
Chapter 10
DEA Based Benchmarking Models

Joe Zhu

Abstract Data envelopment analysis (DEA) is a methodology for identifying the
efficient or best-practice frontier of decision making units (DMUs). It is required that
all DMUs under consideration be evaluated against each other in a same pool. Adding
or deleting an inefficient DMU does not alter the efficient frontier and the efficiencies
of the existing DMUs. The inefficiency scores change only if the efficient frontier is
altered. Benchmarking is the process of comparing a DMU’s performance to the best
practices formed by a set of DMUs. DEA is also called “balanced benchmarking”,
because DEA considers multiple performance metrics in a single model. Under such
a notion, the best practices are the benchmarks identified by DEA. However, in
a more general sense, best practices do not have to be identified by DEA—they
can be existing “standards”. This chapter presents two DEA-based benchmarking
approaches where one set of DMUs is compared (or benchmarked) against another.
One approach is called “context-dependent” DEA where a set of DMUs is evaluated
against a particular evaluation context. Each evaluation context represents an efficient
frontier composed by DMUs in a specific performance level. The context-dependent
DEA measures the attractiveness and the progress when DMUs exhibiting poorer
and better performance are chosen as the evaluation context, respectively. The other
approach consists of a fixed benchmark model and a variable benchmark model
where each (new) DMU is evaluated against a set of given benchmarks (standards).

Keywords Data Envelopment Analysis (DEA) · Attractiveness · Progress · Best
practice · Context-dependent · Benchmarking

10.1 Introduction

Data envelopment analysis (DEA) uses the linear programming technique to evaluate
the relative efficiency of decision making units (DMUs) with multiple performance
metrics. These performance metrics are classified as DEA outputs and inputs. DEA
classifies a set of DMUs into a set of efficient DMUs which form a best-practice
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frontier and a set of inefficient DMUs. Adding or deleting an inefficient DMU does
not alter the efficient frontier and the efficiencies of the existing DMUs. The inef-
ficiency scores change only if the efficient frontier is altered. The performance of
DMUs depends only on the identified efficient frontier characterized by the DMUs
with a unity efficiency score.

If the performance of inefficient DMUs deteriorates or improves, the efficient
DMUs still may have a unity efficiency score. Although the performance of inefficient
DMUs depends on the efficient DMUs, efficient DMUs are only characterized by a
unity efficiency score. The performance of efficient DMUs is not influenced by the
presence of inefficient DMUs, once the DEA frontier is identified.

In this sense, all DMUs under consideration are being benchmarked against the
“identified” DEA efficient frontier or best practice. Note that the best practices are
part of the DMUs under evaluation. In other words, DEA simultaneously identifies
the best practices and measures the performance of under-performing DMUs. As
such, DEA is called “balanced benchmarking” where multiple performance metrics
are integrated in a single model (Sherman and Zhu 2013).

However, benchmarking can refer to a situation where a set of DMUs is compared
to a set of given standards or DMUs. The setup in the conventional DEA does not
allow such benchmarking to be performed using DEA. There are two DEA-based
approaches that benchmark DMUs against a given set of standards represented by a
set of DMUs.

One approach is called “context-dependent” DEA (Seifrod and Zhu 2003) where
a set of DMUs is evaluated against a particular evaluation context. Each evaluation
context represents an efficient frontier composed by DMUs in a specific performance
level. The context-dependent DEA measures the attractiveness and the progress when
DMUs exhibiting poorer and better performance are chosen as the evaluation context,
respectively.

The other approach consists of a fixed benchmark model and a variable bench-
mark model where each (new) DMU is evaluated against a set of given benchmarks
(standards) (Cook et al. 2004).

10.2 Context-Dependent Data Envelopment Analysis

Performance evaluation is often influenced by the context. A DMU’s performance
will appear more attractive against a background of less attractive alternatives and
less attractive when compared to more attractive alternatives. Researchers of the
consumer choice theory point out that consumer choice is often influenced by the
context. e.g., a circle appears large when surrounded by small circles and small
when surrounded by larger ones. Similarly, a product may appear attractive against
a background of less attractive alternatives and unattractive when compared to more
attractive alternatives (Tversky and Simonson 1993).

Considering this influence within the framework of DEA, one could ask “what
is the relative attractiveness of a particular DMU when compared to others?” As in
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Tversky and Simonson (1993), one agrees that the relative attractiveness of DMUx
compared to DMUy depends on the presence or absence of a third option, say DMUz
(or a group of DMUs). Relative attractiveness depends on the evaluation context
constructed from alternative options (or DMUs).

In fact, a set of DMUs can be divided into different levels of efficient frontiers.
If we remove the (original) efficient frontier, then the remaining (inefficient) DMUs
will form a new second-level efficient frontier. If we remove this new second-level
efficient frontier, a third-level efficient frontier is formed, and so on, until no DMU
is left. Each such efficient frontier provides an evaluation context for measuring the
relative attractiveness. e.g., the second-level efficient frontier serves as the evaluation
context for measuring the relative attractiveness of the DMUs located on the first-
level (original) efficient frontier. On the other hand, we can measure the performance
of DMUs on the third-level efficient frontier with respect to the first or second level
efficient frontier.

The context-dependent DEA (Seiford and Zhu 2003) is introduced to measure
the relative attractiveness of a particular DMU when compared to others. Relative
attractiveness depends on the evaluation context constructed from a set of different
DMUs.

The context-dependent DEA is a significant extension to the original DEA ap-
proach. The original DEA approach evaluates each DMU against a set of efficient
DMUs and cannot identify which efficient DMU is a better option with respect to the
inefficient DMU. This is because all efficient DMUs have an efficiency score of one.
Although one can use the super-efficiency DEA model (Andersen and Petersen 1993;
Seiford and Zhu 1999b) to rank the performance of efficient DMUs, the evaluation
context changes in the evaluation of each efficient DMU, and the efficient DMUs are
not evaluated against the same reference set.

In the context-dependent DEA, the evaluation contexts are obtained by partition-
ing a set of DMUs into several levels of efficient frontiers. Each efficient frontier
provides an evaluation context for measuring relative attractiveness and progress.
When DMUs in a specific level are viewed as having equal performance, the at-
tractiveness measure allows us to differentiate the “equal performance” based upon
the same specific evaluation context. A combined use of attractiveness and progress
measures can further characterize the performance of DMUs.

Context-dependent DEA has been used for the ranking and benchmarking of the
Asian Games achievements (Wu et al. 2013). Lu and Lo (2012) construct the China
regions’benchmark-learning ladders for those inefficient regions to improve progres-
sively and to identify real benchmark for those efficient regions to rank ascendant by
incorporating the stratification DEA method, attractiveness measure, and progress
measure.

Chiu and Wu (2010) adopt the context-dependent DEA model to analyze the op-
erating efficiencies of 49 international tourism hotels in Taiwan from 2004 through
2006. Ulucan and Atici (2010) evaluate the efficiency of a World Bank supported
Social Risk Mitigation Project in Turkey through context-dependent DEA. Yang
et al. (2007) use context-dependent DEA to explore the operating efficiency and
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the benchmark-learning roadmap of military retail stores for Taiwan’s General Wel-
fare Service Ministry. Chen et al. (2005) also provide an illustrative application to
measuring the performance of Tokyo public libraries.

Context-dependent DEA has been extended to use with cross efficiency
(Lim 2012). Lu and Hung (2008) propose an alternative context-dependent DEA
technique to explore the managerial performance and the benchmarks of 24 global
leading telecom operators. Tsang and Chen (2013) present a revised context-
dependent DEA model to identify multilevel strategic groups in the case of
International Tourist Hotels in Taiwan. Brissimis and Zervopoulos (2012) de-
velop a step-by-step effectiveness assessment model for customer-oriented service
organizations based upon the context-dependent DEA.

10.2.1 Stratification DEA Model

The first step in the context-dependent DEA is to identify the performance levels
or contexts. Assume that there are n DMUs which have s outputs and m inputs. We
define the set of all DMUs as J 1 and the set of efficient DMUs in J 1 as E1. Then
the sequences of J l and El are defined interactively as J l+1 = J l − El. The set of
El can be found as the DMUs with optimal value φlk of 1 to the following linear
programming problem:

minimize
λ,θ

θ lk = θ
subject to

∑
j∈J l

λjxij ≤ θxik , i = 1, . . .,m

∑
j∈J l

λjyrj ≥ yrk , r = 1, . . . ., s

λj ≥ 0, j ∈ J l

(10.1)

where xij and yrj are i-th input and r-th output of DMUj respectively. When l = 1,
model (10.1) becomes the original input-oriented CCR model (Charnes et al. 1978)
and E1 consists of all the radially efficient DMUs. A radially efficient DMU may
have non-zero input/output slack values. The DMUs in set E1 define the first-level
efficient frontier. When l = 2, model (10.1) gives the second-level efficient frontier
after the exclusion of the first-level efficient DMUs. In this manner, we identify
several levels of efficient frontiers. We call El the l-th level efficient frontier. The
following algorithm accomplishes the identification of these efficient frontiers by
model (10.1).

Step 1 Set l = 1. Evaluate the entire set of DMUs, J 1, by model (10.1) to obtain
the first-level efficient DMUs, set E1 (the first-level efficient frontier).
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Fig. 10.1 Efficient Frontiers
in Different Levels
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Table 10.1 Numerical example

DMU 1 2 3 4 5 6 7 8 9 10

Input 1 4 2 1 1 5 2.5 1.5 5 4 2.5

Input 2 1 1.5 3 4 2 2.5 5 3 3 4.5

Step 2 Let J l+1 = J l − El to exclude the efficient DMUs from future DEA runs.
If J l+1 = Ø then stop.

Step 3 Evaluate the new subset of “inefficient” DMUs, J l+1, by model (10.1) to
obtain a new set of efficient DMUs El+1 (the new efficient frontier).

Step 4 Let l = l + 1. Go to step 2.

Stopping rule If J l+1 = Ø, the algorithm stops.
Model (10.1) yields a stratification of the whole set of DMUs, which partitions

the DMUs into different subgroups of efficiency levels characterized byEl. It is easy
to show that these sets of DMUs have the following properties:

1. J 1 =⋃
El and El ∩ El′ = φ for l 
= l′;

2. The DMUs in El
′
are dominated by the DMUs in El if l′ > l;

3. Each DMU in set El is efficient with respect to the DMUs in set J l
′
for all l′ > l.

Figure 10.1 plots the three levels of efficient frontiers of 10 DMUs with two inputs
and one single output as shown in Table 10.1.
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10.2.2 Attractiveness and Progress

Based upon the evaluation context El, the context-dependent DEA measures the
relative attractiveness of DMUs. Consider a specific DMUq in El. The following
model is used to characterize the attractiveness with respect to levels exhibiting
poorer performance in El

′
for l′ > l.

minimize
λ,θ

θ l
′
q = θ

subject to
∑

j∈J l′
λjxij ≤ θxiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ yrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.2)

It is easy to show that θ l
′
q > 1 for l′ > l, and θ l1q > θ

l2
q for l1 > l2. Then θ l

′
q is called

the input-oriented d-degree attractiveness of DMUq from a specific level El, where
d = l′ − l.

In model (10.2), each efficient frontier represents an evaluation context for eval-
uating the relative attractiveness of DMUs in El. Note that the bigger the value of
θ l

′
q > 1, the more attractive DMUq is, because DMUq makes itself more distinctive

from the evaluation contextEl
′
. We are able to rank the DMUs inEl based upon their

attractiveness scores and identify the best one.
To obtain the progress measure for a specific DMUq in El, we use the following

context-dependent DEA, which is used to characterize the progress with respect to
levels exhibiting better performance in El

′
for l′ < l.

minimize
λ,ϕ

ϕl
′
q = ϕ

subject to
∑

j∈J l′
λjxij ≤ ϕxiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ yrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.3)

We have that ϕl
′
q < 1 for l′ < l, and ϕl1q < ϕl2q for l1 > l2. Then ϕl

′
q is called the

input-oriented g-degree progress of DMUq from a specific levelEl, where g = l− l′.

10.2.3 Output Oriented Context-Dependent DEA Model

Here we provide the output-oriented context-dependent DEA model. Consider the
following linear programming problem for DMUq in specific level El based upon
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the evaluation context El
′
for l′ > l.

maximize
λ,H

H l′
q = H

subject to
∑

j∈J l′
λjxij ≤ xiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ Hyrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.4)

This problem is used to characterize the attractiveness with respect to levels exhibiting
poorer performance in El

′
. Note that dividing each side of the constraint of (10.4) by

H gives

∑

j∈J l′
λ̃j xij ≤ 1

H
xiq

∑

j∈J l′
λ̃j yrj ≥ yrq

λ̃j = λj

H
≥ 0, j ∈ J l′

Therefore, (10.4) is equivalent to (10.2), and we have that Hl′
q < 1 for l′> l and

Hl′
q = 1/θ l

′
q . ThenHl′

q is called the output-oriented d-degree attractiveness of DMUq

from a specific level El, where d = l′ − l. The smaller the value of Hl′
q is, the more

attractive DMUq is. Model (10.4) determines the relative attractiveness score for
DMUq when inputs are fixed at their current levels.

To obtain the progress measure for DMUq in El , we develop the following linear
programming problem, which is used to characterize the progress with respect to
levels exhibiting better performance in El

′
for l′ < l.

maximize
λ,G

Gl
′
q = G

subject to
∑

j∈J l′
λjxij ≤ xiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ Gyrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.5)

We have thatGl
′
q > 1 for l′< l andGl

′
q = 1/ϕl

′
q . ThenGl

′
q is called the output-oriented

g-degree progress of DMUq from a specific level El, where g = l − l′.
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To improve the performance of inefficient DMU, the target of improvement should
be given among the efficient DMUs. The reference set suggests the target of im-
provement for the inefficient DMUs. Actually, when l = 1, model (10.1) gives the
reference set of DMUs from the efficient DMUs for inefficient DMUs. It may be a
final goal of improvement; however, for some inefficient DMUs, this goal may be
quite different from the current performance and difficult to achieve. Therefore, it is
not appropriate to set a benchmark target for improvement from the efficient DMUs
directly. Step-by-step improvement is a useful way to improve the performance, and
the benchmark target at each step is provided based on the evaluation context at each
level of efficient frontier.

10.2.4 Context-Dependent DEA With Value Judgment

Both attractiveness and progress are measured radially with respect to different levels
of efficient frontiers. The measurement does not require a priori information on the
importance of the attributes (input/output) that feature in the performance of DMUs.
However different attributes play different roles in the evaluation of a DMU’s overall
performance. Therefore, we introduce value judgment into the context-dependent
DEA.

In order to incorporate such a priori information into our measures of attrac-
tiveness and progress, we first specify a set of weights related to the m inputs,
vi , i = 1, . . .,m such that

∑m
i=1 vi = 1. Based upon Zhu (1996), we develop the

following linear programming problem for DMUq in El.

Maximize
λj ,$iq

$l
′
q

∗ =
s∑

r=1

vi$iq

subject to
∑

j∈El′
λjxij ≤ $iqxiq ,i = 1, . . .,m

∑

j∈El′
λjyrj ≥ yrq ,r = 1, . . ., s

$iq ≥ 1,i = 1, . . .,m

λj ≥ 0, j ∈ El′

(10.6)

$l
′∗
q is called the input-oriented value judgment d-degree attractiveness of DMUq

from a specific levelEl , where d = l′ − l. Obviously,$l
′∗
q > 1. The larger the$l

′∗
q is,

the more attractive the DMUq appears under the weights vi , i = 1, . . .,m. We now
can rank DMUs in the same level by their attractiveness scores with value judgment
which are incorporated with the preferences over outputs.
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If one wishes to prioritize the options (DMUs) with higher values of the io-th input,
then one can increase the value of the corresponding weight vio . These user-specified
weights reflect the relative degree of desirability of the corresponding outputs. For
example, if one prefers a printer with faster printing speed to one with higher print
quality, then one may specify a larger weight for the speed. The constraints of
$iq ≥ 1, i = 1, . . .,m ensure that in an attempt to make itself as distinctive as
possible, DMUq is not allowed to decrease some of its outputs to achieve higher
levels of other preferred outputs.

Note that $l
′∗
q is an overall attractiveness of DMUq in terms of inputs while

keeping the outputs at their current levels. On the other hand, each individual op-
timal value of $iq , i = 1, . . .,m measures the attractiveness of DMUq in terms of
each input dimension.$∗

iq is called the input-oriented value judgment input-specific
attractiveness measure for DMUq.

With the input-specific attractiveness measures, one can further identify which
inputs play important roles in distinguishing a DMU’s performance. On the other
hand, if $∗

ioq
= 1, then other DMUs in El

′
or their combinations can also produce

the same amount as the io-th input of DMUq, i.e., DMUq does not exhibit better
performance with respect to this specific input dimension. Therefore, DMUq should
improve its performance on the io-th input to distinguish itself in the future.

Similar to the development in the previous section, we can define the input-
oriented value judgment progress measure:

Maximize
λj ,�iq

�l
′
q

∗ =
s∑

r=1

vi�iq

subject to
∑

j∈El′
λjxij ≤ �iqxiq ,i = 1, . . .,m

∑

j∈El′
λjyrj ≥ yrq ,r = 1, . . ., s

�iq ≤ 1, i = 1, . . .,m

λj ≥ 0, j ∈ El′

(10.7)

The optimal value$l
′∗
q is called the input-oriented value judgment g-degree progress

DMUq from a specific level El , where g = l − l′. The larger $l
′∗
q is, the greater the

amount of progress is expected for DMUq. Here the user-specified weights reflect
the relative degree of desirability of improvement on the individual output levels.
Let �∗

iq , i = 1, . . .,m, represent the optimal value of (10.7) for a specific level l.
By Zhu (1996), we know that

∑
j∈El′ λ

∗
j xij = �∗

iqxiq holds at optimality for each
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i = 1, . . .,m. Consider the following linear programming problem:

Maximize
s∑

r=1

s+r

subject to
∑

j∈El′
λjxij = �∗

iqxiq , i = 1, . . .,m

∑

j∈El′
λjyrj − s+r = yrq , r = 1, . . ., s

s+r ≥ 0, r = 1, . . ., s

λj ≥ 0, j ∈ El′

(10.8)

The following point

{
x̂iq = �∗

iqxiq , i = 1, . . .,m

ŷrq = yrq + s+r ∗, r = 1, . . ., s

is called a preferred global efficient target for DMUq in level El for l′ = l − 1;
otherwise, if l′ < l − 1, it represents a preferred local efficient target, where �∗

iq is
the optimal value in (10.7), and s+r

∗ represent the optimal values in (10.8).

10.3 Variable and Fixed Benchmarking Models

Cook et al. (2004) develop DEA-based models for use in benchmarking where mul-
tiple performance measures are needed to examine the performance and productivity
changes. The standard data envelopment analysis method is extended to incorporate
benchmarks through (i) a variable-benchmark model where a unit under benchmark-
ing selects a portion of benchmark such that the performance is characterized in
the most favorable light, and (ii) a fixed-benchmark model where a unit is bench-
marked against a fixed set of benchmarks. Cook et al. (2004) apply these models
to a large Canadian bank where some branches’ services are automated to reduce
costs and increase the service speed, and ultimately to improve productivity. Their
empirical investigation indicates that although the performance appears to be im-
proved at the beginning, productivity gain has not been discovered. The models can
facilitate the bank in examining its business options and further point to weaknesses
and strengths in branch operations. The current chapter presents the benchmarking
models developed by Cook et al. (2004).
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10.3.1 Variable-Benchmark Model

Let E∗ represent the set of benchmarks or the best-practice identified by the DEA.
Based upon the input-oriented Constant Returns to Scale (CRS) DEA model, we
have

min δCRS

subject to
∑

j∈E∗
λjxij ≤ δCRSxnewi

∑

j∈E∗
λjyrj ≥ ynewr

λj ≥ 0, j ∈ E∗

(10.9)

where a new observation is represented byDMUnew with inputs xnewi (i = 1, . . .,m)
and outputs ynewr (r = 1, . . ., s). The superscript of CRS indicates that the benchmark
frontier composed by benchmark DMUs in set E∗ exhibits CRS.

Model (10.9) measures the performance of DMUnew with respect to benchmark
DMUs in set E∗ when outputs are fixed at their current levels. Similarly, based upon
the output-oriented CRS envelopment model, we can have a model that measures
the performance of DMUnew in terms of outputs when inputs are fixed at their
current levels.

max τCRS

subject to
∑

j∈E∗
λjxij ≤ xnewi

∑

j∈E∗
λjyrj ≥ τCRSynewr

λj ≥ 0, j ∈ E∗

(10.10)

Note that δCRS
∗ = 1/τCRS

∗
, where δCRS

∗
is the optimal value to model (10.9) and

τCRSo

∗
is the optimal value to model (10.10).

Model (10.9) or (10.10) yields a benchmark for DMUnew. The ith input and the
rth output for the benchmark can be expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

j∈E∗
λ∗j xij (ith input)

∑

j∈E∗
λ∗j yij (rth output)

(10.11)

Note also that although the DMUs associated with set E∗ are given, the resulting
benchmark may be different for each new DMU under evaluation. For each new DMU
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Fig. 10.2 Variable-benchmark Model

under evaluation, (10.11) may represent a different combination of DMUs associ-
ated with set E∗. Thus, models (10.9) and (10.10) represent a variable-benchmark
scenario.

We have

1. δCRS
∗
< 1 or τCRS

∗
> 1 indicates that the performance ofDMUnewo is dominated

by the benchmark in (10.11).
2. δCRS

∗ = 1 or τCRS
∗ = 1 indicates thatDMUnew achieves the same performance

level as the benchmark in (10.11).
3. δCRS

∗
> 1 or τCRS

∗
< 1 indicates that input savings or output surpluses exist in

DMUnewo when compared to the benchmark in (10.11).

Figure 10.2 illustrates the three cases. ABC (A’B’C’) represents the input (output)
benchmark frontier. D, H and G (or D’, H’, and G’) represent the new DMUs to be
benchmarked against ABC (or A’B’C’). We have δCRS

∗
D > 1 for DMU D ( τCRS

∗
D′ < 1

for DMU D’) indicating that DMU D can increase its input values by δCRS
∗

D while
producing the same amount of outputs generated by the benchmark (DMU D’ can
decrease its output levels while using the same amount of input levels consumed by
the benchmark). Thus, δCRS

∗
D > 1 is a measure of input savings achieved by DMU D

and τCRS
∗

D′ < 1 is a measure of output surpluses achieved by DMU D’.
For DMU G and DMU G’, we have δCRS

∗
G = 1 and τCRS

∗
G′ = 1 indicating that

they achieve the same performance level of the benchmark and no input savings or
output surpluses exist. For DMU H and DMU H’, we have δCRS

∗
H < 1 and τCRS

∗
H ′ > 1

indicating that inefficiency exists in the performance of these two DMUs.
Note that for example, in Fig. 10.2, a convex combination of DMU A and DMU

B is used as the benchmark for DMU D while a convex combination of DMU B and
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DMU C is used as the benchmark for DMU G. Thus, models (10.9) and (10.10) are
called variable-benchmark models.

We can define δCRS
∗ − 1 or 1− τCRS∗ as the performance gap betweenDMUnew

and the benchmark. Based upon δCRS
∗

or τCRS
∗
, a ranking of the benchmarking

performance can be obtained.
It is likely that scale inefficiency may be allowed in the benchmarking. We there-

fore modify models (10.9) and (10.10) to incorporate scale inefficiency by assuming
variable returns to scale (VRS).

min δVRS

subject to
∑

j∈E∗
λjxij ≤ δVRSxnewi

∑

j∈E∗
λjyrj ≥ ynewr

∑

j∈E∗
λj = 1

λj ≥ 0, j ∈ E∗

(10.12)

max τVRS

subject to
∑

j∈E∗
λjxij ≤ xnewi

∑

j∈E∗
λjyrj ≥ τVRSynewr

∑

j∈E∗
λj = 1

λj ≥ 0, j ∈ E∗

(10.13)

We have

1. δVRS
∗
< 1 or τVRS

∗
> 1 indicates that the performance ofDMUnew is dominated

by the benchmark in (10.11).
2. δVRS

∗ = 1 or τVRS
∗ = 1 indicates thatDMUnew achieves the same performance

level as the benchmark in (10.11).
3. δVRS

∗
> 1 or τVRS

∗
< 1 indicates that input savings or output surpluses exist in

DMUnew when compared to the benchmark in (10.11).

Note that model (10.10) is always feasible, and model (10.9) is infeasible only if
certain patterns of zero data are present (Zhu 1996b). Thus, if we assume that all
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Fig. 10.3 Infeasibility of VRS Variable-benchmark Model

the data are positive, (10.9) is always feasible. However, unlike models (10.9) and
(10.10), models (10.12) and (10.13) may be infeasible.

We have

1. If model (10.12) is infeasible, then the output vector of DMUnew dominates the
output vector of the benchmark in (10.11).

2. If model (10.13) is infeasible, then the input vector of DMUnew dominates the
input vector of the benchmark in (10.11).

The implication of the infeasibility associated with models (10.12) and (10.13) needs
to be carefully examined. Consider Fig. 10.3 where ABC represents the benchmark
frontier. Models (10.12) and (10.13) yield finite optimal values for any DMUnew

located below EC and to the right of EA. Model (10.12) is infeasible for DMUnew

located above ray E”C and model (10.13) is infeasible for DMUnew located to the
left of ray E’E.

Both models (10.12) and (10.13) are infeasible for DMUnew located above E”E
and to the left of ray EF. Note that ifDMUnew is located above E”C, its output value
is greater than the output value of any convex combinations of A, B and C.

Note also that if DMUnew is located to the left of E’F, its input value is less than
the input value of any convex combinations of A, B and C.

Based upon Fig. 10.3, we have four cases:
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Case I: When both models (10.12) and (10.13) are infeasible, this indicates that
DMUnew has the smallest input level and the largest output level compared to
the benchmark. Thus, both input savings and output surpluses exist inDMUnew.

Case II: When model (10.12) is infeasible and model (10.13) is feasible, the infeasi-
bility of model (10.12) is caused by the fact that DMUnew has the largest output
level compared to the benchmark. Thus, we use model (10.13) to characterize the
output surpluses.

Case III: When model (10.13) is infeasible and model (10.12) is feasible, the infea-
sibility of model (10.13) is caused by the fact thatDMUnew has the smallest input
level compared to the benchmark. Thus, we use model (10.12) to characterize the
input savings.

Case IV: When both models (10.12) and (10.13) are feasible, we use both of them
to determine whether input savings and output surpluses exist.

10.3.2 Fixed-Benchmark Model

Although the benchmark frontier is given in the variable-benchmark models, a
DMUnew under benchmarking has the freedom to choose a subset of benchmarks so
that the performance of DMUnew can be characterized in the most favorable light.
Situations when the same benchmark should be fixed are likely to occur. For exam-
ple, the management may indicate that DMUs A and B in Fig. 10.2 should be used
as the fixed benchmark. i.e., DMU C in Fig. 10.2 may not be used in constructing
the benchmark.

To couple with this situation, Cook et al. (2004) turn to the multiplier DEA
models. For example, the input-oriented CRS multiplier DEA model determines a
set of referent best-practice DMUs represented by a set of binding constraints in
optimality. Let set B = {

DMUj : j ∈ IB
}

be the selected subset of benchmark set
E∗. i.e., IB ⊂ E∗ Based upon the input-oriented CRS multiplier model, we have

σ̃CRS∗ = max
s∑

r=1

μry
new
r

subject to
s∑

r=1

μryrj −
m∑

i=1

νixij = 0 j ∈ IB

s∑

r=1

μryrj −
m∑

i=1

νixij ≤ 0 j /∈ IB

m∑

i=1

νix
new
i = 1

μr , νi ≥ 0.

(10.14)
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Table 10.2 Fixed-benchmark Models

Frontier type Input-oriented Output-oriented

max
s∑

r=1

μry
new
r + μ

subject to

s∑

r=1

μryrj −
m∑

i=1

νixij + μ = 0 j ∈ IB

s∑

r=1

μryrj −
m∑

i=1

νixij + μ ≤ 0 j /∈ IB

m∑

i=1

νix
new
i = 1

μr , νi ≥ 0

min
m∑

i=1

νix
new
i + ν

subject to

m∑

i=1

νixij −
s∑

r=1

μryrj + ν = 0 j ∈ IB

m∑

i=1

νixij −
s∑

r=1

μryrj + ν ≥ 0 j /∈ IB

s∑

r=1

μry
new
r = 1

μr , νi ≥ 0

CRS Where μ = 0 Where ν= 0

VRS Where μ free Where ν free

By applying equalities in the constraints associated with benchmark DMUs, model
(10.14) measuresDMUnew’s performance against the benchmark constructed by set
B. At optimality, some DMUj j /∈ IB , may join the fixed-benchmark set if the
associated constraints are binding.

Note that model (10.14) may be infeasible. For example, the DMUs in set B may
not be fit into the same facet when they number greater than m+ s-1, where m is the
number of inputs and s is the number of outputs. In this case, we need to adjust the
set B.

Three possible cases are associated with model (10.14). σ̃ CRS
∗
> 1 indicat-

ing that DMUnew outperforms the benchmark. σ̃ CRS
∗ = 1 indicating that DMUnew

achieves the same performance level of the benchmark. σ̃ CRS
∗
< 1 indicating that

the benchmark outperforms DMUnew.
By applying returns to scale (RTS) frontier type and model orientation, we obtain

the fixed-benchmark models in Table 10.2.
A commonly used measure of efficiency is the ratio of output to input. For exam-

ple, profit per employee measures the labor productivity. When multiple inputs and
outputs are present, we may define the following efficiency ratio

∑s
r=1 uryro∑m
i=1 vixio

where vi and ur represent the input and output weights, respectively.
DEA calculates the ratio efficiency without the information on the weights. In fact,

the multiplier DEA models can be transformed into linear fractional programming
problems. For example, if we define νi = t vi and μr = t ur , where t = 1/

∑
νixio,
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the input-oriented CRS multiplier model can be transformed into

max

∑s
r=1 uryro∑m
i=1 vixio

subject to
∑s
r=1 uryrj∑m
i=1 vixij

≤ 1j = 1,2, . . ., n

ur , vi ≥ 0 ∀r , i

(10.15)

The objective function in (10.15) represents the efficiency ratio of a DMU under
evaluation. Because of the constraints in (10.15), the (maximum) efficiency cannot
exceed one. Consequently, a DMU with an efficiency score of one is on the frontier. It
can be seen that no additional information on the weights or tradeoffs are incorporated
into the model (10.15).

If we apply the input-oriented CRS fixed-benchmark model to (10.15), we obtain

max

∑s
r=1 urynewr∑m
i=1 vixnewi

subject to
∑s
r=1 uryrj∑m
i=1 vixij

= 1j ∈ IB

(10.16)

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1j /∈ IB

ur , vi ≥ 0 ∀r , i
It can be seen from (10.16) that the fixed benchmarks incorporate implicit tradeoff
information into the efficiency evaluation. i.e., the constraints associated with IB can
be viewed as the incorporation of tradeoffs or weight restrictions in DEA. Model
(10.16) yields the (maximum) efficiency under the implicit tradeoff information
represented by the benchmarks.

As more DMUs are selected as fixed benchmarks, more complete information on
the weights becomes available.

10.4 Concluding Remarks

This chapter presents the context-dependent DEA and benchmarking DEA ap-
proaches. Morita et al. (2005) show that non-zero slacks can be incorporated into the
context-dependent DEA. Zhu (2014) provides spreadsheet models for calculating the
presented DEA models. The benchmarking models developed by Cook et al. (2004)
provide tools needed to monitor the performance change and further facilitates the
development of the best strategic option for the organization with regard to DMU
makeup. The interested reader is referred to Cook et al. (2004).
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