes the learning 
challenge

Task analysis provides the 
most efficient procedures 
for teaching efficient 
problem-solving strategies

Task analysis provides the 
most efficient counting 
methods, taking into 
account first graders’ fine 
motor skills

Task analysis provides the 
basis for instructional 
strategies for chunking 
and segmenting com-
plex fraction compari-
son tasks

Instruction has a strong 
conceptual basis, while 
providing students 
with efficient proce-
dural strategies

Instruction on each word-
problem type begins with 
real-life examples and pic-
torial aids to help students 
understand the underlying 
structure of the problem 
type, while teaching 
students the most efficient 
approach word-problem 
solution strategies

Instruction dominantly 
focuses on the number 
knowledge foundational to 
arithmetic, while teaching 
students efficient counting 
strategies to solve addition 
and subtraction problems

Instruction focuses domi-
nantly on the measure-
ment interpretation of 
fractions, while teaching 
students procedural 
strategies (e.g., “bigger 
denominator, bigger 
fraction,” and “fewer 
parts, bigger fraction”)

Instruction includes 
systematic practice

In each lesson, “warm-ups” 
provide flash card practice 
for applying count-
ing strategies to solve 
arithmetic problems; daily 
practice in solving word 
problems

In each lesson, speeded prac-
tice is provided on basic 
addition and subtraction 
facts

In each lesson, the Speed 
Game provides practice 
on fraction concepts 
(e.g., circling fractions 
equivalent to ½)

Instruction includes 
cumulative review.

All independent practice 
activities include both new 
material and review

All independent practice 
activities include both 
new material and review

All independent practice 
activities include both 
new material and review

Instruction includes 
motivators to reinforce 
positive behavior

Timer is used to monitor 
and award “gold coins” 
for on-task behavior on 
an interval basis; bonus 
problems (announced at 
the end of lessons) earn 
students coins; students 
spend coins on prizes

Stickers are provided for 
on-task behavior and hard 
work, which are affixed 
to “Galaxy Math Sticker 
Chart”; when chart is 
completed, students select 
a prize

Timer is used to moni-
tor and award half or 
quarter “dollars” for 
on-task behavior; bonus 
problems (announced 
at end of lessons) earn 
students half or quarter 
dollars; students spend 
fraction money at “Frac-
tion Store.”
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Each session lasts 20–30 min. The instruction, 
as outlined below, is systematic and explicit; it 
is designed with care to minimize the learning 
challenge; it is rich in concepts; it incorporates 
systematic practice as well as cumulative re-
view; and it relies on systematic reinforcement 
to encourage good attention, hard work, and ac-
curate performance.

The introductory unit addresses mathemat-
ics skills foundational to word problems. Tutors 
teach strategic counting for deriving answers 
to arithmetic problems, review algorithms for 
double-digit addition and subtraction procedur-
al calculations, teach methods to solve for “X” 
in any position in simple algebraic equations 
(i.e., a + b = c; d − e = f), and teach strategies for 
checking work in word problems.

A single strategic counting lesson is de-
signed to address arithmetic deficits. Students 
are taught that if they “just know” the answer 
to an arithmetic problem, to “pull it out of your 
head.” If, however, they do not know an answer 
immediately, they “count up.” Strategic count-
ing for addition and subtraction is introduced 
with the number line. The “min strategy” is a 
mathematics counting strategy in which stu-
dents start with the larger number and count 
up and the answer to the addition problem is 
the last number spoken. This is a more efficient 
counting strategy than the “max strategy” in 
which students start with the first number in an 
addition problem and count up (regardless of 
whether the first addend is the bigger or small-
er number). The “min strategy” is referred to 
across the mathematics literature and is de-
fined in the chapter.

Practice in strategic counting is then incor-
porated into subsequent lessons. The tutor be-
gins each session by asking the student, “What 
are the two ways to find an answer to a simple 
math problem?” The student responds, “Know 
it or count up.” Then, the student explains 
how to count up an addition problem and how 
to count up a subtraction problem. Next, the 
tutor requires the student to count up two ad-
dition and two subtraction problems. Then the 
tutor conducts a flash card warm-up activity, in 
which students have 1 min to answer arithme-

tic problems. If they respond incorrectly, the 
tutor requires them to count up until they de-
rive the correct answer. At the end of 1 min, 
the tutor counts the cards, and the student then 
has another minute to beat the first score. Also, 
throughout the lesson, whenever the student 
makes an arithmetic error, the tutor requires 
the student to count up. Finally, when check-
ing the paper–pencil review, the tutor corrects 
arithmetic errors by demonstrating the counting 
strategy.

Each of the three word-problem units fo-
cuses on one word-problem type and, after the 
first problem-type unit, subsequent units pro-
vide systematic, mixed cumulative review that 
includes previously taught problem types. The 
word-problem types are Total (two or more 
amounts are combined; e.g., Doris has two 
flowers. Her sister has five. How many flow-
ers do they have?), Difference (two amounts 
are compared; e.g., Doris is 2 years old. Her 
sister is 5. How much older is her sister?), and 
Change (initial amount increases or decreases; 
e.g., Doris had two pennies. Then she got two 
more. How much money does she have now?). 
Each word-problem session comprises six ac-
tivities. The first is the counting strategies re-
view and flash card warm-up already described, 
which lasts 5  min. Word-problem warm-up is 
the next activity, which lasts about 2 min and 
begins during the first word-problem unit. The 
tutor shows the student the word problem that 
the student had solved during the previous day’s 
paper-and-pencil review. The student explains 
to the tutor how he or she solved the problem.

Conceptual and strategic instruction is the 
next activity. It is the heart of the lesson, last-
ing 15–20  min. Tutors provide scaffolded in-
struction in the underlying structure of and in 
solving the three types of word problems (i.e., 
developing a schema for each problem type), 
along with instruction on identifying and inte-
grating transfer features (to broaden students’ 
schema for each problem type). The tutor relies 
on role-playing, manipulatives, instructional 
posters, modeling, and guided practice. In each 
lesson, students solve three word problems, 
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with decreasing amounts of support from the 
tutor.

Total is the first problem type addressed. 
In the total unit, tutors teach students to run 
through a problem: a three-step strategy 
prompting students to read the problem, under-
line the question, and name the problem type. 
Students use the run strategy across all three 
problem types. Next, for each problem type 
(i.e., schema), students are taught an algebraic 
equation to represent the underlying structure 
of that problem type. Students fill in slots of 
the equation as they identify and circle relevant 
information in the problem narrative. For ex-
ample, for Total problems, students circle the 
item (e.g., flowers) being combined and the 
numerical values representing that item (e.g., 
2 and 5), and then label the circled numerical 
values as “P1” (for part one; e.g., 2), “P2” (for 
part two; e.g., 5), and “T” (for the total; e.g., 
indicated with x—the missing value). Students 
then construct an equation representing the un-
derlying mathematical structure of the problem 
type. For Total problems, the equation takes the 
form of “P1 + P2 = T,” and “x” can appear in 
any of the three variable positions. Students are 
taught to solve for x, to provide a word label for 
the answer, and to check the reasonableness and 
accuracy of their work.

The strategy for Difference problems and 
Change problems follows similar steps but uses 
variables and equations specific to those prob-
lem types. For Difference problems, students 
are taught to look for the bigger amount (labeled 
“B”), the smaller amount (labeled “s”), and the 
difference between amounts (labeled “D”), and 
to use the algebraic equation “B − s = D” to rep-
resent the problem type. For Change problems, 
students are taught to locate the starting amount 
(labeled “St”), the changed amount (labeled 
“C”), and the ending amount (labeled “E”); 
the algebraic equation for Change problems is 
“St ± C = E” (± depends on whether the change 
is an increase or decrease in amount).

For each problem type, explicit instruction 
to broaden schemas occurs in six ways. First, 
students are taught that because not all nu-
merical values in word problems are relevant 

for finding solutions, they should identify and 
cross out irrelevant information as they iden-
tify the problem type. Second, students learn 
to recognize and solve word problems with the 
missing information not only in the traditional, 
third slot of the equation, but also in the first 
or second position of the algebraic equation 
representing the underlying structure of the 
problem type. Third, students learn to apply the 
problem-solving strategies to word problems 
that involve addition and subtraction with dou-
ble-digit numbers with and without regrouping. 
Fourth, students learn to solve problems involv-
ing money. Fifth, students are taught to find rel-
evant information for solving word problems in 
pictographs, bar charts, and pictures. Finally, 
students learn to solve two-step problems that 
involve two problems of the same problem type 
or that combine problem types. Across the three 
problem-type units, previously taught problem 
types are included for review and practice.

Sorting word problems is the third activity 
and takes 5 min. Tutors read aloud flash cards, 
each displaying a word problem. The student 
identifies the word-problem type, placing the 
card on a mat with four boxes labeled “Total,” 
“Difference,” “Change,” or “?.” Students do 
not solve word problems; they sort them by 
problem type. To discourage students from as-
sociating a cover story with a problem type, the 
cards use similar cover stories with varied num-
bers, actions, and placement of missing infor-
mation. After 2 min, the tutor notes the number 
of correctly sorted cards and provides correc-
tive feedback for up to three errors.

In paper-and-pencil review, the final activ-
ity, students have 2 min to complete nine num-
ber sentences asking the student to find x. Then, 
they have 2 min to complete one word problem. 
Tutors provide corrective feedback and note 
the number of correct problems on the paper. 
Tutors require students to count up arithmetic 
errors, and keep the paper-and-pencil review 
sheet for the next day’s word-problem warm-up 
activity.

Pirate Math includes a systematic reinforce-
ment program. Throughout each Pirate Math 
session, tutors use a timer, which is set to ring 
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three times at unpredictable intervals. If all stu-
dents in the group are “on task” when the timer 
rings, each student earns a gold coin. (If one 
or more students are not on task, no one earns 
a coin.) Students can also earn gold coins for 
completing bonus problems correctly. Students 
do not know which problems are bonus prob-
lems until the end of the lesson. This encourag-
es hard work throughout the session. At the end 
of the lesson, each earned gold coin is placed 
on the student’s individual “treasure map.” Six-
teen coins lead to a picture of a treasure box 
and, when reached, the student chooses a small 
prize from a treasure box. The student keeps the 
old treasure map and receives a new map in the 
next lesson.

Effectiveness of Pirate Math  The efficacy of 
Pirate Math has been demonstrated and repli-
cated (e.g., Fuchs et al. 2009, 2010a). For exam-
ple, Fuchs et  al. (2009) identified third-grade 
students with substantial difficulty in computa-
tion and word problems in the Nashville-Met-
ropolitan Public Schools and in the Houston 
Independent School District. Then, these chil-
dren were randomly assigned to receive 13 
weeks (3 times per week) of Pirate Math tutor-
ing or Math Flash (Fuchs et al. 2003) tutoring (a 
validated program focused entirely on compu-
tation) or control (the school program without 
any research-based mathematics tutoring). Each 
session was audiotaped. A representative sam-
ple of lessons was coded for fidelity against the 
tutoring scripts, and fidelity was strong for both 
tutoring interventions. Students were pre- and 
posttested on computation and word-problem 
measures.

Pirate Math and Math Flash students im-
proved comparably on computation and signifi-
cantly more than students in the control group. 
The effect size (ES) comparing Math Flash to 
the control group was large (0.85 standard de-
viations). The ES comparing Pirate Math to the 
control group was similar, but somewhat small-
er (0.72). But given that Pirate Math allocated 
only 5  min of every session to computation 
(whereas Math Flash spent 20–30 min per ses-
sion on computation), Pirate Math’s effects on 
computation are noteworthy. At the same time, 

however, effects on word problems clearly fa-
vored Pirate Math. The ES comparing Pirate 
Math to the control group was large (0.89), and 
there was no significant difference between 
Math Flash and the control group. Most im-
pressively, the ES comparing Pirate Math to 
Math Flash was 0.72. This indicates that when 
Pirate Math, a tutoring program designed to 
incorporate the six principles of effective Tier 
2 intervention, is implemented as designed, it 
benefits at-risk (AR) students’ word-problem 
learning in dramatic ways on computation and 
word problems.

Innovations in Tier 2 Intervention

This section provides examples of innovations 
in Tier 2 intervention, relying on some of our 
more recent research (while providing an over-
view of prior related intervention work). The first 
focus is on early arithmetic skill (i.e., adding and 
subtracting single-digit numbers) at first grade. 
Early arithmetic skill (at the start of first grade) 
predicts mathematics learning through the end 
of fifth grade (Geary 2011) and is an indicator 
of risk for long-term learning disabilities (Geary 
et al. 2012b). The NMAP (2008) concluded that 
early mastery of simple arithmetic is a critical 
step toward eventual mastery of high-school al-
gebra, a gateway for later entry into mathemat-
ics-intensive fields. These factors point to the 
importance of early mathematics intervention 
and the need for a strong focus on arithmetic in 
that intervention. Yet, despite its foundational 
importance, few randomized control trials have 
been conducted with early arithmetic Tier 2 in-
tervention as its focus and, prior to our most re-
cent arithmetic study, none had sought to isolate 
the added value of an intervention component. 
After describing our innovation in Tier 2 inter-
vention for early arithmetic difficulty, we move 
to fraction intervention at fourth grade. Half of 
middle and high school students in the USA are 
still not proficient with the ideas and procedures 
taught about fractions in the elementary grades 
(e.g., Behr et  al. 1984; Hiebert and Wearne 
1985; National Council of Teachers of Math-
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ematics (NCTM) 2007; NMAP 2008; Ni 2001). 
Yet, competence with fractions is considered 
foundational for learning algebra, for success 
with more advanced mathematics, and for com-
peting successfully in the American workforce 
(NMAP 2008; Geary et  al. 2012b). For these 
reasons, NMAP (2008) recommended that high 
priority be assigned to improving performance 
on fractions, a theme reflected in the Common 
Core State Standards (National Governors As-
sociation Center for Best Practices 2010) (http://
www.corestandards.org). Therefore, improving 
common fraction performance for fourth grad-
ers at risk for poor outcomes is a critical focus. 
Yet, prior to this study, no prior work on Tier 2 
intervention at the elementary school level was 
identified.

Early Arithmetic Skill at First Grade

Development of Arithmetic Competence and 
Need for Early Intervention  By the time chil-
dren enter first grade, most have a rudimen-
tary understanding of addition and subtraction 
and can count to solve these problems (Geary 
1994). For addition, they typically count both 
addends. For subtraction, they represent the be-
ginning quantity (the minuend) with objects and 
sequentially separate the number of objects to 
be subtracted (the subtrahend); then they count 
the remaining set (e.g., Groen and Resnick 
1977). As understanding of cardinality and the 
counting sequence develops, children discover 
the number-after rule for adding with 1. They 
also understand the sum of 5 + 2 cannot be 6 but 
instead is two numbers beyond 5. In this way, 
children discover the efficiency of counting 
from the first addend and rely on more efficient 
counting procedures. For addition, the most effi-
cient counting procedure involves the min strat-
egy: starting with cardinal value of the larger 
addend and counting up the number of times 
equal to the smaller addend (e.g., 4 + 3 = “four: 
five, six, seven”). For subtraction, the most ef-
ficient strategy relies on the missing addend: 
starting with the subtrahend and counting to the 
minuend (e.g., 5 – 2 = “two: three, four, five”; the 

number of counts is the answer). Frequent use 
of efficient counting procedures reliably results 
in the correct association between problem and 
answer, which produces long-term memories 
(Fuson and Kwon 1992; Siegler and Robinson 
1982; Siegler and Shrager 1984). This enables 
direct retrieval of answers, and the commutativi-
ty of addition facilitates retrieval of related addi-
tion problems (Rickard et al. 1994). Subtraction, 
which is not commutative, is more difficult, but 
can be facilitated by retrieval of related addition 
facts (e.g., 8 – 5 = 3, based on 5 + 3 = 8; LeFevre 
and Morris 1999), once children understand the 
inverse relation between addition and subtrac-
tion (Geary et al. 2008).

Students with mathematics learning disabili-
ties show consistent delays in the adoption of ef-
ficient counting procedures, make more count-
ing errors during their execution, and fail to 
make the shift toward memory-based retrieval 
(e.g., Geary et al. 2012a; Goldman et al. 1988). 
Most of these children eventually catch up to 
peers in skilled use of counting procedures, but 
difficulty with retrieval tends to persist (Geary 
et al. 2012b; Jordan et al. 2003). They retrieve 
fewer answers from memory and when they 
do retrieve answers, they commit more errors 
(e.g., Geary et al. 1991; Geary et al. 2007). So, 
simple arithmetic fluency may be a signature 
deficit of mathematics learning disability (e.g., 
Geary et al. 2012b; Goldman et al. 1988; Jordan 
et al. 2003), and remediating arithmetic deficits 
in older students can be difficult (Fuchs et  al. 
2010a, c). For these reasons, there is a pressing 
need for early Tier 2 intervention.

Prior Work and Purpose of Our Innova-
tion  Four randomized control trials assessing 
Tier 2 intervention efficacy for first-grade stu-
dents at risk for poor mathematics outcomes 
were located. Fuchs et  al. (2006) conducted a 
randomized control trial to assess the efficacy 
of practice alone. An addition or subtraction 
problem with its answer briefly flashed on a 
computer screen; then students generated the 
problem and answer from short-term memory. 
This is based on the assumption that prac-
tice strengthens retrieval when problems and 
answers are simultaneously active in working 
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memory (Geary 1993). Compared to an analo-
gous computer-assisted spelling practice condi-
tion, arithmetic practice (10 min, twice weekly 
for 18 weeks) produced significantly better per-
formance for addition but not subtraction; ESs 
were 0.95 and − 0.01. Other mathematics out-
comes were not assessed.

Two randomized control trials combined 
number knowledge tutoring with practice and 
assessed a broader range of outcomes. In Fuchs 
et  al. (2005), tutoring occurred three times 
per week for 16 weeks. Each session included 
30 min of tutor-led instruction designed to build 
number knowledge plus 10  min of computer-
ized arithmetic practice, as just described. Re-
sults favored tutoring over a no-tutoring control 
group on measures of concepts and applications 
(ES = 0.67), procedural calculations (ES = 0.40-
0.57), and word problems (ES = 0.48), but ef-
fects were not reliable on simple arithmetic 
(ESs = 0.15–0.40). Bryant et  al. (2011) also 
integrated tutoring on number knowledge with 
practice (four times per week for 19 weeks). In 
each session, 20 min were devoted to number 
knowledge; 4 to practice, which focused on 
arithmetic problems, as well as reading numer-
als, counting on/back, writing dictated numer-
als, and writing 3-number sequences. Effects 
were significantly stronger for tutoring com-
pared to a no-tutoring control group on simple 
arithmetic (ES = 0.55), place value (ES = 0.39), 
and number sequences (ES = 0.47). But tutor-
ing did not enhance word-problem outcomes 
(ES = − 0.05 and 0.07).

In the only randomized control trial to focus 
exclusively on number knowledge, Smith 
et  al. (2013) evaluated Math Recovery (MR, 
Wright et al. 2002; Wright 2003), in which tu-
tors adapt lessons to meet student needs as re-
flected on MR assessments. Tutors introduce 
tasks and have students explain their reason-
ing, but practice is not provided. Tutoring was 
to occur 4–5 times per week, 30 min per ses-
sion across 12 weeks, but the median number 
of sessions was 32. At end of first grade, effects 
favored MR over the control group on fluency 
with simple arithmetic (ES = 0.15), concepts 
and applications (ES = 0.28), quantitative con-

cepts (ES = 0.24), and mathematical reasoning 
(ES = 0.30). Effects were stronger for students 
who began tutoring below the 25th percentile 
(0.31–0.40), but are generally smaller than in 
studies that combined number knowledge tutor-
ing with practice. Comparisons are, however, 
difficult because this study allowed fidelity to 
vary, whereas the other studies tried to ensure 
fidelity.

These four studies suggest potential for Tier 
2 intervention, compared to no tutoring, for en-
hancing some forms of mathematics learning 
among AR first graders. Prior work does not, 
however, provide the basis for understanding 
whether the effects of Tier 2 intervention are 
simply a matter of more instruction (i.e., prior 
studies only include no-tutoring control groups 
rather than incorporating a contrasting tutoring 
condition). In this way, prior work also fails to 
inform practitioners about what components 
of Tier 2 intervention contribute to positive ef-
fects.

For these reasons, our innovation focused on 
the effects of number knowledge tutoring with 
contrasting forms of practice on AR first grad-
ers’ emerging competence with simple arithme-
tic (Fuchs et al. 2013a). Two-digit calculation, 
number knowledge, and word-problem out-
comes were also assessed. The major empha-
sis in tutoring was developing interconnected 
knowledge of number, but a small portion of 
each session was devoted to practice. In one 
condition, practice was designed to reinforce 
the relations and principles that serve as the 
basis of reasoning strategies that support fact 
retrieval. The other form of practice was more 
rote: It was designed to promote quick respond-
ing and use of efficient counting procedures to 
generate many correct responses and thereby 
form long-term representations to support re-
trieval. Both practice conditions occurred on 
the same content, encouraged strategic behav-
ior, and provided immediate corrective feed-
back. So the two major distinctions between the 
two forms of practice were as follows. First, one 
condition encouraged a variety of number-prin-
ciple strategies (e.g., relying on number lists, 
arithmetic principles such as cardinality, com-
mutative principle, subtraction as the inverse 
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of addition, and efficient counting procedures), 
whereas the other condition only encouraged 
efficient counting strategies. Second, in the 
condition that encouraged a variety of strategic 
behavior, practice did not involve speeded ex-
ecution of the chosen strategy; the focus instead 
was on executing strategies thoughtfully to em-
phasize number knowledge. By contrast, in the 
condition that relied exclusively on counting 
strategies, practice was speeded. In this chap-
ter, the terms nonspeeded practice and speeded 
practice are used to refer to these conditions.

To understand the efficacy of number knowl-
edge tutoring when combined with speeded 
versus nonspeeded practice, we compared each 
tutoring condition against an AR no-tutoring 
control group that received the same classroom 
instruction as the tutored groups. To understand 
how the type of practice affects learning and 
whether the effects of tutoring are attributable 
to more than simply providing extra instruction-
al time, we contrasted the two tutoring condi-
tions against each other. To provide insight into 
whether different forms of tutoring help nar-
row the achievement gap, we included a group 
of low-risk classmates, who received the same 
classroom instruction as the AR tutored and con-
trol groups. We recruited forty schools and two 
hundred and thirty-three classes, in which we 
screened students to identify students with and 
without risk. Attrition was minimal, with 190 
number knowledge tutoring + nonspeeded tutor-
ing, 195 number knowledge tutoring + speeded 
practice, 206 AR no-tutoring control, and 300 
low-risk control completing the study.

Nature of Tutoring  Tutoring occurred for 16 
weeks, three times per week, 30  min per ses-
sion. In both tutoring conditions, 25 of each 
30-min session were the same, designed to fos-
ter number knowledge. The last 5  min, which 
involved practice, differed. To foster engage-
ment, the program uses a space theme (e.g., chil-
dren are encouraged to “blast off into the math 
galaxy” by improving their mathematics knowl-
edge; some manipulatives are shaped as space 
rockets). Tutors/students refer to the program 
as Galaxy Math (Fuchs et al. 2010b), which is 
related to Number Rockets (Fuchs et al. 2005).

Segment 1 focuses on number knowledge, 
with five units. Unit 1 (lessons 1–18) address-
es basic number knowledge. Unit 2 (lessons 
19–20) focuses on arithmetic doubles (0 + 0 
through 6 + 6; 2 − 2 through 12 − 6). Unit 3 (les-
sons 21–52) addresses arithmetic problem sets 
5 through 12 (e.g., the 5 set includes all prob-
lems with sums or minuends of 5; the term sets 
is used, as in the 5 set). Unit 4 (lessons 53–66) 
focuses on tens concepts. Unit 3 comprises ap-
proximately half the program (not counting the 
review unit). It focuses on partitioning number 
into constituent sets and number families (e.g., 
for the 5 set, 0 + 5, 1 + 4, 2 + 3, 5 − 0, 5 − 1, 5 − 2, 
etc.). Toward this end, five activities are con-
ducted in each lesson. First, the tutor and stu-
dent use unifix cubes to explore how the target 
number (e.g., 5 in the 5 set) can be partitioned 
in different ways to derive the adding and sub-
tracting problems comprising that set. The sec-
ond activity also focuses on part–whole knowl-
edge, but with number families (problems using 
the same three numbers, e.g., 2 + 3 = 5, 3 + 2 = 5, 
5 − 2 = 3, and 5 − 3 = 2, in that set). The tutor 
relies on visual displays that group families in 
the set and uses blocks to help the student rely 
on part–whole knowledge to understand how/
why four problems make a family. Third, the 
student generates all addition and subtraction 
problems (with answers) in the target set, while 
using rockets to show the problems. Fourth, the 
tutor and student work together to solve a word 
problem on that set; they produce the answer 
and explain why the word problem is specific to 
the set. Fifth, the student reviews previous sets, 
orally stating answers to problems with correc-
tive feedback. Between one and four lessons 
are allocated to each set, with a mastery test 
determining if and when students can advance 
before all four lessons on that are conducted.

Segment 2 involves practice. The content 
addressed in the final 5-min segment was the 
same in both conditions, addressing content 
covered in that day’s number knowledge tutor-
ing lesson. In the nonspeeded practice condi-
tion, students played games with space-themed 
manipulatives. Games were designed to pro-
vide contextualized review of the content ad-
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dressed in the day’s lesson. For example, to re-
inforce n ± 1 lessons, the student used a spinner 
on a dial segmented from 1 to 19 to identify 
the number of “rockets called out to explore the 
math galaxy” and counted this number of rock-
ets onto the board. Then, the tutor informed the 
student that either one more rocket was needed 
or that one rocket was called back to the space 
station, so the student added one rocket to the 
board or took one away. The student then stated 
the answer and number sentence. For an 8-set 
lesson, the student was informed how many 
rockets constituted the fleet and wrote that nu-
meral as the total. The student then rolled a die 
to find the first group of rockets released from 
the space station, counted that number of rock-
ets onto the game board, and wrote the numeral 
as an addend. The student then determined how 
many more rockets were needed to complete 
the fleet, wrote that numeral as an addend, and 
read the number sentence. Next, the student 
rolled the die to find how many rockets were 
called back to the space station. The student 
wrote numerals to generate and read a num-
ber sentence. Games differed for each day on 
the same topic. Throughout nonspeeded prac-
tice and lessons, tutors encouraged students 
to know the answer or to rely on a variety of 
number-principle strategies including (but not 
limited to) using number lists, relying on arith-
metic principles (e.g., cardinality, commutative 
principle, inverse relation between addition and 
subtraction), and efficient counting strategies. 
“Knowing the answer right off the bat” was the 
preferred strategy when students were sure of 
answers.

In the speeded practice condition, students 
completed the “Meet or Beat Your Score” ac-
tivity, with which students had 90 s to answer 
a stack of flash cards. For example, for n ± 1 
lessons, flashcards were all n + 1 and 1 + n prob-
lems ( n = 0–18); for 8-set lessons, flashcards 
were all addition problems with the sum 8 and 
all subtraction problems with the minuend 8. 
Tutors corrected student errors immediately and 
required the student to use counting to produce 
the correct response. Therefore, students an-
swered each problem presented correctly. The 

90 s continued to elapse as the student used the 
counting procedure (as many times as needed). 
In this way, careful but quick responding in-
creased the number of correct responses, which 
were counted and charted on a Rocket Chart 
at the end of 90  s. Then, the student had two 
chances to meet or beat that score. Throughout 
speeded practice and lessons, tutors required 
the student to know the answer (i.e., retrieve it 
from memory, if confident) or use the efficient 
counting strategies they had been taught. Tu-
tors explained that “knowing the answer right 
off the bat” was preferred, if the child was sure 
of the answer. The counting strategies were 
simplified versions of the counting strategies 
already explained for Math Flash.

Findings  In terms of fluency with simple arith-
metic, number knowledge tutoring with non-
speeded practice produced significantly better 
learning compared to AR control students who 
did not receive tutoring. The ES was 0.38. Non-
speeded practice was designed to reinforce the 
relations and principles that were emphasized 
in the number knowledge portion of tutoring 
and that serve as the basis of reasoning strate-
gies to support arithmetic skill. Findings lend 
theoretical support to studies indicating the 
important role number knowledge plays in 
developing competence with simple arithme-
tic (e.g., Baroody 1988, 1999; Butterworth and 
Reigosa 2007; De Smedt et  al. 2009; Duncan 
et al. 2008; Koontz and Berch 1996; Rousselle 
and Noel 2007).

At the same time, nonspeeded practice did 
not help AR students narrow the achievement 
gap (ES = 0.07 favoring low-risk classmates). 
By contrast, incorporating speeded practice in 
number knowledge tutoring produced superior 
improvement in simple arithmetic compared to 
low-risk classmates, with an ES of 0.39, there-
by narrowing the achievement gap. Speeded 
practice was also substantially more effective 
than number knowledge tutoring with non-
speeded practice (ES = 0.51) and produced an 
ES of 0.87 over AR control. In this way, this 
study extended earlier randomized control tri-
als by isolating the effects of speeded practice, 
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delivered in the context of tutoring to build 
number knowledge. Results indicate a sub-
stantial role for speeded practice in promoting 
simple arithmetic learning. It is noted that, in 
contrast to how practice is sometimes config-
ured in schools (i.e., without sufficient scaf-
folding in number knowledge, in massed doses, 
and without support for correct responding), 
speeded practice was delivered in the context 
of number knowledge instruction and formu-
lated practice to help children generate many 
correct responses, support development of flu-
ency with efficient counting strategies, require 
students to immediately correct errors with an 
efficient counting procedure, and encourage 
strategic meta-cognitive behavior. So, findings 
should be generalized only to speeded practice 
that incorporates similarly sound, theoretically 
motivated instructional design.

Although findings suggest the value of 
speeded practice in supporting AR children’s 
development of arithmetic competence, they do 
not address the possibility that speeded prac-
tice, with its focus on rote responding, is detri-
mental to other forms of mathematics learning. 
This possibility was investigated by assessing 
two-digit calculations, number knowledge, 
and word problems and found no evidence to 
support such a hypothesis. In fact, on complex 
calculations, speeded practice combined with 
number knowledge tutoring produced stron-
ger learning compared to number knowledge 
tutoring with nonspeeded practice (ES = 0.21) 
or AR control (ES = 0.69). This was the case 
even though Unit 4’s focus on multi-digit num-
ber knowledge was identical in the speeded 
and nonspeeded practice conditions. Moreover, 
improvement on complex calculations was 
comparable for speeded practice students and 
their low-risk classmates (ES = 0.01), even as 
improvement on more complex calculations for 
low-risk students exceeded that of nonspeeded 
practice students (ES = 0.19) and AR control 
students (ES = 0.57).

It is important to note, however, that ef-
fects on number knowledge or word-problem 
learning did not favor the speeded practice 
condition—although there was no indication 

that speeded practice was detrimental to these 
forms of mathematics learning. On number 
knowledge, the tutored groups developed com-
parably (ES = 0.11, favoring speeded practice) 
and better than AR control (ESs = 0.29 and 
0.19 for the speeded and nonspeeded practice 
conditions, respectively). On word problems, 
the tutored groups again developed compara-
bly (ES = 0.04, this time favoring nonspeeded 
practice) and better than AR control (ESs = 0.22 
and 0.27 for speeded and nonspeeded practice, 
respectively).

In sum, findings suggest that number knowl-
edge tutoring, with nonspeeded or speeded 
practice, is effective for enhancing arithmetic, 
complex calculations, number knowledge, and 
word-problem learning over no tutoring. At the 
same time, well-designed speeded practice, de-
livered in the context of tutoring to build number 
knowledge, is more effective than nonspeeded 
practice in promoting complex calculations as 
well as simple arithmetic, a core mathemati-
cal competence. Effects favoring speeded over 
nonspeeded practice on simple arithmetic (and 
complex calculations) were substantial, and 
results showed that the advantage for speeded 
over nonspeeded practice may occur by helping 
students compensate for the demands on rea-
soning ability, which an instructional focus on 
number knowledge creates. At the same time, 
no evidence that speeded practice inhibits de-
velopment of number knowledge or word-prob-
lem skill was found, despite that rote respond-
ing was involved in speeded practice. In fact, 
both number knowledge tutoring conditions 
produced comparable number knowledge and 
word-problem learning, which was superior to 
AR control students (Fuchs et al. 2013a).

Conceptual Understanding and 
Procedural Skill with Fractions at 
Fourth Grade

Importance of Conceptual Understanding of 
Fractions  Conceptual understanding is impor-
tant for learning and maintaining accurate pro-
cedures with fractions (e.g., Byrnes and Wasik 
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1991; Hecht et  al. 2003; Mazzocco and Devlin 
2008; Ni and Zhou 2005; Rittle-Johnson et  al. 
2001). In this next study, we assessed the effi-
cacy of a small-group tutoring program designed 
to foster understanding of fractions (Fuchs et al. 
2013b). The intervention focused on two types 
of conceptual knowledge (Kieren 1993). The first 
is part–whole understanding, with which a frac-
tion is understood as a part of one entire object 
or a subset of a group of objects. This type of 
understanding is typically represented using an 
area model, in which a region of a shape is shad-
ed or a subset of objects is distinguished from 
the remaining objects. The second type of con-
ceptual knowledge, the measurement interpre-
tation of fractions, reflects cardinal size (Hecht 
1998; Hecht et al. 2003) and is often represented 
with number lines (e.g., Siegler et  al. 2011). In 
American schools, fractions are taught primar-
ily via area models that underpin part–whole 
understanding. Measurement understanding is 
assigned a subordinate role (addressed later and 
with less emphasis).

Our study was innovative because our major 
emphasis was the measurement interpretation 
of fractions, although a smaller amount of time 
on part–whole conceptualizations to build on 
students’ incoming understanding of fractions 
was also incorporated, as addressed in their 
classrooms. In emphasizing the measurement 
interpretation, we sought to avoid the under-
standing of fractions exclusively as part–whole 
relationships, which may create difficulty for 
conceptualizing improper and negative frac-
tions (NMAP 2008). A focus on the measure-
ment model is also in keeping with NCTM 
standards (2006) that instruction be designed to 
foster understanding of fraction magnitudes in 
terms of the number line. It is also an explicit 
emphasis of the fourth-grade Common Core 
State Standards on understanding of fraction 
equivalence and ordering (http://www.cores-
tandards.org).

Prior Work and Purpose of Our Innova-
tion  Six studies assessing Tier 2 intervention 
efficacy on fractions were located. Bottge and 
colleagues conducted two studies in which they 
contrasted video-based real-world problem-

solving instruction against conventional word-
problem instruction. Both conditions required 
conceptual and procedural knowledge of frac-
tions to solve problems. However, instruction 
on fractions, which occurred only in the service 
of problem-solving, was inductive and inciden-
tal. Bottge (1999) randomly assigned 17 eighth-
grade students in a remedial mathematics class 
to the two ten-session conditions. Bottge et al. 
(2002) randomly assigned 42 seventh graders 
in two mathematics classes to 12 sessions and 
separately reported data for the eight students 
with prior mathematics difficulty. In both stud-
ies, there was little evidence of improvement 
on the fraction outcome, which required calcu-
lations, and no significant difference between 
conditions.

Other studies incorporated a more explicit 
instructional approach, reflecting the six de-
sign principles outlined earlier in this chapter. 
Relying on a multiple-baseline design, Joseph 
and Hunter (2001) demonstrated experimen-
tal control for a cue-card strategy across three 
eighth-grade AR students. A teacher initially 
taught students to use the cue card, which sup-
ported a three-pronged strategy for adding or 
multiplying fractions with and without com-
mon denominators and for reducing answers. 
After students showed competence in using 
the strategy, they were instructed to use the cue 
card while solving problems on daily fraction 
probes. In a maintenance phase, the cue card 
was removed. All three students showed sub-
stantial improvement with introduction of the 
cue card strategy, and maintenance (i.e., perfor-
mance without the cue card) was strong. The 
study focus was, however, entirely procedural 
in terms of instruction and outcome.

Kelly et al. (1990) also took an explicit ap-
proach to fraction instruction, but focused si-
multaneously on procedures and concepts. They 
randomly assigned 28 high-school AR students 
from one remedial and one general mathemat-
ics class to ten sessions of teacher-mediated 
videodisc-supported instruction or teacher-
mediated conventional textbook instruction. 
Although direct instruction was employed in 
both conditions, videodisc instruction differed 
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by providing mixed problem-type instruction, 
separating highly confusable concepts and 
terminology during early instructional stages, 
and providing a broader range of examples to 
avoid misconceptions (e.g., introducing proper 
and improper fractions in the first lesson). Both 
groups improved substantially from pretest 
(40 % on a 12-item test) to posttest (96 % vs. 
82 %), with the videodisc group improving sig-
nificantly more. Yet, despite the instructional 
focus on concepts and procedures, the fraction 
measure was largely procedural.

By contrast, intervention in the next two 
studies focused primarily on understanding of 
fractions and assessed outcomes on concepts as 
well as procedures. Butler et al. (2003) contrast-
ed two explicit instruction conditions with 50 
sixth- through eighth-grade AR learners. Both 
conditions carefully transitioned students from 
a conceptual emphasis, largely based on part–
whole understanding, to algorithmic rules for 
handling fractions, and from visual to symbolic 
representations. Only one condition, however, 
included concrete manipulatives. Both groups 
significantly improved across ten sessions. On 
one measure, in which students circled frac-
tional parts of sets, those who received 3 days 
of manipulatives improved significantly more; 
on the other four measures, the difference be-
tween conditions was not significant, provid-
ing mixed evidence regarding the importance 
of concrete representations within an explicit 
instructional approach. Without random assign-
ment or a control group, however, conclusions 
are tentative.

Hecht (2011) expanded on Butler et  al. 
(2003) by employing random assignment, in-
cluding a control group, and doubling the dura-
tion of intervention. Seventh-grade AR students 
( n = 43) were randomly assigned to control or 
1:1 tutoring using 23 Rational Number Project 
lessons (Initial Fraction Ideas; Cramer et  al. 
2009). These lessons rely on area models to 
teach part–whole relations, the concept of the 
unit, order and equivalence, and addition/sub-
traction, and apply these concepts in the con-
text of computation, word problems, and esti-
mation of sums/differences. Intervention stu-

dents improved significantly more on a range 
of procedural and conceptual measures, includ-
ing a number line task rooted in measurement 
understanding of fractions, despite that none of 
the lessons addressed the measurement model 
or strategies for using the number line.

These studies provide the basis for only ten-
tatively concluding that Tier 2 intervention, 
based on part–whole understanding of fractions, 
enhances fraction learning among middle- and 
high-school AR students. Each of these studies 
was, however, small and relied exclusively on 
experimental measures, closely aligned with 
instruction, to assess outcomes (an exception 
is Butler et al. 2003, who included a commer-
cial criterion-referenced measure in addition to 
experimental tasks). More importantly, none of 
these studies addressed the earlier grades, when 
the foundation for understanding fractions is 
developed, and none operationalized risk with 
the clarity needed to understand the level of 
students’ mathematics performance.

Our major innovation, therefore, was to ex-
amine the effects of early intervention, with 
the clarity required to understand what “risk” 
entailed (Fuchs et  al. 2013b). We focused on 
fourth grade, when the curriculum emphasizes 
understanding of fractions. Conceptual under-
standing and calculation skill were assessed 
using experimental tasks as well as an external, 
widely accepted measure of competence with 
fractions: the pool of easy, medium, and hard 
fourth-grade and easy eighth-grade released 
fraction items from the National Assessment 
of Educational Progress (NAEP; 18 items were 
selected from the pool of items released be-
tween 1990 and 2009).

In Fuchs et al. (2013b), we operationalized 
risk as whole-number calculation skill below 
the 35th percentile. Whole-number skill was 
used to define risk because the range of per-
formance on fraction measures is limited at the 
start of fourth grade and because prior work 
(Hecht and Vagi 2010; Seethaler et  al. 2011) 
identifies whole-number calculation skill as a 
predictor of fraction learning. A cutoff at the 
35th percentile is, however, high. So, we de-
signed the study to examine whether response 
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to intervention differs for students with more 
versus less severe incoming deficits with whole 
numbers (< 17th vs. 18th–34th percentile). 
This question, whether intervention is differ-
entially effective depending on the severity of 
mathematics difficulty, is important for design-
ing instruction that addresses the full range of 
students with mathematics difficulty. Yet, the 
authors were unable to locate experimental 
studies on this topic. Finally, to contextualize 
results, we compared year-end performance for 
the more and less severe groups of tutored stu-
dents against low-risk (> 34th percentile) class-
mates. This is important given that few fraction 
measures provide a normative framework or 
thorough behavior sampling of fourth-grade 
fraction skill.

Nature of Tutoring  The fraction interven-
tion program, Fraction Challenge (Fuchs and 
Schumacher 2010), described in Fuchs et  al. 
(2013b), includes 36 lessons taught over a 
12-week period (three 30-min lessons per 
week). As with Galaxy Math, scripts provide a 
model of the lessons and key explanatory lan-
guage. Tutors review scripts prior to delivering 
lessons; however, to promote teaching authen-
ticity and responsiveness to student difficulty, 
tutors do not memorize or read scripts.

As mentioned, tutoring relies primarily on 
the measurement conceptualization of frac-
tions, with content focused primarily on rep-
resenting, comparing, ordering, and placing 
fractions on a 0–1 number line. This focus is 
supplemented by attention to part–whole un-
derstanding (e.g., showing objects with shaded 
regions) and fair shares representations to build 
on classroom instruction. In this way, number 
lines, fraction tiles, and fraction circles are used 
throughout the lessons, with stronger emphasis 
on part–whole representations in beginning 
lessons. Lesson 22 (of 36) introduces fraction 
computation. Throughout the program, we 
focus on proper fractions and fractions equal 
to one. Improper fractions greater than 1 are 
introduced with addition and subtraction of 
fractions. To reduce computational demands, 
denominators do not exceed 12 and exclude 7, 
9, and 11. This tutoring content mirrored class-

room instruction with the following exceptions. 
The focus was narrower, with greater empha-
sis on measurement understanding, whereas 
classroom instruction emphasized part–whole 
understanding more than intervention; calcula-
tions substantially less than classroom instruc-
tion were focused; and a more limited pool of 
denominators was used.

More specifically, during the first 2 weeks 
of Fraction Challenge, the focus is on under-
standing of fraction magnitude. We begin by 
addressing “what is a fraction” and teach rele-
vant vocabulary (e.g., numerator, denominator, 
unit). We rely on a combination of part/whole 
relations, measurement, and equal sharing to 
explain the fraction magnitudes. Instruction 
emphasizes the role of the numerator and de-
nominator and how they work together to con-
stitute the fraction, which is one number, even 
though it comprises two whole numerals.

In the 3rd week, tutors review material pre-
sented in the first six lessons. Students practice 
naming fractions, reading fractions, and com-
paring two fractions when the denominators 
are the same or when the numerators are the 
same. In this review, two types of flashcards are 
used to build fluency with the meaning of frac-
tions. The first type shows flashcards with one 
fraction; students read and state the meaning 
of the fraction. For example, for 1

4  students say, 
“one-fourth, one of four equal parts.” Students 
take turns over a 2-min period, responding to as 
many fractions as they can. The tutor keeps track 
of the group total for each lesson; the students’ 
goal is to meet or beat the previous day’s score. 
The second type shows two fractions. Students 
determine if the fractions pairs fit one of three 
categories: same numerators (different denomi-
nators), same denominators (different numera-
tors), or different numerator and different de-
nominator. Students categorize flashcards in this 
way for 1 min. Then, the tutor gives each student 
two fraction cards; for each, students place the 
greater than or less than sign between fractions 
and explain their rationale to the group.

In weeks 4 and 5, students learn about frac-
tions equivalent to 1

2  (e.g., 2
4

3
6

4
8

5
10

6
12, , , , ). 

They also learn to compare two fractions in 
which the numerators and denominators both 
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differ, using 1
2  as a benchmark for comparison 

and writing the greater than, less than, or equal 
sign between the fractions. Then, two activi-
ties are introduced: placing two fractions on the 
0–1 number line, marked with 1

2 , and ordering 
three fractions from smallest to largest.

In week 6, tutors introduce fractions rep-
resenting a collection of items and fractions 
equivalent to 1, while continuing to work on 
comparing two fractions, ordering three frac-
tions, and placing fractions on the 0–1 number 
line, now without the 1

2  marker. Students are 
encouraged, however, to think about where 1

2  
goes on the number line in relation to placing 
other fractions. Week 7 (lessons 19–21) was cu-
mulative review on all concepts and skills.

Weeks 8 and 9 focus on simple calculations. 
Addition with like denominators is introduced 
first; then subtraction with like denominators; 
then mixed addition and subtraction; and then 
addition with unlike denominators and then 
subtraction with unlike denominators. Concepts 
and procedures are addressed. When introduc-
ing unlike denominators, tutors limit the pool 
of problems. In all cases, one fraction is equiva-
lent to 1

2  or 1 so students can write equivalent 
fractions they already learned. The last 2 weeks 
are cumulative review.

Each lesson comprises four activities: intro-
duction of concepts or skills, group work, the 
speed game, and individual work. The first ac-
tivity, introduction of new concepts and skills, 
lasts 8–12  min. Concrete manipulatives (e.g., 
fraction tiles, fraction circles), visual repre-
sentations, and problem-solving strategies are 
presented. In group work, which lasts 8–12 min 
(the introduction plus group work lasted 20 min 
for each lesson), students rehearse and apply 
concepts and practiced strategies addressed 
in the introduction. Students take turns lead-
ing the group through problems, while all stu-
dents show their work for each problem. The 
third activity, the speed game, is designed to 
build fluency on a previously taught concept 
or skill. For instance, to build fluency on frac-
tions equivalent to 1

2 , tutors give each student 
a paper showing 25 fractions, and students have 
1 min to circle fractions equivalent to 12 . Some-
times, the Speed Game requires computation, 

and students are given specific instructions on 
which items to solve. For example, students 
might be told to solve only addition problems 
or solve only problems with like denomina-
tors. In this way, students discriminate between 
problem types. The fourth activity is individual 
work for which students independently com-
plete a two-sided practice sheet. One side pres-
ents problems taught in that day’s lesson; the 
other side is cumulative review. This activity 
lasts approximately 8 min, for a total of 30 min 
per session.

As with Galaxy Math, the program also en-
courages students to regulate their attention/be-
havior and to work hard. Tutors teach students 
that on-task behavior means listening carefully, 
working hard, and following directions and that 
on-task behavior is important for learning. Tu-
tors set a timer to beep at three unpredictable 
times during each lesson. If all students are 
on task when the timer beeps, all students re-
ceive a checkmark. To increase the likelihood 
of consistent on-task behavior, students cannot 
anticipate time intervals. Also, on each practice 
sheet, 2 of 16 problems are bonus problems. As 
the tutors score the practice sheet, they reveal 
which problems are bonus items. Students re-
ceive a checkmark for each correctly answered 
bonus problem. At the end of the lesson, tutors 
tally checkmarks for each student and award 
them with a “half dollar” per checkmark. At 
the end of each week, students shop at the 
“fractions store” to spend money earned dur-
ing tutoring. All items in the store are listed in 
whole dollar amounts at three price points so 
students must exchange half dollars for whole 
dollars and determine what they can afford. In 
this way, to use the fraction store, students must 
rely on their fraction knowledge, while exercis-
ing judgment about buying a less expensive 
item versus saving for a more expensive one. In 
lesson 19, half dollars are replaced with quarter 
dollars.

Findings  In our study, we stratified by risk 
severity and classroom when randomly assign-
ing students to tutoring versus control condi-
tions. Participants were fourth graders from 53 
classrooms in 13 schools. Of these students, 
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259 were at risk: 129 tutored students (60 more 
severe and 69 less severe) and 130 control stu-
dents (66 more severe and 64 less severe). The 
other 292 students were low-risk classmates. 
With this sample, we included two measures 
that isolated the type of understanding on which 
we primarily focused: measurement understand-
ing. On comparing fractions (in which students 
place a greater than, less than, or equal sign 
between two fractions), the ES favoring AR 
intervention students over control children was 
1.82 SDs, and the achievement gap between AR 
tutored students and their low-risk classmates 
narrowed, while the gap for AR control students 
increased. On fraction number line (in which 
students place a fraction on a 0–1 number line), 
the ES was 1.14. Although fraction number line 
data on low-risk classmates (only group-admin-
istered data on low-risk students were collected) 
were not collected, the posttest performance of 
AR tutored students was at the 75th percentile 
for a normative sample of sixth graders, as per 
Siegler et al. (2012).

Because the alignment for comparing frac-
tions and fraction number line was greater for 
intervention than for classroom instruction, we 
also considered effects on NAEP. NAEP was 
not aligned with intervention, and it focused 
with comparable emphasis on measurement 
and part–whole understanding. Here, effects 
were also significant and strong. The ES favor-
ing AR intervention students over control was 
0.94 SDs, and the achievement gap favoring 
low-risk classmates over AR control students 
remained large, while the achievement gap for 
AR intervention students decreased substantial-
ly or was eliminated.

Moreover, although classroom instruction 
focused on calculations more than intervention, 
effects again favored intervention students over 
control. Here, the ES favoring AR intervention 
students was 2.51; the achievement gap between 
AR tutored students and their low-risk class-
mates narrowed, while the gap for AR control 
students increased; and AR tutored students’ 
posttest performance actually exceeded that of 
low-risk classmates. Given that classroom in-
struction allocated substantially more time to 

calculations, this suggests that understanding 
fractions, perhaps specifically the measurement 
understanding of fractions, transfers to proce-
dural skill, at least with respect to adding and 
subtracting fractions (Hecht et  al. 2003; Maz-
zocco and Devlin 2008; Ni and Zhou 2005; 
Rittle-Johnson et al. 2001; Siegler et al. 2011).

In these ways, this study innovatively ex-
tends Tier 2 intervention on fractions by fo-
cusing primarily on understanding magnitude 
(rather than part–whole understanding as in 
earlier work) and targeting younger students 
(rather than middle or high school students). 
Another interesting extension to the literature 
concerns the focus on risk severity. We found 
that response to intervention was comparable 
for students with more versus less severe risk, 
when risk was defined in terms of whole-num-
ber deficits. That is, there were no significant 
interactions between risk severity and inter-
vention condition, and ESs were similar for 
more versus less severe student groups. By any 
standard, the effects of intervention designed 
to foster understanding of fraction magnitude 
for AR fourth graders were strong, with the 
achievement gap for AR learners substantially 
narrowed or eliminated. Of course, classroom 
instruction’s failure not only to address the 
needs of a substantial majority of AR learners 
in a more successful manner but also to promote 
stronger learning among low-risk classmates 
raises questions about the quality and nature 
of classroom fraction instruction. This in part 
explains widespread difficulty with fractions 
(e.g., Behr et al. 1984; NCTM 2007; Ni 2001) 
and highlights the pressing need to improve the 
quality of fraction instruction and learning in 
this country (NMAP 2008).

Need for Future Research

Studies described in this chapter, from our own 
research programs as well as prior work, provide 
the basis for thoughts about the power as well as 
the limitations of Tier 2 intervention. First, we 
focus on the power. As the research described 
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in this chapter illustrates, the literature indicates 
it is possible to design tutoring programs to en-
hance the outcomes of students who are at risk 
of poor mathematics development. Interventions 
that incorporate explicit instruction, provide stu-
dents with a strong conceptual foundation and 
efficient procedural strategies, and embed regu-
lar, strategic, and cumulative practice are gener-
ally efficacious. Results clearly demonstrate that 
students AR for poor mathematics development 
suffer reliably and substantially less positive 
mathematics outcomes if left in the general edu-
cation program without such tutoring (as repre-
sented in the control conditions in these studies). 
When AR students do not receive these preven-
tative tutoring services, the gap between their 
level of mathematics performance and those of 
low-risk classmates grows, making it increasing-
ly difficult for these children to profit from class-
room instruction. By contrast, AR students as a 
group, who receive high-quality tutoring, make 
progress toward catching up to classmates and, 
for some of these children, the scaffolding pro-
vided through such Tier-2 validated intervention 
creates a strong foundation for them to experi-
ence long-term success in mathematics. Clearly, 
reliable screening of risk to identify students for 
12–20 weeks of accurately implemented, vali-
dated tutoring, as represented in Tier 2 of multi-
level RTI prevention systems, is a valuable and 
important service.

At the same time, it is important for policy-
makers and schools to recognize the limitations 
of Tier 2 intervention for dramatically reduc-
ing the need for ongoing and intensive services 
for some segment of the school population. We 
focus on two such limitations: lack of universal 
response and questions about transfer across the 
components of the mathematics curriculum. In 
terms of lack of universal response, in the three 
studies from our own research program de-
scribed in this chapter, not all students respond. 
This phenomenon has been documented before, 
not only for mathematics but also for reading 
As O’Connor and Fuchs (2013) described, for 
example, the modal rate of unresponsiveness 
on the components of the curriculum targeted 

for intervention approximated in our prior stud-
ies approximates 4 % of the general population. 
This is similar to the prevalence of learning dis-
abilities in the USA when intelligence quotient 
(IQ)–achievement discrepancy is used as the 
method of identification (although research in-
dicates that the groups of students identified via 
RTI methods of identification versus the IQ–
achievement discrepancy differ; Fuchs et  al. 
2005a; Fuchs et  al. 2008). This rate of unre-
sponsiveness suggests the limitations of Tier 2 
intervention for dramatically reducing the need 
for ongoing, intensive services for students tra-
ditionally identified as having a learning dis-
ability. This is the case when 12–20 weeks of 
small-group tutoring are provided. If it were 
possible to provide a longer duration of tutor-
ing or deliver that tutoring individually, it may 
be possible to reduce the rate of unresponsive-
ness further. But with longer runs of one-to-one 
tutoring, services begin to resemble the level of 
intensity expected in special education, and this 
prompts concerns about due process and how 
schools might fund such a level of intensity 
without special education resources.

At the same time, it is important to consider 
that the rate of unresponsiveness in efficacy 
studies, which control the quality of implemen-
tation, probably underestimates the actual per-
centage when Tier 2 intervention is practiced 
in schools. In actual practice, it is likely that 
fidelity of implementation will be lower, with 
reduced effects. In addition, as students con-
tinue in school, the effects of tutoring can be 
expected to diminish, and without additional 
support, some responders will reemerge with 
difficulty.

The second issue that represents a challenge 
to preventing long-term mathematics difficulty 
with Tier 2 intervention concerns questions 
about transfer across components of the math-
ematics curriculum. As our studies described 
in this chapter illustrate, although transfer may 
occur across some domains it is decidedly lim-
ited across others. For example, in Fuchs et al. 
(2013a), we found clear indications of transfer 
from simple arithmetic tutoring to more com-
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plex calculations. However, transfer to word 
problems was more limited, with word-problem 
achievement gaps growing over the course of 
intervention for both tutoring conditions. In a 
similar way, in Fuchs et  al. (2013b), although 
fraction intervention had dramatic effects in 
decreasing the achievement gap for more and 
less severe risk fourth graders, fraction tutoring 
had no effect on students’ whole-number calcu-
lation skill. As already discussed, mathematics, 
more than reading, is potentially complicated 
by the fact that the elementary school curricu-
lum comprises multiple components within and 
across the grades. This problem becomes more 
complicated over the course of high school, 
where the components of the mathematics cur-
riculum (e.g., geometry, trigonometry, calculus, 
as well as algebra) diverge more dramatically 
than in the earlier grades.

Clearly, additional research on other compo-
nents of the mathematics curriculum, at early 
and later stages of mathematics development, 
is required to elucidate where prior Tier 2 inter-
vention creates protection against further risk 
and where one can expect new forms of risk to 
emerge. New risk may emerge due to lack of 
transfer from earlier intervention. Alternatively, 
new topics in the mathematics curriculum may 
create risk for students whose prior mathemat-
ics performance has been adequate. All this cre-
ates the need not only for additional interven-
tion work, with a focus on long-term outcomes, 
but also for additional research on screening for 
risk on topics at the intermediate grades and at 
the middle- and high-school levels.
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