
Chapter 12

Multi-location Inventory Models for Retail
Supply Chain Management

A Review of Recent Research

Narendra Agrawal and Stephen A. Smith

1 Introduction

Research on multi-level inventory systems is critical to retail supply chain

management. Multi-level systems are commonly observed in most retail environ-

ments, where regional distributions centers (warehouses) stock products to replen-

ish inventory at the retail stores. There is a rich and vast literature in the field of

operations management that focuses on the design and management of multi-

echelon inventory systems, which can be applied to retailing. Even so, a variety

of open problems remain, and this continues to be a fruitful area for researchers.

While more than two echelons are also observed in practice, most retailers now

prefer to move toward the simpler, two-echelon systems. Such structures are

common even in pure play “E-tailers,” such as Amazon.com. Amazon.com started

with the idea of owning no distribution centers at all, and relying on direct

shipments of books from publishers to customers for demand fulfillment. However

they now manage a small number of distribution centers, and use a combination of

direct shipments from vendors and shipments from their warehouses for demand

fulfillment. Traditional “bricks and mortar” retailers today also face the problem of

designing inventory management systems for items that are purchased through their

Internet sales channels, in combination with normal store replenishment.

This review paper covers a subset of the research on this topic. Because of the

vastness of the literature on multi-level inventory systems, we felt it was important

to limit the scope of our survey in a meaningful way. First, we restrict our attention

to papers after 1993, and refer the reader to the reviews in other papers for articles

prior to 1993. For example, Axsater (1993a), Federgruen (1993), and Nahmias and
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Smith (1993) contain excellent reviews of the work up to that point. We discuss

some of the earlier articles that provide foundations for results that we are

presenting, or were not included in the reviews listed above. Second, we omit

papers on certain model formulations that are not typical of retail inventory

management. For example, we exclude the literature on serial systems, since they

are not representative of typical retail chains, and are a special case of general

multi-location multi-echelon systems. Also excluded are papers that assume deter-

ministic demand, since demand uncertainty is a key aspect of most retail systems.

Finally, we focus our attention primarily on periodic review systems. Most retail

chains today employ technologies such as point-of-sale (POS) scanner systems that

provide real time access to sales and inventory data. Consequently, in principle,

continuous review models could be an appropriate construct for these retail sys-

tems. However, two issues limit the practical applicability of this assumption. First,

due to contracts with vendors and shipping companies, shipments occur primarily

on a pre-specified schedule, and often a variety of items are delivered simulta-

neously. Second, despite the real time access to sales information, the ERP data-

bases and inventory allocation algorithms are typically updated periodically. Thus,

strictly speaking, inventory decisions must be made by planners according to

predefined cycles. Consequently, periodic review systems are a better representa-

tion of the inventory management systems used by most retailers. For the sake of

completeness, in the appendix we briefly present the formulation of some contin-

uous review models along with a few key references.

The rest of the paper is organized as follows: We begin by discussing the key

modeling issues in Sect. 2. In Sect. 3, we present the general formulation for

periodic review inventory model, and review the relevant literature. Key conclu-

sions and opportunities for further research are discussed in Sect. 4. The continuous

review model is discussed briefly in the Appendix.

2 Modeling Issues

2.1 The Key Decision

The fundamental decision to be made in two-echelon retail inventory systems is the

appropriate division of inventory between the central (warehouse) location, and each

of the retail stores.1 Clearly, more inventory at the retail stores provides a higher

service level to customer demand, but this also increases costs associated with

carrying the inventory. The holding cost is higher at stores, due to increased shrinkage

and because space in retail stores is typically more costly than warehouse space.

1 Earlier papers used the term “retailers” to refer to individual retail locations, while more recent

papers have used the term “stores.” In this paper, we will use the term stores or retail stores for the

lowest echelon level in the inventory system.
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Higher costs also result from transporting additional items to stores, which increases

the product’s value. Also, immediate distribution of a large proportion of the

inventory to stores makes it difficult to address subsequent inventory imbalances

across stores, because lateral shipments between stores are not part of normal

replenishment. That is, keeping additional inventory at the warehouse offers the

advantage of risk pooling, since inventory can be directed to those stores that need it

most. This can potentially reduce overall inventory investments and costs. How-

ever, the resulting shipment delays may adversely affect customer service levels.

This type of risk pooling has been referred to as the depot effect. The other

advantage of having a warehouse is the possibility of risk pooling over the length

of the replenishment lead time from the external supplier. This is sometimes

referred to as the joint replenishment effect. In other words, while replenishment

orders placed by the warehouse take into account actual demands at the retail stores,

the actual decision to allocate this inventory to stores can be delayed until the

replenishment order is received. The additional demand information gained during

this lead time can be used to make more efficient inventory decisions. Note that this

benefit can be realized even if the warehouse holds no inventory.

2.2 Modeling Demand

The Poisson distribution is often used to model retail store demand, using a

probability function of the form

P Demand ¼ kf g ¼ e�λλk=k! k ¼ 0, 1, 2, . . .

with mean¼ variance¼ λ. The Poisson distribution is a particularly attractive

assumption for modeling demand in continuous review systems because it requires

only a single parameter (λ), and the resulting analysis is more tractable.

When mean demand per period is large, the normal distribution can be used to

approximate the Poisson. To model discrete demand, the discrete probabilities can

be approximated by

P Demand ¼ kf g ¼ Φ k þ 0:5
��μ, σ� ��Φ k � 0:5

��μ, σ� �
k ¼ 0, 1, 2, . . .

where Φ(xjμ,σ)¼ normal cumulative distribution with mean μ and variance σ2.
Some empirical studies of retail data (e.g., Agrawal and Smith 1996) have found

that retail demands are more variable than the Poisson distribution, which has a

fixed variance to mean ratio of one. There are some practical reasons why actual

demand may have higher variance than would be predicted by a Poisson distribu-

tion. Random variations may occur in the underlying Poisson arrival rate due to the

weather, competitors’ promotions, or special events that are not captured by the

inventory system’s forecasts. Second, customers whose purchases are Poisson

arrivals may introduce additional variability by purchasing multiple items of the
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same kind. The normal distribution can accommodate more variation, by selecting a

larger variance, but the empirical analysis mentioned above found that the normal

distribution fit low demand items poorly because it assigns probability to negative

values and because it is symmetric about its mean.

This suggests that a compound Poisson distribution or a negative binomial

distribution may provide a better choice for modeling retail store demand. In

particular, the negative binomial can be generated either from a Poisson distribution

whose parameter λ has a gamma distribution, or from a compound Poisson with a

geometrically distributed purchase quantity. Agrawal and Smith (1996) found that

the negative binomial fit the store level demand data better than either the Poisson

or normal distributions. The negative binomial distribution with parameters N and p

has the following discrete probability function:

P D ¼ k
��N, p� � ¼ f k N; pð Þ ¼ N þ k � 1

N � 1

� �
pN 1� pð Þk;

0 < p < 1, N > 0, k ¼ 0, 1, . . .

where the cumulative probability distribution is

Fk N; pð Þ ¼
Xk
j¼0

N þ j� 1

N � 1

� �
pN 1� pð Þj:

The mean and variance are

μ ¼ N
1

p
� 1

� �
, and σ2 ¼ N

1� p

p2

� �
:

The ratio of the variance to the mean is 1/p, which is greater than one and can be

arbitrarily large. This makes the negative binomial distribution particularly attrac-

tive for retailing applications that have high demand variability.

Other assumptions for modeling retail demand include the Gamma (Bradford

and Sugrue 1990), Gumbel (Lariviere and Porteus 1999), and the general exponen-

tial family of distributions (Agrawal and Smith 2012).

We also note that the majority of papers assume that demand at different

locations is independently distributed. There are a few exceptions that allow

correlations across stores or across time, which are described later in this chapter.

Finally, in any store level model, it is important to specify assumptions regarding

the treatment of excess demand at the stores. Primarily for analytical tractability,

most papers assume that unmet demand is backordered, not lost. While

backordering is common for some classes of expensive retail items, excess

demands for most department store and grocery items result in lost sales to another

retailer, or possibly substitution of another item in the store. Backordering can serve

as a good approximation to the lost sales case, provided that the inventory service

level at the store is sufficiently high.
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A few researchers have assumed lost sales for unmet store demands. Because of

the complexity of modeling lost sales, these papers generally assume that the latest

store demand information is available with zero delay prior to store replenishment.

This zero delay assumption is generally correct in today’s retail environment, since

electronic data interchange (EDI) can provide essentially continuous communica-

tion of demand information across locations, and stores are typically replenished

after hours, when no sales are occurring. But the lost sales case is significantly more

complex analytically than the backorder case. With lost sales, the inventory level at

any time t depends on all the individual demands and replenishments that have

occurred previously, while in the backorder case, computing the inventory level

requires knowledge of only the total demand over the previous periods. That is, in

the backorder case, the inventory level at time t (IL(t)) follows from the well known

relationship between inventory position (IP(t)) and total demand during the lead

time (D(t� L, t)), where IL(t)¼ IP(t� L )�D(t� L, t). Therefore, knowledge of

the actual demand or order placed in every period is not needed to determine the

inventory level in a given period. This does not hold for lost sales, adding signif-

icant complexity to the analysis.

2.3 Lead Times

Two types of lead times are relevant in such systems.Thefirst is the replenishment lead

time at thewarehouse for orders placedwith external suppliers. Sincemost researchers

assume no capacity constraints on the supplier, these lead times may be assumed to be

constant. Exceptions are papers that explicitly model production capacity constraints.

We briefly mention this literature later. The second lead time is for orders placed by

retail stores at the warehouse. This consists of two components—the shipment time,

which is generally assumed to be constant (butmay vary across locations), and the lead

time due to shortage delays at the warehouse, which is random. Consequently, the

effective lead timeat the stores, i.e., the sumof the twocomponents is always stochastic

due to the possibility of stockouts at the warehouse. It is also a function of the specific

allocation rules at the warehouse when shortage occurs. Thus, determining the store

lead time distribution is a key analytical challenge.

2.4 Allocation Policies Used at the Warehouse

How thewarehouse allocates inventory among competing store demands in shortage

situations is a critical determinant of the complexity of multi-location inventory

models. It also affects the service level and the cost structure for the retail stores.

Conceptually, researchers have considered four different policies for what the

warehouse does with the inventory it receives from the external supplier

(McGavin et al. 1993). The first policy is essentially a “pass-through,” where the

warehouse holds no stock, but allocates and ships it to the stores as soon as stock is
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received from the supplier(s). This is similar to the cross-docking policy that is

practiced at many retail warehouses today. The second policy, called the equal

interval policy, attempts to balance the stores’ inventory at regular intervals. The

third policy is called a two-interval policy, where the warehouse makes two ship-

ments during the period between consecutive replenishments from the supplier. The

final policy is called as the virtual allocation policy, where units of inventory at the

warehouse are reserved for specific demands as they occur at the retail stores. This

essentially imposes a first come first served discipline on demand fulfillment. We

will discuss the modeling implications of each of these policies in the next section.

3 The General Periodic Review Inventory Model

Consider a single-item, discrete-time, two-echelon system, where the top echelon

consists of a depot (also referred to as the warehouse) which supplies a collection of

N retail stores, numbered 1,..,N,with l0 and li corresponding to the lead times for the

depot and the retail outlet i respectively. Random demand occurs in each period at

each retail store, with

Di(t, t + s)¼ the total demand at location i during periods t, . . ., t + s, and

D0 t, tþ sð Þ ¼
XN
i¼1

Di t, tþ sð Þ

is the system wide demand during the same period. We let D
ðlÞ
i and D

ðlÞ
0 be the

l-period demand at retailer i and the warehouse with cumulative distribution func-

tions F
ðlÞ
i and F

ðlÞ
0 respectively. Unmet demand is backlogged at the retailer, with a

penalty cost of pi per unit backordered and h0 and (h0 + hi) are the inventory holding
costs assessed on ending inventory at the depot and the retailer i, respectively.

Retailers

Depot/Warehouse

leadtime = li

leadtime= l0

demand = di

In each period, we define the following sequence of events:

1. Current period’s ordering and shipment decisions are made.

2. Shipments are received.

3. Demand occurs.

4. Holding and penalty costs are assessed based on ending inventory levels.
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Define Ii(t) as the echelon stock (stock on hand plus in transit to and on hand at
successor points minus backorders from external customers) at location i at the
beginning of any period t just after the receipt of a shipment, and Îi(t) as the

corresponding value at the end of the period t. Define Î i tð Þ ¼ Î þi tð Þ � Î �i tð Þ. Then
ÎPi(t) and IPi(t) are the echelon inventory positions just before and after ordering

(at the depot) or shipment (if i is a retailer), where echelon inventory position is

the echelon stock level plus all orders in transit to that location.

At the end of any period t, the total cost for the whole system, which includes

holding and penalty costs, can be expressed as

h0 Î0 tð Þ �
X
j

Îi tð Þ
 !

þ
X
j

h0 þ hið ÞÎ þi tð Þ þ
X
j

piÎ
�
i tð Þ

¼ h0Î0 tð Þ þ
X
i

hiÎi tð Þ þ h0 þ hi þ pið ÞÎ �i tð Þ� �
:

Then, using the notation

C0 tð Þ ¼ h0Î0 tð Þ, and Ci tð Þ ¼ hiÎi tð Þ þ h0 þ hi þ pið ÞÎ �i tð Þ:

The total cost is equal to:

C0 tð Þ þ
XN
i¼1

Ci tð Þ:

The expected system costs then depend on the ordering decision at the ware-

house (which raises the inventory position IP0(t) of the system to, say, y0), and on

how shipment quantities for retail stores are determined, i.e., the allocation
decision. Let the corresponding inventory positions at the retailers be denoted by

y1, . . ., yN. The first decision determines the expected cost at a warehouse at the end

of period (t + l0), and limits the amount to which the aggregate echelon inventory

positions of the retail stores can be raised in period (t + l0). The later decision is

particularly relevant in case of shortage situations. These decisions are not inde-

pendent, which makes the overall optimization problem challenging. So, the upper

limit on the aggregate echelon inventory position of the stores can be specified as

XN
i¼1

IPi tþ l0ð Þ � y0 � D0 t, tþ l0 � 1ð Þ:

Obviously, these decisions influence the cost at echelon i at the end of period

(t + l0+ li). Therefore, the effect of decisions made in period t, C(t), is

C tð Þ ¼ C0 tþ l0ð Þ þ
XN
i¼1

Ci tþ l0 þ lið Þ:
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Thus, for any given ordering policy, the expected long-run average cost is

given as

lim
T!1

1

T
E
XT�1

t¼0

XN
i¼0

Ci tð Þ
" #

¼ lim
T!1

1

T

XT�1

t¼0

E C tð Þ½ �:

Minimization of the long run average expected value of this function is the

overall objective in the two echelon system.

3.1 Solution Methodologies

Determining optimal strategies for general two echelon systems remains difficult.

Consequently, most papers use approximations. While some papers make use of

relaxation techniques to obtain bounds on the true costs or profits, others impose

specific restrictions on the class of inventory policies and then determine the

optimal policy within that class. In all cases, the issue of inventory allocation

must be addressed carefully.

The form of the optimal solution can be characterized in special cases. One way

of rationing, called as the myopic allocation method, allocates the echelon stock of

the warehouse at the beginning of period (t + l0) such that the sum of the expected

costs at the stores in period (t + l0+ li) is minimized, without regard to later periods.

A relaxation of this problem allows the quantities allocated to stores to be negative

(by ignoring the constraint that the retail stores’ inventory positions must be greater

than at the beginning of period t + l0). This is called as the balance assumption. The
key advantage of the balance assumption is that the echelon stock (sum of the total

inventory in the system) suffices to determine the warehouse ordering decision.

Further, it also makes the myopic allocation policy optimal. The drawback is that

this approach gives up the risk pooling advantage associated with holding stock

back at the warehouse. In any case, the balance assumption underestimates the total

costs since it is a relaxation. However, absent these assumptions, it turns out that

base stock policies are not optimal for such systems (Clark and Scarf 1960). Van

Donselaar and Wijngaard (1987), Eppen and Schrage (1981) and Federgruen and

Zipkin (1984a) discuss the consequences of making this assumption in detail. These

early papers consider special cases of the problem: for example, Eppen and Schrage

(1981) consider a two echelon model with identical retailers and a depot that

doesn’t carry any stock. Jackson (1988) extends the Eppen and Schrage model to

allow the warehouse to carry stock, while Jackson and Muckstadt (1989) allow

non-identical retailers, but with identical cost parameters. Federgruen and Zipkin

extend the Eppen and Schrage model to include non-identical retailers,

non-stationary demand, and (s,S) ordering at the warehouse, but they determine

their allocation policies under the assumption that the warehouse is stock-less.

Jonsson and Silver (1987) also assume that the warehouse is stock-less, but extend

the Eppen and Schrage model to include the possibility of a single, complete
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redistribution of inventory between the retailers in the period before the end of any

review cycle for the warehouse. Erkip et al. (1990) consider a model like Eppen and

Schrage (1981) but allow demand correlation across retailers as well as time. Chen

and Zheng (1994) develop lower bounds for costs, based on a cost allocation

mechanism, for serial, assembly and distribution systems. Our system is an example

of their distribution system.

McGavin et al. (1993) model a system with identical retailers, zero lead times for

shipments from the warehouse to each retailer, centralized control and periodic

replenishment at the warehouse. The overall stock allocation consists of four

decisions: the number of withdrawals from the warehouse stock (which is an

opportunity to allocate inventory to retailers), the time between these withdrawals,

the quantity withdrawn, and the division of the withdrawn stock to each retailer.

The first three decisions are set when the warehouse is replenished and the last one

depends on retailer inventories. In particular, they model two opportunities for

allocating stock from the warehouse to the retailers, which need not be equally

spaced between warehouse replenishments. They seek to determine the effective

timing of these two instances and the allocated quantities, so as to minimize lost

sales per retailer. This assumption of lost sales makes this paper’s contribution a

significant departure from the majority of the literature in this stream of work.

However, as noted before, this requires the retailer lead time to be zero. They show

that the best allocation policy is one that balances retailer inventories (i.e., maxi-

mizes the minimum retailer inventory). Heuristic policies are developed assuming

that the number of retailers is infinitely large, and are numerically tested in the finite

retailer case. In particular, they test the 50/25 heuristic, where the first interval is

50 % of the replenishment cycle and the second withdrawal quantity is 25 % of the

replenishment cycle’s mean demand. The resulting analysis suggests the insight

that the choice of the withdrawal quantity and division of inventory may matter

more than the number of withdrawals.

Ahire and Schmidt (1996) consider a mixed continuous and periodic review

system with one warehouse and multiple, non-identical retailers. While the retailers

follow a continuous review (r, Q) policy, the warehouse follows a periodic review
policy (with review period T). At the warehouse, the review period is divided into

equally spaced intervals, where at each such point, a group of identical retailers

(say, within a geographic zone) are reviewed. Each such zone, however, is reviewed

only once per review cycle. The implication of this setup is that the retailer system

is equivalent to a (nQ, r, T) system. The lead time consists of a deterministic

component, the shipping lead time from the warehouse, and a stochastic compo-

nent, due to possible shortages at the warehouse (however, order splitting is not

allowed), and due to the fact that their orders are only reviewed periodically. Thus,

an order may have to wait for anywhere from 1 to T periods before it is even

reviewed by the warehouse. Results from Little’s Law are used to approximate the

shortage delays. Retailer demand is assumed to be Poisson, while the warehouse

demand is approximated by a normal distribution, whose parameters are computed.

The resulting approximations for financial and operational performance metrics

compare well to those obtained through simulation.
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Graves (1996) considers a general distribution network following a periodic

review, order up to policy at each location. Under the assumption that each location

orders at pre-set and known times, he specifies a virtual allocation policy where a

unit at the supply location is committed/reserved for each unit demanded at the time

of the occurrence of the demand. This assumes that the warehouse has real time

visibility into the retail demand. Shipments, however, occur only at the next appro-

priate time after order receipt. The committed units can not be used to satisfy any

other order. Unmet demand at the warehouse is backordered and satisfied in a first-

come-first-served manner. Independent demand occurs at each retail location fol-

lowing a Poisson process, and excess demand is backordered. Since the order

interval is present and excess demand is backordered, each location orders an

amount that equals the total demand since the last order. The analysis requires the

characterization of the run-out time, the time at which the warehouse runs out of

inventory to allocate to the retail sites. The demand at the warehouse is approxi-

mated with a Negative Binomial distribution, whose moments can be determined.

Various performance metrics can then be quantified using this approximation.

Diks and de Kok (1998) model a general N-echelon divergent system where every

location can hold stock, and determine policies that minimize long run average costs.

This idea of pre-set, staggered schedules for ordering is also considered in

Chen and Samroengraja (2000). In a one-warehouse, multi-retailer model, where

retailers are identical, and face i.i.d. demands, they assume that the warehouse

follows a periodic review (s, S) policy to receive shipments from a source of

unlimited supply with lead time L. The warehouse orders are based on its local

inventory position. Between consecutive warehouse ordering epochs, the

retailers, whose ordering points are pre-set and equally staggered with groups of

retailers ordering at each such epoch, place orders, following base-stock policies

with a common order up to level. Two different allocation policies are evaluated.

The first, called past priority allocation (PPA) backlogs the unmet demand from a

retailer, and fills it in a first-come-first-served manner from the inventory at the

warehouse. However, actual shipment occurs only at the next epoch when the

retailer places an order with shipment lead time l. The second policy, called

current priority allocation (CPA) gives priority to the current order and

backorders for the retailer designated to order in a given period. Thus, under

PPA, the warehouse may carry inventory earmarked for a retailer while it denies

inventory to orders from other retailers. In the second case, some retailers may be

backlogged for several consecutive periods while others get replenished. The PPA

model lends itself better to exact analysis. Solutions for this formulation are

obtained through an approximation procedure. The CPA model is harder to

evaluate exactly, but simulation studies indicate that the optimal policies are

close to those under the PPA regime. Unlike in the Graves (1996) paper where

inventory at the warehouse is committed to demands as they occur, here, the

allocation decision is delayed until the retailer actually places an order. Their

derivation of the exact cost function in the PPA case is based on a different

accounting scheme. Warehouse holding costs occurring in period (t + L ) are

charged to period t. For retailers, in period t, they charge the total holding and
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backorder cost over the next N periods (N is the number of ordering epochs within

each warehouse cycle) for the retailer designated to order in that period. The exact

calculation under the CPA method is difficult since the distribution of a retailer’s

inventory position at any time depends not only on the inventory position L

periods ago, but also on the exact pattern of deliveries from the outside supplier.

Continuing in the spirit of generalization, Axsater et al. (2002) allow the retailers to

be non-identical. The warehouse holds stock and orders from an external supplier in

multiples of a given batch size, receiving shipments after a fixed lead time. Lead times

for shipping to retailers is constant, but can vary by retailer. Instead of the balance

assumption, they consider the virtual assignment rule, where the inventory ordering

decision at the warehouse accounts for all retailer inventory positions and assigns

inventory to retailers as soon as orders are placed. The final inventory allocation,

however, is made only upon the arrival of the replenishment. This is a more restrictive

policy that overstates costs. Instead of the myopic allocation policy, they consider a

two-step allocation policy, which allows some inventory to be retained at the ware-

house. Essentially, at the beginning of each period, the remaining time until the next

ordering opportunity is assumed to consist of two intervals, the second one being a

single period, at which point reallocation can be done again. An optimization meth-

odology is developed under these assumptions and the results are found to compare

very favorably with the case of balance assumption and myopic allocation.

Under the balance assumption, Dogru et al. (2013) establish the convexity of the

cost function for the infinite horizon case and discrete demand case, which implies

the existence of optimal policies that are base stock policies. They also characterize

newsvendor inequalities that must be satisfied by the optimal solutions. For exam-

ple, for the special case of identical retailer holding and penalty costs at the

retailers, and under the myopic allocation and balance assumptions, the well

known critical fractile solution yields the optimal stocking policy for each location.

3.2 Batch Ordering

The use of batch ordering policies imposes additional complexities on the model

since the demand at the warehouse is no longer a simple convolution of the

retailers’ individual demands. Further, if the retailers follow a periodic review

policy, a retailer’s order consisting of multiple batches may have to be split across

multiple shipments. Of course, the issue of allocation of scarce warehouse inven-

tory remains. Analytically, the key challenge is to determine the distribution of the

retailers’ replenishment lead time, which consists of both the shipping time (con-

stant) and additional delays due to shortages at the warehouse. Two approaches

have been used in the literature for this purpose. One is to evaluate when a batch is

ordered by the retailer relative to when the warehouse orders it (as in Svoronos and

Zipkin 1988). The second is to evaluate when a batch is ordered by the warehouse

relative to when the retailer orders it. In cases with a single warehouse, the later

approach is more tractable. This is the approach used in the following two papers.
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Cachon (1999) considers a one warehouse N (non-identical) retailer model

where the retailers as well as warehouse follow (R, nQ) policies. Retailers follow
a periodic review policy with period T, but the ordering process is balanced in the
sense that a fixed number N/T of retailers order every period. Unmet demand is

backordered, and partial fulfillment is allowed. Retailer orders are randomly

shuffled upon receipt, and fulfilled in a first-come-first-serve manner. Exact

expressions are derived for costs, as well as demand variability at the warehouse.

The key result is that the warehouse demand variability decreases due to

balancing (rather than synchronizing retailer orders, where all retailers order

simultaneously). Further, under a balanced system, increasing the length of the

review period T and decreasing the order batch size also helps lower the supplier’s

demand variability. However, these strategies may not necessarily decrease total

supply chain costs, since they might actually increase the retailers’ ordering or

inventory costs.

Cachon (2001a) considers a similar model but with identical retailers, and where

each location reviews and orders in each period. All locations follow a batch

ordering policy. Demand is stochastic and discrete. Average inventory and

backorder levels and fill rates are evaluated exactly at each location. Safety stock

requirements are determined exactly at the retailers, but approximately at the

warehouse.

3.3 Lost Sales

All papers described thus far assume that unmet demand is backordered, McGavin

et al. 1993. Another exception is Nahmias and Smith (1994), which focuses on a

one warehouse multi retailer system, and assumes that a given fraction of unmet

retailer demand is lost. Order up-to policies are used at the retailers, and the

replenishment lead time from the warehouse is assumed zero. The warehouse

also uses an order up to policy with zero lead times. The length of the review

period at the warehouse is a multiple of the retailer’s review period, and the stock

levels are such that shortages only occur in the mth period within any cycle. This

assumption, along with that of zero lead times, is necessary to lend tractability to

the model.

In contrast to most other papers, they assume that the demand at the retailers

follows a negative binomial distribution, which has been shown to fit retail data

well (Agrawal and Smith 1996) because the variance to mean ratio is often larger

than one. Since the warehouse supports many stores, the warehouse demand can be

approximated by a normal distribution. Exact expressions are derived for the

average inventory level and lost sales at stores and the warehouse. Representative

retail data is used to illustrate the results and generate managerial insights. For

example, they show that the benefits of holding stock at the warehouse depend upon

item characteristics—items with low optimal service levels at stores derive the most

benefit by holding the majority of the stock at the warehouse. Increasing the
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frequency of store delivery can also reduce costs, especially for items that require

high optimal service levels at stores.

Anupindi and Bassok (1999) quantify the benefit of centralizing stocks in a

single warehouse, two-retailer setting, where a fixed fraction, 1� α, of unmet

demand at the retailers is lost. The remaining customers look for the product at

the other retailer. They too assume zero lead times for shipments to retailers. Each

retailer faces an independent demand (with known distribution), buys from the

warehouse at a unit cost w and sells it to their customers for a price p. Since they

consider a stationary, infinite horizon model, the problem boils down to a single

period newsvendor-type problem. In the simplest case where α¼ 0, i.e., all unmet

demand is lost, they show that centralization does not necessarily increase sales.

This depends upon the nature of the demand distribution, as well as the value of the

critical fractile. For example, for demand with a normal or exponential distribution,

centralization leads to higher sales, while for a Uniform distribution, this happens

only if the critical fractile has a value less than 0.77.

In the general case when α> 0, the solution corresponds to a Nash equilibrium.

They find that the expected total profits for the retailers are greater when stocks are

centralized. However, the total sales are greater in the centralized case only if α is

smaller than a certain threshold. The manufacturer/warehouse will prefer the

centralized case only if α is smaller than a threshold (one interpretation for α in

their model is the fraction of customers that, when unsatisfied at a local retailer due

to stockouts, search for the goods at other retailers). Interestingly, even the total

supply chain profit may decrease due to centralization in some cases. This happens

when α is larger than some threshold value, which in turn is a function of the

wholesale price w. These insights apply even when coordinating contracts are used.
Thus, the main insight from this analysis is that while conventional wisdom dictates

that costs decrease (and profits increase) under centralized systems due to risk

pooling benefits, this benefit may not result for all parties in the supply chain.

3.4 Decentralized Environments (Quantifying the Value
of Information Sharing)

The discussion thus far assumed that the entire supply chain was under central

control, and information about all locations was available to the central decision

maker. This assumption is not appropriate when the entities at the different eche-

lons operate independently. When decisions are made so as to optimize local

incentives, the overall supply chain performance may not be optimal. The conse-

quences of the resulting actions by the supply chain participants include the well

known bullwhip effect, as discussed in Lee et al. (1997a, b).

In an early paper, Eppen (1979) showed that in a multi-location model with

normal and correlated demand, the total holding and penalty costs are lower in a

centralized system than in a decentralized system. This result was later generalized
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for other distributions in Chen and Lin (1989) and Stulman (1987), and to include

inter-node transportation costs in Chang and Lin (1991).

Recently, however, spurred by the advances in information technology and

software solutions, explicitly quantifying the potential value of information sharing

in supply chains has been the subject of a number of papers. For example, Cachon

and Fisher (2000) quantify this value in the case of a single warehouse multi-retailer

environment. The retailers are identical, and use periodic review batch ordering

policies. Retailers order periodically, in batches of a given size Q, and receive

shipments after a fixed lead time. The warehouse also orders in multiples of Q, and
receives its orders from an external supplier after a constant lead time. Inventory is

allocated using a batch priority rule, where each batch order is assigned a priority,

and shipments are done in the order of priority. By comparing the total supply chain

costs with and without information sharing, they conclude that the value of infor-

mation sharing is rather limited, 2.2 % on average. However, the benefit from

shorter lead times and smaller batch sizes was nearly 20 % each. The explanation

they offer is that demand information only matters when the retailer inventory

levels are very low, since otherwise, they don’t need to place orders. However, this

is precisely when retailers actually place orders, so essentially, the demand data is

already captured in the order information.

Lee et al. (2000) quantify the value of information sharing, albeit in a one

warehouse one retailer supply chain. In contrast to the earlier papers which assume

the demand is independent and identical across time, they assume that demand at

the retailer is auto-correlated [AR(1)], such that

Dt ¼ d þ ρDt�1 þ εt;

where d> 0, �1< ρ <1, and εt is normally distributed with mean zero and

standard deviation of σ. Both locations order every period in a periodic review

system, with fixed lead times for shipments to each location. Unmet demand at the

retailer is backordered, while at the warehouse excess demand is met with a

special order placed at an external supplier at an additional cost. They assume

that the manufacturer bears the full cost of guaranteeing supply to the retailer.

They characterize the retailer’s ordering process, which becomes the demand

process for the manufacturer. In the case of no information sharing, the manu-

facturer only receives the retailer’s orders. In the case of information sharing, the

manufacturer also receives information about actual demand, which allows him to

obtain the value of the error term εt, thereby lower demand variability. Since the

manufacturer bears the full cost of assuring supply, the retailer’s inventory costs

remain unchanged with information sharing. However, information sharing leads

to lower inventory levels as well as lower costs for the manufacturer. Further, they

show that the benefit of information sharing is greater when the auto-correlation

or demand variance is high. This analysis is complicated by the fact that when

demand is auto-correlated, exact expressions for average inventory levels cannot

be derived. Consequently, they make use of approximations for the retailer’s and

manufacturer’s inventory levels.
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Chen (1998) also quantifies value of information, but in a serial system with

continuous review policies. They report cost benefits in the range of 2–9 %.

Gavirneni et al. (1999) also consider a serial system (one warehouse, one retailer),

but extend the model to the case where the manufacturer’s capacity is limited. By

comparing the base case to one in which the manufacturer obtains information

about the retailers’ demand distribution and inventory policy parameters, they are

able to quantify the value of information. They find that the value of information is

more compelling when end item demand is not very variable, when the retailer’s

(S� s) is not very large or very small, or, when supplier’s capacity is large. Aviv

and Federgruen (1998) also consider the benefits resulting from sharing demand

forecasts, also with limited supplier capacity.

3.5 Lateral Pooling

There is a large body of research that focuses on the issue of lateral pooling, also

referred to as transshipments. In practice, this is rarely done for low-ticket items,

since the cost and time involved in repackaging leftover inventory, shipping it to

another location, and unpacking it again can easily wipe out the margins. However,

for bigger ticket items, like electronics, expensive jackets and suits, and automo-

biles, this practice is common. Obviously, the presence of an information technol-

ogy solution that provides information about inventory levels is a prerequisite for

this system. One stream of research on transshipments addresses the problem in the

context of repairable items. In the interest of staying focused on the retail environ-

ment, we will not review this literature, but instead direct the interested reader to

Cohen et al. (2006), Muckstadt (2004), Axsater (1990) and Lee (1987), and the

references contained therein. A more recent review of the literature can be found in

Paterson et al. (2011).

Since the other locations serve as a backup location from which to fill unmet

demand, albeit at some cost, this alters the penalty incurred due to shortages.

Similarly, since there is the possibility of selling excess inventory to other

locations, it alters the salvage value. Depending upon the cost of transshipment

and the terms of the exchange, a retail location may, in some conditions, find it

profitable to transfer its inventory to another location even when it has its own

demand to meet. Clearly, each location will need to determine rules for when is it

appropriate to give up its inventory. In any case, the inventory stocking policy

must be modified. A second factor to consider is whether the stocking decisions

are made centrally, or in a decentralized manner. In the later case, a game

theoretic formulation is necessary to determine the optimal inventory ordering

and allocation rules to appropriately model the incentives for each party. This

results from the externality created due to decentralized decision making—larger

inventory carried by one location could lower the stockout cost for others.

Similarly, lower inventory levels at one location make it more economical for

another location to dispose of its excess inventory. An important source of
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distinction between papers on this topic is whether the redistribution of stock

occurs after or before demand is realized.

We begin with the former category first. Early works on this topic include

Krishnan and Rao (1965) and Karmarkar and Patel (1977). Both assume identical

costs at retailers, an assumption later generalized by Tagaras (1989). Robinson

(1990) formulates the problem for an arbitrary number of non-identical retailers,

and shows the optimality of order up to policies. However, analytical solutions can

be determined only for the case of identical retailers, or when there are only two

retailers. Consequently, Monte Carlo simulation has been used to solve the general

case. All these papers assume zero replenishment and shipment lead times. This

assumption leads to the result of “complete pooling” (Tagaras 1989), which implies

that if transshipment is economically viable, then it is optimal for each location to

make its excess inventory available for lateral shipments, i.e., there is no reason for
holding inventory back at any location. This logic, a priori, may not hold if the

replenishment lead times are non-zero. This factor is the focus of Tagaras and

Cohen (1992), which we discuss next due to its generality.

Tagaras and Cohen (1992) model a multi-period, one-warehouse, two-retailer

locations system, where demands occur independently at the retail locations.

Shipments from the warehouse to retailer i arrive after Li periods. Order-up-to
policies are followed by each retailer, who faces a unit holding cost chi on the

ending inventory OHi as well as shortage cost cpi on the backorders BOi. Addition-

ally, there is a unit lateral shipment cost cij incurred for the Xij units shipped from

i to j. The transshipment policy is determined by whether the inventory level

(or inventory position) at the shipping location i is above a threshold level ri, and
target inventory level tj, (or inventory position) at the receiving location j, which
must not be exceeded after transshipment. Four transshipment policies are thus

generated. The first two involve on-hand inventory level as the criteria. In the first

case, transshipment occurs only if a location faces a shortage (i.e., ti¼ tj¼ 0). Under
the second policy, transshipment can take place even if there are no shortages (i.e.,

ti¼ ri¼ 0, i¼ 1,2). Obviously, ri¼ rj¼ 0 implies complete pooling in this case. The

third and fourth policies are similar to these two, except that the triggers are

inventory positions. The objective is to determine order quantities Qi that minimize

total expected costs, as given by:

E Cð Þ ¼
X2
1

ciE Qið Þ þ chiE OHið Þ þ cpiE BOið Þ þ
X2

j¼1, j 6¼i

cijE Xij

� �( )
:

Exact analysis of this formulation is mathematically intractable. Consequently,

search procedures are used to determine optimal solutions. They also derive

heuristics based on the assumption of zero lead times. The key finding is that the

complete pooling policy always dominates, as was the case when lead times are

zero. In other words, hedging, by holding back inventory, or transshipping in

anticipation of shortages is not optimal. Also, the heuristics were found to be

near-optimal. These results are extended to the case where the transshipment lead

times are non-zero in Tagaras and Vlachos (2002).
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Archibald et al. (1997) also consider a two-location model, but assume that

unmet demand at a location can be met either through transshipment from the other

location, or through an emergency shipment from the supplier (no warehouse is

assumed). The demand distribution is assumed to be Poisson. A Markov chain

formulation is developed to characterize the optimal policies, which are shown to

be of the order up to type. The model is then extended to the case of multiple items

with constraints on the amount of inventory that can be carried at any location.

Herer et al. (2006) generalize Robinson (1990) to include more general cost

structures, and develop an optimization approach that is guaranteed to converge, as

compared to Robinson’s heuristic which does not provide such a guarantee. They

too assume zero lead times, show optimality of order up to policies, which are

computed using Infinitesimal Perturbation Analysis. The transshipment quantities

are determined by solving a linear programming formulation.

Bertrand and Bookbinder (1998), on the other hand, consider a general, periodic

review model for the case where the redistribution decision is made before demand

realization. They consider a model with multiple non-identical retailers that are

supplied by a warehouse. The warehouse does not carry any stock, but allocates it to

stores on the basis of their inventory levels so as to minimize total costs. In the

period immediately before the end of the cycle (after which the warehouse orders

again), inventory can be redistributed so as to minimize shortage in the last period.

The assumption is that shortages primarily occur in the last period in any cycle. The

redistribution decision is determined using a greedy heuristic. The optimal policies,

and the corresponding costs and service level are determined using simulation,

since any analytical treatment is intractable. Similar assumptions were made earlier

in Jonsson and Silver (1987), but the objective was to minimize the total number of

stockouts.

Anupindi and Bassok (1999), which was discussed earlier, model interactions

between retailers when transshipments are possible. Similarly, Rudi et al. (2001)

consider interactions between retailers in a game-theoretic setting, although their

work is based on ideas contained in earlier papers by Parlar (1988) and Lippman

and McCardle (1997). In the later two papers, in case of stockouts, it is the customer

demand that is directed to the other location. This is different from the currently

assumed scenario more relevant to us where products are transferred (albeit at a

cost). Nonetheless, the modeling mechanics are similar. Rudi et al. (2001) consider

the interactions between two firms, each modeled as a newsvendor within a single

period framework. They assume that transshipment occurs after demand is realized,

and the number of units exchanged from location i to location j is

Tij ¼ min Dj � Qj

� �þ
; Qi � Dið Þþ

n o
:

A unit cost is incurred for each unit shipped, and a unit price is charged that

varies by shipping location. The resulting profit functions follow in a straightfor-

ward manner from the newsvendor methodology. They characterize the optimal

decision in the centralized as well as the decentralized cases by solving for the Nash
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equilibrium. The pricing decision is also evaluated. Extending this approach to the

case of more than two locations is complicated by the specific construction of the

schedule of transshipment prices and costs.

Anupindi et al. (2001) develop a more generalized framework for the analysis of

decentralized distribution systems. They assume N retailers who face stochastic

demands and hold stocks locally and/or at one or more central locations. An

exogenously specified fraction of any unsatisfied demand at a retailer could be

satisfied using excess stocks at other retailers and/or stocks held at a central

location. The operational decisions of ordering inventory and allocation of stocks

and the financial decision of allocation of revenues/costs must be made in a way

consistent with the individual incentives of the various independent retailers. They

develop a “coopetitive” framework for the sequential inventory and allocation

decisions. They define claims that allow them to separate the ownership and the

location of inventories in the system. For the cooperative shipping and allocation

decision, they develop sufficient conditions for the existence of the core of the

game. For the inventory decision, they develop conditions for the existence of a

pure strategy Nash Equilibrium. They show that there exists an allocation mecha-

nism that achieves the first-best solution for inventory deployment and allocation,

and develop conditions under which the first best equilibrium will be unique.

Dong and Rudi (2004) include the consequences of lateral shipments between

retailers on the warehouse/manufacturer in their study. However, they do so in a

single period setting with identical retailers. Recall that Anupindi and Bassok

(1999) solved only the two retailer case. They analyze the case where the manu-

facturer is a price taker as well as one where he is a price setter (i.e., a Stackelberg

leader). Following an analysis in a newsvendor type setting, they find that the

benefit of transshipment is no longer guaranteed, rather it depends upon the

parameters of the problem.

In an interesting paper, Zhao et al. (2005) formulate the problem faced by a

network of decentralized retailers who stock inventory of a common item (they

consider this problem in the context of a spare parts dealer network). Each location

follow an (S, K) type policy. S denotes the order up to level while K denotes a

threshold rationing level such that inventory will be shared with the other dealer

only if the inventory level exceeds the threshold. Higher values of K imply that

smaller portions of inventory are available for sharing. While demand occurs

independently at each location, this possibility of inventory sharing changes the

cost structure. Thus, each location needs an incentive to share inventory. Otherwise,

it might find it profitable to retain inventory to satisfy future demand (understand-

ably, the complete pooling result does not always hold in the decentralized setting).

This manufacturer can either provide incentives for sharing, or subsidize the cost of

sharing the inventory. The consequences differ. The first incentive induces the

locations to lower their threshold rationing levels instead of increasing their stock-

ing levels. The second induces them to lower their stocking levels, which results in

lower service levels. Thus, from the manufacturer’s point of view, a combination of

such incentives may be best.

336 N. Agrawal and S.A. Smith



3.6 Fashion Products

The majority of the papers discussed thus far model environments in which the

product being managed is a basic, replenishable item. In contrast, there is a smaller

literature that explores issues relevant to the management of fashion products in

large, multi-echelon retail chains. Fashion products tend to have very short selling

seasons, with replenishment lead times that may be substantially longer than the

length of the selling season. Consequently, these environments differ in that the

retailer may have a very limited number of opportunities (often one or two) to place

inventory in stores, and demand uncertainty tends to be large. At the same time, for

many fashion forward retailers, sales from such products form the bulk of revenues.

For single retail location environments, the problem can be modeled in a

straightforward manner using the well known newsvendor formulation. Extensions

to the case of multiple locations, but with only a single opportunity to position the

retail inventory, are fairly straightforward too. However, the problem is more

complicated when there are multiple locations, limited inventory on hand, and

more than one opportunity to stock stores. Multiple stocking opportunities also

offer the possibility of forecast updates based on observed sales.

Fisher and Rajaram (2000) consider a demand model, with different store types.

They consider the problem of determining the optimal set of test stores to stock

prior to the beginning of the selling season. Using sales histories of comparable

products from a prior season, they cluster the stores in the chain deterministically

using a store similarity measure and then choose one test store from each cluster.

Then, in the test period, inventory is placed in the test stores so that demand can be

observed, from which, regression is used to estimate sales for the season. They use

linear regression to estimate forecasts for season sales. Test stores are obtained

deterministically by considering only the prior season sales.

Agrawal and Smith (2012) develop a two period inventory decision model for

seasonal items at a retail chain with non-identical stores. As is typical in such

scenarios, they assume that store demands can be correlated across the chain, and

across the two time periods. At the beginning of the second period, demand forecasts

and inventory policies can be revised, based on the observed demands in the first

period. They develop a generalized Bayesian inference model assuming that the

store demand distributions share a common unknown parameter. They also develop

a two stage optimization methodology to determine the total order quantity, as well

as the initial and revised store stocking policies for the two periods, taking into

account the fact that store stocking policies in the first period affect the demand

information that is collected. If many stores are stocked in the first period, better

information about demand may be possible, but fixed costs associated with stocking

stores, especially at low-volume ones, can lower profits. Additionally, ordering and

inventory allocation decisions made in the first period also affect the amount of

inventory that will be available for stores in the second period. To reduce the state

space of this problem, they develop a normal approximation for the excess inventory

left over at the end of the first period, which greatly simplifies the analysis.
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By comparing the performance of the system under different supply chain flex-

ibility arrangements, they develop counterintuitive insights regarding the magnitude

of benefits resulting from (1) using updated demand information to modify store

inventory levels and the set of stores that are stocked in mid-season (internal

flexibility), and (2) flexible supply arrangements that allow the total replenishment

quantity to be adjusted in mid-season (external flexibility). They find that the value

from store adjustment can be significant even without learning (i.e., the ability to

update demand forecasts based on observed sales) or external flexibility. The incre-

mental value of external flexibility can also be significant, but only if it is accompa-

nied by learning. On the other hand, the value of learning alone was small without

either external flexibility or store adjustment capability. Thus, internal flexibility

(store adjustment and learning) increases the value of external ordering flexibility.

3.7 Transportation Issues

A closely related problem in multi-location systems is that of determining optimal

policies and routes for scheduling vehicles to deliver products to the various

retailers in the network. The well known joint replenishment problem is also a

part of this stream of work. This area represents a substantial body of research, and

we will not review it in this paper. However, we will briefly point to some of the

papers, and encourage the interested readers to follow the references therein.

Papers that focus on the joint replenishment problem when demand is determin-

istic include Jackson et al. (1985), Anily and Federgruen (1991), Federgruen and

Zheng (1992), Vishwanathan andMathur (1997), Speranza and Ukovich (1994) and

Bramel and Simchi-Levi (1995). Papers that consider stochastic demands include

Balintfy (1964) (can order, must order, order up to levels in a continuous review

setting); Silver (1981) and Federgruen et al. (1984) (determining can-order policies);

Atkins and Iyogun (1988) (periodic review policies for coordinated replenishments);

Pantumsinchai (1992) (heuristics for Q, S policies for multiple items); Viswanathan

(1997) ((T, s, S) policies); Pryor et al. (1999) (single item with transportation set up

costs), and Cachon (2001b) (single store but multiple items, capacitated vehicles).

There are also many papers that consider vehicle routing along with inventory

costs, but the few among these that allow for stochastic demand include Federgruen

and Zipkin (1984b), McGavin, et al. (1993), Adelman and Kleywegt (1999) and

Reinman et al. (1999).

3.8 Additional Issues

While the focus of the papers discussed thus far was primarily on cost minimiza-

tion, another approach to system design may be driven by service level targets. For

this type of problem, de Kok (1990) assumes that the depot does not carry any stock
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and imposes a service level target at the retail locations. This model is extended in

Verrijdt and de Kok (1995) for more general N-echelon networks, and in de Kok

et al. (1994) to allow the depot to hold stock as well. Diks and de Kok (1998) derive

newsvendor equalities for such systems under continuous demand.

In an interesting paper, Erkip et al. (1990) consider a multi-echelon model with

multiple retail outlets whose demands may be correlated with each other and

also across time, but do not consider forecast revision as demand data becomes

available. They model demand at retailer j in period t as

djt ¼ RjD̂tLt þ εjt;

where Rj is the average fraction of chain-wide demand at store j, D̂t is the forecasted

chain-wide demand, Lt is the normally distributed (with unit mean) index variable
for period t, and εjt is the normally distributed (with zero mean) random forecast

error at store j. The index variable parameter, common to all stores, is assumed to be

an autoregressive process of order one. This is what induces correlation across

stores and time. To lend tractability to their analysis, they need to assume that the

coefficient of variation of demand at each store is equal. This assumption, along

with the allocation assumption at the warehouse allows them to derive newsvendor

type cost minimizing solutions for the problem.

While allocation policies are clearly important in the papers discussed above,

this issue is also the subject of other papers developed in the context of assembly/

production systems. In this case, when multiple products require the same common

component, the available stock of components needs to be allocated in shortage

situations. Similarly, in single location problems where there are multiple “classes”

of demand, some allocation mechanism must be designed. Comparing these set-

tings to distribution systems, it is clear that in both these cases, the inventory

dynamics at the retail locations are not relevant, but the problem of inventory

allocation is similar to that faced by the warehouse in our model. Without reviewing

in detail, we list some of the papers in this category for the sake of completeness:

Collier (1982), Baker et al. (1986), Gerchak and Henig (1986), Gerchak

et al. (1988), Ha (1997) and Agrawal and Cohen (2001).

In papers discussed thus far, the locations of the various facilities was given.

However, this may very well be a decision if the objective is to design (or redesign)

a firm’s supply chain network. This is the subject of investigation in Berman

et al. (2012). They consider the joint problem of choosing the location of the

DCs, assignment of retailers to DCs, and setting inventory policies at the retail

locations. Using approximations for the cost average functions at the retail loca-

tions, the problem is formulated as a non-linear integer program, and a Lagrangian

relaxation method is developed and tested to solve the problem.

Finally, for versions of our problem that include capacity constraints, i.e.,

capacitated production/distribution systems, see Glasserman and Tayur (1994)

and Rappold and Muckstadt (2000), and the references therein.
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4 Conclusions

The reviews presented in this paper as well as earlier ones clearly show that much

has been accomplished in the area of designing and managing multi-location retail

supply chain structures. However, our collaboration with a number of prominent

retail chains has identified several of practical issues that have yet to be examined in

any detail. The brief description of these issues that follows here is by no means an

exhaustive list, and the interested reader should append this list to the other open

questions discussed in many of the papers that we have reviewed here.

The trend towards micro-merchandising presents the first set of opportunities.

Since local consumer preferences vary by location, retailers are attempting to

customize their product assortments and model stocks to such local needs. How-

ever, this requires investing in mechanisms and methodologies that can allow

retailers to determine what such differences are, and how best to let inventory

policies be influenced by such information. Correlations between demand across

stores and across time add additional complexity to such decisions in general.

Agrawal and Smith (2012) present one approach for addressing this problem.

This work can be generalized to include multiple products, multiple planning

periods, and the potential to use pricing as yet another instrument for supply

chain flexibility.

As we move from planning of one product to multiple products that form an

assortment, practical considerations relating to product packaging become impor-

tant. Products often move in supply chains in the form of pre-packs. For example,

for an apparel retailer, a pre-pack might consist of one red, two black, and one grey

t-shirt. Such pre-packs may also contain products corresponding to different sizes.

Designing such pre-packs is critical to supply chain efficiency. Obviously, smaller

pre-packs maximize the ability of stores to match supply and demand cost effec-

tively. However, larger pre-packs minimize packaging and material handling costs

throughout the supply chain. They also result in the possibility of shipping more

units than are really needed at stores. When retail stores vary greatly in their sales

rates, the problem of pre-pack design assumes even greater complexity.

While the mathematical models described in this paper have the ability to make

unique inventory decisions at the store level, in practice, for large chains with

thousands of stores, managing such a large number of policies is prohibitive.

Consequently, stores are often grouped into a manageable number of categories

(e.g., 4–10), such that the same policy can be implemented within a category. While

mathematically suboptimal, the practical advantages are substantial. However, this

raises the interesting question of how best to specify such categories, particularly

considering store differences across geographies and product categories.

Pricing and markdown strategies in retail chains are yet another rich area of

research. The majority of papers we have discussed here ignore the pricing deci-

sion. Most pricing papers that we are aware of are single location models. How best

to determine pricing and inventory policies simultaneously across chains is an

important research topic for retailing.
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Finally, no discussion of the retail industry can be complete without recognizing

the tremendous opportunities afforded by multi-channel formats, where retailers

attempt to access customers using the traditional store, plus the Internet and catalog

channels. Retailers vary greatly in their capabilities to deliver their products and

services in this manner, and few appear to have realized any potential supply chain

synergies from jointly optimizing such formats. This, we hope, will be a topic that

researchers in the area of supply chain management will explore in the coming

years.

Appendix: Continuous Review Inventory Systems

Many of the results in this research area, particularly for centrally controlled

continuous review systems, grew out of the METRIC approximation derived in

the seminal work done by Sherbrooke (1968). Consider a one-warehouse multi-

retailer system where inventory is managed using a one-for-one (S� 1, S) inventory
policy. Further, let the demand distribution at each retailer i be independent and

Poisson (λi). Then, it follows that the demand faced by the warehouse is Poisson

(λ0¼Σi¼1..N λi ). Using Palm’s theorem, it then follows that the number of

outstanding orders at the warehouse has a Poisson distribution with mean λ0 L0,
where L0 is the replenishment lead time at the warehouse. Then, for a given order up

to level S0, expressions for expected backorders (B0), waiting time (W0) as well as

inventory levels (I0) can be derived as follows:

E B0ð Þ ¼
X1

j¼S0þ1

j� S0ð Þ λ0L0ð Þj
j!

exp
�� λ0L0

�
;

E W0ð Þ ¼ E B0ð Þ=λ0;

E I0ð Þ ¼
XS0�1

j¼0

S0 � jð Þ λ0L0ð Þj
j!

exp
�� λ0L0

�
:

While the actual lead time is random, the average lead time for retailer orders

now equals the shipping lead time plus the average delay time due to shortages at

the warehouse. The problem is that the random replenishment lead times for

retailers are not independent, since they all depend upon the inventory situation at

the warehouse. The METRIC approximation ignores this correlation, and replaces

the random lead time with its expected value. This allows results similar to the ones

for the warehouse to be derived for the retailers as well. Thus, cost expressions can

be derived and optimized.

Exact expressions can be obtained by characterizing the steady state distribu-

tions of inventory levels. While the previous papers focused on characterizing the

distribution of the retailer lead times, an alternate approach was taken by Axsater

(1990) to develop an exact evaluation methodology for the costs directly. In

particular, he observed that any unit ordered by facility i will be used to fill the
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Si-th unit of demand at this facility following that particular order, where Si is the
order up to level. Therefore, the distribution of the time elapsed between an order

and the occurrence of the unit of demand that it will satisfy will have an Erlang

(λi, Si) distribution, with the following density function:

gSii tð Þ ¼ λSii t
Si�1

� �j
Si � 1ð Þ! exp �λitð Þ:

Now, conditioning on the delay at the warehouse (which also has an Erlang

distribution similar to the one above), cost expressions for that unit can be derived

(consisting of holding and backordering costs). Axsater derived a recursive proce-

dure for evaluating the resulting costs. Thus, this method primarily focuses on

keeping track of costs associated with arbitrary supply units.

Such procedures and results become ineffective when we consider general

systems where one-for-one policies are replaced by batch ordering policies (R, Q)
due to fixed ordering costs. In this case, the demand arising from retailers is no

longer Poisson, but Erlang instead. Consequently, the demand process at the

warehouse is the sum of N Erlang processes, which is more complicated to analyze.

This generalization is considered in Axsater (1993b), where the author considers

a one warehouse multi-retailer inventory system, with N identical retailers facing
independent Poisson demand. However, all locations are allowed to order in

batches using a (R, Q) policy, and the policies at the warehouse are defined in

terms of retailer batches. Lead times are assumed to be constant. Unmet demand is

assumed to be backordered, and costs include proportional holding as well as

backordering costs. The basic idea stems from a similar observation in Axsater

(1990). In this case, a sub-batch ordered at the warehouse will fill the (Rw+ 1)th

subsequent order for a retailer batch at the warehouse. Of course, this will happen

after a random number of system demands. The costs are then derived by condi-

tioning on which subsequent demand triggers an order. Exact as well as approxi-

mate evaluation procedures are derived.

Following a similar logic, in Axsater (1997), the results are further generalized

to a two-level inventory system with one warehouse N retailers and constant lead

times (transportation times), but where the retailers face different compound
Poisson demand processes. All facilities apply continuous review echelon stock

(R, Q) policies and backorder unmet demands. They provide a method for exact

evaluation. Note however that echelon stock based policies may not always dom-

inate installation stock based policies.

The third approach to solving such problems is based on characterizing the

steady state distribution of inventory levels. For example, Graves (1985) fitted a

two parameter Negative Binomial distribution to the number of outstanding orders

for the basic METRIC model. In a similar manner, Chen and Zheng (1997) consider

a one warehouse N retailer system where the retailers face different but independent

compound Poisson demands, lead times are fixed, and orders are restricted to be

batches of some specified lot size. They too assume installation stock based

replenishment policies. For the case of simple Poisson demands, exact results are
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possible. The inventory level at the warehouse can be determined easily, since its

echelon inventory position has a uniform distribution. The distribution of the

inventory level at the retailer locations is more complicated, for which the authors

determine an exact procedure. For the case of compound Poisson demand, approx-

imate evaluation methods are derived.
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