
Chapter 14

Clearance Pricing in Retail Chains

Stephen A. Smith

1 Introduction

1.1 Background

As an application of management science, retail clearance pricing has been an

outstanding success, Pilot studies conducted in the 1990s (Smith and Achabal

1998), found that installing a computer based clearance pricing algorithm at a

major retail chain resulted in 10–15 % increases in the revenue capture rate during

the clearance period. Increases in sell-through and shorter markdown cycle times

also freed up capital and floor space for the retailer’s follow-on products. Similar

revenue gains during the clearance period have been achieved by commercially

offered clearance markdown systems (Merrick 2001). Spotlight Systems, Inc.,1 a

seller of clearance markdown software systems, reported in 2002 that the average

gain in gross margin dollars for the department and specialty stores that had

implemented their system amounted to about 4 % of revenue, or $40 million for

every $1 billion of sales. Since U.S. department store sales now exceed $500 Billion
per year, there is a very large potential dollar impact, if similar results can be

obtained across the industry. More recently, Caro and Gallien (2012) reported that a

system that was implemented at a major Spanish retailer (Zara) resulted in a 6 %

increase in clearance sales revenue relative to the previous manual system based on

managerial judgment. Major vendors of ERP systems are now making price
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optimization a cornerstone of their retail applications suites (Sullivan 2005).

This background section discusses why clearance pricing is such an attractive

application for retailers and what has allowed it to be successfully implemented

through computer based models.

1.2 Trends in Retail Pricing

Retail department and specialty stores are selling an ever increasing fraction of their

merchandise on markdowns, which now account for over one third of all sales.2

This is a result of four general trends in these retailers’ merchandising strategies:

1. More products in the assortment

2. A greater proportion of “fashion” merchandise

3. Shorter seasons and

4. More private label (store brand) merchandise.

While these trends give customers a wider selection of product choices and are

essential for retailers to remain competitive, they also increase the difficulty of

managing the retail supply chain. Fashion and private label items tend to have long

lead times for orders from the manufacturer and the total order quantity for the

season is usually fixed in advance. This decision is based on the initial sales

forecasts, which tend to be inaccurate for fashion and seasonal merchandise.

Also, well over half of the retailer’s total order for seasonal and fashion items is

usually sent to the stores at the start of the season to create an attractive presentation

of the merchandise. Since inter-store transfers are often not economical, it is

difficult to rebalance this inventory if the initial allocation is incorrect. When

sales in a given category or group of items are lower than expected, retailers must

find a way to clear the excess merchandise to make way for the new product arrivals

of the coming season. The cycle time for this process becomes shorter still for “fast

fashion” retailers who use very short seasons. [See, e.g., Caro and Gallien 2012.]

Clearance pricing involves two decisions: when to start clearance markdowns

and how “deep” the markdowns should be, both of which depend on the remaining

inventory. Traditionally, these decisions have been made by the buyer who origi-

nally chose the merchandise and ordered it from the manufacturer. This may create

a disincentive for taking markdowns early enough, since an early decision to mark

down really amounts to admitting that the product has underperformed. For sea-

sonal items such as swimsuits and winter coats, demand decreases rapidly near the

end of the season; thus delaying a markdown can be very costly. For simplicity,

buyers have traditionally taken the same markdown at all stores, or for all stores

within a region. This is suboptimal when there are significant inventory imbalances

across stores. These factors tend to make clearance markdowns a very complex

2National Retail Federation data for Department and Specialty Stores.
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decision that buyers would be happy to delegate to a computer based pricing

algorithm. At the same time, retail managers require a clear demonstration of the

“payback,” i.e., the return on investment, for any newly implemented system. Thus,

any clearance markdown pricing system needs to be able to pay for itself through

improvements in gross margin dollars during the clearance period.

The computing resources necessary for clearance pricing have only recently

been available to retailers. As late as the 1990s many retailers did not retain store

level item sales figures for more than 90 days and sales results were often reported

only in dollars of revenue. Often, there were no detailed records of how many units

of each item were sold at a given price. The economics of data storage tended to be

the deciding factor in these decisions, because a department store retailer with

100,000 SKUs and 1,000 stores simply could not afford to store all this transaction

data for all time periods. Computing resources were also limited among retail staff

members, because of the high costs of training and support. Since retail staff

members tend to change job assignments frequently, it is important to standardize

and document all decision making procedures, and to make the results easily

understandable by retail personnel who are not technically trained in using com-

puters. The exponential decline in the cost of data storage and the growth in

popularity of personal computers that occurred during the 1990’s have removed

these barriers to implementing computer based clearance pricing algorithms.

1.3 Mathematical Models for Clearance Pricing

An analytical approach to clearance markdown management requires the successful

implementation of three system components:

1. A sales forecasting model

2. A clearance price optimization algorithm that works at the store and item level

3. Financial performance measurement of the effectiveness of the system

This section discusses a number of the models in the literature that relate to these

components of the clearance pricing system.

The modeling assumptions in this paper were motivated by discussions with

buyers who manage clearance markdowns at several retail department and specialty

store chains. The author also assisted three major retailers in designing computer-

based systems that incorporated these models. One unique aspect of this chapter’s

pricing model is that sales depend explicitly on the retailer’s on-hand inventory.

The pricing analysis implies that when the rate of sale is sensitive to the inventory

level, it is optimal to have higher prices early in the season, followed by deeper

markdowns later in the clearance period. Furthermore, inventory sensitivity in the

demand makes it optimal to have some amount of leftover merchandise at the end

of the clearance period. This leftover inventory, which is typically found in

department store chains, may be sold to a discounter, transferred to other channels

operated by the retailer or possibly donated to charity. Many retailers recognize the
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advantage of setting clearance prices at the store level to account for the variation in

inventory levels and sales rates across stores. Due to the complexity and

time consuming nature of localized pricing, computer-based clearance pricing

algorithms are required to implement these store level markdown decisions.

2 Related Research

In general, optimal clearance pricing for retailers involves some type of dynamic

pricing. Surveys on dynamic pricing policies appear in papers by Elmaghraby and

Keskinocak (2003) and by Bitran and Caldenty (2003), and are also included in the

monograph by Talluri and van Ryzin (2004). The surveyed papers include a variety

of factors such as seasonally varying or declining demand, varying customer

response to price changes, demand uncertainty, inventory dependent demand and

simultaneous pricing and inventory decisions. Since no tractable model can incor-

porate all of these factors simultaneously, the choice of modeling assumptions

requires tradeoffs. The literature summary below focuses on specific subsets of

the pricing literature in marketing, economics and inventory management that are

relevant to the retail clearance pricing application.

Intertemporal pricing issues similar to those found in clearance markdowns are

studied in a deterministic setting by Stokey (1979), Kalish (1983), Dhebar and Oren

(1985), Rajan et al. (1992), Braden and Oren (1994). Stokey’s analysis considered a

family of customer utility functions that decline with time and identified conditions

under which the optimal price trajectory is constant or decreasing. Kalish (1983)

considered sales rates that vary with both price and cumulative sales-to-date and

obtained conditions on sales rate and production cost that determine whether the

optimal price trajectories are increasing or decreasing. Dhebar and Oren (1985)

determined the optimal price trajectory when there is a positive network externality

and decreasing supply cost. Khmelnitsky and Gerchak (2002) applied an optimal

control model to a production system in which demand is positively influenced by

inventory level, but with a predetermined constant price. The other two papers are

discussed below.

Demand uncertainty has been included in dynamic pricing models in a variety of

ways. Lazear (1986) and Pashigian (1988) considered clearance markdowns for a

single item sold to heterogeneous customers who have a time invariant probability

distribution of reservation prices. Gallego and van Ryzin (1994) developed a

continuous time optimal pricing model in which demand is generated by Poisson

arrivals. Feng and Gallego (1995) develop a continuous time Markov process

formulation with stochastic demand that determines the optimal timing and dura-

tion of a single price reduction. Bitran et al. (1998), Bitran and Mondschein (1997)

and Zhao and Zheng (2000) generalize this by modeling customer demand as

Poisson arrivals whose reservation prices change over time. The net result is a

nonhomogeneous Poisson process multiplied by a price sensitivity function. While

these models capture demand uncertainty, they do not include the influence of
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inventory level on demand, which we found was often significant in retail sales.

Significant effects of inventory levels on retail sales have been found by Wolfe

(1968), Bhat (1985), Smith and Achabal (1998) and Caro and Gallien (2012).

Learning can play a role in dynamic pricing for either the buyer or the seller.

Lazear (1986) allowed the seller to infer customers’ reservation prices through their

responses to a decreasing sequence of discrete prices. Braden and Oren (1994)

derive an optimal nonlinear price structure that improves the seller’s information

about the distribution of heterogeneous customers’ price sensitivities. Lariviere and

Porteus (1999) considered a multi-period pricing and inventory model with learn-

ing, in which the seller uses varying inventory levels as opposed to price changes to

obtain information.

The impact of strategic customers on retail pricing decisions has also been

analyzed in a variety of contexts. Besanko and Winston (1990) investigated the

role of customers’ knowledge of future prices in intertemporal pricing. Cachon and

Swinney (2009) consider the impact of strategic customers on the retailer’s pur-

chasing and pricing decisions.

The marketing literature on price promotions provides a number of empirically

tested functional forms for price response. (See e.g., Gaur and Fisher 2005.) This

paper adopts a multiplicative form with exponential price sensitivity, which has

been analyzed and empirically tested by Narasimhan (1984), Russell and Bolton

(1988), Bolton (1989), Achabal et al. (1990), Smith et al. (1994) and Kalyanam

(1996). Exponential sensitivity is also applicable for modeling how price influences

purchases of consumer durables; Kalish (1985) compared several variations.

There are a number of related papers that develop combined strategies for

pricing and inventory management. Eliashberg and Steinberg (1987) considered

pricing, inventory and production management policies for a marketing channel

subject to seasonal variations. Rajan et al. (1992) considered dynamic pricing and

inventory decisions with a variable time horizon and shrinkage costs. Bitran

et al. (1998) consider the coordination of prices and inventories across multiple

retail outlets in which there are initial allocations of inventories and a further

reallocation to rebalance inventories in response to sales. This formulation includes

many of the aspects of retail markdown pricing, but the result is a dynamic

programming problem with such a large state space that it is likely to be intractable.

The authors propose and test some myopic heuristics for approximate solutions.

Mantrala and Rao (2001) discuss a decision support system called MARK, which

determines discrete prices and inventory levels based on a time varying elasticity

demand model. Monahan et al. (2004) analyze a newsvendor model with combined

pricing and inventory decisions at discrete time points. Cheng and Sethi (1999)

develop a Markov decision model to determine promotion and inventory decisions

in a discrete periodic review system. Ray et al. (2005) develop a combined pricing

and inventory management model for a two echelon serial supply chain using a

demand function with an additive uncertainty term and random delivery times.

Netessine (2004) models price and inventory changes at discrete time points,

considering the optimization of both prices and the discrete timing of the price

changes. Caro and Gallien (2012) consider a clearance markdown model that
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incorporates inventory effects, discrete price choices and groupings of similar items

to facilitate clearance management. They also give a detailed description of a

successful estimation and implementation of the model at Zara.

In summary, the model in this chapter differs from those discussed above in that

it combines seasonal variations and demand dependence on inventory level with a

price trajectory optimization based on optimal control theory. At the same time, this

paper’s model requires the time horizon to be fixed, and ignores time dependent

inventory costs and discounting. It allows a single inventory level adjustment, while

a number of the previous papers on combined dynamic policies consider more

general inventory strategies. Also, this chapter’s pricing model does not explicitly

include demand uncertainty. However, the updating of the clearance price at

discrete time points, as discussed in the last section, provides an approximate

myopic solution to the dynamic pricing problem with demand changes. Also, the

deterministic optimization formulation allows a closed form pricing solution to be

obtained from optimal control theory. For the retail clearance markdown applica-

tion, it appears that these modeling assumptions are a good compromise that results

in a workable clearance pricing model.

This chapter extends the specific results in Smith and Achabal (1998) in several

ways. First, it discusses the highly successful application results that have been

achieved by commercially available clearance markdown systems since the publi-

cation of the original paper. Second, it extends the earlier model to obtain FONC

and approximate solutions for the case in which prices change only at pre-assigned

discrete time points. An approximate discrete pricing solution is developed, and the

continuous solution is used to obtain bounds on the maximum error associated with

the approximation. Finally, it obtains closed form expressions for the maximum

profit function and presents illustrative numerical analyses for the discrete

pricing case.

3 Model Specifications and Optimality Conditions

In developing a decision making framework for clearance markdowns, it is impor-

tant to note three ways in which clearance prices differ from other types of retail

pricing decisions: (1) clearance markdowns are permanent, i.e., prices are not

permitted to increase later, (2) demand tends to decrease at the end of the clearance

period due to items becoming “out of season,” as well as incomplete assortments

and reduced merchandise selection, (3) optimal clearance prices typically differ by

location due to inventory imbalances.

Motivated by these observations, the modeling assumptions are as follows:

• Sales rate depends explicitly on price, seasonal variations and inventory level.

• Competition, demand uncertainty, time discounting and time dependent holding

costs are not explicitly included in the model.

392 S.A. Smith



These modeling choices can be explained as follows. Price dependence specifies

the change in sales rate as a function of the percentage markdown. Seasonal

variations capture the increase in sales rate that tends to occur during certain

prime shopping periods such as Christmas and back-to-school, and the decrease

that occurs at the end of the product’s season. When the on-hand inventory is too

low at a given store, the sales rate may also drop. This is especially true for apparel

when there is an incomplete selection of sizes and colors. Additionally, for some

items, it is important to have sufficient inventory to create an attractive in-store

display to draw customers’ attention to the product.

Retailers tend to intentionally schedule larger deliveries during periods with

high sales forecasts, e.g., during promotions. In analyzing the corresponding sales

data after the fact, this may sometimes seem to imply a false “causality,” in that the

higher sales during promotions should not be attributed to higher inventories, even

though a positive correlation exists. On the other hand, most buyers seem to feel

that low inventories do reduce sales, which was supported by our regression results.

Retailers often define a minimum on-hand inventory for each product, sometimes

called “fixture fill,” which is the quantity required for adequate presentation. This is

used as a reference level in defining the inventory effect in the model.

Competition and demand uncertainty are not explicitly captured in the sales rate

model. However, sales lost to competitors are implicitly reflected in the retailer’s

seasonally adjusted rate of sale. This is appropriate as long as the competitors do not

react directly to the retailer’s price changes. For clearance markdowns taken at the

store level, competitive reactions seem unlikely, given that most retail chains have

hundreds of stores, each with different local competitive environments.

Demand uncertainty clearly exists, but modeling it complicates the analysis to

a great extent. Optimal clearance pricing in the presence of gradually decreasing

demand uncertainty would require multistage pricing decisions, which would

need to be jointly optimized by stochastic dynamic programming. The state

space for this problem is extremely large, because it must capture all the possible

changes in the states of information that influence each update of the pricing

policy. Because the clearance period is relatively short and sales rates are declin-

ing, the early clearance markdowns tend to be the dominant decisions economi-

cally, thus reducing the importance of multi-stage optimization. The short

clearance period also justifies the lack of time discounting and time dependent

inventory costs in this model. We therefore develop a deterministic pricing

formulation without discounting.

3.1 Model Formulation

The model is specified as a continuous function of time with the following

parameters

t0¼ current time of the season

te¼ end of the season, sometimes known as the “outdate”
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t¼ an arbitrary time t0� t� te
I0¼ on hand inventory at time t0
p(t)¼ price trajectory at time

s(t)¼ cumulative sales from time t0 to time t
I(t)¼ I0� s(t)¼ the on-hand inventory at time t
se¼ total units sold by the outdate te
x(p,I,t)¼ the sales rate at time t, with price p and on-hand inventory I.
ce¼ salvage value per unit at the end of the season

c(I0)¼ cost of adjusting I0, if changes are permitted

R(I0)¼ total revenue obtained from the I0 units

The total sales s(t) up to time t clearly satisfies

s tð Þ ¼ I0 � I tð Þ ¼
ðt
t0

x p τð Þ, I τð Þ, τð Þdτ; ð14:1Þ

which implies the differential equation

I0 tð Þ ¼ �x p tð Þ, I tð Þ, tð Þ for each t: ð14:2Þ

It is also required that se� I0, where the unsold units I0� se¼ I(te) are salvaged.
In general, the retailer’s objective is to maximize total revenue during the

clearance period, since the cost of ordering I0 is a sunk cost. However, changes in

I0 with costs captured by the function c(I0)may be permitted in some cases. The net

profit can then be expressed as:

R I0ð Þ � c I0ð Þ ¼
ðte
t0

p tð Þx p tð Þ, I tð Þ, tð Þdtþ ce I0 � seð Þ � c I0ð Þ;

subject to I0 � se ¼
ðte
t0

x p tð Þ, I tð Þ, tð Þdt: ð14:3Þ

This objective function can be optimized using optimal control methods, as

discussed in detail in Smith and Achabal (1998). These results will be summarized

below and then extended to develop exact and approximate solutions for the

discrete pricing case.

First order necessary conditions (FONC) for maximizing (14.3) with respect to

p(t), subject to the stated constraints can be obtained by forming the Hamiltonian

H¼ (p� λ)x and treating I(t) as the state variable and p(t) as the control (see, e.g.,
Kamien and Schwartz 1981, pp. 143–8). The Lagrange multipliers are

θ¼ the Lagrange multiplier for the constraint I0� se� 0

λ(t)¼ the Lagrange multiplier for I0(t)¼� x(p(t),I(t),t) at time t.
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TheFONCfor the optimal control p(t) and the corresponding state variable I(t) are3:

∂H=∂I ¼ p� λ½ �xI ¼ �λ0 ∂H=∂p ¼ p� λ½ �xp þ x ¼ 0; ð14:4Þ

with the boundary condition

λ teð Þ ¼ ce þ θ: ð14:5Þ

Eliminating p� λ from the two partial derivative equations gives

λ0 ¼ xxI=xp and pþ x=xp ¼ λ: ð14:6Þ

Evaluating (14.6) at t¼ te and combining with (14.5) yields the boundary

condition for θ

pþ x=xp
� �

t¼te
¼ ce þ θ: ð14:7Þ

3.1.1 The Separable Sales Rate Case

Specific assumptions concerning the functional form of the sales rate allow (14.6)

and (14.7) to be solved explicitly for the optimal price trajectory. For this paper, a

multiplicative, separable function with exponential price sensitivity is assumed,

x p; I; tð Þ ¼ k tð Þy Ið Þe�γp; ð14:8Þ
where k(t)¼ the seasonal demand at time t

y(I)¼ the inventory effect when on-hand inventory is I
γ¼ the price sensitivity parameter for demand.

Although much of this paper’s development can be carried through for a more

general demand function, a closed form solution can be obtained only for a

separable demand function like (14.8). A slightly different closed form solution

can also be obtained for constant elasticity price dependence of the form p�γ. Both
exponential price sensitivity and constant elasticity demand functions have been

widely studied in marketing. These have generally been found to be superior to

linear price sensitivity in empirical studies. [See, e.g., Kalyanam (1996) and Smith

et al. (1994) for references.]

For the separable form (14.8), we have that x/xp¼�1/γ is a constant. From

(14.6), it therefore follows that p0(t)¼ λ0(t). Thus, (14.6) yields an ordinary differ-

ential equation that can be solved for p(t)

3 Subscripts p and I denote partial derivatives and the independent variable t has been suppressed

for notational compactness.
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p0 tð Þ ¼ xxI=xp ¼ �1

γ
k tð Þy0 I tð Þð Þe�γp tð Þ: ð14:9Þ

Mathematically similar formulations have been studied in other contexts. Kalish

(1983), Dhebar and Oren (1985) and Mahajan et al. (1990) developed formulations

that are sensitive to experience effects rather than inventory, which lead to similar

necessary conditions for the optimal price trajectories. Rajan et al. (1992) obtained

optimal price solutions for a separable demand form that is analogous to (14.8), but

with a time varying γ. Gallego and van Ryzin (1994) obtained an optimal price

trajectory for the case of exponential price sensitivity and Poisson demand arrivals.

These formulations do not consider the dependence of sales on the current inven-

tory level or seasonal variations, however.

Rajan et al. allow a variable cycle length and they explicitly consider shrinkage

and other inventory costs. They obtain closed form optimal price trajectories for the

cases of linear and exponential price sensitivities. Variable cycle length is used for

clearance pricing of some discontinued non-seasonal items, but seasonal items,

which constitute the bulk of retail clearance items, have a fixed clearance calendar

to coincide with the planned arrival of new merchandise.

3.1.2 Compensating Prices

Equation (14.9) can be solved by proving that the optimal p(t) adjusts the sales rate
so as to exactly compensate for any reduction in sales due to y(I(t)). This result is
stated as the following lemma.

Lemma 1 For the multiplicatively separable sales rate function given by (14.8),
(14.9) implies that the optimal policy is to adjust p(t) so that sales remain propor-
tional to k(t).

Proof We wish to show that for the optimal p(t)

x p tð Þ, I tð Þ, tð Þ
k tð Þ ¼ y I tð Þð Þe�γp tð Þ is constant in t: ð14:10Þ

Suppressing the dependence on t and I and differentiating, we have

d

dt
ye�γpð Þ ¼ I

0
y
0 � γyp

0
h i

e�γp ¼ �ky
0
e�γp � γp

0
h i

ye�γp ¼ 0;

from (14.9), after substituting I
0 ¼ �kye�γp from (14.2). ■

Lemma 1 implies that the price p(t) at any time t can be expressed in terms of the

final price p(te) and the ending inventory I(te)) as follows
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y I tð Þð Þe�γp tð Þ ¼ y I teð Þð Þe�γp teð Þ for all t; ð14:11Þ

Equation (14.11) also shows that the optimal price depends upon I(t) but not upon t.
Therefore, by defining a new function P(I(t))¼ p(t), (14.9) can be solved for the

price trajectory as a function of the inventory level

P Ið Þ ¼ p teð Þ þ 1

γ
ln

y Ið Þ
y
�
I teð Þ

 !
: ð14:12Þ

The total sales se must satisfy from (14.1)

se ¼
ðte
t0

k tð Þy I tð Þð Þe�γp tð Þdt ¼ y teð Þe�γp teð ÞK,

where K ¼ K teð Þ ¼
ðte
t0

k tð Þdt:
ð14:13Þ

One of two possible cases must hold at time te. Either θ� 0 and se¼ I0, or θ¼ 0 and

thus p(te)¼ ce + 1/γ from (14.7). If θ¼ 0, we determine se from the relationship

se ¼ y I0 � seð ÞKe�γce�1: ð14:14Þ

This has a unique solution since y(Io� se) is decreasing in se.

3.1.3 Determining Optimal Inventory and Maximum Profit

We can use the change of variable I¼ I(t) and the price function P(I) to rewrite the
integral in the total revenue as

ðte
t0

p tð Þx p tð Þ, I tð Þ, tð Þdt ¼
ðte
t0

p tð Þ �I
0
tð Þ

� �
dt ¼

ðI0
I0�se

P Ið ÞdI: ð14:15Þ

Substituting for P(I) from (14.12), we have

R I0ð Þ ¼ sep teð Þ þ 1

γ

ðI0
I0�se

ln
y Ið Þ

y I0 � seð Þ
� �

dI þ ce I0 � seð Þ: ð14:16Þ

This allows us to compute the revenue that will be obtained by using the optimal

pricing policy.
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Equation (14.16) can also be used to solve for the optimal I0, if it is a decision
variable, subject to the relationships between I0 and se specified above. For the case
in which y(0)¼ 0, FONC can be obtained by maximizing R(I0)�C(I0) with respect
to I0 and se, subject to (14.14). Letting η be the Lagrange multiplier for (14.14), it

can be shown that the FONC imply that η¼�1/γ and that

p I0ð Þ ¼ ce þ 1

γ
1þ ln

y I0ð Þ
y I0 � seð Þ
� �� 	

¼ c0 I0ð Þ þ 1=γ: ð14:17Þ

This can be solved simultaneously with (14.14) to obtain the optimal I0 and se.
Conceptually, it is also possible to use the solution of (14.17) and (14.14) to

optimize the initial inventory purchase at the beginning of the season. However,

there are practical reasons why this is generally not advisable. Expanding the size of

the time interval [t0, te] to include the whole season implies that the same expo-

nential price sensitivity must hold for the demand during the entire time interval.

Intuitively, it seems unlikely that this will be true, since price sensitivity may

increase or decrease or even require different functional forms during different

parts of the season. Thus, it does not seem appropriate to include the original

inventory purchase as a decision variable in the context of the clearance pricing

model. Smith and Achabal (1998) discuss some adjustments in on-hand inventory

that may be possible during the clearance period.

3.1.4 Adding Demand Uncertainty to the Model

Let us consider the case in which demand at time t has a multiplicative uncertainty

factor given by the random variable ξ(t). Let us also that there is a common

unknown parameter w such that the conditional random variables ξ(tjw) are inde-

pendent of each other across time. so that assume that the ξ(t) values are indepen-
dent of each other. Let Ω(t) be the expected value of ξ(t)

4 Discrete Price Changes

In practice, retailers change prices at discrete points in time, rather than continu-

ously. In this section, optimal discrete pricing will be derived and compared to the

results for continuous pricing. The discrete pricing case is considerably more

complex to solve than the continuous case. However, an approximate discrete

solution and error bound can be derived.

An approximate solution for the discrete case can be obtained by choosing prices

in each time interval that yield the same unit sales as the continuous case for that

time interval. It is shown that the typical revenue losses from this approximation are

no more than 1–2 % for two or more price points. The continuous solution is used to
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bound the maximum error for the approximate discrete solution, since the exact

discrete solution can never be better than the continuous solution.

Suppose the retailer may change prices at n previously set times, e.g., once per

week. Let

ti¼ time of the ith price change

pi¼ price for time period i
si(t)¼ cumulative sales up to time t for ti�1� t� ti
si¼ si(t)¼ cumulative sales to the end of period i.

The continuous functions si(t), i¼ 1, . . ., n satisfy the differential equation

s
0
i tð Þ ¼ k tð Þy I0 � si tð Þð Þe�γpi for ti�1 � t � ti; ð14:18Þ

with boundary conditions si(t)¼ si for i¼ 1, . . ., n. The discrete optimization

problem is

max
p1, ...pn

Xn
i¼1

pi si � si�1ð Þ; ð14:19Þ

subject to (14.18) and its boundary conditions. The variables separate in (14.18),

to yield

dsi
y I0 � sið Þ ¼ e�γpik tð Þdt: ð14:20Þ

The differential equation in (14.20) can be solved for a specific function y(I), if the
left hand side can be integrated. The optimization problem can then be solved by a

discrete search over the vector of prices p1, . . ., pn, subject to the functions si(t)
obtained from (14.20).

4.1 Solution for the Power Function Form

In this section, we will solve the special case in which the inventory sensitivity

follows a power function4 of the form

y Ið Þ ¼ I=Irð Þα, for a fixed reference value Ir: ð14:21Þ

This form gives considerable flexibility since for various choices of α, it can be either
convex, concave or a linear function of the on-hand inventory. This form has y(0)¼ 0,

4 In Smith and Achabal (1998), additional solution details are given for the general function y(I)
and numerical analyses are performed for a linear function y(I).
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which implies that θ¼ 0 in (14.7) and se is determined from (14.14). Thus, there will

be left over inventory to be salvaged at the end of the season in this case. In practice,

this occurs for virtually all clearance items. Also, p teð Þ ¼ pe ¼ ce þ 1=γ from (14.7)

for θ¼ 0.

Sometimes in (14.21) the effect of inventory dependence can be truncated at

I¼ Ir. This assumes that inventory larger than Ir, does not affect sales. This may

often be an appropriate assumption because, as noted previously, higher inventories

may sometimes falsely appear to cause higher sales. Thus, whether or not to

truncate the inventory effect is really a judgment call, based on the nature of the

sales environment that is being analyzed.

For the power function (14.21), the fraction of units sold

f e ¼ se=I0 ð14:22Þ

is related to I0 from (14.14) as follows

f e ¼
I0
Ir

� ��αK

I0
e�γ ceþ1=γð Þ 1� f eð Þα: ð14:23Þ

The price and total revenue equations then can be written as

P Ið Þ ¼ pe þ
α

γ
ln

I=I0
1� f e

� �
ð14:24Þ

R I0ð Þ ¼ I0 ce þ f e=γ �
α

γ
f e þ ln 1� f eð Þf g


 �
: ð14:25Þ

Note that in (14.24) and (14.25) Ir and K do not appear, but fe depends on I0/Ir and
K/I0 through (14.23).

Some of the characteristics of these functions can be summarized as follows:

Lemma 2 The fraction fe of the inventory sold is decreasing in I0 for α< 1,
increasing in I0 for α> 1 and constant for α¼ 1. For α¼ 1, we have

f e ¼
a

1þ a
, where a ¼ Ke�γpe

Ir
: ð14:26Þ

Thus, the revenue R(I0) is linear in I0 for α¼ 1.

Proof: Taking the total derivative of (14.23) and rearranging terms, we obtain

df e
dI0

¼ 1� f eð Þ α� 1ð Þ
I2�α
0 1� f eð Þ1�α þ αI0a

: ð14:27Þ

This shows the behavior of fe, with respect to changes in I0, based on the term α� 1

in the numerator. ■
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4.1.1 Optimal Discrete Pricing

The differential equation (14.18) can be solved by integration for the special case

(14.21) to obtain

� I αr I0 � si tð Þf g1�α

1� α
¼ e�γpi K tð Þ � K ti�1ð Þ½ � þ Zi; ð14:28Þ

where Zi is the constant for the function si(t) and K(t) is the cumulative seasonal

coefficient function from (14.13). At the initial condition t¼ ti�1 in (14.28)

si(ti�1)¼ si�1 and we obtain the constant term

Zi ¼ � I αr I0 � si�1f g1�α

1� α
:

Equation (14.28) then acts as a constraint in solving the optimization problem

(14.19). No closed form solution can be obtained, but the optimal p1, . . . pn can

be determined by numerical methods.

Discrete Pricing to Match the Optimal Continuous Sales

An approximate pricing solution can be obtained by choosing pi so that the sales in
period i match those obtained for the continuous pricing case. That is, we calculate

the cumulative sales obtained up to time ti in the continuous case

si ¼ y teð Þe�γpeK tið Þ, for i ¼ 1, . . . , n: ð14:29Þ

Using this si, we determine the corresponding prices by solving the relationships

e�γpi K tið Þ � K ti�1ð Þ½ � ¼ I0 � si�1f g1�α � I0 � sif g1�α

1� αð ÞI�α
r

ð14:30Þ

from (14.28) for p1, . . . pn . Here it is convenient to express the pi in terms of

fi¼ the fraction of units sold up to time ti.
Because of the compensating price property, it follows that

f i ¼
si
I0

¼ f e
K tið Þ
K

; ð14:31Þ

when the optimal price trajectory P(I) is used. Thus, once fe is determined from

(14.23), the fi follow immediately from (14.31). Therefore
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pi ¼ �1

γ
ln

I0
1� α

Ir
I0

� �α
1� f i�1f g1�α � 1� f if g1�α

K tið Þ � K ti�1ð Þ

 !
: ð14:32Þ

The total revenue obtained using this discrete pricing is then given by

R I0ð Þ ¼ I0
Xn
i¼1

pi f i � f i�1½ � þ 1� f eð Þce
" #

: ð14:33Þ

Since the maximum revenue R(I0) obtained with the optimal continuous pricing

solution is greater than or equal to the revenue that can be obtained with any

discrete solution, it bounds the maximum discrete revenue obtained from (14.30)

as well as the revenue obtained with the approximate solution in (14.33). Thus we

have proved the following lemma.

Lemma 3 The percentage profit loss from using the approximate discrete prices
obtained from (14.30) in place of the exact discrete price solution obtained from
(14.28) is bounded as follows

Profit Loss % � R I0ð Þ � R I0ð Þ
R I0ð Þ : ð14:34Þ

Furthermore, the profit loss from using optimal discrete pricing obtained from

(14.19) instead of optimal continuous pricing from (14.12) has this same upper

bound. It is illustrated in the next section that this percentage loss is less than 1–2 %

for typical parameter values.

5 Numerical Examples

In this section, we compute the price trajectories, total sales and total revenue for

some parameter values to gain insights about the sensitivity of the results to the

various input parameters. We will also compare the continuous and discrete pricing

solutions.

To reduce the number of variables, all cases use the values

I0¼ Ir¼ 1,000 U, t0¼ 0, te¼ 1 and K(t)¼ tK.

That is, we assume that there are no seasonal variations and the on hand

inventory exactly equals Ir. The solutions can be extended to other I0 values from
(14.24) and (14.25). The time unit scale can be chosen arbitrarily, since all time

variations can be expressed as functions of the inventory level I. Solutions are

obtained by solving (14.23) for se by a one dimensional search, e.g., the Excel Goal

Seek function, and then computing the prices and total revenues from (14.24)

and (14.25).
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Different demand rates can be tested by changing K or by changing the ratio

K/I0. Since K is difficult to interpret intuitively, we define the Base demand

parameter

Base demandð Þ ¼ Ke�γpe ; ð14:35Þ

which corresponds to the total unit demand at the minimum price pe with no

inventory effect (α¼ 0). Also note that pe¼ ce+ 1/γ is the optimal price when

α¼ 0 and inventory can be obtained at a unit cost ce. We will use a retail price of

p0¼ $10.00 as a reference value and write all other costs and revenues as multiples

of p0. For these graphs, I0 is not a decision variable, so c(I0) is a sunk cost that can

be omitted from this numerical analysis.

For the first set of graphs, we use the following parameter values, which

represent typical numbers for an apparel item

ce¼ 20 %, γ¼ 3.33 , α¼ 0.5, 1.0 or 1.5 and Base¼ 500–1,500.

Let us first consider the total sales se¼ fe I0 in Fig. 14.1 as a function of the Base
values and α¼ 0.5, 1.0 and 1.5. These curves are concave increasing, as one might

expect, and the smaller values of α give the largest total sales in every case. This is

because the negative effects of inventory on sales are less for smaller values of α.
Now let us consider Fig. 14.2, the optimal price trajectory for the single fixed

Base Demand¼ 1,000. From Fig. 14.1, the total sales for α¼ 0.5, 1.0 and 1.5 are

838, 677 and 578, respectively. Each curve in Fig. 14.2 shows the compensating

behavior of the optimal price trajectory, as more inventory is sold. Also, we know

from Fig. 14.1 that α¼ 1.5 corresponds to the least total inventory sold. In all cases,

it is best to price higher initially and then gradually decrease the price to compen-

sate for the increasing inventory effect, as described by (14.24). The crossing

patterns of the price curves in Fig. 14.2 can be explained as follows. We know

that α¼ 1.5 must have the steepest drop, because it compensates for the largest

inventory effect, while α¼ 0.5 must yield the flattest curve. All curves must have

0

200

400

600

800

1000

1200

0.5
Base/ I0

T
o

ta
l S

al
es

alpha=.25

alpha=0.5

alpha=1

1.51.0 2.0 2.5

Fig. 14.1 Total sales feI0 versus Base/I0 I0¼ Ir¼ 1,000

14 Clearance Pricing in Retail Chains 403



the same terminal price pe. The highest initial price therefore occurs for α¼ 1.5.

Figure 14.3 shows the behavior of the optimal initial price p(I0) for other values of
Base Demand.

Figure 14.4 shows the total revenue obtained by using the optimal price trajec-

tory (14.24) in each case. It is interesting to note in Fig. 14.4 that the revenues

generated for the three values of α are fairly close to each other. This implies that if

inventory effects are modeled correctly, then the almost the same revenue can be

obtained through appropriate pricing. For larger α values, higher prices maximize

the profit by selling fewer units.

Figure 14.5 shows the bound on the profit loss as a result of approximating the

optimal continuous price trajectory with the discrete prices (14.32) that match the

continuous sales at the discrete points. That is, the percentage losses in Fig. 14.5 are

obtained from (14.34). The other assumptions behind Fig. 14.5 are as follows. For

α� 1, it is intuitively clear that α¼ 1 yields the worst percentage loss, since the
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price drops more rapidly for higher α. This was also verified by extensive calcula-

tions. Second, ce¼ 0 is also the worst case for percentage loss, because with no

salvage value the price trajectory drops must achieve all the profits. But with ce¼ 0,

we see that the factor I0/γ appears in both (14.25) and (14.33), and so I0/γ cancels
out in (14.34). Thus, the curve in Fig. 14.5 holds for all I0 and γ as well. It is clear
from Fig. 14.5 that errors are generally less than 1 or 2 % if at least two price points

are used. The worst case occurs for Base/I0¼ 9.2, which corresponds to the lowest

demand level that requires an optimal price higher than the base price of

p0¼ $10.00.
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6 Conclusions

Both practical and theoretical insights can be drawn from the experiences with the

clearance markdown methodology described in this paper. From a practical stand-

point, improvements in clearance markdown policies have had major financial

impacts on a number of firms because clearance sales volumes are substantial and

any increased revenues from improved clearance policies go directly to the bottom

line. Clearance markdown algorithms are now a key component of merchandise

pricing for many retail chains, which are part of a sector with sales exceeding $500
billion per year.

The markdown response model in this chapter differs from other dynamic

pricing models in that it includes a dependence on inventory level. Retail buyers

in the initial studies, particularly for apparel products, felt that having adequate

inventory for presentation strongly affects sales. Regression analyses have also

found that low inventories are highly correlated with reduced sales. Adopting a

multiplicative, exponential price response function, which has previously been

successful in modeling the response to promotional markdowns, leads to an optimal

clearance price trajectory that exactly compensates for the effects of reduced

inventory, independent of the form of the inventory sensitivity.

General properties of the optimal pricing policy for merchandise that is sensitive

to inventory level can provide guidelines for developing corporate strategies for

these products. Inventory sensitivity implies that prices should be set higher before

the clearance period begins, and then reduced gradually during the clearance

period. For many products, it is optimal to leave some quantity of merchandise

unsold at the end of the season, especially if it has a salvage value. At the same time,

our pricing studies indicated that the initial clearance markdowns should be deeper

than buyers were accustomed to taking, while excessive markdowns at the end of

the season should be avoided in favor of salvaging, or even discarding, unsold

merchandise.

One of the implementation requirements is parameter estimation. Smith and

Achabal (1998) discuss some regression based approaches for estimating the

parameters for sales forecasting and markdown response models. These methods

have often been combined with subjective estimation of certain response parame-

ters, or use of seasonal variations that were computed at a higher level of aggrega-

tion. While these estimation methods based partially on subjective choices, they

have been sufficiently accurate to achieve significant improvements in operating

results at a number of retailers.

This model can also provide a basis for further research in pricing policies that

include dependence on inventory effects. Possible enhancements, which have been

considered in other related research, include time discounted cash flows and time

dependent inventory holding costs. When the clearance markdown period is longer,

these time dependent aspects become more important. Another interesting gener-

alization is the use of initial clearance prices to elicit information about the

customer markdown response parameters. When combined with the sensitivity of
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sales to inventory, this remains an unsolved problem to the author’s knowledge.

Finally, these successful practical applications should encourage others to apply

management science models in situations that require a combination of regression

analysis and subjective parameters choices.
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