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Analytics for Operational Visibility
in the Retail Store: The Cases
of Censored Demand and Inventory
Record Inaccuracy

Li Chen and Adam J. Mersereau

1 Introduction

A retail store is a system in which customers, associates, and merchandise interact

which each other over time to produce sales and profits for the firm (Fig. 5.1). The

store, however, is far from a black box from the manager’s perspective. Retail

managers have a number of operational levers to influence these interactions,

including store design, assortment planning, pricing, inventory control, and

staffing. Retail managers also have some visibility into what transpires in the store.

Historically, this visibility has been limited to inventory positions, staff sched-

ules, and, since the emergence of barcode technologies in the 1970s, point-of-sale

(POS) data. Recent years, however, have seen a heightened interest among practi-

tioners in store visibility—how a retailer can gain clearer visibility and how it can

best use this visibility for operational and marketing advantage. Citing opportuni-

ties brought by existing and new retail data sources, a recent report by the

McKinsey Global Institute highlights retail’s “tremendous upside potential across

the industry for individual players to expand and improve their use of big data”

(McKinsey Global Institute 2011).

We believe that one factor contributing to this interest in visibility is the

continued rise of internet retailing (i.e., e-commerce), which continues to grow as

a fraction of the overall retail industry. A commonly cited advantage enjoyed by

e-commerce retailers compared with their brick-and-mortar cousins is their visibil-

ity into the sales process, given that interactions of customers with the e-commerce

retail site (and with associates and inventory, when applicable) can be (and are)
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recorded and mined for information. Customer clickstreams can reveal detailed

insights into customer behavior. Furthermore, the customer experience is largely

decoupled from firm operations in e-commerce retail, enabling tighter monitoring

of inventory control and customer service. Indeed, a significant challenge of

modern in-store retailing, seen in the push for “omni-channel” retailing

(Brynjolfsson et al. 2013), is learning how best to compete with, complement,

and learn from the e-commerce channel. Part of the answer seems to be finer

visibility into and control of the in-store environment.

A second factor behind the increased interest in retail visibility is the emergence

of modern technologies for in-store data collection as well as information technol-

ogies for capturing, storing, and analyzing data from these sources. These technol-

ogies bring the promise of a revolution in retail operations by offering visibility at a

more granular level of detail and a finer time scale. Examples of such technologies

include radio-frequency identification (RFID) and traffic counters, which have

existed for a number of years but whose uses are still being explored and evaluated,

and new technologies such as smart shopping carts, video monitoring, and cell

phone tracking. In our investigation of these technologies and in discussions with

practitioners and academics, we have encountered both optimism and skepticism

about them. It is clear that new approaches are needed to translate these data sources

into meaningful insights and profitable decisions and to evaluate the technologies.

We will discuss some of these new visibility technologies and the associated

research opportunities in Sect. 4.

The main goal of this chapter is to provide a review of two substantial literatures

on in-store retail management that deal with imperfect visibility, namely demand

censoring and inventory record inaccuracy. We believe that these two literatures,

though largely disjoint from each other, share common features and themes that

make them instructive for other problems involving in-store visibility.

Inventory Management with Censored Demand Observations Retail demand

data are typically captured by POS transactions. However, POS data present an

imperfect observation of true demand due to the demand censoring effect: when the

actual demand exceeds the available inventory level, the excess demand is not

captured by the POS data. The demand censoring problem is more prominent in

brick-and-mortar stores than in online stores, because the latter can monitor and

track customer purchases closely to alleviate such a problem. Academic researchers
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have long recognized the need to account for this censoring effect in demand

forecasting and inventory management (e.g., Conrad 1976; Wecker 1978). This

literature has been primarily centered on methodologies for dealing with the

imperfect demand observations.

Inventory Management with Inaccurate Inventory Records Computerized

inventory positions, which accumulate POS and store receipts on a daily basis,

form the basis of automated replenishment policies for many retailers. There is

ample evidence that such logical inventory records do not match the physical

inventories on store shelves due to shrinkage, misplacement, and transaction errors

(see DeHoratius and Ton 2015). In other words, retail managers have imperfect

visibility into inventory in the store. A substantial literature on managing invento-

ries given this reality has grown in the last decade, featuring diverse assumptions on

error processes, decisions, and observability.

Given the common challenges in incorporating imperfect information into opera-

tional models, it is not surprising that both literatures use overlapping methodolo-

gies such as various learning and optimization paradigms. These two literatures also

yield some common insights. One such insight is that lack of visibility can be

costly, and if not properly accounted for can erase the gains from sophisticated,

optimized policies. A second is that intelligent analytics can substitute for visibility

in some cases. A third is that analytical models can help measure the return on

investment of new visibility technologies by evaluating the best performance

possible without visibility.

For ease of reference for readerswhomay be interested in only one of the topics, we

have written the reviews of these two literatures to be largely self-contained. The rest

of the chapter is organized as follows. In Sect. 2, we review the literature on the

demand censoring problem. We discuss three types of models: Bayesian models with

perishable inventory, Bayesian models with nonperishable inventory, and nonpara-

metric models. We conclude the section by comparing the Bayesian and nonparamet-

ric models and discussing future research opportunities. In Sect. 3, we review the

literature on the inventory record inaccuracy problem. Specifically, we provide a basic

illustrative model for the problem, discuss the modeling issues and tradeoffs, review

specific models from the literature, and conclude with a discussion of important open

research questions. Section 4 discusses emerging visibility technologies and future

research opportunities more generally in the general area of in-store visibility.

2 Models of Demand Censoring

In most retail environments, when inventory runs out, the unmet demand is lost and

not observed. As a result, the sales data are censored by the available inventory

level. When the demand distribution is known, this is a classic inventory problem

involving lost sales (see Zipkin 2000 and references therein). However, if the

demand distribution is not known, which is often the case for a new product
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introduction, one has to rely on potentially censored data to estimate the unknown

demand. Intuitively, if this partial observability of demand is not factored into the

estimation procedure, the demand estimate will be biased low (Wecker 1978). If the

low demand estimate is subsequently used to determine inventory stocking deci-

sions, the resulting inventory level will also be biased low and thus will lead to more

lost sales and an even lower future demand estimate. To avoid this potential vicious

cycle, it is important to take into account the data censoring effect in demand

estimation and inventory control decisions. In other words, we need to develop

“intelligent” methods to narrow the performance gap between a system with

imperfect demand data and a system with full-visibility.

Consider the case in which the demands in each period, denoted by Dt, are

independently and identically distributed (i.i.d.). The demand Dt here could be a

residual variable after removing seasonality and promotional effects. Let us further

assume that the demand probability density function, denoted by f(ξjθ), has an

unknown parameter θ, with θ 2 Θ. Let F(ξjθ) denote the cumulative distribution

function (CDF) and FðξjθÞ ¼ 1� FðξjθÞ the complementary CDF.

Also let yt denote the inventory level in period t. Then the sales in period t is
given by min{Dt, yt}. If Dt¼ ξt< yt, then the demand information is observed

exactly, and the likelihood function is given by f(ξtjθ). On the other hand, if Dt� yt,
then the demand information is censored by the inventory level yt; all we know is

that the actual demand is greater than or equal to yt, so the likelihood function is

given by FðytjθÞ.
Suppose that there are n historical sales observations. Without loss of generality,

let the first j observations be the exact demand observations, i.e., ξ1,. . ., ξj,
and let the remaining n � j observations be the censored demand observations,

i.e., yj+1, . . ., yn. We can write the joint likelihood function as

Yj
i¼1

f ðξijθÞ �
Yn
i¼jþ1

FðyijθÞ:

By maximizing this expression over θ we obtain the maximum likelihood estimator

(MLE) of the unknown demand parameter.

Conrad (1976) recognizes the difference between sales and demand data and

proposes the above MLE method for Poisson demand. Nahmias (1994) further

considers the demand censoring problem for normal demand, and provides three

estimators: the MLE estimator, the best linear unbiased estimator, and a simplified

estimator based on three sample statistics. He compares the performance of these

three estimators by simulation. Agrawal and Smith (1996) find that the negative

binomial distribution fits their empirical data significantly better than the Poisson

and normal distribution, and develop estimators for the negative binomial distribu-

tion under demand censoring. Anupindi et al. (1998) apply the MLE method to

estimate the Poisson demands of multiple substitutable products for a vending

machine data set. In their problem, product stockouts result in only partial lost

sales due to substitution. They develop an expectation-maximization (EM) method
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to account for missing stockout information in periodical inventory data. For a

similar demand estimation problem, Conlon and Mortimer (2013) develop an EM

method under a discrete choice model and demonstrate that failing to account for

stockouts correctly can lead to biased demand estimates. Vulcano et al. (2012)

further develop an efficient EM algorithm under the multinomial logit choice

model, where they treat the observed demand as an incomplete observation of the

primary demand (i.e., the would-be demand if all products were available for sale).

Musalem et al. (2010) develop an alternative Bayesian estimation method based on

data augmentation (i.e., imputing the entire sequence of sales) with Markov chain

Monte Carlo methods.

To apply a Bayesian method to the estimation problem at hand, let π(θ) denote
an initial prior belief on the unknown demand parameter θ. The posterior belief of θ
given the same n historical sales observations as before can be written as

πðθjξ1, . . . , ξj, yjþ1, . . . , ynÞ ¼
πðθÞ

Yj
i¼1

f ðξijθÞ �
Yn
i¼jþ1

FðyijθÞ

R
Θ

πðθ0 Þ
Yj
i¼1

f ðξijθ0 Þ �
Yn
i¼jþ1

Fðyijθ0 Þdθ0
:

As with the MLE case, the ordering of the demand observations does not affect

the Bayesian posterior because of the product form of the likelihood function.

For an N-point discrete demand distribution with an N-dimensional beta prior,

Silver (1993) derives a recursive formula for computing the Bayesian posterior

expected values of the N probability masses under demand censoring.

When demand is fully observable, the above Bayesian updating procedure

can be greatly simplified with conjugate prior distribution families—one only

needs to update the corresponding sufficient statistic of the conjugate prior

(see DeGroot 1970 for a detailed discussion of this topic). However, when demand

is censored due to unobserved lost sales, most common conjugate prior distribution

families do not apply. In particular, Braden and Freimer (1991) conjecture that the

distributions that entail a sufficient statistic under demand censoring, termed the

“newsvendor distribution,” are limited to the following distribution family:

FðξjθÞ ¼ eηðθÞbðξÞ,

where η(� ) and b(� ) are real-valued functions. Examples of such distributions

include the exponential distribution, the Weibull distribution, certain bounded

support distributions and certain bimodal distributions (see Braden and

Freimer 1991). Specifically, when ηðθÞ ¼ �θ and b(ξ)¼ ξk with fixed k> 0, the

newsvendor distribution takes the form of the Weibull distribution. Below we use
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the Weibull distribution to illustrate the Bayesian updating scheme under demand

censoring.

Under the Weibull distribution, the demand density function is given by

f ðξjθÞ ¼ kθξk�1e�θξk for ξ � 0:

Let us further assume that the initial prior follows a gamma distribution with the

shape parameter a> 0 and the scale parameter S> 0, i.e.,

πðθÞ ¼ Saθa�1e�Sθ

ΓðaÞ for θ � 0:

Thus, given the same n historical sales observations as before, it is easy to verify

that the posterior also follows a gamma distribution with the updated shape

and scale parameters given by a + j and Sþ
X j

i¼1
ξ ki þ

X n

i¼jþ1
yki , respectively.

In other words, the shape parameter increases by one only when an exact demand

observation is made, and the scale parameter increases by (min{ξt, yt})
k every

period.

An advantage of the Bayesian method over the MLE method is that one can

integrate demand estimation together with optimal control, and formulate the joint

estimation and optimization problem as a Bayesian dynamic program. In a seminal

paper, Scarf (1959) first studies such a joint estimation and optimization problem

when demand information is fully observable (i.e., without demand censoring).

Scarf (1960) further shows the dimensionality of the Bayesian dynamic program

can be reduced for the gamma-gamma conjugate prior distribution family.

Azoury (1985) extends Scarf’s state-space reduction technique to various conjugate

prior distribution families, such as the Pareto-uniform and the gamma-Weibull

conjugate priors. Under certain suitable conditions, Lovejoy (1990) shows that

the Bayesian dynamic program can be simplified to a single-period optimization

problem. When demand is censored due to unobserved lost sales, the joint estima-

tion and optimization problem becomes much more challenging. Below we provide

a review of the existing literature on this subject.

2.1 Bayesian Models with Perishable Inventory

Consider a periodic-review inventory control problem for a single product. The

product is stocked and sold for T periods. At the beginning of each period

t (t¼ 1, . . ., T), an inventory level yt is chosen to minimize the total inventory

holding and stockout penalty costs. The production leadtime is assumed to be

negligible, so the inventory level is achieved immediately after the decision. Here

we also assume the product is perishable and cannot be carried over to meet
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demands in subsequent periods. In this case, the on-hand inventory at the beginning

of a period is always zero.

At the end of each period, a unit holding cost h or a unit penalty cost p is charged
for any leftover inventory or unsatisfied demand, respectively. The purchase cost of

the product is omitted in our formulation as it can be normalized to zero with the

standard technique of Heyman and Sobel (1984). The terminal value at the end of

the planning horizon is assumed to be zero.

Let πt(θ) denote the prior belief of the unknown demand parameter θ at the

beginning of period t. The predictive demand density in period t is given byR
Θ

f ðξjθÞπtðθÞdθ. Given the inventory level y, the single-period expected inventory

holding and stockout penalty cost, denoted by Lt y, πtð Þ, can be expressed as

Lt y, πtð Þ ¼ hEDtjπt y� Dtð Þþ� �þ pEDtjπt Dt � yð Þþ� �

¼ h

Z
Θ

Z y

0

y� ξð Þ f ξjθð Þπt θð Þdθdξþ p

Z
Θ

Z1

y

ξ� yð Þ f ξjθð Þπt θð Þdθdξ,

where ð�Þþ ¼ maxf�, 0g.
Let Vt(πt) denote the cost-to-go function from period t given the prior πt. Then

the Bayesian dynamic program optimality equations can be written as, for

t¼ 1, . . .,T,

Vt πtð Þ ¼ min
y�0

fGt y, πtð Þg

¼ min
y�0
fLt y, πtð Þ þ

Z
Θ

Z y

0

Vtþ1

f ξj�ð Þπt �ð ÞZ

Θ

f ξjθð Þπt θð Þdθ

0
B@

1
CAf ξjθð Þπt θð Þdθdξ

þ Vtþ1

F yj�ð Þπt �ð ÞZ

Θ

F yjθð Þπt θð Þdθ

0
B@

1
CA

Z
Θ

F yjθð Þπt θð Þdθg,

with VTþ1ð�Þ ¼ 0. Let ypt ¼ argminy�0fGtðy, πtÞg denote the optimal inventory

decision in the above problem. Also let ymt ¼ argminy�0fLtðy, πtÞg denote the

myopic inventory decision in the problem. Note that in the case with no censoring,

the myopic decision is in fact optimal in each period.

Intuitively, under demand censoring, one would stock more than the myopic

inventory level to increase the chance of having an exact demand observation, i.e.,

yt
p� yt

m for any common prior πt. This is indeed true for arbitrary prior and demand

distributions. Harpaz et al. (1982) first show this “stock more” insight under a general

production output model. The same insight is shown to hold for the multiperiod

newsvendor problem as described above by Ding et al. (2002), amended later

by Lu et al. (2005) and Bensoussan et al. (2009). This insight is further extended to
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price-dependent demand models by Bisi and Dada (2007). Using the unnormalized

prior technique developed in Bensoussan et al. (2005), Bensoussan et al. (2007a)

show that an optimal policy exists and the “stock more” insight holds for an infinite-

horizon problem.

To demonstrate this insight, let us examine the derivative of the dynamic

program objective function below (Lu et al. 2008):

G
0
tðy, πtÞ ¼ L

0
tðy, πtÞ þ Vtþ1

f yj�ð Þπt �ð ÞR
Θ

f yjθð Þπt θð Þdθ

0
B@

1
CA

2
64

�~Vtþ1

f yj�ð Þπt �ð ÞR
Θ

f yjθð Þπt θð Þdθ

0
B@

1
CA
3
75
Z
Θ

f ðyjθÞπtðθÞdθ,

where ~V tþ1ð�Þ is the expected cost when a suboptimal inventory policy, computed

along each sample path assuming observation ywas censored, is evaluated based on
demand beliefs updated assuming y was uncensored. Thus, it is clear that

Vtþ1ð�Þ � ~V tþ1ð�Þ, and we haveG0
tðy, πtÞ � L

0
tðy, πtÞ. Hence, it follows that ytp� yt

m

for any common prior πt.
While this is an elegant structural result for the problem, computing the optimal

inventory decision is still nontrivial. Easy-to-compute solutions are available only

for certain conjugate prior distribution families. For example, Lariviere and

Porteus (1999) derive a closed-form formula for the optimal inventory decision

under the exponential demand distribution with a gamma prior. Bisi et al. (2011)

further obtain a recursive formula for the more general Weibull demand distribution

with a gamma prior. For general prior and demand distributions, Chen (2010)

shows that the derivative of the dynamic program objective function can be

computed by a recursive equation, but the dimensionality of the problem remains

an obstacle for solving problems with relatively long time horizons.

2.2 Bayesian Models with Nonperishable Inventory

Now let us consider a more general case in which the product is nonperishable and

can be carried over to meet demands in subsequent periods. In this case, the on-hand

inventory at the beginning of a period is no longer zero, and we need to introduce an

additional inventory state into the Bayesian dynamic program.

Let Vt(x, πt) denote the cost-to-go function from period t, given the on-hand

inventory level x and the prior πt. Then the Bayesian dynamic program optimality

equations can be written as, for t¼ 1, . . ., T,
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Vt x,πtð Þ ¼min
y�x

fGt y,πtð Þg

¼min
y�x
fLt y,πtð Þ þ

Z
Θ

Z y

0

Vtþ1 y� ξ,
f ξj�ð Þπt �ð ÞZ

Θ

f ξjθð Þπt θð Þdθ

0
B@

1
CAf ξjθð Þπt θð Þdθdξ

þVtþ1 0,
F yj�ð Þπt �ð ÞZ

Θ

F yjθð Þπt θð Þdθ

0
B@

1
CA

Z
Θ

F yjθð Þπt θð Þdθg,

with VTþ1ð�, �Þ ¼ 0. Let y∗t ¼ argminy�0fGtðy,πtÞg denote the optimal inventory

decision to the above problem. Bensoussan et al. (2008) show that an optimal policy

also exists for the infinite-horizon problem.

Extending the derivative result of Lu et al. (2008), Chen (2010) shows that the

derivative of the above objective function can be written as

G
0
tðy, πtÞ ¼ L

0
tðy, πtÞ þ

Z
Θ

Z y

0

V
0
tþ1 y� ξ,

f ξj�ð Þπt �ð ÞZ

Θ

f ξjθð Þπt θð Þdθ

0
B@

1
CAf ξjθð Þπt θð Þdθdξ

þ Vtþ1 0,
f yj�ð Þπt �ð ÞZ

Θ

f yjθð Þπt θð Þdθ

0
B@

1
CA

2
64

�~Vtþ1 0,
f yj�ð Þπt �ð ÞZ

Θ

f yjθð Þπt θð Þdθ

0
B@

1
CA
3
75
Z
Θ

f ðyjθÞπtðθÞdθ,

where ~Vtþ1ð0, �Þ is a generalization of ~Vtþ1ð�Þ in the perishable inventory case with

zero starting inventory. Thus, we have Vtþ1ð0, �Þ � ~Vtþ1ð0, �Þ. But, on the other

hand, we have V
0
tþ1ðy� ξ, �Þ � 0. Hence, Gt

0
(y, πt) can be either greater or less than

Lt
0
(y, πt), implying that yt

∗� yt
m may not hold in this case. Thus, the “stock more”

result in the perishable inventory case does not extend to the nonperishable inven-

tory case when the optimal inventory decision is compared with the myopic

decision.

Nevertheless, we can show that it is optimal to “stock more” than in a system

without demand censoring. Since the myopic decision is optimal in a perishable

inventory system without demand censoring, this can be seen as a generalization of

the “stock more” result in the perishable inventory case. Let Vt
o(x, πt) denote the

cost-to-go function from period t, given the on-hand inventory level x and the prior
πt for a system without demand censoring. Then the Bayesian dynamic program

optimality equations can be written as, for t¼ 1, . . .,T,
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Vo
t x,πtð Þ¼ min

y�x
fGo

t y,πtð Þg

¼ min
y�x

Lt y,πtð Þþ
Z
Θ

Z1

0

Vo
tþ1 ðy�ξÞþ, f ξj�ð Þπt �ð ÞZ

Θ

f ξjθð Þπt θð Þdθ

0
B@

1
CAf ξjθð Þπt θð Þdθdξ

8><
>:

9>=
>;,

with Vo
Tþ1ð�,�Þ¼0. Let yot ¼argminy�0fGo

t ðy,πtÞg denote the optimal inventory

decision to the above problem.

Chen and Plambeck (2008) show that yt
∗� yt

o for any common prior πt under
the general discrete demand distribution. For a general continuous demand distri-

bution, it is easy to verify that the derivative of Gt
o(y, � ) is given by

Go
0

t ðy, πtÞ ¼ L
0
tðy, πtÞ þ

Z
Θ

Z y

0

Vo
0

tþ1 y� ξ,
f ξj�ð Þπt �ð ÞR

Θ

f ξjθð Þπt θð Þdθ

0
B@

1
CAf ξjθð Þπt θð Þdθdξ

By backward induction, we can show that Vo
0

tþ1 ðy� ξ, �Þ � V
0
tþ1ðy� ξ, �Þ. Hence, it

follows that G
0
tðy, πtÞ � Go

0

t ðy, πtÞ, and we have yt
∗� yt

o for any common prior πt.
Computing the optimal inventory decision for this problem is even more

complex than for the perishable inventory case. Leveraging the dimensionality

reduction technique developed by Scarf (1960) and Azoury (1985), Lariviere and

Porteus (1999) show that this problem can be reduced to a two-dimensional

dynamic program under the Weibull demand distribution with a gamma prior.

Bisi et al. (2011) further show that the Weibull distribution is the only distribution

that allows for such a dimensionality reduction technique for the problem. They

also show that the dynamic program objective function is convex under the

exponential demand distribution (a special case of the Weibull distribution when

k¼ 1), but is generally non-convex under other demand distributions.

From the generalized “stock more” result, a natural lower bound for the optimal

inventory decision is given by yt
o. This can be relatively easy to compute, benefiting

from the fact that the corresponding Bayesian dynamic program is convex (see

Scarf 1959). By the dimensionality reduction technique developed by Scarf (1960)

and Azoury (1985), we can compute yt
o easily for an array of conjugate prior

distribution families. However, for general prior and demand distributions, com-

puting yt
o is still subject to the curse of dimensionality. Lu et al. (2007) derive an

upper bound for the optimal inventory decision based on the first-order condition.

However, their upper bound works only for certain prior and demand distributions.

Chen (2010) further derives a set of upper bounds for the optimal inventory decision

that works for all prior and demand distributions. For a fairly general monotone

likelihood-ratio distribution family, he derives relaxed but easy-to-compute lower

and upper bounds along any sample path. He also proposes two effective heuristics

based on the solution bound results and the first-order condition.
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2.3 Nonparametric Models

In addition to the Bayesian (parametric) models reviewed above, there is also a

stream of research on the demand censoring problem based on nonparametric

approaches. Under the nonparametric models, one makes no parametric assump-

tions on the underlying demand distribution, but employs an adaptive data-driven

ordering policy that ensures the system performance converges to the optimal

performance in the long run. It is worth noting here that the expected cost in each

period in this literature is typically computed fixing the (unknown) true demand

parameter θ. This differs from the Bayesian models, where such cost is integrated

over the updated prior belief of θ, which could be influenced by the inventory

decisions in the past.

Given the inventory decision y, the single-period newsvendor cost function is

given by

LtðyÞ ¼ h � EDt
ðy� DtÞþ
� �þ p � EDt

ðDt � yÞþ� �
:

Let y∗¼ argminy� 0Lt(y), and let L
∗ denote the resulting optimal cost (note that Dt

is i.i.d., so the optimal decision in each period is stationary). It is easy to verify that

the derivative of Lt(y) is given by

L
0
tðyÞ ¼ h � PrðDt < yÞ � p � PrðDt � yÞ:

Thus, an unbiased sample-path estimate of the subgradient of Lt(y) at y can be

written as

HtðyÞ ¼ h, if Dt < y,
�p, if Dt � y:

�

Using the above subgradient estimate, Burnetas and Smith (2000) propose the

following simple adaptive ordering policy for the perishable inventory case:

ytþ1 ¼ yt �
yt

ðhþ pÞt � HtðytÞ:

They show that under this ordering policy limT!1E½ΣT
t¼1LtðytÞ=T� ¼ L∗ and yt

converges to y∗ with probability one. They further extend this policy to a joint

pricing and inventory ordering problem. Godfrey and Powell (2001) propose a

similar sample-path subgradient estimate to successively approximate the

newsvendor cost function with a sequence of piecewise-linear functions under

demand censoring. A variant of their algorithm is shown to be asymptotically

optimal under certain conditions (e.g., discrete demands) by Powell et al. (2004).

Huh and Rusmevichientong (2009) propose another adaptive ordering

policy based on the sample-path subgradient estimate, and achieve a better rate
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of convergence. Specifically, assume that y is a known upper bound for the

unknown optimal inventory level y∗. For some γ> 0, their adaptive ordering

policy is given by

ytþ1 ¼ max min yt �
γy

maxfh, pg ffiffi
t

p � HtðytÞ, y
� �

, 0

� �
:

They show that in the perishable inventory case, the long-run average system cost

E½ΣT
t¼1LtðytÞ=T� under the above adaptive ordering policy converges to the optimal

cost L∗ at a rate of Oð1 ffiffiffi
T

p Þ. For the nonperishable inventory case, with an

additional assumption that there is a known positive lower bound for the unknown

expected demandE Dt½ �, they show that the above ordering policy achieves the same

rate of convergence when γ is sufficiently small under some mild technical

conditions.

For a general unknown discrete demand distribution with perishable inventory,

Huh et al. (2011) propose a data-driven policy based on the Kaplan–Meier

(KM) estimator (Kaplan and Meier 1958), termed the “KM-myopic” policy. To

apply their policy, one needs to make the following change in the definition of

demand censoring: given an inventory level yt, one can observe the event {Dt¼ yt}
distinctly from the event {Dt> yt}. In other words, this equates to a “partial

censoring” setting in which one observes an additional lost-sales indicator of

whether demand strictly exceeds the available inventory level or not. We note

that for continuous demand distributions, the notion of the lost-sales indicator is not

essential because the events {Dt> yt} and {Dt� yt} have the same probability

measure. However, for discrete demand distributions, such a notion makes a

significant difference in Bayesian updating (see also Huh and

Rusmevichientong 2009, Sect. 3.4).

Under this new notion of demand censoring, we provide an illustration of the

KM estimator and the corresponding KM-myopic policy below. Given n sorted

observations, say, ξ1 � ξ2 � ξc3 � ξ4 � � � � � ξn, where the superscript c denotes

censored observations such thatDt> ξt, the KM estimator works as follows. At first,

allocate probability equally among n observations. Then, starting from the left,

redistribute the probability of a censored observation among higher observations

iteratively. For example, in this case, the smallest censored observation is ξ3. Thus,
in the first iteration, the 1∕n probability originally assigned to ξ3 is shared equally

among ξ4,. . ., ξn, each of which will hence get an updated probability of

1=nþ 1=nðn� 3Þ ¼ ðn� 2Þ=nðn� 3Þ. After we pass through the observations in

this way, the resulting empirical distribution is given by

FnðξÞ ¼
Y
i:ξi�ξ

n� i

n� iþ 1

� �δi

,

where δi¼ 0 if ξi is a censored observation, and δi¼ 1 otherwise. The adaptive KM

myopic policy can thus be constructed as follows:
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ytþ1 ¼ min y � 0 : FtðyÞ � p

pþ h

� �
:

Huh et al. (2011) show that under the KM-myopic policy, yt converges to the

optimal inventory level y∗ almost surely.

Besbes and Muharremoglu (2013) study the minimum worst-case regret for

nonparametric models with perishable inventory, where they define regret as the

difference between the expected cost of an adaptive policy and the full-information

optimal cost L∗. They show that for a continuous demand distribution, the mini-

mum worst-case regret under demand censoring grows logarithmically with the

number of periods, as in the fully-observable demand case. On the other hand, when

the demand distribution is discrete, they show that the minimum worst-case regret

under demand censoring grows logarithmically with the number of periods, while

regret can be bounded by a constant in the fully-observable demand case. Regret

can also bounded by a constant under discrete demand in the “partially censored”

setting. Thus, their finding highlights the importance of the availability of the lost-

sales indicator in the existing literature of nonparametric models involving discrete
demand distributions (e.g., Huh and Rusmevichientong 2009; Huh et al. 2011).

2.4 Open Research Areas

We have reviewed both Bayesian and nonparametric models for the demand

censoring problem. Each type has its own strengths and limitations. For example,

the Bayesian models entail an elegant Bayesian dynamic program formulation of

the joint estimation and optimization problem. One can rely on these models to

derive interesting structural results that shed light on the value of information and

Bayesian learning. However, computing the optimal policy for the Bayesian models

is nontrivial for relatively long time-horizon instances due to the curse of dimen-

sionality. To overcome the dimensionality challenge, one typically has to resort to a

fairly restrictive newsvendor distribution family that preserves the conjugate prior

structure under demand censoring. This limits the applicability of the Bayesian

models. The nonparametric models, on the other hand, work well for long time-

horizon problems, and there is no need for any prior knowledge of the underlying

demand distribution. As illustrated in our review, the adaptive ordering policies are

often quite intuitive and easy to implement. The main challenge here, however, is to

ensure the adaptive ordering policies converge quickly to the true optimal policy.

Otherwise, the system performance in relatively short time horizons could be poor.

Despite the plethora of studies on demand censoring as reviewed above, there

remain many open problems for future research. Below we discuss several of them.

1. Demand Substitution: Many retailers implicitly rely on demand substitution to

mitigate the out-of-stock effect of a particular item at a particular store. There is

an extensive literature on demand substitution, which is discussed in the chapters
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concerning retail assortment planning in this volume. In our censored demand

context, incorporating demand substitution among multiple products into the

learning model could be of great practical value. Chen and Plambeck (2008)

present a Bayesian model to jointly estimate the demand rate and the substitution

probability. However, to keep their problem tractable, they make a simplifying

assumption that the excess demand and the resulting substitution quantity are

observable. It would be interesting to relax this assumption to investigate how

demand censoring would affect the optimal inventory decisions under substitu-

tion. This is an open research problem that can be addressed by both the

Bayesian and nonparametric approaches.

2. Non-Stationary Demand: Another practical consideration is non-stationary

demand, which is common in many retail environments. Most of the censored

demand models reviewed above assume the demand distribution is stationary. If

the systematic variations in demand are deterministic (e.g., known seasonality),

then one can simply normalize the demand observation by removing the deter-

ministic variation components, so as to convert the problem to an equivalent

stationary-demand one. However, if the systematic variations follow a random

process, the problem becomes more complicated. Chen (2013a) shows that some

of the results obtained under stationary demand can be extended to the Markov-

modulated demand processes when the state transition probabilities are known.

The case involving unknown transition probabilities is an open problem, as it is

not clear how demand censoring would affect the learning of the unknown

probabilities.

3. Sales Transaction Timing Information: One could further improve learning

under censored demand by incorporating the timing of sales transactions. Jain

et al. (2015) study such a Bayesian inventory control problem. They find that,

when stockout timing information is available, the system performance

improves significantly compared with the case without such information.

Given that modern POS data include transaction timestamps, it would be

interesting to further understand how timing information impacts some of the

results reviewed here.

4. Pricing Decisions:One could also incorporate pricing decisions into the demand

learning models. Burnetas and Smith (2000) propose an adaptive pricing and

ordering policy for a price-dependent demand model with demand censoring.

Bisi and Dada (2007) consider the joint pricing and ordering problem for price-

dependent models in the Bayesian framework. Chen (2013a) studies a Bayesian

dynamic pricing problem with an unknown customer willingness-to-pay distri-

bution. In this case, if a customer buys a product, her willingness to pay must be

greater than or equal to the posted price; if she does not buy the product, her

willingness to pay must be below the posted price. Thus, the posted price serves

as either a left- or right-censoring point of the customer’s willingness to pay.

Chen (2013a) proposes several approximation techniques to tackle this

two-sided censoring problem. Applying the nonparametric approach to this

two-sided censoring problem could be another interesting future research

direction.
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5. Positive Replenishment Lead Times: Both the Bayesian and nonparametric

models in the literature assume zero lead time. Extending the existing models

to the case of positive lead times would be an interesting and important contri-

bution to the literature. However, we envision that such an extension could be

technically challenging, because the lost-sales problem with a positive lead time

is a known hard problem even when the demand distribution is known (see

Zipkin 2000).

3 Models of Inventory Record Inaccuracy

There is ample evidence that the inventory available to customers on retail shelves

is not correctly reflected in the retailers’ computerized inventory records. In other

words, retail managers have imperfect visibility into inventory in the store.

DeHoratius and Raman (2008) examine the physical audit of a large, anonymous

retail chain and observe that only 35% of the retailer’s inventory records match the

physical inventory in the store. The extent of the problem is corroborated by other

authors. Kang and Gershwin (2005) observe only 51% record accuracy at a second

anonymous retailer, and Gruen and Corsten (2008) find 32% record accuracy at a

third. We do not review in detail the literature on empirical measurement of

inventory record inaccuracy; we refer the interested reader instead to the survey

of DeHoratius and Ton (2015) in this volume.

Our focus instead is on potential analytical responses to the record inaccuracy

phenomenon. Nearly all classical research on inventory management research

assumes that the customer-available inventory level is known at every point in

time, and landmark results in inventory theory rely on known inventory positions as

a core (if not always explicit) assumption. A few analytical models of record

inaccuracy date to the 1970s (e.g., Iglehart and Morey 1972), motivated by ware-

house applications. There has been a surge of interest in inventory record inaccu-

racy in the past decade, particularly specialized to retail contexts, coinciding with

new empirical studies and the rise of inventory tracking technologies—most prom-

inently, item-level RFID tags which potentially offer real-time information on

inventory locations and movements.

DeHoratius et al. (2008) outline three possible, non-exclusive responses of a

retailer to inventory record inaccuracy: prevention, correction, and integration.

Prevention refers to the elimination of root causes of inventory record inaccuracy,

correction refers to inspection efforts, and integration refers to decision tools that

account for the possible presence of inventory record inaccuracies. Our focus here

is on “integrative” analytical approaches to inspection and replenishment, which we

view as complementary to efforts towards prevention.

Analytical models are valuable for a few reasons. First, record inaccuracy is a

significant feature of real inventory systems, and accounting for it has the potential

to improve the matching of supply with demand and reduce inventory-related costs.

Automated replenishment systems that assume accurate inventory records may not
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live up to their billing when this assumption is violated. Second, modeling record

inaccuracy helps measure the return on investment of inventory tracking technol-

ogies such as RFID. By comparing the inventory management cost of a “full-

visibility” retailer equipped with an inventory tracking technology (an idealized

model of which affords perfect inventory visibility) with the best-possible perfor-

mance of an “intelligent” or “informed” retailer with distributional information

about errors, one obtains a measure of the value of inventory visibility (Rekik

et al. 2008; Kök and Shang 2007; Lee and Özer 2007). In addition, many papers

also consider as a benchmark the performance of a “naive” or “ignorant” retailer

who is oblivious to errors. Models of “intelligent” retailers are the focus of this

review. A common theme in the literature on inventory record inaccuracy is that

“intelligent” inventory models that account for record inaccuracy can recapture a

significant fraction of the benefits of visibility without the substantial physical

investment in tracking technologies.

The purpose of this section is to review the analytical literature on inventory

record inaccuracy with an eye towards how analytical models can make best use of

available information in the absence of inventory visibility afforded by tracking

technologies or process improvement initiatives. We begin by presenting an exam-

ple model of inventory record inaccuracy to illustrate some basic insights and

challenges. We then discuss key modeling considerations before discussing rele-

vant papers in more detail. We conclude the section with a discussion of open

research directions.

3.1 A Basic Model

Consider a basic, single period inventory model in which a decision maker

(DM) chooses an inventory quantity to stock in the face of uncertain demand. As

a benchmark, assume a newsvendor setup in which the DM has full knowledge of

an initial stock x. The DM places an order for y items at unit cost c and the items

arrive immediately with no lead time. Random demand D then arrives according to

probability distribution F, yielding sales S ¼ minfD, xþ yg. A penalty cost of p per
unit is charged for unsatisfied demand D � S, and leftover inventory xþ y� S is

salvaged for cs� h per unit. If inventory records are perfect and the initial inventory
x is known, we can write the problem as

min
y�0

Lðx, yÞ � csED xþ y� Dð Þþ� �
, ð5:1Þ

where

Lðx, yÞ ¼ cyþ pED D� x� yð Þþ� �þ hED xþ y� Dð Þþ� �
:
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The solution is well-known to be of the critical fractile type:

y∗ ¼ min y � 0 : Fðxþ yÞ � p� c

pþ h� cs

� �
: ð5:2Þ

Now suppose that inventory records are inaccurate, which we model by

replacing the initial inventory position x by a random variable X with distribution

P. We can write the new problem as

min
y�0

LðP, yÞ � csEX,D X þ y� Dð Þþ� �
, ð5:3Þ

where

LðP, yÞ ¼ cyþ pEX,D D� X � yð Þþ� �þ hEX,D X þ y� Dð Þþ� �
:

The solution retains the critical fractile form (see Mersereau 2013),

y∗ ¼ min y � 0 : WðyÞ � p� c

pþ h� cs

� �
, ð5:4Þ

but the demand distribution F is replaced by a new distribution WðyÞ ¼
PrðD� X � yÞ. The distribution W reflects demand less available inventory and

can be computed as a convolution of F and P.
It is intuitive that in many realistic cases the solution to (5.4) should exceed that

of (5.2) in order to make up for inventory lost in the error process (assuming that

E[X]� x) and to buffer the additional newsvendor uncertainty introduced by the

distribution P (assuming the fractile p�c
pþh�cs

is sufficiently large). Indeed, a number of

authors (e.g., Kök and Shang 2007; DeHoratius et al. 2008; Atali et al. 2011)

observe either analytically or numerically that record inaccuracy does indeed tend

to increase stocking quantities under reasonable assumptions on demand and/or

error distributions.1 We revisit this “uncertainty effect” on replenishment in

Sect. 3.3.1.

We note that this single-period model can also be viewed as a random yield

model with additive yield uncertainty. See Yano and Lee (1995) for a detailed

review of the literature on inventory management with random yield. In the random

yield literature, errors are typically connected to incoming replenishments and are

typically immediately observed by the DM. Therefore, inventory uncertainty does

not persist or accumulate over time. With record inaccuracy, however, errors

generally persist until the retailer performs an inspection. This is a significant

1 The result is difficult to prove generally. Song (1994) includes a detailed analysis of the

conditions required to rank newsvendor stocking quantities for different probability distributions,

and these conditions are difficult to verify here.
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challenge in moving from a single-period model to a multiperiod model of inven-

tory record inaccuracy.

It is natural to formulate a multiperiod inventory problem as a Markov decision

process (MDP). With perfect inventory records, we can formulate a T-period lost-

sales version of problem (5.2) as a MDP with a one-dimensional state representing

the current inventory position. Let xt�1 indicate the inventory position at the

beginning of period t, let Dt denote random demand in period t (drawn from

a potentially time-varying demand distribution Ft), and indicate by Vt(�) the cost-to-
go from period t through the end of the horizon. The Bellman equation is as follows

for t ¼ 1, . . . ,T:

Vtðxt�1Þ ¼ min
y�0

Lðxt�1, yÞf g þ EDt
Vtþ1ðUðxt�1 þ y� DtÞÞ½ �, ð5:5Þ

where VTþ1ðxTÞ ¼ �csxT Here,UðxÞ ¼ ðxÞþ is an update function that specifies the

inventory carried to the next period. With record inaccuracy, the inventory record is

no longer a sufficient summary of the system state and the inventory optimization

becomes a “partially observed” MDP (POMDP). Define PtðxÞ ¼ PrðXt � xjHtÞ as
the probability distribution of the inventory random variable Xt conditional on the

observed process history Ht. We may consider Pt to be the system state of a

modified dynamic programming formulation for t ¼ 1, . . . ,T,

VtðPt�1Þ ¼ min
y�0

LðPt�1, yÞ
	 


þ EXt�1,Dt
V tþ1 U tðPt�1, y, minfXt�1 þ y,DtgÞ

� �� �
, ð5:6Þ

where VTþ1ðPTÞ ¼ �csE XT½ �. Here, the update operator U t transforms Pt�1 to Pt

given replenishment y and observed sales St ¼ minfXt�1 þ y,Dtg. We do not

express the U t operator here explicitly, but we note that it can be complicated, in

general depending on probability distributions of both paying demand and

unobserved errors. It must shift the inventory distribution up and down to reflect

observed inventory inflows (replenishments) and observed outflows (sales). It must

accumulate potential errors occurring in period t. Finally, as we discuss later, the

update may also account for inferences the DM can make about customer-available

inventory based on sales or other side observations. DeHoratius et al. (2008) and

others derive U t using Bayes law. In other models (e.g., Kök and Shang 2007) the

classical inventory record and the number of periods of error accumulation serve as

sufficient statistics for Pt�1, in which case the update operator is simpler to express.

POMDPs are provably difficult to solve in general (Papadimitriou and

Tsitsiklis 1987), suggesting that a problem like (5.6) is unlikely to be solvable

without restrictions or approximations.
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3.2 Modeling Considerations

While we have attempted in Sect. 3.1 to frame a fairly general model of replenish-

ment under inventory record inaccuracy, this model already makes a number of

strong assumptions, in particular about the decisions available to the DM, the

modeling of errors, and the DM’s observations of the system. These three dimen-

sions represent key distinctions among papers in the literature, and we briefly

discuss each one in turn.

1. Decisions: Section 3.1 formulates the problem of replenishment under inventory
record inaccuracy, but inventory inspection (also referred to as counting or

auditing) is another control available to a decision-maker operating with inven-

tory record errors. Traditionally, retailers do periodic (often annual) inventory

counts for accounting purposes. More frequent inspections, referred to as “cycle

counts,” may follow a fixed schedule based on an ABC-type categorization of

stock-keeping units (SKUs), in which SKUs judged to be particularly at risk of

inaccurate records, or of strategic or financial importance, are scheduled for

cycle counts more frequently. An alternative to such static counting schedules

are dynamic versions of cycle counts in which the retailer chooses which SKUs

to inspect each day based on real-time information.

Conceptually, it is straightforward to extend (5.6) to dynamically trigger

inspections. We add a binary decision variable zt each period which is an input

to the update operator U t. An inspection in period t resolves the uncertainty

around Xt, which we model with an update that sets Pt to a distribution with all its

weight at a single value (or to an appropriate probability distribution that

represents an imperfect inspection).

2. Error Process: A key distinction among models of inventory record inaccuracy

is the modeling of the error process. Most authors work in a periodic review

setting and assume an error random variable (sometimes referred to as “invisi-

ble” or “non-paying” demand) that contributes to the discrepancy between

available and recorded inventory each period. These discrepancies are not

directly observed, and they accumulate over time between inventory inspections.

A modeler of inventory record inaccuracy must make a number of decisions

about the error process. Errors can be modeled as additive (e.g., DeHoratius

et al. 2008) or multiplicative (e.g., Rekik et al. 2008) relative to the inventory

level, and dependent on or independent of demand, replenishment, and/or

inventory levels. Errors can be modeled as occurring before or after demand

within a period, or interleaved with demand (e.g., Atali et al. 2011). Errors

themselves may be directly costly in that they imply a physical loss or gain of

saleable units (e.g., Kang and Gershwin 2005) or costless (e.g., Camdereli and

Swaminathan 2010). Errors may be modeled as deterministic or associated with

a probability distribution. Typical assumed probability distributions are

one-sided (e.g., Huh et al. 2010), implying that customer-available inventory
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is always less than or equal to recorded inventory, or symmetric around zero

(e.g., Kök and Shang 2007).

In order to appreciate these modeling decisions, we can categorize the sources

of inaccurate inventory levels, following Atali et al. (2011), into shrinkage

(i.e., physical loss of inventory, typically through theft or damage), transaction

errors (i.e., scanning, receipt, or counting errors that impact inventory records

but not physical inventory), and misplacements (i.e., in which inventory is

temporarily unavailable to the customer but still physically present in the

store).2 These different error sources suggest different assumptions about inven-

tory dynamics and cost accrual. For example, it is common to model shrinkage

using a one-sided error process inducing direct stock losses, and transaction

errors using an additive, symmetric error process that incurs no direct cost.

Modeling all sources of errors in detail (as in Atali et al. 2011) is arguably

truest to retail realities, given that all three types of errors are presumably present

in retail settings. (DeHoratius and Raman 2008 report discrepancies of both

signs in the audit data they analyze, with 58% of errors such that physical

inventory is less than recorded inventory.) However, such a model may be

difficult to estimate from data, and it may require additional state variables for

tracking the different types of error accumulations to allow for proper account-

ing of costs. Instead, most authors model a single error process that either reflects

a single error source (shrinkage, transaction errors, or misplacement) or an

aggregation of error sources.

Assuming that demand and errors occur interleaved within a period is also

desirable but complicates modeling because of the different accounting of lost

sales and “lost errors.” Such a model must account for all possible sequences of

demand and errors within a period. Instead, many authors model errors as

occurring together, either before or after demand within a period.

Another common simplification is to assume errors arise from a stochastic

process independent of demand and inventory levels. In many retail contexts, we

would expect this not to be the case; for example, the same underlying factors

leading to high or low demand would seem to also impact the volume of

shrinkage, misplacement, and transaction errors. Because demand and inventory

levels are not directly observed, modeling this dependency can bring complica-

tions that destroy problem structure. In some models, these complications

take the form of an additional layer of conditioning in the update operator

(e.g., DeHoratius et al. 2008). In others, the dynamic program state may need

2Here we depart slightly from DeHoratius and Ton (2009) in terminology. DeHoratius and

Ton (2009) define “inventory record inaccuracy” as the difference between a store’s recorded

inventory position and the physical inventory in the store. Misplaced inventory, which is physi-

cally present in the store, does not contribute to inventory record inaccuracy in this definition. In

our discussion, we will liberally use the term “inventory record inaccuracy” to refer to the

difference between customer-available inventory and recorded inventory. That is, we consider

misplaced inventory to be part of inventory record inaccuracy.
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to include the history of sales observations, leading to a curse of dimensionality

(e.g., Kök and Shang 2007).

3. Observability: A critical modeling choice is what the DM observes about sales

and stockouts. In the lost sales model of Sect. 3.1, sales are the minimum of

demand and customer-available inventory and are therefore statistically depen-

dent on customer-available inventory. In such a model, the DM can in theory use

sales observations to make inferences on available inventory; for example, if a

DM observes a sequence of periods with zero sales, this may signal that there is

no customer-available stock. Such inferences can be modeled using Bayes law.

While potentially powerful, these inferences yield a complicated U t operator in

problem (5.6) (DeHoratius et al. 2008) that depends on sales observations and

demand distributions.

An alternative, which seems reasonable especially when stockouts are rare, is

to ignore the signalling potential of sales observations. Such an assumption

greatly simplifies the U t operator, as errors accumulate independently of sales.

In such cases, the inventory record and the number of periods since the last

inspection typically serve as sufficient statistics for the multiperiod dynamic

optimization (Kök and Shang 2007).

A third possibility is to assume that customer-available inventory levels

become observed whenever they reach zero (e.g., Bensoussan et al. 2007b).

This can be practically motivated by assuming that customers who find an empty

shelf request a “rain check” that is recorded, or by the practice of “zero-balance

walks” in place at some retailers, in which employees periodically look for

empty shelves in the store.

3.3 Review of Existing Literature

With this backdrop, we now review the operations management literature on store-

level analytical models of inventory record inaccuracy. Given the challenges

inherent in problems like (5.6), we believe that a fruitful way to categorize the

existing literature on inventory record inaccuracy is by the modeling assumptions

and analytical approximations employed to enable tractable analysis and computa-

tion. We put the literature into four categories: single-period models, classical

multiperiod models, multiperiod models featuring low-dimensional sufficient sta-

tistics for Pt, and “partially observed” multiperiod models employing Bayesian

updating.

3.3.1 Single Period Models

Single-period models of optimal stocking under inventory record inaccuracy yield

some basic insights while avoiding some of the complexities inherent in

multiperiod POMDP formulations like (5.6). For this reason, single-period models
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are often employed as starting points upon which more complex models are built

(e.g., Kök and Shang 2007; Huh et al. 2010; Mersereau 2013), or as stylized

building blocks within more complex systems. For example, Heese (2007), Gaukler

et al. (2007), Sahin and Dallery (2009) and Camdereli and Swaminathan (2010)

employ single-period models to study the impact of inventory record inaccuracy on

supply chain coordination. As our focus is on in-store operations, we do not review

the supply chain aspects of these papers.

Rekik et al. (2008) analyze a single-period model that modifies the classical

newsvendor problem by allowing for multiplicative misplacement errors to occur

before paying demand arrives. A parameter θ is defined as the ratio between

customer-available inventory and the inventory record, and is considered to be

both deterministic as well as uniformly distributed on [0,1]. The authors explicitly

look at the profit of naive, intelligent, and full-visibility retailers and conclude that

the intelligent retailer achieves significant benefits over the naive retailer. The

authors also examine stocking quantities: for the deterministic case stocking quan-

tities first increase with θ (to make up for reduced yield) and then decrease with θ
(to reduce misplaced inventory and associated overage charges).

Heese (2007) uses a multiplicative error model with uniformly distributed yields

and makes similar observations about stocking quantities to Rekik et al. (2008).

(His “centralized” model can be viewed as a single-location model.) Furthermore,

even when setting the mean error ratio to one, Heese (2007) finds that the DM

orders more than without inventory uncertainty for sufficiently high target service

levels. We alluded to this “uncertainty effect” on stocking quantities in Sect. 3.1.

Mersereau (2013) suggests an uncertainty effect in a model similar to (5.3).

Mersereau (2013) also finds that optimal stocking levels can decrease if the DM

anticipates physical errors to occur after stocking levels are chosen. This “direct

loss” effect can be understood as reducing the stock available for theft or damage.

Single-period models therefore yield three insights into the effects of inventory

record inaccuracy on optimal stocking levels: (1) optimal stocking levels may

increase to make up for reduced yield, (2) they may also increase to buffer

additional uncertainty brought by record inaccuracy; and (3) they may decrease

in order to reduce the inventory available for misplacement or shrinkage.

3.3.2 Classical Multiperiod Models

A prevalent approach to modeling inventory record inaccuracy is to assume that

inventory errors follow a pre-determined probability distribution that is indepen-

dent of sales observations. As mentioned in Sect. 3.2, this greatly simplifies the

update operator U t in (5.6), because the number of periods of error accumulation

often serves as a sufficient statistic for the shape of Pt. Despite this simplification,

optimal policies appear to be difficult to characterize in these systems except in

specific cases.
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An early stream of literature on inventory record inaccuracy, dating to Iglehart

and Morey (1972), views error accumulation in the inventory system as a renewal

process and seeks an auditing trigger that achieves a pre-specified probability of a

“warehouse denial;” i.e., an event in which there is a physical stockout even though

the inventory record appears sufficient to cover demand. This is an appropriate

service metric in a warehouse context in which denials are observed by the firm and

trigger a reconciliation of the inventory record with the physical inventory state.

Iglehart and Morey (1972) assume that errors are additive, stationary, mean zero

random variables and that the DM maintains a buffer stock to account for them.

Given a fixed buffer stock, the authors derive an asymptotic normal distribution

approximation for the probability of cumulative errors exceeding the buffer stock.

Their model decouples the classical safety and cycle stocks from the buffering of

inventory inaccuracies, and the payoff is a joint inspection and replenishment

policy expressed in closed form. The model of Rekik et al. (2009) is related in

that the DM minimizes holding cost subject to a constraint on the probability of

stockout during a finite horizon.

Morey (1985) uses a similar framework to Iglehart and Morey (1972) to estab-

lish “back-of-the-envelope” expressions for service levels as functions of error

parameters, buffer stocks, and audit frequencies. Morey and Dittman (1986) gen-

eralizes Iglehart and Morey (1972) to determine audit frequencies in more general

internal control settings, not necessarily inventory-related.

Kang and Gershwin (2005) present a detailed motivation for the problem of

inventory record inaccuracy, including empirical evidence from an anonymous

retailer. The paper’s analysis is largely based on a numerical simulation of a (Q,
R)-based stochastic inventory model with additive one-sided errors (called “stock

loss” in the paper). One insight is that “freezing” of replenishment is possible; this

occurs when the inventory record is above the reorder point yet there is no

customer-available inventory on the shelf, in which case no sales occur and an

automated replenishment system places no orders. The authors conclude that

inventory inaccuracy may be especially costly in naive lean systems which carry

little stock to buffer the additional uncertainty. This can be viewed as a corollary of

the “uncertainty effect” discussed in Sect. 3.3.1. The paper goes on to numerically

evaluate several remediation heuristics.

3.3.3 Multiperiod Models Featuring Sufficient Statistics

A number of papers analyzing multiperiod inventory optimization problems feature

conditions or assumptions under which the multidimensional state Pt of a POMDP

like (5.6) can be represented by a low-dimensional set of sufficient statistics. While

such representations can incur a cost in terms of model generality, they have

significant analytical and computational benefits.

Kök and Shang (2007) focus on joint replenishment and dynamic inspection

triggering in a model in which errors are additive and have mean zero. They assume

that both demand and errors are backlogged and that errors accumulate irrespective
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of backlogs. As a result, the error process decouples from inventory levels, as in

Iglehart and Morey (1972), and the accumulated discrepancy between physical and

recorded inventory is the sum over periods of individual errors. That is, if an error εt
occurs each period, the accumulated error after j periods of no inspections is

εj �
X j

t¼1
εt. Its distribution is a j-fold convolution of the one-period error distri-

bution. As a result, the authors are able to formulate the joint replenishment-

inspection problem using a two-dimensional state (zt, jt), where zt is the inventory

record at time t (maintained by adding replenishments and subtracting observed

sales each period) and jt is the number of periods since the last audit.

Unfortunately, even with these simplifications the authors show that the

multiperiod problem is non-convex. The authors suggest an “inspection adjusted

base-stock” (IABS) policy that replenishes according to a jt-dependent base-stock
policy and inspects when the inventory record falls below a jt-dependent cutoff. An
IABS policy is optimal for the single-period problem, and an IABS policy seems to

perform well as a heuristic for the multiperiod problem.

Atali et al. (2011) provide a detailed model of inventory errors, explicitly

distinguishing among shrinkage, transaction errors, and misplacements in their

model. Furthermore, they model demand and errors using a “random disaggrega-

tion” approach that splits an overall demand random variable into components for

paying demand and various error sources. As a result, their model allows for

demand and errors to be interleaved within a period. In solving their intelligent

(“informed”) retailer model, the authors approximate the distribution of total errors

by a distribution that depends only on the inventory record and the number of

periods since the last audit, as in Kök and Shang (2007). A state-dependent base-

stock replenishment policy results from this approximation. A numerical study

shows that the intelligent retailer achieves cost close to a full-visibility one and

that detailed modeling of errors can achieve significant gains over aggregate error

models for some parameter choices. A related model appears in Avrahami

et al. (2012), who find through a numerical study that a “static” informed policy

that knows only mean error information does nearly as well as an intelligent policy

based on distributional error information.

Huh et al. (2010) show that a similar two-dimensional state to the one in Kök and

Shang (2007) is sufficient for a particular model in which inventory inaccuracy is

driven by additive shrinkage only, replenishments are only possible immediately

after an inspection is made, and stockouts induce automatic inspections (akin to a

“zero-balance walk”). In a given period, the DM knows that the true inventory level

has only decreased since the last inspection (since errors only reduce physical

inventory and since replenishments require inspections). If a stockout has not

occurred, then the most recent post-inspection inventory level less recorded

demand must exceed the accumulated errors (whose distribution is determined by

the number of periods since the last inspection). The inventory distribution condi-
tional on there being no stockout can therefore be computed given the inventory

record, the number of periods since the last audit, and the error distribution. The

authors present a rigorous dynamic programming formulation based on this result
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and show that a threshold-based inspection policy, coupled with an order-up-to

replenishment policy, is optimal for an infinite-horizon problem satisfying a num-

ber of technical assumptions.

3.3.4 Multiperiod Models Using Bayesian Updating

A set of authors studying inventory record inaccuracy has chosen to consider the

partial observability of inventory levels more directly. These models require min-

imal assumptions on the inventory error distribution. In particular, the DM’s belief

Pt around inventory positions can be updated based on POS data. These models are

more complex, however, in that the state space of the MDP is the space of possible

distributions on Xt. Because of this complexity, optimal policies have only been

computed for some simplified cases; otherwise, results are limited to heuristics and

approximations.

DeHoratius et al. (2008) consider a multiperiod lost sales inventory system with

discrete additive errors drawn from an arbitrary discrete distribution. The authors

propose maintaining an explicit inventory belief Pt they call a “Bayesian inventory

record” or “BIR.” Pt is updated according to Bayes rule, using sales observations as

signals of the underlying inventory levels. In particular, the Bayes update reflects

that no sales may indicate a stocked out situation, and positive sales indicate that the

inventory could not have been fewer than what was sold. The authors prove that

such a solution avoids the problem of inventory “freezing” identified by Kang and

Gershwin (2005).

DeHoratius et al. (2008) suggest a myopic replenishment policy and a BIR-based

heuristic for dynamic triggering of inspections. The authors discuss the estimation

of necessary parameters and report on a simulation study calibrated with retailer

data that compares the performance of naive, intelligent (“Bayes”), and full-

visibility (“Full”) retailers. They demonstrate that the intelligent solution achieves

a service-inventory tradeoff that captures a substantial portion of the benefits of the

full-visibility solution.

DeHoratius et al. (2008) demonstrate that the updates can be performed effi-

ciently in closed form when inventories and demands are discrete, but partial

observability of inventory levels clearly adds analytical and computational com-

plexity as discussed in Sect. 3.1. Mersereau (2013) analyzes in detail the problem of

replenishment optimization for the model of DeHoratius et al. (2008), identifying

both uncertainty and loss effects in a single-period version of the model. In a

two-period version of the model, the author also identifies an “information effect:”

stocking less can actually reduce the variance of the BIR and enhance information

content for future periods. Mersereau (2013) proceeds to approximate the POMDP

using an approach borrowed from the machine learning literature. A key finding is

that an intelligent myopic policy is near-optimal in numerical trials.

Bensoussan et al. (2011b) formulate a related model to DeHoratius et al. (2008)

in that excess demand is unobservable. Errors are one-sided, and demand and

inventory are permitted to be continuous. Continuous inventory and demand
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complicates the updating process; the resulting inventory belief is a mixture of

continuous and discrete distributions. The authors prove the existence and unique-

ness of an optimal policy, present a lower-bounding approach, and propose an

iterative approximation algorithm.

A separate series of papers considers similar “partially observed” inventory

systems with continuous inventory levels where the DM only observes whether

or not the physical inventory level is strictly positive. In particular, sales are not

observed. Errors are not explicitly modeled but can be assumed to be a component

of the (unobserved) demand process. Bensoussan et al. (2007b) considers such a

model with lost sales. As in DeHoratius et al. (2008), the state of the system is

represented by a distribution around the customer-available inventory level that is

updated in a Bayesian fashion. The resulting replenishment problem is therefore

defined on a functional state space, and the authors focus on finding conditions for

an optimal solution to exist and to be unique. Bensoussan et al. (2008) perform

related analyses for a variation of the Bensoussan et al. (2007b) model in which

backorders (i.e., “rain checks”) are permitted and the DM only observes the

inventory level when it is negative. Bensoussan et al. (2011a) use a value function

approximation to approximate the problem of Bensoussan et al. (2008). In a

numerical study, they observe both an uncertainty and an information effect with

interpretations related to those in Mersereau (2013).

Finally, Chen (2013b) considers the problem of dynamic cycle count triggering

using a simplified POMDP in which the system can switch from a “normal” state in

which the inventory level is known to a “faulty” state in which the system is stocked

out. This results in a partial decomposition of the replenishment and inspection

decisions. The inspection policy is an easily computed threshold policy based on

the number of consecutive zero-sales periods, and the optimal replenishment is a

base-stock policy with base-stock levels depending on the time since the last

positive sale. The author finds a loss effect; the error process drives the retailer to

stock less to limit the inventory made unavailable by errors. Chuang and

Oliva (2013) also use a two-state model of record accuracy to determine the

inspection frequency in a fixed inspection policy.

3.4 Open Research Areas

Despite numerous and varied analytical approaches to modeling retail inventory

inaccuracy in recent years, there remain a number of open opportunities for future

research.

1. Multi-SKU and Multi-Location Models: As with much of classical inventory

theory, single-SKU models dominate the analytical literature on inventory

record inaccuracy. Kök and Shang (2014) consider coordinated inspection

policies in a serial supply chain. We are aware of little research, however, on

models that use data across stores or SKUs. Consider the following inspection
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trigger policy: inspect a SKU at a store when its recent sales fall significantly

below sales for the same SKU at neighboring stores. It is intuitive that similar

SKUs and stores, used in this way, could serve as useful benchmarks for

detecting deviations from normal operations. Substitution is also potentially

relevant to include in models of inventory record inaccuracy. For example, a

retailer might suspect that a SKU has too little customer-available inventory

after detecting increased sales of substitute SKUs. Extending models like (5.6) to

multiple SKUs adds considerable complexity to the update operator and dimen-

sionality to the state space, however.

2. Estimation of Model Parameters: Despite a fairly rich body of empirical

research into the presence of record inaccuracy, there remain a number of

open questions surrounding the estimation of the daily or weekly error processes

assumed by most analytical models. DeHoratius et al. (2008) present a basic

estimation approach, and Chuang and Oliva (2013) provide a structural approach

for estimating error incidence at the SKU level. Nevertheless, we believe that

detailed estimation of error processes remains an unresolved issue. As a result,

the existing papers make use of a wide range of assumptions on error distribu-

tions. Furthermore, estimation of other model parameters may be confounded by

record inaccuracy. Mersereau (2015) shows that the presence of inventory

record inaccuracy can introduce biases into the estimation of paying demand.

3. Analytical and Computational Tractability: Efficient solutions, much less com-

plete characterizations, of problems like (5.6) have proved elusive without

approximations or restrictive assumptions. There is apparent in the existing

literature a tradeoff between model realism and tractability, with no clear

dominant approach. This leaves room for continued analytical and algorithmic

work on both optimal solutions and useful approximations and heuristics.

4. Comparison of Models and Prescriptions: Despite the large number of compet-

ing models of inventory inaccuracy and solutions for replenishment and inspec-

tion, we are not aware of any efforts to compare them. One advantage of

Bayesian models like DeHoratius et al. (2008) and Chen (2013b) is that they

make use of sales information as signals about inventory levels. It is intuitive

that this information should be most useful when stockouts are relatively com-

mon. It would be interesting to examine under what conditions a POMDP-based

model like DeHoratius et al. (2008) outperforms a sufficient statistic model like

Kök and Shang (2007), and vice versa.

5. Pilot Testing of Policies: Given the eminent practicality of inventory models

integrating inventory inaccuracy, implementations of responses to inventory

record inaccuracy would be especially interesting. Such reports have started to

emerge. Chuang et al. (2012) report on a field experiment in which a data-driven

heuristic was used to trigger inspections. Hardgrave et al. (2013) report on two

controlled field experiments measuring the reduction in record inaccuracy

enabled by real RFID implementations. Both papers suggest that the potential

improvements to retail operations can be substantial.
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4 Visibility Technologies and Research Opportunities

Both the literatures on demand censoring and inventory record inaccuracy formu-

late and solve problems of decision-making under uncertainty, and it is therefore

not surprising that these literatures pull from a common set of methodologies

including statistical decision theory, stochastic (and partially observed) dynamic

programming, and Bayesian and nonparametric inference. We have proposed

several specific research directions related to demand censoring and inventory

record inaccuracy in Sects. 2 and 3, respectively. We add that demand censoring

and inventory record inaccuracy tend to occur simultaneously in many retail stores,

and their interaction leads to additional challenges. For example, when records are

inaccurate, the retailer no longer receives a reliable indicator of when stockouts

occur. Mersereau (2015) is the one paper we are aware of that considers both

features together. One unique insight is that if demand censoring is accounted for

but inventory record inaccuracy is not, then the retailer will tend to underestimate

demand over time. We believe that there is room for further examination of this

interaction as well as other interactions involving multiple sources of uncertainty,

even though considering multiple uncertainties together brings obvious modeling

complications.

We conclude the chapter by looking to other interesting directions for future

research on in-store visibility that extend beyond demand censoring and inventory

record inaccuracy. We believe that exciting research opportunities abound if we

consider other types of information made available by new in-store visibility

technologies. Below we discuss some of the modern and emerging technologies

developed for the retail industry, categorized by the three main components of the

store as illustrated in Fig. 5.1.

1. Inventory Information.We introduced RFID in Sect. 3. As the price of RFID tags

decreases, attaching RFID tags to individual items (as opposed to cases or

pallets) becomes increasingly feasible. The application of RFID technology

has received strong interest among individual retailers, technology providers

(e.g., Tyco Retail Solutions), trade journals (e.g., RFID Journal), and academics

(e.g., the University of Arkansas Walton College’s RFID Research Center).

Waller et al. (2011) list a full 60 uses of RFID in apparel retail supply chains.

Fisher and Raman (2010), who use RFID as a case study to illustrate the

opportunities and risks inherent in new retail technology, call RFID “revolu-

tionary.” Beyond RFID, new crowdsourcing platforms such as Quri and

Gigwalk enlist shoppers to report the status of inventory levels and displays

via smartphone, offering retailers a true customer view of their store operations.

Interestingly, these technologies also appear to be used by brand managers to

monitor retailers’ execution and adherence to the brand’s promotion plans.

2. Customer Flow Information. Traffic counters—sensors that measure traffic in

retail stores (e.g., ShopperTrak)—have become common in retail. Knowing how

many potential customers are in the store at a time enables retailers to estimate

conversion from traffic to sales and to match staffing with customer traffic.
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Technologies are increasingly able to track customer movements within the

store; for example, by detecting “pings” of customer cell phones (e.g., Euclid

Analytics), by attaching RFID tags and mobile devices to shopping carts

(e.g., MediaCart!), and by “seeing” customer bodies using infrared technology

(e.g., Irisys). Video footage is increasingly analyzed by software to detect and

record customer locations and customer engagement (e.g., SCOPIX Solutions,

Envysion, RetailNext). By identifying highly trafficked areas of the store these

technologies can assist with store layout decisions, and by measuring queue

lengths and wait times they can inform queue management. Mobile devices also

offer the opportunity for retailers to address individual customers as they shop

with store maps, inventory information, and promotions (e.g., Apple’s iBeacon).

3. Store Associates Task Information. Store associates increasingly carry mobile

devices (i.e., smartphones and tablets) to communicate with each other, to

give them real-time access to product, sales, and inventory information and to

enable them to perform checkout, inspection, and replenishment functions

(e.g., Motorola Retail 2008). Such devices offer the possibility of enhanced

visibility to associates on the store floor in addition to management.

One possibility is that some of the estimation and inference problems reviewed

in Sects. 2 and 3 may become less important as these visibility technologies become

more reliable and inexpensive and retailers learn to make use of the information

they provide. Nevertheless, we believe that new data sources will also inspire new

research problems, and that visibility technologies and analytical methodologies

may complement each other in many cases. For example, perhaps a retailer’s

response to demand censoring can be enhanced by using customer traffic data to

make inferences about lost sales in the event of a stockout. Perhaps models of

inventory record inaccuracy can be improved using information from an RFID

reader that detects whether items are in the front- or backroom of a store. Ulti-

mately, analytical methodologies form the link between new visibility technologies

and better decisions. Below we suggest two broad categories of new analytical

research opportunities in store operations that could complement the new visibility

technologies.

New Insights from Combining Data Sources While it is common to simplify

analytical operations management models by assuming a single location, SKU, or

customer segment, we believe that there may be significant gains from leveraging

data across stores and SKUs to impute missing in-store data. For example, as

discussed in Sect. 2.4, sales data from multiple SKUs can be used to estimate

substitution probabilities and to determine the optimal stocking policy for multiple

SKUs. Another example was suggested in Sect. 3.4: data from other stores and

SKUs may be used as benchmarks against which deviations can be detected for the

purpose of process control. Given the large number of emerging visibility technol-

ogies listed above, there may also be significant value to considering multiple

visibility technologies together; for example, recall from Sect. 3 that POS data

can be used to make inferences on uncertain inventory levels. By modeling the

interactions between different processes in a store, we believe that both better
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empirics and improved analytical decisions may be possible. To give two recent

examples from the literature, Perdikaki et al. (2012) and Mani et al. (2015) use

traffic counting and conversion data to measure the impact of labor staffing on sales

performance, with clear implications on labor planning. Lu et al. (2013) use video

data to measure queue lengths and thereby quantify the impact of queue lengths on

customer purchase behavior, with clear implications on queue design and staff

scheduling.

New Parameters and New Decisions As in any operational context, the param-

eters of an analytical model must be estimated before a model can be used for

decision-making. Retail environments are especially complex and non-stationary,

heightening the need for estimation. Though we have not attempted to review it in

this chapter, there is a growing empirical literature gaining ever finer insights into

retail operations from richer datasets using more sophisticated methodologies. The

rise of new visibility technologies expands the set of operational parameters that

can conceivably be estimated. As an example, customer tracking technologies, by

identifying more and less trafficked locations in the store, potentially allow for

more detailed, location-specific assortment planning. Furthermore, new technolo-

gies offer retail managers new levers in the store. To give just one example, new

digital price tags (e.g., Altierre Corp.) and customized mobile phone offers (e.g.,

Retailigence’s adPop) allow for dynamic pricing that can potentially depend on

real-time traffic and inventory states.

In conclusion, we believe that the study of visibility in retail stores exemplifies the

trend towards business analytics more generally. Inventory management with

censored demand observations and record inaccuracy represent just two examples

of what is possible. The interplay between information, technology, inventory

optimization, customer behavior, and human resources suggest a range of fresh

analytical questions that have the potential to make a real impact on practice.

Our hope is that our surveys and discussion here encourage further research on

these topics.
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