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Definition

The term ear biometrics refers to automatic
human identification on the basis of the
ear physiological (anatomical) features. The
identification is performed on the basis of the
features which are usually calculated from
captured 2D or 3D ear images (using pattern
recognition and image processing techniques).
The ear features that can be used in the process
of identification are, for example, geometrical
ear structure, characteristic ear points, global
ear image features, local ear image features,
and 3D models. The advantages of human ear
as biometric as well as the overview of various
approaches to ear biometrics are presented in the
ear biometrics overview entry.

Introduction

As pointed out by Hurley et al., ear biometrics
is no longer in its infancy and has shown en-
couraging progress [1]. It is due to the fact that
the ear is the very interesting human anatomical

part for passive physiological biometric systems.
It means that the subject does not have to take
active part in the whole process or, in fact, would
not even know that the process of identification
takes place.

There are many advantages of using the ear as
a source of data for human identification. Firstly,
the ear has a very rich structure of characteristic
ear parts. The location of these characteristic
elements, their direction, angles, size, and rela-
tion within the ear are distinctive and unique for
humans and, therefore, may be used as a modality
for human identification [2, 3]. The ear is one
of the most stable human anatomical features. It
does not change considerably during human life,
while face changes more significantly with age
than any other part of human body [2, 3]. Face
can also change due to cosmetics, facial hair,
and hairstyling. Secondly, human faces change
due to emotions and express different states of
mind like sadness, happiness, fear, or surprise. In
contrast, ear features are fixed and unchangeable
by emotions. The ear is not symmetrical – the left
and right ears are not the same. Due to forensics
and medical studies, from the age of four, ears
grow proportionally, which is the problem of
scaling in computer vision systems [2].

Furthermore, the ear is a human sensor; there-
fore, it is usually visible to enable good hear-
ing. In the process of acquisition, in contrast to
face identification systems, ear images cannot be
disturbed by glasses, beard, or makeup. How-
ever, occlusion by hair or earrings is possible.
It is worth to mention that ear images are more

S.Z. Li, A.K. Jain (eds.), Encyclopedia of Biometrics, DOI 10.1007/978-1-4899-7488-4,
© Springer Science+Business Media New York 2015



E 364 Ear Biometrics

secure than face images, mainly because it is
very difficult to associate ear image with a given
person (in fact, most of users are not able to
recognize their own ear image). Therefore, any
attacks on privacy (such as identity theft) are not
very probable by means of using ear images.

On the other hand, ear biometrics is not a
natural way of identifying humans. In real life
we do not look at people’s ears to recognize
them. Our identification decision is rather based
on faces, voice, or gait. The reason is that peo-
ple lack in vocabulary to describe ears – would
anyone describe spouse or sibling ears in detail?
The main task of ear biometrics is to define such
vocabulary – in context of the computer vision
systems, such vocabulary is called “features.” In
ear biometrics computer vision systems, the main
task is to extract such features that will describe
human ears in a distinctive way.

In the following sections the selection of var-
ious approaches to extract features from 2D and
3D ear images will be shortly presented.

2D Ear Biometrics

Geometrical Approach to Feature
Extraction
The first to explore the possibility of using ear
as a biometric in a computer vision system were
Burge and Burger [4]. They presented the geo-
metrical method based on building neighborhood
graphs and Voronoi diagrams of the detected
edges. Additionally, Burge and Burger pointed
out that thermal imaging may solve the problem
of ear occlusion (mainly by hair). They proposed
to use segmentation algorithm based on color and
texture of ear thermogram.

Choraś developed several methods of geo-
metrical feature extraction from ear images [5].
The proposed “geometrical parameter methods”
had been motivated by actual procedures used
in the police and forensic evidence search
applications. In reality, procedures of handling
ear evidence (earprints and/or ear photographs)
are based on geometrical features such as size,
width, height, and earlobe topology [2]. Choraś
developed and tested several methods in order to

extract distinctive geometrical features from
human ear 2D images. Moreover, in Choraś
work the contour detection algorithm and the
method of ear contour image processing in
order to select the most meaningful contours
have been developed. Choraś’ methods were
tested in laboratory conditions, while the ear
image database was created in the controlled
environment.

Yuan and Tian presented ear contour detec-
tion algorithm based on local approach [6]. Edge
tracking is applied to three regions in which con-
tours were extracted in order to obtain clear, con-
nected, and non-disturbed contour, which may be
further used in the recognition step. Sibai et al.
used artificial neural networks (ANN) fed with
seven manually selected and calculated geomet-
rical features [7].

SIFT
Arbab-Zavar et al. proposed to use Scale In-
variant Feature Transform (SIFT) to extract the
ear salient points and to create human ear model
later used in recognition [8]. Their ear model is
constructed using a stochastic method. In their
experiments they proved that using ear model
outperforms PCA method in case of occluded
ears. Zhou et al. used the fusion of color SIFT
features calculated in R, G, and B color channels
[9]. Kisku et al. proposed SIFT features calcu-
lated on ear images modeled by Gaussian mix-
ture model and Kullback-Leibler divergence [10].
Fusion of SIFT features calculated for various
ear poses (at angles �40, �20, 0, 20, 40) was
proposed by Badrinath and Gupta in [11].

Global Features
Principal component analysis, force field trans-
formations, and wavelets have been applied to
ear biometrics human identification. Recently, the
idea of recognition based on ear models gained
some popularity and attention.

Victor et al. used principal component anal-
ysis (PCA) in the experiment comparing ear and
face properties in order to successfully identify
humans in various conditions [12]. In case of
faces, the authors perform recognition on the
basis of eigenfaces. In case of ear biometrics,
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the authors used a set of eigenears. Their work
proved that ear images are a very suitable source
of data for identification and their results for ear
images were not significantly different from those
achieved for face images. The proposed method-
ology, however, was not fully automated, since
the reference (so-called landmark points) had to
be manually inserted into images. In case of
ear images, these landmark points are manually
marked in the triangular fossa and in the point
known as antitragus. Hurley et al. introduced
a method based on energy features of the 2D
image [13]. They proposed to perform force field
transformation (step 1) in order to find energy
lines, channels, and wells (step 2). Recently, in
Cummings et al. the usefulness of image ray
transform (IRT) for ear detection was shown [14].
Moreno et al. presented another approach to ear
image feature extraction [15]. Their work was
based on macrofeatures extracted by compression
networks. Several neural network methods and
classifiers based on 2D intensity images were
presented: compression networks, Borda combi-
nation, Bayesian, and weighted Bayesian combi-
nation. The best results of 93 % were achieved
by the compression network ear identification
method. Sana et al. developed a new approach
to ear biometrics based on Haar wavelets [16].
After ear detection step, Haar wavelet transfor-
mation is applied and wavelet coefficients are
computed. They performed their experiments on
two ear datasets (from Indian Institute of Tech-
nology Kanpur and from Saugor University) and
report accuracy of about 96 % on both databases.
Lu et al. used active shape models (ASM) to
model the shape and local appearances of the ear
in a statistical form [17]. Then eigenears have
been also used in a final classification step. They
used both left and right ear images and showed
that their fusion outperforms results achieved
for single ears separately. They achieved 95.1 %
recognition rate for double ears. Yuan and Mu
also explored the advantages of improved active
shape models (ASM) to the task of ear recog-
nition [18]. They applied their algorithm to the
rotation-invariance experiment. The interesting
contribution of their work is the comparison of
right and left rotations of the same ears. They

found out that right head rotation of 20ı is ac-
ceptable for recognition. For left head rotation,
the acceptable angle is 10ı. Recently, Yuan and
Mu proposed another approach based on fusion
of local features calculated by neighborhood pre-
serving embedding (NPE) in sub-windows, later
treated as sub-classifiers [19]. Lately, the sparse
representation (SR) has drawn some attention
and was used for feature extraction by Huang
et al. [20] and Kumar and Chan [21].

Gabor-Based Features
Many recent developments in ear biometrics use
properties of Gabor and log-Gabor-based fea-
tures. Xu used Gabor wavelets to calculate global
features of ear images and then classified the
feature vectors using support vector machines
(SVM) [22]. Arab-Zavar and Nixon used log-
Gabor filters (also SIFT) for model-based ear
recognition [23]. SIFT method was useful for
inner parts of ear models, while log-Gabor par-
ticularly for outer curves. Liu proposed to use
log-Gabor features applied to force field conver-
gence map of ear image [24]. Yazdanpanah and
Faez proposed Gabor-based region convergence
matrix (RCM) for ear feature calculation [26].
Gabor filters are also used by Nanni and Lumini
in [27] where authors also use properties of color
spaces (RGB and YIQ). Chan and Kumar used
2D quadrature filtering (quaternionic and mono-
genic) methods and proposed Quaternionic Code-
based ear image description which was described
and tested in [28].

3D Ear Recognition

Recently, the possibility of human identification
on the basis of 3D images has been extensively
researched. Various approaches towards multi-
modal 2D C 3D ear biometrics as well as 3D
ear biometrics, mainly based on ICP (iterative
closest point), have been recently developed and
published [29–32].

Chen and Bhanu proposed 3D ear recog-
nition based on local shape descriptor as well
as two-step ICP algorithm. Additionally, they
developed the algorithm to detect ear regions
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Ear Biometrics, Fig. 1 Examples of easy ear images [25]

Ear Biometrics, Fig. 2 Examples of difficult ear images [25]

from 3D range images. They collected their own
ear image database (UCR database) consisting of
902 images from 302 subjects. Their results of ear
detection, matching, and identification are close
to 100 % recognition rate [29]. Yan and Bowyer
developed three approaches to 3D ear recognition
problem: edge based, ICP, and 3D � PCA.
Moreover, they tested various approaches (e.g.,
2D C 3D) in multimodal biometric scenario [30].
They designed fully automated ear recognition
system and achieved satisfactory results of
97.6 % Rank-1 recognition. In their research
they did not exclude partially occluded ears or
ears with earrings. They performed experiments
on the largest ear database collected so far.
UND ear database is now becoming a standard
ear database for ear recognition experiments.
Cadavid and Abdel-Mottaleb built 3D ear
models from captured video frames. Then they
used “structure from motion” (SFM) and “shape
from shading” (SFS) techniques to extract 3D ear

characteristics [31]. They were first to explore the
3D ear biometrics based on video sequences, not
on images acquired by 3D range scanners. Zhou
et al. proposed 3D system using local and holistic
features, such as histogram of indexed shapes
(HIS) and surface path histogram of indexed
shapes (SPHIS) [32].

Conclusion

Human ear is a perfect source of data for passive
person identification in many applications. In
a growing need for security in various public
places, ear biometrics seems to be a good solu-
tion, since ears are visible and their images can be
easily taken, even without the examined person’s
knowledge.

It is noticeable that even though all of the
proposed techniques are developed to solve
the same image processing task, many totally
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different methodologies and algorithms have
been developed.

Such situation proves that ear biometrics has
lately gained much interest and popularity in
computer science community. It also may be the
indication that ear biometrics will become one
of the standard means of human identification in
unimodal or hybrid biometrics systems.

Currently, ear biometrics developments shift
from introductory works to solving challenging
problems in non-controlled realistic ear images
such as occlusion and pose variations.
Ear Biometrics, Table 1 Feature extraction approaches
for ear biometrics

Research group Proposed methodology

Burge and Burger 2D – Voronoi diagrams

Choraś 2D – geometrical methods

Sibai et al. 2D – 7 (manual) geometrical
features, ANN

Arbab-Zavar 2D – SIFT, model

Zhou et al. 2D – SIFT in color spaces

Kisku et al. 2D – SIFT, GMM, K-L diver-
gence

Badrinath and
Gupta

2D – SIFT

Victor et al. 2D – PCA

Hurley et al. 2D – force field transformation

Cummings et al. 2D – image ray transform

Lu et al. 2D – ASM

Moreno et al. 2D – compression networks

Sana et al. 2D – Haar wavelets

Yuan and Mu 2D – ASM

Yuan and Mu 2D – local fusion, NPE

Huang et al. 2D – sparse representation

Kumar and Chan 2D – sparse representation

Xu 2D – Gabor wavelets, SVM

Arab-Zavar and
Nixon

2D – log-Gabor

Liu 2D – log-Gabor, force field con-
vergence map

Yazdanpanah and
Faez

2D – Gabor-based RCM

Nanni and Lumini 2D – Gabor filters, color spaces

Chan and Kumar 2D – quadrature filtering

Chen and Bhanu 3D – ICP and shape descriptors

Yan and Bowyer 3D – ICP, edge based, and PCA

Cadavid and
Abdel-Mottaleb

3D – SFM, SFS

Zhou et al. 3D – HIS, SPHIS

Ear biometrics can also be used to enhance
effectiveness of other well-known biometrics, by
its implementation in multimodal systems. Since
most of the methods have some drawbacks, the
idea of building multimodal (hybrid) biometrics
systems is gaining lot of attention [33]. Due
to its advantages, ear biometrics seems to be
a good choice to support well-known methods
like voice, gait, hand, palm, and most often face
identification.

The summary of the research groups with the
proposed approaches and methods is given in
Table 1.

Summary

In this entry the holistic overview of ear recog-
nition methods for biometrics applications is pre-
sented. 2D and 3D image processing algorithms
applied to ear feature extraction are surveyed.
In this work strong motivation for using the ear
as a biometrics is given, and afterwards, various
approaches to 2D ear biometrics and 3D ear
biometrics are presented.
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Definition

The human ear is a new class of relatively
stable biometrics. After decades of research of
anthropometric measurements of ear photographs
of thousands of people, it has been found that no
two ears are alike, even in the cases of identical
and fraternal twins, triplets, and quadruplets [1].
It is also found that the structure of the ear does
not change radically over time. Ear biometric has
played a significant role in forensic science and
its use by law enforcement agencies for many
years [1], but most of this work has been on
analyzing the earprints manually. Recent work on
ear biometrics focuses on developing automated
techniques for ear recognition [2]. Ear biometrics
can be based on a 2D gray scale or color image,
3D range image, or a combination of 2D and 3D
images. Typically, an ear biometric system con-
sists of ear detection and ear recognition modules.

Introduction

Rich in features, the human ear is a stable
structure that does not change much in shape
with the age and with facial expressions (see
Fig. 1). Ear can be easily captured from a distance
without a fully cooperative subject, although it
can sometimes be hidden by hair, muffler, scarf,
and earrings. Researchers have developed several

Ear Biometrics, 3D, Fig. 1 The external ear and its
anatomical parts

biometric techniques using the 2D intensity
images of human ears [3–8].

Burge and Burger [3,4] developed a computer
vision system to recognize ears in the intensity
images. Their algorithm consisted of four com-
ponents: edge extraction, curve extraction, con-
struction of a graph model from the Voronoi dia-
gram of the edge segments, and graph matching.
Hurley et al. [5] applied a force field transform to
the entire ear image and extracted wells and chan-
nels. The wells and channels form the basis of
an ear’s signature. To evaluate differences among
ears, they used a measure of the average nor-
malized distance of the well positions, together
with the accumulated direction to the position of
each well point from a chosen reference point.
Later, Hurley et al. [6] measured convergence to
achieve greater potency in recognition. Chang et
al. [8] used principal component analysis for ear
and face images and performed experiments with
face, ear, and face plus ear. Their results showed
that multimodal recognition using both face and
ear achieved a much better performance than the
individual biometrics.

The performance of these 2D techniques is
greatly affected by the pose variation and imaging
conditions. However, ear can be imaged in 3D
using a range sensor which provides a registered
color and range image. Figure 2 shows an ex-
ample of a range image and the registered color
image acquired by a Minolta Vivid 300 camera.
A range image is relatively insensitive to illumi-
nations and contains surface shape information
related to the anatomical structure, which makes
it possible to develop a robust 3D ear biometrics.
Examples of ear recognition using 3D data are
[9–13]. The performance of 3D approaches for
ear recognition is significantly higher than the
2D approaches. In the following, the chapter
focuses on 3D approaches for ear detection and
recognition.

Datasets

There are currently two datasets for 3D ear per-
formance evaluation: the University of California
at Riverside dataset (the UCR dataset) and the
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EarBiometrics, 3D, Fig. 2 Range image and color image
captured by a Minolta Vivid 300 camera. In images (a) and
(b), the range image of one ear is displayed as the shaded

mesh from two viewpoints (the units of x, y, and z are in
millimeters). Image (c) shows the color image of the ear

University of Notre Dame public dataset
(the UND dataset). In the UCR dataset there
is no time lapse between the gallery and probe
for the same subject, while there is a time lapse of
a few weeks (on the average) in the UND dataset.

UCR Dataset: The data [10] are captured by
a Minolta Vivid 300 camera. This camera uses
the light-stripe method to emit a horizontal stripe
light to the object, and the reflected light is then
converted by triangulation into distance informa-
tion. The camera outputs a range image and its
registered color image in less than 1 s. The range
image contains 200 � 200 grid points, and each
grid point has a 3D coordinate (x; y; z) and a set
of color (r; g; b) values. During the acquisition,
155 subjects sit on a chair about 0.55–0.75 m
from the camera in an indoor office environment.
The first shot is taken when a subject’s left-side
face is approximately parallel to the image plane;
two shots are taken when the subject is asked to
rotate his or her head to the left and to the right
side within ˙35ı with respect to his or her torso.

During this process, there can be some face tilt
as well, which is not measured. A total of six
images per subject are recorded. A total of 902
shots are used for the experiments since some
shots are not properly recorded. Every person has
at least four shots. The average number of points
on the side face scans is 23,205. There are three
different poses in the collected data: frontal, left,
and right. Among the total 155 subjects, there are
17 females. Among the 155 subjects, 6 subjects
have earrings and 12 subjects have their ears
partially occluded by hair (with less than 10 %
occlusion).

UND Dataset: The data [13] are acquired with
a Minolta Vivid 910 camera. The camera out-
puts a 480 � 640 range image and its registered
color image of the same size. During acquisition,
the subject sits approximately 1.5 m away from
the sensor with the left side of the face toward the
camera. In Collection F, there are 302 subjects
with 302 time-lapse gallery-pro. Collection G
contains 415 subjects, of which 302 subjects are
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from Collection F. The most important part of
Collection G is that it has 24 subjects with images
taken at four different viewpoints.

Ear Detection

Human ear detection is the first task of a human
ear recognition system, and its performance sig-
nificantly affects the overall quality of the system.
Automated techniques for locating human ears in
side face range images are (i) template matching-
based detection, (ii) ear shape model-based de-
tection, and (iii) fusion of color and range images
and global-to-local registration-based detection.
The first two approaches use range images only,
and the third approach fuses the color and range
images.

The template matching-based approach has
two stages: offline model template building and
online ear detection. The ear can be thought of
as a rigid object with much concave and convex
areas. The averaged histogram of shape index (a
quantitative measure of the shape of a surface)
represents the ear model template. During the
online detection, first the step edges are computed
and thresholded since there is a sharp step edge
around the ear boundary, and then image dilation
and connected-component analysis is performed
to find the potential regions containing an ear.
Next, for every potential region, the regions
are grown and the dissimilarity between each
region’s histogram of shape indexes and the
model template is computed. Finally, among
all of the regions, we choose the one with the
minimum dissimilarity as the detected region
that contains ear.

For the ear shape model-based approach, the
ear shape model is represented by a set of dis-
crete 3D vertices corresponding to ear helix and
antihelix parts. Since the two curves formed by
the ear helix and antihelix parts are similar for
different people, we do not take into account
the small deformation of two curves between
different persons, which greatly simplifies the
ear shape model. Given side face range images,
first the step edges are extracted; then the edge
segments are dilated, thinned, and grouped into

different clusters which are the potential regions
containing an ear. For each cluster, the ear shape
model is registered with the edges. The region
with the minimum mean registration error is
declared as the detected ear region; the ear helix
and antihelix parts are identified in this process.

In the above two approaches, there are some
edge segments caused by non-skin pixels, which
result in false detection. Since a range sensor
provides a registered 3D range image and a 2D
color image (see Fig. 2), it is possible to achieve
a better detection performance by fusion of the
color and range images. This approach consists
of two steps for locating the ear helix and the
antihelix parts.

In the first step a skin color classifier is used
to isolate the side face in an image by modeling
the skin color and non-skin color distributions as
a mixture of Gaussians. The edges from the 2D
color image are combined with the step edges
from the range image to locate regions of interest
(ROIs) that may contain an ear. In the second
step, to locate an ear accurately, the reference
3D ear shape model, which is represented by a
set of discrete 3D vertices on the ear helix and
the antihelix parts, is adapted to individual ear
images by following a global-to-local registration
procedure instead of training an active shape
model built from a large set of ears to learn the
shape variation. In this procedure, after the initial
global registration, local deformation process is
carried out where it is necessary to preserve
the structure of the reference ear shape model
since neighboring points cannot move indepen-
dently under the deformation due to physical con-
straints. The bending energy of thin plate spline,
a quantitative measure for nonrigid deformations,
is incorporated into the optimization formulation
as a regularization term to preserve the topology
of the ear shape model under the shape deforma-
tion. The optimization procedure drives the initial
global registration toward the ear helix and the
antihelix parts, which results in the one-to-one
correspondence of the ear helix and the antihelix
between the reference ear shape model and the
input image. Figure 3 shows various examples
in which the detected ear helix and the antihelix
parts are shown by the dots superimposed on
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Ear Biometrics, 3D, Fig. 3 Results of ear localization on the UCR dataset. The helix and the antihelix parts are marked
by bright dots, and the detected ear is bounded by a rectangular box

the 2D color images and the detected ear is
bounded by the rectangular box. We observe that
the ears and their helix and antihelix parts are
correctly detected. This approach provides very
high detection accuracy. A comparison of the
three approaches shows that the first approach
runs the fastest and it is simple, effective, and
easy to implement. The second approach locates
an ear more accurately than the first approach
since the shape model is used. The third approach
performs the best on both the UCR and the UND

datasets, and it runs slightly slower than the other
approaches.

Ear Recognition

The approach for ear detection is followed to
build a database of ears that belong to different
people. For ear recognition, two representations
are used: the ear helix/antihelix representation
obtained from the detection algorithm and a new
local surface patch representation computed at
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Ear Biometrics, 3D, Fig. 4 Illustration of a local surface
patch (LSP). (a) Feature point P is marked by asterisk,
and its neighbors N are marked by interconnected dots.
(b) LSP representation includes a 2D histogram, a surface

type, and centroid coordinates. (c) The 2D histogram
is shown as a gray image in which the brighter areas
correspond to bins with the high frequency of occurrence

feature points to estimate the initial rigid trans-
formation between a gallery-probe pair. For the
ear helix/antihelix representation, the correspon-
dence of ear helix and antihelix parts (avail-
able from the ear detection algorithm) between
a gallery-probe ear pair is established, and it
is used to compute the initial rigid transforma-
tion. For the local surface patch (LSP) repre-
sentation, a local surface descriptor (see Fig. 4)
is characterized by a centroid, a local surface
type, and a 2D histogram. The 2D histogram and
surface type are used for comparison of LSPs,
and the centroid is used for computing the rigid
transformation. The patch encodes the geometric
information of a local surface. The local surface
descriptors are computed for the feature points,
which are defined as either the local minimum or
the local maximum of shape indexes. By com-
paring the local surface patches for a gallery
and a probe image, the potential corresponding
local surface patches are established and then
filtered by geometric constraints. Based on the
filtered correspondences, the initial rigid transfor-
mation is estimated. Once this transformation is
obtained using either of the two representations,
it is then applied to randomly selected control
points of the hypothesized gallery ear in the
database. A modified iterative closest point (ICP)
algorithm (ICP algorithm) is run to improve the

transformation, which brings a gallery ear and
a probe ear into the best alignment, for every
gallery-probe pair. The root mean square (RMS)
registration error is used as the matching error
criterion. The subject in the gallery with the min-
imum RMS error is declared as the recognized
person in the probe.

The experiments are performed on the UCR
dataset and the UND dataset.

Examples of correctly recognized gallery-
probe ear pairs using the helix/antihelix
representation are shown in Fig. 5. Similarly,
examples of correctly recognized gallery-probe
ear pairs using local surface patch representation
are shown in Fig. 6. From Figs. 5 and 6, we
observe that each gallery ear is well aligned with
the corresponding probe ear.

The recognition results are shown in Table 1.
In order to evaluate the proposed surface match-
ing schemes, we perform experiments under two
scenarios: (1) One frontal ear of a subject is in the
gallery set, and another frontal ear of the same
subject is in the probe set, and (2) two frontal
ears of a subject are in the gallery set, and the
rest of the ear images of the same subject are in
the probe set. These two scenarios are denoted as
ES1 and ES2, respectively. ES1 is used for testing
the performance of the system to recognize ears
with the same pose; ES2 is used for testing the
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Ear Biometrics, 3D, Fig. 5 Two examples of cor-
rectly recognized gallery-probe pairs using the ear he-
lix/antihelix representation. (a) Examples of probe ears
with the corresponding gallery ears before alignment. (b)

Examples of probe ears with the correctly recognized
gallery ears after alignment. The gallery ear represented
by the mesh is overlaid on the textured 3D probe ear. The
units of x, y, and z are in millimeters (mm)

performance of the system to recognize ears with
pose variations.

A comparison of the LSP representation with
the spin image representation for identification
and verification is given in [10]. This comparison
showed that the LSP representation achieved a
slightly better performance than the spin image
representation.

For the identification, usually a biometrics
system conducts a one-to-many comparison to
establish an individual’s identity. This process
is computationally expensive, especially for a
large database. There is a need to develop a
general framework for rapid recognition of 3D
ears. An approach that combines the feature em-
bedding and support vector machine (SVM) rank
learning techniques is described in [2]. It pro-
vides a sublinear time complexity on the num-
ber of models without making any assumptions
about the feature distributions. The experimental

results on the UCR dataset (155 subjects with 902
ear images) and the UND dataset (302 subjects
with 604 ear images) containing 3D ear objects
demonstrated the performance and effectiveness
of the approach. The average processing times
per query are 72 and 192 s, respectively, on the
two datasets with the reduction by a factor of 6
compared with the sequential matching without
feature embedding. With this speedup, the recog-
nition performances on the two datasets degraded
5.8 and 2.4 %, respectively. The performance of
this algorithm is scalable with the database size
without sacrificing much accuracy.

The prediction of the performance of a bio-
metric system is also an important consideration
in the real-world applications. Match and non-
match distances obtained from matching 3D ears
are used to estimate their distributions. By model-
ing cumulative match characteristic (CMC) curve
as a binomial distribution, the ear recognition
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Ear Biometrics, 3D, Fig. 6 Two examples of the cor-
rectly recognized gallery-probe pairs using the LSP rep-
resentation. The ears have earrings. Images in column (a)
show color images of ears. Images in columns (b) and
(c) show the probe ear with the corresponding gallery ear

before the alignment and after the alignment, respectively.
The gallery ears represented by the mesh are overlaid on
the textured 3D probe ears. The units of x, y, and z are in
millimeters (mm)

Ear Biometrics, 3D, Table 1 Recognition results on UCR and UND datasets using helix/antihelix and LSP
representation

Dataset Helix/antihelix representation LSP representation

Rank-1
(%)

Rank-2
(%)

Rank-3
(%)

Rank-4
(%)

Rank-5
(%)

Rank-1
(%)

Rank-2
(%)

Rank-3
(%)

Rank-4
(%)

Rank-5
(%)

UCR ES 1(155, 155) 96.77 98.06 98.71 98.71 98.71 94.84 96.77 96.77 96.77 96.77

UCR ES 2(310, 592) 94.43 96.96 97.80 98.31 98.31 94.43 96.96 97.30 97.64 97.80

UND (302, 302) 96.03 96.69 97.35 97.68 98.01 96.36 98.01 98.34 98.34 98.34

performance can be predicted on a larger gallery
[2]. The performance prediction model in [2]
showed the scalability of the proposed ear bio-
metrics system with increased database size.

Summary

Ear recognition, especially in 3D, is a relatively
new area in biometrics research. The experimen-
tal results on the two large datasets show that
ear biometrics has the potential to be used in the

real-world applications to identify/authenticate
humans by their ears. Ear biometrics can be used
in both the low and high security applications
and in combination with other biometrics such
as face. With the decreasing cost and size of a
3D scanner and the increased performance, we
believe that 3D ear biometrics will be highly use-
ful in many real-world applications in the future.
It is possible to use the infrared images of ears
to overcome the problem of occlusion of the ear
by hair. Recent work in acoustics allows one to
(a) determine the impulse response of an ear [14]
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and (b) make use of otoacoustic emissions [15]
as a biometric. Thus, it is possible to combine
shape-based ear recognition with the acoustic
recognition of ear to develop an extremely fool-
proof system for recognizing a live individual.

Related Entries

� Face Recognition, Overview
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Ear Recognition, Physical Analogies

David J. Hurley and Mark Nixon
School of Electronics and Computer Science,
University of Southampton, Southampton, UK

Synonyms

Ear biometrics D Ear recognition

Definition

In the context of ear biometrics, Hurley et al.
[1–3] have developed a pair of invertible linear
transforms called the force field transform and
potential energy transform which transforms
an image into a force field by pretending that
pixels have a mutual attraction proportional to
their intensities and inversely to the square of the
distance between them rather like Newton’s law
of universal gravitation. Underlying this force
field, there is an associated potential energy field
which in the case of an ear takes the form of a
smooth surface with a number of peaks joined by
ridges. The peaks correspond to potential energy
wells, and to extend the analogy, the ridges cor-
respond to potential energy channels. Since the
transform also happens to be invertible, all of the
original information is preserved, and since the
otherwise smooth surface is modulated by these
peaks and ridges, it is argued that much of the
information is transferred to these features and
that therefore they should make good features
for recognition. An analysis of the mechanism
of this algorithmic field line feature extraction
approach leads to a more powerful method called
convergence feature extraction based on the

http://dx.doi.org/10.1007/978-1-4899-7488-4_84
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divergence of force direction revealing even more
features in the form of antiwells and antichannels.

Introduction

The last 10 years or so has seen increasing in-
terest in ears as a biometrics with significant
contributions from computer vision researchers
[1–7], and a review is now available [12]. In this
context, the force field transform was developed
to be the first published approach to a working ear
biometric system [1]. The transform effectively
filters an ear image by convolving it with a
huge inverse square kernel more than four times
the size of the image, the force then being the
gradient of the resulting massively smoothed im-
age. Force field feature extraction subsequently
exploits the directional properties of the force
field to automatically locate ear features in the
form of potential channels and wells. The force
field paradigm allows us to draw upon a wealth
of proven techniques from vector field calculus;
for example, the divergence operator is applied
to the force field direction yielding a nonlinear
operator called convergence of force direction
leading to the even more powerful convergence
feature extraction. The extreme kernel size results
in the smoothed image having a general dome
shape which gives rise to brightness sensitivity
issues, but it is argued by showing that the field
line features are hardly distorted that this will
have little overall effect and this conclusion is
borne out by including brightness variation in the
recognition tests. On the other hand, the dome
shape leads to an automatic extraction advantage,
and this is demonstrated by using deliberately
poorly registered and poorly extracted images
in recognition tests and then comparing the re-
sults with those for principal components anal-
ysis (PCA) under the same conditions, where
the ear images have to be accurately extracted
and registered for PCA to achieve comparable
results. The technique is validated by achieving
a recognition rate of 99.2 % on a set of 252 ear
images taken from the XM2VTS face database
[9]. Not only is the inherent automatic extraction
advantage demonstrated, but it is also shown that

it performs even more favorably against PCA
under variable brightness conditions and also
demonstrates its excellent noise performance by
showing that noise has little effect on recognition
results. Thus, the technique has been validated
by achieving good ear recognition results, and
in the process, a contribution has been made to
the mounting evidence that the human ear has
considerable biometric value.

Ear Feature Extraction

Force Field Feature Extraction
Here the force field transform and algorithmic
field line feature extraction are described before
introducing convergence feature extraction. The
mathematical concepts used can be found in basic
works on electromagnetics [8], and a more de-
tailed description of the transform can be found in
[3]. Faster computation using convolution and the
fast Fourier transform (FFT) is considered and
also the question of brightness sensitivity both
theoretically and by demonstration.

The image is first transformed to a force field
by treating the pixels as an array of mutually at-
tracting particles that attract each other according
to the product of their intensities and inversely
to the square of the distances between them.
Each pixel is assumed to generate a spherically
symmetrical force field so that the total force
F.rj / exerted on a pixel of unit intensity at the
pixel location with position vector rj by remote
pixels with position vector ri and pixel intensities
P.ri / is given by the vector summation:

F.rj / D
X

i

8
<

:
P.ri /

ri � rjˇ̌
ri � rj

ˇ̌3
8i ¤ j

08i D j

9
=

; (1)

The underlying energy field E.rj / is similarly
described by

E.rj / D
X

i

8
<

:

P.ri /ˇ̌
ri � rj

ˇ̌8i ¤ j

08i D j

9
=

; (2)
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ff (pic) sr 2.(rows(pic) 1), sc 2.(cols (pic) 1)

r rows(pic) 1, c cols(pic) 1

for

for

usrrr,cc
( )r .c j ( )rr .cc j

( )r .c j ( )rr .cc j 3

cc 0..sc

rr 0..sr

usr3.rows (pic)

(pic)

3,3.cols (pic) 3
0

pic3.rows 3,3.cols (pic) 3
0

oup rows(pic).cols (pic).icfft (cfft (usr).cfft (pic))

ff submatrix(oup, r, 2.r , c , 2.c)

Ear Recognition,
Physical Analogies,
Listing 1 Force field by
convolution in Mathcad

Ear Recognition, Physical Analogies, Fig. 1 Convergence field. (a) Field lines. (b) Convergence field. (c) Superim-
position. (d) Force direction

To calculate the force and energy fields for the
entire image, these calculations should be per-
formed for every pixel, but this requires the num-
ber of applications of Eqs. 1 and 2 to be propor-
tional to the square of the number of pixels, so
for faster calculation, the process is treated as
a convolution of the image with the force field
corresponding to a unit value test pixel, and then
invoking the convolution theorem to perform the
calculation as a frequency domain multiplication,
the result of which is then transformed back into
the spatial domain. The force field equation for
an n�pixel image becomes

forcefield D p
n � =�1 Œ= .unit forcefield/

�= .image/� (3)

where = stands for the Fourier transform
and =�1 for its inverse. Listing 1 shows how to
implement this in Mathcad in which 1j denotes
the complex operator and cfft and icfft denote
the Fourier and inverse Fourier transforms,
respectively. Also, because the technique is based
on a natural force field, there is the prospect of a
hardware implementation in silicon by mapping
the image pixels to electric charges, which would
lead to very fast real-time force field calculation.

Figure 1a demonstrates field line feature ex-
traction for an ear image where a set of 44 test
pixels is arranged around the perimeter of the
image and allowed to follow the field direction
so that their trajectories form field lines which
capture the general flow of the force field. The
test pixel positions are advanced in increments
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of one pixel width, and the test pixel locations
are maintained as real numbers, producing a
smoother trajectory than if they were constrained
to occupy exact pixel grid locations. Notice the
two obvious potential wells in the lower part of
the field.

Convergence Feature Extraction
This analytical method came about as a result of
analyzing in detail the mechanism of field line
feature extraction. As shown in Fig. 1d, when
the arrows usually used to depict a force field
are replaced with unit magnitude arrows, thus
modeling the directional behavior of exploratory
test pixels, it becomes apparent that channels and
wells arise as a result of patterns of arrows con-
verging towards each other, at the interfaces be-
tween regions of almost uniform force direction.
As this brings to mind the divergence operator
of vector calculus, it was natural to investigate
the nature of any relationship that might exist
between channels and wells and this operator.
This resulted not only in the discovery of a
close correspondence between the two but also
revealed extra information corresponding to the
interfaces between diverging arrows, leading to a
more general description of channels and wells
in the form of a mathematical function in which
wells and channels are revealed to be peaks and
ridges, respectively, in the function value. The
new function maps the force field to a scalar
field, taking the force as input and returning the
additive inverse of the divergence of the force
direction. The function will be referred to as the
force direction convergence field C (r) or just
convergence for brevity. A more formal defini-
tion is given by

C.r/ D �divf .r/ D � lim
�A!0

H
f .r/ � dI

�A

D �r � f .r/

D �
�

@fx

@x
C @fy

@y

�
(4)

where f .r/ D F.r/

jF.r/j , �A is incremental area, and
d l is its boundary outward normal. This function
is real valued and takes negative values as well as

C(FF) DF
FF

FF

for

for

dr Re DFr,c

DFr,c

Re DF ,r 1 c

dc Im Im DF ,r c 1

Cr,c dr dc

c

r 1..rows(DF) 1

1..cols(DF) 1

C

Ear Recognition, Physical Analogies, Listing 2
Convergence implemented in Mathcad

positive ones where negative values correspond
to force direction divergence. Listing 2 shows
a particular implementation of convergence in
Mathcad where FF represents the force field and
DF is the direction field.

It must also be stressed that convergence
is nonlinear because it is based on force
direction rather than force. This nonlinear-
ity means that the operations should be
performed in the order shown; this cannot
be formed by taking the divergence of the
force and then divide by the force magni-
tude. Div.grad=jgradj/ ¤ .div grad/=jgradj.
This is quite easily illustrated by a sim-
ple example using the scalar field ex in
Eq. 5:

(
div (grad/j gradj )

r �
�

rex

jrex j
�

D r � ex i
ex D r � i D 0

)

¤
(

(div grad)/j gradj
r�rex

jrex j D ex

ex D 1

)
(5)

where i is a unit vector in the x direction. This
illustrates that even though convergence looks
very much like a Laplacian operator, it definitely
is not.

Figure 1 shows the relationship between field
lines (a) and convergence (b) by merging the
two fields in (c). A small rectangular section
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of the force direction field indicated by a small
rectangular insert in (a) and (b) is shown mag-
nified in (d). This shows that channels coin-
cide with white convergence ridges and also that
wells coincide with convergence peaks which
appear as bright spots. Notice the extra informa-
tion in the center of the convergence map that
is not in the field line map. Negative conver-
gence values representing antichannels appear as
dark bands, and positive values corresponding to
channels appear as white bands. The antichan-
nels are dominated by the channels, and that
the antichannels tend to lie within the confines
of the channels. Notice also the correspondence
between converging arrows and white ridges, and
between diverging arrows and black ridges. The
features detected tend to form in the center of
the field due to its overall dome shape, with
channels and wells tending to follow intensity
ridges and peaks, whereas antichannels and an-
tiwells tend to follow intensity troughs and hol-
lows.

Brightness Change Analysis
Before proceeding to the next section on ear
recognition, the effect of brightness change
will first be analyzed by considering its effect
on the energy field and then confirmed by
visual experiment. Should the individual pixel
intensity be scaled by a factor a and also
have and an additive intensity component b,
then

E.rj / D
X

i

8
<

:

aP.ri / C bˇ̌
ri � rj

ˇ̌ 8i ¤ j

08i D j

9
=

;

Da
X

i

8
<

:

P.ri /ˇ̌
ri � rj

ˇ̌8i ¤ j

08i D j

9
=

;C
X

i

8
<

:

bˇ̌
ri � rj

ˇ̌8i ¤ j

08i D j

9
=

; (6)

Scaling the pixel intensity by the factor a

merely scales the energy intensity by the same
factor a, whereas adding an offset b is more
troublesome, effectively adding a pure energy
component corresponding to an image with
constant pixel intensity b. The effect of the offset
and scaling is shown in Fig. 2 with the channels
superimposed. Scaling by a factor of 10 in (e)
has no effect as expected. The original image
in (a) has a mean value of 77 and a standard
deviation of 47. Images (b)–(d) show the effect
of progressively adding offsets of one standard
deviation. At one standard deviation, the effect is
hardly noticeable, and even at 3 standard devia-
tions, the change is by no means catastrophic as
the channel structure alters little. It can therefore
be concluded that operational lighting variation
in a controlled biometric environment will have
little effect. These conclusions are borne out
by the results of the corresponding recognition
experiments in Table 1.

Ear Recognition, Physical Analogies, Fig. 2 Effect of additive and multiplicative brightness changes. (a) Original
(b) 1 std. dev. (c) 2 std. devs. (d) 3 std. devs. (e) Scaled �10
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Ear Recognition, Physical Analogies, Table 1 Comparison of force field (FFE) and PCA recognition results

Image type Method Passes Noise 20log10S/N CCR (%) Bright. add. (std devs.) Decidability

141 � 101 with
deliberately poor
extraction and
registration

FFE 250/252 Nil 99:2 0 3:432

FFE 251/252 18 dB 99:6 0 3:488

FE 249/252 12 dB 98:8 0 3:089

FFE 241/252 6 dB 95:6 0 1:886

FFE 250/252 Nil 99:2 1 3:384

FFE 247/252 Nil 98:0 2 3:137

FFE 245/252 Nil 97:2 3 2:846

PCA 118/189 Nil 62:4 0 1:945

111�73 with
accurate extraction
and registration

PCA 186/189 Nil 98:4 0 3:774

PCA 186/189 18 dB 98:4 0 3:743

PCA 186/189 12 dB 98:4 0 3:685

PCA 177/189 6 dB 93:6 0 3:606

PCA 130/189 Nil 68:8 1 1:694

PCA 120/189 Nil 63:6 2 0:878

PCA 118/189 Nil 62:4 3 0:476

PCA 181/189 Nil 95:6 1 normalized 3:171

PCA 172/189 Nil 91:0 2 normalized 1:91

PCA 166/189 Nil 82:5 3 normalized 1:14

Ear Recognition

The technique was validated on a set of 252
ear images taken from 63 subjects selected from
the XM2VTS face database [9] by multiplicative
template matching of ternary thresholded con-
vergence maps where levels less than minus one
standard deviation are mapped to �1, while those
greater than one standard deviation map to C1,
and those remaining map to 0. A threshold level
of one standard deviation was chosen experimen-
tally resulting in the template channel thickness
shown in Fig. 3c. This figure also shows a rect-
angular exclusion zone centered on the conver-
gence magnitude centroid; the centroid of the
convergence tends to be stable with respect to
the ear features, and this approach has the added
advantage of removing unwanted outliers such
as bright spots caused by spectacles. The size of
the rectangle was chosen as 71 � 51 pixels by
adjusting its proportions to give a good fit for the
majority of the convergence maps. Notice how
for image 000-2, which is slightly lower than the
other three, that the centroid-centered rectangle
has correctly tracked the template downwards.

The inherent automatic extraction advantage
was demonstrated by deliberately not accurately

extracting or registering the ears in the sense
that the database consists of 141 � 101 pixel
images where the ears have only an average
size of 111 � 73 and are only roughly located
by eye in the center of these images. This
can be seen clearly in Fig. 3a where there is a
marked variation both in vertical and horizontal
ear location and also that there is a generous
margin surrounding the ears. The force field
technique gives a correct classification rate
(CCR) of 99.2 % on this set, whereas running
PCA [10] on the same set gives a result of
only 62.4 %, but when the ears are accurately
extracted by cropping to the average ear size
of 111 � 73, running PCA then gives a result
of 98.4 %, thus demonstrating the inherent
extraction advantage. The first image of the
four samples from each of the 63 subjects
was used in forming the PCA covariance
matrix. Figure 4 shows the first 4 eigenvectors
for the 111 � 73-pixel images. The effect of
brightness change by addition was also tested
where in the worst case where every odd
image is subjected to an addition of 3 standard
deviations the force field results only change
by 2 %, whereas those for PCA under the
same conditions fall by 36 %, or by 16 % for
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Ear Recognition,
Physical Analogies, Fig. 3
Feature extraction for
subject 000, row (a),
141 � 101 ear images; row
(b), convergence fields;
row (c), thresholded
convergence maps

Ear Recognition,
Physical Analogies, Fig. 4
First 4 eigenvectors for
111 � 73 pixel images

normalized intensity PCA, thus confirming that
the technique is robust under variable lighting
conditions.

These results are presented in Table 1 where
which also includes the decidability index after
Daugman [11] which combines the mean and
standard deviation of the intraclass and interclass
measurement distributions giving a good single
indication of the nature of the results. This index
d 0 measures how well separated the distributions
are, since recognition errors are caused by their
overlap. The measure aims to give the highest
scores to distributions with the widest separation
between means and the smallest standard devia-
tions. If the two means are �1 and �2 and the
two standard deviations are �1 and �2 then d 0 is
defined as

d 0 D j�1 � �2jq�
�2

1 C �2
2

�
=2

(7)

Notice that the best case index for PCA is
slightly higher than the value of 3.43 obtained
for the 141 � 101 images, but this could be
attributed to the reduction in data set size from
252 to 189 and also to the fact that the images
have been more fully extracted for PCA. Noise
performance figures have also been included
where noise has been modeled as additive noise
with a zero mean Gaussian distribution The
signal-to-noise ratios of 6, 12, and 18 dB used
are calculated as 20log10(S/N). The technique
enjoys excellent noise tolerance where even for
an extreme noise ratio of 6 dB the performance
only falls by about 3.6 %. Interestingly at a ratio
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of 18 dB, the recognition rate actually improves
over the noiseless recognition rate, but this must
be put down to the combination of small changes
and the random nature of the noise process. For
reference, the corresponding noise results for
PCA under the same conditions have also been
included, where PCA also performs well under
noisy conditions but not quite as well as FFE at
6 dB where the fall is about 4.8 %.

Summary

In the context of ear biometrics, a linear trans-
form has been developed that transforms an ear
image, with a very powerful smoothing and with-
out a loss of information, into a smooth dome-
shaped surface whose special shape facilitates
a novel form of feature extraction that extracts
the essential ear signature without the need for
explicit ear extraction. It has been shown that
the technique is robust under variable lighting
conditions both by analysis and also by exper-
iment. Convergence feature extraction has been
described, and it has been shown that it is a
powerful extension to field line feature extraction.
The technique has been validated by experiment
where it has been shown that it compares favor-
ably with PCA especially under variable lighting
conditions. In the process, a contribution has been
made to the mounting evidence in support of
the recognition potential of the human ear for
biometrics.
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Synonyms

ACE-V; Earmark(s); Earprints; Identification

Definition

Forensic evidence of earprint is the field of foren-
sic science devoted to the collection and compar-
ison of earmark(s) (generally left in association
to a crime scene) with earprints obtained from
ears of individuals of interest under controlled
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condition. Anthropometric studies and empirical
evidence have shown that the forms left by an
ear are very discriminating and allow bringing
evidence of reasonable strength regarding the
identity of sources.

Current research aims at bringing structured
data relevant to the forensic examination process
and move from a field dominated by subjectively
informed experience and anecdotal evidence to a
field where transparent data allows an assessment
of the case.

Introduction

The use of earmarks in forensic science is a
consequence of the recovery of such marks dur-
ing crime scene investigation. Earmarks are left
on surfaces where one applies his or her ear to
listen. The deposition mechanism is similar to the
mechanism whereby fingermarks are deposited
on surfaces when touched with bare hands. Secre-
tions originating mainly from sebaceous glands
cover the ear. When the ear is put in contact

with a surface, it leaves a mark (often not readily
visible), a form corresponding to the shape of
the external organ applied. Such marks are often
detected in conjunction with the search for latent
fingermarks using the same detection techniques.
The surface systematically searched for earmarks
are the points of access (doors or windows), and
their recovery translates a typical modus operandi
for the perpetration of the offense. Marks are
generally detected by applying a powdering tech-
nique on the surface. Then the mark is described,
located and photographed, and preserved on an
adhesive or gelatine lifter.

An example of a recovered mark is shown in
Fig. 1 with indications of the typical nomencla-
ture used to describe the features of the ear (the
figure shows directly the mark, whereas these
anatomical descriptions refer to the ear itself).

A useful model that helps scientists focus on
their role is called the ‘Investigator/Evaluator’
dichotomy. In reality, scientists operate in both
investigator and evaluator modes in many of the
cases. Providing opinion in these two different

Earprints, Forensic
Evidence of, Fig. 1
Earmark recovered from a
windowpane. Anatomical
features are designated
with arrows
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modes requires different mind-sets. An under-
standing of these differences is essential in the
context of earprint analysis.

In Investigator mode, indeed it is the scien-
tist’s role to form a reasonable hypothesis from
the observations. While attending a crime scene
and recovering earmarks, the police may put
forward the following investigative questions:
• How many people were involved?
• What potential set of actions may have given

rise to this (these) mark(s)?
• What is the range of height of the person at the

source of that (these) mark(s)?
• Using reference collections or databases,

could you suggest a name to the investigation?
The scientist will form and communicate what
may explain the observations based on his knowl-
edge, experience, or through the use of databases.
Generally, scientists operate in this mode before
a suspect is arrested and charged with an offense.
Opinions provide directions and options to the
investigation, and it is accepted that some direc-
tions offered may be misleading. The problem
arises when this data is not further scrutinized and
used as evaluative evidence in court. In evaluator
mode, the role of the scientist is to form a view
on the weight of evidence to be assigned to the
scientific findings. This is the primary role of the
scientist in what may be called post-charge cases,
i.e., cases in which a suspect has been arrested
and charged. In this role, the concept of weight of
evidence associated with the findings should be
approached more carefully.

The focus here will be on this evaluative use
of earprint evidence as a means to guide to the
establishment of the identity of the donor of the
recovered earmark(s).

Current Practice of Earmark to
Earprints Comparison

The protocol used by practitioners to compare
earmark(s) and earprints corresponds to the ACE-
V process used in other identification fields (e.g.,
fingerprints) [1]. It can be summarized through
the following steps:

1. The earmarks and the earprints are evaluated
to assess which parts or features are visible
and constitute pressure points. A specialized
terminology is used to designate the anatom-
ical parts of the ear that came into contact
with the substrate (Fig. 1). Pressure points
correspond to the cartilaginous parts of the
ear that came into contact with the surface.
The pressure on these parts is generally higher
than that on the soft tissues, hence producing
signs of stronger pressures on the mark as
well. Also, because cartilaginous parts are less
malleable than the soft tissues (such as the
lobule), these pressure points tend to be more
limited within-source variability.

2. Because the ear is a flexible three-dimensional
object, consisting of a cartilage and a cover-
ing skin, pressure of application and rotation
of the head cause differences between the
successive prints from the same individual.
Hence, an examination of a series of known
earprints from one donor, taken under various
conditions, allows the creation of an empirical
model of the expected variations caused by
pressure and distortion (Fig. 2). This analysis
will set the tolerances that will be applied
during the comparison process either to retain
a potential donor as a “match” or to exclude
him or her as being the contributor.

3. The earmark is compared with the earprints
using overlays. The examiners look at the
agreement in pressure points and measure-
ments. The more stable features being the
crus of the helix, the tragus, and the anti-
tragus. They act as anchoring points for the
overlay.

4. Differences in the comparison process are
evaluated by the examiners in the light of
the tolerances defined by the known effect of
pressure and distortion. A decision is made
as to whether any difference is significant
(hence leading to an exclusion) or can be
accounted for (hence leading to a “match”).
The assessment of potential differences
between marks and prints is left to the
examiner’s judgment.

5. From the quality and extensiveness of the
overlay, a judgment is made as to whether
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Earprints, Forensic Evidence of, Fig. 2 Earprints taken from a given individual with three degrees of pressures

Earprints, Forensic Evidence of, Fig. 3 Demonstration of the correspondence between an earmark and an earprint
using the superimposition technique

the earmark and the earprints share a common
origin.

6. The demonstration of the association is
provided either by transparency overlays and
using montages made of cut out photographs
(mark and print) or using video overlays
(Fig. 3).

The identification process is described mainly
as a matching process – an assessment of the
adequacy of superimposition between the mark
and the prints – but the crucial question of the
value to be given to a match is left to the exam-
iner’s judgment. In other words, when a match
is declared, the assessment of the rarity of the
shared features taking into account the tolerances
relies on the examiner’s experience.

Critical Analysis

Earmark to earprints comparison relies at the
moment more on individual experience and judg-
ment than on a structured body of research under-
taken following strict scientific guidelines. The
recognition process is highly subjective that ex-
ploits the extraordinary power of the human eye-
brain combination.

Compared to established identification fields,
such as fingerprints or handwriting comparison,
the body of literature pertaining to earmarks
identification is rather limited. About 60 papers
have been published, a limited number in recent
peer-reviewed journals. Scientific research has
been mainly devoted to the study of the variability
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of ear morphology based on the examination of
photographs of the ear. The relevance of this body
of knowledge to cases involving ear impressions
found, for example, on windowpanes, is rather
limited.

Most published studies on earprints have
been carried out on photographs of ears and
not on the earprints or earmarks [1, 2]. The
limitations of such studies are obvious; there is an
attempt to apply these data to the assessment of
earmark to earprint comparisons for the following
reasons:
• Numerous morphological features of the ear

are not discernible (or cannot be classified) on
earmarks.

• It is not feasible to carry out many measure-
ments on earmarks.

• The within-source variability of features and
measurements has not been fully investigated
(variability, observed on marks of the same
person, caused by the process of leaving and
recovering marks).

• The same applies to the assessment between-
persons variability (how marks from different
donors can be distinguished). It is expected
that the distinguishability of earmarks
from different persons will be much lower
than what is observed on photographs of
the ear.

There is no vast empirical study exploring the
chance of finding indistinguishable marks left by
different individual ears. The field of earmark
identification is at its infancy and would benefit
from a structured program of research.

Admissibility in Court

Within the European community, there is no
specific admissibility rule regarding scientific ev-
idence (in contrast to the Frye/Daubert standard
in the United States of America [3]). The princi-
ple of the judges’ free evaluation of the evidence
prevails. Hence, it is not surprising to see limited
debate in the European jurisprudence regarding
the admissibility of the earprint evidence.
The current casuistic in Switzerland (known
historically for the use of earprints in criminal

investigations [4, 5]) gives a contrasted view
between the cases where earprint has been
used in court for identification (Geneva) and
where the prosecution refrained from using the
evidence because of its limited contribution to
address the issue of identity of sources (Ticino).
Earprint evidence has also been used and
accepted in the courtrooms of Belgium and the
Netherlands.

In the United Kindgom, two cases involving
earmarks have reached the Court of Appeal. The
Court of Appeal in R. v. Dallagher [6] allowed
the admission of earprint evidence but received
additional information that emerged more clearly
since the first trial that shed some new light
on the strength of the evidence. Had that evi-
dence been available to the defense at trial, it
might have reasonably affected the decision of
the jury to convict and hence the conviction was
quashed and a new trial was ordered [7]. The
Court however ruled that earprint evidence was
held admissible, leaving the duty of highlighting
its limits to the adversarial system itself through
a proper voir dire or at trial. That decision was
confirmed in R. v. Mark J. Kempster [8].

In the American case State vs. Kunze [9], the
Court heard some twenty experts in identification
evidence and came to the conclusion that earmark
identification was not a field that has gained
general acceptance among peers. The Court ruled
that earmark evidence cannot be accepted as sci-
entific evidence under the Frye test. The reinves-
tigation of this case led to the discovery of close
neighbors (close agreement between earmarks
originating from different sources) among the
potential donors in that case (C. Cwiklik, K.M.
Sweeney, Ear Print Evidence: State of Wash-
ington v. Kunze. Personal communication from
Cwiklik & Associates, 2400 Sixth Avenue South
#257, Seattle, WA 98134; 2003).

Recent Research Initiatives

Early efforts toward systematic classification or
matching of earprints focused on an extraction
of shape features in the antihelix area and a



E 388 Earprints, Forensic Evidence of

concept of a database based on 800 earprints from
different individuals.

The field of earprint identification has
been recently researched through an important
initiative under funding of the European Com-
munity PF6 program FearID (http://artform.hud.
ac.uk/projects/fearid/fearid.htm?PHPSESSID=
9c4fd025eec23ee10262d9e226ff73d0).

They showed encouraging discriminative
power but without fully addressing the issue of
within-donor variation. Meijerman et al. showed
the extent of changes on earprint features in
terms of size and position [10]. The main source
of intraindividual variation in earprints is the
variation in pressure that is applied by the ear to
the surface during listening. Studies in applied
force while listening showed that intraindividual
variation in applied force is comparatively small
compared with the interindividual variation
[11, 12].

Semiautomatic acquisition of earprint features
was also undertaken within the FearID research
program. The definition of the feature vector
relied on the annotation of earprint images by
skilled operators. Between-operator variations
were causing a large detrimental effect on the
efficiency of the system [13]. The efficiency
of the developed recognition system has been
tested [14]. The features are extracted from
a “polyline” superimposed on the earprint by
an operator. The matching is obtained using
Vector Template Machine (described in http://
forensic.to/fearid/VTMfinal.doc). For print to
print comparisons, it was shown that for 90 %
of all query searches, the best hit is in the
top 0.1 % of the list. The results become less
favorable (equal error rate of 9 %) for mark to
print comparisons.

In addition to the described semiautomated
approaches, fully automatic methods have
been initially tested on a limited sample
of 36 right earprints from 6 pairs of iden-
tical twins [15] using keypoint matching
algorithms.

Some landmark research in ear biometrics
[16–20] is also expected to have a drastic impact
on the forensic research in earmarks in the years
to come.

Related Entries

�Ear Biometrics, 3D
�Ear Recognition, Physical Analogies
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Synonyms

Electroencephalogram-based biometrics

Definition

The analysis of electroencephalogram (EEG) has
been used, for more than a century, in the medical
field and also as the basis of brain computer
interfaces (BCIs) and brain machine interfaces
(BMI) for assistance, rehabilitative, and enter-
tainment applications. Only recently EEG has
been proposed as a biometric trait having the
potentialities to allow people recognition. More
specifically, an EEG recording provides a mea-
sure of the electrical activity of the brain, which
reflects the summation of the synchronous ac-
tivities of thousands of millions of neurons that
have similar spatial orientation. In conventional
scalp EEG, recordings are obtained by placing
electrodes on the scalp according to the 10–20
international system and acquired either during
spontaneous activity of the brain, like a resting
state with open or closed eyes, or in the pres-
ence of specific stimuli or events. Scalp EEG
activity shows oscillations at a variety of frequen-
cies, mainly in the range Œ1; 40� Hz. Several of
these oscillations show characteristic frequency

content and spatial distributions, associated to
different states of brain functioning, that can be
investigated as potential distinctive traits for the
purpose of user recognition.

Introduction

In the last decade, an always growing interest in
the use of biological signals for the purpose of
automatic user recognition is being witnessed.
Within this framework, among the possible
acquirable biological signals, those sensing
the brain activity have recently attracted the
attention of the research community due to the
evidence that they carry distinctive information
about the individual identity. Specifically, brain
activity can be registered either by measuring the
blood flow or by measuring the neuron activity.
To the first category belong approaches like
functional magnetic resonance imaging (fMRI),
which measures the concentration of oxygenated
and deoxygenated hemoglobin in response to
magnetic fields; the near-infrared spectroscopy
(NIRS), which measures the concentration of
oxygenated and deoxygenated hemoglobin by
means of the reflection of infrared light by the
brain cortex through the skull; and the positron
emission tomography (PET), which measures
neuron metabolism through the injection of
a radioactive substance in the subject. To
the second category belong approaches like
magnetoencephalography (MEG), which is
sensitive to the small magnetic fields induced
by the electric currents in the brain, and
electroencephalography, which is sensitive to the
electrical field generated by the electric currents
in the brain.

Specifically, EEG recordings are acquired
with portable and relatively inexpensive devices
when compared to the other brain imaging
techniques. They measure the voltage fluctuation
on the scalp surface resulting from the electric
field generated by the firing of collections of
pyramidal neurons of the cortex. For instance,
EEG oscillations can describe the brain response
to either external or internal stimuli which
generate the so-called event-related potentials
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(ERPs). The EEG amplitude of a normal subject
in the awake state, recorded with scalp electrodes,
is in the range of Œ10; 100� �V. The way the
brain regions and structures are organized and
coordinated during specific cognitive functions or
mental states is considered to be a typical feature
of each subject, due to both morphological and
anatomical traits, and functional plasticity traits.

While conventional biometric systems rely on
the use of either physiological or behavioral char-
acteristics, that is, on some biological charac-
teristic the user “possesses” or on the “way the
individual behaves,” respectively, the systems we
deal about hereafter are based on the “way the
individual thinks” as a distinctive characteristic
for automatic user recognition, thus focusing on
the use of EEG signals, describing the electrical
activity of the brain, as a biometric trait of an
individual [1, 2].

EEGMeasurement

EEG signals can be acquired with devices
which consist of a set of amplifiers, a
multichannel analog-to-digital converter, and a
set of electrodes, placed on the scalp, which
sense the electrical activity of the brain. The
electrodes can be either needle electrodes, which
are very invasive, passive electrodes, which
need conductive gel to reduce the electrode-
skin impendence, or active electrodes, not
requiring any paste. Electrodes positioning is
made according to the conventional electrodes
setting, namely, the 10–20 international system,
recommended by the International Federation
of Societies for Electroencephalography and
Clinical Neurophysiology. This recommendation
is shown in Fig. 1a, b for systems using 21
electrodes. In Fig. 1c an extension of the 10–20

EEG Biometrics, Fig. 1
The 10–20 international
system seen from left (a)
and above the head (b).
The letters F, T, C, P, and
O stand for frontal,
temporal, central, parietal,
and occipital lobes. Even
numbers identify
electrodes on the right
hemisphere, odd numbers
are those on the left
hemisphere, and “z” (zero)
refers to electrodes placed
on the midline (Jaakko
Malmivuo and Robert
Plonsey,
Bioelectromagnetism,
Oxford University Press,
1995, WEB version)
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international system to 75 electrodes, which
allows a higher spatial resolution, is shown.

The EEG signals show different features ac-
cording to the different acquisition protocols that
are employed in the recording session. In fact the
collection of EEG signals can be performed either
in a situation of spontaneous activity of the brain
like a resting state with either open or closed
eyes or in the presence of specific stimuli or
events, like visual, auditory, or tactile stimuli; the
execution of real or imagined body movements;
and also the performance of imagined speech.
Moreover EEG can be acquired while a subject is
stimulated by natural stimuli like music, speech,
or video. Therefore the brain response to different
stimuli produces signals which can differ signif-
icantly being generated in different areas of the
brain, showing different frequency components
and amplitude.

The most relevant cerebral activities fall in
the range of Œ0:5; 40� Hz. The amplitude of
the EEG signals is up to about 100 �V when
measured on the scalp and about 1–2 mV when
measured on the cortex. An example of the
signals acquired using a 19-channel amplifier
with the electrodes positioned according to
the 10–20 international system is given in
Fig. 2.

Roughly speaking five main brain rhythms
can be identified, each associated with a specific
bandwidth:
• Delta waves (ı/ Œ0:5; 4� Hz primarily associ-

ated with deep sleep and loss of body aware-
ness. They may be present in the waking state.

• Theta waves (�/ Œ4; 8� Hz associated with deep
meditation and creative inspiration, and they
may also appear in dreaming sleep (REM
stage).
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EEG Biometrics, Fig. 2 Example of an electroencephalogram acquired using a 19-channel system using a “rest state
with closed eyes” protocol
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1 2 3 4 5 6 7

Delta [0.5−4]Hz

Theta [4−8]Hz
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Beta [14−30]Hz

Gamma [over 30Hz]

Time (s)

EEG Biometrics, Fig. 3 Examples of delta, theta, alpha, beta, and gamma waves acquired through the channel O2
using a “rest state with closed eyes” protocol

• Alpha waves (˛/ Œ8; 13� Hz indicating either a
relaxed awareness state without any attention
or concentration. They are reduced by anxiety,
mental concentration or attention.

• Beta waves (ˇ/ Œ13; 30� Hz usually associ-
ated to an alert state, active thinking, and
attention.

• Gamma waves (�/ over 30 Hz present low
amplitude; they can be used as indicators of
event brain activity synchronization.

Some examples for each of the aforementioned
brain rhythms are given in Fig. 3. In Fig. 4 the
topographic maps related to the main brain
rhythms during resting with closed eyes are
displayed in false colors. The strong parieto-
occipital ˛ activity can be observed in the
related map. Also the spatial distributions
on the scalp of the other rhythms showing
smaller amplitude during rest (ı; ˇ; �) are shown
beside.

EEG-Based User Recognition

An EEG-based biometric recognition system, as
a generic biometric- based system, is composed
of an acquisition module that senses the EEG
signals, a preprocessing block that performs noise
and artifact removal, a feature extraction module
that extracts the representative elements of the
EEG signals, and a matching block producing
a score that is used to provide a ranking of the
most probable users or, when feeding a decision
module, to provide a decision about the user’s
claimed identity.

EEG as Biometrics
With respect to more mature biometrics like fin-
gerprints, iris, and face, EEG signals present
some peculiarities which are beneficial for the
design of secure and privacy compliant biometric
systems. In fact EEG, being the result of ionic
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EEG Biometrics, Fig. 4
Topographic maps of
rhythms. Each map shows
in false colors the spatial
distribution on the scalp
surface of the related EEG
rhythm’s mean power, for a
test subject. Maps for
rhythms delta (a), theta (b),
alpha (c), and beta (d) are
reported. Each circle
represents the top view of a
head, where the highest
point is the nasion while
the lowest is the inion

current flows within the neurons of the brain,
are not exposed like face, iris, and fingerprints;
therefore they cannot be captured at a distance
or they cannot be acquired at a later time, like
it may happen for latent fingerprints. Therefore,
EEG signals are “secret” by their nature, and
they give to a biometric-based recognition system
a higher level of privacy compliance than other
biometrics. Nevertheless, once the signals are ac-
quired, they can reveal personal health informa-
tion, like it happens for face, iris, and fingerprints.
Therefore privacy protection mechanisms need to
be put in place when handling such biometrics.
Furthermore, EEG-based biometric systems are
inherently robust against sensor spoofing. In fact,
following the previous argumentations, conven-
tional biometrics like face, iris, and fingerprints
can be easily acquired by an attacker, syntheti-
cally generated at a later time, and fed to the ac-
quisition sensors. This is not feasible when using
EEG signals since an attacker should be able to
acquire them covertly and feed them to the sen-
sors, which is not possible at the present state of
technological development. This also inherently
solves the problem of liveness detection without
the need to resort to specifically designed sensors.
Moreover, EEG biometrics has a higher level of

universality than conventional biometrics. Fur-
thermore, since EEG signals present a good time
resolution, they are among those biometric that
allow continuous verification, so that the presence
of the same individual can be constantly and
transparently monitored by analyzing the per-
son’s spontaneous brain activity or the response
to cognitive stimuli, thus avoiding the possibility
of substitution as possible in a one-time login
system. On the other hand, the use of EEG signals
within the framework of biometric recognition
presents some drawbacks, being the acquisition
devices more expensive than the ones used for
classical biometrics and having the system a high
level of intrusiveness which limits the user con-
venience and its level of acceptability. Moreover,
neurological studies have demonstrated that the
EEG can be considered a genotypic characteristic
which limits its uniqueness.

EEG Biometrics: State of the Art
EEG signals are usually contaminated by noise
and artifacts which can be both endogenous
and exogenous events with respect to cerebral
activity. In fact, being the brain continuously
and spontaneously active, there is a background
noise, superimposed to the signals representing
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the synchronous firing of specific collections of
neurons which respond accordingly to the cog-
nitive stimulus. Moreover, biological artifacts,
like the ones related to eye movements, to hearth
beat, and to muscle activity, can occur. Therefore
a preprocessing stage, consisting, for example, in
adaptive filtering, principal component analysis
(PCA), blind source separation (BSS), etc., is al-
ways needed for the purpose of noise and artifact
removal, before performing feature extraction.

EEG as biometrics was first introduced in
[3] where a “closed eyes in resting conditions”
protocol was employed to acquire data using the
O2 channel. The ˛ rhythm was isolated and then
modeled using autoregressive (AR) modeling
with order ranging from 8 to 12. A Kohenen
linear vector quantizer was employed. The tests
performed was aimed to verify four authorized
users against a single class of non-authorized
users. The performance expressed in terms
of genuine authentication rate (GAR) ranged
between 72 and 84 %. In [4] the EEG activity
was recorded from 40 subjects while resting
with open eyes and with closed eyes. Although
eight sensors were employed for the acquisition,
only the signals acquired using the channel P4
were used in the modelization. In detail, after
preprocessing aimed at removing noise and
other undesirable components, AR modeling
of order ranging from 3 to 21 was employed. A
discriminant analysis was performed, and GAR
ranging from 49 to 82 % depending on the AR
model order was obtained. In [5] VEP stimuli
consisting in showing black and white drawings
of common objects were used during the
recording of the EEG signals. A database of 102
people was used, and signals from 61 channels
were acquired. After having filtered the signals
with a 25–56 Hz pass band filter, the MUSIC
algorithm was used to estimate, for each signal,
both the dominant frequency and the power
content. These estimates for all 61 channels were
used as the feature vector. An Elman neural
network was employed as classifier. A GAR
of 98:12 % was reached. In [6] imagined related
tasks such as imagination of left-hand movements
and of right-hand movements and the generation
of words beginning with the same random letter

were considered to generate EEG signals. The
employed database was constituted by acquiring
eight channels for nine users. Specifically the
centro-parietal channels C3, Cz, C4, CP1, CP2,
P3, Pz, and P4 were used. The signals were
preprocessed by retaining the band 8–30 Hz. A
Gaussian Mixture Model together with maximum
a posteriori (MAP) adaptation were employed.
Different experiments were performed, and a half
total error rate HTER (HTER = (FAR+FRR)/2)
ranging from 8:4 and 42:16 % was achieved for
imagined motion, whereas for word generation a
HTER = 12:1 % was achieved. In [7] a closed
eyes resting condition was used to acquire EEG
signals from 51 subjects employing 2 forehead
electrodes (FP1 and FP2). The feature vector
was built by concatenating several features:
the AR coefficients up to order 100, the DFT
coefficients in the band 1–40 Hz, the mutual
information (MI), the coherence (Coh.), and
the cross-correlation between the two acquired
signals. Discriminant analysis with four different
functions was used, and the best achievable result
was an equal error rate (EER) equal to 3.4 %.
In [8] data were acquired while seven subjects
performed real motion-related tasks. Seventeen
channels have been employed and clustered in
five groups according to their physical position.
Then, independent component analysis was
performed in each region, thus selecting the most
energetic component for each region as a feature.
AR modeling, with order equal to seven, was then
performed on each of the selected components,
thus obtaining the feature vector. A naive Bayes
classifier was used and a HTER = 4:1 % was
achieved. In [9] two different datasets were
used: one for VEP, collected showing black and
white images to 120 people while recording
the EEG using 64 channels, and the other
one for imagined speech, where 6 volunteers
imagined speaking the two syllables /ba/ and
/ku/, and the recording was performed using 128
sensor channels. The so obtained signals were
preprocessed in order to remove the artifacts,
and then autoregressive (AR) modeling for each
signal acquired by the sensor net was performed.
A support vector machine (SVM) classifier was
employed for both acquisition protocols, thus
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EEG Biometrics, Table 1 Overview of state-of-the-art contributions using EEG signals as a biometrics

Paper Protocol Database Channels Features Classifier Performance

Poulos et al. [3]
’99

Closed eyes 4 1 (O2) AR (8th–12ve) Kohonen’s LVQ GAR = 72–84 %

Paranjape et al.
[4] ’01

Closed/Open
eyes

40 1 (P4) AR (3rd–21st) Discriminant
Anal.

GAR = 49–82,%

Palaniappan VEP 102 61 MUSIC Elman NN GAR = 98.12 %
and Mandic [5]
’07

Marcel and
Millán [6] ’07

Imagined
movement

9 8 GMM MAP model
adaptation

HTER = 8.4–42.6 %

Word
generation

9 8 GMM MAP model
adaptation

HTER = 12.1 %

Riera et al. [7]
’08

Closed eyes 51 2 AR (100th) &
DFT

Discriminant
Anal.

EER = 3.4 %

(FP1, FP2) MI & Coh. &
CrossCorr.

He and Wang [8]
’10

Motion related
tasks

7 17 AR (7th) on ICA Naive Bayes
Classifier

HTER = 4.1 %

Brigham and Imagined
Speech

6 128 AR (2nd) Support Vect.
Mach.

GAR = 99.76 %

Vijaya Kumar [9]
’10

VEP 120 64 AR (4th) Support Vect.
Mach.

GAR = 98.96 %

Su et al. [10] ’10 ”Water/coffee” 40 1 (FP1) AR (19th) & PDS k-NN GAR = 97.5 %

Campisi et al.
[11] ’11

Closed eyes 48 3 (T7,Cz,T8) AR (6th) Polynomial re-
gression

GAR = 96.98 %

La Rocca et al.
[12] ’12

Closed eyes 45 2, 3, 5 AR (6th) Polynomial re-
gression

GAR = 98.73 %

Fusion of bands

achieving a GAR = 99.76 % for the case of
imagined speech with a 2nd- order AR model,
whereas a GAR = 98.96 % was obtained using
a 4th- order AR for the VEP case. In [10] the
influence of the diet and circadian effects on
the identification was investigated by using a
protocol where EEG signals acquired by the
FP1 electrode were recorded before and after
coffee assumption. A database of 40 subjects
was collected. A feature vector composed of
AR coefficients estimated on the whole signal
plus the power spectral density (PDS) in the
frequency range of [8, 32]Hz was considered.
Classification performed by using K-NN along
with feature reduction using Fisher’s linear
discriminant analysis (FDA) gave a recognition
accuracy of 97:5 %. In [11] a database of 48
subjects in a closed eyes resting state was
acquired using a 56-channel acquisition system.
However only triplets of electrodes have been
used in the analysis. A six-order AR model

has been estimated for each channel and a
polynomial regression-based classification has
been employed, obtaining a GAR of 96.08 %
when using the triplet T7, Cz, T8. In [12] the
same acquisition protocol and modeling in [11]
has been employed. However a more extensive
analysis on the sensors’ optimal number and
their spatial localization has been performed
by considering configurations involving two,
three, and five sensors respectively. Also
fusion among the different subbands has been
analyzed. GAR of almost 99 % has been
achieved.

A summary of the aforementioned contribu-
tions is given in Table 1 where details about
the protocol used to acquire the EEG signals,
the dimension of the database analyzed, the
number of channels employed to acquire the
signals, the extracted features, the considered
classifier, and the achieved performance are
given.
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Research Directions

The use of EEG signals as biometrics is bearer
of both a new paradigm and new challenges
in the scenario of automatic user recognition.
Differently from physiological-based biometric
systems, which rely on physical attributes the
user possess, and from behavioral-based biomet-
ric systems, which rely on how the user behaves,
the resort to EEG signals paves the road towards
the use of the mental signature of a user in
a cognitive process as a mean for recognition.
Despite some preliminary studies, which have
demonstrated the feasibility of using EEG signals
as biometrics, many questions remain open and
need a more deep and systematic investigation.
Issues such as the level of user discriminabil-
ity that EEG signals can guarantee, the EEG
permanence in time (see [13] for a preliminary
study), and their relationship with the acqui-
sition protocol need to be investigated. More
specifically, the appropriate stimulation that elic-
its the user’s most discriminant mental signature
needs to be properly designed. Furthermore, the
electrodes configuration both in number and lo-
cation has to be optimized, accordingly to the
employed stimulus, in order not to affect signifi-
cantly the user convenience, still guaranteeing the
maximum performance. Furthermore, the EEG
stability in time for the same user, i.e., the in-
traclass variability, and its discriminative power
for different users, i.e., the interclass variability,
are not fully understood yet. Although the bases
for the use of EEG for user automatic recognition
have already been posed, a deep and system-
atic investigation on the aforementioned issues
needs to be carried out in order to deploy in
the future a highly secure, accurate, and con-
venient EEG-based recognition system in every-
day life.

Related Entries

�Biometric Template Binarization
�Biometric Verification/Identification/ Authenti-

cation/Recognition: The Terminology
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Synonyms

Embedded processor; Embedded software

Definition

Embedded systems [1, 2] are computer systems
that are embedded in various parts of equipment
to control them. There is also another definition:
embedded systems are integrated systems that are
combined with equipment. Examples of equip-
ment to which embedded technologies are ap-
plied include electrical household appliances and
electrical equipment, PC peripheral equipment,
office automation equipment, communications
equipment, network facilities, medical equip-
ment, and robots. Embedded systems are rapidly
spreading wide to include social life, but there are
some problems. The greatest challenge is to keep
or improve the quality of design and reliability as
the systems get large and complex. Biometric
authentication functions have been already
embedded in smart cards and cellular phones.
Embedded authentication functions are applied
to the driving system and personal comfort
equipment at home; system security and usability
are other important aspects to be studied.

Profile of Embedded System

Those devices that are traditionally controlled by
hardware-like logic have advanced significantly
with the use of super micro computers and their
control software since the 1980s. As a result, any
complicated embedded system can be created,
even in a small space and at low cost: every
device, such as home appliances, mobile phones,
vehicles, and industrial robots, is being popular-
ized as an “embedded system.” Biometric prod-
ucts are also considered “embedded systems” and

will be embedded in a variety of devices such as
vehicles, mobile phones, etc, in the near future.
In addition, because of advanced IT technology,
it is becoming easy to include communication
functions; “embedded systems” are evolving as
one of the infrastructural devices in ubiquitous
networks, allowing us to utilize networks anytime
and anywhere.

Add-on systems are defined as hardware sys-
tems in which certain software is installed, upon
procurement from its manufacturer. In biomet-
ric authentication, the software is referred to
as the authentication software, and enables us
to characterize biometric data and cross-check
biometric data between and the driver, which
controls the sensor for biometric authentication.
As the devices integrated with such software are
commonly employed in biometric authentication
products, most often, biometric authentication is
done by add-on systems.

The product/system for biometric authentica-
tion can generally be classified into the following
four categories, depending on how the biometric
information sensor and the software that can
serve authentication and/or the biometric data
memory, which stores individual biometric data,
are integrated with the entity (i.e., the system)
that implements their original objectives upon
procurement.

All-in-One
All the three – the biometric information sensor,
the biometric authentication software, and the
biometric data memory – are integrated with the
entity (i.e., the system). The stand-alone laptop
type computer with finger print authentication
sensor, a door security device, and a car with
finger print authentication are in the family of
such biometric authentication products. The mo-
bile telephone with finger print authentication,
which is popular in Japan, is also an all-in-one
biometric authentication product.

Biometric-Information-Data-Separation
Method
The biometric information sensor and the bio-
metric authentication software are integrated with
the entity, but the biometric data memory is
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located separately. The biometric memory may
be a handheld type of memory medium such as
a smartcard and/or the server in a server-client
system. The method of using a smartcard as a
biometric data memory is referred to as STOC
(store on card) authentication method.

Authentication-Sequestration Method
In this method, only the biometric authentication
sensor is integrated with the entity (i.e., the sys-
tem), but the biometric authentication software
and the biometric data memory are located sep-
arately. That is, the biometric data fed by the
biometric authentication sensor is transferred to a
different system/device where biometric data are
registered and cross-checked. As for the different
system/device, a smartcard and/or the server, and
part of a server-client system are included. As
the smartcard itself is a device, the authentication
software and/or individual data memory with the
authentication method is exclusively referred to
as MOC (match on card) authentication method.

Authentication-Unit
The biometric authentication sensor, biometric
authentication software, and biometric data
memory form a unit. It may be configured
after providing the SIer and third party (ies)
biometric authentication mechanism. This can
provide vendors and SIer with the most simple
and manageable biometric authentication.

Difference Between Embedded
System and General System

What if we do not conduct certain security mea-
sures on the general computer systems connected
to a network? They will be infected with virus
within a short period of time and/or they will be
easily attacked by malicious persons. To avoid
that, it is necessary to conduct certain security
measures, utilizing anti-virus software, firewall,
‘etc., and in case of some vulnerability in soft-
ware, we can maintain security by downloading
and applying security patches in general sys-
tems. However, in an “embedded system,” it is

harder to address the said measures because of
the constraints in utilizing their resources. In ad-
dition, there are the “embedded system”-specific
issues such as side-channel attack and reverse
engineering.

It is expected that along with advancement,
such security issues looming up in the world
of computer systems will be a great threat to
the “embedded system” in the years to come.
There are only some accidents relevant to the
“embedded system” that have been reported
and it is not likely that they will happen
frequently hereafter. It is ideal to construct
the lifecycle of the “embedded system” in
four different phases: planning, development,
operation, and discarding, to implement sufficient
security measures by both developers and users
(Fig. 1).

Instances of Embedded System in
IC Card

In this section, the essay introduces the IC card
as one of the instances of specific embedded
systems. Generally, it can be assumed that
the “manufacturer,” “issuer,” and “holder”
will be involved in the lifecycle of the IC
card from its planning to discarding phases
(Fig. 2).

There exist different threats in each phase of
the lifecycle:

To avoid these problems, it is necessary to
adopt certain security measures such as encryp-
tion of the design document, periodic logical
verification, and regulation of prior/post disposal,
etc, for the respective holders’ further security.
For effective security, all the measures have to be
employed to work synergically.

Instances in Biometrics

Figure 3 shows the vulnerabilities of a
biometric authentication system [3, 4], and the
vulnerabilities [5] are explained in Tables 1 and 2.
Vulnerabilities can be classified into two types:
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Embedded Systems, Fig. 1 Potential problems & measures

Embedded Systems, Fig. 2 Lifecycle of IC card

Sensor
Feature

extraction

Verification process
Enrollment process Result

Matching

Data storage

Embedded Systems,
Fig. 3 Vulnerabilities in
biometric systems
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Embedded Systems, Table 1 Biometric-specific vulnerabilities

Name of vulnerability Definitions

Familiarity/Proficiency Certain familiarity/proficiency is necessary upon utilizing biometric
system

Acceptability Some users are still reluctant to use biometric system

FAR (False Accept Rate) Accidental occurrence of FAR

FRR (False Reject Rate) Accidental occurrence of FRR

Unavailability There are some users who cannot be authenticated biologically or are
those for which biometric data cannot be obtainable from

User Status Data granularity will vary depending on user’s physical status

Entering Environment (Minutia Angle, etc.) Data granularity will vary depending on entering environment, such
as minutia angle, etc.

Wolf FAR occurs with high probability due to Wolf

Lamb FAR occurs with high probability due to Lamb

Goat FRR occurs with high probability due to Goat

Authentication Parameter Inadequate matching performance relevant to configuration of authen-
tication parameter

Falsified biometric Information Physically generation of falsified biometric information

Publication Anyone else can acquire user’s biometric information

Assumption Assumable biometric information from templates/matching results

Extent Number of attempts available to biometric informa-
tion/user/authentication

Similarity There are some users whose biometric information is nearly identical
to others

Embedded Systems, Table 2 Vulnerabilities common to general IT systems

Name of vulnerability Definitions

Registration Vulnerability upon registration

Singularity Available to attack against anyone else’s IDs without any tools when biometric
information is simply used

Alternative Means There always need certain means alternable for biometric authentication as there are
some people who cannot be authenticated by or there are those whose biometric data
cannot be obtainable from

Presence Biometric information is presentable to third party/people if the owner grants

Motivation Verifiable/identifiable data entry is necessary by the user of biometric system

Sensor Exposure Sensor which collecting biometric data is disclosed to outside

Data Leakage Leakage of biometric data stored in biometric system to outside

Side-channel Leakage of the information relevant to biometric system to outside

Data Alteration Alteration availability for those data stored in biometric system

Configuration Management Upon differed conformity in elements which configuring system, normal operation and
matching performance required are getting disabled

Deactivation Authentication is getting unavailable temporarily when some parameters are satisfied

those biometric specific and those common to
general information systems. However, in the
latter case, only those that may cause a threat
when combined with the biometric-specific
vulnerability(ies) are listed. Table 3 shows
the vulnerabilities in biometric systems in

the respective phases: Planning, Development,
Operational, and Discard.

Related Entries

�Biometrics, Overview
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Embedded Systems, Table 3 Lifecycle of embedded systems and their vulnerabilities

Name of vulnerability Planning Development Operational Discard

Biometric
System-Specific
Vulnerabilities

Familiarity/Proficiency Y

Acceptability Y

FAR (False Acceptance
Rate)

Y

FRR (False Resistance Rate) Y

Unavailability Y

User Status Y

Entering Environment
(Minutia Angle, etc.)

Y

Wolf Y

Lamb Y

Goat Y

Authentication Parameter Y

Falsified Biometric
Information

Y

Publication Y

Assumption Y Y

Extent Y Y

Similarity Y

Vulnerabilities
common to general IT
systems

Registration Y

Singularity Y

Alternative Means Y

Presence Y Y

Motivation Y

Sensor Exposure Y Y

Data Leakage Y Y

Side-channel Y Y

Data Alteration Y Y

Configuration Management Y Y

Deactivation Y
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Definition

Biometric Encryption (BE) is a group of emerg-
ing technologies that securely bind a digital key
to a biometric or generate a digital key from the
biometric, so that no biometric image or template
is stored. What is stored is the BE template
otherwise known as a “biometrically encrypted
key” or “helper data.” As a result, neither the dig-
ital key nor the biometric can be retrieved from
the stored BE template. BE conceptually differs
from other systems that encrypt biometric images
or templates using conventional encryption or
store a cryptographic key and release it upon
successful biometric authentication. With BE, the
digital key is recreated only if the correct bio-
metric sample is presented on verification. The
output of BE verification is either a digital key or
a failure message. This “encryption/decryption”
process is fuzzy because of the natural variability
of biometric samples. Currently, any viable BE
system requires that biometric-dependent helper
data be stored.

Introduction

Biometric technologies may add a new level
of authentication and identification to applica-
tions but are not, however, without their risks
and challenges. There are important technologi-
cal challenges such as accuracy, reliability, data
security, user acceptance, cost, and interoperabil-
ity, as well as challenges associated with ensur-
ing effective privacy protections. Some common
security vulnerabilities of biometric systems in-
clude:

Spoofing, replay attacks, substitution attacks,
tampering, masquerade attacks (creating a digi-
tal “artifact” image from a fingerprint template
so that this artifact, if submitted to the system,
will produce a match), Trojan horse attacks, and
overriding yes/no response (which is an inherent
flaw of existing biometric systems).

In addition to the security threats that under-
mine the reliability of biometric systems, there
are a number of specific privacy concerns with
these technologies:

• Function creep (i.e., unauthorized secondary
uses of biometric data)

• Expanded surveillance, tracking, profiling,
and potential discrimination (biometric data
can be matched against samples collected and
stored elsewhere and used to make decisions
about individuals)

• Data misuse (data breach, identity theft, and
fraud)

• Negative personal impacts of false matches,
non-matches, system errors, and failures (the
consequences of system anomalies, especially
in large-scale systems, often fall dispropor-
tionately on individuals, normally in the form
of inconveniences, costs, and stigma)

• Insufficient oversight, accountability, and
openness in biometric data systems

• Potential for collection and use of biometric
data without knowledge, consent, or personal
control

These types of risks threaten user confidence,
which leads to a lack of acceptance and trust in
biometric systems.

Biometric Encryption (BE) technologies can
help to overcome the prevailing “zero-sum” men-
tality involved in traditional biometrics, namely,
that adding privacy to authentication and infor-
mation systems weakens security. With BE, it is
possible to enhance both privacy and security in
a positive-sum model.

What Is Biometric Encryption (BE)?

The concept of Biometric Encryption (BE) was
first introduced in the mid-1990s by G. Tomko
et al. [1]. For more information on BE and related
technologies, see the review papers in [2–4].

Biometric Encryption is a process that se-
curely binds a digital key to a biometric or gen-
erates a key from the biometric. In essence, the
key is “encrypted” with the biometric, and the
resulting biometrically encrypted key, also called
BE template or helper data, is stored. The dig-
ital key can be “decrypted” on verification if a
correct biometric sample is presented. This “en-
cryption/decryption” process is fuzzy by nature,
because the biometric sample is different each
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time, unlike an encryption key in conventional
cryptography. A major technological challenge is
to have the same digital key recreated despite the
natural variations in the input biometrics.

After the digital key is recreated on verifica-
tion, it can be used as the basis for any physical
or logical application. The most obvious use is in
a conventional cryptosystem where the key serves
as a password and may generate, for example, a
pair of Public and Private keys. It should be noted
that BE itself is not a cryptographic algorithm.
The role of BE is to replace or augment vul-
nerable password-based schemes with more se-
cure and more convenient biometrically managed
keys.

BE should not be mistaken for other systems
that encrypt biometric images or templates using
conventional encryption or store a cryptographic
key in a trusted token/device and subsequently
release it upon successful biometric verification
(i.e., after receiving yes response). However, BE
is related to another family of privacy-enhancing
technologies called Cancelable Biometrics (CB)
(N. Ratha et al. in [3]; see also the Encyclope-
dia article on “�Cancelable Biometrics”). CB
applies a transform (preferably, non-invertible)
to a biometric image or template and matches
the CB templates in the transformed domain.
This transform is usually kept secret. Unlike BE,
the CB system does not bind or generate a key.
CB remains inherently vulnerable to overriding
yes/no response and to a substitution attack.

There are two BE approaches: key binding,
when an arbitrary key (e.g., randomly generated)
is securely bound to the biometric, and key gen-
eration, when a key is derived from the bio-
metric. Both approaches usually store biometric-
dependent helper data. Some BE schemes (e.g.,
Fuzzy Commitment [5], Fuzzy Vault [6]) can
equally work in both key generation and key
binding mode; the key generation is also called
“secure sketch” or “fuzzy extractor” as defined in
[7]. Secure sketch implies that the enrolled bio-
metric template will be recovered on verification
when a fresh biometric sample is applied to the
helper data (i.e., the enrolled template itself or a
string derived from it, e.g., by hashing the tem-
plate, serves as a digital key). Note, however, that

this “key” is not something inherent or absolute
for this particular biometric; it will change upon
each re-enrollment. The size of the key space
for the secure sketch is defined by the intraclass
variations of the biometric as opposed to the key
binding approach.

In the key binding mode, as illustrated in
Fig. 1, the digital key is randomly generated on
enrollment so that neither the user nor anybody
else knows it. The key itself is completely in-
dependent of biometrics and, therefore, can al-
ways be changed or updated. After a biometric
sample is acquired, the BE algorithm securely
and consistently binds the key to the biometric
to create a biometrically encrypted key. The BE
template provides privacy protection and can be
stored either in a database or locally (smart card,
token, laptop, cell phone, etc.). At the end of the
enrollment, both the key and the biometric are
discarded.

On verification, the user presents his or her
fresh biometric sample, which, when applied to
the legitimate BE template, will let the BE algo-
rithm recreate the same key. At the end of veri-
fication, the biometric sample is discarded once
again. The BE algorithm is designed to account
for acceptable variations in the input biometric.
On the other hand, an impostor whose biometric
sample is different enough will not be able to
recreate the key.

Many BE schemes also store a hashed value
of the key (not shown in Fig. 1) so that a correct
key is released from the BE system only if the
hashed value obtained on verification is exactly
the same. Also, good practice would be not to
release the key but, rather, another hashed version
of it for any application. This hashed version can
in turn serve as a cryptographic key. With this
architecture, an attacker would not be able to
obtain the original key outside the BE system.
Likewise, the biometric image/template should
not be sent to a server; the BE verification should
be done locally in most scenarios.

An important part of most BE algorithms
is an error-correcting code (ECC). ECCs are
used in communications, for data storage, and in
other systems where errors can occur. Biometric
Encryption is a new area for the application of

http://dx.doi.org/10.1007/978-1-4899-7488-4_66
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Encryption, Biometric, Fig. 1 High-level diagram of a Biometric Encryption process in a key binding mode.
(a) Enrollment; (b) Verification

ECC. For example, a binary block ECC, which is
denoted (n, k, d), encodes k bits with n > k bits by
adding some redundancy. Those n-bit strings are
called codewords; there are 2k of them in total,
where k is the key length. The minimum distance
(usually a Hamming distance is implied) between
the codewords is d. If, at a later stage (in case of
BE, on verification), the errors occur, the ECC is

guaranteed to correct up to .d � 1/=2 bit errors
among n bits. Ideally, the legitimate users will
have a number of errors within the ECC bound so
that the ECC will decode the original codeword
and, hence, the digital key. On the other hand, the
impostors will produce an uncorrectable number
of errors, in which case the ECC (and the BE
algorithm as a whole) will declare a failure.
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In practice, BE, like any biometric system, has
both false rejection and false acceptance rates
(FRR and FAR). Note that BE does not use any
matching score; instead, the FRR/FAR tradeoff
may be achieved in some cases by varying the
parameters of the BE scheme. Some ECCs may
work in a soft decoding mode, that is, the decoder
always outputs the nearest codeword, even if it
is beyond the ECC bound. This allows achieving
better error-correcting capabilities.

To improve the security of a BE system, an
optional “transform in the middle” (shown in the
dashed square in Fig. 1) may be applied. Prefer-
ably, the transform should be non-invertible and
kept secret. One of the ways would be employing
a randomization technique, such as Biohashing
[8] or “salting” in more general terms [2]. The
transform can be controlled with the user’s pass-
word or can be separated from the rest of the
helper data by storing it on a token or a server.

Advantages and Possible
Applications of BE

BE technologies can enhance both privacy and
security in the following ways:
• There is no retention of biometric image or

conventional biometric template, and they
cannot be recreated from the stored helper
data.

• They are capable of multiple identifiers:
A large number of BE templates for the
same biometric can be created for different
applications.

• The BE templates from different applications
cannot be linked.

• The BE template can be revoked or canceled.
• They can be easily integrated into conven-

tional cryptosystems, as the passwords are
replaced with longer digital keys, which do
not have to be memorized.

• They provide improved authentication and
personal data security through a stronger
binding of user biometric and system
identifier.

• The BE systems are inherently protected from
substitution attack, tampering, Trojan horse

attack, and overriding yes/no response and
less susceptible to masquerade attack.

• They are suitable for large-scale applications,
as the databases will store only untraceable,
yet sufficient, information to verify the indi-
vidual’s claim.

These features embody standard fair information
principles, providing user control, data minimiza-
tion, and data security.

As such, BE technologies put biometric data
firmly under the exclusive control of the indi-
vidual, in a way that benefits the individual and
minimizes the risk of function creep and identity
theft. They provide a foundation for building
greater public confidence, acceptance, and use
and enable greater compliance with privacy and
data protection laws.

Possible applications and uses of Biometric
Encryption include:
• Biometric ticketing (Fig. 2) for events
• Biometric boarding cards for travel
• Drug prescriptions
• Three-way check of travel documents
• Identification, credit, and loyalty card systems
• Anonymous databases (Fig. 3), that is,

anonymous (untraceable) labeling of sensitive
records (medical, financial)

• Consumer biometric payment systems
• Remote authentication via challenge-response

scheme
• Access control (physical and logical)
• Personal encryption products (i.e., encrypting

files, drives, e-mails, etc.)
• Local or remote authentication of users to

access files held by government and other
various organizations

BE Technologies

The following are core BE schemes. The more
detailed, up-to-date overviews of BE technolo-
gies are presented in [2, 4].

Mytec1
This is the first BE scheme [1]. It was devel-
oped using optical processing but can also be
implemented digitally. The key is linked to a
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Encryption, Biometric, Fig. 2 Biometric ticketing. A
BE template is stored on a ticket as a 2D bar code, and
a database stores the hashed value of a key, Hash(key), for
each enrolled user. The key and the ticket are used only
for this particular application. On a verification terminal:
(i) The user presents his ticket to the system which reads in

the BE template from the bar code; (ii) the live biometric
sample is taken; (iii) the system applies the biometric to
the BE template to retrieve the key; (iv) Hash(key’) is sent
to the database where it is compared to the stored version,
Hash(key)

Encryption, Biometric, Fig. 3 Anonymous database
controlled by Biometric Encryption. The database con-
tains anonymous encrypted records, e.g., medical files.
The cryptographic keys and the links to the entries, which
may be users’ names or pseudonyms, are controlled by

BE. After the user enters his pseudonym, the associated
BE template (helper data) is retrieved and applied to the
user’s biometric. If BE successfully recovers the user’s
digital key, it will recreate the pointer to the anonymous
record and the encryption key to decrypt the record

predefined pattern, s(x), which is a sum of several
delta functions. Using s(x) and a fingerprint,
f(x), one can create a filter, H(u) = S(u)/F(u), in
Fourier domain (S(u) and F(u) are the Fourier
transforms of s(x) and f(x)). It is difficult to

obtain either S(u) or F(u) from the stored filter
H(u). On verification, if a correct fingerprint,
F0(u) � F(u), is applied to the filter, it will recon-
struct a correct output pattern, s0(x) � s(x), so that
the key will be regenerated from the locations of
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the output correlation peaks. Unfortunately, this
scheme turned out to be impractical in terms of
providing sufficient accuracy and security.

Mytec2
This is the first practical BE scheme [9]. Unlike
Mytec1, it retains phase-only parts of S(u) and
F(u) in the filter, H(u). The phase of S(u) is
randomly generated but not stored anywhere. As
a result, the output pattern, c(x), is also random.
The key, normally 128-bit long, is linked to c(x)
via a lookup table and ECC. The filter, H(u), the
lookup table, and the hashed key are stored in
the helper data. The system is error tolerant and
translation invariant. The published version [9]
used a simple repetition ECC, which makes the
system vulnerable to several attacks, such as hill
climbing [10].

However, a closer examination of the Mytec2
scheme shows that if the randomness of H(u) and
c(x) is preserved on each step of the algorithm,
the scheme is a variant of so-called permutation-
based fuzzy extractor as defined in [7]. Therefore,
if a proper ECC (preferably, single block) is
used instead of the repetition ECC, the system
will be as secure as those types of fuzzy extrac-
tors.

(Note that Mytec1 and Mytec2 schemes were
originally called “Biometric Encryption,” which
was a trademark of Toronto-based Mytec Tech-
nologies Inc., now Bioscrypt, a fully owned sub-
sidiary of L1 Identity Solutions Inc. The trade-
mark was abandoned in 2005.)

ECC Check Bits
This scheme, which was originally called “private
template,” is a secure sketch (i.e., a key genera-
tion) [11]. A biometric template itself serves as
a cryptographic key. To account for the template
variations between different biometric samples,
an (n, k, d) error- correcting code is used. A num-
ber of (n-k) bits, called check bits, are appended
to the template to map the k-bit template to an
n-bit codeword. The check bits are stored into
the helper data along with the hashed value of
the template. The scheme is impractical, since
it is required that n < 2k from the security

perspective. Such ECC would not be powerful
enough to correct a realistic number of errors for
most biometrics, including iris scan.

Biometrically Hardened Passwords
This technique was developed for keystroke
dynamics or voice recognition [12]. A pass-
word that the user types or says is fused
with a key (via a secret sharing scheme)
extracted from a biometric component, thus
hardening the password with the biometrics.
The technique was made adaptive by updating
a “history file” (which is, in fact, helper
data) upon each successful authentication.
However, the types of biometrics used did
not allow for achieving good accuracy num-
bers.

Fuzzy Commitment
This is conceptually the simplest, yet the most
studied, BE scheme [5] (A. Juels in [3]). A bio-
metric template must be in the form of an ordered
bit string of a fixed length. A key is mapped to
an (n, k, d) ECC codeword of the same length,
n, as the biometric template. The codeword and
the template are XOR-ed, and the resulting n-bit
string is stored into helper data along with the
hashed value of the key. On verification, a fresh
biometric template is XOR-ed with the stored
string, and the result is decoded by the ECC. If the
codeword obtained coincides with the enrolled
one (this is checked by comparing the hashed
values), the k-bit key is released. If not, a failure
is declared.

In a “secure sketch” (i.e., key generation)
mode [7], the enrolled template is recovered from
the helper data on verification, if a correct (yet
different) biometric sample is presented.

The scheme seems to be one of the best for the
biometrics where the proper alignment of images
is possible, such as iris scan [13, 14] and face
recognition (T. Kevenaar in [3]). For iris, the
reported results are FRR = 0.47 % at FAR < 10�5

for a 140-bit key mapped to 2,048-bit codeword
[13] and FRR = 5.6 % at FAR < 10�5 (42-bit key)
[14] for a poorer quality, yet more realistic, iris
database.
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ECC Syndrome
In this spinoff of the Fuzzy Commitment scheme,
a so-called ECC syndrome of (n-k) size is stored
in the helper data [2, 7]. On verification, the
enrolled template is recovered (i.e., the scheme
works in the secure sketch mode).

Quantization Using Correction Vector
This method, which was also called “shielding
functions,” is applied to continuously distributed
and aligned biometric features (J.-P. Linnartz et
al. in [3]). For each feature, a residual is calcu-
lated, which is the distance to the center of the
nearest even-odd or odd-even interval, depending
on the parity of the key bit. The correction vector
comprising all the residuals is stored into the
helper data. On verification, a noisy feature is
added to the residual and is decoded as 1 or
0, if the resulting interval is odd-even or vice
versa. The scheme can work with or without
(if a noise level is low) a subsequent ECC. In
general, storing a correction vector could make
the scheme vulnerable to score-based attacks.

Fuzzy Vault
This is, probably, the only BE scheme that is
fully suitable for unordered data with arbitrary
dimensionality, such as fingerprint minutiae
[6, 15]. A secret message (i.e., a key) is
represented as coefficients of a polynomial
in a Galois field, for example, GF(216). In
the most advanced version [15], the 16-bit x-
coordinate value of the polynomial comprises
the minutia locations and the angle, and the
corresponding y-coordinates are computed as
the values of the polynomial on each x. Both x
and y numbers are stored alongside with chaff
points that are added to hide real minutiae. On
verification, a number of minutiae may coincide
with some of the genuine stored points. If this
number is sufficient, the full polynomial can
be reconstructed using an ECC (e.g., Reed-
Solomon ECC) or Lagrange interpolation.
The polynomial reconstruction means that the
secret has been successfully decrypted. The
scheme works both in the key binding and
the key generation (secure sketch) mode. The

version of [15] also stores fingerprint alignment
information. The best results for fingerprints
show FRR = 6–17 % at FAR = 0.02 %.

The more secure version of Fuzzy Vault [7]
stores high-degree polynomial instead of real
minutiae or chaff points. However, there are dif-
ficulties in the practical implementation of this
version.

Unlike other BE schemes, the Fuzzy Vault
actually stores real minutiae, even though they
are buried inside the chaff points. This could
become a source of potential vulnerabilities [2,4].
The system security can be improved by ap-
plying a secret minutiae permutation controlled
by a user’s password [2]. This “transform-in-
the-middle” approach is applicable to most BE
schemes.

Biohashing (with Key Binding)
An ordered biometric feature set is transformed
into a new space of a lower dimension by gener-
ating a random set of orthogonal vectors and ob-
taining an inner product between each vector and
the biometric feature set [8]. The result (called
“Biohash”) is binarized to produce a bit string.
The random feature vectors are generated from
a random seed that is kept secret, for example,
by storing it in a token. The key is bound to the
Biohash via Shamir secret sharing with linear in-
terpolation or by using a standard Fuzzy Commit-
ment scheme. Very good FRR/FAR numbers [8]
were obtained, however, in an unrealistic “non-
stolen token” scenario. Biohashing is referred
more often as a CB scheme where Biohashes are
matched directly, that is, without the key binding.

Graph-Based Coding
In this generalization of the ECC syndrome
scheme, Low-Density Parity Check (LDPC)
ECCs are used in a graphical representation
[16]. LDPC codes, which are the state-of-the-
art channel ECCs (n, k, d), can be designed
with large numbers of n and k and can
handle high error rates. This makes them
suitable for BE applications. The scheme can
be applied to both ordered (e.g., iris) and
unordered (e.g., fingerprint minutiae) feature
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sets. For the latter, a factor graph models the
minutiae variability as a movement, an erasure,
or an insertion (i.e., spurious generation) of
minutiae. The scheme uses a belief propagation
decoding algorithm and shows promising
results.

Attacks on BE

Despite the fact that many BE schemes have a
formal proof of security, they may be vulnerable
to low level attacks, such as when an attacker
has access to helper data, is familiar with the
BE algorithm, and can run the attack offline. By
cracking a BE system, the attacker can pursue one
or more of the following:
• Obtain the key bound to the biometrics
• Obtain the exact biometric template used on

enrollment
• Obtain an approximate version of the template

that, nonetheless, would defeat the system
(masquerade template)

• Create a masquerade image of the biometrics
• Link BE templates generated from the same

biometrics but stored in different databases
The known attacks on BE, as described in [4], are
listed in the following paragraphs. Note that CB
may also be vulnerable to most of the attacks.

False acceptance attack. This is one of the
“brute force” attacks. Offline, the attacker runs
an impostor database of about FAR�1 biometric
images or templates against the helper data to ob-
tain a false acceptance. The database can be either
real or computer generated, such as SFinGe. The
image that has generated the false acceptance will
serve as a masquerade image.

Reversing the hash. This is another “brute
force” attack. If a hashed key is stored into the
helper data, the attacker may try to cryptographi-
cally reverse the hash. This attack should always
be made more computationally expensive for an
attacker than other attacks.

Hill climbing attack [10]. Based on the knowl-
edge of the algorithm, the attacker derives an
intermediate matching score during the verifica-
tion process, even though the BE algorithm does
not use any score. By making small changes

in the input impostor’s image or template, the
attacker retains the change, if the score increases,
or rejects it, if not. After a number of iterations,
the attacker may be able to retrieve a key and
create a masquerade image/template.

The BE schemes that divide helper data into
short chunks of ECC (e.g., a repetition ECC)
and the schemes with a correction vector may be
especially vulnerable to this and to the nearest
impostor’s attack.

Nearest impostor’s attack [4]. This is another
score-based attack. The attacker derives a partial
matching score for each ECC chunk (if any) of
the helper data and a global intermediate score
(like in the hill climbing attack). By running a
small impostor database against the helper data,
the attacker identifies several “nearest impostors,”
that is, the attempts with the highest global score
or, alternatively, with the highest partial score for
a given chunk. By applying a voting technique to
the nearest impostors, the attacker retrieves the
key bits associated with the chunk. If successful,
the attack yields the entire key or at least reduces
the search space for the key.

Using statistics of ECC output [4]. A small
impostor database (with various distortions, ro-
tations, and shifts applied) is run against the
ECC chunks of the helper data. The number of
appearances of each possible output codeword
for all impostor attempts is counted to create a
histogram. The codeword corresponding to the
histogram maximum is declared a winner.

Using an information leak from helper data.
This group of attacks may directly exploit:
• Nonrandomness of the helper data [4] (e.g., if

clusters in the helper data are identified, the
attacker may interconnect the same parity bits)

• Alignment information and minutiae angles in
the Fuzzy Vault

• A method for generating the chaff points [17]
• Nonuniformity of the output bits distribution

in quantization schemes, etc.
Reusability attack (X. Boyen in [3]). If the same
biometric is reused for different applications
and/or keys, the attacker may combine several
versions of the helper data to retrieve both
the biometric and all the keys. Fuzzy Vault is
especially vulnerable to this attack.
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Among all BE schemes, it seems that one of
the most secure would be a Fuzzy Commitment
(or other related fuzzy extractors, such as ECC
syndrome) scheme with a single block (n, k, d)
ECC, where n and k are large (e.g., n > �1,000,
k > �100). From the security perspective, the
amount of any additional side information that is
stored (e.g., alignment data) should be kept to a
minimum.

The resilience to some of the attacks may be
improved by employing the “transform-in-the-
middle” approach, especially if the transform is
controlled by a password/token.

Current State of BE

Many different approaches have been developed
for BE, but currently few systems have been
deployed or implemented into products. Until
now, little work has been done to analyze the
security of BE systems.

The authors consider the following technolo-
gies as the state of the art of BE:
• Philips (the Netherlands) priv-IDTM for the

face recognition (2D and 3D) and fingerprints
(T. Kevenaar in [3])

• Hao et al. for iris [13]
• Nandakumar et al. (Fuzzy Vault for finger-

prints) [15]
• Draper et al. of Mitsubishi Electric Research

Laboratories (USA) for iris and fingerprints
[16]

• Bringer et al. of Sagem Sécurité (France) for
iris [14]

• Genkey (Norway) BioCryptic R� for finger-
prints (unfortunately, not much information
about the technology is available)

The Philips priv-IDTM technology is ready for
deployment. It is part of the EU 3D Face project
and of the 3-year EU TURBINE project [18]. The
latter has been given significant funding and aims
at piloting a fingerprint-based BE technology at
an airport in Greece.

The Genkey BioCryptic R� technology has
been deployed for a Rickshaw project in New
Delhi (India). Both Philips and Genkey systems
can fit the helper data into a 2D bar code.

BE Challenges

Technologically, BE is much more chal-
lenging than conventional biometrics, since
most BE schemes work in a “blind” mode
(the enrolled image or template are not
seen on verification). As BE advances to
the next phase of creating and testing a
prototype, the following issues need to be
addressed:
• Biometric modalities that satisfy the

requirements of high entropy, low variability,
possibility of alignment, and public accep-
tance should be chosen. At present, the most
promising biometric for BE is iris followed by
fingerprints and face.

• The image acquisition process (the require-
ments are tougher for BE than for conven-
tional biometrics) must be improved.

• BE must be made resilient against attacks.
• The overall accuracy and security of BE al-

gorithms must be improved. Advances in the
algorithm development in conventional bio-
metrics and in ECCs should be applied to BE.

• Multimodal approaches should be exploited.
• BE applications should be developed.

Summary

Biometric Encryption is a fruitful area for re-
search and is becoming sufficiently mature for
prototype development and the consideration of
applications.

BE technologies exemplify the fundamental
privacy and data protection principles that are
endorsed around the world, such as data mini-
mization, user empowerment, and security.

Although introducing biometrics into infor-
mation systems may result in considerable ben-
efits, it can also introduce many new security
and privacy vulnerabilities, risks, and concerns.
Novel Biometric Encryption techniques can over-
come many of those risks and vulnerabilities,
resulting in a win-win, positive-sum model that
presents distinct advantages to both security and
privacy.
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Synonyms

Classifier combination; Committee-based learn-
ing; Multiple classifier systems

Definition

Ensemble learning is a machine learning
paradigm where multiple learners are trained to
solve the same problem. In contrast to ordinary
machine learning approaches which try to learn
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one hypothesis from training data, ensemble
methods try to construct a set of hypotheses and
combine them to use.

Introduction

An ensemble contains a number of learners
which are usually called base learners. The
generalization ability of an ensemble is usually
much stronger than that of base learners.
Actually, ensemble learning is appealing because
it is able to boost weak learners which are slightly
better than random guess to strong learners
which can make very accurate predictions.
So, “base learners” are also referred to as
“weak learners.” It is noteworthy, however, that
although most theoretical analyses work on
weak learners, base learners used in practice
are not necessarily weak since using not-
so-weak base learners often results in better
performance.

Base learners are usually generated from train-
ing data by a base learning algorithm which can
be decision tree, neural network, or other kinds
of machine learning algorithms. Most ensemble
methods use a single base learning algorithm to
produce homogeneous base learners, but there are
also some methods which use multiple learning
algorithms to produce heterogeneous learners. In
the latter case there is no single base learning
algorithm, and thus, some people prefer calling
the learners individual learners or component
learners to “base learners,” while the names “in-
dividual learners” and “component learners” can
also be used for homogeneous base learners.

It is difficult to trace the starting point of
the history of ensemble methods since the basic
idea of deploying multiple models has been in
use for a long time, yet it is clear that the hot
wave of research on ensemble learning since the
1990s owes much to two works. The first is
an applied research conducted by Hansen and
Salamon [1] at the end of 1980s, where they
found that predictions made by the combination
of a set of classifiers are often more accurate than
predictions made by the best single classifier.
The second is a theoretical research conducted

in 1989, where Schapire [2] proved that weak
learners can be boosted to strong learners, and
the proof resulted in boosting, one of the most
influential ensemble methods.

Constructing Ensembles

Typically, an ensemble is constructed in
two steps. First, a number of base learners
are produced, which can be generated in
a parallel style or in a sequential style
where the generation of a base learner has
influence on the generation of subsequent
learners. Then, the base learners are combined
to use, where among the most popular
combination schemes are majority voting
for classification and weighted averaging for
regression.

Generally, to get a good ensemble, the
base learners should be as more accurate as
possible and as more diverse as possible.
This has been formally shown by Krogh and
Vedelsby [3] and emphasized by many other
people. There are many effective processes for
estimating the accuracy of learners, such as
cross-validation, hold-out test, etc. However,
there is no rigorous definition on what is
intuitively perceived as diversity. Although
a number of diversity measures have been
designed, Kuncheva and Whitaker [4] disclosed
that the usefulness of existing diversity measures
in constructing ensembles is suspectable. In
practice, the diversity of the base learners
can be introduced from different channels,
such as subsampling the training examples,
manipulating the attributes, manipulating the
outputs, injecting randomness into learning
algorithms, or even using multiple mechanisms
simultaneously. The employment of different
base learner generation processes and/or different
combination schemes leads to different ensemble
methods.

There are many effective ensemble methods.
The following will briefly introduce three
representative methods: boosting [2, 5], bagging
[6] and stacking [7]. Here, binary classification
is considered for simplicity. That is, let X
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Input: Data set D = {(x1, y1), (x2, y2), . . ., (xm, ym)};

Process:

Output: H (x) = sign( f (x)) = sign(Σ

D1 (i) = 1/m.

Dt+1 (i) =

Dt (i)exp(–α,y,h,(xi))

Zt

for t = 1, ..., T:
% initialize the weight distribution

% Measure the error of ht

% Determine the weight of ht

% Update the distribution,where Zt is a normalization

% factor which enables Dt+1 to be a distribution

% Train a base learner ht from D using distribution Dt

Base learning algorithm L;
Number of learning rounds T.

T
t=1 αtht (x))

ht= L(D, Dt);
∈t = Pri~Di [ht(xi   yi)];

αt =   In1
2

1–∈t 
∈t )) ;

Dt(i)
Zt

{ exp(–αt) if ht(xi) = yi
exp(αt) if ht(xi)    yi

end.

=

Ensemble Learning, Fig. 1 The AdaBoost algorithm

and Y denote the instance space and the
set of class labels, respectively, assuming
Y D f�1; C1g. A training data set D D
f.x1; y1/ ; .x2; y2/ ; � � � ; .xm; ym/g is given, where
xi 2 X and yi 2 Y .i D 1; : : : ; m/.

Boosting is in fact a family of algorithms
since there are many variants. Here, the most
famous algorithm, AdaBoost [5], is considered
as an example. First, it assigns equal weights to
all the training examples. Denote the distribution
of the weights at the t-th learning round as Dt .
From the training data set and Dt , the algorithm
generates a base learner ht W X ! Y by calling
the base learning algorithm. Then, it uses the
training examples to test ht , and the weights
of the incorrectly classified examples will be
increased. Thus, an updated weight distribution
DtC1 is obtained. From the training data set and
DtC1, AdaBoost generates another base learner
by calling the base learning algorithm again. Such
a process is repeated for T times, each of which is
called a round, and the final learner is derived by
weighted majority voting of the T base learners,
where the weights of the learners are determined
during the training process. In practice, the base
learning algorithm may be a learning algorithm
which can use weighted training examples di-
rectly; otherwise the weights can be exploited

by sampling the training examples according to
the weight distribution Dt . The pseudo-code of
AdaBoost is shown in Fig. 1.

Bagging [6] trains a number of base learners
each from a different bootstrap sample by calling
a base learning algorithm. A bootstrap sample
is obtained by subsampling the training data set
with replacement, where the size of a sample is
the same as that of the training data set. Thus, for
a bootstrap sample, some training examples may
appear but some may not, where the probability
that an example appears at least once is about
0.632. After obtaining the base learners, bagging
combines them by majority voting and the most-
voted class is predicted. The pseudo-code of
bagging is shown in Fig. 2. It is worth mentioning
that a variant of bagging, Random Forests [8],
has been deemed as one of the most powerful
ensemble methods up to date.

In a typical implementation of stacking [7],
a number of first-level individual learners are
generated from the training data set by employing
different learning algorithms. Those individual
learners are then combined by a second-level
learner which is called as meta-learner. The
pseudo-code of stacking is shown in Fig. 3. It
is evident that stacking has close relation with
information fusion methods.
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Input: Data set D = {(x1, y1), (x2, y2), . . ., (xm, ym)};
Base learning algorithm L;
Number of learning rounds T.

Process:
for t = 1, ..., T :

Dt= Bootstrap(D);
ht= L(Dt) % Train a base learner ht  from the bootstrap sample

% the value of 1(a) is 1 if a is true and 0 otherwise

% Generate a bootstrap sample from D

Output: Σ T
t=1 1 (y=ht(x))

end.

H (x) = argmaxy∈Y

Ensemble Learning, Fig. 2 The bagging algorithm

Input: Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)};

Process:

Output: H (x) = h� (h1(x), ...,hT(x))

% Train a first-level individual learner ht by applying the first-level

% Train a second-level learner h�by applying the second-level

% learning algorithm Lt to the original data set D

% learning algorithm L to the new data set D�

% Generate a new data set

% Use ht to classify the training example xi

First-level learning algorithms L1,...,LT;
Second-level learning algorithm L.

ht= Lt(D)

zit = ht(xi)

for t = 1, ..., T :

for t = 1, ..., T :
for i = 1, ..., m:

end;

end;

end;

D� = 0;

h� = L(D�).

D� = D� ∪ {((zi1,zi2,...,ziT),yi)}

Ensemble Learning, Fig. 3 The stacking algorithm

Generally speaking, there is no ensemble
method which outperforms other ensemble
methods consistently. Empirical studies on
popular ensemble methods can be found in
many papers such as [9–11]. Previously, it was
thought that using more base learners will lead to
a better performance, yet Zhou et al. [12] proved
the “many could be better than all” theorem
which indicates that this may not be the fact.
It was shown that after generating a set of base
learners, selecting some base learners instead of
using all of them to compose an ensemble is a
better choice. Such ensembles are called selective
ensembles.

It is worth mentioning that in addition to
classification and regression, ensemble methods
have also been designed for clustering [13] and
other kinds of machine learning tasks.

Why Ensembles are Superior
to Singles

To understand why the generalization ability of
an ensemble is usually much stronger than that
of a single learner, Dietterich [14] gave three
reasons by viewing the nature of machine learn-
ing as searching a hypothesis space for the most
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accurate hypothesis. The first reason is that the
training data might not provide sufficient infor-
mation for choosing a single best learner. For
example, there may be many learners who per-
form equally well on the training data set. Thus,
combining these learners may be a better choice.
The second reason is that the search processes
of the learning algorithms might be imperfect.
For example, even if there exists a unique best
hypothesis, it might be difficult to achieve since
running the algorithms results in suboptimal hy-
potheses. Thus, ensembles can compensate for
such imperfect search processes. The third rea-
son is that the hypothesis space being searched
might not contain the true target function, while
ensembles can give some good approximation.
For example, it is well known that the classi-
fication boundaries of decision trees are linear
segments parallel to coordinate axes. If the target
classification boundary is a smooth diagonal line,
using a single decision tree cannot lead to a good
result, yet a good approximation can be achieved
by combining a set of decision trees. Note that
those are intuitive instead of rigorous theoretical
explanations.

There are many theoretical studies on famous
ensemble methods such as boosting and bag-
ging, yet it is far from a clear understanding
of the underlying mechanism of these methods.
For example, empirical observations show that
boosting often does not suffer from overfitting
even after a large number of rounds, and some-
times it is even able to reduce the generalization
error after the training error has already reached
zero. Although many researchers have studied
this phenomenon, theoretical explanations are
still in arguing.

The bias-variance decomposition is often
used in studying the performance of ensemble
methods [9, 12]. It is known that bagging can
significantly reduce the variance, and therefore,
it is better to be applied to learners who suffered
from large variance, e.g., unstable learners such
as decision trees or neural networks. Boosting
can significantly reduce the bias in addition to
reducing the variance, and therefore, on weak
learners, such as decision stumps, boosting is
usually more effective.

Applications

Ensemble learning has already been used in
diverse applications such as optical character
recognition, text categorization, face recognition,
computer-aided medical diagnosis, gene
expression analysis, etc. Actually, ensemble
learning can be used wherever machine learning
techniques can be used.

Summary

Ensemble learning is a powerful machine learn-
ing paradigm which has exhibited apparent ad-
vantages in many applications. By using multiple
learners, the generalization ability of an ensemble
can be much better than that of a single learner. A
serious deficiency of current ensemble methods
is the lack of comprehensibility, i.e., the knowl-
edge learned by ensembles is not understandable
to the user. Improving the comprehensibility of
ensembles [15] is an important yet largely un-
derstudied direction. Another important issue is
that currently no diversity measures are satisfying
[4] although it is known that diversity plays an
important role in ensembles. If those issues can
be addressed well, ensemble learning will be able
to contribute more to more applications.

Related Entries

�Multiple Experts
�Multiple Classifier Systems
�Supervised Learning
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Synonyms

ISO/IEC 29197

Definition

Standard that defines a general and biometric
modality-independent evaluation methodology to
analyze the influence of environmental conditions
on biometric system performance. This method-
ology is intended for testing biometric perfor-
mance when biometric systems are working un-
der different environments. This standard has
been developed by the international community
taking part in ISO/IEC JTC1/SC37 standardiza-
tion subcommittee [1].

Introduction

Environment is one of the most important as-
pects that has been traditionally claimed as a
factor that influences biometric system perfor-
mance (see � Influential Factors to Performance).
A. Jain, R. Bolle, and S. Pankanti described the
dependence of technology performance on the
type of application in [2]. They pointed out that
the application environment influences directly
in the repeatability and distinctiveness of the
biometric measure. For this reason they speci-
fied seven application categories: cooperative vs.
noncooperative, overt vs. covert, habituated vs.
non-habituated, attended vs. nonattended, stan-
dard environment vs. nonstandard environment,
public vs. private, and open vs. closed. In ad-
dition, they explained that test results are de-
pendent upon the specific “real-world” applica-
tion. Lately, this statement was corroborated in
other works such as A. J. Mansfield and J. L.
Wayman [3] and J. Wayman, A. Jain, D. Mal-
toni, and D. Maio [4]. The former states that
performance curves are very application, envi-
ronment, and population dependent. Moreover, it
contains an annex which details environmental
factors and the corresponding affected biomet-
ric modality. The latter explains that changes
in the application environment cause a signif-
icant impact on the biometric devices perfor-
mance and also specifies a similar classification
of the biometric applications than in [2]. Most
recently books also refer to this problem: in

http://dx.doi.org/10.1007/978-1-4899-7488-4_112
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[5] T. Dunstone and N. Yager explained that
one factor that affects biometric sample quality
is environment. Likewise, many studies about
different biometric modalities claimed the influ-
ence of environment in the capability of biomet-
ric capture devices to acquire biometric samples
(e.g., [5] and [6]), in the quality of the acquired
samples (e.g., [7, 8], and [9]), or in the overall
biometric system performance (e.g., [6, 10], and
[11]).

Considering all these previous works, envi-
ronment must be considered as a relevant fac-
tor that can affect biometric performance neg-
atively. In particular, it influences on the two
main components involved in the first part of the
recognition process: the biometric characteristic
itself and the biometric capture device. These
two elements are responsible for the adequate
acquisition of biometric samples. If one of them,
or even both of them, becomes influenced in
its characteristics and behaves in an unexpected
way, biometric samples may not be correctly
acquired or their quality could be insufficient for
an accurate performance of the whole biometric
system. If such is the case, a consequence that
may happen is that the level of security of the
corresponding application may not be assured.
Therefore, it is essential to quantify the influ-
ence of environment in biometric system perfor-
mance.

Due to these circumstances, a new standard
project was initiated in Working Group 5 –
Biometric Testing and Reporting of ISO/IEC
JTC1 SC37 [1] for the development of the
ISO/IEC 29197 standard [12]. The purpose of
this project was to establish the most appropriate
methodology for measuring the environmental
conditions influential effects on the performance
of biometric systems.

The ISO/IEC 29197 Standard
Overview

This standard provides a general evaluation
methodology for analyzing and quantifying
the environmental factors that influence
on biometric performance. Specifically, the

document (currently at the Draft International
Standard stage (DIS)) covers the study of factors
such as those atmosphere parameters (i.e.,
temperature, humidity, and atmospheric pressure)
and other physical and chemical phenomena
(i.e., illumination and noise) that can surround
a biometric system during its operation. These
factors can be real (naturally occurring) or
modelled (artificially generated).

For carrying out these analyses, the defined
evaluation methodology requires conducting
a set of “end-to-end” biometric performance
tests, in particular environmental condi-
tions. Therefore, this standard is built upon
the existing multipart standard ISO/IEC
19795 [13] for biometric performance testing
and reporting (see � Performance Testing
Methodology Standardization). In particular,
the evaluation methodology considers two
kinds of “end-to-end” biometric performance
evaluations: scenario and operational testing.
Scenario testing is a test intended for analyzing
biometric systems in modelled environments
considering a real-world target application and
population. Alternatively, an operational testing
is a test designed for testing biometric systems
in real environments using a target population.
Depending on the purpose of the evaluation,
it will be appropriate to apply a different type
of biometric performance evaluation. Usually,
a modelled environment is a more controlled
environment, unlike in a natural environment
where there are many interacting factors in
which control is not feasible. Consequently,
scenario evaluations involve more precise tests,
but operational evaluations are more realistic.

The following paragraphs describe the evalua-
tion model addressed on the standard and summa-
rize its major contents. At last, a brief description
of some works carried out for supporting the
development of the evaluation methodology is
offered.

The ISO/IEC 29197 Evaluation Model

The evaluation model that has been established
for environmental testing of biometric system

http://dx.doi.org/10.1007/978-1-4899-7488-4_233
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Biometric
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Environmental Testing
Methodology of
Biometric System
Performance,
Standardization, Fig. 1
Evaluation model for
environmental testing of
biometric system
performance

performance is based on the comparison of
performance measures obtained when both
users and biometric systems are exposed to
different environmental conditions. A diagram
of this model can be seen in Fig. 1. Essentially,
the model entails two types of biometric
performance tests. One test shall be executed
under reference environmental conditions
which are the conditions for obtaining baseline
performance data. These conditions are referred
to as Reference Evaluation Environment (REE).
The rest of the tests shall be executed under
the different environmental conditions, the
influence of which is going to be analyzed.
Each group of these conditions is referred to
as Target Evaluation Environments (TEEs).
All the biometric performance tests carried
out in either the REE or TEE are identical,
including the same test subjects, following the
same procedures, except for the environmental
conditions values which are specific for each of
the evaluation environments. As a consequence,
from the results in each evaluation environment,
it is possible to determine the biometric
system performance for the corresponding
environmental conditions. Moreover, the
difference between the results of the REE
and the TEEs allows knowing whether the
biometric system is influenced, or not, by any
environmental parameter, as well as quantifying
this influence.

In addition, it is important to note that this
evaluation model is suitable to analyze whether
a single environmental parameter, or a combi-
nation of environmental parameters, can affect
the biometric system performance. Also it is
possible to deduct how the biometric system
works in a particular environment compared to
the same system working in a reference environ-
ment. Furthermore, this model allows tailoring
the environmental conditions to assess accord-
ing to the objectives of the evaluation. These
objectives shall consider two major aspects: (a)
based on the modality of the biometric system
under test and the technology of the capture
device, the environmental conditions of which
are of interest to the study (e.g., temperature,
humidity), and (b) based on the intended opera-
tional environment, the environmental specifica-
tions for the tested biometric system(s), and/or
their possible extreme conditions, in which val-
ues of such environmental conditions shall be
assessed.

The ISO/IEC 29197 Key Requirements

In view of the defined evaluation model, the
standard covers two essential parts: the specifica-
tion of the evaluation conditions and fundamen-
tal considerations for conducting scenario and
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operational biometric performance tests as part of
environmental testing evaluation.

Regarding the specification of evaluation con-
ditions, the document addresses requirements to
define the environmental conditions, to select the
particular values to be analyzed, and to measure
and record these conditions during the biomet-
ric performance tests. These requirements have
been defined considering the type of evaluation
environment (i.e., REE or TEE), the type of
biometric performance evaluation (i.e., scenario
and operational evaluation), and the relevant pro-
cesses of a biometric system (i.e., enrolment or
recognition).

In relation to biometric performance tests, the
standard provides the necessary requirements to
adapt scenario and operational biometric per-
formance evaluations for environmental testing.
The document addresses a special case of both
types of tests. For scenario evaluations, this is
based on ISO/IEC 19795-2 [14], whereas for
operational evaluations, this is based on ISO/IEC
19795-6 [15].

Moreover, the standard contains two infor-
mative annexes. The first one offers recommen-
dations for the selection of the environmental
conditions values. The second annex presents
additional information related to the proper test
equipment and its functionality.

Preliminary Environmental Testing
Evaluations

During the development of the ISO/IEC 29197
evaluation methodology, some experiments have
been conducted for completing and improving
it. One of them was carried out to study which
environmental conditions influence on a vascu-
lar biometric technology [6]. That evaluation in-
volved the analysis of three environmental con-
ditions (i.e., temperature, humidity, and illumi-
nation) carrying out biometric performance sce-
nario tests. For doing that, eight scenarios were
defined considering different values of tempera-
ture (i.e., high, cool, and cold temperatures), illu-
mination (i.e., fluorescent lighting, incandescent
lighting, sunlight, and darkness), and humidity

(high relative humidity) in addition to a reference
scenario. Results of this evaluation showed that
the FMR rate was not affected, but the FTA
and FNMR rates increase considerably when the
vascular biometric system has to work under
illumination conditions that entail high levels of
infrared light.

Another important experiment was performed
for analyzing a fingerprint biometric systems
working in a typical hot humid environment (i.e.,
40 ıC ˙ 2 ıC of temperature and 60 % ˙ 5 % of
relative humidity) in comparison to the common
environment of a laboratory (i.e., 26 ıC ˙ 2 ıC of
temperature and 40 % ˙ 5 % of relative humidity)
[16]. In this evaluation, two environmental
conditions were assessed: temperature and
relative humidity, and one environmental
condition was controlled, illumination. Two
evaluation environments were established: a
REE for testing the laboratory conditions and a
TEE for analyzing the hot humid environmental
conditions. In each environment a biometric
performance scenario evaluation was executed.
The TEE environmental conditions were
generated using a climatic chamber. Performance
results revealed that the recognition capability
of this biometric system was not affected by the
conditions of the tested hot humid environment.

A more detailed explanation about the afore-
mentioned experiments and the development of
the evaluation methodology is offered in Chap. 5
of [17].

Summary

Environment is one of the most important factors
that could affect biometric performance nega-
tively. These effects can be quantified by means
of environmental testing. This is a kind of bio-
metric performance evaluations in which the in-
fluence of environmental factors on biometric
performance is studied. The ISO/IEC 29197 stan-
dard [1] establishes a generic evaluation method-
ology for conducting these kinds of tests. This
methodology includes requirements to specify
the environmental conditions to analyze and to
carry out biometric performance tests.
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Synonyms

Human-Biometric Sensor Interaction (HBSI);
Human-Computer Interaction (HCI); Human
Factors; Usability

Definition

Biometric ergonomic design is the area of re-
search that examines how humans interact with
and use biometric sensors, devices, interfaces,
and systems. The purpose is to understand the
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physical and cognitive human-biometric sensor
interaction to improve the system design and
overall performance of a biometric system.

Introduction

Biometric ergonomic design is an emerging in-
terdisciplinary research area in biometrics that
focuses on the interaction between the user and
the biometric system to better understand issues
and errors, users knowingly or unknowingly gen-
erate when attempting to use a biometric system.
This research area attempts to understand what
tasks, movements, and behaviors users execute
when encountering different biometric modali-
ties. This area presents a challenge for the bio-
metrics community - while the algorithms are
continually improving, there are still individu-
als who cannot successfully interact with the
biometric sensor(s). It is essential that design-
ers continue examining biometric devices, pro-
cesses, or systems to ensure they accommodate
the focal point of any biometric systems, the
human. Adapting devices, processes or systems
to the human can increase usability by mini-
mizing errors during presentation and acquis-
tion of the biometric characteristics to the sensor
through better design, instruction, or system feed-
back.

Traditional approaches to evaluate the
performance of a biometric system have
been system-level, meaning that evaluators
and designers are more interested in system-
reported error rates, some of which include
the failure to enroll (FTE) rate, failure to
acquire (FTA) rate, false accept rate (FAR),
and false reject rate (FRR). Traditional
performance evaluations have worked well to
evaluate emerging technologies, new biometric
modalities, and algorithm revisions, which are
typically associated with technology performance
evaluations. Moreover, since biometrics entered
the commercial marketplace, most research
has been dedicated to the development in
three areas: (1) improving performance, (2)
increasing throughput, and (3) decreasing the
size of the sensor or hardware device. Limited

research has focused on ergonomic design
and usability issues, which relate to how users
interact and use biometric devices. No standard
activities have focused on ergonomic design
or usability issues with biometrics, although
standard testing and evaluation protocols do
exist, specifically – ISO 19795-1: Technology
Testing [1], ISO 19795-2: Scenario Testing [2],
and ISO TR19795-3: Modality-Specific Testing
[3].

While early research has been concerned with
the design, development, and testing of biomet-
ric systems and algorithms, recent research has
attributed human physical, behavioral, and social
factors to affect the performance of the overall
biometric system. Moreover, these factors are
of utmost importance when conducting scenario
and operational performance evaluations, as they
are the last line of defense between the laboratory
and the commercial marketplace to understand
how a biometric system performs in a particu-
lar environment or with a specific set of users.
Therefore, as the community continues to learn
more about the different biometric modalities
and systems, as well as how users interact with
them, performance from both the system and user
perspectives must be fully understood to make
further improvements to the biometric sensor,
algorithm, and design of future user interfaces.

Biometric Properties and Ergonomic
Implications

Biometric modalities are classified as physiolog-
ical, behavioral, or a combination of the two.
In addition, they are classified according to five
desirable properties, outlined by Clarke [4] and
amended by numerous others. Desirable prop-
erties of biometric characteristics are that they
offer (1) universality – available to all people, (2)
invariant – features extracted are nonchanging,
(3) high intraclass variability – features extracted
are distinct for each user; (4) acceptability –
characteristic of suitability for use by everyone,
and (5) extractability – a sensor can extract the
features presented in a repeatable manner. Al-
though commonly described in the literature as
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Ergonomic Design for Biometric Systems, Fig. 1 Issues that affect biometric system performance and the
relationship with ergonomics

the ideal characteristics of the biometric, each
must overcome challenges. Herein lies one of
the challenges associated with large-scale de-
ployment of biometrics and the purpose behind
research in this area – the majority of biometrics
are challenged to satisfy all these five categories.

To better understand the importance of er-
gonomics in biometrics, the authors pose the
question: What affects biometric system perfor-
mance? Generalizing the issues that can be linked
to many performance failures into three divi-
sions, bins for users (physical, behavioral, and
social factors), the environment, and matching
algorithms emerge. While it is important to un-
derstand each group when designing a biometric
system, the inter-relationship between the groups
also impacts biometric performance, which is
illustrated in Fig. 1. First, the user-environment
relationship impacts performance. For example,
climatic or work conditions may require indi-
viduals to wear personal protective equipment
(PPE), which not only limits biometric modali-
ties that can be deployed but may also occlude
the biometric characteristics from being success-
fully acquired in the first place, such as the
case in safety glasses for iris recognition. In
addition, atmospheric conditions such as tem-
perature and humidity can impact the skin, af-
fecting the acquisition for some modalities. Sec-
ond is the environment and inter-relationship of
algorithms. Examples of this include ambient
noise for voice recognition and illumination or
busy backgrounds for face recognition. Third is

the relationship between users and algorithms.
First, physiological factors such as skin moisture,
elasticity, age, and color can affect performance
of algorithms. Secondly, behavioral factors such
as finger preference can impact performance. For
example, individuals of Asian descent prefer to
use the little finger for fingerprint recognition, but
it is documented in the literature [5, 6] that the
little finger is the worst-performing finger. Lastly,
social preferences or factors such as hair length
or the wearing of head coverings can impact
face and iris recognition due to the occlusion
of necessary features. While the literature has
investigated some of the aforementioned items,
more research is needed in these areas. However,
there is also an interaction between the three
clusters as indicated in the research conducted by
Kukula et al. [7,8], but it has not been thoroughly
investigated.

It is well documented in the literature that
image quality affects the biometric matching al-
gorithm. Yao et al. [9] stated that “in a deployed
system, the poor acquisition of samples perhaps
constitutes the single most important reason for
high false reject/accept rates” and further dis-
cussed that there are two solutions for reducing
poor images. First, one can model and weigh
all adverse situations for the feature extraction
and matching system. Second, “one can try to
dynamically and interactively obtain a desirable
input sample.” Improving the ergonomic design
of biometric systems is one method to dynam-
ically “modify” the input sample through im-
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proved usability of biometric devices, processes,
and systems.

CommonDesign Concerns

Biometric systems are heavily dependent on the
sensor to acquire the sample, segment it, and
extract features from samples for the matcher
to determine the correct response. By observ-
ing how users interact with biometric sensors,
several design issues are apparent but could be
resolved by integrating knowledge of industrial
design, ergonomics and human factors, and us-
ability. Rubin [10] discusses five reasons why
products and systems are difficult to use. The
main problem is that the emphasis and focus
has been on the machine/system and not on the
end user during development. Common design
misconceptions are
• Humans are flexible and will adjust to a prod-

uct or device.
• Engineers work well with technology but not

with people.
• Engineers are hired to solve technology prob-

lems and not people skills.
• Designers create products for users like them-

selves in terms of both usage and level of
knowledge [10].

The following factors are true within the context
of biometric system design. Humans will adapt to
the sensor and/or system. Many times, biometric
systems or sensors are not tested on sufficiently
large numbers of the general populations, namely,
due to the cost of doing so. Moreover, the biomet-
ric community may test the algorithms exhaus-
tively offline, using precollected images, but lapse
on collecting images with a new sensor to examine
how the user interacts with the system or device.

According to Smith [11], some members of
the Human-Computer Interaction (HCI) commu-
nity believe that interfaces of security systems do
not reflect good thinking in terms of creating a
system that is easy to use, while maintaining an
acceptable level of security (p. 75). Moreover,
according to Adams and Sasse [12], security
systems are one of the last areas to embrace user-
centered design and training as essential. This is

also true for biometrics as Coventry et al. [13]
stated the Human-Computer Interaction (HCI)
community has had limited involvement in the
design or evaluation of biometric systems.

Human-Biometric Sensor Interaction
(HBSI)

The authors have been researching this area
for over 4 years. Results of this research have
produced a new conceptual model, which is
shown in Fig. 2. This model combines literature
and models from biometrics, ergonomics, and
usability (Fig. 3). The conceptual model that
examines biometric system ergonomic design is
called the human-biometric sensor interaction, or
HBSI. The three fields of biometrics, ergonomics,
and usability are arranged within the model to
show the relationship of the human, biometric
sensor, and the biometric system. Each of the
relationships poses a different set of design or
research questions, which will now be discussed.

Human-Biometric Sensor

The human and sensor components of the
HBSI model are similar to Tayyari and Smith’s
[14] human-machine interaction model. Much
like the traditional model, the human and
biometric sensor components look to achieve
the optimal relationship between humans and a
biometric sensor in a particular environment. The
human-biometric sensor relationship parallels the
presentation silo of the general biometric model
and is often overlooked during the design of the
biometric system. Applying an ergonomic ap-
proach during the design of the biometric sensor,
we can fit the sensors to the majority of users, as
opposed to forcing users to interact with difficult
and uncomfortable biometric sensors. Applying
ergonomic approaches such as user-centered
design, biometric sensors, interfaces, and systems
can be designed based on the user’s physical and
mental states to allow the users to complete the
task that the biometric system is asking for most
efficiently.
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Ergonomic Design for Biometric Systems, Fig. 2 General biometric model (a) [1], general ergonomic model (b)
[14], and general usability model (c) [15].

Human-Biometric System

The human and biometric system components of
the HBSI model are arranged to accommodate
the way that biometric sensors, software, and

implementations are presented to users. Not only
a biometric sensor must be designed so that a user
can interact with it in a repeatable fashion but also
the sensor(s), software, and the way the entire
“system” is packaged must be usable. Usability



Ergonomic Design for Biometric Systems 425 E

E

Ergonomic Design for Biometric Systems, Fig. 3 The
human-biometric sensor interaction or HBSI model

according to ISO 9241-11 [15] is segmented
into three factors: effectiveness, efficiency, and
satisfaction. Each of the three metrics is dis-
tinctively different and important to understand.
System designers must take into consideration
the goals of the system. Every biometric system
will be designed for a different purpose; thus,
a balance must be attained between effective-
ness, efficiency, and satisfaction. First, biometric
systems must be effective, meaning users are
able to interact, use, and complete the desired
tasks without too much effort, which can also
cause throughput issues if people get “lost” in
the system and require administrator intervention,
which also comes with a cost. Second, biometric
systems must be efficient, meaning users must
be able to accomplish the tasks easily and in a
timely manner. Again, if users require interven-
tion, the cost of staffing becomes burdensome.
Third, users must like, or be satisfied with, the
biometric system or will discontinue use and find
alternative methods to accomplish the task.

Sensor-Biometric System

As mentioned in the previous two sections, users
must be able to interact with a biometric sensor or
device in a consistent manner over time; however,

users must also find the entire biometric system
usable. To enable this, the third relationship of the
HBSI conceptual model emerges, i.e., the sensor-
biometric system measured by image quality.
Image quality is the important link between these
two components because the image or sample
acquired by the biometric sensor must contain
the characteristics or features needed by the bio-
metric system to enroll or match a user in the
biometric system. So not only does the human-
sensor relationship need to be functional and
the human-biometric system need to be usable
but also the sensor-biometric system needs to be
efficient. This occurs only if the sensor captures
and passes usable features onto the biometric
system.

The Human-Biometric Sensor
Interaction

The combination of components and relation-
ships in the model form the human-biometric
sensor interaction. Each component that is in the
HBSI model has been shown to impact results
in previous experiments from the respective field
from which it was adapted Since the concep-
tual model is derived from different fields, each
component usability, ergonomics, and biomet-
rics produces a unique output. Thus, the final
determination of the results is dependent upon
the goals, objectives, and criteria the researcher,
designer, or engineer is seeking, which is in line
with the ergonomics, usability, and design liter-
ature. As work in the area of biometric system
ergonomic design is limited, the HBSI model pro-
vides the biometrics community more insight and
considerations needed for designing biometric
systems and their corresponding devices, as well
as metrics to evaluate the components outside
traditional biometric testing and evaluation.

Literature

Seminal research and publication in the area of
usability and accessibility, which was concerned
with biometric system ergonomic design, were
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pioneered by the User Research Group at Na-
tional Cash Register (NCR). Some of their re-
search findings that would impact biometric sys-
tem design can be seen in the results of one exper-
iment, which revealed that successful verification
was not affected by the type of instruction and
feedback received. Furthermore, the results also
revealed some users have problems that cannot be
solved through instruction, training, or feedback.
A possible explanation could be the biometric
system ergonomic design and placement of the
sensor and the human-biometric sensor interac-
tion. Please refer to a book chapter written by
Coventry [16] for more information and relevant
citations of work conducted by the User Research
Group at NCR.

Two other groups that have been actively re-
searching and publishing in this area are the NIST
Biometrics and Usability Group [17] and Purdue
University’s Biometric Standards, Performance,
& Assurance Laboratory [18]. Please refer to
the respective references for the latest research,
publications, and presentations in the area of bio-
metric system ergonomic design. At the time of
writing, research in this area has investigated ten-
print fingerprint capture scanner height and angle,
hand geometry device height, habituation, ap-
plied finger force on a fingerprint sensor, and us-
ability of small-area and swipe-based fingerprint
sensors, image quality evaluations, instruction
and feedback mechanisms, as well as health and
safety perceptions of biometric devices. Lastly,
the United Kingdom Home Office Identity and
Passport Service has also published reports based
on their biometric trials and implementations
which discuss biometric usability and ergonomic
design [19]. Maple and Norrington [20] reported
one particular trial of the United Kingdom’s Pass-
port Service Trial Program and its usability and
found issues with each of the three evaluated bio-
metric systems: fingerprint, face, and iris recog-
nition systems.

Summary

This entry discussed the effect human interaction
has on biometric system performance to outline

the impact biometric system ergonomic design
can have on the overall performance of a bio-
metric system. The entry has outlined the origins
of the human-biometric sensor interaction model
including relevant work and models in the fields
of ergonomics, user-centered design, usability,
and HCI. In addition, this entry has discussed
how the fields that form the HBSI model not only
relate to biometrics but can be integrated into the
design of biometric devices and systems to create
more usable devices and systems with the goal of
lowering acquisition, enrollment, and matching
failures. However, further understanding in the
area of biometric system ergonomic design and
its impact on biometrics is needed to meet this
goal.

The authors are not alone in their thoughts
and opinions that continued research is needed
in the area of biometric system ergonomic de-
sign. Smith [11] stated that some members of
the HCI community believe that interfaces of
security systems do not reflect good thinking in
terms of creating a system that is easy to use,
while maintaining an acceptable level of security.
Moreover, Adams and Sasse discussed the fact
that security systems are one of the last areas
to embrace user-centered design and training as
essential [12]. Lastly, Maple and Norrington [20]
noted three observations that align with the ob-
jective for continued investigation in biometric
system ergonomic design:
• People have different cognitive abilities.
• People have different physical characteristics

and interact differently with equipment.
• People have different sensory abilities and

will perceive biometric sensors and systems
differently.

As the biometrics community continues to
develop biometric systems and deployments
become more pervasive, the evaluation of the
biometric system and the respective human-
biometric sensor interaction will continue to gain
traction.
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Definition

The human eye is one of the most remarkable
sensory systems. Leonardo da Vinci was acutely
aware of its prime significance: “The eye, which
is termed the window of the soul, is the chief
organ whereby the senso comune can have the
most complete and magnificent view of the in-
finite works of nature” [1]. The human being

http://dx.doi.org/10.1007/978-1-4899-7488-4_210
http://dx.doi.org/10.1007/978-1-4899-7488-4_286
http://zing.ncsl.nist.gov/biousa/index.html
http://www.bspalabs.org/archives/category/research/hbsi
http://www.bspalabs.org/archives/category/research/hbsi
http://www.ips.gov.uk/passport/publications-general.asp
http://www.ips.gov.uk/passport/publications-general.asp


E 428 Eye Features and Anatomy

gathers most of its information on the external
environment by its eyes and thus relies on sight
more than on any other sense, with the eye being
the most sensitive organ that we have. Besides its
consideration as a window to the soul, the eye
can indeed serve as a window to the identity of
an individual. It offers unique features for the
application of identification technology. Both the
highly detailed texture of the iris and the fundus
blood vessel pattern are unique to every person,
providing suitable traits for biometric recogni-
tion.

Anatomy of the Human Eye

The adult eyeball, often referred to as a spher-
ical globe, is only approximately spherical in
shape, with its largest diameter being 24 mm
anteroposteriorly [2, 3]. A schematic drawing of
the human eye is shown in Fig. 1. The anterior
portion of the eye consists of the cornea, iris,
pupil, and crystalline lens. The pupil serves as
an aperture which is adjusted by the surrounding
iris, acting as a diaphragm that regulates the
amount of light entering the eye. Both the iris and
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the pupil are covered by the convex transparent
cornea, the major refractive component of the
eye due to the huge difference in refractive index
across the air-cornea interface [5]. Together with
the crystalline lens, the cornea is responsible for
the formation of the optical image on the retina.
The crystalline lens is held in place by suspen-
sory ligaments, or zonules, that are attached to
the ciliary muscle. Ciliary muscle actions cause
the zonular fibers to relax or tighten and thus
provide accommodation, the active function of
the crystalline lens. This ability to change its
curvature, allowing objects at various distances
to be brought into sharp focus on the retinal
surface, decreases with age, with the eye be-
coming “presbyopic.” Besides the cornea and
crystalline lens, both the vitreous and aqueous
humor contribute to the dioptric apparatus of the
eye, leading to an overall refractive power of
about 60 diopters [3]. The aqueous humor fills
the anterior chamber between the cornea and
iris and also fills the posterior chamber that is
situated between the iris and the zonular fibers
and crystalline lens. Together with the vitreous
humor, or vitreous, a loose gel filling the cav-
ity between the crystalline lens and retina, the
aqueous humor is responsible for maintaining
the intraocular pressure and thereby helps the
eyeball maintain its shape. Moreover, this clear
watery fluid nourishes the cornea and crystalline
lens. Taken all together, with its refracting con-
stituents, self-adjusting aperture, and last but not
least its detecting segment, the eye is very similar
to a photographic camera. The film of this optical
system is the retina, the multilayered sensory
tissue of the posterior eyeball onto which the light
entering the eye is focused, forming a reversed
and inverted image. External to the retina is the
choroid, the layer that lies between retina and
sclera. The choroid is primarily composed of a
dense capillary plexus, as well as small arteries
and veins [5]. As it consists of numerous blood
vessels and thus contains many blood cells, the
choroid supplies most of the back of the eye with
necessary oxygen and nutrients. The sclera is the
external fibrous covering of the eye. The visible
portion of the sclera is commonly known as the
“white” of the eye.

Both the iris and retina are described in more
detail in the following sections due to their major
role in biometric applications.

Iris

The iris may be considered as being composed
of four different layers [3], starting from anterior
to posterior: (i) the anterior border layer which
mainly consists of fibroblasts and pigmented
melanocytes, interrupted by large, pit-like holes,
the so-called crypts of Fuchs; (ii) Stroma
containing loosely arranged collagen fibers that
are condensed around blood vessels and nerve
fibers. Besides fibroblasts and melanocytes, as
present in the previous layer, clump cells and mast
cells are found in the iris stroma. It is the pigment
in the melanocytes that determines the color of the
iris, with blue eyes representing a lack of melanin
pigment. The sphincter pupillae muscle, whose
muscle fibers encircle the pupillary margin, lies
deep inside the stromal layer. By contracting,
the sphincter causes pupil constriction, which
subsequently results in the so-called contraction
furrows in the iris. These furrows deepen with
dilation of the pupil, caused by action of the
dilator muscle, which is formed by the cellular
processes of the (iii) anterior epithelium. The
dilator pupillae muscle belongs to the anterior
epithelial layer, with its cells being myoepithelial
[6]. Unlike the sphincter muscle, the muscle
fibers of the dilator muscle are arranged in a
radial pattern, terminating at the iris root; and (iv)
finally the posterior pigmented epithelium whose
cells are columnar and more heavily pigmented in
comparison with the anterior epithelial cells. The
posterior epithelial layer functions as the main
light absorber within the iris.

A composite view of the iris surfaces and
layers is shown in Fig. 2, which indicates the ex-
ternally visible iris features, enhancing the differ-
ence in appearance between light and dark irides.
Light irides show more striking features in visible
light because of higher contrast. But melanin is
relatively transparent to near-infrared light, so
viewing the iris with light in the near-infrared
range will uncover deeper features arising from
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the posterior layers and thereby reveals even the
texture of dark irides that is often hidden with
visible light.

In general, the iris surface is divided into an in-
ner pupillary zone and an outer ciliary zone. The
border between these areas is marked by a sinu-
ous structure, the so-called collarette. In addition
to the particular arrangement of the iris crypts
themselves, the structural features of the iris fall
into two categories [7]: (i) features that relate to
the pigmentation of the iris (e.g., pigment spots,
pigment frill) and (ii) movement-related features,
in other words features of the iris relating to its
function as pupil size control (e.g., iris sphincter,
contraction furrows, radial furrows).

Among the visible features that relate to pig-
mentation belong small elevated white or yellow-
ish Wölfflin spots in the peripheral iris, which are
predominantly seen in light irides [3]. The front
of the iris may also reveal iris freckles, repre-
senting random accumulations of melanocytes in
the anterior border layer. Pigment frill or pupil-
lary ruff is a dark pigmented ring at the pupil
margin, resulting from a forward extension of
the posterior epithelial layer. In addition to the
crypts of Fuchs, predominantly occurring adja-
cent to the collarette, smaller crypts are located
in the periphery of the iris. These depressions,
which are dark in appearance because of the
darkly pigmented posterior layers, are best seen
in blue irides. Similarly, a buff-colored, flat, cir-
cular strap-like muscle becomes apparent in light
eyes, that is, the iris sphincter. The contraction
furrows produced when it contracts, however, are
best noticeable in dark irides, as the base of
those concentric lines is less pigmented. They
appear near the outer part of the ciliary zone and
are crossed by radial furrows occurring in the
same region. Posterior surface features of the iris
comprise structural and circular furrows, pits, and
contraction folds. The latter, for instance, also
known as Schwalbe’s contraction folds, cause the
notched appearance of the pupillary margin.

All of the features described above contribute
to a highly detailed iris pattern that varies from
one person to the next. Even in the same individ-
ual, right and left irides are different in texture.
Besides its uniqueness, the iris is a protected but
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Eye Features and Anatomy, Fig. 2 Composite view of
the surfaces and layers of the iris. Crypts of Fuchs (c)
are seen adjacent to the collarette in both the pupillary
(A) and ciliary zone (B). Several smaller crypts occur at
the iris periphery. Two arrows (top left) indicate circular
contraction furrows occurring in the ciliary area. The
pupillary ruff (d) appears at the margin of the pupil,
adjacent to which the circular arrangement of the sphincter
muscle (g) is shown. The muscle fibers of the dilator (h)
are arranged in a radial fashion. The last sector at the
bottom shows the posterior surface with its radial folds
(i and j) (Reproduced with permission from [5])

readily visible internal organ, and it is essentially
stable over time [7, 8]. Thus the iris pattern pro-
vides a suitable physical trait to distinguish one
person from another. The idea of using the iris
for biometric identification was originally pro-
posed by the ophthalmologist Burch in 1936 [9].
However, it took several decades until two other
ophthalmologists, Flom and Safir [7], patented
the general concept of iris-based recognition.
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In 1989, Daugman, a mathematician, developed
efficient algorithms for their system [8–10]. His
mathematical formulation provides the basis for
all iris scanners now in use. Current iris recog-
nition systems use infrared-sensitive video cam-
eras to acquire a digitized image of the human
eye with near-infrared illumination in the 700–
900 nm range. Then, image analysis algorithms
extract and encode the iris features into a bi-
nary code which is stored as a template. Elastic
deformations associated with pupil size changes
are compensated for mathematically. As pupil
motion is limited to living irides, small distortions
are even favorable by providing a control against
fraudulent artificial irides [8, 10].

Imaging the iris with near-infrared light not
only greatly improves identification in individ-
uals with very dark, highly pigmented irides,
but also makes the system relatively immune to
anomalous features related to changes in pigmen-
tation. For instance, melanomas/tumors may de-
velop on the iris and change its appearance. Fur-
thermore, some eye drops for glaucoma treatment
may affect the pigmentation of the iris, leading to
coloration changes or pigment spots. However, as
melanin is relatively transparent to near-infrared
light and basically invisible to monochromatic
cameras employed by current techniques of iris
recognition, none of these pigment-related effects
causes significant interference [9, 10].

Retina

As seen in an ordinary histologic cross section,
the retina is composed of distinct layers. The
retinal layers from the vitreous to choroid [2, 3]
are the (i) internal limiting membrane, formed
by both retinal and vitreal elements [2], and the
(ii) nerve fiber layer, which contains the axons
of the ganglion cells. These nerve fibers are
bundled together and converge to the optic disc,
where they leave the eye as the optic nerve. The
cell bodies of the ganglion cells are situated in
the (iii) ganglion cell layer. Numerous dendrites
extend into the (iv) inner plexiform layer where
they form synapses with interconnecting cells,
whose cell bodies are located in the (v) inner

nuclear layer; (vi) outer plexiform layer, contain-
ing synaptic connections of photoreceptor cells;
(vii) outer nuclear layer, where the cell bodies of
the photoreceptors are located; (viii) external lim-
iting membrane, which is not a membrane in the
proper sense, but rather comprises closely packed
junctions between photoreceptors and supporting
cells. The photoreceptors reside in the (ix) re-
ceptor layer. They comprise two types of recep-
tors: rods and cones. In each human retina, there
are 110–125 million rods and 6.3–6.8 million
cones [2]. Light contacting the photoreceptors
and thereby their light-sensitive photopigments is
absorbed and transformed into electrical impulses
that are conducted and further relayed to the
brain via the optic nerve; and finally the (x)
retinal pigment epithelium, whose cells supply
the photoreceptors with nutrients. The retinal pig-
ment epithelial cells contain granules of melanin
pigment that enhance visual acuity by absorbing
the light not captured by the photoreceptor cells,
thus reducing glare. The most important task of
the retinal pigment epithelium is to store and
synthesize vitamin A, which is essential for the
production of the visual pigment [3]. The pig-
ment epithelium rests on Bruch’s membrane, a
basement membrane on the inner surface of the
choroid.

There are two areas of the human retina that
are structurally different from the remainder,
namely, the fovea and the optic disc. The fovea
is a small depression, about 1.5 mm across, at
the center of the macula, the central region of
the retina [11]. There, the inner layers are shifted
aside, allowing light to pass unimpeded to the
photoreceptors. Only tightly packed cones, and
no rods, are present at the foveola, the center
of the fovea. There are also more ganglion
cells accumulated around the foveal region than
elsewhere. The fovea is the region of maximum
visual acuity.

The optic disc is situated about 3 mm (15ı of
visual angle) to the nasal side of the macula
[11]. It contains no photoreceptors at all and
hence is responsible for the blind spot in the
field of vision. Both choroidal capillaries and
the central retinal artery and vein supply the
retina with blood. A typical fundus photo taken
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Anatomy, Fig. 3 Fundus
picture of a right human
eye

with visible light of a healthy right human eye
is illustrated in Fig. 3, showing the branches
of the central artery and vein as they diverge
from the center of the disc. The veins are larger
and darker in appearance than the arteries.
The temporal branches of the blood vessels
arch toward and around the macula, seen as
a darker area compared with the remainder of
the fundus, whereas the nasal vessels course
radially from the nerve head. Typically, the
central retinal blood vessels divide into two
superior and inferior branches, yielding four
arterial and four venous branches that emerge
from the optic disc. However, this pattern varies
considerably [6]. So does the choroidal blood
vessel pattern, forming a matting behind the
retina, which becomes visible when observed
with light in the near-infrared range [12]. The
blood vessels of the choroid are even apparent
in the foveal area, whereas retinal vessels rarely
occur in this region.

In the 1930s, Simon and Goldstein noted that
the blood vessel pattern is unique to every eye.
They suggested using a photograph of the retinal
blood vessel pattern as a new scientific method
of identification [13]. The uniqueness of the pat-
tern mainly comprises the number of major ves-
sels and their branching characteristics. The size
of the optic disc also varies across individuals.

Because this unique pattern remains essentially
unchanged throughout life, it can potentially be
used for biometric identification [12, 14].
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