
Chapter 8
A Hidden Markov-Modulated Jump Diffusion
Model for European Option Pricing

Tak Kuen Siu

Abstract The valuation of a European-style contingent claim is discussed in a hid-
den Markov regime-switching jump-diffusion market, where the evolution of a hid-
den economic state process over time is described by a continuous-time, finite-state,
hidden Markov chain. A two-stage procedure is used to discuss the option valua-
tion problem. Firstly filtering theory is employed to transform the original market
with hidden quantities into a filtered market with complete observations. Then a
generalized version of the Esscher transform based on a Doléan-Dade stochastic
exponential is employed to select a pricing kernel in the filtered market. A partial-
differential-integral equation for the price of a European-style option is presented.

8.1 Introduction

The valuation of contingent claims has long been a very important issue in the theory
and practice of finance. The seminal works of Black and Scholes [2] and Merton [27]
pioneered the development of option valuation theory and significantly advanced
the practice of option valuation in the finance industry. The Black-Scholes-Merton
option valuation is deeply immersed in the practice in the finance industry to the
extent that it is rather uneasy to find a market practitioner in the City who has never
heard of the Black-Scholes-Merton option pricing model. There may be two major
reasons why the Black-Scholes-Merton option pricing model is so popular in the
finance industry. Firstly, the pricing model is preference-free which means that the
price of an option does not depend on the subjective view or risk preference of a
market agent. Secondly, there is a closed-form expression for the price of a standard
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European call option which is easy to implement in practice. Despite the popular-
ity of the Black-Scholes-Merton option pricing model, its use has been constantly
challenged by both academic researchers and market practitioners. Particularly, the
geometric Brownian motion assumption underlying the model cannot explain some
important empirical features of asset price dynamics, such as the heavy-tails of the
return’s distribution, the time-varying volatility, jumps and regime-switchings. Fur-
thermore, the model cannot explain some systematic empirical features of option
prices data, such as the implied volatility smile or smirk. There is a large amount of
literature which extend the Black-Scholes-Merton model with a view to providing
more realistic modeling frameworks for option valuation.

Markovian regime-switching models are one of the major classes of econometric
models which can incorporate some stylized facts of asset price dynamics, such as
the heavy-tails of the return’s distribution, the time-varying volatility and regime-
switchings. Though Markovian regime-switching models have a long history in
engineering, their general philosophy and principle appeared in some pioneering
works in statistics and econometrics. Quandt [31] and Goldfeld and Quandt [18]
described nonlinearity in economic data using regime-switching regression mod-
els. Tong [37, 38] pioneered the fundamental principle of probability switching in
nonlinear time series analysis. Hamilton [20] pioneered and popularized the use
of Markov-switching autoregressive time series models in economics and econo-
metrics. Recently much effort has been devoted to the use of Markovian regime-
switching models for option valuation. A general belief is that Markovian regime-
switching models can incorporate the impact of structural changes in economic con-
ditions on asset prices which is particularly relevant for pricing long-dated options.
Some works on option valuation in Markovian regime-switching models include
Naik [30], Guo [19], Buffington and Elliott [3], Elliott et al. [9, 13], Siu [33, 34],
Siu et al. [35], Elliott and Siu [10, 12], amongst others.

Jump-diffusion models are an important extension of the geometric Brownian
motion for modeling asset price dynamics. This class of models captures jumps,
or spikes, in returns due to extraordinary market events or news via jump compo-
nents described by compound Poisson processes. There is a main difference between
Markovian regime-switching models and jump-diffusion models. In a Markovian
regime-switching model, there are jumps in the model coefficients corresponding
to regime switches, but no jumps in the return process. In a jump-diffusion model,
there are jumps in the return process, but no jumps in the model coefficients. Mer-
ton [28] pioneered the use of a jump-diffusion model for option valuation, where
a compound Poisson model with lognormally distributed jump sizes was used to
describe the jump component. Kou [25] pioneered option valuation under another
jump-diffusion model for option valuation, where the jump amplitudes were expo-
nentially distributed. It seems a general belief that jump-diffusion option valuation
models may be suitable for pricing short-lived options by capturing the impact of
sudden jumps in the return processes on option prices. Furthermore it is known
that jump-diffusion option valuation models can incorporate some empirical fea-
tures of asset price dynamics, such as jumps, heavy-tails of the return’s distribution,
and of option prices, such as implied volatility smiles. Bakshi et al. [1] provided a
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comprehensive empirical study on various option valuation models and found that
incorporating both jumps and stochastic volatility is vital for pricing and internal
consistency. Pan [32] and Liu et al. [26] provided theoretical and empirical supports
on the use of jump-risk premia in explaining systematic empirical behavior of option
prices data, respectively.

Both jump-diffusion models and Markovian regime-switching models play an
important role in modeling asset price dynamics and option valuation. It may be
of interest to combine the two classes of models and establish a class of “second-
generation” models, namely, Markovian regime-switching jump-diffusion models.
The rationale behind this initiative is to fuse the empirical advantages of the two
classes of models so that a generalized option valuation model based on the wider
class of “second-generation” models may be suitable for pricing short-lived and
long-dated options traded in the finance and insurance industries, respectively.
Indeed, this initiative was undertaken by some researchers, for example, Elliott
et al. [13] and Siu et al. [35], where Markovian regime-switching jump-diffusion
models were used to price financial options and participating life insurance policies,
respectively. In both Elliott et al. [13] and Siu et al. [35], the modulating Markov
chain governing the evolution of the “true” state of an underlying economy over
time was assumed observable. However, in practice, it is difficult, if not impossible,
to directly observe the “true” state of the underlying economy. Consequently it is of
practical interest to consider a general situation where the modulating Markov chain
is hidden or unobservable. In a recent paper, Elliott and Siu [12] considered a hidden
Markovian regime-switching pure jump model for option valuation and addressed
the corresponding filtering issue.

In this paper, the valuation of a European-style contingent claim in a hidden
Markov regime-switching jump-diffusion market is discussed. In such market, the
price process of an underlying risky security is described by a generalized jump-
diffusion process with stochastic drift and jump intensity being modulated by a
continuous-time, finite-state, hidden Markov chain whose states represent different
states of a hidden economic environment. A two-stage procedure is used to discuss
the option valuation problem. Firstly filtering theory is employed to transform the
original market with hidden quantities into a filtered market where the hidden quan-
tities in the original market are replaced by their filtered estimates. Consequently,
the filtered market is one with complete observations. Then the option valuation
problem is considered in the filtered market which is deemed to be incomplete due
to the presence of price jumps in the market. We employ a generalized version of
the Esscher transform based on a Doléan-Dade stochastic exponential to select a
pricing kernel in the filtered market. A partial-differential-integral equation (PDIE)
for the price of a European-style option is presented. This work is different from
that in Elliott and Siu [12] in at least two aspects. Firstly, the price process of the
risky share we consider here has a diffusion component. Secondly, in Elliott and
Siu [12], the selection of a pricing kernel using a generalized version of the Esscher
transform was first considered in a market with hidden observations. Filtering theory
was then applied to transform the market into one with complete observations. This
paper may partly serve as a brief review for some mathematical techniques which
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are hopefully relevant to pricing European-style options under a hidden regime-
switching jump-diffusion model. In Siu [36], an American option pricing problem
is considered under the hidden regime-switching jump-diffusion model.

The paper is structured as follows. The next section presents the price dynamics
in the hidden Markov regime-switching jump-diffusion market. In Sect. 8.3, we dis-
cuss the use of filtering theory to turn the original market into the filtered market and
give the filtering equations for the hidden Markov chain. The use of the generalized
Esscher transform to select a pricing kernel and the derivation of the PDIE for the
price of the European-style option are discussed in Sect. 8.4. The final section gives
concluding remarks.

8.2 Hidden Regime-Switching Jump-Diffusion Market

A continuous-time financial market with two primitive investment securities, namely
a bond and a share, is considered, where these securities can be traded continuously
over time in a finite time horizon T := [0,T ], where T < ∞. As usual, uncertainty is
described by a complete probability space (Ω ,F ,P) where P is a real-world proba-
bility measure. The following standard institutional assumptions for the continuous-
time financial market are imposed:

1. The market is frictionless, (i.e., there are no transaction costs and taxes in trad-
ing the investment securities);

2. Securities are perfectly divisible, (i.e., any fractional units of the securities can
be traded);

3. There is a single market interest rate for borrowing and lending;

To describe the evolution of the hidden economic state over time, we con-
sider a continuous-time, finite-state, hidden Markov chain X := {X(t)|t ∈ T } on
(Ω ,F ,P). In practice, the “true” state of an underlying economy is not observable.
Consequently, it makes practical sense to use a hidden Markov chain to represent
different modes of the underlying economic environment. Using the convention in
Elliott et al. [8], we identify the state space of the chain X with a finite set of stan-
dard unit vectors E := {e1,e2, · · · ,eN} in ℜN , where the jth-component of ei is the
Kronecker product δi j for each i, j = 1,2, · · · ,N. The space E is called the canoni-
cal state space of the chain X. The statistical laws of the chain X are described by
a family of rate matrices {A(t)|t ∈ T }, where A(t) := [ai j(t)]i, j=1,2,··· ,N and ai j(t)
is the instantaneous transition rate of the chain X from state ei to state e j at time
t. So if pi(t) := P(X(t) = ei) and p(t) := (p1(t), p2(t), · · · , pN(t))′ ∈ ℜN , then p(t)
satisfies the following Kolmogorov forward equation:

dp(t)
dt

= A(t)p(t) , p(0) = E[X(0)] .

Here E is an expectation under P.
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Let FX := {FX(t)|t ∈T } be the right-continuous,P-complete, natural filtration
generated by the chain X. Then Elliott et al. [8] obtained the following semimartin-
gale dynamics for the chain X under P:

X(t) = X(0)+
∫ t

0
A(u)X(u−)du+M(t) , t ∈ T . (8.1)

Here M := {M(t)|t ∈ T } is an ℜN-valued, square-integrable, (FX,P)-martingale.
Since the process {∫ t

0 A(u)X(u−)du|t ∈ T } is FX-predictable, X is a special semi-
martingale, and so the above decomposition is unique. This is called the canonical
decomposition (see, for example, Elliott [6], Chapter 12 therein).

For each t ∈T , let r(t) be the instantaneous interest rate of the bond B at time t,
where r(t)> 0. Then the price process of the bond {B(t)|t ∈ T } evolves over time
as follows:

B(t) = exp

(∫ t

0
r(u)du

)
, t ∈ T ,

B(0) = 1 .

To simplify our discussion, we assume that the interest rate process {r(t)|t ∈ T } is
a deterministic function of time t. In general, one may consider the situation where
the interest rate depends on the hidden Markov chain X. However, in this situation,
it may be difficult, if not impossible, to use filtering theory, (or in particular the
separation principle), to turn the hidden Markovian regime-switching market into
one with complete observations. This is one of the main focuses in the paper.

As in Elliott and Siu (2013), we now describe the jump component in the price
process of the risky share. Let Z := {Z(t)|t ∈T } be a real-valued pure jump process
on (Ω ,F ,P) with Z(0) = 0, P-a.s. It is clear that

Z(t) = ∑
0<s≤t

(Z(s)−Z(s−)) .

Let B(T ) and B(ℜ0) be the Borel σ -fields generated by open subsets of T and
ℜ0 := ℜ\{0}, respectively. Suppose {γ(·, ·,ω)|ω ∈ Ω} is the random measure
which selects finite jump times Tk and the corresponding non-zero random jump
sizes ΔZ(Tk) := Z(Tk)−Z(Tk−), k = 1,2, · · · , of the pure jump process Z. Then

γ(dt,dz,ω) = ∑
k≥0

δ(Tk ,ΔZ(Tk))
(dt × dz)I{Tk<∞,ΔZ(Tk) �=0} ,

where δ(Tk,ΔZ(Tk))(dt × dz) is the random Dirac measure, or point mass, at the point
(Tk,ΔZ(Tk)) and IE is the indicator function of the event E . To simplify the notation,
we write γ(du,dz) for γ(dt,dz,ω) unless otherwise stated.

So, for each t ∈ T ,

Z(t) =
∫ t

0

∫
ℜ0

zγ(du,dz) .
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To specify the statistical laws of the Poisson random measure γ(dt,dz), we consider
the hidden Markov regime-switching compensator:

νX(t−)(dt,dz) :=
N

∑
i=1

〈X(t−),ei〉λi(t)ηi(dz|t)dt ,

where for each i = 1,2, · · · ,N
1. {λi(t)|t ∈T } is the jump intensity process of Z when the economy is in the ith

state; we suppose that {λi(t)|t ∈T } is FZ-predictable, where FZ := {F Z(t)|t ∈
T } is the right-continuous,P-complete, natural filtration generated by the pure
jump process Z;

2. For each t ∈ T and each i = 1,2, · · · ,N, ηi(dz|t) is the conditional Lévy mea-
sure of the random jump size of γ(dt,dz) given that there is a jump at time t
and that the economy is in the ith state; we assume that {ηi(dz|t)|t ∈ T } is an
F

Z-predictable measure-valued process on (Ω ,F ,P).
3. The subscript “X(t−)” is used here to emphasize the dependence of νX(t−)

(dt,dz) on X(t−).

Then the random measure γ̃(·, ·) defined by putting:

γ̃(dt,dz) := γ(dt,dz)−νX(t−)(dt,dz) ,

is a martingale random measure under P, and hence, it is called the compensated
random measure of γ(·, ·). For discussions on random measures, one may refer to
Elliott (1982), Chapter 15 therein.

Let W := {W (t)|t ∈ T } be a standard Brownian motion on (Ω ,F ,P) with re-
spect to the P-augmentation of its natural filtration F

W := {FW (t)|t ∈T }. To sim-
plify our discussion, we assume that W is stochastically independent of X and Z
under P. For each t ∈T , let μX(t) and σ(t) be the appreciation rate and the volatil-
ity of the risky share at time t, respectively. We suppose that μX(t) is modulated by
the chain X as:

μX(t) := 〈μ(t),X(t)〉 .

Here μ(t) := (μ1(t),μ2(t), · · · ,μN(t))′ ∈ ℜN such that for each i = 1,2, · · · ,N and
each t ∈ T , μi(t) > r(t), P-a.s., and {μ(t)|t ∈ T } is an F

W -predictable process;
μi(t) represents the appreciation rate of the risky share at time t when the hidden
economy is in the ith-state at that time; the scalar product 〈·, ·〉 selects the component
in the vector of the appreciation rates that is in force at a particular time according
to the state of the hidden economy at that time; the superscript X in μX is used to
emphasize the dependence of the appreciation rate μX on the chain X.

Furthermore, we assume that the volatility process {σ(t)|t ∈T } is FW -predictable
and that for each t ∈ T , σ(t) > 0, P-a.s. In general, one may consider a situation
where the volatility depends the hidden Markov chain X. However, there may be
two potential concerns about this generalization. Firstly, it complicates the filtering
issue and it is difficult, if not impossible, to derive an exact, finite-dimensional filter
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of the chain X in this general situation. Secondly, some difficulties may arise in the
interpretation of the information structure of the asset price model. Particularly, it
was noted in Guo [19] and Gerber and Shiu [17] that in the case of a Markovian
regime-switching geometric Brownian motion, the volatility parameter can be com-
pletely determined from a given price path of the risky share. More specifically, it
can be identified by means of the predictable quadratic variation. Thirdly, it was
noted in Merton [29] that appreciation rates of risky securities are a lot harder to es-
timate than their volatilities. It may not be unreasonable to assume that the volatility
does not depend on the hidden Markov chain X. Lastly, if the volatility is assumed to
be modulated by the chain X, filtering theory (or in particular the separation princi-
ple) may be difficult to apply to turn the hidden Markovian regime-switching market
into one with complete observations. One may also refer to Elliott and Siu [11] for
related discussions.

We suppose that under the real-world measure P the price process of the risky
share is governed by the following hidden Markovian regime-switching, jump-
diffusion model:

dS(t)
S(t−)

=

(
μX(t)+

N

∑
i=1

(ez − 1)〈X(t),ei〉λi(t)ηi(dz|t)
)

dt

+σ(t)dW (t)+
∫

ℜ0

(ez − 1)γ̃(dt,dz) .

Write, for each t ∈T ,

Y (t) := ln(S(t)/S(0)) .

This is the logarithmic return from the risky share over the time interval [0, t].
Applying Itô’s differentiation rule to Y (t) then gives:

dY (t) =

(
μX(t)− 1

2
σ2(t)+

N

∑
i=1

z〈X(t),ei〉λi(t)ηi(dz|t)
)

dt

+σ(t)dW(t)+
∫

ℜ0

zγ̃(dt,dz) .

Since the coefficients in the price process, or the return process, of the risky share
depends on the hidden Markov chain X, the hidden Markovian regime-switching
jump-diffusion market is one with partial observations. In the next section we shall
use filtering theory to transform this market into one with complete observations.

We end this section by specifying the information structure of our market model.
Let FY := {FY (t)|t ∈T } be the P-augmentation of the natural filtration generated
by the return process Y := {Y (t)|t ∈ T }. This is the observable filtration in our
market model. For each t ∈T , let G (t) :=FX(t)∨F (t). Write G := {G (t)|t ∈T }
representing the full information structure of the model.
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8.3 Filtering Theory and Filtered Market

Filtering theory has been widely used by the electrical engineering community to
decompose observations from stochastic dynamical systems into signal and noise.
Particularly, it has been widely used in signal processing, system and control en-
gineering, radio and telecommunication engineering. In this section we shall first
discuss the use of filtering theory to transform the original market with partial
observations to a filtered market with complete observations. The general philos-
ophy of this idea is in the spirit of that of the separation principle used in stochastic
optimal control theory for partially observed stochastic dynamical systems, see, for
example, Fleming and Rishel [15], Kallianpur [22] and Elliott [6]. Then we shall
outline the basic idea of a reference probability approach, whose history can be
traced back to the work of Zakai [39], to derive a stochastic differential equation for
the unnormalized filter of the hidden Markov chain X given observations about the
return process of the risky asset. This filtering equation is called the Zakai equation
in the filtering literature. The derivation of the filtering equation resembles to that in
Wu and Elliott [11] and Elliott and Siu [11], so only key steps are presented and the
results are stated without giving the proofs. Due to the presence of stochastic inte-
grals in the Zakai equation, its numerical computation may be rather uneasy. From
the numerical perspective, it may be more convenient to consider ordinary differen-
tial equations than stochastic differential equations. Using the gauge transformation
technique in Clark [5], we shall give a (pathwise) linear ordinary differential equa-
tion governing the evolution of a “transformed” unnormalized filter of the chain X
over time. This filter is robust with respect to the observation process in the Skoro-
hod topology and has an advantage from the numerical perspective. Using a version
of the Bayes’ rule, the normalized filter can be recovered from the (transformed)
unnormalized one.

8.3.1 The Separation Principle

The use of the filtering theory to transform the original market to the filtered market
involves the use of the innovations approach which is also called the separation prin-
ciple. This approach has two steps. The first step introduces innovations processes
which are adapted to the observable filtration. The second step expresses the price
processes with hidden quantities in terms of these innovations processes and filtered
estimates of the hidden quantities.

For any integrable, G-adapted process {φ(t)|t ∈T }, let {φ̂(t)|t ∈T } be the FY -
optional projection of {φ(t)|t ∈ T } under the measure P . Then, for each t ∈ T ,

φ̂ (t) = E[φ(t)|FY (t)] ,P-a.s.

The optional projection takes into account the measurability in (t,ω) ∈ T ×Ω .
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Define, for each t ∈ T ,

h(t) := μ(t)− 1
2

σ2(t) .

Then the return process Y of the risky share is written as:

Y (t) =
∫ t

0
h(u)du+

∫ t

0
σ(u)dW (u)+

∫ t

0

∫
ℜ0

zγ(du,dz) .

Write, for each t ∈T ,

Y1(t) =
∫ t

0
h(u)du+

∫ t

0
σ(u)dW (u) , Y2(t) :=

∫ t

0

∫
ℜ0

zγ(du,dz) ,

so that

Y (t) = Y1(t)+Y2(t) .

Consider then the following F
Y -adapted process Ŵ := {Ŵ (t)|t ∈ T }:

Ŵ (t) :=W (t)+
∫ t

0

(
h(u)− ĥ(u)

σ(u)

)
du , t ∈ T .

Then following standard filtering theory, (see, for example, [15, 22, 6]), Ŵ is an
(FY ,P)-standard Brownian motion. The process Ŵ is called the innovation process
for the diffusion part Y1 of the return process Y of the risky share.

We now define the innovation process for the jump part Y2 of the return pro-
cess Y of the risky share. Consider the G-adapted process Q := {Q(t)|t ∈ T } on
(Ω ,F ,P) which is defined by putting:

Q(t) :=
∫ t

0

∫ ∞

0
z(γ(du,dz)−νX(u−)(du,dz)) , t ∈ T ,

so that Q is a (G,P)-martingale.
Define

ν̂(dt,dz) :=
N

∑
i=1

〈
X̂(t),ei

〉
λi(t)ηi(dz|t)dt ,

and

γ̂(dt,dz) := γ(dt,dz)− ν̂(dt,dz) .

The following lemma was due to Elliott [7]. We state the result here without
giving the proof.
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Lemma 8.1. Let Q̂ := {Q̂(t)|t ∈T } be the FZ-adapted process defined by setting:

Q̂(t) :=
∫ t

0

∫
ℜ0

zγ̂(du,dz) .

Then Q̂ is an (FY ,P)-martingale.

The process Q̂ is then used here as the innovations process of the jump part Y2 of
the return process of the risky share.

The following lemma then gives a representation for the price process of the
risky share in terms of the two innovations processes Ŵ and Q̂ under the real-world
measure P. Since the result is rather standard, we just state it without giving the
proof.

Lemma 8.2. Under the real-world measure P, the return process of the risky
share is:

dY (t) =

(
ĥ(t)+

N

∑
i=1

z
〈
X̂(t),ei

〉
λi(t)ηi(dz|t)

)
dt +σ(t)dŴ(t)

+

∫
ℜ0

zγ̂(dt,dz) ,

and the price process of the risky share is:

dS(t)
S(t−)

=

(
μ̂X(t)+

N

∑
i=1

(ez − 1)
〈
X̂(t),ei

〉
λi(t)ηi(dz|t)

)
dt +σ(t)dŴ(t)

+

∫
ℜ0

(ez − 1)γ̂(dt,dz) .

It is obvious that the return and price processes of the risky share in Lemma 8.2
only involve observable quantities. Consequently, we adopt these dynamics as the
return and price processes of the risky share in the filtered market.

8.3.2 Filtering Equations

The reference probability approach to derive a filtering equation for the chain X is
now discussed. We start with a reference probability measure P

† on (Ω ,F ) under
which the return process Y of the risky share becomes simpler and does not depend
on the chain X. That is, under P†,

1. Y1 is a Brownian motion with 〈Y1,Y1〉 (t) =
∫ t

0 σ2(u)du, where {〈Y1,Y1〉 (t)|t ∈
T } is the predictable quadratic variation of Y1;



8 A Hidden Markov-Modulated Jump Diffusion Model for European Option Pricing 195

2. The Poisson random measure γ(dt,dy) has an unit intensity for random jump
times and the conditional Lèvy measure η(dz|t) for random jump sizes so that

γ̃†(dt,dz) := γ(dt,dz)−η(dz|t)dt ,

is an (FY ,P†)-martingale random measure;
3. Y1 and γ(·, ·) are stochastically independent;
4. The chain X has the family of rate matrices, {A(t)|t ∈T }.

Define

Λ 1(t) := exp

(∫ t

0
σ−2(u)h(u)dY1(u)− 1

2

∫ t

0
σ−2(u)h2(u)du

)
,

Λ 2(t) := exp

[
−

∫ t

0

( N

∑
i=1

〈X(u−),ei〉
∫

ℜ0

(gi(z|u)− 1)η(z|u)dz

)
du

+

∫ t

0

∫
ℜ0

( N

∑
i=1

〈X(u−),ei〉 log(gi(z|u))
)

γ(du,dz)

]
,

where gi(z|t) := λi(t)ηi(dz|t)
η(dz|t) , for each i = 1,2, · · · ,N.

Consider the G-adapted process Λ := {Λ(t)|t ∈T } defined by putting:

Λ(t) := Λ 1(t) ·Λ 2(t) .

It is not difficult to check that Λ is a (G,P)-martingale, and hence, E[Λ(T )] =
1. Consequently the real-world measure P equivalent to P

† on G (T ) can be re-
constructed using the Radon-Nikodym derivative Λ(T ) as follows:

dP
dP†

∣∣∣∣
G (T )

:= Λ(T ) .

Using a version of Girsanov’s theorem for jump-diffusion processes, it can be shown
that under P,

1. Λ := {Λ(t)|t ∈T } is the unique solution of the following stochastic differential-
integral equation:

Λ(t) = 1+
∫ t

0
Λ(u)h(u)σ−2(u)dY1(u)

+
N

∑
i=1

∫ t

0
〈X(u),ei〉

∫
ℜ0

Λ(u−)(gi(z|u)− 1)γ̃†(du,dz) .
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2. The process

W (t) :=
∫ t

0
σ−1(u)dY1(u)−

∫ t

0
σ−1(u)h(u)du , t ∈ T ,

is a standard Brownian motion.
3. γ(dt,dz) is the Poisson random measure with the compensator:

νX(t−)(dt,dz) :=
N

∑
i=1

〈X(t−),ei〉λi(t)ηi(dz|t)dt ,

so that

γ̃(dt,dz) := γ(dt,dz)−νX(t−)(dt,dz) ,

is a martingale random measure.

Consequently, under P, the return process Y of the risky share is:

Y (t) = Y1(t)+Y2(t) =
∫ t

0
h(u)du+

∫ t

0
σ(u)dW (u)+

∫ t

0

∫
ℜ0

zγ(du,dz) .

The ultimate goal of filtering is to evaluate X̂ which is an F
Y -optional projection

of X under P. Then, for each t ∈ T ,

X̂(t) = E[X(t)|FY (t)] , P-a.s.

Indeed, X̂(t) is an optimal estimate of X(t) in the least square sense.
Write, for each t ∈ T ,

q(t) := E†[Λ(t)X(t)|F (t)] ,

where E† is an expectation under the reference probability measure P
† and q(t) is

called an unnormalized filter of X(t). Instead of evaluating X̂(t) directly, a filtering
equation governing the evolution of the unnormalized filter q(t) over time is first
derived. Before presenting the filtering equation, we need to define some notation.

For each t ∈T , let Z(t, ·) : Ω → ℜ0 be a random variable with a strictly positive
conditional Lèvy measure η(dz|t) under the reference measure P

†. Then, for each
t ∈ T and each i = 1,2, · · · ,N, the random variable Gi(t, ·) : Ω → ℜ+, where ℜ+

is the positive real line, is defined as:

Gi(t,ω) :=
λi(t)ηi(Z(t,ω)|t)

η(Z(t,ω)|t) := gi(Z(t,ω)|t) ,

for some measurable function gi(·|t) on (ℜ0,B(ℜ0)).
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Note that Gi(t,ω) is well-defined since η(dz|t) > 0. Again, to simplify the no-
tation, we suppress the notation “ω” unless otherwise stated. We now define the
following diagonal matrices:

diag(G(t)− 1) := diag(G1(t)− 1,G2(t)− 1, · · · ,GN(t)− 1) ,

diag(λ (t)− 1) := diag(λ1(t)− 1,λ2(t)− 1, · · · ,λN(t)− 1) .

Here diag(y) denotes the diagonal matrix with diagonal elements being given by
the components in a vector y; 1 := (1,1, · · · ,1)′ ∈ ℜN .

For each i = 1,2, · · · ,N and each t ∈ T , let hi(t) := μi(t)− 1
2 σ2(t) and h(t) :=

(h1(t),h2(t), · · · ,hN(t))′ ∈ ℜN . Write, for each t ∈ T ,

J(t) :=
∫ t

0

∫
ℜ0

γ(du,dz) .

Then the following theorem is standard and gives the Zakai stochastic differential
equation for the unnormalized filter q(t) (see, for example, Elliott and Siu [11],
Theorem 4.1 therein). We state the result without giving the proof.

Theorem 8.1. For each t ∈ T , let

B(t) := diag(h(t)) .

Then under P†, the unnormalized filter q(t) satisfies the Zakai stochastic differential
equation:

q(t) = q(0)+
∫ t

0
A(u)q(u)du+

∫ t

0
B(u)q(u)σ−2(u)dY1(u)

+

∫ t

0
diag(G(u)− 1)q(u)dJ(u)−

∫ t

0
diag(λ (u)− 1)q(u)du .

(8.2)

The filtering equation in Theorem 8.1 involves stochastic integrals. This may be a
disadvantage for numerical implementation. Using the gauge transformation tech-
nique of Clark [5], the filtering equation can be simplified as a (pathwise) linear
ordinary differential equation. The key steps are presented in the sequel.

Define, for each i = 1,2, · · · ,N and each t ∈ T ,

γi(t) := exp

(∫ t

0
hi(u)σ−2(u)dY1(u)− 1

2

∫ t

0
h2

i (u)σ
−4(u)du

+

∫ t

0
(1−λi(u))du+

∫ t

0
logGi(u)dJ(u)

)
. (8.3)

Then the gauge transformation matrix Γ (t) is defined as:

Γ (t) := diag(γ1(t),γ2(t), . . . ,γN(t)) .
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Write, for each t ∈ T , Γ −1(t) for the inverse of Γ (t). The existence of Γ −1(t)
is guaranteed by the definition of Γ (t) and the positivity of γi(t) for each i =
1,2, · · · ,N.

Take, for each t ∈T ,

q̄(t) := Γ −1(t)q(t) .

This is called a transformed unnormalized filter of X(t).
Then the following theorem gives a (pathwise) linear ordinary differential equa-

tion governing the transformed process {q̄(t)|t ∈T }. Again we state the result with-
out giving the proof which is rather standard (see, for example, Elliott and Siu [11],
Theorem 4.2 therein).

Theorem 8.2. q̄ satisfies the following first-order linear ordinary differential
equation:

dq̄(t)
dt

:= Γ −1(t)A(t)Γ (t)q̄(t) , q̄(0) = q(0) .

Finally, using a version of the Bayes’ rule,

X̂(t) := E[X(t)|F (t)]

=
E†[Λ(t)X(t)|F (t)]

E†[Λ(t)|F (t)]

=
q(t)

〈q(t),1〉
:=

Γ (t)q̄(t)
〈Γ (t)q̄(t),1〉 ,

so the normalized filter X̂(t) can be “recovered” from the (transformed) unnormal-
ized one q̄(t).

8.4 Generalized Esscher Transform in the Filtered Market

The main theme of this section is to determine a pricing kernel in the filtered market
described in Sect. 8.3.1 using a generalized version of the Esscher transform based
on a Doléan-Dade stochastic exponential. Firstly, let us recall that in the filtered mar-
ket, the price process of the risky share under the real-world measure P is governed
by the following stochastic differential equation with jumps:

dS(t)
S(t−)

=

(
μ̂(t)+

N

∑
i=1

(ez − 1)
〈
X̂(t),ei

〉
λi(t)ηi(dz|t)

)
dt +σ(t)dŴ(t)

+

∫
ℜ0

(ez − 1)γ̂(dt,dz) .
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The presence of jumps renders the filtered market incomplete. Consequently,
there is more than one equivalent martingale measure, or pricing kernel, in the mar-
ket. Though there are different approaches to select a pricing kernel in an incomplete
market, we focus here on the Esscher transformation approach which was pioneered
by the seminal work of Gerber and Shiu [16]. Note that the local characteristics of
the price process of the risky share in the filtered market are F

Y -predictable pro-
cesses, so the price process is a semimartingale beyond the class of Lévy processes.
Consequently, the original version of the Esscher transform in Esscher [14] and Ger-
ber and Shiu [16] cannot be applied in this situation. Bühlmann et al. [4], Kallsen
and Shiryaev [23] and Jacod and Shiryaev [21] considered a generalized version
of the Esscher transform for measure changes for general semimartingales and dis-
cussed its application for option valuation. This version of the Esscher transform is
defined using the concepts of Doléan Dade stochastic exponential and the Laplace
cumulant process. It was used in Elliott and Siu [12] to select a pricing kernel in
a hidden regime-switching pure jump process. In the sequel, we shall first define
the generalized Esscher transform and give the local condition in terms of the local
characteristics of the price process of the risky share in the filtered market. Then we
present the price dynamics of the risky share under an equivalent (local)-martingale
measure selected by the generalized Esscher transform.

Let L (Y ) be the space of processes θ := {θ (t)|t ∈ T } satisfying the following
conditions:

1. θ is FY -predictable;
2. θ is integrable with respect to the return process Y ; that is, the (stochastic)

integral process {(θ ·Y )(t)|t ∈ T }, where (θ ·Y )(t) :=
∫ t

0 θ (u)dY (u) is well-
defined.

Consider, for each θ ∈L (Y ), the following exponential process:

Dθ (t) := exp((θ ·Y )(t)) , t ∈T .

Note that {(θ ·Y )(t)|t ∈ T } is a semimartingale, so Dθ := {Dθ (t)|t ∈ T } is also
called an exponential semimartingale.

Define, for each θ ∈L (Y ), the following semimartingale:

H θ (t) :=
∫ t

0

(
ĥ(u)θ (u)+

1
2

σ2(u)θ 2(u)

+
N

∑
i=1

∫
ℜ0

(ez − 1−θ (u)z)
〈
X̂(u),ei

〉
λi(u)ηi(dz|u)

)
du

+

∫ t

0
σ(u)θ (u)dŴ (u)+

∫ t

0

∫
ℜ0

(eθ(u)z − 1)γ̂(du,dz) .

Using Itô’s differentiation rule, it can be shown that

Dθ (t) = 1+
∫ t

0
Dθ (u−)dH θ (u) .
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From Theorem 13.5 in Elliott [6], Dθ is the unique solution of the above integral
equation. It is the Doléans-Dade exponential of H θ := {H θ (t)|t ∈ T }. Symboli-
cally, it is typified as:

Dθ (t) = E (H θ )(t) , t ∈ T .

Again from Theorem 13.5 in Elliott [6],

Dθ (t)=exp

(
H θ (t)− 1

2
< (H θ )c,(H θ )c > (t)

)
∏

0<u≤t

(1+ΔH θ (u))e−ΔH θ (u) ,

where

1. (H θ )c := {(H θ )c(t)|t ∈ T } is the continuous part of H θ ;
2. {< (H θ )c,(H θ )c > (t)|t ∈ T } is the predictable quadratic variation

of (H θ )c.

Note that H θ is called the stochastic logarithm of Dθ or the exponential trans-
form of {(θ ·Y )(t)|t ∈ T }. Since H θ is a special semimartingale, its predictable
part of finite variation, denoted as K θ := {K θ (t)|t ∈ T }, is uniquely determined
as:

K θ (t) =
∫ t

0

(
ĥ(u)θ (u)+

1
2

σ2(u)θ 2(u)

+
N

∑
i=1

∫
ℜ0

(ez − 1−θ (u)z)
〈
X̂(u),ei

〉
λi(u)ηi(dz|u)

)
du .

It was noted in Kallsen and Shiryaev [23] that the Laplace cumulant process of {(θ ·
Y )(t)|t ∈ T } is the predictable part of finite variation of H θ . This is also called
the Laplace cumulant process of Y at θ . The Doléan-Dade stochastic exponential
E (K θ ) := {E (K θ )(t)|t ∈T } of K θ is the unique solution of the following linear
stochastic differential equation:

E (K θ )(t) = 1+
∫ t

0
E (K θ )(u)dK θ (u) .

As in Kallsen and Shiryaev [23], the modified Laplace cumulant process of Y at
θ is defined by the process ˜K θ := { ˜K θ (t)|t ∈ T } such that

exp( ˜K θ (t)) = E (K θ )(t) .

By differentiation, ˜K θ (t) =K θ (t), P-a.s., for each t ∈ T .
Then the density process of the generalized Esscher transform associated with

θ ∈L (Y ) is defined as the process Λ θ := {Λ θ (t)|t ∈ T }, where

Λ θ (t) :=
exp((θ ·Y )(t))
E (K θ )(t)

.
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Note that the Laplace cumulant process E (K θ ) is the normalization constant and
may be thought of as a generalization of the moment generation function in the
“first-generation” of the Esscher transform in Gerber and Shiu [16].

From the definition of ˜K θ ,

Λ θ (t) = exp

(
(θ ·Y )(t)− ˜K θ (t)

)

= exp

(
(θ ·Y )(t)−K θ (t)

)

= exp

(
−

N

∑
i=1

∫ t

0

∫
ℜ0

(ez − 1−θ (u)z)
〈
X̂(u),ei

〉
λi(u)ηi(dz|u)

+

∫ t

0

∫
ℜ0

θ (u)zγ̂(du,dz)

)
× exp

(∫ t

0
θ (u)σ(u)dŴ (u)

−1
2

∫ t

0
θ 2(u)σ2(u)du

)
, P-a.s.

Using Itô’s differentiation rule,

Λ θ (t) = 1+
∫ t

0
Λ θ (u)θ (u)σ(u)dŴ (u)+

∫ t

0

∫
ℜ0

Λ θ (u−)(eθ(u)z − 1)γ̂(du,dz) .

This is an (FY ,P)-local martingale. We suppose here that θ ∈L (Y ) is such that Λθ

is an (FY ,P)-martingale, so E[Λ θ (T )] = 1.
Consequently, for each θ ∈L (Y ), a new probability measure Pθ ∼ P on FY (T )

by putting:

dPθ

dP

∣∣∣∣
FY (T )

:= Λ θ (T ) .

To preclude arbitrage opportunities, we must determine θ ∈L (Y ) such that the
discounted price process of the risky share {S̃(t)|t ∈ T }, where S̃(t) :=
exp(−∫ t

0 r(u)du)S(t), is an (FY ,Pθ )-(local)-martingale, (i.e., Pθ is an equivalent
(local)-martingale measure). This is called the (local)-martingale condition. A nec-
essary and sufficient condition for the (local)-martingale condition is given in the
following theorem.

Theorem 8.3. The (local)-martingale condition holds if and only if for each t ∈ T ,
there exists an F

Y -progressively measurable process {θ (t)|t ∈ T } such that

μ̂(t)− r(t)+θ (t)σ2(t)+
N

∑
i=1

∫
ℜ0

〈
X̂(t),ei

〉
eθ(t)z(ez − 1)λi(t)ηi(dz|t) = 0 , P-a.s.

(8.4)

Proof. The proof is standard, so only key steps are given. Note that {S̃(t)|t ∈ T }
is an (FY ,Pθ )-(local)-martingale if and only if {Λ θ (t)S̃(t)|t ∈ T } is an (FY ,P)-
(local)-martingale, for some F

Y -progressively measurable process {θ (t)|t ∈ T }.
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The result then follows by applying Itô’s product rule to Λ θ (t)S̃(t) and equating the
finite variation term of Λ θ (t)S̃(t) to zero. �
From Theorem 8.3, the risk-neutral Esscher parameter {θ (t)|t ∈ T } of the gener-
alized Esscher transform Λ θ is obtained by solving Equation (8.4). In the particular
case where the jump component is absent, the risk-neutral Esscher parameter is
given by:

θ (t) =
r(t)− μ̂(t)

σ2(t)
=−β (t)

σ(t)
,

where β (t) is the market price of risk of the particular case of the filtered market
where jumps are absent and is defined as:

β (t) :=
μ̂(t)− r(t)

σ(t)
.

The following lemma gives the probability laws of the return process Y of the
risky share under Pθ . It is a direct consequence of a Girsanov transform for a mea-
sure change, so we only state the result.

Lemma 8.3. The process defined by:

Ŵ θ (t) := Ŵ (t)−
∫ t

0
θ (u)σ(u)du , t ∈T ,

is an (FY ,Pθ )-standard Brownian motion. Furthermore, the process defined by:

γ̂θ (dt,dz) := γ(dt,dz)−
N

∑
i=1

〈
X̂(t),ei

〉
λi(t)e

θ(t)zηi(dz|t)dt ,

is an (FY ,Pθ )-martingale.
Under Pθ , the price process of the risky share is given by:

dS(t) = S(t)r(t)dt + S(t)σ(t)dŴθ (t)+ S(t−)

∫
ℜ0

(ez − 1)γ̂θ (dt,dz) .

To simplify our analysis, we suppose here that the probability law of the chain X
remains unchanged after the measure change from P to P

θ . Consequently, under Pθ ,
the semimartingale dynamics for the chain X are:

X(t) = X(0)+
∫ t

0
A(u)X(u)du+M(t) , t ∈ T .

Furthermore, we assume that Ŵ θ , γ̂θ and X are stochastically independent under Pθ .
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8.5 European-Style Option

In this section, we shall consider the valuation of a standard European-style op-
tion in the filtered market and derive a partial differential integral equation (PDIE)
for the option price. Consider a European-style option written on the risky share
S whose payoff at the maturity time T is H(S(T )) ∈ L2(Ω ,FY (T ),P), where
L2(Ω ,FY (T ),P) is the space of square-integrable random variables on
(Ω ,FY (T ),P) and H : ℜ → ℜ is a measurable function.

Conditional on the observed information FY (t) at the current time t, the price of
the European option at time t is given by:

V (t) = Eθ
[

exp

(
−

∫ T

t
r(u)du

)
H(S(T ))|FY (t)

]
.

Here Eθ is an expectation under the measure Pθ .
Note that {(S(t),q(t))|t ∈ T } is jointly Markovian with respect to the observed

filtration F
Y . Consequently if S(t) = s ∈ (0,∞) and q(t) = q ∈ ℜN ,

V (t) = Eθ
[

exp

(
−

∫ T

t
r(u)du

)
H(S(T ))|FY (t)

]

= Eθ
[

exp

(
−

∫ T

t
r(u)du

)
H(S(T ))|(S(t),q(t)) = (s,q)

]

:= V †(t,s,q) ,

for some function V † : T × (0,∞)×ℜN → ℜ.
For each t ∈ T , let V (t,s,q) := exp(−∫ t

0 r(u)du)V †(t,s,q). Then

V (t,s,q) = Eθ
[

exp

(
−

∫ T

0
r(u)du

)
H(S(T ))|FY (t)

]
.

This is an (FY ,Pθ )-martingale.
For each t ∈ T , let

Ĵθ (t) :=
∫ t

0

∫
ℜ0

γ̂θ (du,dz) .

Then using Lemma 8.3 and Theorem 8.1, the unnormalized filter process under the
risk-neutral measure Pθ is given by:

dq(t) =
(

A(t)+B(t)σ−2(t)(ĥ(t)+σ2(t)θ (t))

+
N

∑
i=1

∫
ℜ0

diag(G(t)− 1)
〈
X̂(t),ei

〉
eθ(t)zλi(t)ηi(dz|t)
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−diag(λ (t)− 1)
)

q(t)dt +B(t)σ−1(t)q(t)dŴ θ (t)

+diag(G(t)− 1)q(t)dĴθ(t) .

To simplify the notation, we write

αθ (t) := A(t)+B(t)σ−2(t)(ĥ(t)+σ2(t)θ (t))

+
N

∑
i=1

∫
ℜ0

diag(G(t)− 1)
〈
X̂(t),ei

〉
eθ(t)zλi(t)ηi(dz|t)

−diag(λ (t)− 1) ∈ ℜN ⊗ℜN ,

so

dq(t) = αθ (t)q(t)dt +B(t)σ−1(t)q(t)dŴ θ (t)+diag(G(t)− 1)q(t)dĴθ (t) .

Under Pθ , the price process of the risky asset is:

dS(t) = S(t)r(t)dt + S(t)σ(t)dŴθ (t)+ S(t−)

∫
ℜ0

(ez − 1)γ̂θ (dt,dz) .

Suppose V : T × (0,∞)× (0,∞)N → ℜ is a function in C 1,2(T × (0,∞)×
(0,∞)N), whereC 1,2(T ×(0,∞)×(0,∞)N) is the space of functionsV (t,s,q) which
are continuously differentiable in t ∈ T and twice continuously differentiable in
(s,q) ∈ (0,∞)× (0,∞)N .

The following theorem gives the partial differential integral equation (P.D.I.E.)
for the price of the European-style option V .

Theorem 8.4. Let q− := q(t−) and s− := S(t−), for each t ∈ T . Write y′ for the
transpose of a vector, or matrix, y. Define, for each t ∈ T ,

β θ (t) :=
N

∑
i=1

diag(G(t)− 1)
〈
X̂(t),ei

〉
λi(t)

∫
ℜ0

eθ(t)z(ez − 1)ηi(dz|t) ∈ ℜN ⊗ℜN .

Then the option price V †(t,s,q) at time t satisfies:

∂V †

∂ t
+

∂V †

∂ s
s(μ̂(t)+θ (t)σ2(t))+

〈
∂V †

∂q
,(αθ (t)−βθ (t))q(t)

〉

+
1
2

∂ 2V †

∂ s2 σ2(t)s2 + s

〈
∂ 2V †

∂q∂ s
,B(t)q(t)

〉
+

1
2
(B(t)q(t))′

∂ 2V †

∂q2 (B(t)q(t))

+
N

∑
i=1

〈
X̂(t),ei

〉∫
ℜ0

(
V †(t,s−ez,q−diag(G(t)))−V †(t,s−,q−)

)

×eθ(t)zλi(t)ηi(dz|t) = r(t)V † ,

with the terminal condition V †(T,S(T ),q(T )) = H(S(T )).
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Proof. The proof is standard. For the sake of completeness, we give the proof here.
Applying Itô’s differentiation rule to V (t,s,q) gives:

V (t,s,q) = V (0,s0,q0)+
∫ t

0

∂V
∂u

du+
∫ t

0

∂V
∂ s

S(u)

(
r(u)−

N

∑
i=1

〈
X̂(u),ei

〉
λi(u)

×
∫

ℜ0

eθ(u)z(ez − 1)ηi(dz|u)
)

du−
∫ t

0

〈
∂V
∂q

,diag(G(u)− 1)q(u)
〉

×
N

∑
i=1

〈
X̂(u),ei

〉
λi(u)

∫
ℜ0

eθ(u)z(ez − 1)ηi(dz|u)
)

du

+

∫ t

0

∂V
∂ s

S(u)σ(u)dŴθ (u)+
∫ t

0

〈
∂V
∂q

,αθ (u)q(u)
〉

du

+

∫ t

0

〈
∂V
∂q

,B(u)q(u)
〉

σ−1(u)dŴ θ (u)+
∫ t

0

∂ 2V
∂ s2 σ2(u)S2(u)du

+

∫ t

0
S(u)

〈
∂ 2V
∂q∂ s

,B(u)q(u)
〉

du+
1
2

∫ t

0
(B(u)q(u))′

∂ 2V
∂q2 (B(u)q(u))du

+
N

∑
i=1

∫ t

0

〈
X̂(u),ei

〉∫
ℜ0

(
V (u,S(u−)ez,q(u−)diag(G(u)))

−V (u,S(u−),q(u−))

)
eθ(u)zλi(u)ηi(dz|u)du

+

∫ t

0

∫
ℜ0

(
V (u,S(u−)ez,q(u))−V(u,S(u−),q(u−))

)
γ̂θ (du,dz) .

Rearranging then gives:

V (t,s,q) = V (0,s0,q0)+

∫ t

0

[
∂V
∂ u

+
∂V
∂ s

S(u)

(
r(u)−

N

∑
i=1

〈
X̂(u),ei

〉
λi(u)

×
∫

ℜ0

eθ(u)z(ez −1)ηi(dz|u)
)
−
〈

∂V
∂ q

,diag(G(u)−1)q(u)
〉

×
N

∑
i=1

〈
X̂(u),ei

〉
λi(u)

∫
ℜ0

eθ(u)z(ez −1)ηi(dz|u)+
〈

∂V
∂ q

,αθ (u)q(u)
〉

+
1
2

∂ 2V
∂ s2 σ 2(u)S2(u)+S(u)

〈
∂ 2V
∂ q∂ s

,B(u)q(u)
〉
+

1
2
(B(u)q(u))′

∂ 2V
∂ q2 (B(u)q(u))

+
N

∑
i=1

〈
X̂(u),ei

〉∫
ℜ0

(
V (u,S(u−)ez,q(u−)diag(G(u)))−V (u,S(u−),q(u−))

)

×eθ(u)zλi(u)ηi(dz|u)
]

du+
∫ t

0

∂V
∂ s

S(u)σ(u)dŴθ (u)

+
∫ t

0

〈
∂V
∂ q

,B(u)q(u)
〉

σ−1(u)dŴ θ (u)

+

∫ t

0

∫
ℜ0

(
V (u,S(u−)ez,q(u))−V (u,S(u−),q(u−))

)
γ̂θ (du,dz).
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Using the martingale condition (8.4) and the definition of β θ (t),

V (t, s,q) = V (0, s0,q0)+
∫ t

0

[
∂V
∂ u

+
∂V
∂ s

S(u)(μ̂(u)+θ (u)σ 2(u))+

〈
∂V
∂ q

, (αθ (u)−β θ (u))q(u)
〉

+
1
2

∂ 2V
∂ s2 σ 2(u)S2(u)+S(u)

〈
∂ 2V
∂ q∂ s

,B(u)q(u)
〉
+

1
2
(B(u)q(u))′

∂ 2V
∂ q2 (B(u)q(u))

+
N

∑
i=1

〈
X̂(u),ei

〉∫
ℜ0

(
V (u,S(u−)ez,q(u−)diag(G(u)))−V (u,S(u−),q(u−))

)

×eθ(u)zλi(u)ηi(dz|u)
]

du+
∫ t

0

∂V
∂ s

S(u)σ (u)dŴ θ (u)

+
∫ t

0

〈
∂V
∂ q

,B(u)q(u)
〉

σ−1(u)dŴ θ (u)

+

∫ t

0

∫
ℜ0

(
V (u,S(u−)ez,q(u))−V (u,S(u−),q(u−))

)
γ̂θ (du,dz) .

Note that the discounted price process {V(t,S(t),q(t))|t ∈ T } is an (FY ,Pθ )-
martingale. It must be a special semimartingale. Consequently, the du-integral terms
must sum to zero, and hence,

∂V
∂ t

+
∂V
∂ s

S(t)(μ̂(t)+θ (t)σ2(t))+

〈
∂V
∂q

,(αθ (t)−βθ (t))q(t)
〉

+
1
2

∂ 2V
∂ s2 σ2(t)S2(t)+ S(t)

〈
∂ 2V
∂q∂ s

,B(t)q(t)
〉
+

1
2
(B(t)q(t))′

∂ 2V
∂q2 (B(t)q(t))

+
N

∑
i=1

〈
X̂(t),ei

〉∫
ℜ0

(
V (t,S(t−)ez,q(t−)diag(G(t)))−V(t,S(t−),q(t−))

)

×eθ(t)zλi(t)ηi(dz|t) = 0 .

Therefore, the result follows by applying the differentiation rule to

V †(t,s,q) = exp

(
−

∫ t

0
r(u)du

)
V (t,s,q)

again. �
The result in Theorem 8.4 may be extended from the class of smooth functions

C 1,2(T ×(0,∞)×(0,∞)N) to a wider class of functions in which a generalized Itô’s
differentiation rule holds. The wider class of functions may include differences of
two convex functions, (see, for example, [24]).
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8.6 Conclusion

We discussed a two-stage approach for pricing a European-style option in a hidden
Markovian regime-switching jump-diffusion model. Filtering theory was first used
to turn the original market with partial observations to a filtered market with com-
plete observations. Then the option valuation problem was considered in the filtered
market where the hidden quantities in the original market were replaced by their
filtered estimates. The generalized Esscher transform for semimartingales was used
to select a pricing kernel in the incomplete filtered market. By noticing that the price
process and the unnormalized filter process of the hidden Markov chain are jointly
Markovian with respect to the observed filtration, a partial differential-integral equa-
tion governing the price of the European-style option was derived.
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