
Chapter 15

Markdown Competition

Seungjin Whang

1 Introduction

Dynamic price optimization, as a branch of revenue management, investigates the

price as a key decision variable in a dynamic business environment. In particular, it

studies how to “operationalize” pricing decisions by considering additional dimen-

sions like time and inventories. Perhaps the most canonical example is the ground-

breaking work by Gallego and van Ryzin (1993) who study the optimal price

trajectory based on the actual realization of sales and the length of remaining

sales period. Since then, a wide variety of dynamic pricing models came into

existence. In those models, demands may be deterministic or stochastic (Gallego

and van Ryzin 1993), the set of prices predetermined or arbitrary (Feng and

Xiao 2000), the number of price changes limited or unlimited (Feng and

Gallego 1995), time continuous or discrete (Dudey 1992), customers strategic or

myopic (Aviv and Pazgal 2003), the setting of the game completely known or

revealing over time (Lazear 1986), and sellers monopolistic or competing

(Belobaba 1987). See Talluri and van Ryzin (2004) or Bitran and Caldency (2003)

for an extensive review of the literature.

Competition, although present in almost every real setting, has not received

enough attention in the dynamic pricing literature, compared to other aspects. This

paper attempts to fill the gap by presenting a stylized model of dynamic markdown

competition. We consider two retailers who compete in a market with a fixed level

of initial inventory. The initial inventory level is only known to the corresponding

retailer, and not to the other. To maximize the profit, each retailer would perma-

nently mark down once at a time of his individual choice. The model assumes

deterministic demands, a single chance of price change, and a predetermined set of

prices. We consider a two-parameter strategy set where a retailer chooses the timing
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of markdown as a function of the current time, his inventory level, and the other’s

move so far. We characterize the equilibrium of the game and derive managerial

insights.

Dynamic markdown competition—where a retailer marks down as a counter to

the competitor’s move—is a familiar facet of business practice. Consider, for

example, the cut-throat competition in the game device market:

Microsoft cut the price of its Xbox game console by about a third in the U.S. and Canada

and announced a similar price cut for Japan Wednesday. The move had been expected by

market watchers and comes on the heels of Sony Computer Entertainment America’s price

reduction for the PlayStation 2 on Tuesday. Effective immediately, Xbox consoles will cost

$199.99 in the U.S., down from $299.99, Microsoft says in a statement. Xbox, Sony’s

PlayStation 2, and Nintendo’s GameCube now all cost about $200 in the U.S. In Japan,

where Xbox sales have been sluggish since its launch late February, the Xbox will be cut to

$193 from $270 effective May 22, Microsoft says. (Evers 2002).

Our model extracts two elements of the business practice captured in the

article—the timing of markdown in response to the competitor’s move and based

on its own inventory position.

This is not the first research work on dynamic price competition. For example,

Dudey (1992) studies a model where two duopolistic firms face multiple customers,

one at a time in sequence. For each customer, the two firms simultaneously submit

their price quotes, and the customer would take the lower offer so far as the price is

lower than her reservation price. Each firm starts with a fixed quantity of inventory,

so that the price quote is a function of the time, her own inventory level and the

other firm’s inventory level, as well as the customer’s reservation price. Assuming

that both firms have complete information of the game (including the evolution of

inventory positions), the paper characterizes the equilibrium strategy of each firm.

Varian (1980) and Lal (1990) interpret price promotions as a mixed equilibrium

strategy among competing retailers. Lal (1990), for example, considers three

retailers, two national brands and one local brand, in a market consisting of

switchers and loyals. Loyals are loyal to their preferred national brand, while

switchers always buy the cheapest available. The dilemma facing a national

brand is that he cannot extract all the surplus from his loyals and win switchers’

market segment, too, due to the threat coming from the local brand. Thus, implicit

collusion is supported as a non-cooperative equilibrium, where the two national

brands take turns lowering the price in the form of promotion. Hence, the regular

price extracts loyals’ surplus, and the promotional price attracts switchers. In a

similar market setting, Rao (1991) also studies two retailers—a national brand and a

local brand—competing in promotion. Each firm makes a three-stage sequential

decision of regular price, promotion depth and promotion frequency. Two firms

simultaneously take actions at each stage, and the outcome of the previous stages is

jointly observed before moving on to the next stage. They characterize the equilib-

rium of the multi-stage, multi-decision game with complete information. In the

above line of work the players in this game are allowed to change prices, but not as

an ex-post counter to the other’s decisions.
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Netessine and Shumsky (2004) study horizontal competition in which two

airlines compete over “overflow passengers.” Each airline has a fixed capacity

and offers two classes, high-fare and low-fare, of seats at two different prices.

Each airline faces a random demand to each class, which is exogenously given.

Each airline sets a “booking limit” to the number of low-fare seats, so the overflow

customers denied tickets at one airline attempt to purchase tickets at the other

airline. The paper investigates the strategy of each airline in choosing the booking

limit in this non-cooperative game with complete information.

Our model differs from the above work in that it is set up as a non-cooperative

game with incomplete information, and players’ strategy is the timing of mark-

down. The rest of the paper is organized as follows. In Sect. 2 we provide the details

of the model. Section 3 analyzes the problem of a monopolistic retailer who would

choose the time of markdown in the base model. Section 4 forms the core of the

paper where we demonstrate the equilibrium strategies of two duopolistic retailers

in choosing the markdown time. The last section concludes with a summary and

managerial implications.

2 The Model

Consider a pair of retailers (denoted by i¼ 1, 2) competing in a seasonal or fashion

product market. At time 0, each retailer, facing uncertain demand, orders a fixed

quantity of the product, based on his individual forecast. The order arrives before

the selling season starts. The two retailers are symmetric in terms of market power

and cost structure, but may differ in their forecasts and order quantities.

The forecast as well as the order quantity is privately known to the respective

retailer. The order quantity by one retailer is viewed to the other as a random

variable drawn from a common distribution F over [0,1). At time 1 the selling

season starts, and the demand rate at each possible pair of retail prices is revealed to

both retailers. Retailers have no chance to replenish the stock even if they realize

the demand is larger than initially forecasted.

In standard microeconomics, the demand function defines the ‘total’ demand

level at each price. It does not capture how the demand materializes across time. To

fix this, we introduce a ‘demand trajectory’ that shows the distribution of demand

over time. In the present paper we assume a specific demand trajectory in the form

of e�τ=β over time τ2 [0,1), where β(> 0) is the ‘demand rate’ defining the

demand intensity. Thus, the demand arriving in the time interval [0, t] is here

given by
R t
0
e�τ=βdτ or β½1� e�t=β�, and the total demand over the entire season is β.

This particular demand trajectory assumes that the demand of the product peaks upon

its introduction and exponentially declines over time. Even if the selling season is

infinitely long in this setup, the exponential decay (with the right choice of β)
will ensure that the demand fades away fast in time, thereby approximating the demand

pattern of a seasonal or fashion product. Further, note that the demand realization
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process has no uncertainties once the demand parameter is revealed. Obviously, it is a

strong assumption, but it keeps the analysis tractable. In addition, the deterministic

model will serve as an anchor case to stochastic models in developing a heuristic or an

upper bound (see Gallego and van Ryzin 1993).

Note that the higher the demand rate β, the slower the demand decays over time

and the larger the total demand. β is determined by the prices set by the retailers.

Each retailer starts the season with the price set at p0, but may choose to mark down

to p1(< p0) at a time of his individual choice. p0 and p1 are prefixed prior to the

season. This price change would change the demand rates for both retailers. To

simplify the notation, let βij (i, j2 {0, 1}) denote the demand rates β facing the

retailer whose own price is pi and the other’s is pj. For example, if his price is p0 and
hers is p1, he faces β01 and she faces β10 as the demand rate. We assume that

β10> β11> β00> β01. In case he marks down and she does not, for example, his

demand rate β10 will be the highest of the four cases (due to the combination of a

larger market and bigger market share), and hers β01 will be the lowest. If both mark

down, the demand rate β11 facing each retailer falls somewhere between the two

extremes, but will be higher than β00 the initial demand rate, due to a larger market.

We assume that sales are permanently lost from the market if the retailer visited

stocks out. One scenario that supports this assumption is the following: If a

potential customer visits a retailer who is out of stock, she will not learn about

the existence of the product, so she will not search for it at the other retailer’s. More

generally, we assume that stockouts at one retailer’s do not affect the sales at the

other retailer’s. This adds another strong assumption that if one stocks out, the

current demand intensity continues to hold at the other retailer.

Compared to the existing literature, the present model imposes a series of

simplifying assumptions of deterministic demands, a single chance of price change,

and a prefixed set of prices. Further, we do not discount cash flow for simplicity,

and assume that any unsold items at the end of the season are thrown away at zero

salvage value and zero cost. In return, the model highlights the timing of compet-

itive markdowns under asymmetric information (about the initial stock level).

3 The Case of a Monopolistic Retailer

Before we study the case of competition, we first consider a monopolistic retailer

who starts the season at price p0 with the stock level S. Assume that the demand

parameter at price pi is βi for i¼ 0, 1, where p0> p1 and β0< β1. Suppose now that

the retailer would choose the time to mark down. The demand trajectory enables us

to evaluate the impact of a price change on the season’s overall profit to each

retailer and to formulate the markdown-timing problem as follows.

max
t�0

Z t

0

p0e
�τ=β0dτ þ

Z T

t

p1e
�τ=β1dτ ¼ p0β0 1� e�t=β0

� �
þ p1β1 e�t=β1 � e�T=β1

� �
,

ðP1Þ
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where

β0 1� e�t=β0
� �

þ β1 e�t=β1 � e�T=β1
� �

� S: ð15:1Þ

Inequality (15.1) is the capacity constraint that ensures that total sales do not exceed

the initial inventory, where T denotes the time of running out of stock. We assume

that T can take the value of infinity, which happens when S is large enough.

We form the Lagrangian function:

L t,T, λð Þ ¼ p0β0 1� e�t=β0
� �

þ p1β1 e�t=β1 � e�T=β1
� �

� λ β0 1� e�t=β0
� �

þ β1 e�t=β1 � e�T=β1
� �

� S
h i

, ðP2Þ

where λ is the Lagrangian multiplier associated with the capacity constraint. After

straightforward manipulation, the Kuhn–Tucker theorem yields the following

result.

Theorem 1 To the monopolistic retailer with a starting inventory S, the optimal
time t∗(S) to mark down is given by

t∗ðSÞ ¼

1, if S < β0;

β0β1
β1 � β0

ln
p0 � λðSÞ
p1 � λðSÞ if β0 � S � S∗;

β0β1
β1 � β0

ln
p0
p1

if S > S∗;

8>>>>>>>><
>>>>>>>>:

where λ(S), the (non-negative) Lagrangian multiplier to the capacity constraint,
satisfies

S ¼ β0 1� p1 � λðSÞ
p0 � λðSÞ

� � β1
β1 � β0

2
64

3
75þ β1

p1 � λðSÞ
p0 � λðSÞ

� � β0
β1 � β0 , ð15:2Þ

and S∗ is the smallest value of S with λ(S) ¼ 0; that is,

S∗ ¼ β0 1� p1
p0

� � β1
β1 � β0

2
64

3
75þ β1

p1
p0

� � β0
β1 � β0 : ð15:3Þ

Also, β0 < S∗ < β1.

If the retailer has tight supply, he will never mark down, or equivalently, his

optimal markdown time will be infinity. This is because in the absence of cash flow

discounting, he has no incentive to mark down if he can sell everything he has even

if it takes a long time. The cutoff inventory level is β0, which is the quantity he can
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sell without a markdown. Here the choice of the value1 is somewhat arbitrary. To

be exact, the solution to (P2) in this range of S is t∗(S)¼ T∗, where T¼ T∗

satisfies (15.1) in equality. This means that the retailer marks down at the time he

runs out of stock. This is equivalent to the event of no markdown ever (especially as

observed by the other retailer if she exists as in later sections), hence comes our

choice of infinity. In the other extreme case (i.e., an ample inventory), he cannot sell

all he has, so he will maximize his profit by lowering the price at time
β0β1

β1 � β0
ln
p0
p1
,

which remains constant to any retailer whose inventory level is larger than S∗. In
the middle range of the inventory, the timing of his markdown will depend on the

inventory level. The higher the inventory level, the quicker comes the markdown.

In this case, the retailer will time the markdown to sell all his inventory. Loosely

speaking, t∗(S) is decreasing in S2 [0,1).1 The monopolist with a high inventory

will be more anxious, so he will rush to cut the price to move the volume.

4 Markdown Competition

We now turn to the case of two retailers competing in the choice of markdown

timing. The strategy for each retailer is the choice of its markdown time, taking the

other retailer’s strategy as given. More specifically, retailer i(¼ 1, 2) (he) will

choose the time σiðSi,HtÞ to mark down, where σi is not only a function of his

private inventory level Si, but also of the historyHt of the game up until his decision

time t. In our model that has assumed away demand uncertainties, the relevant

information contained inHt is the actions taken by the other retailer j (she) and the

current time. The strategy determines in advance what to do in each contingency, as

the game evolves and uncertainties are resolved. The strategy will maximize the

expected profit at each time point for the rest of the game based on the realized path.

Retailer i’s expected profit depends on his own inventory level Si, as well as

retailer j’s strategy σj that depends on her inventory level Sj. To derive his optimal

strategy, retailer i must take into account the uncertainties about Sj to predict her

strategy and develop his own strategy. Our equilibrium concept is similar to

Bayesian subgame-perfect equilibrium (Kreps 1990). Further, we restrict our atten-

tion to ‘symmetric’ equilibrium in which the two retailers use the same strategy

function and play with different arguments.

Now consider the set S ¼ f~σ ðta, tb,HtÞj0 � ta � tbg (or f~σ ðta, tbÞg for short) of
two-parameter strategies for each retailer that operate as follows: “Wait and see if

the other retailer marks down; if the latter does before tb, then mark down either

immediately or at ta, whichever comes later. If the other does not mark down until

tb, then don’t wait any longer and mark down before the other.” When both retailers

1 This statement is not mathematically accurate since the function t∗(S) is not well defined in the

interval [0, β0], but the meaning is clear in the present context.

414 S. Whang



play strategies in S, retailer i faces three alternative scenarios depending on retailer
j’s markdown time τ. τ may fall in one of the three time intervals Ia:¼ [0, ta), Ib:¼
[ta, tb), and Ic:¼ [tb,1]. If it falls in Ia, retailer i is not “ready” yet, so he will wait

and mark down later at ta. If in Ib, he will immediately match retailer j’s markdown.

In Ic, retailer i will move first without further waiting for retailer j’s move.

While this strategy set appears to contain a wide set of plausible actions, it is not

exhaustive by any means. For example, one can consider a three-parameter strategy

like “Wait and see if the other retailer marks down; if the latter does before ta, then
mark down at t0a(> ta). If the latter does after ta but before tb, then mark down at tb.
If the other does not mark down until tb, then don’t wait any longer and mark down

before the other.” Clearly, this example, although not so convincing on its own,

alludes to an infinite number of possible strategy sets, underscoring the fact thatS is

just one of them.

Now retailer i’s decision is to find a pair (ta
∗(S1), tb

∗(S1)), or simply (ta
∗, tb

∗), that

determine his optimal strategy inS. To derive ta∗ first, suppose that the game started

at time 0, and soon retailer j marked down at time t in Ia. The current demand rate

for retailer i is β01, but his markdown decision would change it to β11. We now solve

max
ta�t

Z ta

t

p0e
�τ=β01dτ þ

Z T

ta

p1e
�τ=β11dτ ¼ p0β01 1� e�ta=β01

� �
þ p1β11 e�ta=β11 � e�T=β11

� �
ðP3Þ

subject to

β01 e�t=β01 � e�ta=β01
� �

þ β11 e�ta=β11 � e�T=β11
� �

� Si � β00 1� e�t=β00
� �

:

After adding a constant
Rt
0

p0e
�τ=β01dτ to the objective and slight modification of

the constraint, we have:

max
ta�t

Z ta

0

p0e
�τ=β01dτ þ

Z T

ta

p1e
�τ=β11dτ ¼ p0β01 1� e�ta=β01

� �
þ p1β11 e�ta=β11 � e�T=β11

� �
ðP30Þ

subject to

β01 1� e�ta=β01
� �

þ β11 e�ta=β11 � e�T=β11
� �

� Sit,

where Sit :¼ Si � β00 1� e�t=β00
� �� β01 1� e�t=β01

� �� 	
:¼ Si � Δt: It is easy to

verify that Δt is positive and monotone increasing in t.
This problem has the same structure as (P1), with β0, β1 and Si replaced by β01,

β11 and Sit. Hence, we have the following solution from Theorem 1.
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t∗a ðSitÞ ¼

1, if Sit � β01;

β01β11
β11 � β01

ln
p0 � λðSitÞ
p1 � λðSitÞ , if β01 < Sit < S∘;

β01β11
β11 � β01

ln
p0
p1

, if Sit � S∘;

8>>>>>><
>>>>>>:

ð15:4Þ

where λ(Sit), the (non-negative) Lagrangian multiplier to the capacity constraint,

satisfies

Sit ¼ β01 1� p1 � λðSitÞ
p0 � λðSitÞ

� � β11
β11 � β01

2
64

3
75þ β11

p1 � λðSitÞ
p0 � λðSitÞ

� � β01
β11 � β01 , ð15:5Þ

and

S∘ ¼ β01 1� p1
p0

� � β11
β11 � β01

2
64

3
75þ β11

p1
p0

� � β01
β11 � β01 : ð15:6Þ

Also, note that β01< S∘< β11.
Suppose now that the time point ta

∗ has passed without retailer j’s move. The new

time interval Ib starts, so retailer i will immediately adopt if the other marks down.

But if she does not, retailer i cannot wait forever for her move, so he faces the

problem of choosing “the preemptive markdown time” tb, i.e., the time to stop

waiting and mark down first.

To find the optimal tb
∗, we first introduce some notation. For the moment, assume

that tb
∗(� ) is monotone decreasing. Let G(τ) denote the probability of the other

retailer marking down by time τ, with �GðτÞ :¼ 1� GðτÞ and g(τ):¼G0(τ). Also let
�GoðτjtÞ denote the probability that retailer j will mark down later than time τ on

the condition that she has not marked down until time t; i.e., �GoðτjtÞ :¼
1� GoðτjtÞ ¼ �GðτÞ=�GðtÞ, for τ� t. Let go and g respectively denote the probability
density (or frequency) function of Go and G.
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At time t(> ta
∗), retailer i will choose tb

∗ by solving the following (P4):

max
tb�t

Z t�b

t

p0β00 e�t=β00 � e�τ=β00
� �

þ p1β11 e�τ=β11 � e�T1ðτÞ=β11
� �h i

dG∘ τjtð Þ

þ p0β00 e�t=β00 � e�tb=β00
� �

þ p1β11 e�tb=β11 � e�T2=β11
� �h i

g∘ðtbjtÞ

þ
Z 1

tþ
b

p0β00 e�t=β00 � e�tb=β00
� �

þ p1β10 e�tb=β10 � e�τ=β10
� �h

þ p1β11 e�τ=β11 � e�T3 τð Þ=β11
� �i

dG∘ τjtð Þ

þ p0β00 e�t=β00 � e�tb=β00
� �

þ p1β10 e�tb=β10 � e�T4=β10
� �h i

g∘ð1jtÞ, ðP4Þ

subject to the following capacity constraints

β00ð1� e�τ=β00Þ þ β11ðe�τ=β11 � e�T1ðτÞ=β11Þ � Si, 8τ 2 ½t, tbÞ
β00ð1� e�tb=β00Þ þ β11ðe�tb=β11 � e�T2=β11Þ � Si

β00ð1� e�tb=β00Þ þ β10ðe�tb=β10 � e�τ=β10Þ þ β11ðe�τ=β11 � e�T3ðτÞ=β11Þ � Si, 8τ 2 ðtb,1Þ
β00ð1� e�tb=β00Þ þ β10ðe�tb=β10 � e�T4=β10Þ � Si:

In the above, Ti (i¼ 1, 2, 3, 4) represents the time to run out of inventory under

four different scenarios; T1(τ) is the time to run out of stock when both retailers

mark down at time τ2 [0, τb), T2 when both mark down at tb, T3(τ) when i first
marks down at tb and j follows at τ2 (tb,1), and T4 when i first marks down at tb
and j does not follow. The objective function in (P4) represents the expected profit

to retailer i when he plays ~σ iðt∗a , tbÞ while retailer j plays ~σ jðt∗a , t∗b Þ.
Note that G can be derived from the distribution of random variables Sj via ta

∗(� )
and tb

∗(� ), and is a mixed (i.e., continuous and discrete) distribution. Regretta-

bly, (P4) is very difficult to solve. One way to tackle the problem is to form a

Lagrangian and obtain its saddle point (Luenberger 1969). To derive the equilib-

rium strategy, we obtain the FOC of the Lagrangian for (P4), and then invoke the

symmetric equilibrium assumption, so retailer i’s choice of tb should be equal to

retailer j’s optimal tb
∗, hence t∗

�1

b ðtbÞ ¼ t∗
�1

b ðt∗b ðSiÞÞ ¼ Si. Then, we have (see the
details in the Appendix):
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p0e
�t∗b =β00 � p1e

�t∗b =β11
� �

F Sið Þ þ p1 e�t∗b =β11 � e�t∗b =β10
� �

F t∗
�1

a t∗b
� �þ Δtb

� �
� λ1 t∗b

� �
β00 1� e�t∗b =β10

� �� β11 e�t∗b =β11 � e�T1 t∗bð Þ=β11� �
� Si

h i
� λ

0
2 t∗b
� �

β10 1� e�t∗b =β10
� �� β11 e�t∗b =β11 � e�T2=β11

� �� Si
� 	

� λ2 t∗b
� �

e�t∗b =β10 � e�T2=β11
� �

þ λ3 t∗b
� �

β00 1� e�t∗b =β10
� �þ β11 e�t∗b =β11 � e�T3 t∗bð Þ=β11� �h i

� �Λ3 t∗b
� �

e�t∗b =β00 � e�t∗b =β10
� �þ p0e

�t∗b =β00 � p1e
�t∗b =β10

� �
F β01ð Þ

þ λ4 t∗b
� �

β00 1� e�t∗b =β00
� �þ β10 e�t∗b =β10 � e�T4=β10

� �� Si
� 	 ¼ 0:

ð15:7Þ

A corner solution to (P4) occurs when retailer i has an initial inventory less than β01.
He would ultimately sell out even at the regular price, so he would never mark

down, or his markdown time will be infinity.

Hence, the following theorem summarizes the equilibrium.

Theorem 2 Consider the set S ¼ f~σ ðta, tb,HtÞ j 0 � ta � tbg of two-parameter
strategies for each retailer that operate as follows: “Wait and see if the other
retailer marks down; if the latter does before tb, then mark down either immediately
or at ta, whichever comes later. If the other does not mark down until tb, then don’t
wait any longer and mark down before the other.” Let

t∗a ðSitÞ ¼

1, if Sit � β01;

β01β11
β11 � β01

ln
p0 � λðSitÞ
p1 � λðSitÞ , if β01 < Sit < S∘;

β01β11
β11 � β01

ln
p0
p1

, if Sit � S∘;

8>>>>>><
>>>>>>:

ð15:4Þ

where λ(Sit), the (non-negative) Lagrangian multiplier to the capacity constraint,
satisfies

Sit ¼ β01 1� p1 � λ Sitð Þ
p0 � λ Sitð Þ

� � β11
β11 � β01

2
64

3
75þ β11

p1 � λ Sitð Þ
p0 � λ Sitð Þ

� � β01
β11 � β01 ,

and

S∘ ¼ β01 1� p1
p0

� � β11
β11 � β01

2
64

3
75þ β11

p1
p0

� � β01
β11 � β01 :
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And, let

t∗b ðSiÞ ¼
1, if Si � β01;

B∗ðSiÞ, otherwise;

(

where B ¼ B∗(Si) satisfies ( 15.7 ). If B
∗(�) is monotone decreasing and t∗b ðSÞ � t∗a

ðS� ΔtÞ for each t, S 2 [0,1), then ~σ iðt∗a , t∗b Þ forms the equilibrium in S of the
markdown game.

The equilibrium is depicted in Figs. 15.1 and 15.2. Each instance of initial

inventory S determines the two parameters (ta
∗, tb

∗), which in turn define his

markdown strategy. As an example, suppose two retailers 1 and 2 start with

inventory positions S1 and S2, respectively, as shown in Fig. 15.1. At the beginning

both retailers sell at the regular price p0. As time passes (moving up in the Y axis on

the figure), retailer 2 with a higher inventory S2 reaches the time point tb
∗(S2) and

marks down to price p1. Let t:¼ tb
∗(S2). Since t

∗
a ðS1 � ΔtÞ > t in the figure, retailer

1 does not immediately match the markdown, but instead waits until t∗a ðS1 � ΔtÞ
and marks down. Thus, the two markdowns will be separated by some time.

Now consider another pair of retailers that start with inventory levels S1 and S02
as in Fig. 15.2. Again, retailer 2 moves first at time tb

∗(S02):¼ t0. But this time

t∗a ðS1 � Δt0 Þ < t
0
, so retailer 1 will immediately follow the markdown. This is the

case where markdowns are “clustered” around the same time. The first mover

disturbs the status quo to the other, who is then forced to take a mitigating action.

t

t

S0 S1-Dt S1 S2S0

ta*(S)

tb*(S)

b 01

−b 11 b 01

b 11

b
11
b01

p0

p1
ln

Fig. 15.1 Equilibrium for markdown competition—case 1
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5 Managerial Implications and Conclusion

The paper studies how two retailers compete in choosing markdown times. We

have restricted our search to a set S of two-parameter strategies that capture a lot of

plausible behaviors. The equilibrium strategy is a function of three elements—the

competitor’s move so far, the current time (relative to ta
∗ and tb

∗), and his own

inventory level (captured through t∗a ðSi � ΔtÞ). In our deterministic model, the latter

two are overlapping. In equilibrium one retailer’s markdown may prompt the other

to match instantaneously, especially if the latter has a large inventory and the

selling season is almost over (e.g., Sit is large and λ is zero). Unfortunately, we

could not obtain a closed-form solution to one parameter tb
∗, but the structure of the

solution provides several managerial insights.

First, the markdown policy has a direct impact on its preceding inventory

decisions. One can view the inventory and markdown decisions together as a bigger

sequential game—first considering the subgame (P4) of markdown competition,

and then rolling up the solution to the inventory decision. That is, one should solve

the following inventory-markdown integrated problem:

max
S

Πð~σ t∗a Sð Þ, t∗b Sð Þ� �� C Sð Þ, ðP5Þ

where Πð~σ ðt∗a ðSÞ, t∗b ðSÞÞ is the expected profit under the optimal strategy ~σ ðt∗a ðSÞ,
t∗b ðSÞÞ [solving (P4)], and C(S) is the cost of procuring S. This may lead to larger or

smaller inventory levels than the traditional newsvendor solution, depending on

t

t’

−b 11 b 01

b
01
b11

p0

p1
ln

tb*(S)

ta*(S)

S0 S1-Dt, S2
,

S0b 01 b 11

Fig. 15.2 Equilibrium for markdown competition—case 2
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model parameters. On the one hand, the unit margin or the underage cost is not as

high as the newsvendor operation without a markup, so the optimal inventory level

will be smaller than the newsvendor solution. On the other hand, however, the

demand will be higher at a marked-down price. Hence, the retailer who is willing

to mark down if necessary may possibly choose a larger-than-newsvendor inventory

level if the markdown still grants the retailer a positive margin.

Second, we anticipate thatmarkdownswill be frequently clustered around a certain

time. Note in Fig. 15.2 that clustering happens when the two retailers start with

similar levels of inventory. Since their demand signals are likely to be positively

correlated or if they have a uni-modal density function like the normal distribution,

they will order similar quantities, so clustering of markdowns will be more likely.

See Gul and Lundholm (1995) and its references for other instances of clustering.

Third, the present work proposes an alternative model of price dispersion.

Economists have long studied various models of price dispersion as a deviation

from the traditional “law of one price” (see Varian 1980 and its references). For

example, Varian (1980) (plus its Errata, Varian 1981) analyzes the competition

among n retailers facing two types of customers—informed and uninformed.

Informed customers know the price distribution of a certain item and purchase

the item at the store with the lowest price. Uninformed customers randomly choose

a store and buy the item there if the price is lower than her reservation price. Each

store’s strategy is the assignment of probabilities to different prices to charge.

Varian demonstrates, among others, that no symmetric equilibrium exists where

all stores charge the same price, and even strongly, that there would be no point

masses in the equilibrium pricing strategies. Thus, price-randomization is the only

equilibrium, hence arises price dispersion. Our model presents another possibility

of price dispersion. It differs from Varian in two major ways (besides other

differences like permanent vs. temporary price changes, and information asymme-

try vs. symmetry). First, the model allows a retailer to choose a dynamic strategy of

taking, or not taking, an action upon observing the other’s move, while each retailer

in Varian sets a price randomly drawn from a pre-determined density function.

The difference boils down to whether retailers can monitor each other’s price.

Obviously, it will vary across different markets and products, but given the Internet

and the mass media, prices are getting easier to monitor these days.

The other key difference of our model it that it captures the inventory position as

a driver of price dispersion. Note from the figures that the retailer’s markdown time

is a decreasing function of his initial inventory position. Markdown happens either

on its own initiative (due to a high inventory level and a disappointing demand rate)

or motivated by the competitor’s markdown. In either case, competition redirects

the market demand from one retailer with a low inventory to another with a high

inventory. On the one hand, it is similar to the behavior of a monopolist who

“shapes demands” across different products by dynamically adjusting the prices of

two products to shift the demand away from a low-stock product to a high-stock

product. But markdown competition would enhance economic efficiency by

achieving inventory pooling. Note this happens in a decentralized manner and

despite informational asymmetry—as envisioned by Hayek (1945) (who assumed
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there is “only one price for any commodity” in one market). Unfortunately, for lack

of a consumer choice model, our model would be insufficient to formally investi-

gate the efficiency issue.

Fourth and last, note from Fig. 15.1 or Theorem 2 that a markdown will happen

only after a certain time A∗ :¼ β01β11
β11 � β01

ln
p0
p1

� �
. This comes from two observa-

tions: (1) the preemptive markdown time tb
∗(� ) is a decreasing function of the initial

inventory level, and (2) even if a retailer has a lot of inventory (larger than S∘), his
optimal markdown time remains at A∗. This seems consistent with our perception

that markdowns are what we expect towards the end of lifecycle.

The paper deliberately took a minimalist approach, loaded with a series of

simplifying assumptions. Relaxation of these assumptions (e.g., deterministic

demand) would be desirable. But given that we could not obtain any crisp results

from the present simple model, I would rather hope to see a model that is even

simpler and yet insightful, or empirical study that would supplement our modeling

approach.
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Appendix: A Sketchy Derivation of (15.7)

Note first in (P4) that since �Go τjtð Þ ¼ �G τð Þ=�G tð Þ and go τjtð Þ ¼ g τð Þ=�G tð Þ, every
G∘(� j t) and g∘(� j t) can be respectively replaced by G(� ) and g(� ). Note also that

G can be derived from the distribution of random variables Sj via ta
∗(� ) and tb

∗(� ),
and is a mixed (i.e., continuous and discrete) distribution. The first term is

his expected profit when retailer j first marks down and he follows immediately.

Thus, the probability of retailer j’s markdown happening no later than τ is given

by G τð Þ ¼ P t∗b Sj
� � � τ

� � ¼ P Sj � t∗
�1

b τð Þ
� �

¼ 1� F t∗
�1

b τð Þ
� �

: Thus, g τð Þ ¼
�dF t∗

�1

b τð Þ
� �

=dτ. The second term captures the case where retailer i first marks

down at tb and retailer j immediately follows. In this case g(τ) has a probability

mass at τ¼ tb, since any retailer j whose Sjtb (or Sj þ Δtb ) value satisfies t∗a ðSjtbÞ
< tb � t∗b ðSjÞ will immediately follow retailer i’s move. Thus, gðtbÞ ¼ F t∗

�1

b tbð Þ
� �

�F t∗
�1

a tbð Þ þ Δtb

� �
:The third captures the case where retailer i first marks down at

tb and retailer j follows later at τ. Retailer i’s demand rate changes from β00, to β10
(at tb) and then to β11 (at τ). In this case GðτÞ ¼ P t∗a Sj � Δtb

� � � τ
� � ¼

P Sj � Δtb � t∗
�1

a τð Þ
� �

¼ 1� F t∗
�1

a τð Þ þ Δtb

� �
, giving gðτÞ ¼ �dF t∗

�1

a τð Þ þ Δtb

� �
=dτ:

The last term covers the case where retailer i first marks down, but retailer j never
follows, since her initial inventory is lower than β01, so she can sell all at the regular
price even in the worst scenario (i.e., at demand rate β01). This happens with
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probability F(β01), which is here denoted by g(1). The constraints ensure that sales

do not exceed the inventory in each instance of τ.
Regrettably, (P4) is very difficult to solve. One way to tackle the problem is to

form a Lagrangian and obtain its saddle point (Luenberger 1969). The FOC of the

Lagrangian, after straightforward manipulation and letting t¼ 0 without loss of

generality, gives:

p0e
�tb=β00 � p1e

�tb=β11
� �

F t∗
�1

b tbð Þ
� �

þ p1 e�tb=β11 � e�tb=β10
� �

F t∗
�1

a tbð Þ þ Δtb

� �
� λ1 tbð Þ β00 1� e�tb=β10

� �� β11 e�tb=β11 � e�T1 tbð Þ=β11
� �� Si

� 	
� λ

0
2 tbð Þ β10 1� e�tb=β10

� �� β11 e�tb=β11 � e�T2=β11
� �� Si

� 	� λ2 tbð Þ e�tb=β10 � e�T2=β11
� �

þ λ3 tbð Þ β00 1� e�tb=β10
� �þ β11 e�tb=β11 � e�T3 tbð Þ=β11

� �� 	� �Λ3 tbð Þ e�tb=β00 � e�tb=β10
� �

þ p0e
�tb=β00 � p1e

�tb=β10
� �

F β01ð Þ
þ λ4 tbð Þ β00 1� e�τb=b00

� �þ β10 e�tb=β10 � e�T4=β10
� �� Si

� 	 ¼ 0,

ð15:7Þ

where λ1, λ2, λ3, λ4 are the Lagrangian multipliers to the four constraints of (P4) in

that order, and �Λ3ðtbÞ :¼
R1
tþ
b
λ3ðτÞdτ. By definition of symmetric equilibrium,

retailer i’s choice of tb should be equal to retailer j’s optimal tb
∗, hence

t∗
�1

b tbð Þ ¼ t∗
�1

b t∗b Sið Þ� � ¼ Si. Applying this to (15.7), we have:

p0e
�t∗b =β00 � p1e

�t∗b =β11
� �

F Sið Þ þ p1 e�t∗b =β11 � e�t∗b =β10
� �

F t∗
�1

a t∗b
� �þ Δtb

� �
� λ1 t∗b

� �
β00 1� e�t∗b =β10

� �� β11 e�t∗b =β11 � e�T1 t∗bð Þ=β11� �
� Si

h i
� λ

0
2 t∗b
� �

β10 1� e�t∗b =β10
� �� β11 e�t∗b =β11 � e�T2=β11

� �� Si
� 	� λ2 t∗b

� �
e�t∗b =β10 � e�T2=β11
� �

þ λ3 t∗b
� �

β00 1� e�t∗b =β10
� �þ β11 e�t∗b =β11 � e�T3 t∗bð Þ=β11� �h i

� �Λ3 t∗b
� �

e�t∗b =β00 � e�t∗b =β10
� �

þ p0e
�t∗b =β00 � p1e

�t∗b =β10
� �

F β01ð Þ
þ λ4 t∗b

� �
β00 1� e�t∗b =β00

� �þ β10 e�t∗b =β10 � e�T4=β10
� �� Si

� 	 ¼ 0:

ð15:8Þ
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