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Introduction

Microbial ecology aims to comprehensively

describe the diversity and function of microor-

ganisms in the environment. Culturing, micros-

copy, and chemical or biological assays were not

too long ago the main tools in this field. Molecu-

lar methods, such as 16S rRNA gene sequencing,

were applied to environmental systems in the

1990s and started to uncover a remarkable diver-

sity of organisms (Barns et al. 1994). Soon, the

thirst for describing microbial systems was no

longer satisfied by the knowledge of the diversity

of just one or a few genes. Thus, approaches were

developed to describe the total genetic diversity

of a given environment (Riesenfeld et al. 2004).

One such approach is metagenomics, which

involves sequencing the total DNA extracted
K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basi
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from environmental samples. Arguably,

metagenomics has been the fastest growing field

of microbiology in the last few years and has

almost become a routine practice. The learning

curve in the field has been steep, and many

obstacles still need to be overcome to make

metagenomics a reliable and standard process. It

is timely to reflect on what has been learned over

the past few years from metagenome projects and

to predict future needs and developments.

This brief primer gives an overview for the

current status and practices as well as limitations

of metagenomics. We present an introduction to

sampling design, DNA extraction, sequencing

technology, assembly, annotation, data sharing,

and storage.
Sampling Design and DNA Processing

Metagenomic studies of single habitats, for exam-

ple, acidmine drainage (Tyson et al. 2004), termite

hindgut (Warnecke et al. 2007), cow rumen (Hess

et al. 2011), and the human gastrointestinal tract

(Gill et al. 2006), have provided an insight into the

basic diversity and ecology of these environments.

Moreover, comparative studies have explored the

ecological distribution of genes and the functional

adaptations of different microbial communities to

specific ecosystems (Tringe et al. 2005; Dinsdale

et al. 2008; Delmont et al. 2011). These pioneering

studies were predominately designed to develop
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and prove the general metagenomic approach and

were often limited by the high cost of sequencing.

Hence, desirable scientific methodology, includ-

ing biological replication, could not be adopted,

a situation that precluded appropriate statistical

analyses and comparison (Prosser 2010).

The significant reduction, and indeed continu-

ing fall, in sequencing costs (see below) now

means that the central tenants of scientific inves-

tigation can be adhered to. Rigorous experimen-

tal design will help researchers explore the

complexity of microbial interactions and will

lead to improved catalogs of proteins and genetic

elements. Individual ecosystems can now be

studied with appropriate cross-sectional and

temporal approaches designed to identify the

frequency and distribution of variance in commu-

nity interaction and development (Knight

et al. 2012). Such studies should also pay close

attention to the collection of comprehensive

physical, chemical, and biological data (see

below). This will enable scientists to elucidate

the emergent properties of even the most com-

plex biological system. This capability will pro-

vide the potential to identify drivers at multiple

spatial, temporal, taxonomic, phylogenetic, func-

tional, and evolutionary levels and to define the

feedback mechanisms that mediate equilibrium.

The frequency and distribution of variance

within a microbial ecosystem are basic factors

that must be ascertained by rigorous experimental

design and analysis. For example, to analyze the

microbial community structure from 1 l of sea-

water in a coastal pelagic ecosystem, one must

also ideally define how representative this will

be for the ecosystem as a whole and what the

bounds of that ecosystem are. Numerous studies

of marine systems have shown how community

structure can vary between water masses and over

time (e.g., Gilbert et al. 2012; Fuhrman 2009;

Fuhrman et al. 2006, 2008; Martiny et al. 2006),

and metagenomics currently helps further

define how community structure varies in these

environments (Ottesen et al. 2011; DeLong

et al. 2006; Rusch et al. 2007; Gilbert et al.

2010a). In contrast, in soil systems variance in

space appears to be far larger than in time
(Mackelprang et al. 2011; Barberan et al. 2012;

Bergmann et al. 2011; Nemergut et al. 2011;

Bates et al. 2011). Considerable work still is

needed in order to determine spatial heterogene-

ity, for example, how representative a 0.1 mg

sample of soil is with respect to the larger envi-

ronment from which it was taken.

The design of a sampling strategy is implicit in

the scientific questions asked and the hypotheses

tested, and standard rules outside of replication

and frequency of observation are hard to define.

However, the question of “depth of observation”

is prudent to address because researchers now can

sequencemicrobiomes of individual environments

with exceptional depth or breadth. By enabling

either deep characterization of the taxonomic,

phylogenetic, and functional potential of a given

ecosystem or a shallow investigation of these

elements across hundreds or thousands of samples,

current sequencing technology (see below) is

changing the way microbial surveys are being

performed (Knight et al. 2012).

DNA handling and processing play a major

role in exploring microbial communities through

metagenomics (see also DNA extraction methods

for human studies, “Extraction Methods, DNA”

and “Extraction Methods, Variability Encoun-

tered in”). Specifically, it is well known that the

type of DNA extraction used for a sample will

affect the community profile obtained (e.g.,

Delmont et al. 2012). Therefore, with projects

like the Earth Microbiome Project that aim to

compare a large number of samples, efforts

have been made to standardize DNA extraction

protocols for every physical sample. Clearly, no

single protocol will be suitable for every sample

type (Gilbert 2011, 2010b). For example,

a particular extraction protocol might yield only

very low DNA concentrations for a particular

sample type, making it necessary to explore

other protocols in order to improve efficiency.

However, differences among DNA extraction

protocols may limit comparability of data.

Therefore, researchers need to further define in

qualitative and quantitative terms how different

DNA extraction methodologies affect microbial

community structure.
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Sequencing Technology and Quality
Control

The rapid development of sequencing technolo-

gies over the past few years has arguably been

one of the driving forces in the field of

metagenomics. While shotgun metagenomic

studies initially relied on hardware-intensive

and costly Sanger sequencing technology

(Tyson et al. 2004; Venter et al. 2004) available

only to large research institutes, the advent and

continuous release of several next-generation

sequencing (NGS) platforms has democratized

the sequencing market and has given individual

laboratories or research teams access to afford-

able sequencing data. Among the available NGS

options, the Roche (Margulies et al. 2005),

Illumina (Bentley et al. 2008), Ion Torrent

(Rothberg et al. 2011), and SOLiD (Life Tech-

nologies) platforms have been applied to

metagenomic samples, with the former two

being more intensively used than the latter. The

features of these sequencing technologies have

been extensively reviewed – see, for example,

Metzker (2010) and Quail et al. (2012) – and are

therefore only briefly summarized here (Table 1).

Roche’s platform utilizes pyrosequencing

(also often referred to as 454 sequencing because

of the name of the company that initially devel-

oped the platform) as its underlying molecular

principle. Pyrosequencing involves the binding

of a primer to a template and the sequential addi-

tion of all four nucleoside triphosphates in the

presence of a DNA polymerase. If the offered
A 123 of Metagenomics, Table 1 Next-generation seq

application to metagenomics

Machine (manufacturer)

Throughput (per

machine run) Reported e

GLX Titanium

(454/Roche)

~1 M reads @

~500 nt

0.56 % ind

substitution

HiSeq 2000 (Illumina) ~3 G reads @ 100 nt ~0.001 % i

0.34 % sub

Ion Torrent PGM (Life

Technologies)

~0.1–5 M reads @

~200 nt

1.5 % inde

SOLiD (Life

Technologies)

~120 M reads @

~50 nt

Up to 3 %
nucleoside triphosphate matches the next posi-

tion after the primer, then its incorporation results

in the release of diphosphate (pyrophosphate, or

PPi). PPi production is coupled by an enzymatic

reaction involving an ATP sulfurylase and

a luciferase to the production of a light signal

that is detected through a charge-coupled device.

The Ion Torrent sequencing platform uses

a related approach; however, here, protons that

are released during nucleoside incorporation are

detected through semiconductor technology. In

both cases, the production of light or charge sig-

nals relates to the incorporation of the sequen-

tially offered nucleoside, which can be used to

deduce the sequence downstream of the primer.

Homopolymer sequences create signals propor-

tional to the number of positions; however,

the linearity of this relationship is limited by

enzymatic and engineering factors leading to

well-investigated insertion and deletion (Indel)

sequencing errors (Prabakaran et al. 2011;

McElroy et al. 2012).

Illumina sequencing is based on the incorpo-

ration and detection of fluorescently labeled

nucleoside triphosphates to extend a primer

bound to a template. The key feature of the nucle-

oside triphosphates is a chemically modified 30

position that does not allow for further chain

extension (“terminator”). Thus, the primer gets

extended by only one position, whose identity is

detected by different fluorescent colors for each

of the four nucleosides. Through a chemical reac-

tion, the fluorescent label is then removed, and

the 30 position is converted into a hydroxyl group
uencing technologies and their throughput, errors, and

rrors

Error/metagenomic example

references

els; up to 0.12 % (McElroy et al. 2012; Fan et al. 2012)

ndels; up to

stitution

(McElroy et al. 2012; Quail et al. 2012;

Hess et al. 2011)

ls (Loman et al. 2012; Whiteley

et al. 2012)

(Salmela 2010; Zhou et al. 2011;

Iverson et al. 2012)
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allowing for another round of nucleoside incor-

poration. The use of a reversible terminator thus

allows for a stepwise and detectable extension of

the primer that results in the determination of the

template sequence. In theory, this process could

be repeated to generate very long sequences; in

practice, however, misincorporation of nucleo-

sides in the many clonal template strands results

in the fluorescent signal getting out of phase, and

thus reliable sequencing information is only

obtained for about 200 positions (Quail

et al. 2012).

SOLiD sequencing utilizes ligation, rather

than polymerase-mediated chain extension, to

determine the sequence of a template. Primers

are extended through the ligation with fluores-

cently labeled oligonucleotides. The high specific-

ity of the ligase ensures that only oligonucleotides

matching the downstream sequence will be incor-

porated; and by encoding different oligonucleo-

tides with different fluorophores, the sequence

can be determined.

It is important to understand the features of the

sequencing technology in terms of throughput,

read length, and errors (see Table 1), because

these will have a significant impact on down-

stream processing. For example, the relative

high frequency of homopolymer errors for the

pyrosequencing technology can impact ORF iden-

tification (Rho et al. 2010) but might still allow for

reliable gene annotation, because of its compara-

tively long read length (Wommack et al. 2008).

Conversely, the short read length of Illumina

sequencing might reduce the rate of annotation of

unassembled data, but the substantial throughput

and data volume generated can facilitate assembly

of entire draft genomes from metagenomic data

(Hess et al. 2011). These considerations are also

particularly relevantwith new sequencing technol-

ogies coming online. These include single-

molecule sequencing using zero-mode waveguide

nanostructure arrays (Eid et al. 2009), which

promises read lengths beyond 1,000 bp and has

been shown to improve the hybrid assemblies of

genomes (Koren et al. 2012), as well as nanopore

sequencing (Schneider and Dekker 2012), which

also promises long read lengths.
One important practical aspect to consider

when analyzing raw sequencing data is the qual-

ity value assigned to reads. For a long time, the

quality assessment provided by the technology

vendor was the only available option for

data consumers. Recently, however, a vendor-

independent error detection and characterization

has been described that relies on error estimate-

based reads that are accidentally duplicated

during the PCR stages (a fact described for

Ion Torrent, 454, and Illumina sequencing

technologies) (Trimble et al. 2012). Moreover, a

significant number of publicly available

metagenomic datasets contain sequence adaptors

(apparently because quality control is often

performed on the level of assembled sequences,

not raw reads). Simple statistical analyses with

tools such as FastQC (http://www.bioinformat-

ics.babraham.ac.uk/projects/fastqc/) will rapidly

detect most of these adapter contaminations. An

important aspect of quality control is therefore

that each individual dataset requires error profil-

ing and that relying on general properties of the

platform used is not sufficient.
Assembly

Assembly of shotgun sequencing data can in gen-

eral follow two strategies: the overlap-layout-

consensus (OLC) and the de Bruijn graph

approach (see also “▶A De Novo Metagenomic

Assembly Program for Shotgun DNA Reads”).

These two strategies are employed by a number

of different genome assemblers, and this topic

has been reviewed recently (Miller et al. 2010).

Basically, the OLC assembly involves the

pairwise comparison of sequence reads and the

ordering of matching pairs into an overlap graph.

These overlapping sequences are then merged

into a consensus sequence. Assembly with the

de Bruijn strategy involves representing each

sequence’s reads in a graph of all possible

k-mers. Two k-mers are connected when the

sequence reads have them in sequential,

overlapping positions. Thus, all reads of

a dataset are represented by the connection within

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1007/978-1-4899-7478-5_726
http://dx.doi.org/10.1007/978-1-4899-7478-5_726
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the de Bruijn graph, and assembled contigs are

generated by traversing these connections to

yield a sequence of k-mers.

The OLC assembly has the advantage that

pairwise comparison can be performed to allow

for a defined degree of dissimilarity between

reads. This can compensate for sequencing

errors and allows for the assembly of reads from

heterogeneous populations (Tyson et al. 2004).

However, memory requirement for pairwise

comparisons increases exponentially with the

numbers of reads in the dataset; hence, the

OLC assembler often cannot deal with large

datasets (e.g., Illumina data). Nevertheless, sev-

eral OLCs, including the Celera Assembler

(Miller et al. 2008), Phrap (de la Bastide and

McCombie 2007), and Newbler (Roche), have

been used to assemble partial or complete draft

genomes from metagenomic data; see, for exam-

ple, Tyson et al. (2004), Liu et al. (2011), and

Brown et al. (2012).

In contrast, memory requirements of de Bruijn

assemblers are largely determined by the k-mer

size chosen to define the graph. Thus, these

assemblers have been used successfully with

large numbers of short reads. Initially, de

Bruijn assemblers designed for clonal genomes,

such as Velvet (Zerbino and Birney 2008),

SOAP (Li et al. 2008), and ABySS (Simpson

et al. 2009), were used to assemble metagenomic

data. Because of the heterogeneous nature of

microbial populations, however, assemblies

often ended up fragmented. One reason is that

every positional difference between two reads

from the same region of two closely related

genomes will create a “bubble” in the graph.

Another reason is that sequence errors in low-

abundance reads cause terminating branches.

Traversing such a highly branched graph leads

to large number of contigs. These problems have

been partially overcome by modification of

existing de Bruijn assemblers such asMetaVelvet

(Namiki et al. 2012) or by newly designed de

Bruijn-based algorithms such as Meta-IDBA

(Peng et al. 2011; see also “Meta-IDBA,

overview”). Conceptually, these solutions often

include the identification of subgraphs that
correspond to individual genomes or the abun-

dance information of k-mers to find an optimal

solution path through the graph.

These subdividing approaches are analogous to

binning metagenomic reads or contigs, in order to

identify groups of sequences that define a specific

genome. These bins or even individual sequence

reads can also be taxonomically classified by

comparison with known reference sequences.

Binning and classifying of sequences can be

based on phylogeny, similarity, or composition

(or combinations thereof), and a large number of

algorithms and software is available. For recent

comparisons and benchmarking of binning and

classification software, please see Bazinet and

Cummings (2012) and Droge and McHardy

(2012). Obviously, care has to be taken with any

automated process, since nonrelated sequences

can be combined to produce genomic chimera

bins or classes. It is thus advisable that any binning

or classification strategy is thoroughly tested

through appropriate in vitro and in silico simula-

tions (Mavromatis et al. 2007; Morgan et al. 2010;

McElroy et al. 2012). Also, manual curation of

contigs and iterative assembly and mapping can

produce improved genomes from metagenomic

data (Dutilh et al. 2009). Through such carefully

designed strategies and refined processes, nearly

complete genomes can be assembled, even for

low-abundance organisms from large numbers of

short reads (Iverson et al. 2012).
Annotation

Initially, techniques developed for annotating

clonal genomes were applied to metagenomic

data, and several tools for metagenomic analysis,

such as MG-RAST (Meyer et al. 2008) and

IMG/M (Markowitz et al. 2008), were derived

from existing software suites. For metagenomic

projects, the principal challenges lie in the size of

the dataset, the heterogeneity of the data, and the

fact that sequences are frequently short, even if

assembled prior to analysis.

The first step of the analysis (after extensive

quality control; see above) involves identification
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of genes from a DNA sequence. Fundamentally,

two approaches exist: the extrinsic approach,

which relies on similarity comparison of an

unknown sequence to existing databases, and

the intrinsic (or de novo) approach, which

applies statistical analysis of sequence proper-

ties, such as frequently used codon usage, to

define likely open reading frames (ORFs). For

metagenomic data, the extrinsic approach (e.g.,

running a similarity search with BLASTX)

comes at a significant computational cost

(Wilkening et al. 2009), rendering it less attrac-

tive. De novo approaches based on codon or

nucleotide k-mer usage are thus more promising

for large datasets. De novo gene-calling software
for microbial genomes are trained on long

contigs and assume clonal genomes. For

metagenomic datasets this approach is often

however unsuitable, because training data is

lacking and multiple different codon usage

(or k-mer) profiles are present due to the multi-

ple, different genomes present.

However, several software packages have

been designed to predict genes for short frag-

ments or even reads (see Trimble et al. 2012

for a review). The most important finding of

that review is the effect of errors on gene predic-

tion performance, reducing the reading frame

accuracy of most tools to well below 20 % at

3 % sequencing error. Only the software

FragGeneScan (Rho et al. 2010; see also

FragGeneScan, overview) accounted for the pos-

sibility that metagenomic sequences may contain

errors, thus allowing it to clearly outperform its

competitors.

Once identified, protein-coding genes require

functional assignment. Here again, numerous

tools and databases exist. Many researchers

have found that performing BLAST analysis

against the NCBI nonredundant database

adds little value to their metagenomic datasets.

Preferable are databases that contain high-

level groupings of functions, for example, into

metabolic pathways as in KEGG (Kanehisa

2002) or into subsystems as in SEED

(Overbeek et al. 2005). Using such higher-level

groupings allows for the generation of
overviews and comparison between samples

after statistical normalization.

The time and resources required to perform

functional annotations are substantial, but

approaches that project multiple results derived

from a single sequence analysis into multiple

namespaces can minimize these computational

costs (Wilke et al. 2012). Numerous tools are

also available to predict, for example, short

RNAs and/or other genomic features, but these

tools are frequently less useful for large

metagenomic datasets that exhibit both low

sequence quality and short reads.

Several integrations package annotation func-

tionality into a single website. The CAMERA

(Seshadri et al. 2007) website, for example,

provides users with the ability to run a number

of pipelines on metagenomic data. The Joint

Genome Institute’s IMG/M web service also pro-

vides an analysis for assembled metagenomic

data, which has been used so far for over

300 metagenomic datasets. The European Bioin-

formatics Institute provides a service aimed at

smaller, typically 454/pyrosequencing-derived

metagenomes. The most popular service is the

MG-RAST system (Meyer et al. 2008), used for

over 50,000 metagenomes with over 140 billion

base pairs of data. The system offers comprehen-

sive quality control, tools for comparison of

datasets, and data import and export tools to, for

example, QIIME (Caporaso et al. 2010) using

standard formats such as BIOM (McDonald

et al. 2012).
Metadata, Standards, Sharing, and
Storage

With over 50,000 metagenomes available, the

scientific community has realized that standard-

ized metadata (“data about data”) and higher-

level classification (e.g., a controlled vocabulary)

will increase the usefulness of datasets for novel

discoveries (see also▶Metagenomics, Metadata,

and Meta-analysis). Through the efforts of the

Genomic Standards Consortium (GSC) (Field

et al. 2011), a set of minimal questionnaires has

http://dx.doi.org/10.1007/978-1-4899-7478-5_17
http://dx.doi.org/10.1007/978-1-4899-7478-5_17
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been developed and accepted by the community

(Yilmaz et al. 2010) that allows effective

communication of metadata for metagenomic

samples of diverse types. While the “required”

GSC metadata is purposefully minimal and

thus provides only a rough description, several

domain-specific environmental packages exist

that contain more detailed information.

As the standards evolve to match the needs of

the scientific community, the groups developing

software and analysis services have begun to

rely on the presence of GSC-compliant meta-

data, effectively turning them into essential

data for any metagenome project. Furthermore,

comparative analysis of metagenomic datasets is

becoming a routine practice, and acquiring

metadata for these comparisons has become

a requirement for publication in several scien-

tific journals. Since reanalysis of raw sequence

reads is often computationally too costly,

the sharing of analysis results is also advisable.

Currently only the IMG/M and MG-RAST plat-

forms are designed to provide cross-sample

comparisons without the need to recompute

analysis results. In the MG-RAST system,

moreover, users can share data (after providing

metadata) with other users or make data publicly

available.

Metagenomic datasets continue to grow in

size. Indeed the first multi-hundred gigabase

pair of metagenomes already exists. Therefore,

storage and curation of metagenomic data

have become a central theme. The on-disk

representation of raw data and analyses has

led to massive storage issues for groups

attempting meta-analyses. Currently there is

no solution for accessing relevant subsets of

data (e.g., only reads and analyses pertaining

to a specific phylum or a specific species)

without downloading the entire dataset. Cloud

technologies may in the future provide attrac-

tive computational solutions for storage and

computing problems. However, specific and

metadata-enabled solutions are required for

cloud systems to power the community-wide

(re-)analysis efforts of the first 50,000

metagenomes.
Conclusion

Metagenomics has truly proven a valuable tool for

analyzing microbial communities. Technological

advances will continue to drive down the sequenc-

ing cost for metagenomic projects and, in fact, the

flood of current datasets indicates that funding to

obtain sequences is not a major limitation. Major

bottlenecks are encountered, however, in terms of

storage and computational processing of sequenc-

ing data. With community-wide efforts and stan-

dardized tools, the impact of these current

limitations might be managed in the short term.

In the long term, however, large standardized data-

bases will be required (e.g., a MetaGeneBank) to

give information access to the entire scientific

community. Every metagenomic dataset contains

many new and unexpected discoveries, and the

efforts of microbiologists worldwide will be

needed to ensure that nothing is being missed. As

for the data, whether raw or processed, it is just

data. Only its biological and ecological interpreta-

tion will further our understanding of the complex

and wonderful diversity of the microbial world

around us.
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Synonyms

MAP: metagenomic assembly program
Definition

Contig: a set of overlapping DNA segments that

together represent a consensus region of

DNA. Assembly (also genome assembly): the

process of taking a large number of short DNA

sequencing reads and putting them back together

to create contigs from which the DNA originated.
Introduction

MAP (metagenomic assembly program) is a de

novo assembler designed to be applicable to shot-

gun DNA reads (recommended as >200 bp) for

metagenome sequencing project (Lai et al. 2012).

The program focuses on the metagenomic assem-

bly problem of longer reads produced by, for

example, Sanger (typically 700–1,000 bp) and

454 sequencing (typically 200–500 bp). Mean-

while, mate-pair information from both ends of

a DNA fragment for a given size (e.g., an insert in

a vector plasmid in Sanger sequencing or a mate-

pair template in 454 sequencing) in sequencing is

introduced, which is commonly available in

Sanger sequencing and most of the new sequenc-

ing technologies including 454 sequencing.

Although processing of shotgun metagenomic

sequence data usually does not have a fixed end

point to recover one or more complete genomes

as for isolated microbial genomes, the assembly

tools, which aim to combine sequence reads into

contigs, are still expected to play an important
role in sequence processing, due to more valuable

genomic content they can provide (Tyson

et al. 2004; Venter et al. 2004). In the past decade,

a good many assembly algorithms have been

proposed to deal with the sequence assembly

problem, among of which are the early algo-

rithms targeted to the Sanger sequencing technol-

ogy, such as Phrap (http://www.phrap.org),

Celera (Myers et al. 2000; Miller et al. 2008),

and PCAP (Huang et al. 2003), and the up-to-

date algorithms targeted to the next-generation

technology, such as Velvet (Zerbinor and Birney

2008) and SOAPdenovo (Li et al. 2010). How-

ever, these methods are not targeting the

metagenome sequencing in spite of the situation

that they are still usually employed to undertake

assembling of the metagenomic sequencing

reads.

Compared to isolated genome assembly prob-

lem, the metagenomic assembly problem is more

complicated due to two challenges (Kunin

et al. 2008): (1) the genomic repeats may origi-

nate from either the same genome or the different

genomes; therefore, large numbers of mixed

short DNA reads belong to many different spe-

cies (we even know little about the population

structure for some environmental samples); and

(2) the inhomogeneous coverage distribution and

the low abundance of organisms provide limited

information to handle repeats. Due to the specific

challenges of the metagenomic assembly prob-

lem, traditional assembly methods developed for

single genome assembly problem usually gener-

ate poor quality draft assembly on metagenomic

data (Mavromatis et al. 2007). Thus, it is in need

to develop highly efficient assembly method

specifically for metagenomic data.

Moreover, compared with Sanger and

454 sequencing, the current limitation of shorter

reads (<200 bp, typically 25–100 bp) and higher

errors by the new sequencing platforms does not

allow a significant utility for metagenomic ana-

lyses for the difficulty in phylogenetic study or

gene function inference. In fact, shorter reads

technologies have not been widely used in

metagenome sequencing, and meanwhile the

sequencing technologies producing longer

reads, such as Sanger (usually 700–1,000 bp)

http://www.phrap.org/
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and 454 sequencing (usually 200–500 bp), are

still the overwhelming recommendation and

thus remain the major source of metagenomic

sequence data. Therefore, it is never trivial to

continue to emphasize the importance of longer

reads to metagenomic analyses, clearly including

the reads assembly tool designed specifically.
Algorithm of MAP

MAP designs an improved approach of the clas-

sical overlap/layout/consensus (OLC) strategy, in

which several special algorithms are incorporated

into its stages, to calculate correct contigs by

connecting the fragments linked by mate pairs

to prevent the false merge of unrelated reads.

For the improved OLC strategy, MAP deploys

a series of algorithms in three stages as shown in

Fig. 1. In the overlap stage, the filter algorithm

based on q-gram (Mullikin et al. 2003) is used to

obtain the read pairs that are supposed to have the

overlaps, and the seed and extend alignment

approach, similar to that used by BLAST

(Altschul et al. 1990), is employed in the pairwise

alignment calculation. While in the consensus
stage, a consistency-based consensus algorithm

is used (Rausch et al. 2009), which is based on

a multi-read alignment algorithm aligning the

reads with a consistency-enhanced alignment

graph of shared sequence segments identified in

advance. The most important innovation of MAP

is the layout stage which applies mate-paired

information to deal with repeat problem, which

is described below.

In the OLC approach of MAP, the overlap

graph is used to facilitate the assembly process.

Conceptually, reads and overlaps are represented

in the graph G by nodes and bidirected edges,

respectively. The arrows of both ends of the edge

are determined by the way how two reads over-

lap. Herein, a dovetail path is defined as an acy-

clic path with each node has only one arrow

outward it and one arrow inward it. Thus,

a dovetail path can determine a certain contig

by means of threading the reads corresponding

to the nodes in this path. Thus, the goal of the

layout stage is to separate the graph into discon-

nected dovetail paths. However, since there may

be quite many misleading edges in the graph that

represent the false overlaps mainly originated

from two repetitive DNA regions or similar
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fragments of different genomes, this goal seems

to be a formidable task. To this end, MAP

is designed to determine the optimal dovetail

paths with the aids of the clues given by mate

pairs (Lai et al. 2012).

Compared with other assemblers, several dis-

tinct features of MAP algorithm should be pointed

out. First, MAP does not refer to any other infor-

mation such as genome length or sequencing cov-

erage that is often used in the assemblers targeting

the isolated genomes, because such information is

clearly not applicable to the situation of

metagenomic assembly. What is more important

is that MAP employs mate-paired information dif-

ferent from other assemblers do. For example, the

Celera Assembler (Myers et al. 2000) used mate-

paired information in the scaffold construction.

The Celera Assembler later developed a new pipe-

line CABOG, which finds the best overlap graph

in the unitigger module (Miller et al. 2008). In this

algorithm, mate pairs are used to correct the

misassemblies by breaking the unitigs which are

found violated with the mate-pair constrains.

PCAP (Huang et al. 2003) used mate-paired infor-

mation to correct contigs and to link contigs into

scaffolds. Different from these assemblers, MAP

uses mate pairs as a core measure to construct

contigs when repeats hamper the assembly.

Based on mate-paired information, MAP designs

a series of procedures to implement the layout

stage.
Performance of MAP

MAP is designed for metagenomic assembly on

long reads data with mate pairs, such as Sanger

reads (700–1,000 bp) and 454 reads

(200–500 bp). MAP method was assessed on

simulated data compared with widely used

assemblers on long reads data. Specifically, the

assessment test results on simulated dataset with

800 bp reads demonstrate that the total assembly

performance of MAP can be superior to both

Celera and Phrap for typical longer reads by

Sanger sequencing, and the results on simulated

dataset with 200 bp reads show that MAP has

evident advantage over Celera, Newbler
(Margulies et al. 2005), and Genovo (Laserson

et al. 2011), for typical shorter reads by

454 sequencing (Lai et al. 2012).
Availability

MAP is written in C++ and the source code is

freely available under GNU GPL license. The

MAP is freely available at http://bioinfo.ctb.

pku.edu.cn/MAP/.
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Synonyms

Statistical or intrinsic methods of gene prediction
Definition

Computational inference of how a metagenomic

sequence is divided into protein-coding and non-

coding regions based on presence or absence of

characteristic oligonucleotide frequency patterns.
Introduction

As of April 2013 sequences of 370 metagenomes

were available in databases. On the other

hand, Genomes Online Database (www.

genomesonline.org) lists 186 complete archaeal

and 3,956 complete bacterial genomes; also there

are about 15,000 incomplete (draft) prokaryotic

genomes. With the average size of a metagenome

being 100 times larger than an average prokary-

otic genome, the current volume of metagenomic

sequences is twice as large as the total sequence

in “genomic” data. Therefore, current

metagenomes carry a larger wealth of genes

than all the prokaryotic genomes, and this gap is

growing.

Notably, gene prediction and annotation of

gene and protein function is more challenging in

metagenomes than in draft or complete genomes.

To give a historic perspective, one can compare

gene annotation of a metagenome with
annotation of the first completely sequenced

archaeal genome, Methanococcus jannaschii

(Bult et al. 1996). All the M. jannaschii genes
were predicted by the ab initio statistical method

(Borodovsky and McIninch 1993) while function

of 2/3 of them was a mystery since the translated

protein sequences did not show sequence similar-

ity to proteins in databases.

The history repeats itself in metagenomes,

since majority of protein-coding regions in a new

metagenome may code for proteins that do not

show similarity to already known proteins.

“Evidence-based” or “similarity-based” methods

of gene finding (Kunin et al. 2008) provide gene

prediction along with valuable information about

function of encoded proteins. Similarity-based

gene finders possess high specificity, close to

100 % (Altschul et al. 1997; Badger and Olsen

1999; Frishman et al. 1998; Gish and States 1993).

Still, the drawback of similarity-based methods is

low sensitivity; they cannot predict novel genes.

The similarity-based methods are less useful

for gene prediction in metagenomes that carry

many novel genes, while the ab initio gene

prediction methods, not depending on presence

of homologs in protein databases, are both effec-

tive and efficient for annotating genes in

metagenomic sequences (Kunin et al. 2008).
Ab Initio Gene Finding

Ab initio gene prediction tools have high sensi-

tivity (above 90 % for the best tools) and high

specificity (above 90 % as well). Ab initio gene

finders use statistical pattern recognition methods

(Wooley et al. 2010). Statistical models such as

Markov models, hidden Markov models (HMM),

and hidden semi-Markov models (HSMM, also

called hidden Markov model with duration)

proved to be very useful to model statistical pat-

terns of nucleotide ordering in protein-coding and

noncoding regions. Accurate ab initio gene find-

ing in isolated genomes requires ample sequence

data for estimation of algorithm parameters

(model training).

Contrary to isolated (complete and draft)

genomes metagenomic sequences are derived

http://www.genomesonline.org
http://www.genomesonline.org
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from numerous genomes of heterogeneous

microbial communities (microbiomes). A typical

metagenomic sequence is short; its genomic con-

text and the phylogenetic origin are rarely known.

Gene identification is also affected by sequencing

and assembly errors; for example, errors that lead

to frameshifts (change of coding frame).

The major challenge for ab initio gene predic-

tion in metagenomic sequences is that the

metagenomic sequences are often too short for

reliable estimation of parameters of species-

specific models of coding and noncoding regions.

Special training techniques have to be developed

to address the challenging task of parameter esti-

mation (see below). Similarly to gene prediction

in isolated genomes, newly predicted genes are

immediately translated into proteins and the sim-

ilarity search is used in an attempt of function

annotation.
Gene Finders Currently Available for
Metagenomes

Current metagenomic gene-finding tools include

FragGeneScan (Rho et al. 2010), Glimmer-MG

(Kelley et al. 2012), MetaGene Annotator

(Noguchi et al. 2008), MetaGeneMark (Zhu

et al. 2010), and Orphelia (Hoff et al. 2009,

2008). Glimmer-MG and MetaGeneMark are

extensions of gene finders for complete or draft

genomes Glimmer3 (Delcher et al. 2007) and

GeneMarkS (Besemer et al. 2001), respectively.

The MetaGeneMark algorithm uses HSMM

architecture, originally developed in GeneMarkS

(Besemer et al. 2001). The HSMM parameter

derivation approach used in MetaGeneMark is

to arrive to a large set of parameters (thousands

of parameters related to oligonucleotide frequen-

cies) from a small set (nucleotide frequencies

determined in a short fragment) using the depen-

dencies between oligonucleotide and nucleotide

frequencies that have been formed in evolution.

The original idea of this approach (Besemer and

Borodovsky 1999) has been developed for small

viral genomes before the start of “metagenomic

era” (see below for more details).
Glimmer-MG is based on interpolatedMarkov

models or IMMs (Salzberg et al. 1998). Glimmer-

MG scores metagenomic sequences and assigns

them into clusters; then, the algorithm iteratively

estimates the IMM parameters and reassigns

sequences to clusters.

FragGeneScan (Rho et al. 2010), an

HMM-based gene finder, has an additional ability

to predict frameshifts caused by sequencing

errors. Transition probabilities between coding

frames are determined with respect to the error

models of sequencing technologies used to derive

the input sequence.

MetaGene Annotator (Noguchi et al. 2008)

works in two steps: in the first step the program

scores open reading frames (ORFs) with respect

to base composition and lengths; in the second

step, it connects high-scoring ORFs using

dynamic programming.

Machine learning classification algorithms

such as support vector machines and neural net-

works are also used for ab initio gene finding. In

order to classify coding or noncoding ORFs,

Orphelia (Hoff et al. 2009, 2008) uses an artificial

neural network combining multiple features to

get ORF’s scores.
Parameter Estimation for Metagenomic
Gene-Finding Algorithms

Patterns of oligonucleotide frequencies differ in

coding and noncoding regions; these patterns are

more pronounced when frequencies of longer

oligomers are considered. Sequences with spe-

cific oligomer frequencies can be modeled by

Markov chain models and in the important case

of protein-coding sequences by three-periodic

Markov chain models (Borodovsky et al. 1986).

The number of parameters of a three-periodic

Markov chain model increases exponentially

with the model order; estimation of parameters

of the practically useful fifth order model requires

at least several hundred thousand nucleotide long

sequence. Use of a shorter training sequence

leads to over-fitting and will corrupt gene predic-

tion. If the origin of the metagenomic sequence is
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known, sequences from the whole parent genome

could be used for training. Alternatively, if novel

metagenomic sequences from a single species are

assembled in sufficiently long contig the model

parameters can be estimated by self-training

on the contig sequence (Besemer et al. 2001;

Kelley et al. 2012). Most frequently, however,

metagenomic sequences are short and novel

(of the order of a few hundred nucleotides).

Therefore, new approach to the model parameter

derivation is needed.

A novel approach for constructing parameters

and making efficient models for gene prediction

in short genomic sequences was proposed back in

1999 (Besemer and Borodovsky 1999). The idea

was to use observed trends in the nucleotide fre-

quencies in the three codon positions in genomes

with various GC content. Use of these dependen-

cies allows for reconstructing the species-specific

codon usage pattern in the whole genome starting

from a short fragment of this genome whose

length is sufficient to estimate the genome GC

content. This approach is based on the assump-

tion of genome compositional uniformity that is

largely valid for prokaryotic genomes. It was

shown that parameters provided by this approach

allow sufficiently accurate gene prediction in

short metagenomic sequences. Later on, with

more genomes becoming available, this idea

was extended (Zhu et al. 2010) to longer oligo-

nucleotides (e.g., hexamers). With GC content of

a genome being an independent variable X, it

could be shown that frequency of phased

K-mers in any of three frames, variable Y, can

be approximated by a polynomial of order

K. Particularly, the mononucleotide frequencies

in three codon positions can be approximated by

linear functions. These dependencies indicate

that GC content is a major driving factor that

determines evolution of genome-wide codon

usage pattern (Chen et al. 2004). In

MetaGeneMark, the value of GC content deter-

mined for a short metagenomic sequence is used

as an estimate of GC content of the whole

genome the sequence originated from. This

value allows immediate reconstruction of fre-

quencies of phased oligonucleotides and, at the
next step, parameters of three-periodic Markov

chain models of the heuristic model (Zhu

et al. 2010).

Interestingly, the heuristic models can also be

used for gene prediction in complete genomes or

draft genomes. In comparison with the “native”

models (models trained on a genome of interest),

heuristic models are more sensitive to so-called

“atypical” genes. Many atypical genes appear to

be horizontally transferred genes with codon fre-

quencies deviating from dominant codon usage

pattern of the “host” genome.

Another approach to model parameter estima-

tion is attempting to make a sufficiently large

set of training sequences by linking anonymous

sequences that appear to be taxonomically close.

For example, Glimmer-MG assigns a taxon for

a metagenomic sequence by a classification

method called Phymm (Brady and Salzberg 2009)

and then searches databases for genomes that

belong to this taxon. Since such type of training is

executed in real time, the running time of gene-

finding algorithm may increase significantly in

comparisonwith the algorithm selecting a heuristic

model from a set of models precomputed for

possible values of GC contents.
Additional Sequence Features Used by
Metagenomic Gene Finders

Besides function-specific patterns in oligonucle-

otide composition, gene identification algorithms

can use additional features that help discriminate

protein-coding and noncoding regions. Such fea-

tures include empirical length distributions of

coding and noncoding regions, mutual orienta-

tion of neighboring coding regions, and sequence

patterns related to functional sites such as ribo-

somal binding sites (RBS). The two-component

model of RBS, containing positional frequency

matrix as a model of the RBSmotif and the length

distribution of a “spacer,” the sequence between

RBS and gene start, carries important additional

information for improving accuracy of gene start

prediction. In prokaryotic genomes an average

spacer length is 5–7 nt. The RBS positional



Ab Initio Gene Identification in Metagenomic Sequences, Table 1 Gene prediction accuracy for five ab initio

gene finders. Sn stands for sensitivity and Sp stands for specificity

Programs Test set

Sequence

length (bp) Sn (%) Sp (%)

(Sn + Sp)/2

(%) Publication

Orphelia Fragments from 12 test

species

300 82.1 91.7 86.9 Hoff et al. (2009)

FragGeneScan Simulated short reads of

9 genomes

400 91.3 86.1 88.7 Rho et al. (2010)

MetaGeneMark Fragments from

50 microbial chromosomes

400 97.0 94.6 95.8 Zhu et al. (2010)

Glimmer-MG Simulated 454 sequences 535 98.4 71.8 85.1 Kelley

et al. (2012)

MetaGeneAnnotator Subsequences of

13 genomes

700 95.1 91.0 93.1 Noguchi

et al. (2008)

FragGeneScan Simulated reads with 1 %

sequencing error rate

400 85.4 79.5 82.5 Rho et al. (2010)

Glimmer-MG Simulated 454 reads with

1 % sequencing error rate

535 83.6 62.5 73.1 Kelley

et al. (2012)
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frequency matrix can be derived by algorithms

such as MCMC (Markov chain Monte Carlo)-

based Gibbs sampler (Lawrence et al. 1993) or

EM (Expectation Maximization)-based MEME

(Bailey and Elkan 1994); detection of the RBS

motif is done by finding the most conserved set

of ungapped sequence fragments within the

multiple alignment window. The structure of

two-component RBS model is convenient for

incorporation into HMM-based framework of

several algorithms such as MetaGeneMark and

FragGeneScan

Another feature, the prokaryotic gene length

distribution, is approximated for complete or

draft genomes by the gamma distribution with

mean value about 900 nt; yet another one, the

distribution of length of noncoding region is

approximated by exponential distribution. These

two distributions, as well as the RBS spacer

length distribution, are used as in the HSMM-

based algorithms (Besemer et al. 2001). Since

short metagenomic sequences are more likely to

contain partial genes than complete genes, length

distributions of partial genes are used in HSMM-

based metagenomic gene finders (Rho et al. 2010;

Zhu et al. 2010).

About 70 % of neighboring genes in prokary-

otic genomes have the same orientation
(Noguchi et al. 2006), and many of them make

co-transcribed “chains” or operons. Genes in an

operon are located on a close distance or even

overlap. Four base-pair overlap ATGA is very

common in adjacent genes as an overlap of stop

and start codons ATG and TGA. Average dis-

tance between adjacent genes having the same

orientation is shorter than that between neighbor

genes residing in complementary strands, espe-

cially in gene start-to-gene start configuration

where additional space has to be available for

promoters.

All these features are incorporated in

metagenomic gene finders, e.g., MetaGeneMark.

Tests of ab initio gene finders on simulated

metagenomic sequences have shown that these

algorithms are quite accurate, with average

values of sensitivity and specificity above 90 %;

see Table 1. However, the sensitivity drops if the

sequence length goes below 200 nt (Yok and

Rosen 2011; Zhu et al. 2010).
An Initio Gene Finding in Metagenomic
Sequences with Errors

Real metagenomic sequences contain errors: sub-

stitutions, insertion, and deletions (indels), as well
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Programs

Sequence

length (bp) Sn (%) Sp (%) (Sn + Sp)/2 Test set Publication

FragGeneScan 400 81.0 43.2 62.1 Fragments from

18 prokaryotic

genomes with

20 % containing

frameshifts

Tang

et al. 2013600 81.9 35.1 58.5

800 82.8 29.4 56.1

MetaGeneTrack 400 75.8 70.2 73.0

600 80.1 61.7 70.9

800 81.5 51.9 66.7
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as chimerisms, when two reads from different

species are joined due to assembly error. Indels

can cause frameshifts in coding regions; thus gene

prediction accuracy is affected by sequencing

errors. The overall effect on accuracy depends on

error rates specific to sequencing and finishing

technologies; for example, the error rates reported

for Sanger sequencing may be as low as 0.001 %

while sequencing errors in NGS technologies can

go above 1 %. In both simulated Sanger reads and

simulated 454 reads significant decrease of gene

prediction sensitivity is observed when error rate

exceeds 1 % (Hoff 2009). Still, in assembled

sequences, the per-nucleotide error rate of 0.5 %

in raw reads can be reduced to as low as 0.005 %.

This error rate is still large enough to affect

�3–4.5 % of genes in assembled sequences (Luo

et al. 2012).

To identify frameshift errors in metagenomic

sequences, gene-finding algorithms have to

model frame transitions that occur due to

sequencing errors. In HSMM-based gene finders,

e.g., FragGeneScan, new hidden states designat-

ing transitions between coding frames in the same

strand were incorporated into the HSMM archi-

tecture. Another recent tool able to detect frame-

shift in metagenomic coding regions is

MetaGeneTack (Tang et al. 2013). It combines

the original HSMM-based MetaGeneMark with

an ab initio frameshift finding programGeneTack

(Antonov and Borodovsky 2010). Several filters

of false-positive predictions were employed in

MetaGeneTack to achieve higher accuracy.

MetaGeneTack is reported to have higher frame-

shift prediction specificity than FragGeneScan
(Table 2) in reads with error rate typical for

metagenomic projects (Tang et al. 2013).

Yet another approach was used in Glimmer-

MG, which, to trace possible indel errors, splits

an ORF into three branches (frames), starting

from the position of a nucleotide called with

low confidence (Kelley et al. 2012). This

approach was reported to have higher gene pre-

diction accuracy on error-contained reads than

FragGeneScan. Methods that account for

sequencing errors generally perform better in

real error-prone metagenomic sequences than

“idealistic” approaches. The accuracy of

sequencing error detection, however, depends

on how accurate is the modeling of sequencing

errors is.
Summary

Accurate ab initio gene prediction in

metagenomic sequences is necessary for reliable

functional annotation. Ab initio algorithms iden-

tify genes in metagenomic sequences by

detecting intrinsic statistical patterns of coding

and noncoding regions. Being independent of

data stored in databases, these methods are espe-

cially useful for discovering novel genes. Special

techniques have been developed for derivation of

parameters of the ab initio algorithms working

with short anonymous metagenomic sequences.

We have reviewed several ab initio gene finders

developed for metagenomic sequences including

the latest tools that take into account possible

sequencing errors (frameshifts).
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Definition

Binning is unsupervised clustering of

metagenomic sequences into an unknown set of

species.

AbundanceBin is a binning tool utilizing the

different abundances of the species in

a community.
Introduction

Binning is one of the challenging problems in the

metagenomics field. It has two main applications.

One application is for studying the structure of

microbial communities. The other application is

for improving the downstream analysis of

metagenomic sequences, including metagenome

assembly (which has shown to be extremely dif-

ficult), considering that assembling reads one bin

at a time significantly reduces the complexity of

the metagenome assembly problem.

Composition-based methods have been the

main approaches to unsupervised classification

of reads. The basis of these approaches is that

the genome composition (G + C content, dinucle-

otide frequencies, and synonymous codon usage)

vary among organisms and are generally charac-

teristic of evolutionary lineages. Tools in this

category include TETRA (Teeling et al. 2004),

TACOA (Diaz et al. 2009), and MetaCluster

(Leung et al. 2011). Due to the substantial vari-

ance in sequence properties along a genome, the

main limitation of composition-based approaches

is that they require relatively long reads (at least

800 bp), although it is shown that MetaCluster

(Leung et al. 2011) can bin reads of 300 bp by

employing a different distance metric (Spearman

Footrule Distance) to reduce the local variations

for 4-mers.

Note a large collection of methods have been

developed to classify sequencing reads in

a supervised manner. MEGAN (Huson and

Mitra 2012) is a representative approach of this

kind. These methods either use composition

information (as in NCB, a naı̈ve Bayes classifier

to metagenomic sequence classification (Rosen

et al. 2011)) or employ similarity searches of

metagenomic sequences against a database of

known genes/proteins (as in MEGAN) and assign

metagenomic sequences to taxa accordingly,

with or without using phylogeny. They also differ

in the algorithms used for classification:MEGAN

pioneers the lowest common ancestor (LCA)

algorithm (Huson et al. 2007), MTR (Gori

et al. 2011) improves on LCA algorithm consid-

ering multiple taxonomic ranks, and MetaPhyler

(Liu et al. 2011) achieves better classification
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results by tuning the taxonomic classifier to each

matching length, reference gene, and taxonomic

level. Note that some tools in this category can

only classify a subset of the metagenomic

sequences instead of all. MLTreeMap (Stark

et al. 2010) uses phylogenetic analysis of

31 marker genes for taxonomic distribution esti-

mation. CARMA (Krause et al. 2008) searches

for conserved Pfam domains and protein families

in raw metagenomic sequences and classifies

them into a higher-order taxonomy. RDP classi-

fier is designed for classification of 16S rRNA

genes, and later extended to classification of 18S

rRNA genes using a naı̈ve Bayes classifier (Cole

et al. 2009).
AbundanceBin

AbundanceBin (Wu and Ye 2011) is the first

unsupervised clustering algorithm that utilizes

abundance information of the species in the

same microbial community to group reads into

bins. The fundamental assumption of the

AbundanceBin algorithm is that reads are sam-

pled from genomes following a Poisson proce-

dure, such that the sequencing reads can be

modeled as a mixture of Poisson distribution.

An expectation–maximization (EM) algo-

rithm is used in AbundanceBin to find parameters

for the Poisson distributions (i.e., the means),

which reflect the relative abundance levels of

the source species. AbundanceBin then assigns

reads to bins based on the fitted Poisson distribu-

tions. AbundanceBin gives an estimation of the

genome size (or the concatenated genome size of

species of the same or very similar abundances)

and the coverage (which reflects the abundances

of species) of each bin in an unsupervised manner

without requiring prior knowledge of the struc-

ture of the microbial communities. The EM algo-

rithm needs an important parameter, the number

of bins, which is typically unknown, as for most

metagenomic projects. AbundanceBin solves this

problem by using a recursive binning approach to

determine the total number of bins automatically.

The recursive binning approach works by sepa-

rating a dataset into two bins and proceeds by
further splitting bins. The recursive procedure

continues if (1) the predicted abundance values

of two bins differ significantly; (2) the predicted

genome sizes are larger than a certain threshold;

and (3) the number of reads associated with each

bin is larger than a certain threshold proportion of

the total number of reads classified in the

parent bin.

AbundanceBin achieves accurate classifica-

tion of even very short sequences sampled from

species with different abundance levels, as tested

on simulated and real metagenomic datasets. The

software is available for download at http://

omics.informatics.indiana.edu/AbundanceBin.
Integrated Binning Methods

MetaCluster 3.0 is an integrated binning method

based on the unsupervised top–down separation

and bottom–up merging strategy, which can bin

metagenomic fragments of species with very bal-

anced abundance ratios to very different abun-

dance ratios (Leung et al. 2011). MetaCluster 4.0

further improves the binning algorithm and is

able to handle datasets with large number of

species (e.g., 100 species) (Wang et al. 2012).

MetaCluster is available for download at http://

i.cs.hku.hk/~alse/MetaCluster/.
Joint Analysis of Multiple Metagenomic
Samples

Baran and Halperin proposed an abundance-

based (also termed as coverage-based) binning

algorithm (MultBin) that operates on multiple

samples of the same environment simulta-

neously, assuming that the different samples con-

tain the same microbial species, possibly in

different proportions (Baran and Halperin

2012). MultBin employs a k-medoids clustering

algorithm to cluster reads according to their cov-

erage across the samples. Testing of MultBin on

simulated metagenomic datasets shows that inte-

grating information across multiple samples

yields more precise binning on each of the

samples.

http://omics.informatics.indiana.edu/AbundanceBin
http://omics.informatics.indiana.edu/AbundanceBin
http://i.cs.hku.hk/~alse/MetaCluster/
http://i.cs.hku.hk/~alse/MetaCluster/
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Summary

Abundance-based (or coverage-based) binning

approaches achieve an accurate performance

even for extremely short reads – when there

exist species abundance differences, an ability

that cannot be achieved by composition-based

approaches which suffer from the variances of

the compositions of short reads. Approaches

that integrate abundance and composition infor-

mation and approaches that utilize multiple

samples have shown promising binning results.
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Synonyms

Genome Relative Abundance estimation using

Mixture Model theory (GRAMMy)
Introduction

Accurate estimation of microbial community

composition based on metagenomic sequencing

data is fundamental for subsequent metagenomic

analysis. However, it is also a challenging com-

putational problem because of the mixed nature

of metagenomes and the fact that only a small

fraction of them get sequenced.

With the advents of next-generation sequenc-

ing (NGS) technologies, there has been signifi-

cant increase in sequencing capacity yet

reduction in single read length. This paradigm

shift in sequencing technologies has impacted

downstream analyses. Specifically, the identifica-

tion of the origin of a read becomes more difficult

for several reasons. First, a large number of short

reads cannot be uniquely mapped to a specific

location of one genome. Instead, they map to

multiple locations of one or multiple genomes.
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These ambiguities are directly associated with

the read length reduction in NGS technologies.

Second, communities usually consist of many

microbes with similar genomes, different only

in some parts, making it indeed impossible to

determine the origin of a particular short read

based solely on its sequence.

Despite these difficulties, NGS read sets have

brought in richer abundance information of micro-

bial communities than traditional datasets because

of the significant increase in the number of reads.

Along with the increase of read set size, efforts to

assemble more reference genomes are ongoing. In

addition, new experimental techniques, such as

single-cell sequencing approaches, are being

developed to sequence reference genomes directly

from environmental samples. In face of the chal-

lenges from short reads and the opportunities from

fast-expanding reference genome databases,
Accurate Genome Relative Abundance Estimation
Based on Shotgun Metagenomic Reads, Fig. 1 The

GRAMMy model. A schematic diagram of the finite
GRAMMy is a statistical framework developed

to accurately and efficiently estimate the relative

abundance of microbial organisms within the

community (Xia et al. 2011).
Description

The GRAMMy Framework

The GRAMMy framework is based on a mixture

model for the short metagenomic sequencing and

an expectation-maximization (EM) algorithm, as

outlined in the model schema and the analysis

flowchart in Figs. 1 and 2. GRAMMy accepts

a set of shotgun reads as well as external refer-

ences (e.g., genomes, scaffolds, or contigs) as

inputs and subsequently performs the

maximum-likelihood estimation (MLE) of the

genome relative abundance (GRA) levels.
mixture model underlies the GRAMMy framework for

shotgun metagenomics. In the figure, “iid” stands for

“independent identically distributed”
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Based on Shotgun Metagenomic Reads, Fig. 2 The

GRAMMy flowchart. A typical flowchart of

GRAMMy analysis pipeline employs “map” and

“k-mer” assignment
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In the typical GRAMMy workflow, which is

shown in Fig. 2, the end user starts with the

metagenomic read set and reference genome set

and then chooses betweenmapping-based (“map”)

and k-mer composition-based (“k-mer”) assign-

ment options (He and Xia 2007). In either option,

after the assignment procedure, an intermediate

matrix describing the probability that each read is

assigned to one of the reference genomes is

produced. This matrix, along with the read set

and reference genome set, is fed forward to the

EM algorithm module for estimation of the GRA

levels. After the calculation, GRAMMy outputs

the GRA estimates as a numerical vector, as well

as the log-likelihood and standard errors for the
estimates. If the taxonomy information for the

input reference genomes is available, strain

(genome) level GRA estimates can be combined

to calculate high taxonomic level abundance, such

as species- and genus-level estimates.

Accurate GRAMMy Estimates with EM

Algorithm

Formally, GRA is defined as the normalized

abundance for m unique genomes, where the

relative abundance for the jth known genome is
aj ¼ #j-th genome

#known genomes

Note that gm is a collective surrogate for

unknown genomes and cannot be estimated in the

model. Knowing length lj, aj is one-to-one related

to the corresponding mixing parameter pj by
aj ¼ pj

lj
Xm�1

k¼1

pk
lk

Mixing component distributions are needed to

solve for mixing parameter p, which are p(ri|

zij ¼ 1; g)’s – i.e., the probabilities of generating

a read ri from gj. They are approximated empir-

ically. The first approach is to use the number of

high-quality hits sij fromBLAST, BLAT, or other

mapping tools and approximate by
sij
lj
; the second

approach is to use k-mer composition as detailed

in the original study (Xia et al. 2011). The EM

algorithm to calculate p iterates between E-step
z
tð Þ
ij ¼ p rijzij ¼ 1; g

� �
p tð Þ
j

Xm

k¼1

p rijzik ¼ 1; gð Þp tð Þ
k

and M-step

p tþ1ð Þ
j ¼

Xn

i¼1

z
tð Þ
ij

n

until convergence, where n is the total number of

reads and zij’s are entries in the missing read
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Fig. 3 Frequent species of human gut microbiome. The

99 species occurring in at least 50 % of the 33 human gut

samples with a minimum relative abundance of 0.05 %

were selected
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origin matrix Z. The estimated mixing parame-

ters p are then converted back to GRA

estimates a.

GRAMMy Estimates for Human Gut

Metagenomes

The human gastrointestinal tract harbors the

largest group of human symbiotic microbes.

Figure 3 shows the 99 most frequent species of

human gut based on the GRAMMy analysis of

the 33 metagenomic samples collected

from three human gut metagenome projects

(Gill et al. 2006; Kurokawa et al. 2007;

Turnbaugh et al. 2009). The medians of esti-

mated average genome lengths for these

metagenomes range from 2.8 to 3.7 Mbp.

Among the top ten most frequent species,

there are eight from the Firmicutes phylum

including members of Faecalibacterium,

Eubacterium, and Ruminococcus genera, and

two from the Bacteroides genus of the

Bacteroidetes phylum. Firmicutes and

Bacteroidetes dominate the human gastrointes-

tinal tract. Species’ relative abundance displays

a long-tail distribution, suggesting that many

are detected across samples, though most of

them are not highly abundant. The abundance

levels of some species are highly variable (with

larger box size), while most others are rela-

tively constant.
Conclusions

GRAMMy is a rigorous probabilistic framework

for accurately and efficiently estimating genome

relative abundance (GRA) based on shotgun

metagenomic reads. Users have a wide choice

of mapping and alignment tools to assign reads

to references. The method is particularly suit-

able for NGS short read datasets due to its better

handling of read assignment ambiguities.

GRAMMy tools are packaged as a C++ exten-

sion to Python, which can be downloaded freely

from GRAMMy’s homepage: http://meta.usc.

edu/softs/grammy.
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16SrRNA(SSU) and 23SrRNA( LSU) gene

sequence databases; Alignments; LTP project;

Manual curation; “Orphan” species; Taxa bound-

aries; Taxonomy/classification/phylogeny of

Bacteria and Archaea; Type strains
Definition

The All-Species Living Tree Project (LTP) is an

international initiative for the creation and main-

tenance of highly curated 16SrRNA and

23SrRNA gene sequence databases, alignments,

and phylogenetic trees for all the type strains of

Bacteria and Archaea.
Introduction

Classification and identification of Bacteria and

Archaea came across to a turning point around

35 years ago. It was the time when Carl Woese

and co-workers demonstrated that ribosomal

markers were appropriate to infer genealogical

relationships bymeans of phylogenetic reconstruc-

tions (Fox et al. 1977). Rapidly, comparative anal-

ysis of rRNA gene sequences became a standard

procedure with mature implications in microbial

ecology and taxonomy: culture-independent

exploration of ecosystems’ diversity (Amann

et al. 1995) and settlement of the phylogenetic

backbone (i.e., our current accepted classification

of Bacteria and Archaea; Garrity 2001). As

a result, the total amount of ribosomal RNA entries

in the public DNA databases has grown exponen-

tially since early 1990s, currently comprising at

least 3,500,000 small (SSU) and 300,000 large

(LSU) ribosomal subunit gene sequence entries.

On the other hand, the number of bacterial and

archaeal species with validly published names

has followed arithmetic trends with a ratio of

around 500–700 annual descriptions during the

last 7 years (Fig. 1), currently (December 2012)

exceeding the total number of 10,300 species and

subspecies. A comparative overview of these

trends until December 2011 is shown in Fig. 1.

As from early 1990s, the 16S rRNA has been,

by orders of magnitude, the most often sequenced

gene, there is no alternative phylogenetic marker

with such a high coverage in public repositories.

However, abundance is not the single requisite

for a proper phylogenetic inference and other

single molecules (e.g., 23S rRNA) or combina-

tions of them might perform better at reflecting
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of ribosomal 16S rRNA (a) and 23S rRNA (b) gene

sequence databases and species and subspecies names

with standing in nomenclature until December 2011.

SILVA SSU-Parc111 and LSU-Parc111 databases

(http://www.arb-silva.de/documentation/release-111/) were

filtered by submission date until December 2011 and its

cumulative annual growth was plotted in red (SSU, 1A)

and yellow bars (LSU, 1B). The cumulative growth of

published species and subspecies names (according to

LPSN; http://www.bacterio.cict.fr/number.html) since

1980 until December 2011 is plotted in blue. Note that the

total number of names is around 2,000 above the total

number of distinct type strains due to homotypic synonyms,

new combinations, nomina nova, later heterotypic syno-

nyms, or illegitimate names
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genealogies of certain groups given the higher

information content (Ludwig and Klenk 2001).

Although far from reaching 16S rRNA levels,

submission of alternative markers is growing

fast, mostly because (i) the number of meta-

genomes and complete genomes is growing

exponentially due to the reduction on sequencing

and analysis costs and (ii) the recent initiative to
complete the genome sequence of all type strains

(GEBA initiative). Undoubtedly, comparative

genomics will involve a new breakthrough for

microbial taxonomy and the current phylogenetic

backbone based on ribosomal sequences will be

carefully reviewed (Coenye et al. 2005). Never-

theless, at this point, the number of sequenced

genomes of type strains is still low and therefore

http://www.arb-silva.de/documentation/release-111/
http://www.bacterio.cict.fr/number.html
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the current possibilities for an in-depth taxo-

nomic study are sparse.

The responsible teams of the ARB, SILVA,

and LPSN projects (www.arb-home.de, www.

arb-silva.de, and www.bacterio.net) together

with the journal Systematic and Applied Micro-

biology (SAM) started the “All-Species Living

Tree Project” (LTP; http://www.arb-silva.de/pro-

jects/living-tree), a project conceived to provide

a tool especially designed for the microbial tax-

onomist scientific community (Yarza et al. 2008).

The main objectives considered so far are (1) pro-

vide a curated 16S and 23S rRNA gene database

for the type strains of all species with validly

published names; (2) set up an optimized and

universally usable alignment; (3) reconstruct reli-

able phylogenetic trees with all the type strains;

(4) maintain the database, alignments, and trees

through regular updates including the new validly

published taxa and their respective 16S and 23S

rRNA gene sequences; and (5) investigate, with

the use of the database, fundamental aspects

about taxonomy of Bacteria and Archaea such

as phylogenetic thresholds in new taxa circum-

scriptions, coherence of current taxonomy by

means of phylogenetic schemes, and relevance

of the ribosomal RNA genes in taxonomic

studies.
Creation and Maintenance of LTP
Releases

LTP Datasets

First LTP datasets (release LTPs93 for SSU

(Yarza et al. 2008), release LTPs102 for LSU

(Yarza et al. 2010)) were prepared following six

main steps:

1. Set up a list of candidate sequences. An initial

sequence dataset consisted on a subsample of

the SILVA database, filtering by “type” (T) or

“cultured” (C) strains; this information mainly

came from StrainInfo.

2. Set up a list of species names. In parallel we

built a comprehensive, updated, and

nonredundant (i.e., free of synonyms and

according to latest valid nomenclature) list of

validly published species and subspecies
names from LPSN. When a species is divided

into subspecies, we substituted the original

species name by that of the subspecies (e.g.,

Staphylococcus sciuri subsp. sciuri instead of

Staphylococcus sciuri). We avoided the

“Candidatus” names (e.g., “Candidatus

Aciduliprofundum boonei”), Cyanobacteria
not validly published under the Bacteriologi-

cal Code (e.g., Anabaena oscillatorioides),

and later heterotypic synonyms (e.g., Pseudo-
monas chloritidismutans).

3. Manual cross-check. Then, each entry from

our initial list of sequences was assigned to

a species name by manually examining the

companion contextual metadata. This process

had to be done manually given the often out-

dated, mistaken, or absent taxonomic informa-

tion such as the organism name or the strain

numbers.

4. Quest for missing type strains. We realized

that not all species names were represented

in the list of sequences. Then, we inverted

the process by searching in resources like

EMBL, Bergey’s Outlines, issues of the Inter-

national Journal of Systematic and Evolution-

ary Microbiology (IJSEM), etc. with the aim

to find a good-quality sequence entry for each

missing type strain.

5. “Orphan” species recognition. Finally, we got

a group of type strains whose 16S/23S rRNA

genes had never been sequenced or that the

existing sequences were of too low quality to

be considered for the project (i.e., in terms of

sequence length, number of ambiguities, etc.).

We called them “orphan” species. The LTP

project together with eleven international cul-

ture collections has driven the sequencing of

these “orphan” species through the SOS ini-

tiative (Yarza et al. 2013).

6. Keep one sequence per species. On the other

hand, the list of type-strain sequences was

redundant in the sense that one single type

strain could be represented by multiple

sequence entries. This is the case of multiple

independent sequencings and submissions, or

the existence of several sequences due to mul-

tiple copies of the ribosomal operon. The aim

of the LTP is, whenever possible, to keep one

http://www.arb-home.de/
http://www.arb-silva.de/
http://www.arb-silva.de/
http://www.bacterio.net/
http://www.arb-silva.de/projects/living-tree
http://www.arb-silva.de/projects/living-tree


All-Species Living Tree Project, Table 1 Summary of LTP releases. “Sync” fields correspond to IJSEM and EMBL

release dates. “Net increase” of a release is the number of new entries minus the number of deleted entries. “% incorrect”

refers to the percentage of new entries whose INSDC records carried incorrect information in the organism name field.

Averages include standard deviation

Release Type

IJSEM

sync

EMBL

sync

Total

entries

New

entries

Deleted

entries

Net

increase

%

incorrecta Average lengtha
Average

ambig.b

LTPs93 SSU Dec. 2007 Dec. 2007 6,728 6,728 0 6,728 22 1,465.0 � 51.2 0.10 � 0.26

LTPs95 SSU Jun. 2008 Jun. 2008 7,006 299 21 278 45 1,446.0 � 46.3 0.04 � 0.11

LTPs100 SSU Aug.

2009

Jun. 2009 7,710 750 46 704 50 1,448.0 � 54.2 0.03 � 0.11

LTPs102 SSU Feb. 2010 Nov.

2009

8,029 363 44 319 58 1,453.6 � 52 0.33 � 0.12

LTPs102 LSU Feb. 2010 Nov.

2009

792 792 0 792 6 2,866.1 � 177.6 0.02 � 0.11

LTPs104 SSU Dec. 2010 May 2010 8,545 545 29 516 74 1,444.6 � 62 0.27 � 0.11

LTPs106 SSU May 2011 Dec. 2010 8,815 279 9 270 77 1,445.9 � 51.1 0.03 � 0.12

LTPs108 SSU Dec. 2011 Jun. 2011 9,279 490 26 464 60 1,455.4 � 51.9 0.02 � 0.09

aAverage length for the “new entries”
bAverage percentage of ambiguities for the “total entries”
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sequence per type strain in order to maintain

simplicity, avoid confusion, and improve tree

navigation and database usability. In general,

the best quality available (including manual

inspection of the alignment) was selected for

the project and, in case of doubt, the earliest

submission to an INSDC partner (www.insdc.

org). From release LTPs102 (Yarza

et al. 2010), when multiple paralogues exist

due to rRNA operon copy number, several

copies are kept if they show less than 98 %

sequence identity (see below for further

details).

LTP is maintained by a scrutiny of the new

described species, nomenclatural changes, taxo-

nomic notes, and opinions that are monthly

published in the IJSEM journal. Their respective

16S and 23S rRNA gene sequence entries are

acquired from the latest SILVA release and

appended to the existing LTP database. There-

fore, SILVA’s Reference (Ref) ARB databases

(http://www.springerreference.com/docs/html/

chapterdbid/304116.html) serve as template

for the new LTP-ARB databases. Until now

(December 2012) one LSU-based and seven

SSU-based LTP releases have been produced

(Table 1). New species are incorporated into

the database only if they account a good-

quality sequence existing in the respective

SILVA release. Certain entries can be deleted
if their corresponding species names are seen

to be later heterotypic synonyms, if they

become rejected, or as a matter of taxonomic

opinions. Sequence entries existing in an LTP

database can also change by means of their

metadata. Thus, for example, new combina-

tions (i.e., a type strain which changes its

name due to reclassification) or subdivision of

a species into subspecies leads to an entry

modification at its taxonomic information

fields.

Inaccurate or Mistaken Metadata

Inaccurate sequence-associated metadata tend to

happen in more than 50 % of the new added 16S

rRNA entries (Table 1). Often, these “mistakes”

consist on a lack of entries’ updating tasks at the

time of their first appearance in a scientific pub-

lication. It mainly occurs in taxonomy-associated

information fields. To prove the uniqueness of a

new species and to name it take time and, in the

meanwhile, sequences are quickly produced

and easily submitted to nucleotide databases.

Most often, these submissions only show

genus specifications, for example, sequence

entry GU808562 appears as “Hymenobacter sp.

HMD1010” but its real name is Hymenobacter

yonginensis. Indeed, a Bacteriological Code-

compliant (Lapage et al. 1992) nomenclature

may be somewhat tricky and is frequent to

http://www.insdc.org/
http://www.insdc.org/
http://www.springerreference.com/docs/html/chapterdbid/304116.html
http://www.springerreference.com/docs/html/chapterdbid/304116.html
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consider several Latin terms and derivations until

one species name is finally accepted by authors

and reviewers. Unavoidably, this bad-quality

information is propagated from INSDC databases

(primary sources) to other technological services

like dedicated ribosomal databases (e.g.,

SILVA). Although extensive data curation is not

a task of primary sources of information, it would

be very beneficial that authors enhance their com-

mitment with the correctness of the metadata

provided (e.g., like the species name) or that

authors are forced to update their INSDC entries

prior to manuscript acceptation (recommended

action for scientific journals). Successively, this

rough data arrives finally to resources like LTP,

which have no choice but checking it carefully to

provide new informational fields with corrected

information; curated information can return back

to other resources of information.

Multiple Copies of the Ribosomal Operon

In 2010, a comprehensive study was conducted to

evaluate the intra-genomic variability of the 16S

rRNA gene on complete type-strain genomes

(Yarza et al. 2010). We observed that in very

unusual exceptions, the intra-genus (94.5 %;

Yarza et al. 2008) or intraspecies (98.7 %;

Stackebrandt and Ebers 2006) boundaries could

be exceeded within a single genome. In such

cases, the selection of one or another sequence

might seriously affect the interpretation of

a phylogenetic inference. However, despite the

fact that the vast majority of strains contain mul-

tiple copies of the rrn operon, only 2 % of them

reveal divergences beyond 2 % (30 nucleotides)

sequence identity. Thus, most likely, the selec-

tion of one or another copy should not affect the

phylogenetic reconstructions. Consequently,

starting from release s104 (Munoz et al. 2011),

the LTP database includes all paralogues with

higher divergences than 2 %. By now, it is the

case of three species: Haloarcula marismortui
ATCC 43049T, accession number AY596297,

with 5.7 % of maximum inter-operonic diver-

gence; Thermoanaerobacter pseudethanolicus
ATCC 33223T, accession number CP000924,

with 3.66 % of maximum inter-operonic diver-

gence; and Desulfitobacterium hafniense
DCB-2T, accession number CP001336, with

4.34 % of maximum inter-operonic divergence.

Sequence Quality in LTP Datasets

It has been suggested that sequences produced for

taxonomic purposes should be equal or larger

than 1,450 bases with less than 0.5 % ambiguities

(Stackebrandt et al. 2002). Reason is that infor-

mative content of a molecular clock is linked to

the total number of its variable positions (Ludwig

and Klenk 2001). Statistics derived from LTP

datasets indicate that in general, sequence quality

is acceptable for in-depth phylogenetic studies

(~1,455 bases and 0.02 % ambiguities for

LTPs108; Table 1). Figure 2 shows annual vari-

ation of gene sequence length and percentage of

ambiguities. Quality increase is mainly observed

in terms of ambiguities reduction, probably

related to amelioration of sequencing techniques.

In any case, the completion of more full genome

sequences of type strains will substantially

increase the sequence quality (indicated by

these two parameters) in the LTP database.

Researchers should be encouraged to complete

50 ends of 16S rRNA gene sequences, as first

250 bases contain hypervariable regions V1 and

V2 which play an important role in comparisons

between highly related organisms (Chakravorty

et al. 2007).

Curated Metadata Introduced by the LTP

In addition to regular fields provided by the

ARB-SILVA databases, sequence entries include

now the following LTP-specific metadata fields:

1. fullname_ltp: corrected species name

according to LPSN (http://www.bacterio.net).

2. rel_ltp: name of the LTP release where

a sequence entry appeared for the first time.

3. hi_tax_ltp: name of the family where the taxon

is classified. For unclassified genera, the name

of the next available higher taxon above genus

(e.g., “Acidobacteria” for Bryobacter
aggregatus).

4. type_ltp: type species receive the label “type

sp.” in this field.

5. riskgroup_ltp: risk-group classification of

microorganisms risk-group classification of

microorganisms obtained from the DSMZ

http://www.bacterio.net/
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bution of the 16S rRNA gene sequence length and % of

ambiguities in the 9,279 type-strain sequences

corresponding to LTP release s108. Gene sequence length

is given by the SILVA parameter “nuc_gene_slv” which

cuts off the bases at the extremes when beyond the

E.coli’s16S rRNA gene limits. Percentage of ambiguities

is given by the SILVA descriptor “ambig_slv”
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(Deutsche Sammlung von Mikroorganismen

und Zellkulturen), according to the Federal

Institute for Occupational Safety and Health

(BAuA) in Germany.

6. tax_ltp: taxonomic classification into higher

taxonomic ranks according to LPSN (http://

www.bacterio.cict.fr/classifphyla.html).

7. url_lpsn_ltp: it contains the variable part of

the URL leading to the LPSN’s species file

(e.g., http://www.bacterio.net/bryobacter.html).

Alignments and Phylogenetic Trees

Setting up universal alignments is a key step in

order to achieve optimal and comparable phylo-

genetic reconstructions. It has been one of the

constant motivations of Wolfgang Ludwig and

co-workers who dealt with the huge task of pre-

paring common and reliable alignment of ribo-

somal SSU and LSU sequences of Bacteria,

Archaea, and Eukarya (Ludwig and Schleifer

1994). They found out that secondary structure

formations such as loops and helices occurred at

the same relative positions along the molecule.

This helped to refine the alignments because
variable stretches, with low sequence similarities,

could be optimally positioned by recognizing

functional homology (due to evolutionary pres-

sure) and functional stability of helices (due to

chemical stability of base pairs’ bounds). A core

dataset of sequences with highly curated align-

ments was incorporated into the SILVA system

so new added sequences can be automatically

aligned using this “seed alignment” as a reference

(Ludwig et al. 2004; Pruesse et al. 2007). Period-

ically more and more manually curated

sequences are added into the seed which

improves its quality over time.

Although all new sequences incorporated into

the LTP come from an ARB-SILVA database,

they are again manually revised to further correct

misplaced bases and to check highly variable

regions. Before tree calculation, the complete

alignment is shifted using maximum frequency

filters (Table 2) that remove dubious orthologous

positions caused by sequencing errors and

hypervariability. Typically, LTP phylogenetic

trees are calculated using the 40 % maximum

frequency filter.

http://www.bacterio.cict.fr/classifphyla.html
http://www.bacterio.cict.fr/classifphyla.html
http://www.bacterio.net/bryobacter.html
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Filter name Start position Stop position %mina %maxa No. of positionsb

LTPs108_ssu_10 0 50,000 10 100 1,433

LTPs108_ssu_20 0 50,000 20 100 1,433

LTPs108_ssu_30 0 50,000 30 100 1,432

LTPs108_ssu_40 0 50,000 40 100 1,390

LTPs108_ssu_50 0 50,000 50 100 1,288

aMinimum and maximum sequence identity. For tree reconstructions, only columns are taken into account if they have a

positional conservation above the respective minimum values
bNumber of homologous positions (columns) taken into account for tree reconstructions
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The first 16S rRNA-based phylogenetic tree

was calculated for the release LTPs93 (Yarza

et al. 2008). The sequence dataset consisted of

6,728 type-strain sequences plus 3,247

supporting sequences belonging to non-type

strains used to reinforce underrepresented groups

and to stabilize the topology. The multiple align-

ment of 9,975 16S rRNA gene sequences was

submitted to different treeing methodologies

including neighbor-joining, maximum likeli-

hood, and maximum parsimony, all tested with

several filters (30 %, 40 %, and 50 % maximum

frequency filters) and all implemented in the

ARB software package (Ludwig et al. 2004).

A high degree of congruence was observed

among them. The tree considered as optimal

was a 40 %-filtered maximum likelihood recon-

struction calculated using the RAxML algorithm

(Stamatakis 2006), with the GTRGAMMA cor-

rection, with 100 bootstrap replicates, in a 5-node

and 20-processor parallel environment. The last

de novo phylogenetic reconstruction appears in

the release LTPs108 and was similarly calcu-

lated; tree calculation was run with a dataset of

12,166 16S rRNA gene sequences.

The phylogenetic tree calculated using the 23S

rRNA gene was particularly challenging due to

data shortage in many groups. In order to set up

a reliable phylogeny based on 23S rRNA data, we

defined a core dataset made of high-quality

sequences (type and non-type strains). The strin-

gent quality filtering approach ended with around

2,000 high-quality and nonredundant LSU

sequences. This dataset was submitted to

a maximum likelihood reconstruction in combi-

nation with a 50 % maximum frequency filter

allowing 2,463 positions of the entire alignment.
The missing partial or lower-quality type-

strain sequences were added to the tree using

the ARB parsimony tool with the option for

keeping the initial topology while inserting

additional data.

The groups shown in the trees are defined by

recognizing the type members and according to

the taxonomic classification. The trees are care-

fully compared against previously reported topol-

ogies and current taxonomic classifications

(Yarza et al. 2010). All the additional supporting

sequences used to reconstruct the phylogeny are

removed from the final tree by keeping its topol-

ogy intact. Within the ARB database, the type

species are labeled with a distinct color for easy

recognition and tree handling.
Files Provided by the LTP

As a taxonomic tool, the LTP must be understood

as a collection of reference materials, all publicly

available at the project’s Web page (http://www.

arb-silva.de/projects/living-tree), including:

1. Release documentation: (I) readme file with

a release description and (II) PDF document

describing the metadata fields introduced by

the LTP

2. Tables: (I) new entries with outdated submis-

sion names and (II) list of changes in the

dataset: added/deleted/modified entries

3. Export filter: ARB-export filter (.eft format) to

extract data from LTP-ARB databases

4. Databases: (I) complete ARB databases

including sequences, alignments, metadata,

filters, and trees and (II) datasets in CSV for-

mat including LTP metadata

http://www.arb-silva.de/projects/living-tree
http://www.arb-silva.de/projects/living-tree
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5. Alignments: (I) gapped exports in multi-

FASTA format and (II) compressed exports

in multi-FASTA format

6. Phylogenetic trees: (I) collapsed overviews in

PDF format showing the distinct phyla,

(II) full SSU (more than 80 pages long) and

LSU trees in PDF format, and (III) full trees in

NEWICK format, including group names and

branch lengths
Side Research

Sequencing the Orphan Species

Initiative (SOS)

The understanding that around 6 % of all classi-

fied species were missing from the ribosomal

SSU sequence catalogues motivated us to start

the “Sequencing the Orphan Species” (SOS) ini-

tiative (Yarza et al. 2013). During 3 years of

work, the LTP team coordinated a network of

12 partner researchers and culture collections

(ATCC, BZF, CECT, CIP, CCUG, DSMZ,

JCM, ICMP, BCCM/LMG, MMG, NBRC,

NCCB) in order to improve this situation by

(re)sequencing the 16S rRNA gene of the

“orphan” species. As a result, 351 type strains

appear represented now by a good-quality SSU

gene sequence in the databases. They comprise

representatives of 14 bacterial and archaeal

phyla, 76 type species, and 78 pathogenic spe-

cies. However, 201 type strains could not be

accessed as cultivable strains were not available

at recognized culture collections. They represent

10 phyla and 17 type species.

Taxonomic Boundaries

In order to understand how the higher taxonomic

categories could be circumscribed by means of

a sequence identity threshold, we performed

a statistical procedure to get the lowest similarity

found within the members of a certain taxon

(Yarza et al. 2008, 2010). By taking into account

all the taxa at a particular taxonomic rank, we

obtained general lower cutoff values of sequence

identity for genus, family, and phylum based on

16S rRNA and 23S rRNA. In general, minimum

16S rRNA gene sequence identities of
94.9 % � 0.4, 87.5 % � 1.3, and 78.4 % � 2.0

lead to the circumscription of a new genus, fam-

ily, and phylum, respectively. For 23S rRNA

genes, these values are slightly different:

93.2 % � 1.3 (genus), 87.7 % � 2.5 (family),

and 75.3 % (phylum). As shown by the low

errors, historically used criteria for genera, fam-

ilies, and phyla are quite homogeneous and do not

lead to unambiguous circumscriptions. These

cutoffs should be used with caution and always

as a complementary approach. They are espe-

cially recommended for prospective studies in

clone libraries and as additional support for the

circumscription of new taxa or emendation of

existing ones.
Summary

SSU and LSU databases made by the All-Species

Living Tree Project (LTP; http://www.arb-silva.

de/projects/living-tree) provide high-quality

nearly full-length sequences of the type strains

of all Archaea and Bacteria with validly

published names. Setting up a type-strain

sequences database included the sieving of the

public DNA databases whose sequence entries

often appeared outdated or mistaken at their tax-

onomic metadata. It involved the initial manual

cross-check of nearly 14,000 SSU and 6,000 LSU

sequence entries against the catalogue of distinct

species with validly published names retrieved

from LPSN. Databases are complemented with

manually curated metadata, manually curated

alignments, and state-of-the-art phylogenetic

reconstructions (in contrast to other similar

resources like the EzTaxon (Santamaria

et al. 2012)). The LTP team wants to remark

that the aim of the project is not to reconstruct

the currently described species genealogy with

total fidelity but to provide a curated taxonomic

tool for the scientific community. Our small but

very representative SSU and LSU datasets may

be used as a reference for identification and clas-

sification purposes in several fields of applica-

tion, for example, facilitating the collection of

sequences for the reconstruction of taxa genealo-

gies (Cousin et al. 2012), enabling fast and

http://www.arb-silva.de/projects/living-tree
http://www.arb-silva.de/projects/living-tree
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reliable taxonomic affiliations in rRNA surveys

(Santamaria et al. 2012), or serving as reference

datasets for testing bioinformatic procedures

(Mizrahi-Man et al. 2013).
Cross-References

▶Culture Collections in the Study of Microbial

Diversity, Importance
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Definition

antiSMASH (Medema et al. 2011) is a web server

and a stand-alone software to identify, annotate,

and compare gene clusters that encode the bio-

synthesis of secondary metabolites in bacterial

and fungal genomes. antiSMASH offers a wide
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range of options to identify and analyze biosyn-

thetic gene clusters, including protein domain

analysis of the large multi-domain enzymatic

assembly lines involved, prediction of core

chemical structures of their end compounds, and

multiple cluster alignments to a database of all

currently sequenced gene clusters.

The antiSMASH web server can be found at

http://antismash.secondarymetabolites.org.
Introduction

Microbial secondary metabolites are of great

interest to society because of their diverse bio-

logical activities that are interesting starting

points for drug development. Many of them are

already used as antibiotics, antitumor agents, or

cholesterol-lowering drugs (Hutchinson and

McDaniel 2001; Fischbach and Walsh 2009).

Automated computational identification of gene

clusters in newly sequenced genomes is becom-

ing a cornerstone of genome-based drug discov-

ery, due to the affordability of sequencing large

numbers of genomes from microorganisms that

potentially produce novel secondary metabolites

(Walsh and Fischbach 2010).
Functionalities

Gene Cluster Detection

antiSMASH detects a wide range of different

types of biosynthetic gene clusters, including

those encoding the pathways toward polyketides

(PKs), nonribosomal peptides (NRPs), terpenoids,

ribosomal peptides, aminoglycosides, and

non-NRP siderophores. The detection is

performed by screening the gene sequences from

the input against a library of profile Hidden Mar-

kovModels (pHMMs) (Eddy 2011), each ofwhich

is specific for genes characteristic for a certain

gene cluster type, and passing the results through

a hierarchical logic filter. A second detection algo-

rithm is also run, which detects genomic regions

that are enriched in Pfam domains (Finn

et al. 2010) linked to secondary metabolism.
Protein Domain Analysis of Polyketide

Synthases and Nonribosomal Peptide

Synthetases

PKs and NRPs are synthesized by large

megasynthase enzymes containing a multitude

of protein domains, such as condensation

(C) and adenylation (A) and PCP-binding

domains in nonribosomal peptide synthetases

(NRPSs), ketosynthase (KS), and acyltransferase

(AT) and ACP-binding domains in polyketide

synthases (PKSs) (Fischbach and Walsh 2006).

antiSMASH contains a library of pHMMs that

can recognize all these protein domains as well

as distinguish between various subtypes of these

domains. In the antiSMASH output, the domain

structures of any NRPSs or PKSs encoded in

a gene cluster are visualized, and several down-

stream analysis options are provided for each

domain (Fig. 1).

Core Chemical Structure Prediction

When a secondary metabolite biosynthesis

gene cluster is detected, one of the key questions

of course is what kind of chemical structure it

produces. For NRPs and PKs, antiSMASH

is able to already give a first approximation of

the core chemical structure of the end compound

(Fig. 2). To do so, it uses several substrate

specificity prediction methods (Yadav et al.

2003; Minowa et al. 2007; Röttig et al. 2011)

that are based on the amino acid sequences of the

A domains of NRPSs and the AT domains of

PKSs. To infer the sequential arrangement of

the predicted substrates of the A/AT domains

in the resulting polyketide or peptide, the

order of the PKS enzymes in a multimodular

assembly line is predicted using their estimated

docking domain binding affinities (Yadav

et al. 2009) or, alternatively, colinearity of the

PKS or NRPS genes with their enzymes is

assumed.

Comparative Analysis of Gene Clusters

In order to understand the architecture and func-

tion of a secondary metabolite biosynthesis

gene cluster, much is gained by examining it

within its evolutionary context through the

http://antismash.secondarymetabolites.org
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comparison with related gene clusters from spe-

cies across the tree of life. To facilitate this,

antiSMASH hosts a regularly updated database

of gene clusters it has detected in all nucleotide

sequences present in GenBank. antiSMASH

then combines multiple BlastP runs into

a comparative search of every identified gene

cluster against all other known gene clusters.

This is used to generate a multiple gene cluster

alignment (Fig. 3), which can aid the biologist

in assessment of the novelty of the gene cluster,
detecting the borders of the gene cluster and

identifying the conserved multigene modules

that constitute its building blocks.

Secondary Metabolism-Specific Gene

Family Analysis

Most genes involved in the biosynthesis of sec-

ondary metabolite have (close) homologues

with similar functions in other secondary

metabolite biosynthesis gene clusters. This can

be used to infer the functions of the genes



antiSMASH, Fig. 3 Example of a multiple gene cluster alignment by antiSMASH, showing identified homologue

clusters of the query gene cluster
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residing in the biosynthetic gene cluster based

on sequence homology. antiSMASH simplifies

this process by categorizing the genes of

every identified gene cluster into secondary

metabolism-specific gene families and automat-

ically generating approximate phylogenetic

trees of each gene in the context of its gene

family.

Genome-Wide Pfam and Blast Analysis

Finally, antiSMASH also offers the possibility

(transferred from CLUSEAN; Weber et al.

2009) to do a comprehensive analysis of all

genes within a submitted genome, identifying
Pfam matches and running Blast for each gene

against a database of all bacterial and fungal

protein sequences.
Stand-Alone Version

Stand-alone versions of antiSMASH are avail-

able for download for Windows, Mac OS X, and

Ubuntu Linux. Additionally, several related

scripts are available from the antiSMASH

website. An EMBL formatting script can be

downloaded to format raw FASTA sequences

together with a text file containing gene
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annotations into an EMBL file that can be sub-

mitted to antiSMASH. Also, a script is available

which allows running antiSMASH on multiple

files, in batch mode.
Development

antiSMASH is still under active development.

Some features projected for the next release are

batch input on the web server, protein sequence

input, and subclass prediction for enzyme classes

like terpene synthases and trans-AT PKSs.

Feature requests, bug reports, or other questions/

suggestions can be sent to the development team

via the online contact form on the antiSMASH

website.
Related Tools

Several other software tools for the study of sec-

ondary metabolism have been published. For

example, ClustScan (Starcevic et al. 2008) and

NP.searcher (Li et al. 2009) can both be used to

detect bacterial polyketide and NRP biosynthesis

gene clusters. The same is the case for CLUSEAN

(Weber et al. 2009), the pipeline which has now

been integrated entirely into antiSMASH. For the

analysis of fungal sequences, SMURF (Khaldi

et al. 2010) offers a gene cluster detection potential

similar to that of antiSMASH. Structural analysis

of polyketide synthases can be performed with

the SBSPKS suite (Anand et al. 2010). Finally,

draft genomes with many small contigs and

metagenomes with fragments too small for gene

cluster detection can be scrutinized with NaPDoS

(Ziemert et al. 2012) in order to find protein

domains related to secondary metabolite biosyn-

thesis and analyze these phylogenetically.
Summary

antiSMASH is an easy-to-use web server for the

detection of secondary metabolite biosynthesis
gene clusters. Various functionalities –

comparative, phylogenomic, enzymatic, etc. –

are integrated in one single pipeline, making it

straightforward for genomicists and natural prod-

uct researchers to study the biosynthetic potential

of any organism.
Cross-References
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Synonyms

Function-based screening, Metagenomic biomol-

ecule, Metagenomic library, Metagenomics,

Next-generation sequencing, Sequence-based

screening
Definition

Metagenomics comprises the culture-

independent and DNA-based analysis of entire

microbial communities and complements

cultivation-based analysis of microorganisms.

Metagenomic approaches allow comprehensive

insights into phylogenetic and functional diver-

sity of complex microbial consortia present in

moderate as well as extreme environments on

Earth. The introduction of next-generation

sequencing technologies enabled cost-effective

high-throughput sequencing of metagenomic

DNA molecules resulting in increased resolution

of microbial community analysis. In addition,

screening of metagenomic libraries led to the

identification of numerous novel biomolecules

from various environments such as soil, seawater,

or glacial ice.
Introduction

The immensely manifold microbial niches on

Earth comprise an extraordinarily high abun-

dance and diversity of prokaryotic and eukaryotic

microorganisms. The human body is colonized

by a wide variety of microbes representing all

three domains of life. The entirety of these micro-

bial cells (the human microbiome) that is often

described as an additional organ exceeds the

number of human cells by at least an order of

magnitude and outnumbers human genes bymore

than 100-fold (Li et al. 2012; Weinstock 2012).

Also in extreme environments such as hydrother-

mal vents, sea ice, or deep inside the Earth’s

crust, various microorganisms could be detected.

For example, a phylogenetically diverse and met-

abolically active microbial assemblage was iden-

tified in the brine of an ice-sealed Antarctic lake

(Murray et al. 2012). The microorganisms

existing in this aphotic ecosystem withstand

a temperature of �13 �C, anoxic conditions, and
high salinity.

Currently, less than 1 % of the microorgan-

isms on Earth are readily culturable under labo-

ratory conditions. To investigate the high

percentage of uncultured microbes, different



Approaches in Metagenome Research: Progress and Challenges 39 A

A

metagenomic approaches can be routinely

applied. Metagenomics allows the direct study

of the collective genomes present in microbial

ecosystems (Handelsman 2004). This approach

significantly expanded our knowledge on micro-

bial phylogenetic and functional diversity and

enabled the discovery of numerous previously

unknown biomolecules. In the recent history

of metagenomics, especially next-generation

sequencing techniques, allowing cost-effective

and rapid decoding of metagenomic DNA, were

applied to analyze microbial populations. As

a consequence, a number of bioinformatic tools

to evaluate and compare comprehensive high-

throughput metagenomic data have been devel-

oped in the last few years.

In this review, an overview of traditional and

recent metagenomic research approaches, associ-

ated future challenges, and a short description of

related meta-omic studies will be given.
Microbial Phylogenetic and Functional
Diversity Determination

Small-subunit rRNA genes, universally distrib-

uted across prokaryotic and eukaryotic organ-

isms, can be considered as evolutionary clocks

enabling phylogenetic analysis. Most commonly,

metagenome-derived 16S rRNA and 18S rRNA

genes are used to phylogenetically characterize

microbial communities. Furthermore, other con-

served genes such as recA, rpoB, HSP70, or

EF-Tu allow phylogenetic assignments (Ludwig

and Klenk 2001). These genes can be investi-

gated by applying traditional molecular

approaches including fingerprinting methods

such as denaturing gradient gel electrophoresis

and terminal restriction fragment length

polymorphism analysis or Sanger sequencing.

A significant drawback of the Sanger sequencing-

based analysis of microbial communities is the

time-consuming and labor-intensive nature of

this approach, as well as the required construction

of clone libraries.

More recently, next-generation sequencing

platforms were used to decode metagenomic

DNA. Currently, the following next-generation
sequencing technologies are available: sequencing

by ligation (SOLiD – Applied Biosciences/Life

Technologies), sequencing by synthesis (Solexa/

Illumina), semiconductor chip sequencing (Ion

Torrent/Life Technologies), pyrosequencing

(454/Roche), and single-molecule sequencing

(Oxford Nanopore Technologies, SMRT – Pacific

Biosciences). Compared to Sanger sequencing,

these cloning-independent techniques allow the

generation of far more sequence data per run.

Thus, microbial diversity comparisons between

different environmental samples, requiring repli-

cated data and statistical analysis, as well as

deep analysis of highly complex microbial com-

munity structures, are possible. Currently, often

tens to hundreds of thousands partial metagenomic

small-subunit rRNA gene sequences are produced

using next-generation sequencing platforms.

In a recent pyrosequencing-based 16S rRNA

gene survey, a total of 41,141 bacterial and

30,651 archaeal sequences were analyzed to

investigate prokaryotic diversity in Yunnan

and Tibetan hot springs (Song et al. 2013).

To (pre-)process small-subunit rRNA gene

sequence datasets, various tools, software pack-

ages, analytical web servers, and virtual instances

can be used (Gonzalez and Knight 2012).

The QIIME package (Caporaso et al. 2010)

provides workflows to extensively analyze

high-throughput amplicon-based sequence data

starting with raw sequences. Nevertheless, the

avoidance of marker gene amplification bias by

applying direct sequencing of metagenomic

DNA instead of amplicon-based sequencing

allows the most exact taxonomic assessment

(Simon and Daniel 2011). For further improve-

ment of microbial diversity and abundance esti-

mation, Kembel et al. (2012) recently introduced

an approach, which incorporates 16S rRNA gene

copy number information.

To identify the taxonomic affiliation of all

sequences derived from metagenomic DNA,

a process called binning can be carried out.

Within binning procedures, sequences of

a metagenomic dataset sharing the same taxo-

nomic origin are “binned” (grouped).

Composition-based binning is based on con-

served genomic features such as dinucleotide
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frequencies, GC content, and synonymous codon

usage, whereas similarity-based binning makes

use of sequence homology. Among others,

PhyloPythiaS, introduced by Patil et al. (2011),

represents an appropriate application to perform

composition-based binning. With respect to

similarity-based binning, typically searches

against reference databases (e.g., National Center

for Biotechnology Information databases) are

performed using alignment tools such as

BLAST+ (Camacho et al. 2009). Subsequently,

BLAST results can be interpreted by applying

software such as MEGAN (Huson et al. 2011).

Due to the often very high diversity of micro-

bial communities, assembly of metagenome-

derived sequences is challenging. In a recent

metagenomic survey of honey bee gut

microbiota, de novo assembly of 81,343,096

Illumina paired-end reads resulted in 54,700 scaf-

folds of contigs (total length, 76.6 Mb) (Engel

et al. 2012). Similar to the approach conducted by

Engel et al. (2012), single-genome assemblers

were used for metagenome assembly with modi-

fied settings. Recently, a single-genome assem-

bler (Velvet) has been extended to enable the

assembly of short metagenomic reads (Namiki

et al. 2012). This new de novo assembler

(MetaVelvet) generated significantly higher N50

scores, a parameter that evaluates assembly qual-

ity, than analyzed single-genome assemblers for

simulated datasets.

Based on assemblies or individual

metagenomic sequence reads, gene prediction,

annotation, and reconstruction of pathways can

be carried out to assess the functional potential

encoded by metagenomes. Consecutive

processing of these steps is provided by

a number of web-based tools like MG-RAST

(Meyer et al. 2008). These tools utilize resources

of reference databases such as SEED (Overbeek

et al. 2005) and KEGG (Kanehisa et al. 2008)

to link biological information to predicted

genes. In a recent survey including metagenomic

methods, the functional potential of Arctic

Thaumarchaeota was investigated (Alonso Sáez

et al. 2012). By analyzing a metagenome derived

from a Southeast Beaufort Sea sample collected
during Arctic winter, Alonso Sáez et al. (2012)

identified thaumarchaeal pathways for ammonia

oxidation. A number of other Thaumarchaeota
are also capable of ammonia oxidation, but unex-

pectedly these Arctic thaumarchaeal organisms

harbored a high abundance of genes involved in

urea transport and degradation.
Metagenomic Biomolecule Discovery

To access the large pool of unexplored biomole-

cules, microbial community DNA has been

extracted and metagenomic libraries have been

constructed. Small-insert and large-insert

metagenomic libraries can be screened to identify

novel biomolecules. For the construction of

small-insert libraries containing metagenomic

DNA � 15 kb, plasmids are appropriate vectors,

whereas cosmids, fosmids, and bacterial artificial

chromosomes (BACs) can be used for cloning of

large metagenomic DNA molecules (cosmids

and fosmids, �40 kb; BACs, 100–200 kb).

Metagenomic libraries from different microbial

habitats such as glacier ice, digestive tracts of

animals, soil, hot springs, or seawater have

already been constructed and successfully

screened for novel biomolecules (see, e.g.,

Nacke et al. 2012). Some of these biomolecules

exhibit valuable characteristics for industrial

applications such as thermal stability,

halotolerance, and activity under acidic or alka-

line conditions. In a recent metagenomic

approach, Sulaiman et al. (2012) isolated a gene

encoding a novel cutinase homolog designated

LC-cutinase with polyethylene terephthalate-

degrading activity from a leaf-branch compost

fosmid library. The enzyme showed higher spe-

cific polyethylene terephthalate-degrading activ-

ity than previously reported bacterial and fungal

cutinases. Thus, LC-cutinase is a potent candi-

date for industrial applications, i.e., in textile

industry. In general, two different metagenomic

screening approaches for the identification of

novel biomolecules can be distinguished:

function-based screening and sequence-based

screening.
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Principle and Variations of
Function-Driven Screens

To perform function-driven screening, the

construction of small-insert or large-insert

metagenomic libraries is required. A broad array

of different function-based screening approaches

can be applied using these libraries. The pheno-

typic insert detection (PID) is the most frequently

applied screening strategy. Metagenomic library-

containing clones expressing target genes are

identified based on phenotypic characteristics.

This method has been applied to identify novel

lipolytic genes and gene families from German

forest and grassland soil samples using tributyrin

as a screening substrate (Nacke et al. 2011).

A total of 37 lipolytic clones, encoding novel

lipases and esterases, which could be assigned

to five different known families and two puta-

tively new families of lipolytic enzymes, were

identified by halo formation on indicator agar

plates. The potential to identify entirely novel

target genes is an important advantage of

function-driven screening approaches. Modu-

lated detection (MD) represents another

commonly applied strategy to perform function-

based screening. Only if a certain gene product is

expressed by a metagenomic library-containing

host strain, it can grow under selective condi-

tions. Recently, novel acid resistance genes

were derived from planktonic and rhizosphere

microbial communities of the Tinto River

(Spain) using this strategy (Guazzaroni

et al. 2013). Fifteen genes, mainly encoding

putative proteins of unknown function,

conferred acid resistance to the host strain

Escherichia coli. Moreover, substrate-induced

gene expression (SIGEX), product-induced gene

expression (PIGEX), and metabolite-regulated

expression (METREX) screening strategies

allow the identification of target genes from

metagenomic libraries (Simon and Daniel

2009). Recently, Wang et al. (2012) suggested

biosensor-based genetic transducer (BGT) sys-

tems as an alternative and sensitive approach to

screen for gene clusters whose expression pro-

duce small molecules that activate the employed
biosensors. Nevertheless, all of these function-

based screening approaches share one significant

disadvantage: the dependence of target gene pro-

duction on the expression machinery of the

metagenomic library host.
Principle and Variants of
Sequence-Based Screening

Conserved regions of genes or proteins enable

sequence-driven screening approaches. Based on

these regions degenerate primers can be designed

and fragments of target genes amplified. For

example, novel biphenyl dioxygenase DNA seg-

ments encoding active site residues were obtained

from polychlorobiphenyl-contaminated soils

using this strategy (Standfuß-Gabisch et al.

2012). After sequencing of an amplified partial

target gene, it can be decoded completely using

primer walking and extracted environmental DNA

or a metagenomic library as a template. In this

way, an entire xylose isomerase gene (xym1) has

been derived from a soil metagenomic library

(Parachin and Gorwa-Grauslund 2011). The gene

product of xym1 consisted of 443 amino acids and

was most similar (83 % identity) to a xylose isom-

erase from Sorangium cellulosum. Additionally,

novel complex polyketide and nonribosomal pep-

tide biosynthesis gene cluster that often exceed

average insert sizes of large-insert metagenomic

libraries can be discovered by using degenerate

primers and subsequent chromosome walking

(Piel 2011). The potential to identify genes of

interest even if they are not expressed in

a metagenomic library host represents a major

advantage of sequence-based screening, but only

novel variants of already-known gene or protein

families can be detected by this method.
Future Challenges in Metagenomic
Research and Related Meta-omic
Approaches

One of the major requirements to combine and

compare metagenomic studies conducted by
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research groups worldwide is the definition and

acceptance of minimum standards in experimental

design. The same applies to metatranscriptomics,

metaproteomics, and metabolomics. In this way,

comparison and combination of results obtained

from the different meta-omic approaches are fea-

sible. Metatranscriptomics, metaproteomics, and

metabolomics comprise the study of the collective

gene transcripts, expressed proteins, and metabo-

lites, respectively, generated by the microorgan-

isms within an ecosystem (Nacke et al. 2014;

Hettich et al. 2012; Patti et al. 2012). The conse-

quent application and combination of appropriate

meta-omic approaches will lead to an enormous

extension of knowledge on the gene structure,

diversity, activity, and responses of microbial

communities on an ecosystem level. Furthermore,

the rapid growth of meta-omic technologies will

continuously demand for progress in the field of

bioinformatics. Thus, further development and

linkage of meta-omic analysis tools will be impor-

tant in the future. In addition, the application and

improvement of culture-based methods will be

still valuable in the future to extend the number

of available reference genomes allowing mapping

of metagenomic data. In this context, the young

discipline of single cell genomics has potential to

play a complementary role by continuously con-

tributing novel reference genomes.
Summary

The introduction of metagenomics allowed

culture-independent analysis of microbial

populations in complex ecosystems. Subse-

quently, other culture-independent meta-omic

disciplines including metatranscriptomics,

metaproteomics, and metabolomics were

established. Metagenomics provided insights

into the enormous phylogenetic and functional

diversity of microbial communities within vari-

ous environments on Earth. The increasing num-

ber of next-generation sequencing technologies

led to a more comprehensive and cost-effective

assessment of the information encoded by

metagenomic DNA. Metagenomic approaches

comprising the construction and screening of
metagenomic libraries resulted in identification

of previously unknown biomolecules, including

biomolecules with industrially relevant

characteristics.
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Synonyms

Diversity, arbuscular mycorrhizal fungi, Cana-

dian Prairie, Chernozem, land use.
Definition

AM fungi are obligate plant symbionts that form

the phylum Glomeromycota. These fungi contrib-

ute to plant nutrient uptake, influence soil biotic

and abiotic environments, and provide important

ecosystem services. 454-pyrosequencing of

amplicons from metagenomic DNA revealed

the distribution of AM fungi in major Canadian

Chernozem great groups as influenced by land use

and crop management.
Introduction

AM fungi form a mycorrhizal symbiosis with the

roots of the majority of land plants. They have
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coevolved with plants over 450 Ma to produce

today’s mycorrhiza, which is an organ special-

ized in the extraction of soil nutrients. As such,

AM fungi are seen as a key stone of agricultural

sustainability (Garg and Chandel 2010).

World grain, pulse, and biofuel crop produc-

tion mainly occurs on deep (typically

>18–25 cm) warm-colored soils rich in humus

(>0.6 % organic carbon) and weatherable min-

erals, with high levels of base saturation (>50 %)

and calcium as the main exchangeable cation

(Durán et al. 2011). These soils have similar

properties but have different names in other soil

classification systems. They are Chernozems in

Canada, Ukraine, and Russia; Mollisols in the

USA and South America; Isohumosols or Black

Soils in China; and Chernozems, Kastanozems,

and Phaeozems according to the FAO (Liu

et al. 2012). These soils have typically developed

under condition of moisture deficit and grassland

vegetation in temperate regions around the globe.

They mainly occur in a band across Eastern

Europe and Central Asia, in northeast China,

from south-central Canada down to the Gulf of

Mexico, and over most of Uruguay and part of

Argentina.
Tackling the Complexity of Soil
Biodiversity

Soil hosts an extremely high level of microbial

diversity (Young and Crawford 2004). However,

high-throughput next-generation sequencing now

allows generation of the massive sequence data

required to characterize soil microbial diversity.

Amplicon sequencing is preferred over whole

genome sequencing for the study of the taxo-

nomic diversity of targeted microbial groups.

The 454 FLX and 454 FLX + technologies

allow the sequencing of DNA amplicons up to

400 and 800 bp in length, respectively. Such long

sequences contain sufficient taxonomic informa-

tion for the characterization of microbial commu-

nities and their use conveniently eliminates the

need for sequence assembly.

Pyrosequencing of amplicons and bioinfor-

matic analysis of sequence data yield the profile
of operational taxonomic units (OTU) of the tar-

get microbial group in a soil sample. The concept

of an OTU is useful in soil microbiology as the

majority of microbial species are still

undescribed. OTUs serve as a proxy for species

making it possible to measure and describe soil

microbial diversity. In addition, OTUs can be

identified by comparison with known sequences

in public databases such as GenBank and

MaarjAM. AM fungi have been difficult to

study due to their obligate biotrophy and inability

to grow in pure culture. However, polymerase

chain reaction (PCR) made possible the amplifi-

cation of DNA from their spores and enabled the

molecular characterization and classification of

taxa within the Glomeromycota (Schuessler

2013).

Fungal diversity is commonly assessed based

on the internal transcribed spacer (ITS) of the

ribosomal RNA gene. However, abundant SSU

rRNA gene sequences of AM fungi are found in

databases due to the traditional use of this region

for the Glomeromycota. Several primers sets pro-

ducing taxonomically informative amplicons

short enough for use with first- and next-

generation molecular techniques have been used

in ecological studies of AM fungi.

The AM fungi have a patchy distribution in

soil (Hart and Klironomos 2003). Thus in order to

capture their diversity, multiple samples must be

taken at a study site. A composite sample is

usually made by pooling and homogenizing all

the samples from a sampling site. The distribu-

tion of organisms varies with soil depth, thus

sampling depth also matters. The AM fungi are

normally found within the rooting depth.
Arbuscular Mycorrhizal Fungi in the
Canadian Chernozems

AM fungal communities in the Canadian Prairie

Chernozem soils are composed of a few dominant

and a large number of subordinate taxa. Less than

6 % of the AM fungal OTUs accounted for half of

all AM fungal reads (Dai et al. 2013). Across the

Canadian prairie landscape, the Glomeraceae

were the most abundant family, accounting for
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65 % of all AM fungal OTUs and 54 % of the AM

fungal reads. The Claroideoglomeraceae is sec-

ond in abundance with 25 % of all AM fungal

OTUs and 39% of the AM fungal reads. Diversis-

poraceae accounted for 8 % of the OTUs and 7 %

of the AM fungal reads. Paraglomaceae,

Gigasporaceae, and Archeosporaceae are poorly

distributed across the prairie landscape, and

Gigasporaceae and Archeosporaceae are rare.

In other regions, spore counts in grazed

Kastanozems of Inner Mongolia revealed that

the AM fungal communities resembled those

observed in Canadian Chernozems (Tian

et al. 2009). The Gigasporaceae are susceptible

to disturbance and largely absent in croplands,

which explains their greater abundance in

the Kastanozems than in the Canadian Prairie

Chernozems (Dai et al. 2012, 2013). Poorer

AM fungal diversity is reported from American

spore-based surveys of Mollisols under tallgrass

prairie cover where Paraglomaceae and

Archeosporaceae were undetected (Eom

et al. 2001; Bentivenga and Hetrick 1992).

Tallgrass prairies managed with fire were found

to be very highly dominated by the Glomeraceae

(Bentivenga and Hetrick 1992), underlining the

importance of land use in the structuring of AM

fungal communities.

AM fungi share root occupation with fungal

endophytes belonging to different taxonomic

groups. Non-AM fungal endophytes are particu-

larly abundant in temperate grasslands (Porras-

Alfaro et al. 2011). This observation triggered the

question as to whether AM fungi are at the end of

their range in dry areas.

This hypothesis was explored in the Canadian

Prairie using primers Glo1/NS31, which pro-

duced 18S rDNA amplicons of about 230 bp

(Yang et al. 2010). A succession of AM fungi

was detected as the soil dried from early to late

summer, suggesting that the adaptation of AM

fungi to soil moisture availability varies with

species. Glomus viscosum, Funneliformis

mosseae, and Glomus hoi were dominant in

early summer, under conditions of moisture suf-

ficiency, whereas the dominant AM fungal OTUs

in late season conditions (i.e., dry soil) belonged

to Glomus iranicum and Glomus macrocarpum.
This concurs with the previous observation of

differences in the seasonal pattern of sporulation

of different AM fungal species (Dhillion and

Anderson 1993). Seasonal variation of AM

fungi in the North American Great Plains was

also described as the replacement of the fungi of

the order Helotiales by AM fungi as the season

unfolds in the North American Great Plains

(Jumpponen 2011).

The Chernozem great groups are distributed

along a gradient of precipitation radiating out-

ward from the US border in eastern Alberta, i.e.,

from the Brown soil zone through Dark Brown

and Black soils up to the Gray soil zone at the

fringe of the boreal forest. The lowest abundance,

richness, and diversity of AM fungi were

observed in the driest soil zone (Brown Cherno-

zem), which supported a negative impact of

moisture deficit on these fungi.

Soil moisture appears to be just one of several

factors that influence the composition of AM

fungal communities in Chernozem soils. Despite

the highest levels of precipitation in the Gray soil

zone, the highly productive Black soils harbor the

most abundant and diverse AM fungal communi-

ties (Dai et al. 2012). Black, Gray, Dark Brown,

and Brown soils had an average of 10.2, 7.1, 7.0,

and 6.2 AM fungal OTUs, respectively, and the

Shannon diversity index of these soil groups fol-

lows a similar trend. AM fungal communities in

Brown soils are characterized by a reduced rela-

tive abundance of Claroideoglomeraceae com-

pared to Black and Dark Brown soils. Other

important factors that influenced the abundance

of AM fungal OTUs were A horizon thickness

and physicochemical properties of the soils, such

as bulk density, Zn level, pH, electrical conduc-

tivity, and sulfur level.

Soils are classified based on their physical and

chemical properties. A soil type represents

a living environment inhabited by different AM

fungal communities. American Mollisols and

Alfisols contain distinct AM fungal spore assem-

blages (Ji et al. 2012). Similarly, Canadian Cher-

nozems and Podzols and even different great

groups of Chernozems contained distinct assem-

blages of AM fungal rRNA gene sequences

(Dai et al. 2013).
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Land use modifies the conditions of the soil

environment and the impact of land use on the

structure of AM fungal communities exceeds that

of soil type. In the Canadian Prairie, roadsides

host a higher level of AM fungal diversity than

cropland or natural areas (Dai et al. 2013). Road-

sides have higher soil moisture levels than crop-

land and most natural areas, further indicating

that water availability is an important determi-

nant of the abundance and structure of AM fungal

communities. Seven percent of the AM fungal

OTUs found across the prairie soil zones are

unique to croplands, whereas 14 % of the AM

fungal OTUs are specific to roadsides. Roadsides

and natural areas are dominated by an OTU

closely related to Claroideoglomus lamellosum,

C. etunicatum, and C. claroideum, which account

for 14 % and 19 % of all AM fungal reads.

In cropland, an OTU closely related to

Funneliformis mosseae accounted for as much

as 17 % of all AM fungal reads. The dominance

of F. mosseae in croplands of the Canadian prai-

rie is supported by studies based on metagenomic

methods (Ma et al. 2005; Sheng et al. 2012; Dai

et al. 2012, 2013) and on spore counts (Talukdar

and Germida 1993).

Crop management systems also have a strong

influence on the composition of AM fungal com-

munities in Chernozem soils. Organic systems

have been shown to support more abundant and

diverse AM fungal communities compared to

conventional systems (Dai et al. 2014). Organic

systems also promote greater proliferation of

Claroideoglomus and of incertae sedis taxa of

the Glomeraceae, currently referred to asGlomus

iranicum and Glomus indicum. However, these
Glomeraceae incertae sedis are seemingly para-

sitic as they were associated with reduced crop

growth and N and P uptake efficiency.
Summary

Metagenomic studies on the distribution of AM

fungi in Chernozems are extremely useful to

understand how the living soil provides ecolog-

ical services and supports the production of

food and bioproducts. Brown Chernozems are
relatively poor in symbiotic AM fungi and are

less hospitable to the Claroideoglomus than

other Chernozems, whereas Black Chernozems

are rich in AM fungal resources. The influence

of soil type on the composition of AM fungal

communities is relatively small compared to

that of land use type. Funneliformis have

a competitive edge and proliferate in conven-

tional crop production systems, whereas

Claroideoglomus and Glomeraceae incertae

sedis are favored in organic production systems.

These Glomeraceae incertae sedis, currently

known as the G. iranicum/G. indicum group,

are associated with reduced crop productivity

and nutrient uptake.
References

Bentivenga SP, Hetrick BAD. The effect of prairie man-

agement practices on mycorrhizal symbiosis.

Mycologia. 1992;84:522–7.

Dai M, Bainard LD, Hamel C, Gan Y, Lynch D. Impact of

land use on arbuscular mycorrhizal fungal communi-

ties in rural Canada. Appl Environ Microbiol.

2013;79:6719–29. doi:10.1128/aem.01333-13.

Dai M, Hamel C, Bainard LD, St. Arnaud M, Grant CA,

Lupwayi NZ, Malhi SS, Lemke R. Negative and pos-

itive contributions of arbuscular mycorrhizal fungal

taxa to wheat production and nutrient uptake efficiency

inorganic and conventional system in the canadian

prairie. Soil Biol Biochem. 2014;74:156–166.

Dai M, Hamel C, St. Arnaud M, He Y, Grant C,

Lupwayi N, Janzen H, Malhi SS, Yang X, Zhou

Z. Arbuscular mycorrhizal fungi assemblages in cher-

nozem great groups revealed by massively parallel

pyrosequencing. Can J Microbiol. 2012;58:81–92.

Dhillion SS, Anderson RC. Seasonal dynamics of domi-

nant species of arbuscular mycorrhizae in burned and

unburned sand prairies. Can J Bot. 1993;71:1625–30.

Durán A, Morrás H, Studdert G, Xiaobing L. Distribution,

properties, land use and management of Mollisols in

South America. Chin Geogr Sci. 2011;21:511–30.

Eom AH, Wilson GWT, Hartnett DC. Effects of ungulate

grazers on arbuscular mycorrhizal symbiosis and

fungal community structure in tallgrass prairie.

Mycologia. 2001;93:233–42.

Garg N, Chandel S. Arbuscular mycorrhizal networks:

process and functions. A review. Agron Sustain Dev.

2010;30:581–99.

Hart MM, Klironomos JN. Diversity of arbuscular mycor-

rhizal fungi and ecosystem functioning. In: van der

Heijden MGA, editor. Mycorrhizal ecology, Ecologi-

cal studies, vol. 157. Berlin: Springer; 2003.

p. 225–42.



Arbuscular Mycorrhizal Fungi Assemblages in Chernozems 47 A

A

Ji B, Bentivenga SP, Casper BB. Comparisons of AM

fungal spore communities with the same hosts but

different soil chemistries over local and geographic

scales. Oecologia. 2012;168:187–97.

Jumpponen A. Analysis of ribosomal RNA indicates sea-

sonal fungal community dynamics in Andropogon
gerardii roots. Mycorrhiza. 2011;21:453–64.

Liu X, Lee Burras C, Kravchenko YS, Duran A,

Huffman T, Morras H, Studdert G, Zhang X, Cruse

RM, Yuan X. Overview of Mollisols in the world:

distribution, land use and management. Can J Soil

Sci. 2012;92:383–402.

MaWK, Siciliano SD, Germida JJ. A PCR-DGGEmethod

for detecting arbuscular mycorrhizal fungi in culti-

vated soils. Soil Biol Biochem. 2005;37:1589–97.

Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K,

Sinsabaugh RL. Diversity and distribution of soil fun-

gal communities in a semiarid grassland. Mycologia.

2011;103:10–21.

Schuessler A. Glomeromycota. Taxonomy. 2013.

Accessed 6 Nov 2013. http://schussler.userweb.mwn.

de/amphylo/
Sheng M, Hamel C, Fernandez MR. Cropping practices

modulate the impact of glyphosate on arbuscular

mycorrhizal fungi and rhizosphere bacteria in

agroecosystems of the semiarid prairie. Can

J Microbiol. 2012;58:990–1001.

Talukdar NC, Germida JJ. Occurrence and isolation of

vesicular-arbuscular mycorrhizae in cropped field

soils of Saskatchewan, Canada. Can J Microbiol.

1993;39:567–75.

Tian H, Gai JP, Zhang JL, Christie P, Li L.

Arbuscular mycorrhizal fungi in degraded typical

steppe of Inner Mongolia. Land degrad dev.

2009;20:41–54.

Yang C, Hamel C, Schellenberg MP, Perez JC, Berbara

RL. Diversity and functionality of arbuscular mycor-

rhizal fungi in three plant communities in semiarid

Grasslands National Park. Can Microb Ecol.

2010;59:724–33.

Young IM, Crawford JW. Interactions and self-

organization in the soil-microbe complex. Science.

2004;304:1634–7.

http://schussler.userweb.mwn.de/amphylo/
http://schussler.userweb.mwn.de/amphylo/

	A
	A 123 of Metagenomics
	Introduction
	Sampling Design and DNA Processing
	Sequencing Technology and Quality Control
	Assembly
	Annotation
	Metadata, Standards, Sharing, and Storage
	Conclusion
	Government License

	References

	A De Novo Metagenomic Assembly Program for Shotgun DNA Reads
	Synonyms
	Definition
	Introduction
	Algorithm of MAP
	Performance of MAP
	Availability
	References

	Ab Initio Gene Identification in Metagenomic Sequences
	Synonyms
	Definition
	Introduction
	Ab Initio Gene Finding
	Gene Finders Currently Available for Metagenomes
	Parameter Estimation for Metagenomic Gene-Finding Algorithms
	Additional Sequence Features Used by Metagenomic Gene Finders
	An Initio Gene Finding in Metagenomic Sequences with Errors
	Summary
	Cross-References
	References

	AbundanceBin, Metagenomic Sequencing
	Definition
	Introduction
	AbundanceBin
	Integrated Binning Methods
	Joint Analysis of Multiple Metagenomic Samples
	Summary
	References

	Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads
	Synonyms
	Introduction
	Description
	The GRAMMy Framework
	Accurate GRAMMy Estimates with EM Algorithm
	GRAMMy Estimates for Human Gut Metagenomes

	Conclusions
	Cross-References
	References

	All-Species Living Tree Project
	Synonyms
	Definition
	Introduction
	Creation and Maintenance of LTP Releases
	LTP Datasets
	Inaccurate or Mistaken Metadata
	Multiple Copies of the Ribosomal Operon
	Sequence Quality in LTP Datasets
	Curated Metadata Introduced by the LTP
	Alignments and Phylogenetic Trees

	Files Provided by the LTP
	Side Research
	Sequencing the Orphan Species Initiative (SOS)
	Taxonomic Boundaries

	Summary
	Cross-References
	References

	antiSMASH
	Definition
	Introduction
	Functionalities
	Gene Cluster Detection
	Protein Domain Analysis of Polyketide Synthases and Nonribosomal Peptide Synthetases
	Core Chemical Structure Prediction
	Comparative Analysis of Gene Clusters
	Secondary Metabolism-Specific Gene Family Analysis
	Genome-Wide Pfam and Blast Analysis

	Stand-Alone Version
	Development
	Related Tools
	Summary
	Cross-References
	References

	Approaches in Metagenome Research: Progress and Challenges
	Synonyms
	Definition
	Introduction
	Microbial Phylogenetic and Functional Diversity Determination
	Metagenomic Biomolecule Discovery
	Principle and Variations of Function-Driven Screens
	Principle and Variants of Sequence-Based Screening
	Future Challenges in Metagenomic Research and Related Meta-omic Approaches
	Summary
	Cross-References
	References

	Arbuscular Mycorrhizal Fungi Assemblages in Chernozems
	Synonyms
	Definition
	Introduction
	Tackling the Complexity of Soil Biodiversity
	Arbuscular Mycorrhizal Fungi in the Canadian Chernozems
	Summary
	References



