Chapter 6
Finite Element Equations

Finite element equations capture the characteristics of the field equations. Their
derivation is based on either the governing differential equation or the global energy
balance of the physical problem. The approach involving the governing differential
equation is referred to as the method of weighted residuals or Galerkin's method.
The approach utilizing the global energy balance is referred to as the variational
method or Rayleigh-Ritz method.

6.1 Method of Weighted Residuals

The method of weighted residuals involves the approximation of the functional be-
havior of the dependent variable in the governing differential equation (Finlayson
1972). When substituted into the governing differential equation, the approximate
form of the dependent variable leads to an error called the “residual.” This residual
error is required to vanish in a weighted average sense over the domain. If the
weighting functions are chosen to be the same as the element shape (interpolation)
functions used in the element approximation functions, the method of weighted
residuals is referred to as Galerkin’s method.

The governing differential equation for the physical problem in domain D
described in Fig. 6.1 can be expressed in the form

L)~ /=0 6.1)

where ¢ is a dependent variable and f is a known forcing function. The ordinary
or partial differential operator, L whose order is specified by p, can be linear or
nonlinear. The boundary conditions are given by

B;(¢)=g; onC, (6.2)
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Fig. 6.1 Variation of the dependent (field) variable over a two-dimensional domain under speci-
fied boundary conditions

and

E($)=h, onC, (6.3)

in which B; and £ ; are operators, with j=1,2,3,..., p. The known functions &;

and &, prescribe the boundary conditions on the dependent vari-able and its deriva-

tives, respectively. The conditions on the dependent variable over C, are referred

to as essential or forced boundary conditions, and the ones involving the derivatives

of the dependent variable over C, are referred to as natural boundary conditions.
The method of weighted residuals requires that

[[t@-r]mdp=0, with k=123,..n 64)
D

where W, are the weighting functions approximating the dependent variable as
o9 =20, (6.5)
k=1

while satisfying the essential boundary conditions on C;. The unknown coefficients,
ay., are determined by solving for the resulting system of algebraic equations.
Since the governing differential equation is valid for the entire domain, D, par-
titioning the domain into subdomains or elements, D', and applying Galerkin’s
method with weighting functions W, = N ,Ee) over the element domain results in
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E
> [~ (L(qi(e))— f)dD 0 (6.6)

e=1 D(e)

in which E is the number of elements and the superscript “e” denotes a specific ele-
ment whose domain is D'® . The approximation to the dependent variable within
the element can be expressed as

5O = i NG 67)
i=l1

or

FO —NOT o© (6.8)
where

NOT(NO NP NO L NO) (6.9)

and
07 = {¢(e> PICIICIN ¢y(,e)} (6.10)

with n representing the number of nodes associated with element e. The nodal
unknowns and shape functions are denoted by ¢ and N'®, with i=1,2,..,n,
respectively. The shape functions need not satisfy the boundary conditions; how-
ever, they satisfy the inter-element continuity conditions necessary for assembly of
the element equations. The essential boundary conditions are imposed after assem-
bling the global matrix. The natural boundary conditions are not imposed directly.
However, their influence emerges in the derivation of the element equations.

The required order of the element continuity is equal to one less than the highest
derivative of the dependent variable appearing in the integrand. This requirement
is relaxed by applying integration by parts in the minimization procedure of the
residual error in Galerkin’s method.

6.1.1 Example: One-Dimensional Differential Equation
with Line Elements

The application of Galerkin’s method is introduced by considering the ordinary
differential equation given by

d’ ¢(x)+¢( )= £(x)=0 (6.11)
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Fig. 6.2 Domain of the one-dimensional differential equation, discretized into £ elements

in domain D defined by 0 < x <1. The known forcing function is given by
f(x)=—x (6.12)

The boundary conditions, identified as the essential type, are ¢(0) =0 and ¢(1) = 0.
As shown in Fig. 6.2, the domain can be discretized with £ linear line elements,
each having two nodes (n = 2). There are a total of N nodes, and global coordinates
of each node in domain D are specified by x;, with i =1,2,..., N. Nodal values of
the dependent variable associated with element e are specified at its first and second
nodes by ¢(e) and ¢(8), respectively.

The linear approximation function for the dependent variable in element e can
be expressed in the form

(5(9) _ N](€)¢](€) +N§e)¢§‘3) (613)
or
O = NOT o© (6.14)
where
NOT _ {Nl(e) Né")} and @7 = {¢](e) ¢2(e)} (6.15)

in which the shape functions are given by

(6.16)

They are the same as the length coordinates given by Eq. (3.9). Applying Galerkin’s
method by Eq. (6.6) leads to
MO
E

Z {d LEID) | 50— 1 |as (6.17)

xl( e



6.1 Method of Weighted Residuals 181
Integrating the first term in the integral by parts results in

(e)
Xge) Xy

(e ;7
_ | AN AT
dx dx
9 (6.18)
(e)

i N© dg' (x)
dx

e=1 xl(e)

NO)

+I NG (x)ete - j N f(x)de | =0

xl(e) xl(e)

X

Substituting for the element approximation function (¢ = N7 (@) yields

E E
3 Kk =31 (6.19)
e=1 e=l
where
B o e
KO | INT AN L [ NONET & (6.20)
dx dx T
xl(E) X
and
(e) (e)
X5 ~ 2
flo) _ N(e)f(x)dx ENG M (6.21)
«© e Jgo
1

X

After substituting for the shape functions and their derivatives, as well as the forc-
ing function, the expressions for the element characteristic matrix, k', and the
right-hand-side vector, f © become

xg‘))

e
)

xée)

(6.22)

Wono ),
X
MONO NN

(e)
x¢
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N(e) N(e) dq;(e) (x) x2
&) = I 772 D S N 27 (6.23)
NS.E) NEE) dx (e)

Evaluation of these integrals leads to the final form of the element characteristic
matrix, k¢, and the right-hand-side vector, f ©

©_ (o
pe — X,
k(e):_;[l -%Mf 1} (6.24)
1

(xge) _xl(e)) -1 1 6 2

and
(0 - L9 ) 24+ 49
6\ : xl(e)+2x§e)
5 - 6.25
d(p(e)(xge)) Nl(e)(xge)) d¢(e)(xl(e)) Nl(e)(xl(e)) (6.25)
dx Nge) (xge) ) dx Nge) (xl(e) )
or
dq;(e) ©
(e) , (e) —— X
e A = L R
6 xl(e) +2x§e) d¢(e) (x(e))
T 2

The local and global nodes for the domain discretized with three elements, £ = 3,
and four nodes, N = 4, are numbered as shown in Table 6.1.

With the appropriate value of the nodal coordinates from Eq. (6.24) and (6.26),
the element characteristic matrices and vectors are calculated as

Ko L2 =33 (627)
18|55 52

@152 73 (6.28)
18| =55 52
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Table 6.1 Element connectivity and nodal coordinates

Element Number (e) | Node 1 Node 2 xl(e) xée)

1 2 0 1/3
2 2 3 1/3 2/3
3 3 4 2/3 1

K® _L[ >2 —55] (6.29)

T 18]-55 52

RO

1 [1
f<1):5_4{2}+ dJ(Isz) (6.30)
Tw
[ 43®0)3)
f(z)zsLé‘{‘S‘}Jr dﬁ(;gﬁ) (6.31)
a9 )3
| &

[ a3 2/3)
dx

7
oL
54 {8}+ da@) 1) (6.32)

4
dx

As reflected by the element connectivity in Table 6.1, the boxed numbers indicate
the rows and columns of the global matrix, K, and global right-hand-side vector,
F, to which the individual coefficients are added. The global coefficient matrix, K,
and the global right-hand-side vector, F, are obtained from the “expanded” element
coefficient matrices, k', and the element right-hand-side vectors, f @, by summa-
tion in the form

E E
K=Yk and F=) (6.33)

e=l e=1

The “expanded” element matrices are the same size as the global matrix but have
rows and columns of zeros corresponding to the nodes not associated with ele-
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ment (e). Specifically, the expanded form of the element stiffness and load vector

becomes

52

18] 0

K® =L

oS O o O

S O N =

0

S O o O

=55 0 O
52 00
0O 0 O
0O 00
[ dg" ()]
i

dg (1/3)

=]

(=]
=] [=] [S]

_d9?()3)
dx

dg (2/3)
dx
o 4

0 0

o o |[2]
3]
[4]

52 55
-55 52

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)
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o [
0 0
(@ L0 d6® 23 (6.39)
547 I
I )
=24
| dx _

In accordance with Eq. (6.33) and (6.19), the assembly of the element characteristic
matrices and vectors results in the global equilibrium equations

1
52 -85 0 0 b =4 1
1]-55 52452 =55 0 ||gy =" =¢{" | 1 |2+4
18] 0 =55 52452 55|45 - g _ 40 540547
0 0 55 52 8
by =0y
dé“)(O)
(6.40)
a3 (1/3) W
i dx
+
a6 @y _ai>as)
__a dx
d¢® (1)
dx
or
_d¢™M0)
52 =55 0 0 (¢ 1 dx
1|55 104 =55 0 |[|¢| 116 0
— =— +
18 0 55 104 —55||¢y[ 54|12 0 (6.41)
0 0 55 52 ||¢y 8 d¢§(3)(l)
dx

or

KO =F (6.42)
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Fig. 6.3 Comparison of the exact and FEA (approximate) solutions to the 1D differential equation

After imposing the essential boundary conditions, ¢, =0 and ¢, = 0, the global sys-
tem of equations is reduced by deleting the row and column corresponding to ¢; and

¢, » leading to

11104
18] =55

-557(¢,] 1 [6
104 ||¢, [ 54|12
¢,] [0.05493
¢ _{0.06751}

The exact solution to the differential equation given by

Its solution yields

sin(x)
sin(1)

¢, [0.0555
¢ _{0.0682}

$(x) =

provides

(6.43)

(6.44)

(6.45)

(6.46)

The exact and FEM calculations of ¢ along the x -axis are shown in Fig. 6.3.
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Fig. 6.4 The equilateral Y,
triangular domain
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6.1.2 Example: Two-Dimensional Differential Equation
with Linear Triangular Elements

6.1.2.1 Galerkin’s Method

The application of Galerkin’s method in solving two-dimensional problems with
linear triangular elements is demonstrated by considering the partial differential
equation given by

2 2
0 q;();’y)+a 2(’;’y)+A:0 (6.47)
X vy

in domain D, defined by the intersection of y=0,y=2- J§x ,and y= \/gx (as
shown in Fig. 6.4), where 4 =1.
The boundary conditions are specified as

n, PV =0) 0y (B=D)for0<x<2/3 (6.48)

y ay
d(x,y=Bx)=0 for 0<x<1/3 (6.49)
d(x,y=2-3x)=0 for 1/3<x<2/3 (6.50)

When independent of time, these equations provide the temperature field, ¢(x, y),
due to heat conduction in a domain having a heat generation of 4 with one of its
boundaries subjected to a convective heat transfer. The thermal conductivity and the
film (surface) heat transfer coefficient are equal to unity, and the temperature of the
surrounding medium is B.
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Fig. 6.5 Local node number- 3,0,
ing for the linear triangular
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—n,(d¢/dy)=¢—1

The triangular domain can be discretized into four linear triangular elements,
each having three nodes identified as 1, 2, and 3 (local node numbering), as illus-
trated in Fig. 6.5.

As shown in Fig. 6.6, the global coordinates of each node in domain D are
specified by (x;,¥;), with i =1, 2, 3, 4, and 5. These coordinates are presented in
Table 6.2.

The nodal values of the dependent variable associated with the global coordi-
nates are denoted by ¢, (i=1, 2, 3, 4, and 5). As shown in Fig. 6.5, the nodal values
of the dependent variable associated with element e are specified at its first, second,
and third nodes by ¢(*, ée), and ¢!, respectively.

The linear element approximation function for the dependent field variable in a

[IPRE]

triangular element “e” is written as

5O = NGO 1 NOGE 4 NOgO (6.51)
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Table 6.2 Nodal coordinates

Global node number Nodal coordinates Nodal unknowns
! (0,0) ¢
2 (2//3,0) b
3 /3,1 s
4 (1/3,1/3) A
> (1//3,0) ¢
or
(5(2) _ N(@)T(p(E) (6.52)

As derived in Chap. 3, the element shape functions in Eq. (3.17) are taken as

(e)
N (X3 =X302) Va3 X3 || 1
Née) =0 (s —xy3)  ya X3 1% (6.53)
N{© (nyy=x31) Yz X |y

where x,,, =X, —X,, Yy =V — Vu, and A is the area of the element computed
by

I 1 1
209 =|x, x, x (6.54)
Yooy N

Applying Eq. (6.6), Galerkin’s method, leads to

7(e) 2 7(e)
z (e) a ¢ (x y) o°¢ gx ,Y) +A | dcdy=0 (6.55)
ox? oy
D(e)

Since the element approximation function is C° continuous, the second-order de-
rivatives in the integrand must be reduced by one so that the inter-element continu-
ity is achieved during the assembly of the global matrix. This reduction is achieved
by observing that

. 62 7(e) P . aN(e) aN(e) a~(9)
N()—a¢2 (x,y)=a(N()¢—(x,y) W 656
X

ox ox Ox
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and

. a2 Z(e) P . a~(e) 6N(e) 5”(8)
N()(;;z(x,y):a(N()‘g_y(x’y) e gy (x,y)  (6.57)

Their substitution into the integrand in Eq. (6.55) and rearrangement of the terms
result in

E “(e) 7(e)

$ g[N@ %}i[w m} ey

g ox ox | oy o (6.58)
D(B)

oN(© aq}'(e) oN(© 8(/;(8)
o & & o

+ N(E)A} dedyt=0
D(E)

Applying the divergence theorem to the first integral renders the domain integral to
the boundary integral, and it yields

E ~ ~
£ §[[x0 %) x028 o
—~ Ox oy
“ (6.59)

c®

(e) A7(e) (e) n7(e)
_ONT 9T ONT 0T N4 dedyt=0
ox  Ox oy 0Oy
Do

where n)(f) and n;e) are, respectively, the x- and y-components of the outward nor-
mal vector along the closed boundary defining the area of the element, .
Substituting for the element approximation function yields

E ~ ~
>4 N@ 04" nff)+a¢(e) n® |ds
Ox oy 7

e=1
c©

(e) (T (e) (e)T
[[mon NS e e
X X )y

D(e)

+ J' N© ddxay ! =0
D(f)
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This equation can be recast in matrix form as

E
> (k€@ +£) 4 Q) =0 (6.61)
e=1

where

(e) (e)T (e) (e)T
wo o [ [NONT NONT] (6.62)
gl O0x  Ox oy Oy
£ = '[ N© Adx dy (6.63)
D
04 06©
0 - N(e){ ‘gx ) ‘gy Al |ds (6.64)
c©

in which k'© is the element characteristic matrix, f(¢) is the element right-hand-side
vector, and Q'® is often referred to as the inter-element vector that includes the
derivative terms along the boundary of the element. The boundary integral around
each element is evaluated in a counterclockwise direction, i.e., this boundary inte-
gral is the sum of three integrals taken along each side of the element.

Depending on whether the element has an exterior boundary or not, the inter-
element vector is divided into two parts

Q(E) — ng) +Q§€) (6.65)

in which Q(:) represents the contribution of the derivative terms specified along the
external boundary of the element C{, and Q!*) represents the contribution from the
internal boundaries of the element shared with other adjacent elements. Because
each of the boundary integrals is evaluated in a counterclockwise direction, the
contributions coming from the vector Ql(.e) vanish when the global system of equa-
tions are assembled, thus no further discussion is necessary. However, in the case of
specified derivative boundary conditions, the contribution coming from Qge) must
be included.

In view of the boundary conditions given by Eq. (6.48) and the discretization of
the domain, the 1-5 side of element 1 and the 5-2 side of element 2 are subjected to
derivative boundary conditions.

With nfj) = nfcz) =0and »V = »® = _1, the contribution of the derivative bound-
ary conditions appearing in Eq. (6.64) leads to the inter-element vectors as

Q= ¢ NO[B-gcTds and Q= § N[B=gcls  (6.66)
c) c?
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where ¢ is the unknown value of the field variable on the external boundary of the
element C,, along which the derivative boundary condition is specified.
Approximating the unknown field variable, ¢¢, by ¢ = N7 ¢() in these equa-

tions leads to

Qg) _ q‘) N |:B _ N(I)T(p(l):|ds (6.67a)
ctly
and
Q¥ = § N [ B_N(2)T(p(2)]ds (6.67b)
c

which can be rewritten as

Q" = § NUBds—1 ¢ NONTdstg® or Q) =g —nVg  (6.68)

i i
and
QE,Z) _ (js N(Z)Bds— ¢ N(Z)N(2)TBdS (p(z) (6.692)
) )
or
Q2 =g _p? (6.69b)
where
h® = § NONOds and h® = § NONTds (6.70)
c, 52
and
gV = Cj) N Bds and g = @ N® Bds (6.71)
) )

With this representation of the inter-element vector, the element equilibrium equa-
tions given by Eq. (6.61) can be rewritten in their final form as

(ka) +h(1>)q,(1> _t0 4 g1y

(K2 +h®)g? =@ 1 g (6.72)

MORORNING)

¢
K@ p® g
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With the derivatives of the shape functions obtained as

N
Cox
AN 1
Cox
AN

ox

2@

Va3
V31
Yi2

oN©
oy
(e)
oy
AN

oy

193
X32
X3 (6.73)
X1

the evaluation of the area integrals in Eq. (6.62) and (6.63) by using Eq. (3.19) leads
to the final form of the element coefficient matrix, k(e), and right-hand-side vector,

f(e)
. x322 + J’223 X3pX13 T Vo3Y31 XapXo1 + Va3 Vin
e 2 2
k= IA@ X32%13 + V2331 X3+ V3 Xi3X T V31002 (6.74)
X3pX%1 Vo3l X3Xo1 V3 x;l +J/122
and
ar© |
22 ) (6.75)
1
Their numerical evaluation results in
(1 =1 0] 1
kY = ? -1 4 -3| and 0= ﬁ 1 (6.76)
|0 -3 3] 1
(4 -1 -3 1
kK :g -1 1 0| and @ = 181 ; 1 (6.77)
-3 0 3] 1
4 2 -6 1
Kk® = g 2 4 —6| and @ = \l/g 1 (6.78)
-6 -6 12 ? 1
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R 1
k(4):1—23 2 4 6| and f(4):_9\1/§ 1 (6.79)
6 -6 12 1

in which the area of each element is computed as

11 1

A(l)zég l/f 1{;?:% (6.80)
1 1 1

A(Z):%l/f 2/(\)/5 1{/\?:% (6.81)

1 1 1 1 1

A(3):32/(;/§ 1/;/§ 1/1/?:m (6.82)
11 1

A(4):%1/I/§ g 1{/\?:% (6.83)

Associated with the inter-element vector, the boundary integrals in Eq. (6.70) and
(6.71) are rewritten as

Nl(l)Nl(l) Nl(l)Ngl) Nl(l)N§l)
h_ MM yOND Oy 6.84a
hO = @ [ NOND NOND NOND s (6.34a)
NOND NOND Ny

gV = @ N Las (6.84b)
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and
NON@ Nl(z) Ngz) NOND
2 2 2 2 2 2 2
W= ¢ | NIND NEND NOND |as

(6.85a)
NOND NOND NOND
o
N®
@ = NP s (6.85b)
N

in which N3(1) and N3(2) are zero along side 1-5 (with length Z, ;) and along side 5-2
(with length Z, ), respectively. The remaining shape functions N, N{, N{*, and
N{? reduce to a one-dimensional form as

Nl(l) _ Lis—s and Nél) -5 (6.86)
-5 =5

@ _Lso— @__S 6.87

Ny =——=— and N, =— (6.87)
5-2 5-2

in which s is the local coordinate in the range of (0 <s < L, ;) along side 1-5 and
(0<s<Ls,) along side 5-2, L, =1/4/3, and Ly, —1/~/3. With these shape

functions, the evaluation of h®" , g , h(z), and g7 leads to

R [
hW=——1 2 0| and g"=—=11 (6.88)

6V3 0 0 o 23,

and 1 2 1 0] [
hW?=——1 2 0| and g?=—211 (6.89)

63|, N 0

Considering the correspondence between the local and global node numbering pre-
sented in Table 6.3, the element characteristic matrices and vectors can be rewritten
as



196

Table 6.3 Element connectivity
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Element number (¢) | Node 1 Node 2 Node 3
1 1 5 4
2 5 2 4
3 2 3 4
4 3 1 4
Element 1:
1 1 1 1 1 1 1 1 1
)+ K ] (60) [0l
1 1 1 1 1 1 1 1 1
k) +hsy) k) +h) kg h |3 3+ g5 (6.90)
(1 (1 (1 (1 (1 (1) 1 1 (1
Y+ R k) +hG kY + R | o 37 +g;
Element 2:
2 2 2 2 2 2 2 2 2
P+ KD+ D i [0 [l
2 2 2 2 2 2 2 2 2
TR T S K53 +h§3) o 3P+ g8 2] (6.91)
(2) , (2 72 (2) 72, 1(2) (2) (2) (2)
KDY +0D kD +h3 KD +h3) || 37 +gs
Element 3:
3 3 3 3 3
kl(l) kl(z) k1(3) ¢1( ) fl( )
3 3 3 3 _ 6.92
) [ - €92
3 3 3 3 3
6 || [
Element 4:

4

kyy
(4)

kSl

Ky k)
4
kg
4
ks

4 4 (4)
k|4 i

4
kg3

4 4 (4)
A 1 I P

(6.93)
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In the assembly of the element characteristic matrices and vectors, the boxed num-
bers indicate the rows and columns of the global matrix, K, and global right-hand-
side vector, F, to which the individual coefficients are added, resulting in

KD =F (6.94)
where
OO EAC! 4
ki +hy + ke, 0 kyy
2 2 3 3
0 kéz) + héz) + kl( 1) kl(z)
- (4) (3) 3) (4)
K= kyy kyy k) +ky
. .a 4 2 2 3 3 4
k3(1 +h§1) +k3(2) k§2) +h3(2) +k3(1) ks(z) +k§1)
a 1 2 2
ks +hyy ky +hy) 0 (6.952)
ks + Ry + k) k' + b
K A K KD A
KD + kY 0
R N S N e i
M, M, 2, @ M, M 2, 2
k23 +h23 +kl3 +h’l3) k22 +h22)+k11 +h’11)_
st g0
(2) (2) (3)
+gP 4
Jz (fz (4)f1 (6.95b)
F= Lo+

f}(I) +g3(1) +f3(2) +g3(2) +f3(3) +f3(4)
g+ 10+ gl

¢

[
o =14, (6.95¢)

¢4
¢s

After imposing the essential boundary conditions, the global system of equations
are reduced by deleting the rows and columns corresponding to ¢, ¢,, and ¢;, lead-
ing to

K )+ k) D)+ k) R ) kD A {%}
K5+ ) + k3 = ) K )+ kD | 95

f}(l) +g£1) +f3(2) +ggz) +f3(3) +f3(4) (6.96)
1 A A g
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With the explicit values of the coefficients, the nodal unknowns, ¢, and ¢s, are
determined as

4
=—=0.14815 (6.97a)
%=5
¢5 = % =0.33333 (6.97b)
The expressions for h and h® in Eq. (6.70) are derived based on a formulation

consistent with the derivation of the element coefficient matrices, k‘®. An alterna-
tive to the 1consistent formulation is the use of lumped diagonal matrices and ex-
pressing h®™ and h® in the form

NY o0

oo
1 1
h® = o NP o di=—l0 30 (6.98)
M 00 0
0 0 N
i
and
2
N® o 0 30 0
h® = 0 N® 0 lds=——l0 3 0
643 0 0 0 (6.99)

Replacing the components of h" and h® in Eq. (6.96) with the values obtained in
Eqg. (6.98) and (6.99), the nodal unknowns ¢, and ¢ are determined as

b4 =%=0.13889 (6.100a)
11
§s =5 = 030556 (6.100b)

Note that the discrepancy in the value of ¢, and ¢, obtained from the two methods
is due to the small number of elements in the discretization of the domain.
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6.1.2.2 ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq. (6.47)
through (6.50), also can be solved using ANSYS. The solution procedure is outlined
as follows:

Model Generation

* Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Thermal Mass from the left list and Quad
4node 55 from the right list; click on OK.

— Click on Close.

* Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Thermal, Conductivity, and, finally, Isotropic, which
brings up another dialog box.

— Enter 1 for KXX, and click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create nodes (N command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

— Atotal of 5 nodes are created (Table 6.2).

— Referring to Table 6.2, enter x- and y-coordinates of node 1, and click on Ap-
ply. This action keeps the Create Nodes in Active Coordinate System dialog
box open. If the Node number field is left blank, then ANSYS assigns the
lowest available node number to the node that is being created.

— Repeat the same procedure for the nodes 2 through 5.

— After entering the x- and y-coordinates of node 5, click on OK (instead of Apply).

— The nodes should appear in the Graphics Window, as shown in Fig. 6.7.

* Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; refer to Fig. 6.8 to create elements by picking three nodes
at a time and clicking on Apply in between.
— Observe the elements created after clicking on Apply in the Pick Menu.
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Fig. 6.7 Generation of nodes 3

Fig. 6.8 Generation of
elements

— Repeat until the last element is created.
— Click on OK when the last element is created.

* Review clements:
— Turn on element numbering using the following menu path:

Utility Menu > PlotCtrls > Numbering

— Select Element numbers from the first pull-down menu; click on OK.
— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

— Figure 6.8 shows the outcome of this action as it appears in the Graphics
Window.

— Turn off element numbering and turn on node numbering using the following
menu path:
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[D] Apply TEMP on Nodes
Lab2 DOFs to be constrained

Apply as |Constant value ~|
If Constant value hen:
VALUE Load TEMP value D
oK Apply Cancel | Help |

Fig. 6.9 Application of temperature boundary conditions on nodes

Utility Menu > PlotCtrls > Numbering

— Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

Select No numbering from the first pull-down menu.
— Click on OK.
Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

— Figure 6.7 shows the outcome of this action as it appears in the Graphics
Window.

Solution

* Apply temperature boundary conditions (Dcommand) using the following menu
path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature >
On Nodes

— Pick Menu appears; pick nodes 1, 2, and 3 (Fig. 6.7); click on OK on Pick
Menu.

— Highlight TEMP and enter 0 for VALUE; click on OK (Fig. 6.9).

— Apply convection boundary conditions (SF command) using the following
menu path:
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[SF) Apply Film Coef on nodes | Constant value -]

If Constant value then:

VALl Film coefiicient [T:l

[SF]Apply Bulk Temp on nodes |Constantvalue -
If Constant value then:

VAL2| Bulk temperature D

OK | Cancel Help

Fig. 6.10 Application of convection boundary conditions on nodes

Main Menu > Solution > Define Loads > Apply > Thermal > Convection > On
Nodes

— Pick Menu appears; pick nodes 1, 2 and 5 along the boundary (Fig. 6.7); click
on OK on Pick Menu.

— Enter 1 for both VALI Film coefficient and VAL2I Bulk temperature; click
on OK (Fig. 6.10).

* Apply body load on elements (BFE command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat >
On Elements

— Pick Menu appears; click on Pick All.
— Enter 1 for VALI leave other fields untouched, as shown in Fig. 6.11.
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve >Current LS

— Confirmation Window appears along with Status Report Window.

— Review status. If OK, close the Status Report Window and click on OK in
Confirmation Window.

— Wait until ANSYS responds with Selution is done!
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[BFE] Apply HGEN on elems as 3 [constant value -

If Constant value then:
STLOC Starting location N

VAL1 Load HGEN atlocN
VAL2 Load HGEN atloc N+1
VAL3 Load HGEN atloc N+2

1l

VAL4 Load HGEN atloc N+3

OK | Cancel Help |

Fig. 6.11 Application of heat generation condition on elements

Postprocessing

* Review temperature values (PRNSOL command) using the following menu path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on DOF Solution and Nodal Temperature; click on OK.
— The list appears in a new window, as shown in Fig. 6.12.

6.1.3 Example: Two-Dimensional Differential Equation
with Linear Quadrilateral Elements

6.1.3.1 Galerkin’s Method

In solving two-dimensional problems with quadrilateral isoparametric elements,
Galerkin’s method is demonstrated by considering the partial differential equation
given by

P(x.y) ) (6.101)
o o
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File

I\ 'PRNSOL Command @"

PRINT TEMP NODAL SOLUTION PER NODE
wwuun POST1 NODAL DEGREE OF FREEDOM LISTING wwwwx

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= @
NODE TEMP
1 0.0000
2 0.0000
3 0.p000
4 0.13889
5 0.308556

MAXIMUM ABSOLUTE VALUES
NODE S
VALUE  ©.38556

Fig. 6.12 Nodal solution for temperature

Fig. 6.13 Description of o=1 4y y=3

domain, and boundary
conditions

dp -
=0 $=1
\ | | .
_
x=—4 y=73x-15
/ N
o
_¢=0 y==3
iy

in domain D defined by the intersection of y = -3, x =—4, y =3,and y =3x —15. The
constant, 4, is known. As shown in Fig. 6.13, the flux vanishes along the boundary
of the domain specified by y = -3 and x = —4, and along the remaining part of the
boundary specified by y =3, and y =3x-15, the dependent variable, ¢(x, y), has a
value of unity. These boundary conditions are expressed as

d(x,y)=1 for 4<x<6,y=3x-15
0
—¢(x,y=-3)=0 for —4<x<4
ox

E(])(x:—4,y):O for —3<y<3
ox

(6.102)

(6.103)

(6.104)
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y
7 6 5
o 4
@ ©)
9 X
—0 O
8 4
@ @

c FaY
| Tz 3

Fig. 6.14 FEM discretization of the domain into four quadrilaterals

¢(x,y=3)=1 for —4<x<6 (6.105)

The domain is discretized with four linear quadrilateral isoparametric elements,
each having four nodes identified as 1, 2, 3, and 4, shown in Fig. 6.14. The nod-
al values of the dependent variable associated with element e are specified at its
first, second, third, and fourth nodes by qﬁl(e), ¢2(e), ¢3(e), and ¢, respectively. The
discretization of the domain with global node numbering is shown in Fig. 6.14.
The global coordinates of the nodal values of the dependent variable denoted by
¢, (i=1,2,...,9) are presented in Table 6.4.

The linear element approximation function for the dependent field variable in a

[T L)

quadrilateral isoparametric element “e” is written as

¢ = N¢O + N9 + NSO + N9y (6.106)
Table 6.4 Nodal coordinates
Global node number Nodal coordinates Nodal variables
€43 4
2 0,-3) 4,
3 4,-3) é,
4 (5,0) b,
5 6.,3) é
6 0,3) b
7 (—4.3) ¢,
8 (—4,0) e
9 (0,0) b
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7
E=-Ln=1 4 E=Ln=1)

mapping
—> "f

€=-lyp=-1) (¢=Lp=-1)

Fig. 6.15 Local node numbering for a linear isoparametric quadrilateral element

or

4O = NET 5 (6.107)
where

Ny o

N (e)

N@= 2 & and @@ =e"% (6.108)

N (e)

3 3

Ng 5

in which the shape functions Nl(e), Née), N3(e), and N, ff) are expressed in terms of the
centroidal or natural coordinates, (¢,17), shown in Fig. 6.15. For a linear (straight-
sided) quadrilateral illustrated in Fig. 6.15, they are of the form

N© =%(1+<§<§i)(1+nn,») with i=1,2,3,4 (6.109)

where &; and 7, represent the coordinates of the corner nodes in the natural coordi-

nate system, (51 = _13 = _1)3 (62 = 1’ n, = _1)9 (53 = l: n; = 1), and (54 = _17 Ny = 1)
Applying Eq. (6.6), Galerkin’s method, leads to

E 7(e) 7(e)
Z (e)[a ¢ (x y) o ¢ gx J’) A|dxdy=0 (6.110)
o’ Oy

D(")
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Since the element approximation function is C° continuous, the second-order de-
rivatives in the integrand must be reduced by one so that inter-element continuity
is achieved during the assembly of the global matrix. This reduction is achieved by
observing that

0 029 0 [ ) 09 N 94
N()%(X,y)=a(N()g—x(xay) —Fg—x(x;y) (6.111)

and

27(e) 7(e) (e) pa(e)
N () - aﬁ[w) e y)}—ag—%(x, y @12
y y y y v

Their substitution into the integrand in Eq. (6.110) and rearrangement of the terms

result in
) P 6(1;(6) P 6(]5(6)
S| |2 w02, 2 N0 88 g,
Ox ox Oy oy

e=1

(e)
b (6.113)

oN(© 6q§(6) oN(© a¢~(€)
o oy

+N(6)A:| dedy =0
D(f)

Applying the divergence theorem to the first integral renders the domain integral to
the boundary integral, and it yields

E ~ ~
)y N 29 n + N 9 ni) ds
= Ox oy

ct (6.114)

© a4 e a4
_ONT o9 ONTT 06 +N© 4 dxdy ;=0
ox Ox oy 0Oy
D(ﬂ’)

where n)(f) and nfve) are, respectively, the x- and y-components of the outward nor-

mal vector along the closed boundary defining the area of the element C'©.
Substituting for the element approximation function yields
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E ~ ~
Z N© 5¢(€) n'® + a¢(e) n'®) |ds
o oy 7

e=1
c©

_aN(e) oN@T - oN© oN@©T e 6.115)

Ve
ox Ox oy 0

D(G)

- j N© Adxdy =0
D(ff)

This equation can be recast in matrix form as

E
Z(k(e)q)(e) _f© +Q(e))=0 (6.116)
e=l
where
© aN@T  sN© aN©T
K@ o | | N ONT  ONTO i dy (6.117)
Ox Ox Oy Oy
D(ff)
(e) _ (e)
i = I AN dx dy 6.118)
D(ﬁ’)
1(e) 7(e)
Q¥ = ¢ N© | n)(f)+a¢ n'9 | ds (6.119)
ox o 7
cl®

in which k) is the element characteristic matrix, £ is the element right-hand-side

vector, and Q(e) is often referred to as the inter-element vector that includes the
derivative terms along the boundary of the element. The boundary integral around
each element is evaluated in a counterclockwise direction, i.e., this boundary inte-
gral is the sum of four integrals taken along each side of the element.

Because the specified derivatives have zero values along the element boundar-
ies, the inter-element vector, Q') vanishes, i.e., Q' = 0, thus reducing the element
equilibrium equations to

E
Z(kw)q)(e) _f(e>) ~0 (6.120)

e=l
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The integrals contributing to the characteristic element matrix, k(e), and the right-
hand-side vector, ', are evaluated over a square region in the natural coordinate

system after an appropriate coordinate transformation given by

= NOEME and y= Y NOEm
i=1 i=1

Application of the chain rule of differentiation yields

oN© | [ax oy ][an®
o5 | |05 o0& || ox o
ovo || o e ||one with i=1,2,3,4

on on onJ| oy

or
@ o
85 Nl»(e) -7 Ox Ni(e)
0 o
on oy

where J is called the Jacobian matrix. It can be expressed as

_ |:‘]ll J12:|
J21 J22

in which
ax e e e e
0= — e el e - )
n=Z 1{ (A= + A= + 1) = )
o0& 4
0)6 1 e e e e
o= o= =0~ x4 (4 O + (- )7
on 4

Iy = gy

SO e v va- )

(6.121)

(6.122)

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)

(6.128)
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Also, the Jacobian can be rewritten in the form

(e) (e)
oN©  aN©  aN© N ]| aT n°

(e) (e)
N aNi  oN$  aN© || X0 i

on on on on xff) yff)

or

xl(e) yl(e)

S 1{—(1—71) (=m  (+m) —(1+n)} x5
4-1-9) 1+ 1+ (-8 Jx po

xf‘e) y4(16)

(6.130)

Because the transformation between the natural and global coordinates has a one-
to-one correspondence, the inverse of the Jacobian exists, and it can be expressed as

yro L2 o (6.131)
|J| -Jy I '

When the element is degenerated into a triangle by increasing an internal angle to
180°, J is singular at that corner. The inverse of the Jacobian matrix permits the
expression for the derivatives in terms of global coordinates

ON( ON®
oNi =

afe) _yil % (6.132)
ON; N

oy on

Defining the element shape matrix B' as

oN© N oN{ N d

B(e) _ ox Ox Ox ox _ Ox N(e)T (6.133)
N oNY  oNY aNy© | |9
Oy Oy oy oy y

permits the element matrix k' be written in the form

11
k© = J' BOTBOdydy = — J' j BB [1]dedn (6.134)
D —1-1
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A similar operation is performed for evaluation of (¢

11
1€ =4 [ NOaxdy=a] [ NO|lazdn (6.135)
D@ -1-1

Due to the difficulty of obtaining an analytical expression for the determinant and
inverse of the Jacobian matrix, these integrals are evaluated numerically by the
Gaussian integration technique described in detail in Sec. 3.6.

Prior to the calculation of the element characteristic matrices, their Jacobian ma-
trices are obtained for each element using Eq. (6.130) as

-4 -3
J(l):l{_(l_n) (-n) (+n) —(1+77)} 0 -3
4

—(1-8) -(1+&) (1+& (1-& |0 0
4 o (6136

zﬂg (6)} with ‘J(l)‘:3

0
0 -3
J(z)zl{—(l—n) (=) (1+m) —(1+n)} 4 -3
4-(1-¢) -(1+5) dA+5) (1-8) |5 0O
0 o (6137
_1{9+n 0 _ @ 3
_Z|:1+§ 6} Wlth‘J ‘—8(9+17)
00
J(3):1{—(l—n) (-=m) (1+n) —(1+17)} 50
4 -(1-8) -(1+8) (1+5) (1-8) J|6 3
0 3] (6139
_1_114-11 0 . ) _é
=7 1+e 6} with |3 ‘_S(IH”)
4 0
s _1[-@=m a=m d+m) ~A+my] 0 0
4 -(1-8) —(1+S) A+&) (1-8) |0 3 (6.139)
4 3

%E 2} with ‘J(4)‘:3
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The inverse of the Jacobian matrices are obtained as

1
[ Jm]‘l _4|8 (6.140)
1
0 =
6
[J(Z)TI: 4 [6 0 } (6.141)
609+n)[—-(1+&) 9+n
(30T 4 {6 0 } (6.142)
6(11+n)|—(1+¢&) 11+n
1
3O ' g8 ' 6.143
@] = 1 (6.143)
0o —
6
The element shape matrices g(e) are obtained as
1 1
“Laem ta-my Laemy -tasm
B _| 8 8 8 8 (6.144)
1 1 1 1
—g(l—é) —g(1+€) g(1+§) g(l—é)
| -(1-n) (I-n) (I+n)  —(+n)
B = (6.145)

9| -(-Seem) ~10+E) T4 (5-45+m)

o | —(1-n) (I-n) (I+n) —(+n)
BY) = —

[en|3(6-66+m) 20+8) 1a+8) (6-55+y) | 6140

1 1 1 1
—g(l—n) g(l—n) §(1+71) —§(1+77)
1 1 1 1
—8(1—5) —g(1+5) g(1+§) g(l—f)

B@ — (6.147)

Numerical evaluation of the element characteristic matrices results in
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0.688943  —0.0222762 —0.282179 —0.384488
K® _ —-0.0222762  0.85561  —0.384488 —0.448846
-0.282179  —-0.384488  0.60759  0.0590766
—0.384488  —0.448846  0.0590766 0.774257

0.753348  0.0799856 —0.316655 —0.516679
K® _ 0.0799856  0.920014 -0.516679 —0.483321
-0.316655 —0.516679 0.680566  0.152768
-0.516679 —0.483321 0.152768  0.847232

[ 25 1 25 23]
36 36 72 72
1 25 23 25
K@ — 36 36 72 T2
25 23 25 1
72 72 36 36
23 25 1 25

L 72 72 36 36

Similarly, the right-hand-side vectors are calculated as

3.25 4
3.25
4.25

213

(6.148)

(6.149)

(6.150)

(6.151)

3 3

RON L R o) L e P (6152)
3 35 3
3 3

3.5 4.25

The element definitions (or connectivity of elements), as shown in Fig. 6.14, are

presented in Table 6.5.
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Table 6.5 Element connectivity

6 Finite Element Equations

Element number | Node 1 Node 2 Node 3 Node 4
(e)

1 1 2 9 8

2 2 3 4 9

3 9 4 5 6

4 8 9 6 7

Considering the correspondence between the local and global node numbering as
shown in Table 6.5, the element equations can be rewritten as

[P CI

1 1
Ky

Element 1: kéll) kélz)

M 40
k31 k32
M 40
_k41 k42

2 2
kY kY

Element 2: kg) kg)

Element 3:

Element 4:

i 2 i 2
3(1) ?SZ)

2 2
_k(“) k(12)

ol 4]

KD
9
WA
K

[o]

KD KD
M H
aa
KK

0
g
o
.

]
k1(1)

2
k§1)

2
k§1)

o
g

(1
L74 ]

2
Erll

6

o

3
k§4)
3
k§4)

3
ki ]

o
o

4
)

4
)

4
kg |1

U]
2

(1
3

— | £®
2

—| £®
2

—| r®
2

Ffl(l) 5

)
2

f3(1)

(1)
/4

,fl(z) <

f3(2)

[eo] [o] ] =]

(2)
/4 ]

Ff1(3) ]

f3(3)
3
4]

—fl(“) 5

f3(4)

(4
L/4

Rl =] & e [ = [E] e o] =] =] o]

(6.153)

(6.154)

(6.155)

(6.156)
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In the assembly of the element characteristic matrices and vectors, the boxed num-
bers indicate the rows and columns of the global matrix, K, and global right-hand-
side vector, F , to which the individual coefficients are added, resulting in

KD gD 0 0 0 0 0
kKK KD KD 0 0 0
0 S - R 7 0 0 0
0 &Y KD KDY KD K 0
0 0 0 K)o kD i) 0
o0 0 kY kY KR KD
0 0 0 0 0 KD kD
I S T R (L i1
KO Dk 1D DD B D KD
(6.157)
0 W %
@ e | | e
! @ | s
0 K+ g b4 £+ 1Y
0 Ky b5 (= A
Ky kY + k5 b6 72+ 1Y
Ky k) % £
R U I Y R
R R Rt | I VAR SRV LS

or
KO =F (6.158)

the global stiffness matrix and right-hand-side vector are numerically evaluated as



(6.159)

(6.160)
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[ 0.694444  —0.0277778 0 0
—-0.0277778 1.38339 -0.0222762 —0.282179 0

0 —0.0222762 0.85561 —0.384488 0
0 -0.282179  —-0.384488 1.5276 -0.516679
K= 0 0 -0.516679  0.680566
0 0 -0.483321 0.152768
0 0 0 0
-0.319444  —0.347222 0 0
_—0.347222 —0.703932  —-0.448846  0.139062 —0.316655
0 0 -0.319444  -0.347222 |
0 0 -0.347222  -0.703932
0 0 0 —0.448846
—0.483321 0 0 0.139062
0.152768 0 0 —-0.316655
1.54168 -0.0277778 —-0.347222 —0.836123
—-0.0277778 0.694444 —0.319444  -0.347222
—0.347222 —0.319444 1.38889 —0.0555556
-0.836123  —0.347222 —-0.0555556 291649 |
and
6.25
3.25
7.5
F=:4.25
7.25
13.5

After imposing the essential boundary conditions, i.e., ¢; =¢, =¢s =@ = ¢; =1,
the global system of equations is reduced by deleting the rows and columns cor-
responding to ¢s, ¢, ¢5, g5, and ¢, leading to
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K kY Ky Ky #
W A e e
W e e |
T v T 1L
70
7+ 50 KD K
- S0+ 1D -k k) (6.161)

1 2 3 4 2 2 3
HO 1 40+ 19K (kD 4

(3) 3) 4B G
— ki3 _(k14 +hy3 )_k24

which is numerically evaluated as

0.694444  —0.0277778 —0.319444  —0.347222
| —0.0277778  1.38339 —-0.347222  -0.703932

—0.319444  -0.347222 1.38889  —0.0555556 (6.162)
—0.347222  —-0.703932 —0.0555556  2.91649
and 3
P 6.55446
~ 16.66667 (6.163)
15.3098
Finally, the solution of the reduced global system yields
o 15.8119
13.5401
%l _ (6.164)
I 12.2471
&y 10.6332

6.1.3.2 ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq. (6.101)
through (6.105), also can be solved using ANSYS. The solution procedure is out-
lined as follows:
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Fig. 6.16 Generation of 7 6 5
nodes ' ' '
g 12 X 4

Model Generation
» Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Thermal Mass from the left list and Quad
4node 55 from the right list; click on OK.

— Click on Close.

» Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Thermal, Conductivity, and, finally, Isotropic, which
brings up another dialog box.

— Enter 1 for KXX, and click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create nodes (N command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

— A total of 9 nodes will be created (Table 6.4).

— Referring to Table 6.4, enter x- and y-coordinates of node 1, and Click on
Apply. This action will keep the Create Nodes in Active Coordinate System
dialog box open. If the Node number field is left blank, then ANSY'S will as-
sign the lowest available node number to the node that is being created.

— Repeat the same procedure for the nodes 2 through 9.

— After entering the x- and y-coordinates of node 9, click on OK (instead of
Apply).

— The nodes should appear in the Graphics Window, as shown in Fig. 6.16.
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Fig. 6.17 Generation of y - S
elements
4 3
3 a X
1 2
1 2

* Create clements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; refer to Fig. 6.17 to create elements by picking four
nodes at a time and clicking on Apply in between.

Observe the elements created after clicking on Apply in the Pick Menu.
Repeat until the last element is created.

— Click on OK when the last element is created.

* Review clements:
— Turn on element numbering using the following menu path:
Utility Menu > PlotCtrls > Numbering

— Select Element numbers from the first pull-down menu; click on OK.
— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > lements

— Figure 6.17 shows the outcome of this action as it appears in the Graphics
Window.

— Turn off element numbering and turn on node numbering using the following
menu path:

Utility Menu > PlotCtrls > Numbering

— Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

Select No numbering from the first pull-down menu.

— Click on OK.

Plot nodes (NPLOT command) using the following menu path:
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[D] Apply TEMP on Nodes
Lab2 DOFs to be constrained

Apply as |Constantvalue -
If Constant value then:

VALUE Load TEMP value [:

oK Apply Cancel | Help |

Fig. 6.18 Application of temperature boundary conditions on nodes

Utility Menu > Plot > Nodes

— Figure 6.16 shows the outcome of this action as it appears in the Graphics Window.

Solution

* Apply temperature boundary conditions (D command) using the following menu
path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature >
On Nodes

— Pick Menu appears; pick nodes 3 through 7 along the boundary (Fig. 6.16)
and click on OK on Pick Menu.
— Highlight TEMP and enter I for VALUE; click on OK (Fig. 6.18).

* Apply body load on elements (BFE command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat >
On Elements

— Pick Menu appears; click on Pick All.
— Enter I for VALI (leave other fields untouched, as shown in Fig. 6.19).
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:
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[BFE] Apply HGEN on elems as a

If Constant value then:
STLOC Starting location N

VAL1 Load HGEN atlocN

|Constant value
VAL2 Load HGEN atloc N+1 :

VAL3 Load HGEN atloc N+2
VAL4 Load HGEN atloc N+3

0K | Cancel | Help I
Fig. 6.19 Application of heat generation condition on elements

Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status/ If OK, close the Status Report Window and click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Review temperature values (PRNSOL command) using the following menu path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on DOF Solution and Nodal Temperature; click on OK.
— The list will appear in a new window, as shown in Fig. 6.20.
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e . EE——

A\ PRNSOL Command F=
File

|
PRINT TEMP NODAL SOLUTION PER NODE
xxxxx POST1 NODAL DEGREE OF FREEDOM LISTING s

LOAD STEP= 1 SUBSTEP= i
TIME= 1.0000 LOAD CASE= @

NODE TEMP
15.812
13.541
1.0000
1.0000
1.0000
1.0000
1.0000
12.247
10.634

MAXIMUM ABSOLUTE VALUES
NODE 1
VALUE 15.812

OCO-JONNF~ WA=

Fig. 6.20 Nodal solution for temperature

6.2 Principle of Minimum Potential Energy

Galerkin’s method is not always suitable for all structural problems because of dif-
ficulties in mathematically describing the structural geometry and/or the boundary
conditions. An alternative to Galerkin’s method is the principle of minimum poten-
tial energy (Washizu 1982; Dym and Shames 1973).

The energy method involves determination of the stationary values of the global
energy. This requires the approximation of the functional behavior of the dependent
variable so that the global energy becomes stationary. The stationary value can be
a maximum, a minimum or a neutral point. With an understanding of variational
calculus, the minimum stationary value leading to stable equilibrium (Fig. 6.21) is
obtained by requiring the first variation of the global energy to vanish.

Avoiding the details of variational calculus, the concepts of differential calculus
can be used to perform the minimization of the global energy. In solid mechanics,
this is known as the principle of minimum potential energy, which states that among
all compatible displacement fields satisfying the boundary conditions (kinemati-
cally admissible), the correct displacement field satisfying the equilibrium equa-
tions is the one that renders the potential energy an absolute minimum. A solution
satisfying both equilibrium equations and boundary conditions is, of course, “ex-
act”; however, such solutions are difficult, if not impossible, to construct for com-
plex problems. Therefore, approximate solutions are obtained by assuming kine-
matically admissible displacement fields with unknown coefficients. The values of
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m(x)
r s
maximum ~ unstable
equilibrium
neutral
minimum ~ stable equilibrium
> X

Fig. 6.21 Schematics of stable, neutral, and unstable equilibrium points of the global energy

Fig. 6.22 A 3D body with
displacement constraints,
body and concentrated forces,
and surface tractions

these coefficients are determined in such a way that the total potential energy of the
system is a minimum.

The principle of virtual work is applicable for any material behavior, whereas
the principle of minimum potential energy is applicable only for elastic materials.
However, both principles yield the same element equations for elastic materials.

The total potential energy of the structural system shown in Fig. 6.22 is defined
as

T, =W+Q (6.165)

in which I is the strain energy and € is the potential energy arising from the pres-
ence of body forces, surface tractions, and the initial residual stresses. Strain energy
is the capacity of the internal forces (or stresses) to do work through strains in the
structure.

For a linear elastic material, the strain energy of the deformed structure is given
by

W:%l(s—e*)Tch (6.166)
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where A is the vector of stress components arising from the difference between the
total strains, g, and initial strains, ¢ . It can be expressed as

GZD(S—S*) (6.167)
in which
o = {0')0C 0,, 0, Oy Oy sz} (6.168)
and
ST = {gxx gyy &z yxy yyz yzx} (6 169)
and the material property matrix
l-v v v 0 0 0 |
1-v 0 0 0
v l-v 0 0 0
p.—_E 10 0o o0 =2 0 (6.170)
A+v)(1-2v) -
0 0 0 a-2v) 0
2
0 0 0 0 0 @

where 0;; and &;; represent the stress and strain components, with i, j = x, y, z being
the Cartesian coordinates. The elastic modulus and Poisson’s ratio are denoted by
E and v, respectively. In the presence of temperature change, the initial strains can
be expressed as

¢ ={aAT oAT aAT 0 0 0 (6.171)

where o is the coefficient of thermal expansion and AT is the temperature change
with respect to a reference state.

The potential energy arising from the presence of body forces, b, surface trac-
tions, T, and the initial residual stresses, o, is given by

Q= —judeV - j u’'Tds + jgfc*dV (6.172)
v S, v

with
sz{bx b, bz} (6.173)
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T ={r, 7, .| (6.174)
u :{ux u, (6.175)

in which b, b,, and b_ are the components of body force (in units of force per
unit volume), and 7,, 7, and 7, represent the components of the applied traction
vector (in units of force per unit area) over the surface defined by S_. The entire
surface of the body having a volume of J is defined by §, with segments S, and S
subjected to displacement and traction conditions, respectively. The displacement
components are given by u,, U, and u, in the x-, y-, and z-directions, respectively.
Also, included in the expression for the total potential is the initial residual stresses
denoted by ". The initial stresses could be measured, but their prediction without
full knowledge of the material’s history is impossible.

After partitioning the entire domain occupied by volume J/ into £ number of ele-
ments with volume /¢, the total potential energy of the system can be rewritten as

E
7 () = D (g uy, ) (6.176)

e=1
in which

ngf):% I e’ Dedv - I aTDs*dV+% I Y

(e) (e) (e)
4 g i (6.177)
- j u'bav - j u! Tds + j ot dy

V(é’) SL(;-’) V(e)

where the superscript e denotes a specific element.
Based on kinematical considerations, the components of the total strain vector, g,
in terms of the displacement components are expressed as

i 0 0
Ox
0
. o < o0
XX ay
Eyy P
e | 10 0 " . (6.178)
}/xy = ﬁ ﬁ uy or g=Lu
u
Vye| | :
o) o 22
oz Oy
9 45 9
L Oz ox |
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in which L is the differential operator matrix.

The finite element process seeks a minimum in the potential energy based on the
approximate form of the dependent variables (displacement components) within
each element. The greater the number of degrees of freedom associated with the
element (usually means increasing the number of nodes), the more closely the solu-
tion will approximate the true equilibrium position. Within each element, the ap-
proximation to the displacement components can be expressed as

n
) 7O =3 N

r=l1

~il® = Z N (6.179)

ul® ~il® = ZNﬁe)ug)

r=1

with n representing the number of nodes associated with element e. The nodal un-
knowns and shape functions are denoted by u(e) (‘T) © and N, (), respectively. In
matrix form, the approximate displacement components can be expressed as

i® =NOTy®© (6.180)
in which
ﬁ(e)T:{[,)(:’) ﬁ;e) age)} (6.181)
N O 0 N, O 0 ... N, 0 0
NOT=lo N O 0 N, O ... 0 N, 0 (6.182)
0 0 N 0 0 Ny ... 0 0 N, .
U@T:{u(e) 4O @ @ @ e e L (© u(e)} (6.183)
X N 4 X Y2 5] X n Zn

With the approximate form of the displacement components, the strain components
within each element can be expressed as

c ~BOU® (6.184)

where

B© = LN©T (6.185)
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leading to the expression for the total potential in terms of element nodal displace-
ments, U©

ﬂ;e) :%U(e)Tk(e)U(e) _yTp@© +l J- TDE Y (6.186)
V(E)

in which the element stiffness matrix, k¢, and the element force vector, p(e), are
defined as
k' = I B DBV (6.187)
V(C')

and

p© =p{© +p +p<e> pie) (6.188)

with P R p(Te), Pg ,and P * representmg the element load vectors due to body forces,
surface tractions (forces) initial strains, and initial stresses, respectively, defined by

= [ NObar

pe)
py = [ NOTas
NE (6.189)
°) = j BT De*ay
748

P = I BOT 54
4%

Evaluation of these integrals results in the statically equivalent nodal forces in the

elements affected by the body force, the surface tractions, and the initial strains and
initial stresses. In the presence of external concentrated forces acting on various
nodes, the potential energy is modified as

E E
17 () T ( (©) 4 ple) 1 p(© _p(©)
"INk lu-u py) +p) +p —p ) P,
P {Z 2Py o (6.190)

e=1 e=1
1< r
+= e De'dv
2
e=1 o)

where P, is the vector of nodal forces and U represents the vector of nodal displace-
ments for the entire structure. Note that each component of the element nodal dis-
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placement vector, U'®), appears in the global (system) nodal displacement vector,
U. Therefore, the element nodal displacement vector U'® can be replaced by U
with the appropriate enlargement of the element matrices and vectors in the expres-
sion for the potential energy by adding the required number of zero elements and
rearranging. The summation in the expression for the potential energy implies the
expansion of the element matrices to the size of the global (system) matrix while
collecting the overlapping terms.
Minimization of the total potential energy requires that

{a&} -0 (6.191)
ou

leading to the system (global) equilibrium equations in the form

KU =P (6.192)

in which K and P are the assembled (global) stiffness matrix and the assembled
(global) nodal load vector, respectively, defined by

E
K=k (6.193)
e=1
and
E o
P=> (py +py +p —p') P, (6.194)

e=1

This global equilibrium equation cannot be solved unless boundary constraints are
imposed to suppress the rigid-body motion. Otherwise, the global stiffness matrix
becomes singular.

After obtaining the solution to the nodal displacements of the system equilibrium
equations, the stresses within the element can be determined from

c=DBYU® -Dg +o" (6.195)

The global stiffness matrix and the load vector require the evaluation of the inte-
grals associated with the element stiffness matrix and the element nodal load vector.

6.2.1 Example: One-Dimensional Analysis with Line Elements

The application of this approach is demonstrated by computing the displacements
and strains in a rod constructed of three concentric sections of different materials.
As shown in Fig. 6.23, the rod has a uniform cross section and is subjected to a
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Fig. 6.23 Arod eonstrained |4_ L, _*_ L, _*_ L, _,|

at both ends, subjected to a

concentrated force ® I ® P—D'{ 6] _;
« L >

Fig. 6.24 Finite element 1 D 2 ) 3 ©) 4

discretization of the rod with (@, O O O

three elements x,=0 X, X, X,

concentrated horizontal load, P, at the second joint, and the boundary conditions are
specified as u (x=0)=0 and u (x=L)=0.

The domain is discretized with 3 linear line elements having two nodes, as
shown in Fig. 6.24. The global coordinates of each node in domain D are specified
by x;, with i =1,2,3,4. The nodal values of the dependent Varlable associated with
element e are specified at its first and second nodes by u “and u respectlvely

For the domain discretized with three elements and four nodes the local and
global nodes are numbered as shown in Table 6.6.

Within each element, the approximation to the displacement component can be
expressed as

2
u)(ce) ~ Z/7)((6) — er(e)uie) (6.196)

r=1

The nodal unknowns and shape functions are denoted by u ) and N, © , respectively.
In matrix form, the approximate displacement components can be expressed as

i® =NOTy®© (6.197)
with
4@
NOT _ { N© N(e)} and U@ =N (6.198)
1 2 ,©
*2
in which the shape functions are
(e) (e)
X —X X—X
NO=2 ~  and NO=— "1 _ (6.199)
1 xge) _ xl(e) 2 xge) _ x1(e)

With the approximate form of the displacement components and L =0/ 0x, the
shape matrix can be obtained from
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Table 6.6 Local and global node numbers

Element number (e) Node 1 Node 2
1 1 2
2 2 3
3 3 4
0
B© — = [ N Ngﬂ (6.200)

For a constant cross section, 4, and elastic modulus, £, in each element, the
element stiffness matrix is

k(e): '[ B(e)TDB(e) dv
V(e)
9 (6.201)
o | N P
4@ | £ E(e)—[Nl(e) Ngﬂdx
ox| N ox
(e) z

X

Substituting for the shape functions, the element stiffness matrix becomes

NO)

2
o AVED f {1 ‘1}& (6.202)

2 -1
(xge>—xfe>) o

Integration along the element length results in

KO AQE®© {1 -1}__/1(6)15(6){1 —1}

(xge)_xl(e)) -1 1 0 -1 1
__ et
-1 1

in which ¢ = (x{¥) = x{?)and o'¥ = A9 E(©) / [“). The element stiffness matrices
are computed as

(6.203)

KD = [ oV —a ] (6.204)

oV M
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Fig. 6.25 A typical linear T T
. . — O— O —» by

line element with two nodes Xj

k® :[ o _“(2)] (6.205)

_g? @

k® :[ a? - ] (6.206)
EPNE) RN

The element load vector, PT due to the unknown nodal forces, T “and T “at nodes
jand j,respectively (Fig. 6.25), can be obtained from

(@) © M (x - xl(e))
Py = sgjo NOTS = eT— T,
Nl(e) (x xée))

(e) (e) T,
Ny (x x5 )

(6.207)

Evaluating the shape functions results in a load vector of the form

-1 0
p’(re) :{ 0 }Tzq +{1}Tx2
(6.208)
1, [0 [Ty
= =+ =
0 sz sz
Associated with each element, the load vectors become

T T T,
®_) " @_) = 3 _ (6.209)
2 3 4

The global coefficient matrix, K, and the load vector, P, are obtained from the
“expanded” element coefficient matrices, k@, and the element load vectors, PT),
by summation in the form
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E E
K=>k© and Pp=> p{ (6.210)
e=l1 e=1

The “expanded” element matrices are the same size as the global matrix but have
rows and columns of zeros corresponding to the nodes not associated with ele-
ment (e). Specifically, the expanded form of the element stiffness and load vector

becomes

aV - 0 0 T,
Lo _|-a” @ 0 o ;p(l)= T, 6211)
0O 0 00 T o
0 0 0 0 0
0 0 0 0 0
o0 a? —a® o ;p(2)= T, (6.212)
0 @ 4@ o T, +p
0 0 0 0 0
00 0 0 0
k(3):0 0 0 0 ;p(3): 0 6219
00 o - T T
00 -o® o® T,

In accordance with Eq. (6.210) and (6.192), the global equilibrium equations can

be written as

Q)

0

0

_a®

e

0

0 (a(l) +a(2))

0 0
e 0

(a(m +a<s)) NE)
a®  4®)

Enforcing the boundary conditions of u, =u, =0 leads to

(6.214)
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F LM ()] ]
a a 0 0 0 _Txl
—aW® (a(l) +a(2)) —a® 0 u, 0
2l (6.215)
0 —a® (a(2) +a(3)) —a® || %, P
3 3 0 Ty
| 0 0 —a® a ]
This system of equations can be partitioned in the form
0
—a® (a(l) +a(2)) —a® 0 0
Ux2 | _ (6.216a)
0 —a® (a(2) +a(3)) 014x3 P
0
or
(a(l) +a(2)) —a® {u 2} {0} (6.216b)
X j—
—a@ (a(2) +a(3)) Uy3 P
and
0 (6.217a)
OL(I) —Ol(l) 0 0 uxz _ _Txl
0 0 —a® o¢® Uy, - Tx4
0
or
T, =a®u,_ and T, =-a“u, (6.217b)
Solution to nodal displacements results in
_ a® (6218)

Yo T @ L 03, 00
((X o +o o +a o )

- a®+aq® (6.219)

u
% (a<”a(2)+a(”a‘3)+a(2)a(3>)
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With these nodal displacements, the reaction forces are computed as
aVg®

T, = P 6.220
" (090 +aa® +aPa®) (6.220)

e (aa) +a(2>)
T =— P (6.221)

* (a(l)a<2)+a“>a(3)+a<2)a<3))

Finally, the strains are computed as

2
@ _ 1 a®

I »

S =70 Ve uy ) ( aWg® a(l)a(3)+a(2)a(3))L(l) (6.222)
1 o0

@ _ ~

o =7y Uy Tly) = P

X =0 (uy, —uy,) ( 0V + Vg ® +a(2)a(3)) e (6.223)

¢ _ | (a(l) +a(2)) (6.224)
[ — —_ = — P .
Ex = 7 (it ") (¢"a® +aVa® +aPa®) O

6.2.2 Two-Dimensional Structural Analysis

The three-dimensional analysis of either “thin” or “long” components subjected to
in-plane external loading conditions can be reduced to a two-dimensional analysis
under certain assumptions referred to as “plane stress” and “plane strain” conditions.

6.2.2.1 Plane Stress Conditions

A state of plane stress exists for thin components subjected only to in-plane external
loading, i.e., no lateral loads (Fig. 6.26). Due to a small thickness-to-characteristic
length ratio and in-plane external loading only, there is no out-of-plane displace-
ment component, #_, and the shear strain components associated with the thickness
direction, ¥y, and 7., are very small and assumed to be zero. Therefore, the stress
components, ¢__, o, and 0., associated with the thickness direction vanish. Un-
der these assumptions, the displacement, u, stress, A, strain, g, and traction, T,
vectors, and material property matrix, D, reduce to

x Oy "'xy} (6.225)
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Fig. 6.26 Thin body with
in-plane loading; suitable for
plane stress idealization

and
I v 0
p-_E 1o (6.226)
1-v (1-v)
00 ——
with
€22 = -~ Oxx TOyy (6.227)
E

The initial strains arising from AT, the temperature change with respect to the refer-
ence state, can be expressed as

g7 =[aAT aAT 0] (6.228)

6.2.2.2 Plane Strain Conditions

A state of plane strain exists for a cylindrical component that is either “long” or fully
constrained in the length direction under the action of only uniform lateral external
loads (two examples are shown in Fig. 6.27). Because the ends of the cylindrical
component are prevented from deforming in the thickness direction, it is assumed
that the displacement component #_ vanishes at every cross section of the body. The
uniform loading and cross-sectional geometry eliminates any variation in the length
direction, leading to d()/ 0z = 0. Also, planes perpendicular to the thickness direc-
tion before deformation remain perpendicular to the thickness direction after de-
formation. These assumptions result in zero transverse shear strains, 7. =7,. =0.
Under these assumptions, the displacement, u, stress, A, strain, g, and traction, T,
vectors, and material property matrix, D, reduce to

c :{Gxx Oy ny} (6.229)
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Fig. 6.27 Long bodies with in-plane loading; suitable for plane strain idealization

and
6.230
E 1-v \% 0 ( )
= m I-v 0
+v)(1—-2v
0 0 (1 — 2V)
2
The initial strain vector due to this temperature change can be expressed as
e =[(1+V)aAT  (1+v)aAT 0] (6.231)

where AT is the temperature change with respect to a reference state.
The material property matrices for both plane stress and strain conditions have
the same form, and it is convenient to present it in the form
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D DD, 0
0 0 D,
where
D,(1-D,)
Dy, = 1 . 2 (6.233)

with D, = E/(1-v)? and D, =V for plane stress, and D, =E(1-v)/ (1+v)(1-2v)
and D, =v /(1-v) for plane strain.

6.2.2.3 Finite Element Equations with Linear Triangular Elements

The displacement components #, and ¥, within a triangular element can be ap-
proximated as

2O — 5@ _ N(©,(0) | n(0), ), e,
S B T (6.234)
uf =i = N+ N+ N

in which Nl(e), Nge), and N§6) are the linear shape functions and (“)(;),u;]e)),

( (e) (e) , (e) .
(uxz),“yz ), and (ij auyj ) are the nodal unknowns (degrees of freedom) associated

with first, second, and third nodes, respectively. An example of a triangular element
with its nodal degrees of freedom and local nodal numbering is shown in Fig. 6.28.
In matrix form, the approximate displacement components become

i@ = NOTy©@ (6.235)
in which
ﬁ(e)Tz{[,)(Ce) ﬁﬁze)} (6.236)
and
Nor _(M 0 Ny 0Ny 0 (6.237)
0 N, 0 N, 0 N
and

ueor - {u(e) 4O @ 0 O u(e)} (6.238)

X N X2 hy) X3 3
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Fig. 6.28 Typical linear
triangular element with nodal
degrees of freedom

The element shape matrix, B'), becomes

Ny 0 ONy 0 ON3 0
Ox Ox Ox
BO—| o M o N 4 Ny (6.239)
oy oy oy

AN, AN, N, N, Ny N,
|0y oOx & ax G Ox

Substituting for the derivatives of the shape functions, this matrix simplifies to

w0 i) 0 g o
BOY9=—"| ¢ xg;) 0 xl(? 0 xgel) (6.240)
N

Both the element shape and material property matrices are independent of the spa-
tial coordinates, x and y, thus leading to the evaluation of the element stiffness
matrix, k'@, as

k© = BOTpR@y© (6.241)
where 7@ = tA®), with element area A® and constant thickness 7. The evaluation

of the load vectors, Pbe and P(Te), arising from the body forces and surface tractions
(forces), respectively, involve integrals of the form

de dy, J.xdx dy, J.y dx dy (6.242)
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Fig. 6.29 Surface force
along side 1-2 of the triangu-
lar element

By choosing the centroid of the triangle as the origin of the (x, ) coordinate system,
the integrals involving either x or y in the integrand vanish. The load vector arising
from the body forces can be obtained from

([N, 0] [ [Mib,
0 N Nib,
N, 0 |[b N, b
@= |2 Ly = 2l
Pp A {by} N, by (6.243)
N3 0 N3 bx
0 N, N3b
g ) o
V
reducing to
(e)T ZA(e)
p! =T[bx b, by by, b b,] (6.244)

in which b, and b are the components of the body force vector.

The evaluation of the element load vector due to the applied traction forces (dis-
tributed loads as shown in Fig. 6.29) requires their explicit variation along the edges
of the element. For an element of constant thickness subjected to uniform load of 7,
in the x-direction along its 1-2 edge, the vector Pt can be written as

-l ] ("
N0 N T,
0o N 0
pl@ = | M2 0 {Tg}cﬂ:z Ny Tl g (6.245)
N, 0
o 0
Jlo o] J 0
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3

Fig. 6.30 Equivalent nodal forces for the surface force along side 1-2 of the triangular element

in which N, =0 along the 1-2 edge and Z,_, is the length of the 1-2 edge. Since
N, and N, vary linearly along the 1-2 edge, they can be expressed in terms of the
natural coordinates, & and &,, as derived in Chap. 3

(e) (e)
A S N 6.246
Nl gl xge) B x1(e) and N2 52 xge) _ xl(e) ( . )
The integrals in the expression for p(Te) are evaluated as
1 (6.247)
T,
I Ny Tdl :J. & T L_pdé = 12472
L, 0
1
T, L
I N, Tdi =J- &y T Ly pd&y === 2172
L, 0
Thus, the load vector, p(Te), takes the form
p7 = %[l 010 0 0] (6.248)

as illustrated in Fig. 6.30.

Note that this result corresponds to equivalent point forces acting at the first and
second nodes. The element load vectors arising from the initial strains and stresses
can be written as

p(i) — B(e)TDS* V(e)

¢ (6.249)
p(e*) — B(e)TO-* V(e)

o
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Fig. 6.31 Geometry and y4 "
loading of the problem 600 N/em

H 5

KB

I cm
1200 N/em] KB | 3cm
G
» ¥,
R @
2cm

6.2.2.4 Example of a Plane Stress Analysis with Linear Triangular Elements
Derivation of a System of Equations and Its Solution

Using linear triangular elements, determine the nodal displacements and the ele-
ment stresses in a thin plate subjected to displacement constraints and surface trac-
tions as shown in Fig. 6.31. Also, the plate is exposed to a temperature change of
10 °C from the reference temperature. The plate thickness is 0.5 cm and the Young’s
modulus, E, and the Poisson’s ratio, v, are 15x10° N/cm? and 0.25, respectively.
The coefficient of thermal expansion is 6x107°/°C.

In order to illustrate the solution method, the plate is discretized into two trian-
gular elements, as shown in Fig. 6.32.

The global coordinates of each node are specified by (x,,¥,), with p =1,2,3,4,
and are presented in Table 6.7.

The global unknown nodal displacement vector is given by

T _ 2
U _{uxl Uy Uy, Uy, Uy Uy Uy, u)’4} (6.250)

Considering the correspondence between the local and global node numbering
schemes, the elements are defined (connected) as shown in Table 6.8.
The areas of each element are calculated to be

AD =3cm? and AP =3/2cm? (6.251)

Under plane stress assumptions, the material property matrix becomes

16 4 0
D=10° 4 16 0|N/cm? (6.252)
0 0 6
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Fig. 6.32 Global and local y4
numbering of nodes and
elements o2
O
1
The initial strains arising from the temperature change is written as
g7 =10°[60 60 0] (6.253)
The element load vectors arising from the applied tractions are
T.L
p’(Il‘)T —¢ X 21—4 [1 00 0 1 0] (6254)
T, Ls_
pPT =2 23 o001 0 1 (6.255)

With the specified values of the thickness and the distributed loads, these element
load vectors become

pP” =300410[1 0 0 0 1 O]N (6.256)
and
pP" =-150[0 0 0 1 0 1]N (6.257)

For the first element, e =1, the components of the element shape matrix B are
computed as

(6.258)
s VT JP (I O S O
W=y O =y -m =3, 1= xD =y xy =1
W =00 ey my=0, X =a) Do,y =2
leading to 30 3 0 00
B :% 0 -1 0 -1 0 2 (6.259)

-1 -3 -1 3
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Table 6.7 Global nodal coordinates

Global node number Nodal coordinates Nodal unknowns
1 (0,0) u,_ ,u
RISt
2 (2,0) U u
X7V
3 (2,3) U, ,u,
3273
4 (1,3) u u
X427 Vg

Table 6.8 Element connectivity

Element Number (e) Node 1 Node 2 Node 3
1 1 2 4
2 2 3 4

For the second element, ¢ = 2, the components of the element shape matrix B? are
computed as

2 2 2 2
PR =P P =p-p =0, )

2 2 2 2 2 2
ygl):yg)—yl():yé‘—yz::i, x1(3):x1()—x§):x2—x4:1 (6260)

2 2 2 2 2
W =P =y =3, o =P -

= xgz) _x§2) =x4—x3=-1

xl(z) =x3-x =0

leading to
0 0 30 -30
8O- Z1 01 0 o (6.261)
321013 0 3

The evaluation of the stiffness matrices, k" and k', requires the products of
BYTD and B@TD. Also, these products appear in the evaluation of the element
load vectors arising from the temperature change. Therefore,

(48 -12 —6 |
-4 -16 -18
B(I)TD:E 48 12 -6 (6.262)
-4 -16 18
0 0 12
| 8 32 0 |
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B D=

10°

The element stiffness matrices become

[ 75 15
15 35
K 10|69 3
121 -3 -19
-6 —18
|12 -16
and =2
(6 0
0 16
k(2>:£ 6 -2
12|-18 —16
0 12
[ 18 0

6 Finite Element Equations

0 0 -6

-4 -16 0

48 12 6

4 16 18

-48 -12 0

0 0 -18]

-69 -3 -6 -12]
3 -19 -18 -16
75 -15 -6 12
-15 35 18 ~-16
-6 18 12 0
12 -16 0 32|
j=3 k=4
-6 -18 0 18]
-12 -16 12 0
150 30 -144 -18
30 70 -12 -54

—-144 -12 144 0
-18 -54 0 54

(6.263)

(6.264)

(6.265)

The boxed numbers above each column pair indicate the nodal order of degrees of
freedom in each element stiffness matrix.

The thermal load vectors associated with each element are obtained as

-900 0
-300 -300
900 ) 900
N and p/ = N
-300 £ 300
0 -900
600 0

(6.266)
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Rewriting the element stiffness matrices and the load vectors, in the expanded order
and rearranged form according to the increasing nodal degrees of freedom of the
global stiffness matrix, K yields

Associated with the first element:

(75 15 —69 -3 0 0 -6 -12]
15 35 3 =19 0 0 -18 -16
-69 3 75 =15 0 0 -6 12
6
k<1>:£ -3 —-19 =15 35 0 0 18 -16 (6.267)
1210 0 0 00 0
0 0 0 0 0 0 0
-6 -18 -6 18 0 0 12 0
-12 -16 12 -16 0 0 0 32|
1 -900
0 -300
0 900
0 -300
pgl}):300\/m 0 N and pil*): 0 N (6.268)
0 0
1 0
0 600
Associated with the second element:
[ 0 0 0 0 0 0 |
0 0 0 0 0 0
6 0 -6 -18 0 18
10° 0 16 -12 -16 12 0
Kk =—1 (6.269)
12 -12 150 30 -144 -18

-18 =16 30 70 -12 -54
0 12 -144 -12 144 O
18 0 -18 -54 0 54

S O O O O o o O
S O O O O o o O
|
@)
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N and p(z):

*
&

piP =150

— o = O O O O O

Summation of the element stiffness matrices

E
K=Yk
e=l1

and load vectors
E=2

SR

e=l

6 Finite Element Equations

=300
900
300

-900

N (6.270)

(6.271)

(6.272)

results in the global stiffness matrix and the global load vector as

(75 15 —-69 -3 0 0
15 35 3 19 0 0
—69 3 (75+6) -15 -6 -—18

106 =3 -19  -15  (35+6) -12 -16

K=—
121 0 0 -6 -12 150 30
0 0 -18 -16 30 64
-6 18 -6 (18+12)-144 -12
|12 -16 (12+18) -16 -18 -48
and

(300+/10 —900)
-300
900
(=300 —300)
900
(~150 +300)
(300/10 —900)
~150+ 600

-6 -12 ]
-18 -16
-6 (12+18)
(18+12) -16
—144 -18
-12 -48
(12+144) 0
0 (32+48) |
(6.273)
(6.274)
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The final form of the global system of equations becomes

(75 15 —-69 -3 0 0 -6 -12
15 35 3 -19 0 0 -18 -16
-69 3 (75+6) -15 -6 -18 -6 (12+18)
10 -3 -19  -15  (35+6) -12 -16 (18+12) -16
1700 o -6 -12 150 30  —144 -18
0 0 -18 -16 30 70 -12 —54
-6 18 -6 (18+12) —144 —12 (12+144) 0
|-12 -16 (12+18) -16  -18 -54 0 (32+54) |

u

1 (300410 —900) (6.275)
” -300
% 900
u, || (=300-300)
uy, 900

u (~150+300)
V3

. (300+/10 —900)
! ~150+600

u

u

uy4

Applying the prescribed values of the displacement components leads to

(75 15 -69 -3 0 0 -6 -12
15 35 3 -19 0 0 -18 -16
-69 3 (75+6) -I15 -6 -18 -6 (12+18)
10°0 -3 -19  -15  (35+6) -12 -16 (18+12) -16
1200 o0 -6 -12 150 30  -144 -18
0 0 -18 -16 30 70 -12 —54
-6 -18 -6  (18+12) —144 —12 (12+144) 0
|-12 -16 (12+18) -16  -18 -54 0 (32+54) |
Uy, (3007/10 —900) (6.276)
0 -300
0 900
0 (=300 -300)
o[~ 900
u, (~150+300)
u, | (300410 —900)
u, ~150+ 600
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Eliminating the rows and columns corresponding to zero displacement components
simplifies the global system of equations to

750 -6 12 |%x
100 0 70 -12 —54  ||Uy,
12| -6 -12 (12+144) 0 uy,
~12 -54 0 (2459 |u,, 627
(3007/10 —900)
| (-150+300)
(300310 —900)
(=150 + 600)

The solution to this system of equations results in the values for the unknown dis-
placement components as

Ux 0.0000357839

u

vl 0.000157003 om (6.278)
Uy, 0.0000171983
u 0.000166367

Ya

6.2.2.5 ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can also be
obtained using ANSY'S. The solution procedure is outlined as follows:

Model Generation

Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Structural Mass from the left list and Quad
4node 182 from the right list; click on OK.

— Click on Opfions.

— In order to specify the 2-D idealization as plane stress with thickness, in the
newly appeared dialog box pull down the menu for Element behavior K3 and
select Plane strs w/thk; click on OK (Fig. 6.33).

— Click on Close.

» Specify real constants (R command) using the following menu path:
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Options for PLANE182, Element Tyge Ref. No. 1

Element technology K1 Fuill Integration =l
Element behavior K3
Elementformulation K6 Pure displacemnt -

(NOTE: Mixed formulation is not valid with plane stress)

OK Cancel Help |

Fig. 6.33 Specification of element options

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Click on Add.

Click on OK.

Enter 5¢— 3 for Thickness THK; click on OK.
Click on Close.

* Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring another dialog box.

Enter 150e9 for EX, and 0.25 for PRXY; click on OK.

In the Define Material Model Behavior dialog box, in the right window, un-
der Structural find Thermal Expansion, Secant Coefficient, and Isotropic,
which will bring another dialog box (Fig. 6.34).

Enter 6e— 6 for APLX; click on OK.

Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit

* Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

A total of 4 nodes will be created (Table 6.7).

Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to convert
the coordinates to meters), and Click on Apply. This action will keep the Cre-
ate Nodes in Active Coordinate System dialog box open. If the Node number
field is left blank, then ANSY'S will assign the lowest available node number
to the node that is being created.
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Malerial Models Defined Material Models Available

- Waterial Model Number 1 = ) Favorites -
‘ Structural
(&8 Linear
(&8 Nonlinear
@ Density
@8 Thermal Expansion

@8 Secant Coefficient

© DR
€ Ortholropic
&3 Instantaneous Coefficient
& Thermal Strain
;I fm Nameins ll
i | =] 2 i |
Fig. 6.34 Specification of material behavior
Fig. 6.35 Generation of 4 3

nodes

kx .z

— Repeat the same procedure for the nodes 2 through 4.
— After entering the x- and y-coordinates of node 4, click on OK (instead of Apply).
— The nodes should appear in the Graphics Window, as shown in Fig. 6.35.

* Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; refer to Fig. 6.36 to create elements by picking three
nodes at a time and clicking on Apply in between.

— Observe the elements created after clicking on Apply in the Pick Menu.

Repeat until the last element is created.

— Click on OK when the last element is created.

* Review elements:

— Turn on element numbering using the following menu path:

Utility Menu > PlotCtrls > Numbering
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Fig. 6.36 Generation of 4 3
elements

— Select Element numbers from the first pull-down menu; click on OK.
— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

— Figure 6.36 shows the outcome of this action as it appears in the Graphics
Window.

— Turn off element numbering and turn on node numbering using the following
menu path:

Utility Menu > PlotCtrls > Numbering

— Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

— Select No numbering from the first pull-down menu.

Click on OK.

Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

— Figure 6.35 shows the outcome of this action as it appears in the Graphics
Window.

Solution

* Apply displacement boundary conditions (D command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement
> On Nodes

— Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal boundary
(Fig. 6.35) and click on OK on Pick Menu.

— Highlight UY and enter 0 for VALUE; click on Apply.

Pick Menu reappears; pick nodes 2 and 3 along the right vertical boundary

(Fig. 6.35) and click on OK on Pick Menu.

— Highlight UX and remove the highlight on UY; enter 0 for VALUE; click on OK.
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A\ Apply F/M on Nodes 53 |
[F] Apply ForceMoment on Nodes
Lab Direction of force/mom FX o=
Apply as IConslanlvalue ;J
If Constant value then:

VALUE Force/moment value 3e3*sqri(0.1)

oK ] Apply Cancel | Help |

Fig. 6.37 Application of external loads

* Apply force boundary conditions on nodes (F command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment
> On Nodes

— Pick Menu appears; pick nodes 1 and 4 along the slanted boundary; click on
OK.

— Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.37).

— Click on Apply.

— Pick Menu reappears; pick nodes 4 and 3 along the top horizontal boundary;
click on OK.

— Pull down the menu for Direction of force/mom and select FY; Enter — 150
for VALUE; click on OK.

» Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature >
Uniform Temp

— Uniform Temperature dialog box appears; Enter 10 for Uniform temperature.
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status. If OK, close the Status Report Window and click on OK in
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Review deformed shape (PLDISP command) using the following menu path:
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Fig. 6.38 Deformed B 3
configuration

Main Menu > General Postproc > Plot Results > Deformed Shape

— In the Plot Deformed Shape dialog box, choose the radio-button for Def+un-
def edge; click on OK.

— The deformed shape will appear in the Graphics Window, as shown in
Fig. 6.38.

» Review displacement values (PRNSOL command) using the following menu
path:
Main Menu > General Postproc > List Results > Nodal Solution

— Under Nodal Solution, click on DOF Solution and Displacement vector
sum; click on OK.
— The list will appear in a new window, as shown in Fig. 6.39.

A\ PRNSOL Command =
File

PRINT DOF NODAL SOLUTION PER NODE
swnnn POSTT NODAI DFGRFF OF FREFNOM | TSTTNG sssess

LOAD STEP= 1 SUBSTEP= 1

TIME= 1.0000 LORD CASE= @

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE

UK Uy
1 0.35784E-06 0.0000
2 0.0000 0.0000
3 0.0000 0.15700E-05
4 0.17198E-06 0.16637E-05
MAKIMUM ABSOLUTE VALUES
VALUE  0.35784E-06 0.16637E-05

Fig. 6.39 List of nodal displacements
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Fig. 6.40 Variation of the
natural coordinates in a typi-
cal quadrilateral element

Finite Element Equations with Linear Quadrilateral Isoparametric Elements

The displacement components #, and #, within a quadrilateral element can be ap-
proximated as

P = = MO N VOO NP
) =) = NOU + NOUE 1+ MO 4 NP

in which N, ) N (e) , N3 © and N () are the linear shape functions and (u(e) U(C))

(u ii)’ ;e )) (u (e), ;?) and (¢ x4 ) y4 ) are the nodal unknowns (degrees of freedom)

associated w1th first, second, third, and fourth nodes, respectively. The shape func-
tions for the linear (straight-sided) quadrilateral shown in Fig. 6.40 are defined in
terms of the centroidal or natural coordinates, (£,7), as

1 .
Np = (+E5,)0+mm,) with p=1,23,4 (6.280)

where £, and 77, represent the coordinates of the corner nodes in the natural coordi-

nate system, (&, = —1,n, =-1),(, =Ln, =-1), (& =Ln; =1),and (&, =-Ln, =1).
In matrix form, the approximate displacement components become

i© = NOTy© (6.281)
in which
a7 {L;)(Ce) ﬁ(ye)} (6.282)
and

Nor_[M0 N 0Ny 0 Ny 0 (6.283)
0O N 0 N, 0 Ny 0 N,
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and

U(e)rz{u(e) WO 4@ L@ e @ @ u(e)} (6.284)

X N X2 hs) X3 »3 X4 V4

The element shape matrix B can be expressed as

B© = LN®©T (6.285)

in which the differential operator matrix is

9
ox
L=l o 2 (6.286)
ay
o 9
| Ox Oy |

The element shape matrix can be rewritten as

Ny Ny N 0Ny
Oox ox ox ox
BO_| o M o, N, Wy, Ny (6.287)
oy oy oy oy
oN, N, N, ON, oN; ON; oN, ON,
oy ox o ox &y ox oy ox |

However, the shape functions are defined in terms of the centroidal or natural coor-
dinates, (&,n). Therefore, they cannot be differentiated directly with respect to the
x- and y-coordinates. In order to overcome this difficulty, the global coordinates are
expressed in terms of the shape functions in the form

4 4
x:ZNp(fan)xp and y:sz(g’n)yp (6.288)
p=l p=1

With this transformation utilizing the same shape functions as those used for the
displacement components, the concept of isoparametric element emerges, and the
element is referred to as an isoparametric element.

The derivatives of the shape functions can be obtained as

aszaNp%pra_n
0. o0& 0o on @ 6.289
X 00 O On O L 21234 (6:289)
aNp_aNp%pra_n

oy o0& oy on oy




256 6 Finite Element Equations

Fig. 6.41 Internal angle
exceeding 180°

Application of the chain rule of differentiation yields

P

06 ox 9 dy OF

ON _aNpﬁJr@Npa_y

with p=1,2,3,4 6.290
8Np_6Npﬁ+6NpQ ( )
on ox on Oy On

In matrix form, it can be expressed as
o) [ &0 EARNT:
0 o0& 0 0
Sl_[0 e ljavl )0l _ylox (6.291)
o) | w9 o |2
on on on|loy on oy

where J is called the Jacobian matrix, whose inverse does not exist if there is exces-
sive distortion of the element leading to the intersection of lines of constant & and 17
inside or on the element boundaries, as illustrated in Fig. 6.41. If the quadrilateral
element is degenerated into a triangle by increasing an internal angle to 180°, then
J is singular at that corner. It is possible to obtain the element stiffness because J
is still unique at the Gaussian integration points. However, the stresses at that cor-
ner are indeterminate. A similar situation occurs when two adjacent corner nodes
are made coincident to produce a triangular element. Therefore, any internal angle
of each corner node should be less than |g(°,and there is a loss of accuracy as the
internal angle approaches 180"

In the absence of excessive distortion, the transformation between the natural
and global coordinates has a one-to-one correspondence and J~! inverse exists. It
can be expressed as

» ¥
-1 1 817 65
J'= Woa a (6.292)

o &
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where the determinant of the Jacobian matrix is

p=Ey x (6.293)
OE Oon  on OF
in which
o g N, =m0 + (s~
— —(1=m)x; +A=m)xy + (1 +1)x3 —(1+1)x,
o¢ pl 85 Xp = mx )X n)x3 )Xy
ag vy =—{=(=my +(A=n)ys +A+1m)y3 =(1+7)y4}
(6.294)

p=1
4 6N

- za—”pz —(1=&)x = (14 E)xy + (1+E)x3 + (1= E)xy }
p= n
Z {(FU=E =+ &)y + 1+ E)y3 +(1-E) 4}
p=

Substituting for the derivatives and rearranging the terms permit the Jacobian to be
rewritten in the form

=

ON;  ON, ON3 0Ny Y
og og og o ||x »n (6.295)
ON; ON, 0ON3 ON4 || x3 3
on on  O0n 0N |[x4 v

or

1N
_1{—(1—77) (A=) (1+n) —(l+n)} X ¥
-(1=8) -(1+8) (d+5) (-9 3

Xq V4

(6.296)

Its determinant can be expressed in the form

0  1I-n =S+n -1+&|In
e 0 148 —C-n|y2| (6.297)
¢-n -1-¢ 0 I+n ||y
1-& &+n —-1-n. 0 ]y

1
|J| = g[xl Xy X3 X4:|
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In a concise form, the determinant can be also rewritten as

1
|J| = g[(xslhz =Xy p31) +E (X203 = Xa3012) + (g 3 —x3204)] - (6:298)

where

Xj =X =X and Vi=Yi—y; (6.299)

Determination of the inverse of the Jacobian matrix permits the expression for the
derivatives of the natural coordinates in terms of the global coordinates, x and y

&) o _ole
ox|_ 1| on  0c|]dg (6.300a)
| Pf_ax ox ||og
oy | on  o& ||on
and ol [ _wl[am
ox|_lpon  05)]0g (6.300b)
on| Pl _ax  ax ||on
oy L on o0& ||on

By substituting for the derivatives of the global coordinates in terms of the natural
coordinates, these expressions can be rewritten as

o 1 4 6Np o¢ = aNp (6.301)
ER D i ) Y
x |4 on v < on

4
on__ 15N, on_ 15N
ax |J|Z; og Y M ay_|J|pZ o

Finally, the derivatives in the shape matrix becomes

4 4
ON, 1 ]ON, aqu K pZaqu
o || og g ont on Hogt

; ‘5 ) with p=1,234 (6.302)
aNp 1] N, qu

0
P
—r =— +
Oy |J| o0& i on 1 on qzz;

oN,
qx
oc 1

These explicit expressions for the derivatives appearing in the element shape matrix
permit the determination of the element stiffness matrix, k'“), defined as
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K - j BTDB dy (6.303)
748
in which 1(© = tA©, with A and t representing the element area and constant ele-
ment thickness. It can be rewritten in the form
k@ —¢ I B DB 4 (6.304)
A(G)
The material property matrix D is usually independent of the spatial coordinates,
x and y, while the element shape matrix B'® requires differentiation of the shape
functions with respect to x and y. In order to overcome this difficulty, the integrals

are evaluated over a square region in the natural coordinate system, with the trans-
formation of coordinates given by

4 4
x:ZNp(§>n)xp and y:ZNp(§9n)yp (6305)
p=l1 p=l1

With this transformation and utilizing the following relation

”dxdy: _l[ j|J|d§dn (6.306)
A

-1 -1

the element stiffness matrix, k'®, can be rewritten as

11
k@ = [ [ BT DB |y dcdn (6.307)
-1-1

Due to the difficulty of obtaining analytical expression for the determinant and
inverse of the Jacobian matrix, these integrals are evaluated numerically by the
Gaussian integration technique. The element stiffness matrix can be evaluated nu-
merically as

~

9
KO =1y Y w,w,BYE,.n,) DBYE,n)IE,n,)| (6308
p=l g=1

in which W, and W, are the weights and £, and 71, are the integration points of the
Gaussian integration technique explained in Sec. 3.6. For this quadrilateral isopara-
metric element, P =2 and Q = 2 are sufficient for accurate integration.

For an element of constant thickness subjected to a uniform load of 7, and 7}, in
the x- and y-directions, respectively, along its 1-2 edge, the vector p$), arising from
tractions can be written as
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(5, o] N T
0 N M T,
N2 0 N2 Tx
0 N, |[T, Ny T,
Py =1 ’ { x}a”:f e (6.309)
N0 (I N3 T, '
0 N N3 T,
Ny O N, T,
l.: L 0 N4_ J N4 Ty
-2 L,

Referring to Fig. 6.40, along the 1-2 edge whose length is ,_,, the coordinate 17 has
a constant value of — 1 and & varies between — 1 and 1, leading to

1

r~

Ny T
N T,
Ny T,
pl® = hi=2 Moyl e (6.310)

2 N3 T,
N3T,
Ny T,
N, T,

Along & =—1toland n=-1,

N :%(1—5)(147) =%(1—5)
N, :%(Hg)(l—n):%(Hé) (6.311)
Ny =+ &)1 +m) =0

Ny =5 1-6)1+m) =0
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The integrals in the expression for p(Te) are evaluated as

Ll 2 INI ng_rLl 2 Ia g)ng_t[“ 27, (6.312)

and

Ll 2 INszé—tLl 2

-1

I(1+§)T dé = 147 (6313)

Thus, the load vector, P(Te ), takes the form

6.314)
(r _ Lo (
P —IT[Tx T, T, T, 0.0 0 0]

Note that this result implies that the applied load is distributed equally at the first
and second nodes of the 1-2 edge. This is a result of the linear variation of the shape
function along the edges.

As carried out in the derivation of the element stiffness matrix, the load vectors
due to body forces, initial strains, and initial stresses can be rewritten as

1 1
py) =[ [NObla|acan (6.315)
-1 -1
1 1
pl9 =1 I jB@T De*|J|dédn (6.316)
&
-1 -1
1 1
(e)=tf j BT 6" |J|dédn (6317)

-1 -1

Application of the Gaussian integration technique leads to the evaluation of these
load vectors in the form

P 0
py) =13 > w,w,NOE,.nbIE,.n,) (6.318)
p=l g=1
P 0 i
pl =1y > w,wBE,.n) De I, n,)| (6319)

p=l g=l



262 6 Finite Element Equations

Fig. 6.42 Local numbering Ay
scheme of the FEM discreti- 4 3
zation with a quadrilateral
element
©
X
1 2
(e) 2 & (e) T __*
e
P+ =’Z ZWquB (&pony) O |J(§p’77q)| (6.320)

1

hi

q

in which w, and w, are the weights and &, and 1, are the integration points of the
Gaussian integration technique.

6.2.2.6 Example of a Plane Stress Analysis with Linear Quadrilateral
Isoparametric Elements

Derivation of a System of Equations and Its Solution

The previous example discussed in Sec. 6.2.2.4 is reconsidered to compute the
nodal displacements and the element stresses. In order to illustrate the finite ele-
ment solution method, the plate is discretized into one quadrilateral isoparametric
element, as shown in Fig. 6.42.

The global coordinates of each node are specified by (xp, Yy ), with p =1,2,3,4,
and are tabulated in Table 6.9.

The global unknown nodal displacement vector is given by

T
U :{uxl Uy Uy, Uy, ux3 u)’s Uy, u)’4} (6.321)

Considering the correspondence between the local and global node numbering
schemes the elements are defined in Table 6.10.

For this element, e =1, the coefficients of the Jacobian matrix are determined from

& 0y =0+ (- =2)+ () =2)
¢ (6.322a)

() =D} = %(3—11)

Y oy = _ _ -
65—4{ (A=-m( =0)+1A-m)(y, =0)+(1+n)(y3 =3) (6.3220)

1)y =3)} =0
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Table 6.9 Global nodal coordinates

Global node number Nodal coordinates Nodal unknowns
1 (5 =0,),=0) Uz Uy,
2 (x,=2,y,=0) Uy, U,
3 (% =2,y =3)
4 (4 =1,p4 =3) Uy, Uy,

Table 6.10 Element connectivity

Element number (e) Node 1 Node 2 Node 3 Node 4
1 1 2 3 4
ox 1
o = Z{—(l—ﬁ)(?q =0)—(1+8)(xy =2)+(1+E)(x3 =2)
1 (6.322¢)
+H1=&)(xg =D} = Z(l =)
1
21001 = 0=+ =0+ 1+)(5 =)
n (6.322d)
6
+(1=8)(yy4 =3)=—
4
leading to the Jacobian matrix given by
1
L6-m 0
J= X . (6.323)
(- 2
2 1-8) 2
with its determinant
3
|J| :_(3_77) (6324)
8
The inverse of the Jacobian matrix becomes
_4
3—
gio| G (6.325)
21-8) 2

w

33-n)
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The determinant of the Jacobian matrix can be also determined from

1
|| = g[(x31y42 — X ¥31) +E (X103 = Xg3012) +11(X41 V35 — X33141)] (6-326)

in which

X=X =0 =2 w3 =xg vy =l

¥31=13=-31=3  ya3=ys4-y3=0

X32 :x3—x2 =0
V3o =y3-y2 =3

(6.327)
VR =y4=Y2=3 X =Xp-X =2 X4 =X4-X =
Xgp=Xg =X ==1 yy=y=- =0 ygy=ys-y=3
Substituting for the following derivatives
3 oN ox 1
a_pxp :8_22(3_77)
peiC IR
i@pr ¥,
— v, ==
Sog e
4 0N, x 1 (6.328)
o P =6—=Z(l—5)
Pl n
24:6pr oy 3
Ly, ===z
=t on n 2
permits the derivatives of the shape functions as
N, _ 8 {_EaNP}Z_ 4 ON,
ox 303+ 4 0 3+n) 0
Geml 42 [0 & s e
aNp _ 21+ &) 8Np _gaNp
ov  3(3+n) o0& 3 on

Thus, the components of the element shape matrix, BY are computed as
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ON, _ _(=m) N, _(-m)

& G-m & G-n’

ONs (1+7n) Ny (I+n)

ox  (3-nm) ox 3-n)

(6.330)
ANy 1(1=&) N, _ (2+&-n)
» o 3G-m o 3(3-1)
ON3 _(1+28-n) ON4 _21-¢%)
v 3G-m @ 3G-m)
- _(-m
G- G-
0 | o _10-9 0 _@+é-n)
3(3-n) 33-n)
_1ad-=9  _d=-n _@2+c-n) _d=-n)
L 3G-n) (3-mn) 33-m) (B-m) (6.331)
(1+m) I (E)
G-m) G-m
(+25-n) 0 2(1-¢)
33-m) 33-m)
d+28-n)  (+n)  20=5) _(d+n)
33-m) G-m  36-m  G-m]
Under plane stress assumptions, the material property matrix, D becomes
16 4 0
D=10°/ 4 16 0 |N/cm? (6.332)
0 0 6

The element stiffness matrix, k® , is computed as
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[ 4.8666 0.76713 43666  0.23287
0.76713 2.3545  0.73287  -1.0211
-4.3666  0.73287  5.3666 -1.7329
0.23287  -1.0211  -1.7329 3.6878
-2.7668  —0.96574  2.2668 —0.034264
-0.96574 -1.1244 —-0.53426 —0.20891
22668  —0.53426 —-3.2668 1.5343
| —0.034264 —0.20891  1.5343 —2.4578 _ (6.333)

kM =106

-2.7668 —0.96574  2.2668  —0.034264
—0.96574 -1.1244 -0.53426 —-0.20891
22668  —0.53426 —-3.2668 1.5343

—0.034264 -0.20891 1.5343 —2.4578
6.9663 0.56853  —6.4663  0.43147
0.56853 3.5845 093147  -2.2512
-6.4663  0.93147  7.4663 —-1.9315
0.43147  -2.2512 -1.9315 49178 |

The initial strains arising from the temperature change are included in the vector
¥
e as

g7 =10°[60 60 0] (6.334)

The element load vectors, p$)1_4 and p¥)3_4 , arising from the applied tractions

are

T.L

p(Tl){_4=thH[l 000001 0] (6.335)
T, Ly

p¥)§_4=tyT“[o 0000101 (6.336)

With the specified values of the thickness and the distributed loads, these element
load vectors become

p7 4 =300¥10[1 0 0 0 0 0 1 O]N (6.337)
pPl 4 =-150[0 0 0 0 0 1 0 1N (6.338)

The element load vector from all the applied tractions is
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300410
0
0

0
1 1
PP 1a+pPs g = o (N (6.339)

—-150

300410

—-150

The thermal load vector of the element, pil) , 1s obtained as

~900
-300
900
pl) =1 0N (6.340)
s ] 900 '

300
~900

600

Thus, the total element load vector, P is

(300+/10 —900)
-300
900
p_) (300-300) | (6341)
900
(~150+300)
(300+/10 —900)
~150+ 600

After applying the boundary conditions, the global stiffness matrix is reduced to

48666 —0.96574 22668 —0.034264
| ~096574 3.5845 093147 22512
22668 093147 74663  —1.9315 (6.342)
0.034264 22512 19315 49178

K=10
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and the reduced load vector is

(300+/10 —900)
150

1300410 —900)
450

P N (6.343)

The solution is given by

Uy 0.0000307806

s 0.000150801
~10.0000222016( "

" 0.000169468

(6.344)

ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can also be
obtained using ANSY'S. The solution procedure is outlined as follows:

Model Generation

* Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Click on Add.

Select Solid immediately below Structural Mass from the left list and Quad
4node 182 from the right list; click on OK.

Click on Options.

In order to specify the 2-D idealization as plane stress with thickness, in the
newly appeared dialog box, pull down the menu for Element behavior K3 and
select Plane strs w/thk; click on OK (Fig. 6.43).

Click on Close.

* Specify real constants (R command) using the following menu path:

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Click on Add.

Click on OK.

Enter 5e— 3 for Thickness THK; click on OK.
Click on Close.



6.2 Principle of Minimum Potential Energy 269

Oplions for PLANE 182, Element Type Rel No. 1

Element technology K1 | Full Integration _v_]

Element behavior K3 Plane strs withk

Element formulation K6 Ipum displacemnt -
(NOTE: Mixed formulation is not valid with plane stress)

OK | Cancel | Help |

Fig. 6.43 Specification of element options

* Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring another dialog box.

Enter 150e9 for EX, and 0.25 for PRXY; click on OK.

In the Define Material Model Behavior dialog box, in the right window, un-
der Structural, find Thermal Expansion, Secant Coefficient, and Isotropic,
which will bring another dialog box (Fig. 6.44).

Enter 6e— 6 for APLX; click on OK.

Close the Define Material Model Behavior dialog box by using the following
menu path:

Material >Exit

* Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

A total of four nodes will be created (Table 6.7).

Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to convert
the coordinates to meters), and Click on Apply. This action will keep the Cre-
ate Nodes in Active Coordinate System dialog box open. If the Node number
field is left blank, then ANSY'S will assign the lowest available node number
to the node that is being created.

Repeat the same procedure for the nodes 2 through 4.

After entering the x- and y-coordinates of node 4, click on OK (instead of
Apply).

The nodes should appear in the Graphics Window, as shown in Fig. 6.45.

* Create one element (E command) using the following menu path:
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Malerial Models Defined Material Models Available

-Waterial Model Number 1 2l Favorites =
@@ Structural
(8 Linea
Nonlinear
€@ Density
@8 Thermal Expansion
@8 Secant Coefficient
© TR
€ Onthotropic
&8 Instantaneous Coefficient
Thermal Strain
- . Jra -
K| | < 2

Fig. 6.44 Specification of material behavior

Fig. 6.45 Generation of 4 3
nodes : !

box .z

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; pick four nodes in a clockwise (or counterclockwise)
order.

— Click on OK.

Solution

* Apply displacement boundary conditions (D command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement
> On Nodes

— Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal boundary
(Fig. 6.45) and click on OK on Pick Menu.

— Highlight UY and enter 0 for VALUE; click on Apply.

— Pick Menu reappears; pick nodes 2 and 3 along the right vertical boundary
(Fig. 6.45); click on OK on Pick Menu.
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N\ Apply F/M on Nodes &3]
[F] Apply Force/Moment on Nodes
Lab Direction of forceimom X -
Apply as |Constant value =l
If Constant value then:

VALUE Force/momentvalue 3e3*sqri(0.1)

oK ] Apply Cancel | Help |

Fig. 6.46 Application of external loads

— Highlight UX and remove the highlight from UY; Enter 0 for VALUE; click
on OK.

* Apply force boundary conditions on nodes (F command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment
> On Nodes

— Pick Menu appears; pick nodes 1 and 4 along the slanted boundary; click on OK.

— Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.46).

— Click on Apply.

— Pick Menu reappears; pick nodes 4 and 3 along the top horizontal boundary;
click on OK.

— Pull down the menu for Direction of force/mom and select FY; Enter — 150
for VALUE; click on OK.

* Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature >
Uniform Temp

— Uniform Temperature dialog box appears; Enter 10 for Uniform temperature.
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status. If OK, close the Status Report Window and click on OK in
Confirmation Window.

— Wait until ANSYS responds with Solution is done!
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Fig. 6.47 Deformed
configuration

Postprocessing

» Review deformed shape (PLDISP command) using the following menu path:
Main Menu > General Postproc > Plot Results > Deformed Shape

— In the Plot Deformed Shape dialog box, choose the radio-button for Def+un-
def edge; click on OK.

— The deformed shape will appear in the Graphics Window, as shown in
Fig. 6.47.

» Review displacement values (PRNSOL command) using the following menu
path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on DOF Solution and Displacement vector sum; click on OK.
— The list will appear in a new window, as shown in Fig. 6.48.

/\ PRNSOL Command ﬁ'
File

PRINT DOF NODAL SOLUTION PER NODE
wwwnw POSTL NODAL DEGREE OF FREEDOM LISTING sewwsws

LORD STEP= 1 SUBSTEP=
TIME= 1.0000 LOAD CRSE- 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE U Uy
1 0.30635E-06 0.0000
2 0.0000 0.0000
3 0.0000 0.15062E-05
4 0.22347E-06 0.16956E-05
HAKIMUM ABSOLUTE VALUES

VALUE  0.30635E-06 0.16956E-05

Fig. 6.48 List of nodal displacements
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6.3 Problems

6.1

6.2

6.3

6.4

6.5

Construct the finite element equations for the solution of the linear second-

order ordinary differential equation given in the form

d*u(x) N dp(x) du(x)
dx’ de  dx

p(x) +q(x)u(x) = f(x)

subject to the conditions given as
u(xy) =4, u(x,)=B
by using the Galerkin technique within the realm of finite element method with

linear interpolation functions.

By using a one-dimensional (line) C! continuous cubic element, derive the ele-
ment coefficient matrix for the solution of the differential equation given as

d*u(x)
dx?

=/ (x)

Assume equally spaced nodal points.

By using quadratic interpolation functions, derive the element coefficient ma-
trix for the solution of the differential equation given as
2
d“u _ o

dx?

subject to the conditions

u(0)=1and ﬂ(4) =0
dx

Also, explicitly assemble both the global coefficient matrix and the right-hand
vector for equally spaced nodal points located at x=0, 1, 2, 3, and 4.

Without giving any consideration to the boundary conditions, write down
the contribution from the four elements, shown in Fig. 6.49, in the finite ele-
ment formulation for the Poisson equation V2¢ = C. Denote all entries in the
element coefficient matrices symbolically and write your answer in the form

[K]{g} +{F} = {0}.

In Problem 6.4, note that the interaction of the internal node 5 with all the adja-
cent elements is included in forming the equation arising from the field variable
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Fig. 6.49 Four linear tri- y
angular elements forming a
quadrilateral element

¢s associated with the 5th node. In the absence of external loads, the last row of
the vector-matrix expression in the previous problem may be set directly equal
to zero. Using the resulting equation, eliminate ¢ from the remaining four
rows of the vector-matrix expression to obtain the element coefficient matrix
and the contribution to the right-hand-side vector of a quadrilateral element
made up of four simpler triangular elements.

6.6 Suppose a collection of elements (part of some larger collection) has a total of
n interior nodes and m exterior (or boundary) nodes. The contribution from this
collection to the global finite element equations can be written as

[K]*{}® +{f}°

The contributions from the exterior nodes, ¢ (i =1,2,...,m), and the interior
nodes, ¢/ (i=m+1,...,n+m), may be partitioned as

K K'||of] [fF
+
K*T KI (P[ f1

where [K?] is an mxm submatrix, [K'is an nxn submatrix, etc. Consider-
ation of all of the contributions to the interior nodes results in

KT (0"} +[K'1{o ) + '} = {0}

Proceeding from this point, eliminate the quantities (pil from the remaining
equations to express the contribution from this collection of elements in the
form

[K*1 {o" } +{f*}
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Fig. 6.50 Heat generation n
within the body and flux

boundary condition along S 7

6.7

6.8

where [K®]is an mxm matrix. This technique is called substructuring.

For two-dimensional heat transfer in an isotropic body, the governing equation

is
E(Ka_T)_i_i Ka_T +q(x’y)=0
ox ox ) oy oy

where T is temperature, K is thermal conductivity, and ¢(x, ») is the heat gen-
eration rate over the domain. Suppose the heat flux out of some portion, S,
of the boundary is specified to have a constant value, Q, as shown in Fig. 6.50.
Then, the boundary condition over S, becomes

oT oT oT
K(EJ+Q=K|:(6—XJUX +(ajl’ly:|+Q=0

where n =<n,,n, > is the unit normal vector to the boundary. Using the Galer-
kin technique, show in a general way how this boundary condition enters the
right-hand-side vector.

Suppose that the heat flux is specified to be O over the side 45 of the domain
as shown in Fig. 6.51. Find explicitly the contribution of the interpolating func-
tion associated with node 4 to the right-hand-side vector in the system of equa-
tions derived in Problem 6.7:

a. for the case where element 3 is a linear triangular element.
b. for the case where element 3 is a quadratic triangular element with a mid-
side node between nodes 4 and 5.

Hint: Use a local coordinate, s, directed along the side of the triangle from node
4 to node 5. Note that the interpolating function associated with node 4 is linear
in s for linear interpolation and quadratic for quadratic interpolation.
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Fig. 6.51 Domain discretized ¥y
with three triangular elements

e=2

v

6.9 Explicitly evaluate the element coefficient matrix for the problem

2 2
8_v2/+6_v2/:(;
ox~ Oy

using 2x2 Gaussian integration for a 4-noded quadrilateral element whose
nodal point locations are given by

Node No. x y

1 6.0 3.0
2 -4.0 3.0
3 -5.0 -3.0
4 4.0 -3.0

6.10 Using quadratic interpolation over a 6-noded triangle (shown in Fig. 6.52),
derive explicit expressions for the entries K, K,,, and K5 in the element
coefficient matrix for the Poisson equation

o9 &

A T

ox~ 0Oy

6.11 Consider the 3-noded triangular element subjected to traction boundary condi-
tions along the 23 side as shown in Fig. 6.53. Assuming plane stress idealiza-
tion with thickness 1 = 0.01 m, £ = 200 GPa, andv = 0.25, construct:

a. the stiffness matrix.

b. the equivalent nodal force vector.

6.12 Assume that the nodal displacement components of the triangular element
considered in Problem 6.11 are as follows:
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Fig. 6.52 A six-noded trian- (x.0)

gular element

6.13

6.14

6.15

() (XgVs)

(x,,2) (x5,v5) (x;,05)

u = 0 VI = 0
1y =3.30078x10™m v =0
u; =1.85937x10™*m  v;=4.6875x10°m

Find the stress components (o, 0 ,,and Oy, ).

xx?

Assuming that the triangular element considered in Problem 6.11 is subject-
ed to gravitational acceleration in the negative y-direction with mass densi-
typ = 7850kg/m3 , find the equivalent nodal force vector.

Derive the equivalent nodal force vector for a 3-noded triangular element
when it is subjected to a uniform temperature change of A7. The coefficient
of thermal expansion of the material is a.

The equations governing the time-dependent motion of an elastic body are

2

0 u;
—[o,]1-p—5L=0
axj[ il P2

where p is the mass density of the body. The term p@zui / o may be inter-

preted as an “inertia” force, which is a special type of body force.

a. Identifying the inertia force as a body force with F, = — p@zui / 6¢%, derive
the contribution from a single element to the global finite element formu-
lation for the case of plane strain.

b. If no tractions are specified over the surface of the body, write down the
general form of the global finite element equations. Assuming

{u} = (@} e’

write down an equation for , , the natural frequencies of vibration.
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p =100 MPa

j—— 020m ———| 2

Fig. 6.53 Three-noded triangular element under uniform traction

6.16 A two-dimensional situation that is often of theoretical interest (although less

6.17

seldom of practical interest) is that of antiplane strain, in which u; =u, =0
and uy = u4(x;,x,). Hence, the only non-zero components of strain are &, , and
&,5 and those of stress are o5 and o,,, which are related by Hooke’s law:

E E
013 = 023 = n
(1+v) (1+v)

Find the element coefficient matrix for this problem for the linear triangle
(3-noded) using the integration formulas for area coordinates given previ-
ously.

Newton’s method is a familiar recursive technique for finding the roots of
a transcendental equation. Suppose the roots of n transcendental equations,
{g;(a j)} =0, in n unknowns are to be found. Then, Newton’s method can be

generalized to
(m)

-1
D = gy - {ai} fg)”

Ox;
where - 1
o, oz o™
Oay Oa 0a,
oo 1™ | %82 S22 0%
{—’} =| Oay Oa, 0a,
axj' . . .
| Oa;  Oay oa,, |
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and {g,}'" and [0g;/0a;] are evaluated at {q,}".
The finite element equations resulting from the nonlinear two-point boundary
value problem

2
%hg(u,x) =0
X

have the form

[K;1ta;}+{fi(a;)} = 10} (i=1,2,....n)

where {g,} are the nodal values and {/;(@;)} is some nonlinear function of
the nodal values. Apply Newton’s method to this problem to obtain a recursive
formula for the nodal values. What is the major drawback of this approach?
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