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Chapter 6
Finite Element Equations
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Finite element equations capture the characteristics of the field equations. Their 
derivation is based on either the governing differential equation or the global energy 
balance of the physical problem. The approach involving the governing differential 
equation is referred to as the method of weighted residuals or Galerkin’s method. 
The approach utilizing the global energy balance is referred to as the variational 
method or Rayleigh-Ritz method.

6.1  Method of Weighted Residuals

The method of weighted residuals involves the approximation of the functional be-
havior of the dependent variable in the governing differential equation (Finlayson 
1972). When substituted into the governing differential equation, the approximate 
form of the dependent variable leads to an error called the “residual.” This residual 
error is required to vanish in a weighted average sense over the domain. If the 
weighting functions are chosen to be the same as the element shape (interpolation) 
functions used in the element approximation functions, the method of weighted 
residuals is referred to as Galerkin’s method.

The governing differential equation for the physical problem in domain D 
described in Fig. 6.1 can be expressed in the form

 (6.1)

where φ  is a dependent variable and f  is a known forcing function. The ordinary 
or partial differential operator, L whose order is specified by p, can be linear or 
nonlinear. The boundary conditions are given by

 (6.2)

L f( )φ − = 0

B g Cj j( )φ = on 1
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and

 (6.3)

in which Bj  and E j  are operators, with j p= …1 2 3, , , , . The known functions g j  
and hj  prescribe the boundary conditions on the dependent vari-able and its deriva-
tives, respectively. The conditions on the dependent variable over C1  are referred 
to as essential or forced boundary conditions, and the ones involving the derivatives 
of the dependent variable over C2  are referred to as natural boundary conditions.

The method of weighted residuals requires that

 
(6.4)

where Wk  are the weighting functions approximating the dependent variable as

 
(6.5)

while satisfying the essential boundary conditions on C1. The unknown coefficients, 
αk , are determined by solving for the resulting system of algebraic equations.

Since the governing differential equation is valid for the entire domain, D, par-
titioning the domain into subdomains or elements, D e( ), and applying Galerkin’s 
method with weighting functions W Nk k

e= ( )  over the element domain results in

E h Cj j( )φ = on 2

L f W dD k n
D

k( ) , , , , ,� …φ −  = =∫ 0 1 2 3with

φ φ α≈ =
=
∑ k
k

n

kW
1

Fig. 6.1  Variation of the dependent (field) variable over a two-dimensional domain under speci-
fied boundary conditions
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(6.6)

in which E is the number of elements and the superscript “e” denotes a specific ele-
ment whose domain is D e( ) . The approximation to the dependent variable within 
the element can be expressed as

 

(6.7)

or

 (6.8)

where

 (6.9)

and

 (6.10)

with n representing the number of nodes associated with element e. The nodal 
unknowns and shape functions are denoted by φi

e( ) and Ni
e( ), with i n=1 2, ,.., , 

respectively. The shape functions need not satisfy the boundary conditions; how-
ever, they satisfy the inter-element continuity conditions necessary for assembly of 
the element equations. The essential boundary conditions are imposed after assem-
bling the global matrix. The natural boundary conditions are not imposed directly. 
However, their influence emerges in the derivation of the element equations.

The required order of the element continuity is equal to one less than the highest 
derivative of the dependent variable appearing in the integrand. This requirement 
is relaxed by applying integration by parts in the minimization procedure of the 
residual error in Galerkin’s method.

6.1.1  Example: One-Dimensional Differential Equation 
with Line Elements

The application of Galerkin’s method is introduced by considering the ordinary 
differential equation given by

 
(6.11)

N( ) ( )e e
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E
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e

φ( ) −( ) =
( )
∫∑
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in domain D defined by 0 1x≤ ≤ . The known forcing function is given by

 (6.12)

The boundary conditions, identified as the essential type, are φ( )0 0=  and φ( )1 0= . 
As shown in Fig. 6.2, the domain can be discretized with E linear line elements, 
each having two nodes (n = 2). There are a total of N  nodes, and global coordinates 
of each node in domain D are specified by xi , with i N= …1 2, , , . Nodal values of 
the dependent variable associated with element e are specified at its first and second 
nodes by φ1

( )e  and φ2
( )e , respectively.

The linear approximation function for the dependent variable in element e can 
be expressed in the form

 (6.13)

or

 (6.14)

where

 (6.15)

in which the shape functions are given by

 
(6.16)

They are the same as the length coordinates given by Eq. (3.9). Applying Galerkin’s 
method by Eq. (6.6) leads to

 
(6.17)

f x x( ) = −

φ φ φ( ) ( ) ( ) ( ) ( )e e e e eN N= +1 1 2 2
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Fig. 6.2  Domain of the one-dimensional differential equation, discretized into E elements
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Integrating the first term in the integral by parts results in

 

(6.18)

Substituting for the element approximation function ( φ ( ) ( ) ( )e e T e= N ϕϕ ) yields

 
(6.19)

where

 

(6.20)

and

 

(6.21)

After substituting for the shape functions and their derivatives, as well as the forc-
ing function, the expressions for the element characteristic matrix, k ( )e , and the 
right-hand-side vector, f ( )e , become

 

(6.22)
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(6.23)

Evaluation of these integrals leads to the final form of the element characteristic 
matrix, k ( )e , and the right-hand-side vector, f ( )e

 

(6.24)

and

 

(6.25)

or

 

(6.26)

The local and global nodes for the domain discretized with three elements, E = 3, 
and four nodes, N = 4, are numbered as shown in Table 6.1.

With the appropriate value of the nodal coordinates from Eq. (6.24) and (6.26), 
the element characteristic matrices and vectors are calculated as

 (6.27)

 (6.28)
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 (6.29)

 (6.30)

 (6.31)

 (6.32)

As reflected by the element connectivity in Table 6.1, the boxed numbers indicate 
the rows and columns of the global matrix, K, and global right-hand-side vector, 
F, to which the individual coefficients are added. The global coefficient matrix, K, 
and the global right-hand-side vector, F, are obtained from the “expanded” element 
coefficient matrices, k ( )e , and the element right-hand-side vectors, f ( )e , by summa-
tion in the form

 (6.33)

The “expanded” element matrices are the same size as the global matrix but have 
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Table 6.1  Element connectivity and nodal coordinates
Element Number ( e) Node 1 Node 2 x e

1
( ) x e

2
( )

1 1 2 0 1/3
2 2 3 1/3 2/3
3 3 4 2/3 1
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ment ( e). Specifically, the expanded form of the element stiffness and load vector 
becomes

 (6.34)

 (6.35)

 (6.36)

 (6.37)

 (6.38)
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 (6.39)

In accordance with Eq. (6.33) and (6.19), the assembly of the element characteristic 
matrices and vectors results in the global equilibrium equations

 (6.40)
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 (6.41)
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 (6.42)
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After imposing the essential boundary conditions, φ1 0=  and φ4 0= , the global sys-
tem of equations is reduced by deleting the row and column corresponding to φ1 and 
φ4 , leading to

 (6.43)

Its solution yields

 (6.44)

The exact solution to the differential equation given by

 (6.45)

provides

 (6.46)

The exact and FEM calculations of φ  along the x -axis are shown in Fig. 6.3.
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Fig. 6.3  Comparison of the exact and FEA (approximate) solutions to the 1D differential equation
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6.1.2  Example: Two-Dimensional Differential Equation  
with Linear Triangular Elements

6.1.2.1  Galerkin’s Method

The application of Galerkin’s method in solving two-dimensional problems with 
linear triangular elements is demonstrated by considering the partial differential 
equation given by

 (6.47)

in domain D, defined by the intersection of y y x= = −0 2 3, , and y x= 3  (as 
shown in Fig. 6.4), where A =1.

The boundary conditions are specified as

 (6.48)

 (6.49)

 (6.50)

When independent of time, these equations provide the temperature field, φ( , )x y , 
due to heat conduction in a domain having a heat generation of A with one of its 
boundaries subjected to a convective heat transfer. The thermal conductivity and the 
film (surface) heat transfer coefficient are equal to unity, and the temperature of the 
surrounding medium is B.

∂
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( , ) [ ( , ) ( )] /0 0 1 0 2 3for

φ( , ) /x y x x= = ≤ ≤3 0 0 1 3for
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Fig. 6.4  The equilateral 
triangular domain
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The triangular domain can be discretized into four linear triangular elements, 
each having three nodes identified as 1, 2, and 3 (local node numbering), as illus-
trated in Fig. 6.5.

As shown in Fig. 6.6, the global coordinates of each node in domain D are 
specified by ( , )x yi i , with i =1, 2, 3, 4, and 5. These coordinates are presented in 
Table 6.2.

The nodal values of the dependent variable associated with the global coordi-
nates are denoted by φi  (i = 1, 2, 3, 4, and 5). As shown in Fig. 6.5, the nodal values 
of the dependent variable associated with element e are specified at its first, second, 
and third nodes by φ1

( )e , φ2
( )e , and φ3

( )e , respectively.
The linear element approximation function for the dependent field variable in a 

triangular element “e” is written as

 (6.51)
φ φ φ φ( ) ( ) ( ) ( ) ( ) ( ) ( )e e e e e e eN N N= + +1 1 2 2 3 3

Fig. 6.5  Local node number-
ing for the linear triangular 
element

 

Fig. 6.6  Finite element dis-
cretization of the domain
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or

 (6.52)

As derived in Chap. 3, the element shape functions in Eq. (3.17) are taken as

 (6.53)

where x x xmn m n= − , y y ymn m n= − , and ( )e∆  is the area of the element computed 
by

 (6.54)

Applying Eq. (6.6), Galerkin’s method, leads to

 (6.55)

Since the element approximation function is C0  continuous, the second-order de-
rivatives in the integrand must be reduced by one so that the inter-element continu-
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Table 6.2  Nodal coordinates
Global node number Nodal coordinates Nodal unknowns
1 ( , )0 0 φ1

2 ( / , )2 3 0 φ2

3 ( / , )1 3 1 φ3

4 ( / , / )1 3 1 3 φ4

5 ( / , )1 3 0 φ5
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and

 (6.57)

Their substitution into the integrand in Eq. (6.55) and rearrangement of the terms 
result in

 (6.58)

Applying the divergence theorem to the first integral renders the domain integral to 
the boundary integral, and it yields

 (6.59)

where nx
e( ) and ny

e( ) are, respectively, the x- and y-components of the outward nor-
mal vector along the closed boundary defining the area of the element, C e( ).

Substituting for the element approximation function yields

 (6.60)

N N N( )
( )

( )
( ) ( )

( , ) ( , )e
e

e
e e

y
x y

y y
x y

y
∂
∂

=
∂
∂

∂
∂









 −

∂
∂

∂2

2

  φ φ φφ ( )
( , )

e

y
x y

∂

∂
∂

∂
∂












+

∂
∂

∂
∂



























( ) ( )

x x y y
e

e
e

e

D e

N N( ) ( )

(

 φ φ

))

( ) ( ) ( ) ( )

⌠

⌡











+ −
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∑ dxdy

x x y y

e

E

e e e e

1

   N N φ φ
++






















=
⌠

⌡
 N( )

( )

e

D

A dxdy

e

0

N N( )
( )

( ) ( )
( )

( )e
e

x
e e

e

y
e

x
n

y
n∂

∂









 +

∂
∂






















� �φ φ











+ −
∂
∂

∂
∂

−
∂
∂

∂

⌠

⌡


=
∑

C
e

E

e e e

e

ds

x x y

( )

( ) ( ) ( )

�

�

1

        N Nφ ��φ ( )
( )

( )

e
e

D

y
A dxdy

e

∂
+






















=
⌠

⌡
 N 0

N( )
( )

( )
( )

( )

( )

e
e

x
e

e

y
e

C
e x

n
y

n ds

e

∂
∂

+
∂
∂






















⌠

⌡


=

� �
� φ φ

11

E

e e T e e T

D

e
x x y y

dxdy

e

∑

−
∂
∂

∂
∂

+
∂
∂

∂
∂













⌠

⌡


N N N N( ) ( ) ( ) ( )
(

( )

ϕϕ ))

( )

( )

+





=∫ N e

D

Adxdy
e

0



1916.1  Method of Weighted Residuals 

This equation can be recast in matrix form as

 (6.61)

where

 (6.62)

 (6.63)

 (6.64)

in which k ( )e  is the element characteristic matrix, f ( )e  is the element right-hand-side 
vector, and Q( )e  is often referred to as the inter-element vector that includes the 
derivative terms along the boundary of the element. The boundary integral around 
each element is evaluated in a counterclockwise direction, i.e., this boundary inte-
gral is the sum of three integrals taken along each side of the element.

Depending on whether the element has an exterior boundary or not, the inter-
element vector is divided into two parts

 (6.65)

in which Qe
e( ) represents the contribution of the derivative terms specified along the 

external boundary of the element Ce
e( ), and Qi

e( ) represents the contribution from the 
internal boundaries of the element shared with other adjacent elements. Because 
each of the boundary integrals is evaluated in a counterclockwise direction, the 
contributions coming from the vector Qi

e( ) vanish when the global system of equa-
tions are assembled, thus no further discussion is necessary. However, in the case of 
specified derivative boundary conditions, the contribution coming from Qe

e( ) must 
be included.

In view of the boundary conditions given by Eq. (6.48) and the discretization of 
the domain, the 1–5 side of element 1 and the 5–2 side of element 2 are subjected to 
derivative boundary conditions.

With n nx x
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where φC is the unknown value of the field variable on the external boundary of the 
element Ce, along which the derivative boundary condition is specified.

Approximating the unknown field variable, φC, by φ ( ) ( ) ( )e e T e= N ϕϕ  in these equa-
tions leads to

 (6.67a)

and

 (6.67b)

which can be rewritten as

 
(6.68)

and

 (6.69a)

or

 (6.69b)

where

 (6.70)

and

 (6.71)

With this representation of the inter-element vector, the element equilibrium equa-
tions given by Eq. (6.61) can be rewritten in their final form as
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With the derivatives of the shape functions obtained as 

 (6.73)

the evaluation of the area integrals in Eq. (6.62) and (6.63) by using Eq. (3.19) leads 
to the final form of the element coefficient matrix, k ( )e , and right-hand-side vector, 
f ( )e

 (6.74)

and

 (6.75)

Their numerical evaluation results in
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 (6.79)

in which the area of each element is computed as

 (6.80)

 (6.81)

 (6.82)

 (6.83)

Associated with the inter-element vector, the boundary integrals in Eq. (6.70) and 
(6.71) are rewritten as
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and

 (6.85a)

 (6.85b)

in which N3
1( ) and N3

2( ) are zero along side 1–5 (with length L1 5− ) and along side 5–2 
(with length L2 5− ), respectively. The remaining shape functions N1

1( ), N2
1( ), N1

2( ), and 
N2

2( ) reduce to a one-dimensional form as

 (6.86)

 (6.87)

in which s is the local coordinate in the range of (0 1 5≤ ≤ −s L ) along side 1–5 and 
(0 5 2≤ ≤ −s L ) along side 5–2, L1 5 1 3− = / , and L5 2 1 3− = / . With these shape 

functions, the evaluation of h( )1 , g( )1 , h( )2 , and g( )2  leads to

 (6.88)

and

 (6.89)
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Element 1:

 (6.90)

Element 2:

 (6.91)

Element 3:

 (6.92)

Element 4:

 (6.93)
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Table 6.3  Element connectivity
Element number ( e) Node 1 Node 2 Node 3
1 1 5 4
2 5 2 4
3 2 3 4
4 3 1 4
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In the assembly of the element characteristic matrices and vectors, the boxed num-
bers indicate the rows and columns of the global matrix, K , and global right-hand-
side vector, F, to which the individual coefficients are added, resulting in

 (6.94)

where

 (6.95a)

 (6.95b)

 (6.95c)

After imposing the essential boundary conditions, the global system of equations 
are reduced by deleting the rows and columns corresponding to φ1, φ2, and φ3, lead-
ing to

 (6.96)
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With the explicit values of the coefficients, the nodal unknowns, φ4 and φ5 , are 
determined as

 (6.97a)

 (6.97b)

The expressions for h( )1  and h( )2  in Eq. (6.70) are derived based on a formulation 
consistent with the derivation of the element coefficient matrices, k ( )e . An alterna-
tive to the consistent formulation is the use of lumped diagonal matrices and ex-
pressing h( )1  and h( )2  in the form

 (6.98)

and

 (6.99)

Replacing the components of h( )1  and h( )2  in Eq. (6.96) with the values obtained in 
Eq. (6.98) and (6.99), the nodal unknowns φ4 and φ5 are determined as

 (6.100a)

 (6.100b)

Note that the discrepancy in the value of φ4  and φ5  obtained from the two methods 
is due to the small number of elements in the discretization of the domain.
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6.1.2.2  ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq. (6.47) 
through (6.50), also can be solved using ANSYS. The solution procedure is outlined 
as follows:

Model Generation

• Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

− Click on Add.
− Select Solid immediately below Thermal Mass from the left list and Quad 

4node 55 from the right list; click on OK.
− Click on Close.

• Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

− In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Thermal, Conductivity, and, finally, Isotropic, which 
brings up another dialog box.

− Enter 1 for KXX, and click on OK.
− Close the Define Material Model Behavior dialog box by using the following 

menu path:

Material > Exit

• Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

− A total of 5 nodes are created (Table 6.2).
− Referring to Table 6.2, enter x- and y-coordinates of node 1, and click on Ap-

ply. This action keeps the Create Nodes in Active Coordinate System dialog 
box open. If the Node number field is left blank, then ANSYS assigns the 
lowest available node number to the node that is being created.

− Repeat the same procedure for the nodes 2 through 5.
− After entering the x- and y-coordinates of node 5, click on OK (instead of Apply).
− The nodes should appear in the Graphics Window, as shown in Fig. 6.7.

• Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered 
> Thru Nodes

− Pick Menu appears; refer to Fig. 6.8 to create elements by picking three nodes 
at a time and clicking on Apply in between.

− Observe the elements created after clicking on Apply in the Pick Menu.
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− Repeat until the last element is created.
− Click on OK when the last element is created.

• Review elements:

− Turn on element numbering using the following menu path:

Utility Menu > PlotCtrls > Numbering

− Select Element numbers from the first pull-down menu; click on OK.
− Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

− Figure 6.8 shows the outcome of this action as it appears in the Graphics 
Window.

− Turn off element numbering and turn on node numbering using the following 
menu path:

Fig. 6.8  Generation of 
elements
 

Fig. 6.7  Generation of nodes 
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Utility Menu > PlotCtrls > Numbering

− Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

− Select No numbering from the first pull-down menu.
− Click on OK.
− Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

− Figure 6.7 shows the outcome of this action as it appears in the Graphics 
Window.

Solution

• Apply temperature boundary conditions (Dcommand) using the following menu 
path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature > 
On Nodes

− Pick Menu appears; pick nodes 1, 2, and 3 (Fig. 6.7); click on OK on Pick 
Menu.

− Highlight TEMP and enter 0 for VALUE; click on OK (Fig. 6.9).
− Apply convection boundary conditions (SF command) using the following 

menu path:

Fig. 6.9  Application of temperature boundary conditions on nodes
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Main Menu > Solution > Define Loads > Apply > Thermal > Convection > On 
Nodes

− Pick Menu appears; pick nodes 1, 2 and 5 along the boundary (Fig. 6.7); click 
on OK on Pick Menu.

− Enter 1 for both VALI Film coefficient and VAL2I Bulk temperature; click 
on OK (Fig. 6.10).

• Apply body load on elements (BFE command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat > 
On Elements

− Pick Menu appears; click on Pick All.
− Enter 1 for VAL1 leave other fields untouched, as shown in Fig. 6.11.
− Click on OK.

• Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve >Current LS

− Confirmation Window appears along with Status Report Window.
− Review status. If OK, close the Status Report Window and click on OK in 

Confirmation Window.
− Wait until ANSYS responds with Solution is done!

Fig. 6.10  Application of convection boundary conditions on nodes
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Postprocessing

• Review temperature values (PRNSOL command) using the following menu path:

Main Menu > General Postproc > List Results > Nodal Solution

− Click on DOF Solution and Nodal Temperature; click on OK.
− The list appears in a new window, as shown in Fig. 6.12.

6.1.3  Example: Two-Dimensional Differential Equation  
with Linear Quadrilateral Elements

6.1.3.1  Galerkin’s Method

In solving two-dimensional problems with quadrilateral isoparametric elements, 
Galerkin’s method is demonstrated by considering the partial differential equation 
given by

 (6.101)∂
∂

+
∂

∂
− =

2

2

2

2 0φ φ( , ) ( , )x y
x

x y
y

A

Fig. 6.11  Application of heat generation condition on elements
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in domain D defined by the intersection of y = −3, x = −4, y = 3, and y x= −3 15. The 
constant, A, is known. As shown in Fig. 6.13, the flux vanishes along the boundary 
of the domain specified by y = −3 and x = −4, and along the remaining part of the 
boundary specified by y = 3, and y x= −3 15, the dependent variable, φ( , )x y , has a 
value of unity. These boundary conditions are expressed as

 (6.102)

 (6.103)

 (6.104)

φ( , ) ,x y x y x= ≤ ≤ = −1 4 6 3 15for

∂
∂

= − = − ≤ ≤
x

x y xφ( , )3 0 4 4for

∂
∂

= − = − ≤ ≤
x

x y yφ( , )4 0 3 3for

Fig. 6.12  Nodal solution for temperature

 

Fig. 6.13  Description of 
domain, and boundary 
conditions
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 (6.105)

The domain is discretized with four linear quadrilateral isoparametric elements, 
each having four nodes identified as 1, 2, 3, and 4, shown in Fig. 6.14. The nod-
al values of the dependent variable associated with element e are specified at its 
first, second, third, and fourth nodes by φ φ φ1 2 3

( ) ( ) ( ), ,e e e , and φ4
( )e , respectively. The 

discretization of the domain with global node numbering is shown in Fig. 6.14. 
The global coordinates of the nodal values of the dependent variable denoted by 
φi (i = …1 2 9, , , ) are presented in Table 6.4.

The linear element approximation function for the dependent field variable in a 
quadrilateral isoparametric element “e” is written as

 (6.106)

φ( , )x y x= = − ≤ ≤3 1 4 6for

φ φ φ φ φ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e e e e e e e e eN N N N= + + +1 1 2 2 3 3 4 4

Fig. 6.14  FEM discretization of the domain into four quadrilaterals

 

Table 6.4  Nodal coordinates
Global node number Nodal coordinates Nodal variables
1 (− 4, − 3) φ1

2 (0, − 3) φ2

3 (4, − 3) φ3

4 (5,0) φ4

5 (6,3) φ5

6 (0,3) φ6

7 (− 4,3) φ7

8 (− 4,0) φ8

9 (0,0) φ9
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or

 (6.107)

where

 (6.108)

in which the shape functions N e
1
( ), N e

2
( ), N e

3
( ), and N e

4
( ) are expressed in terms of the 

centroidal or natural coordinates, ( , )ξ η , shown in Fig. 6.15. For a linear (straight-
sided) quadrilateral illustrated in Fig. 6.15, they are of the form

 (6.109)

where ξi  and ηi  represent the coordinates of the corner nodes in the natural coordi-
nate system, ( , )ξ η1 11 1= − = − , ( , )ξ η2 21 1= = − , ( , )ξ η3 31 1= = , and ( , )ξ η4 41 1= − = .

Applying Eq. (6.6), Galerkin’s method, leads to

 (6.110)
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Fig. 6.15  Local node numbering for a linear isoparametric quadrilateral element
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Since the element approximation function is C0 continuous, the second-order de-
rivatives in the integrand must be reduced by one so that inter-element continuity 
is achieved during the assembly of the global matrix. This reduction is achieved by 
observing that

 (6.111)

and

 (6.112)

Their substitution into the integrand in Eq. (6.110) and rearrangement of the terms 
result in

 (6.113)

Applying the divergence theorem to the first integral renders the domain integral to 
the boundary integral, and it yields

 (6.114)

where nx
e( ) and ny

e( ) are, respectively, the x- and y-components of the outward nor-
mal vector along the closed boundary defining the area of the element C e( ).

Substituting for the element approximation function yields
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 (6.115)

This equation can be recast in matrix form as

 (6.116)

where

 (6.117)

 (6.118)

 (6.119)

in which k ( )e  is the element characteristic matrix, f ( )e  is the element right-hand-side 
vector, and Q( )e  is often referred to as the inter-element vector that includes the 
derivative terms along the boundary of the element. The boundary integral around 
each element is evaluated in a counterclockwise direction, i.e., this boundary inte-
gral is the sum of four integrals taken along each side of the element.

Because the specified derivatives have zero values along the element boundar-
ies, the inter-element vector, Q( )e  vanishes, i.e., Q( )e = 0, thus reducing the element 
equilibrium equations to

 (6.120)
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The integrals contributing to the characteristic element matrix, k ( )e , and the right-
hand-side vector, f ( )e , are evaluated over a square region in the natural coordinate 
system after an appropriate coordinate transformation given by

 (6.121)

Application of the chain rule of differentiation yields

 (6.122)

or

 (6.123)

where J is called the Jacobian matrix. It can be expressed as

 (6.124)

in which

 (6.125)
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 (6.127)

 (6.128)
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Also, the Jacobian can be rewritten in the form

 (6.129)

or

 (6.130)

Because the transformation between the natural and global coordinates has a one-
to-one correspondence, the inverse of the Jacobian exists, and it can be expressed as

 (6.131)

When the element is degenerated into a triangle by increasing an internal angle to 
180°, J is singular at that corner. The inverse of the Jacobian matrix permits the 
expression for the derivatives in terms of global coordinates

 (6.132)

Defining the element shape matrix B( )e  as

 (6.133)

permits the element matrix k ( )e  be written in the form

 
(6.134)
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A similar operation is performed for evaluation of f ( )e

 (6.135)

Due to the difficulty of obtaining an analytical expression for the determinant and 
inverse of the Jacobian matrix, these integrals are evaluated numerically by the 
Gaussian integration technique described in detail in Sec. 3.6.

Prior to the calculation of the element characteristic matrices, their Jacobian ma-
trices are obtained for each element using Eq. (6.130) as

 (6.136)
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The inverse of the Jacobian matrices are obtained as

 (6.140)

 (6.141)

 (6.142)

 (6.143)

The element shape matrices B( )e  are obtained as

 (6.144)
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 (6.146)

 (6.147)

Numerical evaluation of the element characteristic matrices results in
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(6.148)

 (6.149)

 (6.150)

 (6.151)

Similarly, the right-hand-side vectors are calculated as

 (6.152)

The element definitions (or connectivity of elements), as shown in Fig. 6.14, are 
presented in Table 6.5.
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Considering the correspondence between the local and global node numbering as 
shown in Table 6.5, the element equations can be rewritten as

Element 1: (6.153)

Element 2: (6.154)

Element 3: (6.155)

Element 4: (6.156)

(1) (1)(1) (1) (1) (1)
1 111 12 13 14
(1) (1)(1) (1) (1) (1)
2 221 22 23 24
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3 331 32 33 34
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(4) (4)(4) (4) (4) (4)
1 111 12 13 14
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Table 6.5  Element connectivity
Element number 
( e)

Node 1 Node 2 Node 3 Node 4

1 1 2 9 8
2 2 3 4 9
3 9 4 5 6
4 8 9 6 7
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In the assembly of the element characteristic matrices and vectors, the boxed num-
bers indicate the rows and columns of the global matrix, K , and global right-hand-
side vector, F , to which the individual coefficients are added, resulting in

 

(6.157)

or
 (6.158)

the global stiffness matrix and right-hand-side vector are numerically evaluated as
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 (6.159)

and

 (6.160)

After imposing the essential boundary conditions, i.e., φ φ φ φ3 4 5 6= = = = φ7 1= , 
the global system of equations is reduced by deleting the rows and columns cor-
responding to φ3, φ4, φ5, φ6, and φ7, leading to

K =
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 (6.161)

which is numerically evaluated as

 (6.162)

and

 (6.163)

Finally, the solution of the reduced global system yields

 (6.164)

6.1.3.2  ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq. (6.101) 
through (6.105), also can be solved using ANSYS. The solution procedure is out-
lined as follows:
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Model Generation

• Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

− Click on Add.
− Select Solid immediately below Thermal Mass from the left list and Quad 

4node 55 from the right list; click on OK.
− Click on Close.

• Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

− In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Thermal, Conductivity, and, finally, Isotropic, which 
brings up another dialog box.

− Enter 1 for KXX, and click on OK.
− Close the Define Material Model Behavior dialog box by using the following 

menu path:

Material > Exit

• Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

− A total of 9 nodes will be created (Table 6.4).
− Referring to Table 6.4, enter x- and y-coordinates of node 1, and Click on 

Apply. This action will keep the Create Nodes in Active Coordinate System 
dialog box open. If the Node number field is left blank, then ANSYS will as-
sign the lowest available node number to the node that is being created.

− Repeat the same procedure for the nodes 2 through 9.
− After entering the x- and y-coordinates of node 9, click on OK (instead of 

Apply).
− The nodes should appear in the Graphics Window, as shown in Fig. 6.16.

Fig. 6.16  Generation of 
nodes
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• Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered 
> Thru Nodes

− Pick Menu appears; refer to Fig. 6.17 to create elements by picking four 
nodes at a time and clicking on Apply in between.

− Observe the elements created after clicking on Apply in the Pick Menu.
− Repeat until the last element is created.
− Click on OK when the last element is created.

• Review elements:

− Turn on element numbering using the following menu path:

Utility Menu > PlotCtrls > Numbering

− Select Element numbers from the first pull-down menu; click on OK.
− Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot >  lements

− Figure 6.17 shows the outcome of this action as it appears in the Graphics 
Window.

− Turn off element numbering and turn on node numbering using the following 
menu path:

Utility Menu > PlotCtrls > Numbering

− Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

− Select No numbering from the first pull-down menu.
− Click on OK.
− Plot nodes (NPLOT command) using the following menu path:

Fig. 6.17  Generation of 
elements
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Utility Menu > Plot > Nodes

− Figure 6.16 shows the outcome of this action as it appears in the Graphics Window.

Solution

• Apply temperature boundary conditions (D command) using the following menu 
path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature > 
On Nodes

− Pick Menu appears; pick nodes 3 through 7 along the boundary (Fig. 6.16) 
and click on OK on Pick Menu.

− Highlight TEMP and enter 1 for VALUE; click on OK (Fig. 6.18).

• Apply body load on elements (BFE command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat > 
On Elements

− Pick Menu appears; click on Pick All.
− Enter 1 for VAL1 (leave other fields untouched, as shown in Fig. 6.19).
− Click on OK.

• Obtain solution (SOLVE command) using the following menu path:

Fig. 6.18  Application of temperature boundary conditions on nodes
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Main Menu > Solution > Solve > Current LS

− Confirmation Window appears along with Status Report Window.
− Review status/ If OK, close the Status Report Window and click on OK in the 

Confirmation Window.
− Wait until ANSYS responds with Solution is done!

Postprocessing

• Review temperature values (PRNSOL command) using the following menu path:

Main Menu > General Postproc > List Results > Nodal Solution

− Click on DOF Solution and Nodal Temperature; click on OK.
− The list will appear in a new window, as shown in Fig. 6.20.

Fig. 6.19  Application of heat generation condition on elements
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6.2  Principle of Minimum Potential Energy

Galerkin’s method is not always suitable for all structural problems because of dif-
ficulties in mathematically describing the structural geometry and/or the boundary 
conditions. An alternative to Galerkin’s method is the principle of minimum poten-
tial energy (Washizu 1982; Dym and Shames 1973).

The energy method involves determination of the stationary values of the global 
energy. This requires the approximation of the functional behavior of the dependent 
variable so that the global energy becomes stationary. The stationary value can be 
a maximum, a minimum or a neutral point. With an understanding of variational 
calculus, the minimum stationary value leading to stable equilibrium (Fig. 6.21) is 
obtained by requiring the first variation of the global energy to vanish.

Avoiding the details of variational calculus, the concepts of differential calculus 
can be used to perform the minimization of the global energy. In solid mechanics, 
this is known as the principle of minimum potential energy, which states that among 
all compatible displacement fields satisfying the boundary conditions (kinemati-
cally admissible), the correct displacement field satisfying the equilibrium equa-
tions is the one that renders the potential energy an absolute minimum. A solution 
satisfying both equilibrium equations and boundary conditions is, of course, “ex-
act”; however, such solutions are difficult, if not impossible, to construct for com-
plex problems. Therefore, approximate solutions are obtained by assuming kine-
matically admissible displacement fields with unknown coefficients. The values of 

Fig. 6.20  Nodal solution for temperature

 



2236.2  Principle of Minimum Potential Energy 

these coefficients are determined in such a way that the total potential energy of the 
system is a minimum.

The principle of virtual work is applicable for any material behavior, whereas 
the principle of minimum potential energy is applicable only for elastic materials. 
However, both principles yield the same element equations for elastic materials.

The total potential energy of the structural system shown in Fig. 6.22 is defined 
as

 (6.165)

in which W  is the strain energy and Ω is the potential energy arising from the pres-
ence of body forces, surface tractions, and the initial residual stresses. Strain energy 
is the capacity of the internal forces (or stresses) to do work through strains in the 
structure.

For a linear elastic material, the strain energy of the deformed structure is given 
by

 (6.166)

π p W= +Ω

W dV
T

V

= −( )∗∫
1
2

εε εε σσ

Fig. 6.21  Schematics of stable, neutral, and unstable equilibrium points of the global energy

 

Fig. 6.22  A 3D body with 
displacement constraints, 
body and concentrated forces, 
and surface tractions
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where Ã is the vector of stress components arising from the difference between the 
total strains, εε, and initial strains, εε*. It can be expressed as

 (6.167)

in which

 (6.168)

and

 (6.169)

and the material property matrix

 (6.170)

where σ ij and ε ij represent the stress and strain components, with i j x y z, , ,=  being 
the Cartesian coordinates. The elastic modulus and Poisson’s ratio are denoted by 
E  and ν , respectively. In the presence of temperature change, the initial strains can 
be expressed as

 (6.171)

where α is the coefficient of thermal expansion and T∆  is the temperature change 
with respect to a reference state.

The potential energy arising from the presence of body forces, b, surface trac-
tions, T, and the initial residual stresses, σσ*, is given by

 (6.172)

with

 (6.173)
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 (6.174)

 (6.175)

in which bx , by , and bz are the components of body force (in units of force per 
unit volume), and Tx, Ty , and Tz represent the components of the applied traction 
vector (in units of force per unit area) over the surface defined by Sσ . The entire 
surface of the body having a volume of V  is defined by S , with segments Su and Sσ  
subjected to displacement and traction conditions, respectively. The displacement 
components are given by ux, uy , and uz in the x -, y -, and z -directions, respectively. 
Also, included in the expression for the total potential is the initial residual stresses 
denoted by σσ*. The initial stresses could be measured, but their prediction without 
full knowledge of the material’s history is impossible.

After partitioning the entire domain occupied by volume V  into E number of ele-
ments with volume V e , the total potential energy of the system can be rewritten as

 (6.176)

in which

 (6.177)

where the superscript e denotes a specific element.
Based on kinematical considerations, the components of the total strain vector, εε, 

in terms of the displacement components are expressed as

 (6.178)
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in which L is the differential operator matrix.
The finite element process seeks a minimum in the potential energy based on the 

approximate form of the dependent variables (displacement components) within 
each element. The greater the number of degrees of freedom associated with the 
element (usually means increasing the number of nodes), the more closely the solu-
tion will approximate the true equilibrium position. Within each element, the ap-
proximation to the displacement components can be expressed as

 (6.179)

with n representing the number of nodes associated with element e. The nodal un-
knowns and shape functions are denoted by ux

e
r

( ), uy
e
r

( ), uz
e
r

( ) , and Nr
e( ), respectively. In 

matrix form, the approximate displacement components can be expressed as

 (6.180)

in which

 (6.181)

 (6.182)

 (6.183)

With the approximate form of the displacement components, the strain components 
within each element can be expressed as

 (6.184)

where

 (6.185)
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leading to the expression for the total potential in terms of element nodal displace-
ments, U( )e

 (6.186)

in which the element stiffness matrix, k ( )e , and the element force vector, p( )e , are 
defined as

 (6.187)

and

 (6.188)

with pb
( )e

, pT
( )e , pε*

( )e
, and pσ *

( )e
 representing the element load vectors due to body forces, 

surface tractions (forces), initial strains, and initial stresses, respectively, defined by

 

(6.189)

Evaluation of these integrals results in the statically equivalent nodal forces in the 
elements affected by the body force, the surface tractions, and the initial strains and 
initial stresses. In the presence of external concentrated forces acting on various 
nodes, the potential energy is modified as

 (6.190)

where Pc is the vector of nodal forces and U represents the vector of nodal displace-
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placement vector, U( )e , appears in the global (system) nodal displacement vector, 
U . Therefore, the element nodal displacement vector U( )e  can be replaced by U 
with the appropriate enlargement of the element matrices and vectors in the expres-
sion for the potential energy by adding the required number of zero elements and 
rearranging. The summation in the expression for the potential energy implies the 
expansion of the element matrices to the size of the global (system) matrix while 
collecting the overlapping terms.

Minimization of the total potential energy requires that

 (6.191)

leading to the system (global) equilibrium equations in the form

 (6.192)

in which K and P are the assembled (global) stiffness matrix and the assembled 
(global) nodal load vector, respectively, defined by

 (6.193)

and

 (6.194)

This global equilibrium equation cannot be solved unless boundary constraints are 
imposed to suppress the rigid-body motion. Otherwise, the global stiffness matrix 
becomes singular.

After obtaining the solution to the nodal displacements of the system equilibrium 
equations, the stresses within the element can be determined from

 (6.195)

The global stiffness matrix and the load vector require the evaluation of the inte-
grals associated with the element stiffness matrix and the element nodal load vector.

6.2.1  Example: One-Dimensional Analysis with Line Elements

The application of this approach is demonstrated by computing the displacements 
and strains in a rod constructed of three concentric sections of different materials. 
As shown in Fig. 6.23, the rod has a uniform cross section and is subjected to a 
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concentrated horizontal load, P, at the second joint, and the boundary conditions are 
specified as u xx ( )= =0 0 and u x Lx ( )= = 0.

The domain is discretized with 3 linear line elements having two nodes, as 
shown in Fig. 6.24. The global coordinates of each node in domain D are specified 
by xi, with i =1 2 3 4, , , . The nodal values of the dependent variable associated with 
element e are specified at its first and second nodes by ux

e
i

( )and ux
e
j

( ), respectively.
For the domain discretized with three elements and four nodes, the local and 

global nodes are numbered as shown in Table 6.6.
Within each element, the approximation to the displacement component can be 

expressed as

 (6.196)

The nodal unknowns and shape functions are denoted by ux
e
r

( )  and Nr
e( ), respectively. 

In matrix form, the approximate displacement components can be expressed as

 (6.197)

with
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in which the shape functions are
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Fig. 6.24  Finite element 
discretization of the rod with 
three elements

 

Fig. 6.23  A rod constrained 
at both ends, subjected to a 
concentrated force
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 (6.200)

For a constant cross section, A e( ), and elastic modulus, E e( ), in each element, the 
element stiffness matrix is

 (6.201)

Substituting for the shape functions, the element stiffness matrix becomes

 (6.202)

Integration along the element length results in

 (6.203)

in which L x xe e e( ) ( ) ( )( )= −2 1  and α ( ) ( ) ( ) ( )/e e e eA E L= . The element stiffness matrices 
are computed as

 (6.204)
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Table 6.6  Local and global node numbers
Element number ( e) Node 1 Node 2
1 1 2
2 2 3
3 3 4
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 (6.205)

 (6.206)

The element load vector, pT
( )e , due to the unknown nodal forces, Txi and Tx j at nodes 

i and j , respectively (Fig. 6.25), can be obtained from

 (6.207)

Evaluating the shape functions results in a load vector of the form
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Associated with each element, the load vectors become
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Fig. 6.25  A typical linear 
line element with two nodes
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 (6.210)

The “expanded” element matrices are the same size as the global matrix but have 
rows and columns of zeros corresponding to the nodes not associated with ele-
ment ( e). Specifically, the expanded form of the element stiffness and load vector 
becomes

 (6.211)

 

 (6.213)

In accordance with Eq. (6.210) and (6.192), the global equilibrium equations can 
be written as

 (6.214)
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 (6.215)

This system of equations can be partitioned in the form

 (6.216a)

or

 (6.216b)

and

 (6.217a)

or

 (6.217b)

Solution to nodal displacements results in
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With these nodal displacements, the reaction forces are computed as

 (6.220)

 (6.221)

Finally, the strains are computed as

 (6.222)

 (6.223)

 (6.224)

6.2.2  Two-Dimensional Structural Analysis

The three-dimensional analysis of either “thin” or “long” components subjected to 
in-plane external loading conditions can be reduced to a two-dimensional analysis 
under certain assumptions referred to as “plane stress” and “plane strain” conditions.

6.2.2.1  Plane Stress Conditions

A state of plane stress exists for thin components subjected only to in-plane external 
loading, i.e., no lateral loads (Fig. 6.26). Due to a small thickness-to-characteristic 
length ratio and in-plane external loading only, there is no out-of-plane displace-
ment component, uz, and the shear strain components associated with the thickness 
direction, γ xz  and γ yz, are very small and assumed to be zero. Therefore, the stress 
components, σ zz , σ xz, and σ yz, associated with the thickness direction vanish. Un-
der these assumptions, the displacement, u, stress, Ã, strain, εε, and traction, T , 
vectors, and material property matrix, D, reduce to

 (6.225)
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and

 (6.226)

with

 (6.227)

The initial strains arising from T∆ , the temperature change with respect to the refer-
ence state, can be expressed as

 (6.228)

6.2.2.2  Plane Strain Conditions

A state of plane strain exists for a cylindrical component that is either “long” or fully 
constrained in the length direction under the action of only uniform lateral external 
loads (two examples are shown in Fig. 6.27). Because the ends of the cylindrical 
component are prevented from deforming in the thickness direction, it is assumed 
that the displacement component uz vanishes at every cross section of the body. The 
uniform loading and cross-sectional geometry eliminates any variation in the length 
direction, leading to ∂ ∂ =() / z 0. Also, planes perpendicular to the thickness direc-
tion before deformation remain perpendicular to the thickness direction after de-
formation. These assumptions result in zero transverse shear strains, γ γxz yz= = 0. 
Under these assumptions, the displacement, u, stress, Ã, strain, εε, and traction, T, 
vectors, and material property matrix, D, reduce to

 (6.229)
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Fig. 6.26  Thin body with 
in-plane loading; suitable for 
plane stress idealization
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and

 (6.230)

The initial strain vector due to this temperature change can be expressed as

 (6.231)

where T∆  is the temperature change with respect to a reference state.
The material property matrices for both plane stress and strain conditions have 

the same form, and it is convenient to present it in the form
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Fig. 6.27  Long bodies with in-plane loading; suitable for plane strain idealization

 



2376.2  Principle of Minimum Potential Energy 

 (6.232)

where

 (6.233)

with D E1
21= −/ ( )ν  and D2 =ν  for plane stress, and D E1 1= −( ) /ν  ( )( )1 1 2+ −ν ν  

and D2 1= −ν ν/ ( ) for plane strain.

6.2.2.3  Finite Element Equations with Linear Triangular Elements

The displacement components ux and uy  within a triangular element can be ap-
proximated as

 (6.234)

in which N e
1
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2
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3 3  are the nodal unknowns (degrees of freedom) associated 
with first, second, and third nodes, respectively. An example of a triangular element 
with its nodal degrees of freedom and local nodal numbering is shown in Fig. 6.28. 
In matrix form, the approximate displacement components become

 (6.235)
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The element shape matrix, B( )e , becomes

 (6.239)

Substituting for the derivatives of the shape functions, this matrix simplifies to

 (6.240)

Both the element shape and material property matrices are independent of the spa-
tial coordinates, x and y, thus leading to the evaluation of the element stiffness 
matrix, k ( )e , as

 (6.241)

where V te e( ) ( )= ∆ , with element area ( )e∆  and constant thickness t. The evaluation 
of the load vectors, pb

( )e  and pT
( )e , arising from the body forces and surface tractions 

(forces), respectively, involve integrals of the form
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Fig. 6.28  Typical linear 
triangular element with nodal 
degrees of freedom
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By choosing the centroid of the triangle as the origin of the ( , )x y  coordinate system, 
the integrals involving either x or y in the integrand vanish. The load vector arising 
from the body forces can be obtained from

 (6.243)

reducing to

 (6.244)

in which bx  and byare the components of the body force vector.
The evaluation of the element load vector due to the applied traction forces (dis-

tributed loads as shown in Fig. 6.29) requires their explicit variation along the edges 
of the element. For an element of constant thickness subjected to uniform load of Tx 
in the x-direction along its 1–2 edge, the vector pT
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 can be written as

 (6.245)
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Fig. 6.29  Surface force 
along side 1–2 of the triangu-
lar element
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in which N3 0=  along the 1–2 edge and L1 2−  is the length of the 1–2 edge. Since 
N1 and N2 vary linearly along the 1–2 edge, they can be expressed in terms of the 
natural coordinates, ξ1 and ξ2, as derived in Chap. 3

 (6.246)

The integrals in the expression for pT
( )e  are evaluated as

 (6.247)

Thus, the load vector, pT
( )e , takes the form

 (6.248)

as illustrated in Fig. 6.30.
Note that this result corresponds to equivalent point forces acting at the first and 

second nodes. The element load vectors arising from the initial strains and stresses 
can be written as

 (6.249)
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Fig. 6.30  Equivalent nodal forces for the surface force along side 1–2 of the triangular element
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6.2.2.4  Example of a Plane Stress Analysis with Linear Triangular Elements 

Derivation of a System of Equations and Its Solution

Using linear triangular elements, determine the nodal displacements and the ele-
ment stresses in a thin plate subjected to displacement constraints and surface trac-
tions as shown in Fig. 6.31. Also, the plate is exposed to a temperature change of 
10 C°  from the reference temperature. The plate thickness is 0.5 cm and the Young’s 
modulus, E, and the Poisson’s ratio, ν , are 15 106× N/cm2 and 0.25, respectively. 
The coefficient of thermal expansion is 6 10 6× − / C.

In order to illustrate the solution method, the plate is discretized into two trian-
gular elements, as shown in Fig. 6.32.

The global coordinates of each node are specified by ( , )x yp p , with p =1 2 3 4, , , , 
and are presented in Table 6.7.

The global unknown nodal displacement vector is given by

 (6.250)

Considering the correspondence between the local and global node numbering 
schemes, the elements are defined (connected) as shown in Table 6.8.

The areas of each element are calculated to be

 (6.251)

Under plane stress assumptions, the material property matrix becomes

 (6.252)
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Fig. 6.31  Geometry and 
loading of the problem
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The initial strains arising from the temperature change is written as

 (6.253)

The element load vectors arising from the applied tractions are

 (6.254)

 (6.255)

With the specified values of the thickness and the distributed loads, these element 
load vectors become

 (6.256)

and

 (6.257)

For the first element, e =1, the components of the element shape matrix B( )1  are 
computed as

 (6.258)

leading to
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Fig. 6.32  Global and local 
numbering of nodes and 
elements
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For the second element, e = 2, the components of the element shape matrix B( )2  are 
computed as

 (6.260)

leading to

 (6.261)

The evaluation of the stiffness matrices, k ( )1  and k ( )2 , requires the products of 
B D( )1 T  and B D( )2 T . Also, these products appear in the evaluation of the element 
load vectors arising from the temperature change. Therefore,

 (6.262)
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Table 6.7  Global nodal coordinates
Global node number Nodal coordinates Nodal unknowns
1 (0,0) u ux y1 1

,
2 (2,0) u ux y2 2

,
3 (2,3) u ux y3 3

,
4 (1,3) u ux y4 4

,

Table 6.8  Element connectivity
Element Number ( e) Node 1 Node 2 Node 3
1 1 2 4
2 2 3 4
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 (6.263)

The element stiffness matrices become

 (6.264)

and

 (6.265)

The boxed numbers above each column pair indicate the nodal order of degrees of 
freedom in each element stiffness matrix.

The thermal load vectors associated with each element are obtained as

 (6.266)
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Rewriting the element stiffness matrices and the load vectors, in the expanded order 
and rearranged form according to the increasing nodal degrees of freedom of the 
global stiffness matrix, K yields

Associated with the first element:

 (6.267)

 (6.268)

Associated with the second element:

 (6.269)
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 (6.270)

Summation of the element stiffness matrices

 (6.271)

and load vectors

 (6.272)

results in the global stiffness matrix and the global load vector as

 (6.273)

and

 (6.274)
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The final form of the global system of equations becomes

 (6.275)

Applying the prescribed values of the displacement components leads to

 (6.276)
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Eliminating the rows and columns corresponding to zero displacement components 
simplifies the global system of equations to

 (6.277)

The solution to this system of equations results in the values for the unknown dis-
placement components as

 (6.278)

6.2.2.5  ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can also be 
obtained using ANSYS. The solution procedure is outlined as follows:

Model Generation

Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

− Click on Add.
− Select Solid immediately below Structural Mass from the left list and Quad 

4node 182 from the right list; click on OK.
− Click on Options.
− In order to specify the 2-D idealization as plane stress with thickness, in the 

newly appeared dialog box pull down the menu for Element behavior K3 and 
select Plane strs w/thk; click on OK (Fig. 6.33).

− Click on Close.
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Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

− Click on Add.
− Click on OK.
− Enter 5e − 3 for Thickness THK; click on OK.
− Click on Close.

• Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

− In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic, 
which will bring another dialog box.

− Enter 150e9 for EX, and 0.25 for PRXY; click on OK.
− In the Define Material Model Behavior dialog box, in the right window, un-

der Structural find Thermal Expansion, Secant Coefficient, and Isotropic, 
which will bring another dialog box (Fig. 6.34).

− Enter 6e − 6 for APLX; click on OK.
− Close the Define Material Model Behavior dialog box by using the following 

menu path:

Material > Exit

• Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

− A total of 4 nodes will be created (Table 6.7).
− Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to convert 

the coordinates to meters), and Click on Apply. This action will keep the Cre-
ate Nodes in Active Coordinate System dialog box open. If the Node number 
field is left blank, then ANSYS will assign the lowest available node number 
to the node that is being created.

Fig. 6.33  Specification of element options
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− Repeat the same procedure for the nodes 2 through 4.
− After entering the x- and y-coordinates of node 4, click on OK (instead of Apply).
− The nodes should appear in the Graphics Window, as shown in Fig. 6.35.

• Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered 
> Thru Nodes

− Pick Menu appears; refer to Fig. 6.36 to create elements by picking three 
nodes at a time and clicking on Apply in between.

− Observe the elements created after clicking on Apply in the Pick Menu.
− Repeat until the last element is created.
− Click on OK when the last element is created.

• Review elements:

− Turn on element numbering using the following menu path:

Utility Menu > PlotCtrls > Numbering

Fig. 6.34  Specification of material behavior

 

Fig. 6.35  Generation of 
nodes
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− Select Element numbers from the first pull-down menu; click on OK.
− Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

− Figure 6.36 shows the outcome of this action as it appears in the Graphics 
Window.

− Turn off element numbering and turn on node numbering using the following 
menu path:

Utility Menu > PlotCtrls > Numbering

− Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

− Select No numbering from the first pull-down menu.
− Click on OK.
− Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

− Figure 6.35 shows the outcome of this action as it appears in the Graphics 
Window.

Solution

• Apply displacement boundary conditions (D command) using the following 
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement 
> On Nodes

− Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal boundary 
(Fig. 6.35) and click on OK on Pick Menu.

− Highlight UY and enter 0 for VALUE; click on Apply.
− Pick Menu reappears; pick nodes 2 and 3 along the right vertical boundary 

(Fig. 6.35) and click on OK on Pick Menu.
− Highlight UX and remove the highlight on UY; enter 0 for VALUE; click on OK.

Fig. 6.36  Generation of 
elements
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• Apply force boundary conditions on nodes (F command) using the following 
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment 
> On Nodes

− Pick Menu appears; pick nodes 1 and 4 along the slanted boundary; click on 
OK.

− Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.37).
− Click on Apply.
− Pick Menu reappears; pick nodes 4 and 3 along the top horizontal boundary; 

click on OK.
− Pull down the menu for Direction of force/mom and select FY; Enter − 150 

for VALUE; click on OK.

• Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature > 
Uniform Temp

− Uniform Temperature dialog box appears; Enter 10 for Uniform temperature.
− Click on OK.

• Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

− Confirmation Window appears along with Status Report Window.
− Review status. If OK, close the Status Report Window and click on OK in 

Confirmation Window.
− Wait until ANSYS responds with Solution is done!

Postprocessing

• Review deformed shape (PLDISP command) using the following menu path:

Fig. 6.37  Application of external loads
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Main Menu > General Postproc > Plot Results > Deformed Shape

− In the Plot Deformed Shape dialog box, choose the radio-button for Def + un-
def edge; click on OK.

− The deformed shape will appear in the Graphics Window, as shown in 
Fig. 6.38.

• Review displacement values (PRNSOL command) using the following menu 
path:

Main Menu > General Postproc > List Results > Nodal Solution

− Under Nodal Solution, click on DOF Solution and Displacement vector 
sum; click on OK.

− The list will appear in a new window, as shown in Fig. 6.39.

Fig. 6.39  List of nodal displacements

 

Fig. 6.38  Deformed 
configuration
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Finite Element Equations with Linear Quadrilateral Isoparametric Elements

The displacement components ux and uy  within a quadrilateral element can be ap-
proximated as

 (6.279)
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associated with first, second, third, and fourth nodes, respectively. The shape func-
tions for the linear (straight-sided) quadrilateral shown in Fig. 6.40 are defined in 
terms of the centroidal or natural coordinates, ( , )ξ η , as

 (6.280)

where ξ p and η p represent the coordinates of the corner nodes in the natural coordi-
nate system, ( , )ξ η1 11 1= − = − , ( , )ξ η2 21 1= = − , ( , )ξ η3 31 1= = , and ( , )ξ η4 41 1= − = .

In matrix form, the approximate displacement components become
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and

 (6.284)

The element shape matrix B( )e  can be expressed as

 (6.285)

in which the differential operator matrix is

 (6.286)

The element shape matrix can be rewritten as

 (6.287)

However, the shape functions are defined in terms of the centroidal or natural coor-
dinates, ( , )ξ η . Therefore, they cannot be differentiated directly with respect to the 
x- and y-coordinates. In order to overcome this difficulty, the global coordinates are 
expressed in terms of the shape functions in the form

 (6.288)

With this transformation utilizing the same shape functions as those used for the 
displacement components, the concept of isoparametric element emerges, and the 
element is referred to as an isoparametric element.

The derivatives of the shape functions can be obtained as
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Application of the chain rule of differentiation yields

 (6.290)

In matrix form, it can be expressed as

 (6.291)

where J is called the Jacobian matrix, whose inverse does not exist if there is exces-
sive distortion of the element leading to the intersection of lines of constant ξ  and η 
inside or on the element boundaries, as illustrated in Fig. 6.41. If the quadrilateral 
element is degenerated into a triangle by increasing an internal angle to 180°, then 
J is singular at that corner. It is possible to obtain the element stiffness because J 
is still unique at the Gaussian integration points. However, the stresses at that cor-
ner are indeterminate. A similar situation occurs when two adjacent corner nodes 
are made coincident to produce a triangular element. Therefore, any internal angle 
of each corner node should be less than 180°,and there is a loss of accuracy as the 
internal angle approaches 180°.

In the absence of excessive distortion, the transformation between the natural 
and global coordinates has a one-to-one correspondence and J−1 inverse exists. It 
can be expressed as

 (6.292)
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where the determinant of the Jacobian matrix is

 (6.293)

in which

 (6.294)

Substituting for the derivatives and rearranging the terms permit the Jacobian to be 
rewritten in the form
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In a concise form, the determinant can be also rewritten as

 (6.298)

where

 (6.299)

Determination of the inverse of the Jacobian matrix permits the expression for the 
derivatives of the natural coordinates in terms of the global coordinates, x and y
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 (6.303)

in which V te e( ) ( )= ∆ , with ( )e∆  and t representing the element area and constant ele-
ment thickness. It can be rewritten in the form

 (6.304)

The material property matrix D is usually independent of the spatial coordinates, 
x and y, while the element shape matrix B( )e  requires differentiation of the shape 
functions with respect to x and y. In order to overcome this difficulty, the integrals 
are evaluated over a square region in the natural coordinate system, with the trans-
formation of coordinates given by

 (6.305)

With this transformation and utilizing the following relation

 (6.306)

the element stiffness matrix, k ( )e , can be rewritten as

 (6.307)

Due to the difficulty of obtaining analytical expression for the determinant and 
inverse of the Jacobian matrix, these integrals are evaluated numerically by the 
Gaussian integration technique. The element stiffness matrix can be evaluated nu-
merically as
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 (6.309)

Referring to Fig. 6.40, along the 1–2 edge whose length is L1 2− , the coordinate η has 
a constant value of − 1 and ξ varies between − 1 and 1, leading to

 (6.310)

Along ξ = −1 1 to  and η = −1,
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The integrals in the expression for pT
( )e  are evaluated as

 (6.312)

and

 (6.313)

Thus, the load vector, pT
( )e

, takes the form

 (6.314)

Note that this result implies that the applied load is distributed equally at the first 
and second nodes of the 1–2 edge. This is a result of the linear variation of the shape 
function along the edges.

As carried out in the derivation of the element stiffness matrix, the load vectors 
due to body forces, initial strains, and initial stresses can be rewritten as

 (6.315)

 (6.316)

 (6.317)

Application of the Gaussian integration technique leads to the evaluation of these 
load vectors in the form

 (6.318)

 (6.319)
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 (6.320)

in which wp and wq are the weights and ξ p  and ηq are the integration points of the 
Gaussian integration technique.

6.2.2.6  Example of a Plane Stress Analysis with Linear Quadrilateral 
Isoparametric Elements

Derivation of a System of Equations and Its Solution

The previous example discussed in Sec. 6.2.2.4 is reconsidered to compute the 
nodal displacements and the element stresses. In order to illustrate the finite ele-
ment solution method, the plate is discretized into one quadrilateral isoparametric 
element, as shown in Fig. 6.42.

The global coordinates of each node are specified by ( , )x yp p , with p =1 2 3 4, , , , 
and are tabulated in Table 6.9.

The global unknown nodal displacement vector is given by

 (6.321)

Considering the correspondence between the local and global node numbering 
schemes the elements are defined in Table 6.10.

For this element, e =1, the coefficients of the Jacobian matrix are determined from

 (6.322a)

 (6.322b)
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Fig. 6.42  Local numbering 
scheme of the FEM discreti-
zation with a quadrilateral 
element
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 (6.322c)

 (6.322d)

leading to the Jacobian matrix given by

 (6.323)

with its determinant

 (6.324)

The inverse of the Jacobian matrix becomes

 (6.325)
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Table 6.9  Global nodal coordinates
Global node number Nodal coordinates Nodal unknowns
1 ( , )x y1 10 0= = u ux y1 1

,
2 ( , )x y2 22 0= = u ux y2 2

,
3 ( , )x y3 32 3= = u ux y3 3

,
4 ( , )x y4 41 3= = u ux y4 4

,

Table 6.10  Element connectivity
Element number ( e) Node 1 Node 2 Node 3 Node 4
1 1 2 3 4
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The determinant of the Jacobian matrix can be also determined from

 (6.326)

in which

 (6.327)

Substituting for the following derivatives

 (6.328)

permits the derivatives of the shape functions as

 (6.329)

Thus, the components of the element shape matrix, B( )1  are computed as
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 (6.330)

 (6.331)

Under plane stress assumptions, the material property matrix, D becomes

 (6.332)

The element stiffness matrix, k ( )1 , is computed as
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 (6.333)

The initial strains arising from the temperature change are included in the vector 
εε*  as

 (6.334)

The element load vectors, pT
( )1
1 4−  and pT

( )1
3 4− , arising from the applied tractions 

are

 (6.335)

 (6.336)

With the specified values of the thickness and the distributed loads, these element 
load vectors become

 (6.337)

 (6.338)
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 (6.339)

The thermal load vector of the element, p
ε*
( )1 , is obtained as

 (6.340)

Thus, the total element load vector, P is

 (6.341)

After applying the boundary conditions, the global stiffness matrix is reduced to

 (6.342)
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and the reduced load vector is

 (6.343)

The solution is given by

 (6.344)

ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can also be 
obtained using ANSYS. The solution procedure is outlined as follows:

Model Generation

• Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

− Click on Add.
− Select Solid immediately below Structural Mass from the left list and Quad 

4node 182 from the right list; click on OK.
− Click on Options.
− In order to specify the 2-D idealization as plane stress with thickness, in the 

newly appeared dialog box, pull down the menu for Element behavior K3 and 
select Plane strs w/thk; click on OK (Fig. 6.43).

− Click on Close.

• Specify real constants (R command) using the following menu path:

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

− Click on Add.
− Click on OK.
− Enter 5e − 3 for Thickness THK; click on OK.
− Click on Close.
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• Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

− In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic, 
which will bring another dialog box.

− Enter 150e9 for EX, and 0.25 for PRXY; click on OK.
− In the Define Material Model Behavior dialog box, in the right window, un-

der Structural, find Thermal Expansion, Secant Coefficient, and Isotropic, 
which will bring another dialog box (Fig. 6.44).

− Enter 6e − 6 for APLX; click on OK.
− Close the Define Material Model Behavior dialog box by using the following 

menu path:

Material >Exit

• Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

− A total of four nodes will be created (Table 6.7).
− Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to convert 

the coordinates to meters), and Click on Apply. This action will keep the Cre-
ate Nodes in Active Coordinate System dialog box open. If the Node number 
field is left blank, then ANSYS will assign the lowest available node number 
to the node that is being created.

− Repeat the same procedure for the nodes 2 through 4.
− After entering the x- and y-coordinates of node 4, click on OK (instead of 

Apply).
− The nodes should appear in the Graphics Window, as shown in Fig. 6.45.

• Create one element (E command) using the following menu path:

Fig. 6.43  Specification of element options
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Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered 
> Thru Nodes

− Pick Menu appears; pick four nodes in a clockwise (or counterclockwise) 
order.

− Click on OK.

Solution

• Apply displacement boundary conditions (D command) using the following 
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement 
> On Nodes

− Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal boundary 
(Fig. 6.45) and click on OK on Pick Menu.

− Highlight UY and enter 0 for VALUE; click on Apply.
− Pick Menu reappears; pick nodes 2 and 3 along the right vertical boundary 

(Fig. 6.45); click on OK on Pick Menu.

Fig. 6.44  Specification of material behavior

 

Fig. 6.45  Generation of 
nodes
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− Highlight UX and remove the highlight from UY; Enter 0 for VALUE; click 
on OK.

• Apply force boundary conditions on nodes (F command) using the following 
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment 
> On Nodes

− Pick Menu appears; pick nodes 1 and 4 along the slanted boundary; click on OK.
− Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.46).
− Click on Apply.
− Pick Menu reappears; pick nodes 4 and 3 along the top horizontal boundary; 

click on OK.
− Pull down the menu for Direction of force/mom and select FY; Enter − 150 

for VALUE; click on OK.

• Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature > 
Uniform Temp

− Uniform Temperature dialog box appears; Enter 10 for Uniform temperature.
− Click on OK.

• Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

− Confirmation Window appears along with Status Report Window.
− Review status. If OK, close the Status Report Window and click on OK in 

Confirmation Window.
− Wait until ANSYS responds with Solution is done!

Fig. 6.46  Application of external loads
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Postprocessing

• Review deformed shape (PLDISP command) using the following menu path:

Main Menu > General Postproc > Plot Results > Deformed Shape

− In the Plot Deformed Shape dialog box, choose the radio-button for Def + un-
def edge; click on OK.

− The deformed shape will appear in the Graphics Window, as shown in 
Fig. 6.47.

• Review displacement values (PRNSOL command) using the following menu 
path:

Main Menu > General Postproc > List Results > Nodal Solution

− Click on DOF Solution and Displacement vector sum; click on OK.
− The list will appear in a new window, as shown in Fig. 6.48.

Fig. 6.47  Deformed 
configuration
 

Fig. 6.48  List of nodal displacements
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6.3  Problems

6.1   Construct the finite element equations for the solution of the linear second-
order ordinary differential equation given in the form

subject to the conditions given as

 by using the Galerkin technique within the realm of finite element method with 
linear interpolation functions.

6.2  By using a one-dimensional (line) C1 continuous cubic element, derive the ele-
ment coefficient matrix for the solution of the differential equation given as

Assume equally spaced nodal points.

6.3  By using quadratic interpolation functions, derive the element coefficient ma-
trix for the solution of the differential equation given as

subject to the conditions

 Also, explicitly assemble both the global coefficient matrix and the right-hand 
vector for equally spaced nodal points located at x = 0, 1, 2, 3, and 4.

6.4  Without giving any consideration to the boundary conditions, write down 
the contribution from the four elements, shown in Fig. 6.49, in the finite ele-
ment formulation for the Poisson equation∇ =2φ C . Denote all entries in the 
element coefficient matrices symbolically and write your answer in the form 
[ ]{ } { } { }K F 0ϕϕ + = .

6.5  In Problem 6.4, note that the interaction of the internal node 5 with all the adja-
cent elements is included in forming the equation arising from the field variable 

p x d u x
dx

dp x
dx

du x
dx
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φ5  associated with the 5th node. In the absence of external loads, the last row of 
the vector-matrix expression in the previous problem may be set directly equal 
to zero. Using the resulting equation, eliminate φ5  from the remaining four 
rows of the vector-matrix expression to obtain the element coefficient matrix 
and the contribution to the right-hand-side vector of a quadrilateral element 
made up of four simpler triangular elements.

6.6  Suppose a collection of elements (part of some larger collection) has a total of 
n interior nodes and m exterior (or boundary) nodes. The contribution from this 
collection to the global finite element equations can be written as

 The contributions from the exterior nodes, φi
E i m ( , , , )= …1 2 , and the interior 

nodes, φi
I i m n m ( , , )= + … +1 , may be partitioned as

 where [ ]K E  is an m m×  submatrix, [ ]K I is an n n×  submatrix, etc. Consider-
ation of all of the contributions to the interior nodes results in

 Proceeding from this point, eliminate the quantities ϕi
I  from the remaining 

equations to express the contribution from this collection of elements in the 
form

[ ] { } { }K fe e eϕϕ +

K K
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[ ] { } { }K fR e E Rϕϕ +

Fig. 6.49  Four linear tri-
angular elements forming a 
quadrilateral element
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where [ ]K R  is an m m×  matrix. This technique is called substructuring.

6.7  For two-dimensional heat transfer in an isotropic body, the governing equation 
is

 where T is temperature, K is thermal conductivity, and q x y( , )  is the heat gen-
eration rate over the domain. Suppose the heat flux out of some portion, S f , 
of the boundary is specified to have a constant value, Q, as shown in Fig. 6.50. 
Then, the boundary condition over S f  becomes

 where n =< >n nx y,  is the unit normal vector to the boundary. Using the Galer-
kin technique, show in a general way how this boundary condition enters the 
right-hand-side vector.

6.8   Suppose that the heat flux is specified to be Q over the side 4–5 of the domain 
as shown in Fig. 6.51. Find explicitly the contribution of the interpolating func-
tion associated with node 4 to the right-hand-side vector in the system of equa-
tions derived in Problem 6.7:

a. for the case where element 3 is a linear triangular element.
b. for the case where element 3 is a quadratic triangular element with a mid-

side node between nodes 4 and 5.

 Hint: Use a local coordinate, s, directed along the side of the triangle from node 
4 to node 5. Note that the interpolating function associated with node 4 is linear 
in s for linear interpolation and quadratic for quadratic interpolation.
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Fig. 6.50  Heat generation 
within the body and flux 
boundary condition along S f
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6.9  Explicitly evaluate the element coefficient matrix for the problem

 using 2 2×  Gaussian integration for a 4-noded quadrilateral element whose 
nodal point locations are given by

Node No. x y
1 6.0 3.0
2 − 4.0 3.0
3 − 5.0 − 3.0
4 4.0 − 3.0

6.10  Using quadratic interpolation over a 6-noded triangle (shown in Fig. 6.52), 
derive explicit expressions for the entries K11, K44 , and K15 in the element 
coefficient matrix for the Poisson equation

6.11  Consider the 3-noded triangular element subjected to traction boundary condi-
tions along the 2–3 side as shown in Fig. 6.53. Assuming plane stress idealiza-
tion with thickness t = 0 01.  m, E = 200 GPa, andν = 0 25. , construct:

a. the stiffness matrix.
b. the equivalent nodal force vector.

6.12  Assume that the nodal displacement components of the triangular element 
considered in Problem 6.11 are as follows:

∂
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Fig. 6.51  Domain discretized 
with three triangular elements
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Find the stress components (σ xx ,σ yy andσ xy ).

6.13  Assuming that the triangular element considered in Problem 6.11 is subject-
ed to gravitational acceleration in the negative y-direction with mass densi-
ty ρ = 7850kg/m3, find the equivalent nodal force vector.

6.14  Derive the equivalent nodal force vector for a 3-noded triangular element 
when it is subjected to a uniform temperature change of T∆ . The coefficient 
of thermal expansion of the material is α.

6.15  The equations governing the time-dependent motion of an elastic body are

 where ρ is the mass density of the body. The term ρ∂ ∂2 2u ti /  may be inter-
preted as an “inertia” force, which is a special type of body force.

a. Identifying the inertia force as a body force with F u ti i= − ∂ ∂ρ 2 2/ , derive 
the contribution from a single element to the global finite element formu-
lation for the case of plane strain.

b. If no tractions are specified over the surface of the body, write down the 
general form of the global finite element equations. Assuming

write down an equation for ω , the natural frequencies of vibration.
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Fig. 6.52  A six-noded trian-
gular element
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6.16  A two-dimensional situation that is often of theoretical interest (although less 
seldom of practical interest) is that of antiplane strain, in which u u1 2 0= =  
and u u x x3 3 1 2= ( , ). Hence, the only non-zero components of strain are ε13 and 
ε23 and those of stress are σ13 and σ 23, which are related by Hooke’s law:

 Find the element coefficient matrix for this problem for the linear triangle 
(3-noded) using the integration formulas for area coordinates given previ-
ously.

6.17  Newton’s method is a familiar recursive technique for finding the roots of 
a transcendental equation. Suppose the roots of n transcendental equations, 
{ ( )}g ai j = 0, in n unknowns are to be found. Then, Newton’s method can be 
generalized to

where
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Fig. 6.53  Three-noded triangular element under uniform traction

 



2796.3  Problems

and { }( )gi
m  and [ / ]∂ ∂g ai j  are evaluated at { }( )ai

m .
 The finite element equations resulting from the nonlinear two-point boundary 
value problem
d u
dx

g u x
2

2 0+ =( , )

have the form

 where { }ai  are the nodal values and { ( )}f ai j  is some nonlinear function of 
the nodal values. Apply Newton’s method to this problem to obtain a recursive 
formula for the nodal values. What is the major drawback of this approach?

[ ]{ } { ( )} { }( , , , )K a f a i nij i i j+ = = …0 1 2
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