
Chapter 10

Managing Variety on the Retail Shelf:
Using Household Scanner Panel Data
to Rationalize Assortments

Ravi Anupindi, Sachin Gupta, and M.A. Venkataramanan

1 Introduction

Two fundamental retailer decisions are which items to stock in a category (the

assortment decision) and how much to stock of each item (the inventory decision).

While these decisions have always been key to retailer profitability, they have

received renewed attention because of industry initiatives labeled Efficient

Consumer Response (ECR). Category Management, a component of ECR, empha-

sizes the need to recognize the inter-relatedness (e.g., substitutability) of items

within a category when making decisions. Thus, categories need to be managed as

strategic business units, with an emphasis on total category performance. Point-of-

sale information can potentially play a critical role in providing insights into

consumer behavior to help develop sound category strategies.

Retailers recognize that wider assortments help their business by catering to the

needs of multiple consumer segments (Coughlan et al. 2006), as well as by offering

variety to variety-seeking consumers. However, there are limits to the value of variety.

Adding items with small differences offers little in the way of “real” variety to the

consumer (Boatwright and Nunes 2001), yet adds to costs of operations such as
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administrative costs and cost of warehouse space. The sharp growth of warehouse

clubs and deep discount drug stores in recent years is attributed, in part, to their cost

advantages arising from their limited variety offering. The resultant loss of market

share has re-focussed attention of supermarkets on the need to manage variety. It is

believed that there is substantial potential for lowering supermarket operating costs

without hurting business bymaking store assortmentsmore efficient; see, for example,

a report by the Food Marketing Institute (1993).

Managing retail space entails solving two types of problems. The first is

allocating space to categories, called the inter-category space allocation problem.

The second is allocating space to items within a category or the intra-category
space allocation problem. This second problem is often referred to as the assortment

problem. Ideally, assortment decisions need to incorporate a variety of factors.

On the demand side, one needs to consider the (heterogenous) customer purchase

behavior including substitution patterns when their preferred items are not available

(either temporarily due to stock-out or permanently due to limited assortment),

the stochastic nature of demand arising due to the uncertainty inherent in consumer

choice, the effect of product display on sales, etc. On the supply side, retailers face a

finite shelf-space constraint for a category and incur fixed costs to include items in

the assortment. Further, since limited assortments may have longer term conse-

quences on profitability, a retailer needs to balance current profits with implications

of the assortment on future profits. Finally, such a model for decision making

should be driven by actual data and the solution strategy should be scalable to

address the large problem sizes that any realistic assortment decision would entail.

In this chapter, we outline a modeling framework that incorporates some of the

above features to assist the retailer in determining the optimal subset of items to

carry in a category, from the set currently carried, and the quantity to stock of each

item. We propose the use of household purchase data collected via scanners to

estimate intrinsic preferences of consumers and to infer their substitution patterns.

Such information is key to ensuring that the assortment carried caters to heteroge-

neous consumers’ tastes, while avoiding unnecessary and expensive duplication.

Previous research on the retailer’s assortment problem has typically not modeled

consumer substitution behavior explicitly. Empirical evidence from several studies

suggests that in packaged goods markets, consumers are often willing to substitute a

less preferred item for their (non-available) preferred item. A Food Marketing

Institute survey reports that only 12–18% of shoppers said they would not buy an

item on a shopping trip if their favorite brand-size was not available; the rest

indicated they would be willing to buy another size of the same brand, or switch

brands. A number of other studies (Emmelhainz et al. 1991; Carpenter and

Lehmann 1985; Urban et al. 1984; Gruen et al. 2002) support a similar conclusion.

A 1993 study by Willard Bishop Consulting Ltd. and Information Resources,

Inc. found that when duplicative items were removed, 80% of consumers saw no

difference (Business Week 1996). Other evidence suggests that consumers make

about two-thirds of their purchase decisions about grocery and health-and-beauty
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products while they are in the store (Nielsen Marketing Research 1992). Thus, it

is important to take account of substitution behavior of consumers when rational-

izing assortments.

It is likely that consumers who do not find their preferred item in the store

assortment are not fully satisfied, whether or not they buy another item in

the category. The decision to rationalize assortments needs to take account of the

potential adverse impact on customer retention. Traditional formulations of the

assortment problem typically assume that the retailer is a myopic profit maximizer.

Such formulations disregard the longer-term adverse impact on profits of not satisfy-

ing consumers’ demand for their preferred items. In our proposed formulation, the

retailer’s objective function is a weighted sum of profits and a penalty for disutility

caused to consumers who do not find their preferred items in the assortment.

The rationale for including a penalty is that dissatisfied customers may take their

future business elsewhere, thereby hurting longer term profits, even if they purchase

less preferred items in the current period. Our proposedmodel can be used by a retailer

to balance short term profits and customer disutility when choosing assortments.

Another contrast of our proposed approach with previous research lies in

our accommodation of differences in item preferences between consumers. Most

previous work assumes an aggregate demand model. Aggregate demand specifica-

tions do not allow us to distinguish between the extent of disutility or dissatisfaction

caused by not stocking a particular item to, for example, more versus less loyal

groups of consumers. Clearly this distinction is relevant for a retailer who cares

about retaining customers in the longer run. The existence of consumer heteroge-

neity has been established by a number of previous empirical studies. Our proposed

model allows for completely idiosyncratic patterns of substitution, as well as

disutility due to non-stocking, between consumers.

To demonstrate an empirical application of the proposed model, we estimate

consumer preferences for eight items in the canned tuna category using household

scanner panel data, a commonly available source of market research information.

A hierarchical Bayesian approach is used to estimate an interval scaled measure

of each household’s utility for the eight items, and the household’s price and

promotion sensitivity. The retailer’s decision problem is then solved as an integer

programming problem. Although the problem is large in terms of the number

of decision variables and constraints, we show that it can be solved efficiently.

Our solution reveals that a significant reduction in customer disutility can be

accomplished at the cost of a small reduction in the current period profits.

Our model should be considered as an illustrative first step. While we have

captured the richness of customer heterogeneity, substitution behavior, and the

current vs. future profit tradeoff, we also have made simplifying assumptions on

other aspects of this complex problem. In Sect. 6 we outline several ways to

enhance our proposed model to incorporate these remaining aspects, which we

hope will inform further research in this important field.

The rest of the chapter is organized as follows. In Sect. 2 we review related

research. We discuss the consumer model in Sect. 3. In Sect. 4 we develop an

optimization framework for the assortment decision, discuss special cases and
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some properties of the model. In Sect. 5, we demonstrate an empirical application of

our proposed model using household panel data. We conclude in Sect. 6 with a brief

summary and a discussion of extensions and further research.

2 Literature Review

Two broad streams of literature are relevant to this study—one in marketing, the

other in operations management. Early research in marketing deals with issues of

retail shelf space allocation and is empirical in nature. Corstjens and Doyle (1981)

proposed a model to optimize space allocation across categories, given an overall

store space constraint. Direct and cross space elasticities were measured via a

multiplicative sales response model using cross-sectional data. Their model does

not explicitly include the assortment decision, although allocation of zero space to

an item may be interpreted as exclusion of the item. However, as pointed out by

Borin et al. (1994), the multiplicative sales response model predicts zero sales for a

given category if the space of any of the store’s other categories is set to zero.

Bultez and Naert (1988) and Bultez et al. (1989) model the intra-category space

allocation problem. Space elasticities are measured experimentally with item sales

as the criterion variable. However, the assortment decision is not explicitly

modeled. Borin et al. (1994) incorporate both the space allocation and assortment

decisions in a retailer model. However, this study does not empirically estimate the

demand model. Instead, parameter values are assumed. More recently, van Dijk

et al. (2004) use observed variation in shelf-space allocation across stores to infer

shelf-space elasticities.

The focus of these studies is on allocation of a scarce resource—space—given

that different items show varying responsiveness to space. Thus, emphasis is placed

on methods and data for measurement of space elasticities (own and cross) and on

algorithms to solve the retailer profit maximization problem efficiently. By contrast,

our focus is on estimating consumers’ brand preferences to infer their willingness to

substitute, thereby determining the optimal assortment of items to stock. In the

present study we do not tackle issues of responsiveness of demand to space

allocations, but leave that for future research. The primary emphasis in our work

is motivated by the empirical observation that in most consumer packaged goods

categories, consumers can often be (imperfectly) satisfied by one of several items.

This characteristic of consumer behavior is used in determining optimal

assortments.

Recent empirical findings in the marketing literature provide strong support for

the idea that assortment reductions may be profitable for retailers. Broniarczyk

et al. (1998) conduct controlled lab experiments as well as field experiments in

which assortments were reduced in five categories in convenience stores. They

measure consumer perceptions of variety, which are shown to mediate store choice.
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A key finding is that elimination of low-selling items had little or no impact on

shoppers’ perceptions of variety, as long as favorite items were available and

category shelf space was held constant.

Boatwright and Nunes (2001) analyze data from a natural experiment conducted

by an online grocer, in which 94% of the categories experienced dramatic reduc-

tions in the number of SKUs offered. Sales increased an average of 11% across the

42 categories examined.1 An important finding especially relevant to our work is

that customers who lose their favorite item when the assortment is reduced are

significantly less likely to purchase in the category on a future purchase occasion.

Borle et al. (2005) use household panel data of the same online grocer that

Boatwright and Nunes study to analyze the effects of assortment reductions in

several categories on overall store sales. They find that although the effect is

positive in several categories, overall store sales are reduced due to decreases in

the number of store visits and the size of the shopping basket. To our knowledge,

this is the first study that demonstrates that customer retention, i.e., customers’

repeat store visit behavior, is adversely affected by reductions in category

assortments.

Sloot et al. (2006) distinguish between short and long term sales effects of a 25%

item reduction in the assortment in one category. They find that while short-term

category sales suffer a sharp reduction, long-term category sales display only a

weak negative effect.

The findings of both Broniarczyk et al. (1998) and Boatwright and Nunes (2001)

highlight that the impact of assortment reductions is heterogeneous across con-

sumers, depending on the extent of loyalty exhibited towards the lost item. Borle

et al. (2005) show conclusively that assortment reductions may reduce a shopper’s

probability of returning to this store on the next shopping visit. Although our data

do not permit us to directly model the effects of assortment availability on con-

sumers’ store choice decisions, in our assortment optimization model we formalize

the idea by including in the retailer’s objective function the disutility incurred by

consumers as a result of not finding their preferred items in the available assort-

ment. This disutility is idiosyncratic to each consumer, and serves as a proxy for the

reduced profits resulting from the lower probability of consumers choosing this

retailer in future.

In the operations literature, work on assortment problems was motivated by

the textile industry where decisions regarding which sizes (e.g., in-seam lengths

for slacks) to carry had to be made. Pentico (1974) considers the single dimension

assortment problem with probabilistic demands, with assumptions about substitution

behavior of consumers. Pentico (1988) extends the earlier work to two-dimensional

assortment problems with deterministic demands. Other related work deals with

determining optimal stock levels for multiple items given stochastic demands and a

pattern of substitution based on non-availability; see, for example, Bassok et al. (1997)

1 Part of the increase is attributed to enhanced utility due to reduced clutter in the category. Our

model does not allow for such an effect.
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and the references therein. In this work, however, substitution is determined by the

supplier firm and not by the buyer or consumer.

van Ryzin and Mahajan (1999) study a stochastic single period assortment

planning problem under a Multinomial Logit (MNL) Choice model. A consumer’s

choice depends on the variants that the store carries and they assume that consumers

do not substitute in the event of a stock-out. Using a newsvendor framework with

identical exogenous retail prices across all variants, they show that the optimal

assortment always consists of a certain number of the most “popular” products.

They also illustrate that retail prices and profits increase when consumer prefer-

ences are more “fashion” oriented. In a follow-up paper, Mahajan and van

Ryzin (2001) incorporate both assortment-based as well as stock-out based substi-

tution behavior and present a stochastic sample path optimization method to solve

for the optimal assortment. In contrast to these papers that assume a MNL model of

choice, Gaur and Honhon (2006) use a locational choice model to study the

assortment problem.

Smith and Agrawal (2000) study the assortment planning problem using a general

probabilisticmodel of demand allowing for substitution behavior. Using a substitution

matrix, they estimate the derived demand for a given assortment. They then present a

methodology to determine the assortment and stocking levels jointly when retailers

incur a fixed cost for carrying an item in stock as well as the classical inventory and

shortage costs for excess inventory and shortage at the end of the period.

Some recent papers have focused on jointly addressing demand estimation as

well as assortment planning. Chong et al. (2001) present a category assortment

planning problem. Consumer choice is represented as a combination of a category-

purchase-incidence model and a brand-share model. While the former predicts the

probability of an individual consumer’s purchase from a category on a given

shopping trip, the latter predicts which brand will be purchased. The optimization

problem then determines the optimal number of facings for the various products to

maximize profits, subject to a shelf space constraint. They illustrate their method-

ology using data from five stores in eight food categories.

Kok and Fisher (2004) present a demand estimation as well as an assortment

optimization model. Using cross-sectional data across stores that carry different

assortments, they estimate the substitution behavior of a homogenous set of cus-

tomers. Using a probabilistic model of choice, they posit an assortment optimiza-

tion model and develop heuristics to determine the number of facings of a particular

product that a retailer should carry. They apply their method to a supermarket chain

in the Netherlands and illustrate that their methodology for assortment planning

potentially leads to a 50% increase in profits.

Miller et al. (2006) propose an approach to optimize retail assortments with

demand specified as a multinomial logit model. Consumers’ utilities for products

are estimated via a conjoint approach wherein consumer heterogeneity is allowed.

In an empirical application they find that there is a significant negative impact on

profits when heterogeneous consumers are assumed to be homogeneous.

Like the papers just discussed, our chapter focuses on a joint demand estimation

and assortment planning problem. Demand is modeled at the household level using
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a discrete choice framework, specifically a probit model. Households are modeled

as heterogeneous in unobserved utility function parameters, and the heterogeneity

distribution is estimated using household scanner panel data. Thereby, posterior

estimates of households’ preference are derived.

The formulation of our optimization model is similar to the one studied by Dobson

and Kalish (1988, 1993) in the context of positioning and pricing a product line.

They presentwelfare and profitmaximization formulations for positioning and pricing

respectively. Our formulation is also similar to McBride and Zufryden (1988) who

apply integer programming techniques to the optimal product line selection problem.

Their model formulation recognizes heterogeneity in consumer preferences.

Our approach of incorporating consumer disutility into the retailer’s objective

function is, however, more general than that of Dobson and Kalish (1993) orMcBride

and Zufryden (1988). The idea of penalizing the objective function for lost goodwill

due to non-availability of stock is not new. In stochastic inventory theory (Arrow

et al. 1958; Lee andNahmias 1994) a penalty cost for shortages is routinely included in

the objective function. However, to our knowledge, this chapter is the first to

operationalize the penalty based on disutilities estimated from market-place data.

A key point of distinction between our paper and most of the literature discussed

previously is with respect to the model of consumer heterogeneity. The classical

multinomial logit (MNL) model as used in van Ryzin and Mahajan (1999) and

Mahajan and van Ryzin (2001) allows for heterogeneity between consumers only

via the stochastic term in the random utility. However, these differences between

consumers are unobservable to the firm a priori, since the expected utility of a

product is identical across consumers. This is why the model is sometimes referred

to as the “homogeneous” MNL model. By contrast, we explicitly incorporate

differences between consumers in the expected utility via a distributional assump-

tion on the utility function parameters. The distribution of these parameters is then

empirically estimated and can be used when determining the optimal assortment.

Our approach is similar in theory to conjoint models (e.g., Miller et al. 2006)

in which idiosyncratic utility functions are estimated.

3 Consumer Model

Our model of the retailer’s decision problem of which items to carry and how much

to carry, discussed at length in the next section, assumes that each consumer

chooses that item from the available assortment which maximizes the consumer’s

utility. Solving this problem requires empirical estimates of consumers’ prefer-

ences. We discuss in this section our approach to estimate consumer preferences.

Traditionally, data on consumer preferences have been collected via surveys as

stated preferences (ordinal- or interval-scaled), or trade-offs that individuals would

be willing to make on particular attributes (e.g., conjoint studies). An alternative

approach is revealed preference data as obtained from reported or observed brand

choices of consumers in actual purchase situations. For most product categories
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in the grocery industry these data are readily available from syndicated sources

(e.g., household panels of Nielsen and Information Resources Inc.). The primary

advantage of stated preference data is the ability to measure preferences for items

currently not stocked (in particular, for new products). The major disadvantages

of stated preference data relative to brand choice data are potentially lower validity

of the data, and often substantially higher cost of data gathering.

Since the focus of our empirical work is on assortment decisions for supermarket

product categories, we consider a model to estimate preferences that can be applied

to observed brand choices of consumers—a multinomial probit model of brand

choice. The probit model can be derived by assuming that the utility a consumer

obtains from purchasing an item in the category is composed of a deterministic

component and a stochastic component. The stochastic component represents

unobserved (to the researcher) components of utility. In the typical formulation of

the brand choice model, the utility of item j, j¼ 1, 2, . . ., J to consumer i on occasion

t is given by Uijt, thus: Uijt ¼ ~V ijt þ εijt, εijt � Nð0,ΣÞ where

~V ijt ¼ ~α ij � βipijt þ ~γ iXijt ð10:1Þ

where for consumer i and item j, ~α ij is the intrinsic utility or valuation, pijt is
the price of the item on occasion t, Xijt represents other attributes of the item (such

as in-store promotions) on that occasion, and βi and ~γ i are parameters. The

assumption that the stochastic term has a multivariate normal distribution leads to

the multinomial probit model of brand choice. We use a diagonal covariance

structure εijt � Nð0,ΣÞ where Σ is a J � J diagonal matrix, coupled with the

identifying restriction that the first diagonal element is one. The choice of diagonal

covariance structure simplifies the calculation of choice probabilities, while obvi-

ating the restrictive IIA property associated with a scalar covariance matrix, as well

as with a multinomial logit model.

Note that the parameters of the utility function are individual specific, thus

allowing for heterogeneity in both the intrinsic preferences and the effects of

price and other attributes. As we demonstrate subsequently, this characteristic of

the model has important implications for the optimal assortment decision of the

retailer. The objective of model estimation is to recover the unknown parameters of

the deterministic component of the utility function. Data required to estimate the

model are observations of consumer choices as well as prices and in-store promo-

tional conditions on each purchase occasion. Such information is typically available

in household scanner panel data.

We model heterogeneity by specifying a series of conditional distributions in a

Hierarchical Bayesian fashion. The reader is referred to Imai and van Dyck (2005)

and McCullogh and Rossi (1994) for details of the estimation approach. A key

benefit of using this approach is that it yields posterior estimates of utility function

parameters at the individual level. These estimated utility functions are inputs into

the retailer’s optimization problem.
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To obtain item-specific intrinsic utilities, we assume that prices are determined

exogenously.2 Furthermore, for simplification they are assumed to remain constant

at their observed mean level pj. We also assume the in-store promotion variables

are fixed at their average levels Xj, again for simplification. Since utility is linear

in prices, we divide utilities by the estimated price coefficient βi (Kalish and

Nelson 1991) to obtain a $-metric utility, thus:

Vij ¼ αij � pj þ γiXj ð10:2Þ

where αij ¼ ~α ij=βi, γi ¼ ~γ i=βi and pj is the (constant) price of item j.3

The difference in $-utility between two items may be considered the cost of

substituting one item for the other for the consumer; see Krishna (1992) and Bawa

and Shoemaker (1987) for a similar notion of substitution costs. An alternative

interpretation of this difference is the reduction in price of the less preferred item

necessary to make the consumer indifferent between the two items.

We assume that a consumer is willing to substitute lower utility items when

higher utility items are not carried in the retail assortment. This assumption is

strongly supported by empirical studies (Urban et al. 1984; Emmelhainz et al. 1991).

The order of substitution is described by the rank-ordering of estimated preferences

for items. When such substitution occurs, however, the consumer is assumed to

incur a disutility equal to the difference in $-metric of intrinsic utility between the

most preferred item in the category and the item bought (i.e., the substitute item).

Empirical evidence also suggests that consumers may be willing to incur disutility

due to downward substitution only upto a point. Below this point they may be

unwilling to substitute and may choose to either postpone purchasing in the category

or purchase at a different store (Borle et al. 2005). In an ideal setting, one would

estimate the utility of a no-purchase decision and expect that consumerswill bewilling

to substitute items as long as the utility of these items is above the utility for

no-purchase. However, in the form they are currently available, household scanner

panel data do not allow empirical estimation of the no-purchase threshold of house-

holds. Thus, in the subsequent empirical illustrationwe posit alternatemechanisms for

operationalizing the no-purchase decision; we outline some options in Sect. 4.2.

Since the vector of intrinsic brand utilities is unique to each consumer, our

consumer model allows completely idiosyncratic patterns of substitution. Not only

is the highest preference brand allowed to be different across consumers, consumers

who have a given brand as the most preferred may substitute a different brand in the

event the most preferred item is not carried in the assortment. Such heterogeneity in

substitution behavior between consumers has been documented in empirical

2 In Sect. 6 of the chapter, as future research, we discuss the possibility of extending the model to

determine optimal prices as well.
3 The transformation of utilities by dividing by the price coefficient also serves to remove the

influence of the unidentified scale factor that confounds the vector of parameter estimates (Swait

and Louviere 1993).
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studies (Emmelhainz et al. 1991). Furthermore, since we obtain an interval-scaled

measure of preference, consumers who have exactly the same rank-ordering of

brand preferences may incur differing amounts of disutilities due to non-availability

of the most preferred item. This allows us to capture differences in intensities of

brand preferences between consumers (e.g., loyals vs. switchers) that are relevant

for the assortment and inventory decision.

To summarize, our model of the process consumers follow to choose an item to

purchase in a category after entering the store is as follows. Consumers have prefer-

ences for various items in a category; these preferences vary from consumer to

consumer. A consumer observes the available assortments (and the prices of items)

and picks the highest utility item from those available or choses not to purchase. The

exact operationalization of the no-purchase decision is discussed in the next section.

To use the consumer demand model in the retailer optimization problem, we

revert to the utility measures Vij in (10.2) (at constant prices) and use the estimated

utilities bVij. Disutilities form an important component of the retailer’s objective

function in our model, as detailed in the subsequent section. Ideally, we should use

the random utility function Uijt shown earlier. However, since Uijt contains both a

deterministic and a stochastic component, its use will lead to a potentially complex

stochastic programming formulation. While accurate, this formulation does con-

found the impact of heterogeneity and probabilistic choice on the assortment

decision. Instead, to focus exclusively on the heterogenous model of consumer

behavior, we use only the deterministic component of the utility given by Vijt. Our

modeling choice is not without precedence; see Dobson and Kalish (1988, 1993)

and McBride and Zufryden (1988). We comment on alternative approaches that

could incorporate stochastic choice in the concluding section.

4 The Retailer Assortment and Stocking Problem

In this section, we describe a model to solve the retailer’s assortment and stocking

problem. We first develop a basic model that incorporates profits and disutility.

We then discuss some special cases and properties of the formulation.

4.1 Basic Formulation

The retailer’s problem can be defined as follows: We are given a set of N items

indexed by j. There is a fixed cost of stocking each item. Consumers belong to one

of the s index segments,4 s 2 f1, � � � , Sg. There exists a (monetary) utility

4 The consumer model in Sect. 3 was developed assuming each consumer is a separate segment,

i.e., the number of consumers in each segment is one. Other models of brand choice that provide

estimates for “segments” of consumers could be employed, such as formulations of Kamakura and

Russell (1989) and Chintagunta et al. (1991).
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measurement, Vsj, for every segment s for every item j (see Sect. 3). As noted

previously, for solving the retailer’s optimization problem we assume that prices

and promotional activities are held constant at their average levels. As a conse-

quence, item utilities are time invariant. A consumer (segment) chooses from all

available items the one that maximizes its utility.5 The retailer’s problem is to select

an assortment and determine the stock for items in the assortment to maximize

profits. The profit function can be written as:

PRðx, yÞ ¼
X
j

X
s

ðpj � cjÞxsjns � Kjyj

" #
ð10:3Þ

where pj is the per unit (regular) price of item j, cj is the per unit variable cost of

stocking item j, xsj is a 0–1 variable which takes on a value of one if segment

s customers are assigned to item j and zero otherwise (a decision variable),6 ns is the
number of consumers in segment s, Kj is the fixed cost of stocking item j, and yj is a
0–1 decision variable which takes the value one if item j is stocked and zero

otherwise. Finally, x is a S � N + 1 matrix of xsj and y is an N + 1-vector of yj.
We let no-purchase decision be a “product” that is always available, thus expanding

the product space to N + 1; further, p0 ¼ c0 ¼ K0 ¼ 0 and y0¼ 1.

Typically a retailer may do assortment planning for its stores twice a year; thus the

planning horizon for assortments is about 6months. In our formulation, we have not

specified any planning horizon explicitly. The data can be scaled to accommodate any

planning horizon.We need to, however, consider the fixed costs—which include costs

relating to sourcing, supplier selection, negotiations, etc.,—appropriate for the plan-

ning horizon. Due to fixed costs of carrying an item in the assortment, not all items

may be stocked. As a consequence, the following situations are possible:

1. A customer segment buys a less preferred item because its most preferred item is

not available.

2. A customer segment does not purchase at all because no satisfactory item is

available.

In either case the customer incurs a disutility. We postulate that such disutility

adversely affects the customer’s likelihood of repurchasing at this store, thereby

affecting long-run profits.7 We propose the following measure of customer disutility:

5We assume, for simplification, that each consumer buys exactly one unit in each restocking

period. This assumption can be relaxed by weighting each consumer by the number of units

bought. In general, the number of units bought by a consumer within any stocking period may

be uncertain. Incorporating this uncertainty will result in a stochastic programming formulation.

We elaborate upon this idea in the discussion of future work in Sect. 6.
6 In the optimization model, the item “assigned” to a consumer will be the one that maximizes the

consumer’s utility. Thus, consumers will in effect self-select their best alternative from the

available assortment.
7 Notice that this disutility is due to non-stocking of items and not due to stock-out of an item.
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DUðxÞ ¼
X
s

ns
X
k

fðVsj1 � VskÞxskg þ ðVsj1 � Vsj0Þð1�
X
k

xskÞ
" #

ð10:4Þ

where, Vsj1 ¼ maxjfVsjg, and Vsj0 is the no-purchase utility, as discussed later

in Sect. 4.2.

For those customers who are assigned an item k, the disutility is the difference

between the utility of item k and their most preferred item.8 Similarly, customers

who do not purchase are also dissatisfied. The disutility incurred by these customers

is the difference in utility between their highest utility and their utility for

no-purchase. Clearly, customers who find their most preferred item in the assort-

ment do not incur any disutility.

We propose that the overall objective function for a retailer should be a weighted

combination of profits as measured by (10.3) and disutility as measured by (10.4).

The extent to which a retailer should weight consumer disutility will depend on the

product category. Customer dissatisfaction with some categories is likely to have a

larger adverse impact on store choice. In the context of pricing, for example, Harris

and McPartland (1993) classify categories into “traffic generators” (i.e., affect store

choice) and others. We model this by taking a convex combination of the profit and

disutility functions. Thus the objective function of the retailer is:

Πðx, y,wcÞ ¼ ð1� wcÞPRðx, yÞ � wcDUðxÞ ð10:5Þ

where 0�wc� 1. wc may be interpreted as a control or policy parameter whose

value is to be subjectively determined by the decision maker.9

The optimization problem of the retailer is then written as follows:

ðP1Þmax
x , y

Πðx, y,wcÞ

such that, X
k

Vskxsk � Vsjyj 8s, j ð10:6aÞ

8 Dissatisfaction measured as sum across segments of the differences in utilities implies that a large

number of small disutilities is equivalent to a small number of large disutilities; e.g., two segments

with one unit of disutility each is equivalent to one segment (of same size) with two units of

disutility. This may not be desirable since larger differences in utilities signify consumers loyal to
certain brands, and smaller differences in utilities signify switchers. A non-linear (say, e.g.,

exponential) function of difference in utilities will allow us to distinguish between loyals and

switchers.
9 A similar objective function (weighted combination of profits and consumer utility) was also

considered by Little and Shapiro (1980) in the context of pricing nonfeatured products in

supermarkets. Similarly, there is extensive literature on bi-criterion optimization problems; see,

for example, French and Ruiz-Diaz (1983).
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X
j

xsj � 1 8s ð10:6bÞ

xsj � yj 8s, j ð10:6cÞ
xsj ¼ 0, 1 8s, j ð10:6dÞ
yj ¼ 0, 1 8j 6¼ 0 ð10:6eÞ
y0 ¼ 1 ð10:6fÞ

Constraints (10.6a) ensure that of the items stocked, a customer is assigned

his/her most preferred item. Constraints (10.6b) ensure that segment s is assigned to
at most one item; finally, constraints (10.6c) ensure that only items that are offered

are chosen by the customers.

At first glance it may appear that incorporating consumer disutility through

DU(� ) in the objective function makes constraints (10.6a) redundant. The con-

straints are redundant (or trivially satisfied) only when a retailer sets wc¼ 1. 0.

Otherwise, in the absence of constraints (10.6a) it is possible that a retailer may

assign a less preferred item (with a higher contribution margin) to a consumer even

though a more preferred item (with a lower contribution margin) is stocked, albeit

for a different consumer. Such an assignment is problematic from an implementa-

tion viewpoint in the context of supermarkets since a consumer walks into a store

and necessarily picks his most preferred item if it is available. Constraints (10.6a)

ensure that the retailer incorporates this fact into its decision making.

4.2 Modeling No Purchase

As discussed previously, a customer may decide to not purchase in the category if

its preferred item is not stocked. Since scanner data do not report non-purchasing on

account of unavailability in the assortment, we model this outcome and assume its

value.10 There are at least two ways one could model no purchase in the optimiza-

tion problem. For a customer segment s, first rank order the utilities Vsj in decreas-

ing order to write:

Vsj1 � Vsj2 � � � � � VsjN :

10 Category purchase incidence is frequently modeled using scanner data (e.g. Bucklin and

Gupta 1992). However, the consumers’ decision is considered to be one of choosing to buy one

of the items in the assortment at today’s prices and promotions, versus postponing the purchase

decision to a future occasion when prices may be better, and relying meanwhile on available

household inventory for consumption. Thus, the impact of assortment unavailability is not

modeled.
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Then,

1. For all customer segments s, assume that customers do not purchase if their most

preferred d (exogenously specified) items are not stocked (see Smith and

Agrawal 2000 for a similar operationalization). We call d the depth of no
purchase. Clearly d2 [1,N]. An alternate interpretation of d is that it captures

the (store) switching cost of a consumer; a large d implies high switching cost.

Intuitively, a large d implies that a customer is willing to substitute less preferred

items when more preferred items are not stocked rather than not purchase,

regardless of the magnitude of disutility incurred. Under this operationalization,

we set the no-purchase utilityVsj0 ¼ Vsjdþ1
if d<N andVsj0 ¼ VsjN � ε (for some

ε> 0) if d¼N
2. Alternately, let T be an exogenously specified threshold level of disutility that

signifies no purchase. Suppose there exists an item jk+1 for segment s, such that

Vsj1 � Vsjkþ1
� T. Then we infer that a customer in segment swill not purchase if

items j1 through jk are not available in the assortment. Under this operationa-

lization, we set the no-purchase utility Vsj0 ¼ Vsjkþ1
.

While either formulation is easily incorporated in our model, in this chapter,

we use the former approach to model no-purchase. Later, we will analyze the

sensitivity of the assortment solution to the depth of no purchase, d. To incorporate
the depth of no purchase into problem P1, we modify constraint (10.6a) as follows.

For each customer segment, s, define an order set consisting of d elements

N d
s ¼ fj1, j2, . . . , jd, j0jVsj1 � Vsj2 � Vsjd � Vsj0g. We then rewrite (10.6a) as:

Xd
k¼0

Vsjk xsjk � Vsji yji for ji 2 N d
s and 8s ð10:6a0Þ

Furthermore, to ensure that a customer is assigned a product within their

first d choices or no-purchase, we need to modify constraint (10.6c) to:

Xd
j¼0

xsj � 1 8s ð10:6b10Þ

XN
j¼dþ1

xsj � 0 8s ð10:6b20Þ

4.3 Reformulation

In this section we reformulate problem (P1), specifically constraint (10.6a0) which
facilitates solution of (P1) as a linear program when integrality constraints on xsj are
relaxed.We observe that constraint set (10.6b)–(10.6e) is of the same form as that for
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an uncapacitated plant/warehouse location problem (Cornuejols et al. 1977). We

now reformulate constraint set (10.6a0) that results in a tighter formulation for (P1).

Observe that (10.6a0) ensures that a customer segment is assigned its most preferred

product amongst the ones stocked. Thus it merely depends on the rank order of

products for any given consumer segment and not on the interval scaled utilities as

measured by Vsj. We exploit this structure to replace (10.6a0) with.

1�
Xd
k¼iþ1

xsjk � yji for ji 2 N d
s and 8s ð10:6a00Þ

We also relax the constraints on xsj in (10.6d) as follows:.

xsj � 1 ð10:6d0Þ

Proposition 4.1. Problem (P1) with (10.6a00) set of constraints is at least as tight a
formulation as (P1) with (10.6a0) set of constraints. Furthermore the relaxation of
integrality constraints to (10.6a0) still guarantees an integer solution for xsj.

A proof is provided in the appendix.

Thus the new constraint set (10.6a00) achieves the same results as (10.6a0), i.e.,
ensuring that of the items stocked a customer segment is assigned its most preferred

item. Furthermore, this reformulation does not increase the number of constraints.

Finally, the relaxation guarantees an integer solution. In the sequel we will use

(P1) with (10.6a00) and (10.6d0).

4.4 Discussion of the Optimization Model
and Some Special Cases

Readers familiar with the literature on plant location will see that problem (P1) has

an embedded uncapacitated plant location model (when wc¼ 0, and con-

straints (10.6a) are relaxed). This problem is extensively researched by Cornuejols

et al. (1977) and they show that the problem is NP-hard. Hence problem (P1) is also

NP-hard. Our computational study shows that similar to the uncapacitated plant

location model (Erlenkotter 1978), the solution to problem (P1) is easily obtained

for problem sizes (relatively small) of interest in this study. Large scale models

comprising several products in a product line and a larger number of customer

segments will call for development of heuristics.

We now consider a few special cases of Problem P1. First, we consider the

situation when a retailer places zero weight on the disutility incurred by the

consumers due to his assortment decision; we shall identify a retailer with wc¼ 0. 0

as a myopic retailer who maximizes just short-term profits.
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To highlight the need to model “no purchase”, consider the myopic retailer

who solves P1 with wc¼ 0. 0 and with a depth of no purchase d<N. Recall
that as d increases, consumers are more willing to substitute to the available

items in the assortment and less willing to not purchase. We then observe that

in a model without a no-purchase decision, a myopic retailer will stock only

one product. Effectively, we solve problem P1 with wc¼ 0. 0 and d¼N; that

is, the retailer does not care about disutilities incurred by the consumers and

all consumers purchase some product. This implies that the total demand is

unaffected by the choice of items available. Then a retailer carries just one product

j∗ ¼ argmaxjfðpj � cjÞns � Kjg which maximizes his profit.

We would like to be able to study the behavior of the assortment decision with

respect to parameters like weight on disutility (wc), depth of no-purchase (d ),
contribution margins ( pj � cj), etc. In general, (P1) is a complex optimization

problem and usually does not permit many comparative statics results. Analytically,

we were unable to get any general sensitivity results with respect to pj, wc and d.
The main difficulty appears to be the very general formulation of the heterogeneity

of consumers. Any change in these parameters affects the substitution pattern

through change in the interval scaled utilities and hence the demand patterns.

The obvious case is when profit margins increase due to decrease in marginal

costs. This increases the contribution margin and with fixed pj, d and wc, the retailer

will find it optimal to increase his assortment sizes, since for d<N it may help him

satisfy more consumers and/or decrease disutility if wc> 0.

5 Computational Study

5.1 Description of Household Scanner Panel Data

The data were collected by the AC Nielsen Company and are available for a 2 year

period. A panel of households provided information on their purchasing in several

categories. These data were supplemented with data on prices, in-store displays,

and feature advertising collected from the supermarkets in the city. We include

purchases of the eight largest brand-sizes of canned tuna made by 1,097 panelist

households in our estimation sample. These eight items account for approximately

90% of category volume. Brand names are disguised to meet confidentiality

requirements of the data provider.

In Table 10.1 we provide descriptive statistics of the data. Besides shelf price, we

include in-store displays and retailer feature advertising in the choice model.

Table 10.1 indicates that there is considerable variation in shelf prices and promotional

activity between brands, highlighting the need to control for the effects of these

variables when measuring intrinsic brand preference or valuation.

Bayesian posterior estimates of the model parameters are obtained for each

household using the approaches of Imai and van Dyck (2005) and McCullogh

and Rossi (1994). Table 10.2 contains the mean value of the estimated posterior

estimates. The coefficients of price, display, and feature, have the expected signs.
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We use the estimated $-metric intrinsic preferences for items Vij to infer patterns

of primary demand and likely substitution between items. We computed optimal

assortments under two separate assumptions about consumers’ willingness to

substitute. First we assume that consumers are willing to make one substitution.

That is, they will not purchase in the category if their first preference and second

preference brands are not available (i.e., d¼ 2). Therefore, we focus on the top two

brands for each consumer. Note that customers who do not find their most preferred

brand but do find their second-most-preferred brand still incur a disutility, which

our decision model incorporates. Next, we also solved for the optimal assortment

under the assumption that consumers are willing to substitute twice (i.e., d¼ 3).

In the subsequent discussion we describe the solution under the d¼ 2 assumption in

detail and thereafter briefly talk about the d¼ 3 case.

Table 10.3 shows the cross classification of the first and second preference

brands for the sample of 1,097 consumers.11 Row total Ni. indicates the number

Table 10.1 Descriptive

statistics of data Item

Average price

(cents/oz.)

Display

(% occasions)

Feature

(% occasions)

1 12.3 3.9 25.9

2 21.8 0 1.7

3 12.0 4.0 29.9

4 11.5 8.7 24.4

5 15.1 0 0

6 24.2 0 0

7 11.3 4.3 24.4

8 9.8 4.2 13.7

Table 10.2 Mean value

of household parameter

estimates of probit model

demand

Mean brand specific constants

Item 1 0.815

Item 2 2.350

Item 3 0.494

Item 4 1.030

Item 5 0.267

Item 6 2.885

Item 7 �0.273

Price ($/oz.) �26.882

Display 0.597

Feature 0.163

11Note that only the rank ordering of preferences is used to construct Table 10.3 to illustrate the

nature of substitution between items. The retailer optimization problem uses interval-scaled values

of preferences.
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of consumers whose first preference brand is brand i. Similarly, column total N. j is

the number of consumers whose second preference brand is brand j. Each cell entry
in the table denotes the percentage of Ni. consumers who have brand j as their

second preference brand.

The row totals are indicative of primary demands for items. For example, it is

clear that items 3, 7 and 8 are the first-preference products of a large number

of consumers, while none of the consumers in our sample prefer items 2 and 6.

Similarly, items 1, 4, and 5 have relatively weak primary demand. Column totals

indicate whether items are acceptable as substitutes. Item 1, for example, is the

brand of second choice for a large number of consumers (213) as compared with

its primary demand (60). A similar preference pattern is evident for items 3 and 4.

Item 8 has the opposite kind of preference pattern, with large number of con-

sumers (352) preferring it in first place while only 143 prefer it in second place.

Large cell entries indicate items that are more substitutable. For example, we see

that 71.7% of consumers who have item 1 as their first preference have item 3 as

their second preference. Conversely, 69.7% of those who prefer item 3 are willing

to accept item 1. There is some evidence of asymmetries in patterns of substitu-

tion between brands. For instance, the entry in row 5 and column 8 is 50.0% while

that in row 8 and column 5 is only 13.6%. These data further confirm the

existence of substantial heterogeneity in patterns of substitution between

consumers.

5.2 Solution Technique for Assortment Problem

We used LINDO, a commercial linear programming package, to solve the

reformulated optimization model. The problems are generated from the preference,

price, and cost data using a program written in C. This program allows the decision

maker to vary the weight wc (weight on consumer welfare and profit objectives) and

d (depth of no purchase) to evaluate various solutions.

For our computational study we solved 80 instances of the problem. We varied

the weight wc from 0.01 to 0.99 with d¼ 2 (40 problems) and d¼ 3 (40 problems)

for two different fixed costs. On average the problem took 32 s of cpu time, with

times ranging from 20 to 48 s. Based on our computational times it seems appro-

priate to solve this problem to obtain the optimal solution using a commercial

package. Specialized implementation and heuristics may be necessary for larger

problems if the computational times become prohibitive.

5.3 Optimal Assortment

To solve the retailer optimization problem (P1), we need estimates of fixed costs

(Kj), contribution margins ( pj � cj), and of wc, the weight placed by the retailer on

customer disutility relative to current period profits. We did not have access to real
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cost and contribution data for the market for which consumer data were available.

For the empirical illustration, we assume values of these parameters as follows.

Retail contribution margins are assumed to be 30% of the average retail price of the

item. Thus, items can be ordered in terms of margin based on the average prices

shown in Table 10.1. We examine two different levels of fixed costs in our

illustrations: $1 per re-stocking period and $5 per stocking period. These levels

of fixed costs ensure that at least one item is unprofitable to carry based on its

primary demand. We explore the impact of varying wc (over the space 0 to 0.99 in

small steps) on the optimal assortment, profits and customer disutility.12

Case 1: Fixed Cost is $1 per item per stocking period

In Table 10.4 we show changes in the optimal assortment of items, customer

disutility, and optimal profits as the weight on disutility in the objective function

(wc) is increased from 0 to 0.99. Note that items 2 and 6 are never included in the

optimal assortment, regardless of the value of wc, because of the pattern of first

and second preferences discussed previously. When wc¼ 0, the problem reduces

to the pure profit maximization problem of a myopic retailer. Thus, the retailer

should carry only those products whose contribution margin exceeds the fixed cost.

The demand for a product, given an assortment, is the sum of its primary demand,

and spillover demand from items not carried. The solution to the pure profit

maximization problem is to carry four items (item numbers 1, 3, 5, and 7).

Table 10.1 shows that products 1, 3, and 5 are the highest margin products

(after products 6 and 2). Although item 4 has higher margin than item 7, item 7 is

included in the optimal assortment instead of item 4 because of its large primary

demand (354 consumers) relative to item 4 (88 consumers). When a weight of 0.03

is placed on disutility we find that item 4 is also included in the assortment now.

As noted previously, item 4 has low primary demand, but is acceptable as a

Table 10.4 Optimal assortment and resulting disutility and profits (fixed cost ¼ $1)

Weight on

disutility (wc) Disutility Profit

# customers

not served Optimal assortment

0.000 85.83 34.50 19 1, 3, 5, 7

0.010 85.83 34.50 19 1, 3, 5, 7

0.030 69.62 34.17 0 1, 3, 4, 5, 7

0.040 20.38 32.64 13 3, 7, 8

0.050 4.45 31.93 7 3, 4, 7, 8

0.200 2.27 31.60 0 3, 4, 5, 7, 8

0.300–0.990 0.00 30.72 0 1, 3, 4, 5, 7, 8

12 For the illustration here we assume that the total market consists of the 1,097 consumers in our

sample.
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substitute by a large number of customers. Nineteen customers who were previ-

ously not served at all now find an acceptable product to buy. Moreover, with this

assortment profits are slightly lower, but disutility is significantly reduced. This

suggests that profit as a function of assortment carried is quite flat near the

maximum. The introduction of a second criterion (i.e., disutility) into the objective

function helps us to select the assortment that delivers close to maximum

profits while reducing disutility. If customer disutility influences future store traffic

and hence long-run profits, the results presented help the decision maker balance

short-run with long-run profits.

As wc is increased further, we find that the number of items in the optimal

assortment decreases and then increases. At wc¼ 0. 040 the optimal assortment

shrinks from {1,3,4,5,7} to {3,7,8}. The inclusion of item 8 is probably explained

by its large primary demand (352 customers), which implies that when it is omitted

from the assortment, large disutility is incurred. Further, half of the customers who

prefer item 5 find item 8 acceptable. At wc¼ 0. 050 the optimal assortment expands

to include item 4 once again. At wc¼ 0. 30 the optimal assortment expands to

include all six products, other than items 2 and 6.

Note that we observe two kinds of non-monotonicities in the optimal behavior

with increases in wc. One, the number of items in the optimal assortment expands

and then shrinks. Two, certain items (such as 4 and 1) enter the optimal assortment,

then get dropped, and then get re-included. Such non-monotonic behavior of the

optimal assortment reinforces the need for a decision support model for retail

assortment decisions.

Case 2: Fixed Cost is $5 per item per stocking period

In Table 10.5 we show the optimal assortment and associated profits and disutility.

Note that in the pure profit maximization case, 155 customers are not served and

disutility incurred is quite high. Placing a weight of 0.03 on disutility expands the

optimal assortment to include product 8 in addition to items 3 and 7. As a conse-

quence, profits drop. However, the number of customers served increases signifi-

cantly and disutility drops sharply.

A distinguishing feature of the optimal assortment in Case 2, relative to Case 1, is

that with increase in wc the number of items in the optimal assortment always

increases. Furthermore, once an item enters the optimal assortment it stays in the

Table 10.5 Optimal assortment and resulting disutility and profits (fixed cost ¼ $5)

Weight on disutility (wc) Disutility Profit

# customers

not served Optimal assortment

0.000 95.92 22.72 155 3, 7

0.010 95.92 22.72 155 3, 7

0.030 20.38 20.64 13 3, 7, 8

0.300 4.45 15.93 7 3, 4, 7, 8

0.700–0.990 0.00 6.72 0 1, 3, 4, 5, 7, 8
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assortment with increases in wc. We conjecture that the high fixed cost may

cause such monotonic behavior of the optimal assortment.

Results in the d¼ 3 case are entirely consistent with the results for the d¼ 2

case with some differences that are intuitive. For reasons of space we do not show

detailed results. At each level of wc, we find that optimal profits are at least as

large in the d¼ 3 case since consumers are assumed to be more willing to

substitute to less-preferred products. As a result, the spillover demand to any

product from items not carried is no lower in this case than in the d¼ 2 case.

Further, disutility is at least as large in the d¼ 3 case. When the fixed cost per item

is $1, the optimal assortment changes non-monotonically with increases in wc.

When the fixed cost is $5, on the other hand, the optimal assortment changes

monotonically.

To deduce further inferences, we ran the model for both cases of fixed costs

considered previously (K¼ 1 and 5) and equal margins across all products, set equal

to average margin of eight products using depths d¼ 2 and d¼ 3. The optimal

solutions exhibited monotone changes to the optimal assortment for all wc values.

While this is true for our particular data set, we are able to construct a three-product,

three-customer instance to provide a counter-example (see data in Table 10.6) for

this monotone behavior.

In this counterexample, we find that when wc¼ 0, the optimal profits are 2.2, the

disutility is 9, and the optimal assortment has only product 2. As wc grows

to 0. 1379, the assortment consists of product 1 only, and for higher values of wc

the optimal assortment consists of products 1 and 3.

The results show that it is very hard to predict the structure of the optimal

assortment, especially when we consider a data-driven problem setting.

6 Summary, Extensions, and Future Work

We propose a model for the optimal assortment and stocking decisions for retail

category management. In particular, we address the question of rationalization of

the retail assortment, i.e., determining the optimal subset of items to retain from the

set of items currently carried. We assume, based on empirical evidence reported in

the literature, that consumers are willing to partially substitute less preferred items

if their preferred items are not available. We also assume that consumers are

Table 10.6 A three-product

example
Utility

Customer Product 1 Product 2 Product 3

1 5 2 1

2 5 2 1

3 1 2 5

Fixed cost 2 2 2

Margin 1.4 1.4 1.4
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heterogeneous in their intrinsic preferences for items and in their price sensitivities,

an assumption strongly supported empirically.

We propose that the appropriate objective function for a far-sighted retailer

should include not only short-term profits but also a penalty for the disutility

incurred by consumers who do not find their preferred items in the available

assortment. The rationale for including such a penalty is that dissatisfied consumers

are less likely to return to the store in the future. We propose a measure for disutility

that recognizes differences between consumers in their intensity of dissatisfaction.

The retailer problem is formulated as an integer programming problem.

We show that the problem is large but can be solved efficiently to obtain an optimal

solution. We demonstrate an empirical application of our proposed model

using household scanner panel data for eight items in the canned tuna category.

Our results indicate that the inclusion of the penalty for disutility in the retailer’s

objective function is informative in terms of choosing an assortment to carry. We

find that customer disutility can be significantly reduced at the cost of a small

reduction in short term profits.

An immediate extension of the current work is to develop heuristics to solve the

optimization problem since problem sizes in categories with a large number of items

may be very large and computational times to find optimal solutions might be

prohibitive. Furthermore, we realize that there is uncertainty due to errors in the utility

function parameter estimates, which our optimization model assumes to be fixed. The

problem formulation can be modified to allow for uncertain parameter estimates and

use a stochastic programming approach to solve the assortment problem.

The approach described in this chapter is an illustrative first-step that attempts to

close some of the modeling gaps in the literature. As outlined in the introduction, the

complete assortment planning problem needs to consider several other factors. Next

we discuss briefly several directions to extend the proposedmodel in future research.

1. Shelf Space Constraints: Typically, retailers have shelf space constraints which
limit the amount of stock that can be carried within a category. These constraints

can be incorporated within the context of our problem (P1). A complexity that

now arises is the occurrence of stock-outs. Since customers have heterogeneous

preferences for items, the dynamics of their arrival process also needs to be

accounted for.

2. Incorporating Demand Uncertainty: In the current model, we assumed that

utilities of each consumer segment are deterministic. In fact, from the retailer’s

perspective utilities are stochastic. Including stochastic utilities results in a

mixed-integer stochastic programming problem.

3. The Pricing Problem: The basic formulation outlined in this chapter can

be extended to study the joint pricing and assortment decisions. However,

maximization over prices makes (P1) a non-linear optimization problem which

can be solved using procedures outlined in Adams and Sherali (1990), for

example. Alternately, heuristic procedures could be explored.

4. The Display Effect or the Effect of Facings on Sales: The literature on shelf space
management has been concerned with the relationship between shelf space

allocations and sales due to the influence of product display on demand.
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The number of facings allocated to an item also determines the quantity stocked

of this item (usually an integer multiple of the number of facings). Thus, the

problem of determining the optimal assortment and inventory is inter-related

with the shelf-space allocation problem. Extending the model presented in

this chapter to incorporate the display effect presents two challenges: one, the

problem of measuring the effect of product display on demand, and two,

the optimization problem changes considerably since we will now have to decide

on number of facings which will be an integer variable.

5. Joint Fixed Costs: Product lines for a retailer typically consist of several SKU’s

being supplied by the same manufacturer or wholesaler. Therefore, multiple

products in a category may require common resources (contact, vendor man-

agement, etc.). The Dobson and Kalish (1993) formulation assumes independent

fixed costs, and therefore it can overstate the fixed costs associated with incre-

mental introduction of products that share fixed costs with incumbent products.

In case of shared fixed costs, a firm can take the savings available into account

when introducing products that require common resources. One approach is to

define product classes, similar to manufacturing classes used by Morgan

et al. (2001). We hypothesize that inclusion of common fixed costs (relative to

the assumption of independent fixed costs) will increase the number of products

offered, profits, as well as consumer satisfaction.
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Appendix

Proof of Proposition 4.1. Without loss of generality, we will illustrate this for the

general case rather than the special case of fixed depth of search d.
First consider the constraint (10. 6a

0 0
). The constraint for j¼ 1 will be

1� ðxs2 þ xs3 þ . . .þ xsK þ xs0Þ � y1

However, from (10.6c) we know that

xs1 þ xs2 þ . . .þ xjK þ xs0 � 1
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Actually, given a “no purchase” option, the above is an equality; i.e.,

xs1 þ xs2 þ . . .þ xjK þ xs0 ¼ 1

Using this we rewrite 1� ðxs2 þ xs3 þ . . .þ xsK þ xs0Þ � y1 as simply x1� y1.
Similarly, we can write (10. 6a00) for j¼ k as

xs1 þ xs2 þ . . .þ xsk � yk:

Using this, for any arbitrary customer segment s that prefers K products in the

ordinal order (without loss of generality) the constraint sets (10. 6a0) and (10. 6a00) are

Consider normalized constraint (10) and (100):

xs1 þ Vs2

Vs1

� �
xs2 þ � � � Vsk

Vs1

� �
xsk and xs1 � y1:

Since (1
0 0
) and (1

0
) are identical in xs1 dimension and (1

0
) has k � 1 extra variables

(degrees of freedom), constraint (1
0 0
) is tighter than constraint (1

0
). Using similar

arguments one can show that constraints (2
0 0
) to ((k� 1)

0 0
) will be tighter than (2

0
) to

((k� 1)
0
). Constraint (k

0 0
) may be identical to (k

0
). The argument can be repeated for

other segments. Thus problem (P1) with (10. 6a
0 0
) is a tighter formulation than

(P1) with (10. 6a
0
).

To see that relaxation of xsj still leads to an integer solution, first consider (1
0 0
). If

y1¼ 0, then xs1¼ 0 using (10.6c). If y1¼ 1, then xs1¼ 1. Now consider (2
0 0
).

Suppose y1¼ 0. If y2¼ 0 then xs2¼ 0; otherwise (y2¼ 1), xs2¼ 1. However, if

y1¼ 1, then (10.6b) ensures that xs2¼ 0. Following this argument, we can show

that xsj is integer. ■
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