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Preface

Since the publication of our coedited monograph Hidden Markov Models (HMM)
in Finance by Springer in 2007, there has been substantial research in many areas
of finance which employ HMM. It is the objective of this edited volume to present
some updates on the current state of the field. The book brings together several ar-
ticles which explore the most recent developments of HMMs and their applications
to financial modelling. The main themes in this collection, combining new theoret-
ical advances and applications, are improvements of the EM algorithm for HMMs,
interest rates, foreign exchange, insurance, option pricing, trading and parameter
estimation within some extended HMM frameworks.

The lead paper ‘Robustification of an Online EM Algorithm for Modelling Asset
Prices Within an HMM’, by C. Erlwein-Sayer and P. Ruckdeschel, considers the
robustification of the EM algorithm in conjunction with Elliott’s pioneering work
(1994) on exact adaptive filters for Markov chains observed in Gaussian noise. This
innovation aims to tackle the presence of outliers in financial data and preserves
confidence in the results of the HMM estimation procedure.

The succeeding three articles showcase various approaches in modelling interest
rates under HMM-driven regime-switching frameworks. In their paper ‘Stochastic
Volatility or Stochastic Central Tendency: evidence from a Hidden Markov Model of
the Short-Term Interest Rate’, C.A. Wilson and R.J. Elliott show the importance of
stochastic volatility over stochastic central tendency in capturing the evolution of in-
terest rates. It features an iterative procedure in determining the likelihood function;
numerical maximisation was used to find maximum likelihood estimates. Wu and
Zeng put forward a model with an analytically simple representation of the Markov
regime shifts but which is capable of handling the stylised features of the yield curve
in their paper ‘An Econometric Model of the Term Structure of Interest Rates Under
Regime-Switching Risk’. The efficient method of moments was utilised in their em-
pirical examination of US data within a two-factor version of their proposed model.
Continuing the theme of interest-rate modelling, L. Steinrücke, R. Zagst and A.
Swishchuk extended the LIBOR market model to incorporate sudden market shocks,
structural breaks and changes in economic climate. Their paper ‘The LIBOR market

v
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model: a Markov-switching jump diffusion extension’ includes model calibration to
real data illustrating potential usability for practitioners.

‘Exchange Rates and Net Portfolio Flows: a Markov-Switching Approach’, by
F. Menla, F. Spagnolo and N. Spagnolo, is a paper which describes the usefulness
of Markov-switching tools to investigate the finer structure of the foreign exchange
rate market. In particular, it probes the effects of bond and equity portfolio flows
to exchange rate dynamics. Covering major currencies against the US dollar, it is a
far-reaching empirical study that explores the relationship between portfolio flows
and fluctuations in the exchange rate changes.

In recent years, there has been a proliferation of finsurance business due to the
significant growth in the creation of derivatives that blend the characteristics of fi-
nancial and insurance products. These instruments require new methods to deal with
their complexity. P. Azimzadeh, P.A. Forsyth and K.R. Vetzal examine the valuation
and hedging of guaranteed lifelong withdrawal and death benefits contracts in their
paper ‘Hedging Costs for Variable Annuities Under Regime Switching’. A general
approach is constructed which enables utility-based pricing and other factors to be
taken into account and yields a system of partial differential equations (PDEs). The
system is solved using an implicit method for a large class of utility functions that
govern the withdrawal behaviour of the policyholders.

D. Nguyen, G. Yin and Q. Zhang analyse an optimal trading strategy assuming
a bull-bear regime-switching market. Their paper ‘A Stochastic Approximation Ap-
proach for Trend-Following Trading’ delves into a buy–sell strategy that maximises
expected return. The optimality of such a strategy is achieved by determining thresh-
old levels through a stochastic approximation algorithm. This circumvents the need
to solve Hamilton–Jacobi–Bellman-type equations.

Some contributions to the ubiquitous and popular problem of option pricing un-
der an HMM setting are contained in two papers included in this monograph. TK
Siu’s article ‘A Hidden Markov-Modulated Jump Diffusion Model for European Op-
tion Pricing’ is concerned with a two-step valuation procedure. It consists of using
filtering methods and the Esscher transform to derive an integro-partial differential
equation satisfied by the price of a European option. The paper ‘An Exact Formula
for Pricing American Exchange Options with Regime Switching’ by L. Chan pro-
vides the valuation of exchange options of American style when the parameters
of the underlying variable are governed by an HMM. A homotopy analysis-based
method is utilised to calculate the value of an American option in this framework.

The last two papers highlight the estimation of model parameters under HMM
frameworks with enhanced flexibility of modelling other features of observed mar-
ket data. The emphasis is on their potential implementation in financial derivative
valuation, risk management and asset allocation. X. Xi and R. Mamon’s paper
‘Parameter Estimation in a Weak Hidden Markov Model with Independent Drift
and Volatility’ gives the estimation procedure for the drift and volatility compo-
nents in a model where they are independently influenced by two separate higher-
order HMMs with different state spaces. Such a procedure enables the incorpo-
ration of memory in historical data in addition to occasional structural changes.
Finally, another way to augment the capability of the HMM setting is to build an
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estimation scheme assuming that the signal model has a non-normal perturbation.
This is discussed in the paper ‘Parameter Estimation in a Regime-Switching Model
with Non-normal Noise’ by L. Jalen and R. Mamon. For this setting, the dynamic
estimation of transition probabilities can still rely on recursively filtered estimates of
quantities that are functions of the Markov chain. Concentrating on noise having a
Student’s t-distribution, it is demonstrated that the estimation of the other remaining
parameters amounts to solving a system of nonlinear equations which can be readily
accomplished by using modern computing software.
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PhD in applied mathematics from the University of Western Ontario, Canada. Her
research specialisations are on the financial applications of higher-order Markov
models, recursive filtering techniques and dynamic model parameter estimation.
She has published in Economic Modelling, Computational Economics, and Jour-
nal of Mathematical Modelling and Algorithms. Her research works also appeared
in peer-reviewed monographs comprising the first volume of the Springer’s Series
in Statistics and Finance and also the first volume of World Scientific’s Advances
in Statistics, Probability and Actuarial Science. She obtained her MSc and BA in
mathematics from Wilfrid Laurier University in Waterloo.

George Yin joined the Department of Mathematics, Wayne State University, after
receiving her PhD in applied mathematics from Brown University in 1987. He be-
came a professor in 1996. His research interests include stochastic systems, applied
stochastic processes and applications. He severed on many technical committees.
He is an associate editor of SIAM Journal on Control and Optimization and is on
the editorial board of a number of other journals and book series; he was an asso-
ciate editor of Automatica and IEEE Transactions on Automatic Control. He is a
fellow of IEEE.

Rudi Zagst is professor of mathematical finance, director of the Center of Math-
ematics and head of the Chair of Mathematical Finance at Technische Universität
München (TUM), Germany. He is also president of risklab GmbH, a German-based
consulting company offering advanced asset management solutions. He is a con-
sultant and a professional trainer to a number of leading institutions. His current
research interests are in financial engineering, risk and asset management.

Yong Zeng is a professor in the Department of Mathematics and Statistics at Uni-
versity of Missouri at Kansas City. His main research interests include mathemati-
cal finance, financial econometrics, stochastic nonlinear filtering and Bayesian sta-
tistical analysis. Notably, he has developed the statistical analysis via filtering for



xxii Biographical Notes

financial ultra-high-frequency data. He has published in Mathematical Finance, In-
ternational Journal of Theoretical and Applied Finance, Applied Mathematical Fi-
nance, Applied Mathematics and Optimization, IEEE Transactions on Automatic
Control, and Statistical Inference for Stochastic Processes, among others. He has
coedited the monograph State Space Models: Applications to Economics and Fi-
nance, a Springer book volume published in 2013. He has held visiting associate
professorships at Princeton University and the University of Tennessee. He received
his BS from Fudan University in 1990, MS from University of Georgia in 1994
and PhD from University of Wisconsin at Madison in 1999. All degrees were in
statistics.

Qing Zhang is a professor of mathematics at University of Georgia. He received his
PhD from Brown University in 1988. His recent research interests include stochas-
tic control, filtering and applications in finance. He was an associate editor of IEEE
Transactions on Automatic Control and SIAM Journal on Control and Optimiza-
tion. He is currently an associate editor of Automatica and the corresponding editor
of SIAM Journal on Control and Optimization.



Chapter 1
Robustification of an On-line EM Algorithm
for Modelling Asset Prices Within an HMM

Christina Erlwein-Sayer and Peter Ruckdeschel

Abstract In this paper, we establish a robustification of Elliott’s on-line EM
algorithm for modelling asset prices within a hidden Markov model (HMM). In this
HMM framework, parameters of the model are guided by a Markov chain in dis-
crete time, parameters of the asset returns are therefore able to switch between dif-
ferent regimes. The parameters are estimated through an on-line algorithm, which
utilizes incoming information from the market and leads to adaptive optimal esti-
mates. We robustify this algorithm step by step against additive outliers appearing
in the observed asset prices with the rationale to better handle possible peaks or
missings in asset returns.

1.1 Introduction

Realistic modelling of financial time series from various markets (stocks, commodi-
ties, interest rates, etc.) is often achieved through hidden Markov or regime-switching
models. One major advantage of regime-switching models is their flexibility to
capture switching market conditions or switching behavioural aspects of market par-
ticipants resulting in a switch in the volatility or mean value.

Regime-switching models were first applied to issues in financial markets by
Hamilton [14], where he established a Markov switching AR-model to model the
GNP of the U.S. His results show promising effects of including possible regime-
switches into the characterization of a financial time series. Further regime-switching
models for financial time series followed, e.g., switching ARCH or switching
GARCH models (see for example Cai [2] and Gray [12]), amongst many other ap-
plications.

C. Erlwein-Sayer (�) • P. Ruckdeschel
Department of Financial Mathematics, Fraunhofer ITWM, Fraunhofer-Platz 1,
D-67663 Kaiserslautern, Germany
e-mail: Christina.Erlwein@itwm.fraunhofer.de; Peter.Ruckdeschel@itwm.fraunhofer.de

R.S. Mamon and R.J. Elliott (eds.), Hidden Markov Models in Finance, International Series
in Operations Research & Management Science 209, DOI 10.1007/978-1-4899-7442-6 1,
© Springer Science+Business Media New York 2014

1

mailto:Christina.Erlwein@itwm.fraunhofer.de
mailto:Peter.Ruckdeschel@itwm.fraunhofer.de


2 C. Erlwein-Sayer and P. Ruckdeschel

Various algorithms and methods for statistical inference are applied within these
model setups, including as famous ones as the Baum-Welch algorithm and Viterbi’s
algorithm for an estimation of the optimal state sequence. HMMs in finance, both in
continuous and in discrete time often utilize a filtering technique which was devel-
oped by Elliott [3]. Adaptive filters are derived for processes of the Markov chain
(jump process, occupation time process and auxiliary processes) which are in turn
used for recursive optimal parameter estimates of the model parameters. This filter-
based Expectation-Maximization (EM) algorithm leads to an on-line estimation of
model parameters. Our model setup is based on Elliott’s filtering framework.

This HMM can be applied to questions, which arise in asset allocation problems.
An investor typically has to decide, how much of his wealth shall be invested into
which asset or asset class and when to optimally restructure a portfolio. Asset all-
ocation problems were examined in a regime-switching setting by Ang and Beck-
aert [1], where high volatility and high correlation regimes of asset returns were
discovered. Guidolin and Timmermann [13] presented an asset allocation problem
within a regime-switching model and found four different possible underlying mar-
ket regimes. A paper by Sass and Haussmann [31] derives optimal trading strategies
and filtering techniques in a continuous-time regime-switching model setup. Opti-
mal portfolio choices were also discussed in Elliott and van der Hoek [5] and Elliott
and Hinz [4] amongst others. Here, Markowitz’s famous mean-variance approach
(see Markowitz [23]) is transferred into an HMM and optimal weights are derived.
A similar Markowitz based approach within an HMM was developed in Erlwein et
al. [7], where optimal trading strategies for portfolio decisions with two asset classes
are derived. Trading strategies are developed herein to find optimal portfolio deci-
sions for an investment in either growth or value stocks. Elliott’s filtering technique
is utilized to predict asset returns.

However, most of the optimal parameter estimation techniques for HMMs in the
literature only lead to reasonable results, when the market data set does not contain
significant outliers. The handling of outliers is an important issue in many finan-
cial models, since market data might be unreliable at times or high peaks in asset
returns, which might occur in the market from time to time shall be considered
separately and shall not negatively influence the parameter estimation method. In
general, higher returns in financial time series might belong to a separate regime
within an HMM. This flexibility is already included in the model setup. However,
single outliers, which are not typical for any of the regimes considered, shall be
handled with care, a separate regime would not reflect the abnormal data point. In
this paper, we will develop a robustification of Elliot’s filter-based EM-algorithm.
In Sect. 1.2 we will set the HMM framework, which is applied (either in a one-
or multi-dimensional setting) to model asset or index returns. The general filtering
technique is described in Sect. 1.3. The asset allocation problem which clarifies the
effect outliers can have on the stability of the filters is developed in Sect. 1.4. Sec-
tion 1.5 then states the derivation of a robustification for various steps in the filter
equations. The robustification of a reference probability measure is derived as well
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as a robust version of the filter-based EM-algorithm. An application of the robust
filters is shown in Sects. 1.6 and 1.7 finishes our work with some conclusions and
possible future applications.

1.2 Hidden Markov Model Framework for Asset Returns

For our problem setting we first review a filtering approach for a hidden Markov
model in discrete time which was developed in [3]. The logarithmic returns of an
asset follow the dynamics of the observation process yk, which can be interpreted
as a discretized version of the Geometric Brownian motion, which is a standard
process to model stock returns. The underlying hidden Markov chain Xk cannot be
directly observed. The parameters of the observation process are governed by the
Markov chain and are therefore able to switch between regimes over time.

We work under a probability space (Ω ,F ,P) under which Xk is a homogeneous
Markov chain with finite state space I = {1, . . . ,N} in discrete time (k = 0,1,2 . . .).
Let the state space of Xk be associated with the canonical basis {e1,e2, . . . ,eN}∈RN

with ei = (0, . . . ,0,1,0, . . . ,0)� ∈ R
N . The initial distribution of X0 is known and

ΠΠΠ = (π ji) is the transition probability matrix with π ji = P(Xk+1 = e j|Xk = ei). Let
F x0

k = σ{X0, . . . ,Xk} be the σ -field generated by X0, . . . ,Xk and let F x
k be the

complete filtration generated by F x0
k . Under the real world probability measure P,

the Markov chain x has the dynamics

Xk+1 =ΠΠΠXk + vk+1 , (1.1)

where vk+1 := Xk+1−ΠΠΠXk is a martingale increment (see Lemma 2.3 in [3]).
The Markov chain Xk is “hidden” in the log returns yk+1 of the stock price Sk.

Our observation process is given by

yk+1 = ln
Sk+1

Sk
= f (Xk)+σ(Xk)wk+1 , (1.2)

where Xk has finite state space and wk’s constitute a sequence of i.i.d. random vari-
ables independent of X. The real-valued process y can be re-written as

yk+1 = 〈 fff ,Xk〉+ 〈σσσ ,Xk〉wk+1 . (1.3)

Note that f = ( f1, f2, . . . , fN)
� and σσσ = (σ1,σ2, . . . ,σN)

� are vectors, furthermore
f (Xk) = 〈f,Xk〉 and σ(Xk) = 〈σσσ ,Xk〉, where 〈b,c〉 denotes the Euclidean scalar
product in R

N of the vectors b and c. We assume σi �= 0. Let F y
k be the filtration

generated by the σ(y1,y2, . . . ,yk) and Fk =F x
k ∨F y

k is the global filtration.
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1.3 Essential Steps in Elliott’s Algorithm

1.3.1 Change of Measure

A widely used concept in filtering applications, going back to Zakai [32] for stochas-
tic filtering, is a change of probability measure technique. A measure change to a
reference measure P̄ is applied here, under which filters for the Markov chain and
related processes are derived. Under P̄, the underlying Markov chain still has the
dynamics Xk+1 = ΠΠΠXk + vk+1 but is independent of the observation process and
the observations yk are N (0,1) i.i.d. random variables.

Following the change of measure technique which was outlined in Elliott et al.
[6], the adaptive filters for the Markov chain and related processes are derived under
this “idealized” measure P̄. Changing back to the real world is done by constructing

P from P̄ through the Radon-Nikodŷm derivative dP
dP̄

∣
∣
∣
∣
Fk

= Λk. To construct Λk we

define the process λl

λl :=
φ
[

σ(Xl−1)
−1
(

yl− f (Xl−1)
)]

σ(Xl−1)φ(yl)
, (1.4)

where φ(z) is the probability density function of a standard normal random vari-
able Z and set Λk := ∏k

l=1λl, k ≥ 1, Λ0 = 1 . Under P the sequence of vari-
ables w1,w2, . . . , is a sequence of i.i.d. standard normals, where we have wk+1 =
σ(Xk)

−1 (yk+1− f (Xk)) .

1.3.2 Filtering for General Adapted Processes

The general filtering techniques and the filter equations which were established in
[3] for Markov chains observed in Gaussian noise are stated in this subsection. This
filter-based EM-algorithm is adaptive, which enables fast calculations and filter up-
dates. Our robustification partly keeps this adaptive structure of the algorithm, al-
though the recursivity cannot be kept completely.

In general, filters for four types of processes related to the Markov chain, namely
the state space process, the jump process, the occupation time process and auxiliary
processes including terms of the observation process are derived. Information on
these processes can be filtered out from our observation process and can in turn be
used to find optimal parameter estimates.

To determine the expectation of any F−adapted stochastic process H given
the filtration F y

k , consider the reference probability measure P̄ defined as P(A) =
∫

A Λ dP . From Bayes’ theorem a filter for any adapted process H is given by

E
[

Hk |F y
k

]

=E
[

HkΛk |F y
k

]/

E
[

Λk |F y
k

]

. The characterization of the conditional
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distribution of Xk under P given F y
k can be written as p̂k = E

[

Xk |F y
k

]

=
E
[

XkΛk |F y
k

]

E
[

Λk |F y
k

] . We know that ∑N
i=1〈Xk,ei〉 = 1. With ∑N

i=1〈E
[

XkΛk | F y
k

]

,ei〉 =
E
[

Λk∑N
i=1〈Xk,ei〉 |F y

k

]

= E
[

Λk |F y
k

]

we have

p̂k =
E
[

XkΛk |F y
k

]

∑N
i=1〈E

[

XkΛk |F y
k

]

,ei〉
.

Now, we define ηk(Hk) := E
[

HkΛk |F y
k

]

, so that E
[

Hk |F y
k

]

= ηk(Hk)/ηk(1).
A recursive relationship between ηk(Hk) and ηk−1(Hk−1) has to be derived, where
η0(H0) = E[H0]. However, a recursive formula for the term ηk−1(Hk−1Xk−1) is
found. To relate ηk(Hk) and ηk(HkXk) we note that with 〈1,Xk〉= 1

〈1,ηk(HkXk)〉= ηk(Hk〈1,Xk〉) = ηk(Hk) . (1.5)

Therefore

E
[

Hk |F y
k

]

=
〈1,ηk(HkXk)〉
〈1,ηk(Xk)〉 . (1.6)

A general recursive filter for adapted processes was derived in [3]. Suppose Hl is
a scalar F = σ((Xt ,Yt)t)−adapted process, H0 is FX

0 measurable and Hl = Hl−1 +
al + 〈bl ,vl〉+ gl f (yl), where a, b and g are F -predictable, f is a scalar-valued
function and vl = Xl−ΠXl−1. A recursive relation for ηk(HkXk) is given by

ηk(HkXk) =
N

∑
i=1

Γ i(yk)
[〈ei,ηk−1(Hk−1Xk−1)〉Πei

+ 〈ei,ηk−1(akXk−1)〉Πei

+(diag(Πei)− (Πei)(Πei)
′)ηk−1(bk〈ei,Xk−1〉)

+ηk−1(gk〈ei,Xk−1〉) f (yk)Πei
]

. (1.7)

Here, for any column vectors z and y, zy′ denotes the rank-one (if z �= 0 and y �= 0)
matrix zy�. The term Γ i(yk) denotes the component-wise Radon-Nikodŷm deriva-
tive λ i

k,

Γ i(yk) = φ
(yk− fi

σi

)

/σiφ(yk) .

Now, filters for the state of the Markov chain as well as for three related pro-
cesses: the jump process, the occupation time process and auxiliary processes of the
Markov chain are derived. These processes can be characterized as special cases of
the general process Hl .

The estimator for the state Xk is derived from ηk(HkXk) by setting Hk = H0 = 1,
ak = 0, bk = 0 and gk = 0. This implies that
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ηk(Xk) =
N

∑
i=1

Γ i(yk)〈ei,ηk−1(Xk−1)〉Πei . (1.8)

The initialization for k = 1 includes Π0, which is the initial distribution of X0.
Therefore we have η1(X1) = ∑N

i=1Γ i(y1)〈ei,Π0〉Πei.
The first related process is the number of jumps of the Markov chain Xk from

state er to state es in time k, Jsr
k = ∑k

l=1〈Xl−1,er〉〈Xl ,es〉.
Setting Hk = Jsr

k , H0 = 0, ak = 〈Xk−1,er〉πsr, bk = 〈Xk−1,er〉e′s and gk = 0 in
Eq. (1.7) we get

ηk(J
sr
k Xk) =

N

∑
i=1

Γ i(yk)〈ηk−1(J
sr
k−1Xk−1),ei〉Πei

+Γ r(yk)ηk−1(〈Xk−1,er〉)πsres . (1.9)

The second process Or
k denotes the occupation time of the Markov process

X, which is the length of time X spent in state r up to time k. Here, Or
k =

∑k
l=1〈Xl−1,er〉 = Or

k−1 + 〈Xk−1,er〉 . We set Hk = Or
k, H0 = 0, ak = 〈Xk−1,er〉,

bk = 0 and gk = 0 in Eq. (1.7) to obtain

ηk(O
r
kXk) =

N

∑
i=1

Γ i(yk)〈ηk−1(O
r
k−1Xk−1),ei〉Πei

+Γ r(yk)〈ηk−1(Xk−1),er〉Πer . (1.10)

Finally, consider the auxiliary process T r
k (g), which occur in the maximum like-

lihood estimation of model parameters. Specifically, T r
k (g) = ∑k

l=1〈Xl−1,er〉g(yl),
where g is a function of the form g(y) = y or g(y) = y2. We apply formula (1.7) and
get

ηk(T
r

k (g)Xk) =
N

∑
i=1

Γ i(yk)〈ηk−1(T
r

k−1(g(yk−1))Xk−1),ei〉Πei

+Γ r(yk)〈ηk−1(Xk−1),er〉g(yk)Πer . (1.11)

We choose to set the initial values of the processes ηk(Jsr
k Xk),ηk(Or

kXk),
ηk(T r

k (g)Xk) to zero. In the first step of the algorithm we therefore get:

η1(J
sr
1 X1) = Γ r(y1)〈η0(X0),er〉πsres

η1(O
r
1X1) = Γ r(y1)〈η0(X0),er〉Πer

η1(T
r

1 (g)X1) = Γ r(y1)〈η0(X0),er〉g(y1)Πer. (1.12)

The recursive optimal estimates of J, O and T can be calculated using Eq. (1.5).
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1.3.3 Filter-Based EM Algorithm

The derived adapted filters for processes of the Markov chain can now be utilized to
derive optimal parameter estimates through a filter-based EM-algorithm. The set of
parameters ρ , which determines the regime-switching model is

ρ = {π ji,1 ≤ i, j ≤ N, fi,σi,1≤ i≤ N} . (1.13)

Initial values for the EM algorithm are assumed to be given. Starting from these
values updated parameter estimates are derived which maximize the conditional ex-
pectation of the log-likelihoods. The M-step of the algorithm deals with maximizing
the following likelihoods:

• The likelihood in the global F -model is given by

logΛt(σ , f ;(Xs,ys)s≤t) =−1
2

t

∑
s=1

(

log〈σ ,Xs−1〉+ (ys−〈 f ,Xs−1〉)2

〈σ ,Xs〉
)

.

• In the F y-model, where the Markov chain is not observed, we obtain

Lt(σ , f ;(ys)s≤t) = E[logΛt(σ , f ;(Xs,ys)s≤t) | F y
t ] =

= −1
2

N

∑
k=1

(

logσkÔk
t +(T̂ k

t (y
2)− 2T̂ k

t (y) fk + Ôk
t f 2)/σ2

k

)

. (1.14)

The maximum likelihood estimates of the model parameters can be expressed
through the adapted filters. Whenever new information is available on the market,
the filters are updated and, respectively, updated parameter estimates can be ob-
tained.

Theorem 1.1 (Optimal parameter estimates). Write Ĥk = E[Hk|F y
k ] for any F -

adapted process H. With Ĵ, Ô and T̂ denoting the best estimates for the processes J,
O and T , respectively, the optimal parameter estimates π̂ ji, f̂i and σ̂i are given by

π̂ ji =
Ĵ ji

k

Ôi
k

=
ηk(J

ji
k )

ηk(Oi
k)

(1.15)

f̂i =
T̂ (i)

k

Ô(i)
k

=
η(T (i)(y))k

η(O(i))k
(1.16)

σ̂i =

√
√
√
√

T̂ (i)
k (y2)− 2 f̂iT̂

(i)
k (y)+ f̂ 2

i Ô(i)
k

Ô(i)
k

. (1.17)

Proof. The derivation of the optimal parameter estimates can be found in [6]. ��
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1.3.4 Summary of Algorithm

The filter-based EM-algorithm runs in batches of n data points (n typically equals a
minimum of 10 up to a maximum of 50) over the given time series. The parameters
are updated at the end of each batch. The batches are not overlapping. The algorithm
comprises the following steps:

(0) Find suitable starting values for ΠΠΠ and f , σ .
(RN) Determine the RN-derivative for the measure change to P̄.
(E) Recursively, compute filters Ĵ ji

t , Ôi
t , and T̂ i

t (g).
(M1) Obtain ML-estimators f̂ = ( f̂1, . . . , f̂N) and σ̂ = (σ̂1, . . . , σ̂N).
(M2) Obtain ML-estimators Π̂ .
(Rec) Go to (RN) to compute the next batch.

1.4 Outliers in Asset Allocation Problem

1.4.1 Outliers in General

In the following sections we derive a robustification of the Algorithm 1.3.4 to stabi-
lize it in the presence of outliers in the observation process. To this end let us discuss
what makes an observation an outlier. First of all, outliers are exceptional events, oc-
curring rarely, say with probability 5–10 %. Rather than captured by usual random-
ness, i.e., by some distributional model, they belong to what Knight [21] refers to
uncertainty: They are uncontrollable, of unknown distribution, unpredictable, their
distribution may change from observation to observation, so they are non-recurrent
and do not form an additional state. They cannot be used to enhance predictive
power, and, what makes their treatment difficult, they often cannot be told with cer-
tainty from ideal observations.

Still, the majority of the observations in a realistic sample should resemble an
ideal (distributional) setting closely, otherwise the modeling would be question-
able. Here we understand closeness as in a distributional sense, as captured, e.g.,
by goodness-of-fit distances like Kolmogorov, total variation or Hellinger distance.
More precisely, ideally, this closeness should be compatible to the usual conver-
gence mode of the Central Limit Theorem, i.e., with weak topology. In particular,
closeness in moments is incompatible with this idea.

Topologically speaking, one would most naturally use balls around a certain el-
ement, i.e., the set of all distributions with a suitable distance no larger than some
given radius ε > 0 to the distribution assumed in the ideal model.

Conceptually, the most tractable neighborhoods are given by the so-called Gross
Error Model, defining a neighborhood U about a distribution F as the set of all
distributions given by

Uc(F,ε) = {G |∃H : G = (1− ε)F + εH} . (1.18)
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They can also be thought of as the set of all distributions of (realstic) random vari-
ables X re constructed as

X re = (1−U)X id+UX di , (1.19)

where X id is a random variable distributed according to the ideal distribution. U is
an independent Bin(1,ε) switching variable. In most cases it lets you see X id but in
some cases replaces it by some contaminating or distorting variable X di which has
nothing to do with the original situation.

1.4.2 Time-Dependent Context: Exogenous and Endogenous
Outliers

In our time dependent setup in addition to the i.i.d. situation, we have to distinguish
whether the impact of an outlier is propagated to subsequent observations or not.
Historically there is a common terminology due to Fox [9], who distinguishes inno-
vation outliers (or IO’s) and additive outliers (or AO’s). Non-propagating AO’s are
added at random to single observations, while IO’s denote gross errors affecting the
innovations. For consistency with literature, we use the same terms, but use them
in a wider sense. IO’s stand for general endogenous outliers entering the state layer
(or the Markov chain in the present context), hence with propagated distortion. As
in our Markov chain, the state space is finite, IO’s are much less threatening as they
are in general.

Correspondingly, wide-sense AO’s denote general exogenous outliers which do
not propagate, hence also comprise substitutive outliers or SO’s as defined in a sim-
ple generalization of (1.19) to the state space context in Eqs. (1.20)–(1.23).

Y re = (1−U)Y id +UY di, U ∼ Bin(1,r) , (1.20)

for U independent of (X ,Y id,Y di) and some arbitrary distorting random variable Y di

for which we assume
Y di, X independent (1.21)

and the law of which is arbitrary, unknown and uncontrollable. As a first step con-
sider the set ∂U SO(r) defined as

∂U SO(r) =
{

L (X ,Y re) |Y re acc. to (1.20) and (1.21)
}

, (1.22)

where L (Z) denotes the law of a random variable Z. Because of condition (1.21),
in the sequel we refer to the random variables Y re and Y di instead of their respective
(marginal) distributions only. In the common gross error model, reference to the
respective distributions would suffice. Condition (1.21) also entails that in general,
contrary to the gross error model, L (X ,Y id) is not element of ∂U SO(r).
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As corresponding (convex) neighborhood we define

U SO(r) =
⋃

0≤s≤r

∂U SO(s) . (1.23)

Of course, U SO(r) contains L (X ,Y id). In the sequel where clear from the context
we drop the superscript SO and the argument r.

Due to their different nature, as a rule, IO’s and AO’s require different policies:
As AO’s are exogenous, we would like to damp their effect, while when there are
IO’s, something has happened in the system, so the usual goal will be to track these
changes as fast as possible.

1.4.3 Evidence for Robustness Issue in Asset Allocation

In this section we examine the robustness of the filter and parameter estimation
technique. The filter technique is implemented and applied to monthly returns of
MSCI index between 1994 and 2009. The MSCI World Index is one of the leading
indices on the stock markets and a common benchmark for global stocks. The algo-
rithm is implemented with batches of ten data points, therefore the adaptive filters
are updated whenever ten new data points are available on the market. The recursive
parameter estimates, which utilize this new information, are updated as well, the
algorithm is self-tuning. Care has to be taken when choosing the initial values for
the algorithm, since the EM-algorithm in its general form converges to a local max-
imum. In this implementation we choose the initial values with regard to mean and
variance of the first ten data points. Figure 1.1 shows the original return series, opti-
mal parameter estimates for the index returns as well as the one-step ahead forecast
of the index.

To highlight the sensitivity of the filter technique towards exogenous outliers we
plant unusual high returns within the time series. Considerable SO outliers are in-
cluded at time steps t = 40,80,130,140. The optimal parameter estimation through
the filter-based EM-algorithm of this data set with outliers can be seen in Fig. 1.2.
The filter still finds optimal parameter estimates, although the estimates are visibly
affected by the outliers.

In a third step, severe outliers are planted into the observation sequence. Data
points t = 40,80,130,140 now show severe SO outliers as can be seen from the
first panel in Fig. 1.3. The filters cannot run through any longer, optimal parameter
estimates cannot be established in a setting with severe outliers.

In practice, asset or index return time series can certainly include outliers from
time to time. This might be due to wrong prices in the system, but also due to very
unlikely market turbulence for a short period of time. It has to be noted, that the type
of outliers which we consider in this study does not characterize an additional state
of the Markov chain. In the following, we develop robust filter equations, which can
handle exogenous outliers.
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Fig. 1.1 Optimal parameter estimates for monthly MSCI returns between 1994 and 2009
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Fig. 1.2 Optimal parameter estimates for monthly MSCI returns with planted outliers
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Fig. 1.3 Filter-based EM algorithm for observation sequence with severe outliers; from obs. 40
onwards (corresponding to algorithm run 3 onwards), the algorithm breaks down and no longer
returns any value

1.5 Robust Statistics

To overcome effects like in Fig. 1.3 we need more stable variants of the Elliott type
filters discussed so far. This is what robust statistics is concerned with. Excellent
monographs on this topic are e.g., Huber [17], Hampel et al. [16], Rieder [25],
Maronna et al. [24]. This section provides necessary concepts and results from ro-
bust statistics needed to obtain the optimally-robust estimators used in this article.

1.5.1 Concepts of Robust Statistics

The central mathematical concepts of continuity, differentiability, or closeness to
singularities may in fact serve to operationalize stability quite well already. To make
these available in our context, it helps to consider a statistical procedure, for example
an estimator, a predictor, a filter, or a test as a function of the underlying distribution.
In a parametric context, this amounts to considering functionals T mapping distri-
butions to the parameter set Θ . An estimator will then simply be T applied to the
empirical distribution F̂n. For filtering or prediction, the range of such a functional
will rather be the state space but otherwise the arguments run in parallel.

To formulate continuity in the case of outliers, we use corresponding
neighborhoods which essentially capture convergence in distribution. With these
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neighborhoods, we now may easily translate the notions of continuity, differentia-
bility and closest singularity to this context, compare [16, Sects. 2.1, 2.2]. In the
sequel, we focus on the robustness concepts of influence function and breakdown
point.

The influence function (IF) is the derivative1 of such a functional and reflects
the infinitesimal influence of a single observation on the estimator. If it is bounded,
the functional is called locally robust. Under additional assumptions, many of the
asymptotic properties of an estimator are expressions in the IF ψ . For instance, the
asymptotic variance of the estimator in the ideal model is the second moment of ψ .
Infinitesimally, i.e., for contamination rate ε → 0, the maximal bias on a neighbor-
hood U as in Eq. (1.18) is just sup |ψ |, where | · | denotes Euclidean norm. sup |ψ |
is then also called gross error sensitivity (GES). Hence, seeking robust optimality
amounts to finding optimal IFs.

The breakdown point of an estimator is a global robustness concept: it is the
maximal contamination rate ε the estimator can cope with without producing an
arbitrary large bias, see [16, Sect. 2.2 Definitions 1,2] for formal definitions.

Usually, the classically optimal estimators (MLE in many circumstances) are
non-robust, both locally and globally. Robust estimators on the other hand pay a cer-
tain price for this stability as expressed by an asymptotic relative efficiency (ARE)
strictly lower than 1 in the ideal model, where ARE is the ratio of the two asymptotic
(co)variances of the classically optimal estimator and its robust alternative.

To rank various robust procedures among themselves, other quality criteria are
needed, though, summarizing the behavior of the procedure on a whole neighbor-
hood U around the ideal model, as in (1.18). A natural candidate for such a criterion
is maximal MSE (maxMSE) on U . Other popular choices consider the maximal
bias (maxBias) on U , or (the trace of) the variance in the ideal model subject to
a bias bound on U . This is the choice proposed in the famous Lemma 5 of Ham-
pel [15]. The respective optimal estimators for these criteria are called OMSE (Opti-
mal MSE estimator), MBRE (Most Bias Robust Estimator), and OBRE (Optimally
Bias Robust Estimator).2 In the (M) step we will use the MBRE.

In our context we encounter two different situations where we want to apply ro-
bust ideas: recursive filtering in the (E)-step and estimation in the (M)-step. In the
(E)-step we only add a single new observation, which precludes asymptotic argu-
ments. In the (M)-step, however, the preceding application of Girsanov’s theorem
turns our situation into an i.i.d. setup, where each observation becomes (uniformly)
asymptotically negligible and asymptotics apply in a standard form.

1 In mathematical rigor, the IF, when it exists, is the Gâteaux derivative of T into the direction of
the tangent δx−F . For details, also on stronger notions like Hadamard or Fréchet differentiability,
see, e.g., Fernholz [8] or [25, Chap. 1].
2 Names OBRE and MBRE are used, e.g., in Hampel et al. [16] while OMSE is used in Ruckde-
schel and Horbenko [30].
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1.5.2 Our Robustification of the HMM: General Strategy

As a robustification of the whole estimation process in this only partially observed
model would lead to computationally intractable terms and would drop the key fea-
ture of recursivity. Therefore, we instead propose to robustify each of the steps in
Elliott’s algorithm separately. Doing so, the whole procedure will be robust, but will
loose robust optimality in general, since the Bellmann principle does not hold for
optimal robust multi-step procedures. Table 1.1 lists all essential steps in Elliot’s
algorithm related to our proposed robustification approach.

Table 1.1 Classical algorithm setting and robustified version of each step

Classical setting Robust version

Initialization: find suitable starting values for ΠΠΠ , f , σ and X0

Build N clusters on first batches Build N +1 clusters on first batches,
distribute points in outlier cluster randomly
on other clusters

Use first and second moment of each Use median and MAD of clusters for
cluster as initial values for f and σ f and σ
Choose Π and X0 according to Choose Π and X0 according to
cluster probabilities cluster probabilities

E-step: determine RN-derivative and calculate E-Step

Find RN-derivative Λ Robustified version of Λ
through suitable clipped version of λk

Estimate recursive filters No further robustification needed;
J ji

k , Oi
k and T i

k (g) take over J ji
k , Oi

k unchanged and skip T i
k (g)

M-step 1: obtain estimates for f and σ

MLE-estimates for f and σ through Likelihoods re-stated; they are expressed
recursive filters Oi

k and T i
k (g) as weighted sums of the observations yk

Recursive filters are substituted into likelihood Robustified version of MLE through asymptotic
linear estimators

Estimates updated after each batch Estimates updated after each batch,
recursivity cannot be preserved completely

M-step 2: obtain ML-estimators ΠΠΠ

MLE-estimation, recursive filters J ji
k and Robustification through robust version of filters

Oi
k are substituted into likelihood J ji

k and Oi
k, no further observation yk

has to be considered

Rec: algorithm runs on next batch

Go to (RN) to compute the next batch Go to (RN) to compute the next batch
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1.5.3 Robustification of Step (0)

So far, little has been said about the initialization of the algorithm. Basically, all
we have to do is to make sure that the EM algorithm converges. In prior appli-
cations of this algorithms (Mamon et al. [22] and Erlwein et al. [7] amongst oth-
ers), one approach was to fill Π with entries 1/N, that is with uniform (and hence
non-informative) distribution over all states, independent from state X0. As to fi

and σi, an ad hoc approach would estimate the global mean and variance over all
states and then, again in a non-informative way jitter the state-individual moments,
adding independent noise to it. In our preliminary experiments, it turned out that
this naı̈ve approach could drastically fail in the presence of outliers. Therefore we
instead propose a more sophisticated approach which can also be applied in a clas-
sical non-robust setting: In a first step we ignore the time dynamics and interpret our
observations as realizations of a Gaussian Mixture Model, for which we use R pack-
age mclust (Fraley and Raftery [10] and Raftery et al. [11]) to identify the mixture
components. For each of these, we individually determine the moments fi and σi.
As to Π , we again assume independence of X0, but fill the columns according to the
estimated frequencies of the mixture components. In case of the non-robust setting
we would use N mixture components and for each of them determine fi and σi by
their ML estimators assuming independent observations. For a robust approach, we
use N+1 mixture components. One of them – the one with the lowest frequency – is
a pure noise component capturing outliers. For each non-noise component we retain
the ML estimates for fi and σi. The noise component is then randomly distributed
amongst the remaining components, respecting their relative frequencies prior to
this redistribution.

We are aware of the fact that reassigning the putative outliers at random could
be misleading in ideal situations without outliers. Since we assume a given num-
ber of states, one of the estimated cluster could needlessly be split into two. The
smaller offspring of the cluster would in part be reassigned to wrong other clusters.
On the other hand, our choice of building initial clusters works reasonably well in
most cases, more sophisticated strategies are questions for model selection and are
deferred to further work.

Based on the fi and σi, for each observation j and each state i, we get weights
0 ≤ wi, j ≤ 1, ∑i wi, j = 1 for each j, representing the likelihood that observation j
is in state i. For each i, again we determine robustified moment estimators f ′i , σ ′i
as weighted medians and scaled weighted MADs (medians of absolute deviations).
For a suitable definition of weighted medians and scaled weigthed MADs see the
Appendix.

1.5.4 Robustification of the E-Step

As indicated, in this step we cannot recur to asymptotics, but rather have to appeal
to a theory suited for this recursive setting. In particular, the SO-neighborhoods
introduced in (1.20) turn out to be helpful here.
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1.5.4.1 Crucial Optimality Theorem

Consider the following optimization problem of reconstructing the ideal observation
Y id by means of the realistic/possibly contaminated Y re on an SO-neighborhood.

Minimax-SO problem

Minimize the maximal MSE on an SO-neighborhood, i.e., find a Y re-measurable
reconstruction f0 for Y id which minimizes

maxU Ere|Y id− f (Y re)|2 . (1.24)

The solution is given by

Theorem 1.2 (Minimax-SO). In this situation, there is a saddle-point ( f0,PYdi

0 ) for
Problem (1.24)

f0(y):=EY id +Hρ(D(y)), Hb(z) = zmin{1,b/|z|} , (1.25)

PYdi

0 (dy):=
1− r

r
(
∣
∣D(y)

∣
∣/ρ − 1)+ PY id

(dy) , (1.26)

where ρ > 0 ensures that
∫

PYdi

0 (dy) = 1 and

D(y) = y−EY id . (1.27)

The value of the minimax risk of Problem (1.24) is

trCov(Y id)− (1− r)Eid

[

min{|D(Y id)|,ρ}2 ] . (1.28)

Proof. See the Appendix. ��
The optimal procedure in Eq. (1.25) has an appealing interpretation. It is a com-

promise between the (unobservable) situations where (a) one observes the ideal Y id

and (b) one observes Y di, something completely unrelated to Y id. In the first case
one would use it unchanged, whereas in case (b) one would use the best prediction
for Y id in MSE-sense without any information, hence the unconditional expectation
EY id. The decision on how much to tend to case (a) and how much to case (b) is
taken according to the length of the discrepancy D(Y re) between observed signal
Y re and EY id. If this length is smaller than ρ , we keep Y re unchanged, otherwise we
modify EY id by adding a clipped version of D(Y re).

1.5.4.2 Robustification of Steps (RN), (E)

In the change of measure step we recall that the corresponding likelihood ratio here
is just
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λs :=
ϕ
((

ys− f (Xs−1)
)

/σ(Xs−1)
)

/σ(Xs−1)

ϕ(ys)
. (1.29)

Apparently λs can take both, values close to 0 and very large values, in particular
for small values of σ(Xs−1). So bounding the λs is crucial to avoid effects like in
Fig. 1.3.

A first (non-robust) remedy uses a data driven reference measure. Instead of
N (0,1), we use N (0, σ̄2) where σ̄ is a global scale measure taken over all obser-
vations, ignoring time dependence and state-varying σ ’s. A robust proposal would
take σ̄ to be the MAD of all observations (tuned for consistency at the normal dis-
tribution). This leads to

λ̃s :=
ϕ
((

ys− f (Xs−1)
)

/σ(Xs−1)
)

/σ(Xs−1)

ϕ(ys/σ̄)/ σ̄
. (1.30)

Eventually, in both estimation and filtering/prediction, σ̄ cancels out as a common
factor in numerator and denominator, so it is irrelevant in the subsequent steps. Its
mere purpose is to stabilize the terms in numeric aspects.

To take into account time dynamics in our robustification, we want to use The-
orem 1.2. To this end, we need second moments, which for λs need not exist. So
instead, we apply the theorem to Y id =

√

λ̃s, which means that λ̃s = (Y id)2 is robus-
tified by

λ̄s =

(

Eid

√

λ̃s +Hb(

√

λ̃s−Eid

√

λ̃s)

)2

(1.31)

for Hb(x) = xmin{1,b/|x|}. Clipping height b is chosen such that Eλ̄s =α , α = 0.95
for instance. As in the ideal situation Eλs = 1. In a last step with a consistency factor
c′s determined similarly to ci in the initialization step for the weighted MADs, we
pass over to λ̄ 0

s = csλ̄s such that Eλ̄ 0
s = 1.

Similarly, in the remaining parts of the E-step, for each of the filtered processes
generically denoted by G and the filtered one by Ĝ, we could replace Ĝ by

Ḡ = EidĜ+Hb(Ĝ−EidĜ) (1.32)

for G any of J ji
k , Oi

k, and T i
k ( f ) and again suitably chosen b.

It turns out though, that it is preferable to pursue another route. The aggregates
T i

k ( f ) are used in the M-step in (1.14). But for a robustification of this step, it is
crucial to be able to attribute individual influence to each of the observations. So,
instead of using the aggregates processes T i

k ( f ), we split up the terms of the filtered
neg-loglikelihood into summands

wi, j/Ôi
k[(y j− fi)

2/σ2
i + logσi]

for j = 1, . . . ,k. Hence, we may skip a robustification of T i
k ( f ). Similarly, as J ji

t ,
Oi

t are filtered observations of multinomial-like variables, and any contribution of a
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single observation to these variables can at most be of absolute value 1. A robus-
tification is of limited use, since the processes are bounded anyway. Hence in the
E-step, we only robustify λs. By splitting up the aggregates T i

k ( f ) into summands
we lose strict recursivity. For k observations in one batch, we now have to store
the values wi, j/Ôi

k for j = 1, . . . ,k. Building up from j = 1, at observation time
j = j0 within the batch, we construct wi, j; j0 , j = 1, . . . , j0 from the values wi, j; j0−1,
j = 1, . . . , j0−1, so we have a growing triangle of weight values. This would lead to
increasing memory requirements, if we had not chosen to work in batches of fixed
length k, which puts an upper bound onto memory needs.

1.5.5 Robustification of the (M)-Step

As mentioned before, contrast to the (E)-step, in this estimation step, we may work
with classical gross error neighborhoods (1.18) and with the standard independent
setting.

1.5.5.1 Shrinking Neighborhood Approach

By the Bienaymé formula, variance usually is O(1/n) for sample size n, while
for robust estimators, the maximal bias is proportional to the neighborhood ra-
dius ε . Hence unless ε is appropriately scaled in n, bias will dominate eventually
for growing n. This is avoided in the shrinking neighborhood approach by set-
ting ε = εn = r/

√
n for some initial radius r ∈ [0,∞), compare Rieder [25], Kohl

et al. [20]. We use this approach for the (M) step.
One could see this shrinking as indicating that with growing n, diligence is in-

creasing so the rate of outliers is decreasing. This is perhaps overly optimistic; in-
stead, we prefer the interpretation that the severeness of the robustness problem with
10 % outliers at sample size 100 should not be compared with the one with 10 % out-
liers at sample size 10,000 but rather with the one with 1 % outliers at this sample
size.

In this setting, with mathematical rigor, optimization of the robust criteria from
Sect. 1.5.1 can be deferred to the respective IFs, we construct an estimator to a given
(optimally-robust) IF. More specifically, in the (M)-step, we are heading for the
MBRE, so we will determine the IF of the MBRE in our context. We will construct
a respective estimator to this IF with a one-step construction.

This is achieved by the concept of asymptotically linear estimators (ALEs), see
[25, Sect. 4.2.3], as it arises canonically in most proofs of asymptotic normality.

Definition 1.1 (ALE). Let P = {Pθ , θ ∈Θ} be a smooth (L2-differentiable) para-
metric model with parameter domain Θ ⊂ R

d for i.i.d observations Xi ∼ Pθ . Then
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based on the scores3 Λθ and its finite Fisher information Iθ = EθΛθΛτ
θ , we define

the setΨ2(θ ) of influence functions as the subset of the square integrable functions
ψθ with d coordinates Ld

2(Pθ ) for which Eθψθ = 0 and EθψθΛτ
θ = Id where Id is

the d-dimensional unit matrix. Then a sequence of estimators Sn = Sn(X1, . . . ,Xn) is
called an ALE if there is some influence function ψθ ∈Ψ2(θ ) s.t.

Sn = θ +
1
n

n

∑
i=1

ψθ (Xi)+ oPn
θ
(n−1/2) . (1.33)

Usually the MLE is an ALE with influence function ψMLE
θ =I −1

θ Λθ . Most other
common estimators also have a representation (1.33) with a different ψ .

For given IF ψ we get an ALE θ̂n by a one-step construction, often called one-
step-reweighting. With given suitably consistent starting estimator θ 0

n (such that
R0

n = θ 0
n −θ = oPn

θ
(n−1/4+0)) we define

θ̂n = θ 0
n +

1
n

n

∑
j=1

ψθ0
n
(Xj) . (1.34)

Then indeed θ̂n = θ+ 1
n ∑

n
j=1ψθ (Xj)+Rn and Rn = oPn

θ
(n−1/2). So, θ̂n forgets about

θ 0
n as to its asymptotic variance and GES. However its breakdown point is inherited

from θ 0
n once Θ is unbounded and ψ is bounded. Hence for the starting estimator,

we seek for θ 0
n with high breakdown point. For a more detailed account on this

approach, see [25].
In the sequel we fix the true θ ∈ Θ and suppress it from notation where clear

from context.

1.5.5.2 Shrinking Neighborhood Approach with Weighted Observations

Coming from the E-step, observations y j are not equally likely to contribute to state
i. Hence, we are in a situation with weighted observations, where we may pass over
to standardized weights w0

i, j = wi, j/∑ j′ wi, j′ summing up to 1.
In the (M1)-step, we now want to set up an ALE with the IF of the MBRE in our

context. To this end, we suppress state index i from notation here. With the weights
w0

j given above, we use the vector of weighted median and scaled weighted MAD

for state i as starting estimator θ 0
n . The IF ψ of the MBRE in the one-dimensional

Gaussian location and scale model at N (0,1) is given by

ψ(y) = bY (y)/|Y (y)|, Y (y) = (y,A(y2− 1)− a), (1.35)

with numerical values for A,a,b up to four digits taken from R package RobLox,
Kohl [18]. The values are

3 Usually Λθ is the logarithmic derivative of the density w.r.t. the parameter, i.e., Λθ (x) =
∂/∂θ log pθ (x).



20 C. Erlwein-Sayer and P. Ruckdeschel

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

(p
ar

tia
l) 

IC

Component  'mean'
of IC of contamination type

with main parameter ( 'mean' = 0, 'sd' = 1 )

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

(p
ar

tia
l) 

IC

Component  'sd'
of IC of contamination type

with main parameter ( 'mean' = 0, 'sd' = 1 )

Fig. 1.4 Influence function of the MBRE at N (0,1); left panel: location part; right panel: scale
part

A = 0.7917, a =−0.4970, b = 1.8546, (1.36)

ψ is illustrated in Fig. 1.4. Setting up a (weighted) one-step construction as in
Eq. (1.34), for ψθ (y) = σψ((y− f )/σ), we get our MBRE as

θ̂n = θ 0
n +

n

∑
j=1

w0
jψθ0

n
(y j) . (1.37)

We warrant positivity of σ and want to maintain a high breakdown point even in
the presence of inliers, which might drive σ towards 0. Therefore, instead of (1.37),
we use the asymptotically equivalent form for the scale component

σ̂n = σ0
n exp

[ n

∑
j=1

w0
jψscale

(

(y j− μ0
n)/σ0

n

)]

. (1.38)

Using the MBRE on first glance could be seen as overly cautious. Detailed simula-
tion studies, compare e.g., Kohl and Deigner [19], show that for our typical batch
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lengths of 10–20, the MBRE also is near to optimal in the sense of Rieder et al. [26]
in the situation where nothing is known about the true outlier rate (including, of
course the situation where no outliers at all occur).

1.5.5.3 Robustification of Steps (M1) and (M2)

Now, we derive robust estimators of the model parameters fi and σi and justify
the transition to weighted ALEs as in (1.37). In particular we specify the weights
w0

j = w0
i, j therein. Recall, that the M1-step in the classical algorithm gives the opti-

mal parameter estimates stated in Theorem 1.1. We now build ALEs, which can be
achieved, when the MLEs of the parameters fi and σi are stated as weighted sums
of the observations yk.

Theorem 1.3. With w0
i,l = 〈X̂l−1,ei〉/η(O(i))k , the optimal parameter estimates f̂i

and σ̂i are given by

f̂i =
k

∑
l=1

w0
i,lyl and (1.39)

σ̂2
i =

k

∑
l=1

w0
i,l(yl− fi)

2. (1.40)

Proof. To find the optimal estimate for f consider

Λ∗k :=
k

∏
l=1

λ ∗l with λ ∗l := exp
( (yl−〈 f ,Xl−1〉)2− (yl−〈 f̂ ,Xl−1〉)2

2〈σ ,Xl−1〉2
)

.

Up to constants irrelevant for optimization, the filtered log-likelihood is then

E[ln(Λ∗k ) |F y
k ] =

N

∑
i=1

k

∑
l=1

w0
i,l(yl− f̂i)

2 . (1.41)

Maximising the log-likelihood E[ln(Λ∗k ) |FY
k ] in f̂i hence leads to the optimal pa-

rameter estimate

k

∑
l=1

〈Xl−1,ei〉(2yl f̂i− f̂ 2
i ) = 0 =⇒ f̂i(k) =

k

∑
l

w0
i,lyl .

In an analogue way, for σi we define

Λ+
k :=

k

∏
l=1

λ+
l with λ+

l :=
〈σ ,Xl−1〉
〈σ̂ ,Xl−1〉 exp

( (yl−〈 f ,Xl−1〉)2

2〈σ ,Xl−1〉2 − (yl−〈 f ,Xl−1〉)2

2〈σ̂ ,Xl−1〉2
)
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and hence, again up to irrelevant terms

E[ln(Λ+
k ) |F y

k ] =
N

∑
i=1

k

∑
l=1

〈X̂l−1,ei〉[ (yl− f̂i)
2

2σ2
i

+ log(σi)] . (1.42)

From this term, which has to be minimized for σ̂i we get

k

∑
l=1

〈Xl−1,ei〉
[

− 1
2σ̂3 (yl− f̂i)

2 +
1
σ̂i

]

= 0 =⇒ σ̂2
i =

k

∑
l=1

w0
i,l(yl− f̂i)

2 .

Note that (1.42) takes its minimum in σi at the same place as

N

∑
i=1

k

∑
l=1

w0
i,l [(yl− f̂i)

2−σ2
i ]

2 . (1.43)

��
For the robustification of the parameter estimation (step M1) we now distinguish

two approaches. The first robustification is utilized in the first run over the first batch
of data and is therefore called the initialization step M1. The robust estimates of the
parameters from the second batch onwards are then achieved through a weighted
ALE.

Theorem 1.4. The robust parameter estimates for the model parameters fi and σi

in the (1) initialization and (2) all following batches are given by

1. Replacing, for initialization, the squares by absolute values in (1.41) and
in (1.43), f̂i and σ̂i are the weighted median and scaled weighted MAD, re-
spectively, of the yl , l = 1, . . . ,k with weights (w0

i,l)l .
2. For further batches, the weighted MBRE is obtained as a one-step construc-

tion with the parameter estimate ( f 0
i ,σ0

i ) from the previous batch as starting
estimator and with IF ψ = (ψloc,ψscale) from (1.35) and (1.36). Therefore we
have

f̂i = f 0
i +σ0

i

k

∑
l=1

w0
i,lψloc

(

(yl− f 0
i )/σ

0
i

)

and (1.44)

σ̂i = σ0
i exp

( k

∑
l=1

w0
i,lψscale

(

(yl− f 0
i )/σ

0
i

))

. (1.45)

Proof. 1. Initialization: With absolute values instead of squares, (1.41) becomes
f̂i = argmin fi ∑

k
l=1 w0

i,l |yl− fi|. Now if w0
i,l is constant in l, this leads to the em-

pirical median as unique minimizer justifying the name. For the scaled weighted
MAD, the argument parallels the previous one, leading to consistency factor
ci =Φ(3/4) for Φ the cdf of N (0,1).

2. M1 in further batches: Apparently, by definition, ( f̂i, σ̂i) is an ALE, once we
show that ψ is square integrable, E(ψ) = 0, E(ψΛ ′) = I2. The latter two prop-
erties can be checked numerically, while by boundedness square integrability is
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obvious. In addition it has the necessary form of an MBRE in the i.i.d. setting as
given in [25, Theorem 5.5.1]. To show that this also gives the MBRE in the con-
text of weighted observations, we would need to develop the theory of ALEs for
triangular schemes similar to the one in the Lindeberg Feller Theorem. This has
been done, to some extent, in Ruckdeschel [29, Sect. 9]. In particular, for each
state i, we have to assume a Noether condition excluding observations overly
influential for parameter estimation in this particular state, i.e.,

lim
k→∞

max
l=1,...,k

(w0
i,l;k)

2/
k

∑
j=1

(w0
i,l;k)

2 = 0 . (1.46)

We do not work this out in detail here, though. ��
Consider again our filtering algorithm and recall, that the filter runs over the data

set in batches of roughly 10–50 data points. To determine the ALE for our parame-
ters, we have to calculate the weights w0

i,l = 〈X̂l−1,ei〉/Ôi
k. Therefore, our algorithm

has to know all values of X̂l from 1 to k in each batch. With this, our robustification
of the algorithm cannot obtain the same recursiveness as the classical algorithm.
However, since we only have to determine and save the estimates of Xl in each
batch, the algorithm still is numerically efficient, the additional costs are low. In
general, the ALEs are fastly computed robust estimators, which lead in our case to
a fast and, over batches, recursive algorithm.

The additional computational burden to store all the weights w0
i,l arising in the

robustification of the M1-step is more than paid off by the additional benefits they
offer for diagnostic purposes beyond the mere EM-algorithm. They tell us which
of the observations, due to their likelihood to be in state i carry more information
on the respective parameters fi and σi than others. The same goes for the terms
ψθ (yl) which capture the individual information of observation yl for the respective
parameters. Even more though, the coordinates ofψθ (y j)/|ψθ (yl)| tell us how much
of the information in observation yl is used for estimating fi and how much for σi.
In addition the function y �→w0

i,lψθ (y) can be used for sensitivity analysis, telling us
what happens to the parameter estimates for small changes in observation y. Finally,
using the unclipped, classically optimal IF of the MLE, but evaluated at the robustly
estimated parameters, we may identify outliers not fitting to the “usual” states.

1.6 Implementation and Simulation

The classical algorithm as well as the robust version are implemented in R; we
plan to release the code in form of a contributed package on CRAN at a later stage.
The implementation builds up on, respectively uses contributed packages RobLox
and mclust. At the time of writing we are preparing a thorough simulation study
to explore our procedure in detail and in a quantitative way. For the moment, we
restrict ourselves to assess the procedure in a qualitative way, illustrating how it can
cope with a situation like in Fig. 1.3.
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In Fig. 1.5, we see the paths of the robust parameter estimates for f , σ , and Π ;
due to the new initialization procedure, the estimates – in particular those for Π –
differ a little from those of Fig. 1.1. Still, all the estimators behave very reasonable
and are not too far from the classical ones.

In the outlier situations from Figs. 1.2 and 1.3, illustrated in Fig. 1.6, the estimates
for f and σ remain stable at large as desired. The estimates for Π however do
get irritated, essentially flagging out one state as outlier state. Some more work
remains to be done to better understand this. Aside from this, our algorithm achieves
its goals: our procedure never breaks down – contrary to the classical one, we are
able to find parameter estimates even in the case of large outliers in the observation
process.
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Fig. 1.5 Robust parameter estimates for monthly MSCI returns between 1994 and 2009 – analogue
to Fig. 1.1

1.7 Conclusion

In financial applications, we often have to consider the case of outliers in our data
set, which can occur from time to time due to either wrong values in the financial
database or unusual peaks or lows in volatile markets. Conventional parameter esti-
mation methods cannot handle these specific data characteristics well.

1.7.1 Contribution of This Paper

Our contribution to this issue is two fold: First, we analyse step by step the general
filter-based EM-algorithm for HMMs by Elliott [3] and highlight, which problems



1 Robustification of an On-line EM Algorithm for Modelling Asset Prices 25

5 10 15

−
0.

02
0.

00
0.

02
0.

04
0.

06
Estimates of f

algorithm run

5 10 15
0.

0
0.

1
0.

2
0.

3
0.

4

Estimates of σ

algorithm run

5 10 15

0.
2

0.
4

0.
6

0.
8

Estimates of Π

algorithm run

5 10 15

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

Estimates of f

algorithm run

5 10 15

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Estimates of σ

algorithm run

5 10 15

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Estimates of Π

algorithm run

Fig. 1.6 Robust parameter estimates for monthly MSCI with planted outliers – analogue to
Figs. 1.2 and 1.3

can occur in case of extreme values. We extend the classical algorithm by a new
technique to find initial values, taking into account the N-state setting of the HMM.
In addition, for numerical reasons we use a data-driven reference measure instead
of the standard normal distribution.

Second, we have proposed a full robustification of the classical EM-algorithm.
Our robustified algorithm is stable w.r.t. outliers in the observation process and is
still able to estimate processes of the Markov chain as well as optimal parameter
estimates with acceptable accuracy. The robustification builds up on concepts from
robust statistics like SO-optimal filtering and asymptotic linear estimators. Due to
the non-i.i.d. nature of the observations as apparent from the non-uniform weights
w0

i,l attributed to the observations, these concepts had to be generalized for this situ-
ation, leading to weighted medians, weighted MADs and weighted ALEs. Similarly,
the SO-optimal filtering (with focus on state reconstruction) is not directly applica-
ble for robustifying the Radon-Nikodym terms λs, where we (a) had to “clean” the
observations themselves and (b) had to pass over to

√
λs for integrability reasons.
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Our robust algorithm is computationally efficient. Although complete recursivity
cannot be obtained, the algorithm runs over batches and keeps its recursivity there
additionally storing the filtered values of the Markov chain. This additional burden
is outweighed though by the benefits of these weights and influence function terms
for diagnostic purposes.

As in the original algorithm, the model parameters, which are guided by the state
of the Markov chain, are updated after each batch, using a robust ALE however. The
robustification therefore keeps the characteristic of the algorithm, that new informa-
tion, which arises in the observation process, is included in the recent parameter
update – there is no forward-backward loop. The forecasts of asset prices, which
are obtained through the robustified parameter estimates, can be utilized to make
investment decisions in asset allocation problems. To sum up, our forecasts are ro-
bust against additive outliers in the observation process and able to handle switching
regimes occurring in financial markets.

1.7.2 Outlook

It is pretty obvious how to generalize our robustification to a multivariate set-
ting: The E-step is not affected by multivariate observations, and the initialization
technique using Gaussian Mixture Models ideas already is available in multivariate
settings. Respective robust multivariate scale and location estimators for weighted
situations still have to be implemented, though, a candidate being a weighted variant
of the (fast) MCD-estimator, compare Rousseeuw and Leroy [27], Rousseeuw and
van Driessen [28].

In addition, an automatic selection criterion for the number of states would be
desirable. This is a question of model selection, where criteria like BIC still have to
be adopted for robustness.

Future work will hence translate our robustification to a multivariate setting to
directly apply the algorithm to asset allocation problems for portfolio optimization.
Furthermore, investment strategies shall be examined within this robust HMM set-
ting to enable investors a view on their portfolio, which includes possible outliers or
extreme events. The implementation of the algorithms shall be part of an R package,
including a thorough simulation study of the robustified algorithm and its applica-
tion in portfolio optimization.
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Appendix

Definition: Weighted Medians and MADs

For weights wj ≥ 0 and observations y j, the weighted median m =m(y,w) is defined
as

m = argmin f ∑
j

w j|y j− f | .

With y′j = |y j−m|, the scaled weighted MAD s = s(y,w) is defined as

s = c−1argmint∑
j

w j|y′j− t|,

where c is a consistency factor. It warrants consistent estimation of σ in case of

Gaussian observations, i.e., c = Eargmint ∑ j w j
∣
∣|ỹ j|− t

∣
∣ for ỹ j

i.i.d.∼ N (0,1). c can
be obtained empirically for a sufficiently large sample size M, e.g., M = 10,000,

setting c = 1
M ∑M

k=1 ck, ck = argmint ∑ j w j
∣
∣|y′′j,k|− t

∣
∣, y′′j,k

i.i.d.∼ N (0,1).
As to the (finite sample) breakdown point FSBP of the weighted median (and at

the same time for the scaled weighted MAD), we define w0
j = wi, j/∑ j′ wj′ , and for

each i define the ordered weights w0
( j) such that w0

(1) ≥ w0
(2) ≥ . . . ≥ w0

(k). Then the

FSBP in both cases is k−1 min{ j0 = 1, . . . ,k | ∑ j0
j=1 w0

( j) ≥ k/2} which (for equiv-
ariant estimators) can be shown to be the largest possible value. So using weighted
medians and MADs, we achieve a decent degree of robustness against outliers. E.g.,
assume we have 10 observations with weights 5× 0.05;3× 0.1;0.2;0.25. Then we
need at least three outliers (placed at weights 0.1,0.2,0.25, respectively) to produce
a breakdown.

Proof of Theorem 1.2

Proof. Let us solve max∂U min f [. . .] first, which amounts to min∂U Ere

[
∣
∣Ere[Y id|Y re]

∣
∣2]. For fixed element PY di

assume a dominating σ -finite measure μ ,

i.e., μ � PYdi
, μ � PY id

; this gives us a μ-density q(y) of PYdi
. Determining the

joint (real) law PY id,Y re
(dỹ,dy) as

P(Y id∈A,Y re∈B) =
∫

IA(ỹ)IB(y)[(1−r)I(ỹ = y)+ rq(y)] pY id
(ỹ)μ(dỹ)μ(dy) ,

(1.47)
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we deduce that μ(dy)-a.e.

Ere[Y
id|Y re=y] =

rq(y)EY id+(1−r)ypY id
(y)

rq(y)+ (1− r)pYid
(y)

=:
a1q(y)+a2(y)
a3q(y)+a4(y)

. (1.48)

Hence we have to minimize

F(q) :=
∫ |a1q(y)+ a2(y)|2

a3q(y)+ a4(y)
μ(dy)

in M0 = {q ∈ L1(μ) | q ≥ 0,
∫

qdμ = 1}. To this end, we note that F is convex on
the non-void, convex cone M = {q ∈ L1(μ) | q ≥ 0} so, for some ρ̃ ≥ 0, we may
consider the Lagrangian

Lρ̃(q) := F(q)+ ρ̃
∫

qdμ

for some positive Lagrange multiplier ρ̃ . Pointwise minimization in y of Lρ̃(q) gives

qs(y) =
1− r

r
(
∣
∣D(y)

∣
∣
/

s − 1)+ pY (y)

for some constant s = s(ρ̃) = ( |EY id|2 + ρ̃/r)1/2, Pointwise in y, q̂s is antitone and
continuous in s≥ 0 and lims→0[∞] qs(y) = ∞[0], hence by monotone convergence,

H(s) =
∫

q̂s(y)μ(dy)

too, is antitone and continuous and lims→0[∞] H(s) = ∞[0]. So by continuity, there
is some ρ ∈ (0,∞) with H(ρ) = 1. On M0,

∫

qdμ = 1, but q̂ρ = qs=ρ ∈M0 and is
optimal on M ⊃M0 hence it also minimizes F on M0. In particular, we get represen-
tation (1.26) and note that, independently from the choice of μ , the least favorable
PY di

0 is dominated according to PY di

0 � PY id
, i.e.; non-dominated PYdi

are even easier
to deal with.

As next step we show that

max∂U min f [. . .] = min f max∂U [. . .] (1.49)

To this end we first verify (1.25) determining f0(y) as f0(y) = Ere;P̂[X |Y re = y]. Writ-

ing a sub/superscript “re;P” for evaluation under the situation generated by P = PYdi

and P̂ for PY di

0 , we obtain the risk for general P as

MSEre;P[ f0(Y
re,P)] = (1− r)Eid

∣
∣Y id− f0(Y

id)
∣
∣2 + rtrCovY id +

+r EP min(|D(Y di;,q)|2,ρ2) . (1.50)
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This is maximal for any P that is concentrated on the set
{ |D(Y di;,q)| > ρ

}

, which
is true for P̂. Hence (1.49) follows, as for any contaminating P

MSEre;P[ f0(Y
re;P)]≤MSEre; P̂[ f0(Y

re; P̂)] .

Finally, we pass over from ∂U to U : Let fr, P̂r denote the components of the
saddle-point for ∂U (r), as well as ρ(r) the corresponding Lagrange multiplier and
wr the corresponding weight, i.e., wr = wr(y) = min(1,ρ(r)/ |D(y)|). Let R( f ,P,r)

be the MSE of procedure f at the SO model ∂U (r) with contaminating PYdi
= P.

As can be seen from (1.26), ρ(r) is antitone in r; in particular, as P̂r is concentrated
on {|D(Y )| ≥ ρ(r)} which for r ≤ s is a subset of {|D(Y )| ≥ ρ(s)}, we obtain

R( fs, P̂s,s) = R( fs, P̂r,s) for r ≤ s .

Note that R( fs,P,0) = R( fs,Q,0) for all P,Q – hence passage to R̃( fs,P,r) =
R( fs,P,r)−R( fs,P,0) is helpful – and that

trCovY id = Eid

[

trCovid[Y
id|Y id]+ |D(Y id)|2

]

. (1.51)

Abbreviate w̄s(Y id) = 1− (1−ws(Y id)
)2 ≥ 0 to see that

R̃( fs,P,r) = r
{

Eid

[

|D(Y id)|2w̄s(Y
id)
]

+EP min(|D(Y id)|,ρ(s))2
}

≤

≤ r
{

Eid

[

|D(Y id)|2w̄s(Y
id)
]

+ρ(s)2
}

= R̃( fs, P̂r,r)< R̃( fs, P̂s,s) .

Hence the saddle-point extends to U (r); in particular the maximal risk is never
attained in the interior U (r)\∂U (r). (1.28) follows by plugging in the results. ��
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Chapter 2
Stochastic Volatility or Stochastic Central
Tendency: Evidence from a Hidden Markov
Model of the Short-Term Interest Rate

Craig A. Wilson and Robert J. Elliott

Abstract We develop a two-factor model for the short-term interest rate that in-
corporates additional randomness in both the drift and diffusion components. In
particular, the model nests stochastic volatility and stochastic central tendency, and
therefore provides a medium for testing the overall importance of both factors. The
randomness in the drift and diffusion terms is governed by a hidden Markov chain.
The likelihood function is determined through an iterative procedure and maximum
likelihood estimates are obtained via numerical maximization. This process allows
likelihood ratio testing of nested restrictions. These tests show that stochastic volatil-
ity is more important than stochastic central tendency for describing the short rate
dynamics.

2.1 Introduction

The risk-free interest rate is one of the most vital inputs in financial and economic
theory. There is still much debate about the relationship between rates for differ-
ing time horizons. Evidence for and against the expectations hypothesis waxes and
wanes as additional complexities are incorporated into interest rate models and as
more robust empirical analysis is applied to the various models. Most models of the
short-term interest rate combine a mean-reverting drift component with a diffusion
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component. The simplest models assume that the drift is a linear function of the
short-term interest rate with constant parameters, and that the diffusion is governed
by a constant volatility parameter. This model provides a mathematical framework
for describing a central bank trying to control interest rates by pushing rates slowly
toward a target rate with a force that is proportional to how far the current rate is
from the target, but misjudging the effect of its policy independently of (with addi-
tive noise models) or proportionally to (with multiplicative noise models) the current
rate in a consistent way (with constant volatility). Guthrie and Wright [11] develop
an alternative model of central bank behavior that leads to similar observed interest
rate behavior.

The main extensions to these simple models involve allowing for non-linearity
in the drift function, allowing for randomness in the drift function, and allowing for
randomness in the volatility function. Each of these extensions has been found to
be empirically significant, when studied individually; however the purpose of this
study is to determine which of these extensions is most important for explaining
historical short-term interest rates, and we find that stochastic volatility is by far the
more important feature.

Current theory about the dynamics of the short-term, default-free interest rate
suggests two alternative methods of modeling: an equilibrium approach, and a no
arbitrage approach. The later takes the current term structure as an input so as to
force an exact fit to longer-term bond prices and other interest rate derivatives. Ex-
amples of this approach include the models of Ho and Lee [14], Hull and White [15],
and Heath et al. [13]. On the other hand, equilibrium models such as those of Va-
sicek [22], and Cox et al. [7] generally do not predict values that exactly match
current term structures. In this sense, such models are not arbitrage free. However,
this shortcoming is often made up for by the model’s applicability to future time pe-
riods, since they usually lead to a stationary sequence of interest rates. Also, because
of the limitations of financial data, the term structures used as inputs for no arbitrage
models are finite, so in practice, arbitrage free predictions can often be achieved by
equilibrium type models with a sufficiently large number of parameters.

In the particular case of the equilibrium type model used by Chan et al. [5], the
interest rate is supposed to follow a mean reverting process described by dynamics
of the form

drt = α(r̄− rt)dt +σrγt dWt . (2.1)

In unconstrained estimation by Chan et al. [5] it is found that the variance elastic-
ity, γ , is approximately 1.5, (using GMM estimation on U.S. interest rates based on
monthly observations between June 1964 and December 1989), which causes the
previous SDE to have a non-stationary solution, (i.e. the variance increases with-
out bound as t gets large), which is undesirable for estimation and testing purposes.
The above interest rate model has two important features: the drift term is a linear
function of the interest rate and the volatility term is deterministic.

Relaxing one or both of these properties could resolve the problem. For instance
letting the drift term be non-linear so that it increased the mean-reverting force as
the interest rate became large, could resolve the non-stationarity problem [1]. Or if
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the volatility were allowed to be stochastic, as in Longstaff and Schwartz [18], the
need for randomness implicit in the rγt term could be reduced, requiring a smaller
elasticity parameter, γ . These issues are addressed by Sun [21], where he finds that
stochastic volatility was significant and non-linear drift was not significant. This
finding is consistent with Chapman and Pearson [6], who conclude that non-linear
drift is not an essential property of the short-term interest rate.

Although Sun [21] describes a model that nests both stochastic volatility and
non-linear drift, he is pitting a two-factor model up against a one-factor model when
he tests his restrictions. This approach might bias his study toward finding that the
stochastic volatility framework dominates the non-linear drift, since such a frame-
work is able to explain some observed term structure phenomena such as yield curve
twists that typically cannot be explained in a one-factor model. It turns out that this
concern is unfounded, as we also find that stochastic volatility is most important,
even when both full and restricted models have two factors of randomness.

Balduzzi et al. [3] develop a model in which the mean-reverting level, or what
they call the central tendency of the short rate process provides a second factor of
randomness. In this case the second factor enters through the drift, but they still
model the drift as being linear in the short rate. If one compares stochastic central
tendency against stochastic volatility, both restricted models have two factors of ran-
domness, and they can be compared on a level playing field, which is the approach
we take.

A natural model to nest these two phenomena is the three factor model of Bal-
duzzi et al. [2]. However, this model requires the central tendency factor to be in-
dependent of the other factors, so testing restrictions of this model pits a two-factor
model against a three-factor model, which may again bias toward rejecting the re-
strictions of constant central tendency or volatility. One solution to this problem
would be to implement a special case of this model’s extension by Dai and Sin-
gleton [8], where both central tendency and volatility are governed by the same
Brownian motion.

Unfortunately, implementing this approach in the Chan et al. [5] framework is
difficult because it requires relaxing the affine term structure model assumption. We
examine estimation techniques on the Chan et al. [5] model where the central ten-
dency level and volatility parameters themselves are prone to switch in accordance
with the same Markov chain. In this way, even the full model with both stochastic
drift and stochastic volatility has only two factors of randomness: the Markov chain
and an independent Brownian motion. Even so, this framework allows an arbitrary
correlation between drift and volatility. Such a feature was found to be important by
Dai and Singleton [8].

This regime switching framework has been found helpful in explaining inter-
est rate and term structure characteristics in a number of studies including Hamil-
ton [12], Naik and Lee [19], Bansal and Zhou [4], Smith [20], and Kalimipalli and
Susmel [16], to name a few. We assume that the state of the Markov chain cannot
be observed directly, and must be estimated through filtering observations of the
short-term interest rate. In this way we consider the interest rate to be governed as a
hidden Markov model.
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We consider the case of a discrete time autoregressive stochastic process. An
extension of Hamilton’s [12] algorithm provides an iterative construction of the
likelihood function. Evaluating this likelihood function at the maximum likelihood
estimates obtained for full and restricted models allows the testing of various re-
strictions using likelihood ratio tests. We do this for observations of Canadian and
U.S. nominal interest rates. The null hypothesis of constant volatility can be strongly
rejected, whereas that of constant mean reverting level or central tendency cannot.

The remainder of this paper is organized as follows. Section 2.2 discusses the
general model, and Sects. 2.3 and 2.4 discus techniques to estimate and test this
model in the maximum likelihood framework. Section 2.5 specializes the model to
the case of short-term interest rates. Section 2.6 discusses the data, Sect. 2.7 analyzes
the results, and Sect. 2.8 concludes.

2.2 The Model

The first process that we consider is a finite state (N-dimensional), discrete time,
homogeneous Markov chain, X = {Xt ;t ∈ N = {0,1,2, . . .}}, that takes values in
the set of unit (column) vectors, S = {e1, . . . ,eN}, which is the canonical basis of
RN , (i.e. Xt = (0, . . . ,0,1,0, . . . ,0)T). Denote by FX = {FX

t } the filtration gener-
ated by the Markov chain X , and P its transition matrix, where Pi j = Pr{Xt+1 =
e j|Xt = ei, . . . ,X0 = ek} is the probability of going from state i to state j. It follows
that E[Xt+1|FX

t ] = PTXt , where the conditional expectation gives the vector of con-
ditional probabilities and the right hand side picks out the appropriate row of P.
(Note that the entries of P must be non-negative and that the rows must sum to 1.)
This convenient notation motivates our choice of state space and stochastic matrix
notation, which was done without loss of generality.

We presume that this Markov chain is hidden, (i.e. it is not directly observable),
so that we do not have access to the information FX . However, we do observe a
stochastic process {Yt ;t ∈ N}, which has the form

Yt+1 = μ(Xt)+ ζ (Xt)εt+1, (2.2)

where {εt} is a sequence of i.i.d. standard normal random variables (although other
distributions could be used), independent with the Markov chain, X . (For now, we
consider {Yt} to be a general observation process, but later we will specialize it to
observations of short-term interest rates.) It is clear that μ and ζ are Markov chains.
Also notice that the function μ(Xt) has the representation μTXt , where the vector μ
has typical entry μi = μ(ei), and similarly for ζ . In general, the drift and volatility
terms μ and ζ could be functions of other independent and observable variables.

Denote by FY = {FY
t } the filtration generated by the observed process, Y ,

F ε = {F ε
t } the filtration generated by the noise, ε , and G = {Gt}= {FX

t ∨FY
t }=

{FX
t ∨F ε

t } is the joint (or global) filtration. The filtering problem will therefore
involve the optimal use of the available information. We wish to make inferences
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about G -adapted processes by conditioning on the filtration FY . This procedure
gives a best, (in mean square error sense), estimate of the unobservable processes,
based on information obtained from observing the process Y [10].

2.3 Maximum Likelihood Estimation

The model requires estimates for the transition probabilities, Pi j and the entries of
the vectors μ and ζ . The class of maximum likelihood estimators, (MLE’s), has
several desirable properties such as consistency, efficiency, and robustness [17]. We
therefore attempt to find MLE’s for the various parameters. The problem is that
MLE’s can often be difficult to calculate directly or explicitly. We form the likeli-
hood function iteratively and solve it numerically via the EM algorithm. The proce-
dure we use is a modification of Elliott’s [10] filter.

Since the Markov chain is unobservable, we have particular difficulty in esti-
mating the probability matrix. This estimation can be done by using a change of
probability technique. Based on the time series of observations and arbitrary start-
ing parameter values, we filter information about the Markov chain’s state, which
is used to obtain optimal (in the sense of expectation maximization) parameter esti-
mates. The EM algorithm continues by finding new filtered processes using the pre-
vious optimal parameter estimates and using the new processes to find new optimal
parameter estimates. A fixed point in the parameter space corresponds to maximum
likelihood parameter estimates.

The previous algorithm gives maximum likelihood estimates, but not the likeli-
hood function. To perform likelihood ratio (LR) tests, we need the likelihood func-
tion evaluated at the optimal parameters for various restrictions. We use a modifi-
cation of Hamilton’s [12] algorithm to obtain the likelihood function and evaluate
it at the values found by the EM algorithm. This approach involves manipulating
conditional probability mass and density functions at each time and adding their
logarithms to get the log-likelihood function. Unfortunately this function cannot be
obtained in closed form, which is why we use the EM algorithm to maximize it.

2.4 The Likelihood Function

This section describes an algorithm similar to Hamilton’s [12] algorithm. We have
a hidden Markov chain {Xt} and a sequence of observations {Yt}, which are pre-
sumed to depend upon the previous state of the Markov chain, and on noise that
is independent with the Markov chain. Notice that we are considering probability
mass functions and probability density functions in this section and we denote them
f and g respectively. (These functions can be thought of as Radon-Nikodym deriva-
tives with respect to counting measure or Lebesgue measure.) Functions of more
than one variable refer to joint probability mass or density functions. For ease of
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notation, the dependence on the parameters is suppressed. It is implied that all of
the mass and density functions that follow depend on a common parameterization.

The goal is to obtain the current filter, which is the probability mass function
f (xt ;yt , . . . ,y0) = Pr{Xt = xt |Yt = yt , . . . ,Y0 = y0} when starting with the previous
filter f (xt−1;yt−1, . . . ,y0) = Pr{Xt−1 = xt−1|Yt−1 = yt−1, . . . ,Y0 = y0}. This func-
tion provides a filter for the state of the Markov chain. We assume that the condi-
tional density function g(yt |xt−1,yt−1, . . . ,y0) is known. In particular, for our general
model we use the normal density

g(yt |xt−1,yt−1, . . . ,y0) =
1√

2πζTxt−1
exp

{

− (yt − μTxt−1)
2

2(ζTxt−1)2

}

; (2.3)

however, other densities could be used. A consequence of the algorithm is that the
conditional density function g(yt |yt−1, . . . ,y0) is obtained, which can be used to con-
struct the likelihood function L(θ ;y) = g(yT , . . . ,y1|y0) = ∏T

t=1 g(yt |yt−1, . . . ,y0).
Hamilton advocates maximizing the log-likelihood function numerically to obtain
maximum likelihood estimates for the parameters. Knowing the likelihood function
explicitly allows likelihood ratio tests to be applied to test equality constraints on
the parameters in a straight forward manner: With r distinct equality restrictions, the
logarithm of the square of the ratio of the likelihood function evaluated at the un-
restricted MLE to that evaluated at the restricted MLE has a central χ2 distribution
with r degrees of freedom (under certain regularity conditions see Lehmann [17] for
example).

We outline the algorithm as follows: Assume we know f (x0|y0), we have it-
erated through the algorithm to the tth observation to get f (xt |yt , . . . ,y0), and
g(yt+1|xt ,yt , . . . ,y0) is given as in Eq. 2.3. Then

1. g(yt+1,xt |yt , . . . ,y0) = g(yt+1|xt ,yt , . . . ,y0) f (xt |yt , . . . ,y0)
2. g(yt+1|yt , . . . ,y0) = ∑i g(yt+1,ei|yt , . . . ,y0)

3. f (xt |yt+1, . . . ,y0) =
g(yt+1,xt |yt ,...,y0)

g(yt+1|yt ,...,y0)

4. f (xt+1,xt |yt+1, . . . ,y0) = f (xt+1|xt ,yt+1, . . . ,y0) f (xt |yt+1, . . . ,y0)
5. f (xt+1|yt+1, . . . ,y0) = ∑i f (xt+1,ei|yt+1, . . . ,y0)

Each step follows from the definition of conditional probability or a straightforward
application of Bayes’ theorem. In Steps 2 and 5, the term ei in the joint density
or mass function refers to the case when xt = ei. In Step 4, the conditional mass
is f (xt+1|xt ,yt+1, . . . ,y0) = f (xt+1|xt), (by the Markov property and independence
between the noise and the Markov chain), which is simply the transition probability.
We obtain the likelihood function as the product of conditional density functions
found in Step 2.
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2.5 The Interest Rate Model

We assume that the interest rate follows a discrete version of the continuous time
stochastic process defined by the SDE,

drt = αt (r̄t − rt)dt +σt r
γ
t dWt , (2.4)

where αt = α , r̄t = r̄(Xt), σt = σ(Xt), and W is a standard Brownian motion inde-
pendent with the continuous time Markov chain, X . The continuous time Markov
chain is characterized by its transition rate matrix, Q, which is related to the prob-
ability transition matrix through the forward and backward Kolmogorov equations.
In particular, for a homogeneous Markov chain whose rate matrix doesn’t depend
on time, we have P = eQΔ t , obtained by the matrix exponential. A well-behaved
Markov chain has a rate matrix that is a so-called conservative Q-matrix, which
means that Q has non-negative off-diagonal entries and its rows sum to zero, so the
probability transition matrix does turn out to be a stochastic matrix with entries Pi j

representing the probability of going from state i at time s to state j at time s+Δ t.
If Δ t is small, then an Euler approximation of the above SDE provides the fol-

lowing discrete representation of the interest rate:

Δrt+1 = α{r̄(Xt)− rt}Δ t +σ(Xt)r
γ
t

√
Δ tεt+1, (2.5)

where {Xt} is a discrete time Markov chain with transition matrix P = eQΔ t and
{εt} are i.i.d. standard normal. Here α is the rate of mean reversion, r̄ is the mean
reverting level or central tendency,σ is the volatility of the interest rate process, and
γ is the variance elasticity. We estimate the following equation

Δrt+1 = β0(Xt)+β1rt + ς(Xt)r
γ
t εt+1, (2.6)

and then transform the coefficients to the more meaningful term structure coeffi-
cients.

We now turn our attention to what this model implies about the behavior of in-
terest rates. First of all the short-term rates, following this model will be positively
auto-correlated through time. The auto-correlation is ρ = 1−αΔ t, which is less
than 1 whenever the mean reversion rate, α , is positive, where α measures the rate
at which r is expected to approach the mean reverting level, r̄. If ρ > 1, then the
process will drift away from the mean. If ρ = 1, then μ must equal zero and thus r
follows a random walk.

Allowing the parameters to depend on a Markov chain means that the central
tendency and interest rate volatility will change from time to time. When it does
change, the interest rate will begin to converge toward the new central tendency
level, when it changes back, the interest rate will turn around and begin to converge
back. It seems intuitive that such a data generating process would describe a cyclical
pattern, but with a random cycle length. In particular, such a data generating process
would be able to create large cycles with a relatively small volatility parameter, as
is typically seen in a series of interest rates.
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Since short-term interest rates are essentially controlled by the central bank, it
might seem unreasonable that they switch so violently. However, whatever the un-
derlying variable that the bank is primarily controlling through its choice of interest
rates, be it inflation, exchange rates, or unemployment, etc, it might not be unreason-
able to model these, exogenously, as having the impact of a Markov chain switching
the converging level. Furthermore, the continuous time rate process has continuous
sample paths, which provides a certain smoothness in interest changes that is often
desired by central banks. This intuition suggests that randomness in the central ten-
dency or drift term of the short rate process will be the more natural. Surprisingly,
it is randomness in the volatility that seems to be more important.

2.6 Data

For the Canadian data we use monthly and weekly observations of the short term in-
terest rate implied by Government of Canada 3-month Treasury bills. The monthly
rates were obtained from the Bank of Canada website, excerpted from Selected
Canadian and International Interest Rates Including Bond Yields and Interest Ar-
bitrage. The data set includes bills from March 1934, when the first public tender
occurred, until December 2004. The rates quoted in this data set are measured in
units of percent and quoted as a discount style of interest rate. To be consistent with
our modeling, we convert these rates to unitless annual continuously compounded
values. Monthly rates are based on the last Wednesday of the month. Data with
weekly observations starts Wednesday January 3, 1962. The weekly Canadian data
was taken from the CANSIM website (series V121778).

For the U.S. data, we also use monthly and weekly observations of the U.S. 3-
month Treasury bill returns provided by the St. Louis Federal Reserve website.
Monthly returns are provided from January 1934 to December 2004 and weekly
returns are provided from January 1954; however, to be consistent with our Cana-
dian data, we restrict attention to the post 1962 period. These returns are based
on averages over the week or month, so we use daily data and choose data from
each Wednesday or the last Wednesday of the month for our observations. For those
Wednesdays that land on a holiday, we use data from the following Thursday. The
returns in these data sets are discrete discount returns, so we convert them into con-
tinuously compounded annual returns.

Interest rates obtained from 3-month T-bills are used because these products have
much longer time series of data available than 1-month T-bills. The interest rate
model in the previous section is a discrete time approximation of a continuous time
model of the infinitesimally short term risk-free rate. As such it would be better
to use a shorter term product with more frequent observations; however, the insti-
tutional features of the interest rate market and data availability leave us with the
current compromise.1

1 Moving to daily observations may also introduce too much serial correlation, which may lead to
inconsistent estimators.
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Before we proceed to the general case, it is informative to first consider the sim-
pler case where the parameters are constant and do not depend on the Markov chain.
First we rewrite Eq. 2.6 as Δr = Xβ +u, where u∼ N(0,Ω), Ω = ς2diag[r2γ

0 , . . . ,

r2γ
T−1], X = [1 �1(r)], 1 is a column vector of 1’s, �1(r) = (r0, . . . ,rT−1)

T, and β =

(α r̄Δ t,1−αΔ t)T. This form makes it clear that for any known γ , β can be estimated
by generalized (or weighted) least squares, β̂ (γ) = (XTΩ−1X)−1XTΩ−1Δr, which
is the output of the OLS regression ηΔr = ηXβ +ηu, for η = diag[r−γ0 , . . . ,r−γT−1].

On the other hand, if β is known, then the log-likelihood function is

�(r;β ,γ, σ̂) = {−T ln(2π)−T −T ln(σ̂2)− 2γ
T

∑
t=1

ln(rt−1)}/2, (2.7)

where σ̂2 = 1
T ∑
(
Δ rt−Xβ

rγt−1

)2
. Given β , this equation can be maximized numerically

over the one unknown variable γ .
With normally distributed errors, β̂ (γ) is a maximum likelihood estimate con-

ditional on γ . Since γ is independent of β terms, we can iterate back and forth
maximizing conditional on γ , then conditional on β , etc. In fact, thinking of β̂ (γ)
as a function of γ allows us to maximize over γ in one step. Details of this approach
can be found in Davidson and MacKinnon [9].

The output of this estimation is provided in Table 2.1. All of the parameters have
the expected signs; however, none of them are significantly different from zero.
Furthermore, none of the series are expected to differ from zero as is seen by the
F statistics. This observation foreshadows our more general finding that once the
proper diffusion parameters are employed, the drift parameters are not very im-
portant. None of the four series differs significantly from a unit root as tested by
the Dickey-Fuller τ statistics, all four series have residuals that exhibit significant
serial correlation as seen by the Durbin-Watson statistics, and the residuals of all
four series have a significantly non-normal distribution according to the Jarque-Bera
statistics. These negative results, together with the very low R2 statistics demonstrate
that this type of linear drift one-factor model does not adequately describe 3-month
T-bill rates in either country, at least not for such a long time period.2 Particularly
troubling is the combination of serial correlation in the residuals and regressing on
lagged dependent variables, which can cause the maximum likelihood estimators to
be inconsistent. Combining this observation with the non-normality of the residuals
implies that the parameter estimates may not be very accurate.

Nevertheless, to compare the parameters and to allow them to be more easily
understood, it is helpful to convert them to the form in Eq. 2.5. This conversion is
done in the second panel of Table 2.1. The parameters should be approximately

2 For robustness we repeated the analysis for the shorter time period from May 1990 to December
2004 using 3-month T-bill rates, 3-month LIBOR rates, and 1-month LIBOR rates, and although
the parameters differed substantially from the longer period, the findings were generally similar.
The only noteworthy differences were that β1 was significantly less than zero, ruling out a unit
root in each case, and for the Canadian short rates, serial correlation in the residuals was no longer
present. Data for the LIBOR rates was obtained at the British Bankers’ Association website.
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CEV US-T-3-m US-T-3-w Can-T-3-m Can-T-3-w

β0 0.000123 2.59×10−5 0.000552 6.81×10−5

t stat 1.137823 0.83111 1.498601 1.065669
β1 −0.00037 −0.00013 −0.00784 −0.00098
DF τ stat −0.09936 −0.13147 −1.15416 −0.82891
std err 0.012858 0.002313 0.001547 0.000208
F stat 1.542211 0.668327 1.183339 0.594016
γ 1.156092 1.134993 0.770751 0.772217
r2 0.009546 0.000596 0.004592 0.00053
DW stat 1.621623 1.831274 1.584126 1.564956
JB stat 241.351 4030.834 2596.504 88514.14
# obs 515 2,243 515 2,243
Δt 0.083333 0.019231 0.083333 0.019231
r̄ 0.330697 0.200768 0.070411 0.06966
α 0.004479 0.006698 0.094047 0.050839
σ 0.392037 0.34664 0.135987 0.103896
γ 1.156092 1.134993 0.770751 0.772217

Table 2.1 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0 +β1rt +
ςrγt εt+1, where εt+1 are independent standard normal random variables. For a given γ this equation
can be estimated independently of the distribution of ε by GLS. The normal distribution is used
to obtain the maximum likelihood estimate for γ . Here Δrt+1 = rt+1− rt , and rt is the unitless,
annual, continuously-compounded yield to maturity at date t on a US or Canadian T-bill maturing
3 months later. These interest rate observations occur monthly or weekly from January 1962 to
December 2004, with weekly observations occurring each Wednesday (or the next available date),
and monthly observations occurring on the last Wednesday of each month (or the last weekly ob-
servation of the month). The column notation is used to indicate the country, interest rate type
(T-bill v. LIBOR), maturity (3 month v. 1 month), and observation frequency (monthly v. weekly)
of the short rate process. (Although only 3-month T-bill data was available from 1962, other short
rates became available from May 1990 and were considered for robustness.) The regression co-
efficients have Student t statistics reported, which in the case of β1 is actually a Dickey-Fuller τ
statistic used to test against a unit root. The F statistic tests against the fully restricted model with
both coefficients being zero. The Durbin-Watson statistic is used to test for serial correlation in
the residuals, and the Jarque-Bera statistic is used to test whether the residuals are normally dis-
tributed. The values for Δt are 1/12 for monthly and 1/52 for weekly observations, which are used
to convert the regression coefficient estimates into interest rate model coefficients for the equation
Δrt+1 = α(r̄− rt)Δt +σ rγt

√
Δtεt+1

equal when comparing the monthly to the weekly observed time series, which is the
case for all parameters except the rate of mean reversion parameter α , being difficult
to estimate anyway [5, 2, 21].

Comparing parameter estimates for both countries yields a further contrast. The
Canadian rates have a central tendency (r̄) around 0.07 and a rate of mean reversion
(α) between 0.05 and 0.09, whereas the U.S. rates have a much higher central ten-
dency (greater than 0.2) and a much slower rate of mean reversion between 0.0045
and 0.0067. The data suggests that U.S. rates tend toward a fairly high interest rate
at a fairly slow rate and Canadian rates tend more quickly toward a modest inter-
est rate. This high US-low Canadian central tendency is even more puzzling when
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Fig. 2.1 The graph depicts US and Canadian 3-month T-bill rates from January 1962 to December
2004. The rates are in unitless continuously compounded form and they are based on monthly
observations on the last Wednesday in each month

considering Fig. 2.1, which shows that US rates never once reach 20 %, and Cana-
dian rates peak higher and typically are higher for most of this period.

Finally, we notice, like Chan et al. [5], that the elasticity parameter for this pe-
riod is greater than 1 for the U.S. data (between 1.135 and 1.156), which provides
a good opportunity to see if incorporating stochastic volatility will reduce the elas-
ticity to an acceptable level as suggested by Sun [21]. It turns out that we find that
elasticity is not affected in a predictable way by incorporating stochastic volatility.
(In particular, we find that elasticity is decreased in the Canadian case, which was
already sufficiently low, but it is not changed significantly in US rates, which could
be considered too high for purposes of term structure modeling.)

Yong [23] provides some conditions on the variance elasticity parameter γ for
a continuous time model similar to Eq. 2.4, in which the parameter functions αt ,
r̄t , and σt are bounded, deterministic functions of time. In that case, there does not
exist a continuous associated wealth process bounded in expectation when γ > 1/2.
In particular, the condition E[exp(λ

∫ T
0 rtdt)] < ∞ does not hold for any T > 0 and

λ > 0. Yong [23] also shows that Novikov’s condition fails when γ ≥ 1/2, which
causes problems for determining the existence of an equivalent martingale measure,
when using this interest model in conjunction with a Black-Scholes type model
for the risky asset(s). Failure of the existence of an equivalent martingale measure
implies that the model permits arbitrage.

In empirical investigation, we find γ > 1/2 for all of our samples except for
weekly observations of Canadian T-bill rates. This indicates that a linear interest rate
model of the type described by Eq. 2.4 may not adequately fit with historical interest
rate data. One approach to deal with this problem could be to apply a non-linear
model, such as that put forward by Aı̈t-Sahalia [1]. However, two main distinctions
between our model and Yong’s [23] model could help explain these problematic
empirical results: First, we actually estimate the discrete model given by Eqs. 2.5
and 2.6, instead of the continuous model given by Eq. 2.4, so the parameters may
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not exactly coincide with those of a continuous model. Second, we do not permit the
parameter functions to vary directly and deterministically with time. By permitting
the parameters to vary directly with time, information from the term structure could
be used to estimate the parameter functions, which might decrease estimates of the
elasticity parameter. However, since our main objective in this paper is to compare
the relative importance of stochastic volatility and stochastic central tendency, we
leave a detailed investigation of this issue for future research.

Figure 2.2 plots the monthly observed US 3-month T-bill rates and the residuals
to the estimation equation used in this section. Note that the residuals seem to clus-
ter into high and low volatility regimes, which provides further motivation for our
method.

Fig. 2.2 The upper panel depicts the US 3-month T-bill rate between January 1962 and December
2004. The lower panel plots the standardized residuals from the constant elasticity of volatility
model Δrt+1 = β0 +β1rt +σ rγt εt+1 estimated via maximum likelihood
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2.7 Results

We implement the model for a 2-state Markov chain.3 Because the columns of the
Markov matrix must sum to 1, the matrix is associated with two free parameters, also
the central tendency and volatility components of the model are associated with two
free parameters each. Together with the mean reversion rate and volatility elasticity
parameters the model has a total of eight parameters. The estimates obtained by
the algorithm are presented in Tables 2.2–2.5. Tables 2.2 and 2.3 use monthly and
weekly observed US data respectively and Tables 2.4 and 2.5 use the equivalent
Canadian data.

These tables provide parameter estimates for hidden Markov interest rate models.
Each table is associated with a separate time series. The first column reports values
for the fully restricted model, in which neither parameter is permitted to switch
according to the Markov chain. The remaining columns relax various parameter re-
strictions. We consider restrictions on the stochastic nature of the mean-reverting
level or volatility parameters. These restrictions force the level or volatility to be
constant by requiring them to take the same values in each state, (although they
allow the constant to be arbitrary). For each restricted model, we report maximum
likelihood parameter estimates and the value of the log-likelihood function eval-
uated at the MLE. We also report likelihood ratio statistics, and Durbin-Watson
and Jarque-Bera statistics, which are constructed from each model’s residuals. The
partially restricted models are associated with only one fewer degrees of freedom,
(seven free parameters instead of eight); however, the fully restricted model has
four fewer degrees of freedom since the stochastic matrix parameters are no longer
relevant in that case.

By looking at the likelihood ratio statistics, we see that for all short rate series,
the constant volatility restriction can be rejected and the constant central tendency
restriction cannot be rejected. The small improvement in likelihood from relaxing
the constant level restriction suggests that the parsimonious model is best. A caveat
to this finding is that it depends heavily on the second factor of randomness being
present. When comparing the fully restricted model with constant central tendency
and constant volatility to a stochastic central tendency model, the likelihood does
improve substantially. We don’t report statistics in the tables, but the smallest like-
lihood ratio statistic would be about 40, which is highly significant.

This result shows that on its own, stochastic central tendency seems to be very
important, which is consistent with Balduzzi et al. [3]. However, when compared
on an equal footing with an alternative 2-factor model having stochastic volatility, it
is found to be almost completely unimportant in explaining historical interest rates,
which suggests that it is the second factor of randomness in general that is important
rather than the stochastic central tendency in particular.

3 For robustness, the complete analysis was repeated for a 3-state Markov chain and the results
were qualitatively the same: Stochastic central tendency was important only when compared to the
1-factor model. It was unimportant when compared with a stochastic volatility model.
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US-T-3-m Constant Constant ς Constant β0 Full

β0(e1) 0.000123 0.00184 8.32×10−5 6.68×10−5

β0(e2) 0.00011 0.000173
β1 −0.000373 −0.029164 −2.12×10−8 −2.1×10−8

ς(e1) 0.113171 0.156445 0.053643 0.053674
ς(e2) 0.167192 0.167746
γ 1.156092 1.286568 1.159406 1.160018
P11 0.990704 0.919711 0.918096
P12 0.009296 0.080289 0.081904
P21 0.044543 0.120808 0.123999
P22 0.955457 0.879192 0.876001
loglikelihood 2161.35 2181.783 2245.361 2245.467
LR-stat 168.2335 127.3688 0.211469
DW-stat 1.621623 1.723194 1.677849 1.67412
JB-stat 241.351 328.0739 166.5115 183.8003
# obs 515 515 515 515
Δt 0.083333 0.083333 0.083333 0.083333
r̄(e1) 0.330697 0.0631 3930.426 3157.727
r̄(e2) 0.003787 8157.085
α 0.004479 0.349969 2.54×10−7 2.54×10−7

σ (e1) 0.392037 0.541941 0.185826 0.185933
σ (e2) 0.579172 0.581091
γ 1.156092 1.286568 1.159406 1.160018
Q11 −0.114663 −1.075674 −1.1005
Q12 0.114663 1.075674 1.100502
Q21 0.549448 1.618516 1.666099
Q22 −0.549448 −1.618516 −1.6661

Table 2.2 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a US T-bill maturing 3 months later based on monthly observations
from January 1962 to December 2004 on the last Wednesday of each month. The column notation
is used to indicate various model restrictions from the full model with both β0 and ς allowed to
take different values in different states of the Markov chain. The columns “constant ς” “constant
β0” and “constant” imply that ς , β0 or both respectively take the same value in each state of the
Markov chain. The matrix P is the transition probability matrix with Pi j being the probability of
switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t
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US-T-3-w Constant Constant ς Constant β0 Full

β0(e1) 2.59×10−5 4.76×10−5 2.01×10−5 1.86×10−5

β0(e2) −0.004438 2.65×10−5

β1 −0.000129 −3.79×10−8 −1.75×10−11 −1.75×10−11

ς(e1) 0.04807 0.045367 0.026938 0.026941
ς(e2) 0.077429 0.077445
γ 1.134993 1.137806 1.151832 1.151875
P11 0.993943 0.967915 0.9679
P12 0.006057 0.032085 0.0321
P21 0.343071 0.060586 0.060636
P22 0.656929 0.939414 0.939364
loglikelihood 11195.18 11269.19 11612.03 11612.04
LR-stat 833.7179 685.7047 0.028266
DW-stat 1.831274 0.858285 1.853169 1.853177
JB-stat 4030.834 12186.02 5194.324 5194.194
# obs 2,243 2,243 2,243 2,243
Δt 0.019231 0.019231 0.019231 0.019231
r̄(e1) 0.200768 1255.337 1,150,858 1,067,508
r̄(e2) −116999.2 1,514,390
α 0.006698 1.97×10−6 9.08×10−10 9.08×10−10

σ (e1) 0.34664 0.327146 0.194254 0.194272
σ (e2) 0.558349 0.558466
γ 1.134993 1.137806 1.151832 1.151875
Q11 −0.387444 −1.750856 −1.751751
Q12 0.387444 1.750856 1.751751
Q21 21.94357 3.306166 3.308974
Q22 −21.94357 −3.306166 −3.308974

Table 2.3 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a US T-bill maturing 3 months later based on weekly observations
from January 1962 to December 2004 on the last Wednesday of each month. The column notation
is used to indicate various model restrictions from the full model with both β0 and ς allowed to
take different values in different states of the Markov chain. The columns “constant ς” “constant
β0” and “constant” imply that ς , β0 or both respectively take the same value in each state of the
Markov chain. The matrix P is the transition probability matrix with Pi j being the probability of
switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t
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Can-T-3-m Constant Constant ς Constant β0 Full

β0(e1) 0.000552 0.014384 0.000277 0.000273
β0(e2) 0.000433 −0.000328
β1 −0.007837 −0.012064 −0.001139 −6.23×10−5

ς(e1) 0.039256 0.034997 0.011153 0.010552
ς(e2) 0.038387 0.036238
γ 0.770751 0.788342 0.553748 0.539309
P11 0.269987 0.932768 0.933597
P12 0.730013 0.067232 0.066403
P21 0.02281 0.191737 0.177576
P22 0.97719 0.808263 0.822424
loglikelihood 2038.84 2073.68 2143.932 2144.174
LR-stat 210.6678 140.9884 0.485521
DW-stat 1.584126 0.647096 1.528304 1.528396
JB-stat 2596.504 31575.5 1117.866 1076.651
# obs 515 515 515 515
Δt 0.083333 0.083333 0.083333 0.083333
r̄(e1) 0.070411 1.19231 0.243123 4.38532
r̄(e2) 0.035868 −5.27452
α 0.094047 0.144767 0.013662 0.000747
σ (e1) 0.135987 0.121232 0.038637 0.036552
σ (e2) 0.132975 0.125534
γ 0.770751 0.788342 0.553748 0.539309
Q11 −16.26365 −0.933712 −0.913454
Q12 16.26365 0.933712 0.913454
Q21 0.508179 2.662839 2.442781
Q22 −0.508179 −2.662839 −2.442781

Table 2.4 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a Canadian T-bill maturing 3 months later based on monthly obser-
vations from January 1962 to December 2004 on the last Wednesday of each month. The column
notation is used to indicate various model restrictions from the full model with both β0 and ς al-
lowed to take different values in different states of the Markov chain. The columns “constant ς”
“constant β0” and “constant” imply that ς , β0 or both respectively take the same value in each state
of the Markov chain. The matrix P is the transition probability matrix with Pi j being the probability
of switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t
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Can-T-3-w Constant Constant ς Constant β0 Full

β0(e1) 6.81×10−5 0.008376 2.45×10−5 2.54×10−5

β0(e2) 7.37×10−5 −1.17×10−5

β1 −0.000978 −0.00254 −7.84×10−5 −6.09×10−5

ς(e1) 0.014408 0.012304 0.002357 0.002356
ς(e2) 0.010228 0.010221
γ 0.772217 0.771539 0.431682 0.431884
P11 0.296443 0.933413 0.933518
P12 0.703557 0.066587 0.066482
P21 0.008998 0.172207 0.170958
P22 0.991002 0.827793 0.829042
loglikelihood 11140.16 11373.37 11825.4 11825.44
LR-stat 1370.562 904.1384 0.074158
DW-stat 1.564956 0.322833 1.59396 1.594426
JB-stat 88514.14 358305.9 12302.88 12244.49
# obs 2,243 2,243 2,243 2,243
Δt 0.019231 0.019231 0.019231 0.019231
r̄(e1) 0.06966 3.297269 0.312126 0.416996
r̄(e2) 0.029008 −0.192659
α 0.050839 0.13209 0.004077 0.003166
σ (e1) 0.103896 0.088725 0.016999 0.016991
σ (e2) 0.073757 0.073705
γ 0.772217 0.771539 0.431682 0.431884
Q11 −64.01087 −3.95636 −3.946761
Q12 64.01087 3.95636 3.946761
Q21 0.818628 10.23188 10.14906
Q22 −0.818628 −10.23188 −10.14906

Table 2.5 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a Canadian T-bill maturing 3 months later based on weekly obser-
vations from January 1962 to December 2004 on the last Wednesday of each month. The column
notation is used to indicate various model restrictions from the full model with both β0 and ς al-
lowed to take different values in different states of the Markov chain. The columns “constant ς”
“constant β0” and “constant” imply that ς , β0 or both respectively take the same value in each state
of the Markov chain. The matrix P is the transition probability matrix with Pi j being the probability
of switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t
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The remaining rows report estimates for the equivalent parameterization of
Eq. 2.5. These estimates are more meaningful and they are comparable with each
other among the different observation frequencies. The entries of the matrix Q rep-
resent the rate that a continuous Markov chain switches between states. They are
obtained by solving P = eQΔ t . The values of these observation frequency-robust es-
timates generally do seem to be quite close to each other; however the LR statistics
indicate a significant difference (e.g. comparing monthly to weekly observations for
US 3-month T-bills yields a LR statistic of 7.28).

As in Table 2.1, most models predict that β1 is close to 0, which is associated with
a rate of mean reversion α close to 0. The exception is the case with stochastic drift
and constant volatility. In that case the mean reversion rate is quite high, which is
not too surprising since, for the central tendency to be important, the mean reversion
rate can’t be too close to zero in our models.

One problem that occurs in some cases is a very high central tendency, (around
151 million percent for the US weekly observed rate). On the other hand this very
high central tendency was also associated with a very slow rate of mean reversion in
all but the Canadian stochastic central tendency and constant volatility cases, which
had high values for P12 suggesting that the process switches out of state 1 soon after
it enters, but the potential for unreasonably high interest rates to be generated by
this process does still exist.4

Finally, for the Canadian data, the elasticity parameter does seem to decrease
with the introduction of stochastic volatility. On the other hand it increases slightly
for the U.S. data. There doesn’t seem to be a conclusive empirical finding on this
result.

Furthermore, it seems that the potential for our more general models to alleviate
the observed serial correlation and non-normality of the residuals for the constant
models is not achieved. While the stochastic volatility models tend to increase the
Durbin-Watson statistics and reduce the Jarque-Bera statistics, these statistics are
nowhere near their optimal values of 2 and 0 respectively. A caveat to this finding
is that maximum likelihood estimation does not necessarily minimize the sum of
squared residuals, so the reported statistics are not as meaningful as they are for
regression models.

Another quantity of interest is the filter for the Markov chain. Figure 2.3 plots the
conditional probability of being in the high-volatility state over time as estimated
by the full model on monthly observations US 3-month T-bill rates. Several features
to notice are that the state probability seems to traverse quickly between high and
low values of approximately 0.88 and 0.17. Furthermore, it seems to switch out of
each state quite frequently, (and more frequently down than up, consistent with the
transition probability estimates of 0.082 for switching up and 0.124 for switching
down). Also, the volatility seems to be more likely in the high state between the late
1960s and 1982 and more likely in the low volatility state in the post 1982 period.
However, the frequent switching of the Markov chain suggests that it is picking up

4 For robustness, we further restricted the stochastic volatility models by requiring all drift param-
eters to be 0. Such restrictions had little effect on the log-likelihoods and the LR statistics were all
less than 0.4.
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Fig. 2.3 The filter for the Markov chain. The conditional probability (given the observations up to
date) of the high volatility (and high central tendency) state as estimated from the hidden Markov
model Δrt+1 = β0(Xt )+β1rt +σ (Xt)r

γ
t εt+1 via maximum likelihood using monthly observations

of the US 3-month T-bill rate, where {Xt} is an unobserved 2-state Markov chain

more than just a structural break at 1982. It is more likely that the split is due to the
rising and falling long-term trends apparent in Fig. 2.2 together with the fact that the
high volatility state is also the high central tendency state in this case.

2.8 Conclusion

We develop a 2-factor model for the short-term interest rate where the second fac-
tor enters through both the volatility and the drift, (and in particular, the central
tendency). We develop a method for estimating and testing the model. Since the
decrease in the likelihood is much greater for the constant volatility restriction, it
seems that a stochastic volatility is very important, and far more important than
stochastic drift components for explaining nominal interest rate movements. This
conclusion is true for both Canadian and U.S. interest rates using both monthly and
weekly observations.

A potential weakness of this finding is the limitation of a linear stochastic drift.
The combination of non-linear drift and stochastic central tendency may affect our
conclusions. This issue is particularly relevant in light of our estimates of the volatil-
ity elasticity parameter γ being greater than 1/2 for most samples, which is inappro-
priate for term structure modeling. We leave this problem to future research.
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Chapter 3
An Econometric Model of the Term Structure
of Interest Rates Under Regime-Switching Risk

Shu Wu and Yong Zeng

Abstract This paper develops and estimates a continuous-time model of the term
structure of interests under regime shifts. The model uses an analytically simple rep-
resentation of Markov regime shifts that elucidates the effects of regime shifts on the
yield curve and gives a clear interpretation of regime-switching risk premiums. The
model falls within the broad class of essentially affine models with a closed form
solution of the yield curve, yet it is flexible enough to accommodate priced regime-
switching risk, time-varying transition probabilities, regime-dependent mean rever-
sion coefficients as well as stochastic volatilities within each regime. A two-factor
version of the model is implemented using Efficient Method of Moments. Empirical
results show that the model can account for many salient features of the yield curve
in the U.S.

3.1 Introduction

Economic theories relate asset prices, and interest rates in particular, to either ob-
servable or latent variables that summarize the state of the aggregate economy.
Since one important characteristic of the aggregate economy is the recurrent shifts
between distinct phases of the business cycle, economists have long used models
that incorporate Markov regime shifts to describe the stochastic behavior of interest
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rates. Some examples include Hamilton [36], Lewis [43], Cecchetti et al. [11], Sola
and Driffill [48], Garcia and Perron [34], Gray [35] and Ang and Bekaert [2] among
others. Typically these studies model the short-term interest rate as a stochastic pro-
cess with time-varying parameters that are driven by a Markov state variable. Long-
term interest rates can then related to the short rate through the expectation hypoth-
esis. Results from these studies suggest that regime-switching models in general
have better empirical performance than their single-regime counterparts. Regime-
switching models are shown to be able to capture the non-linearities in the drift and
volatility function of the short rate found in non-parametric models [3].

The success of these empirical studies have motivated a growing literature that
examine the impact of regime shifts on the entire yield curve using dynamic term
structure models. For example, Boudoukh et al. [10] investigates the implications of
a 2-regime model of the business cycle based on GDP, consumption and production
data for term premiums and volatilities in the bond market. Bansal and Zhou [5] and
Bansal et al. [7] incorporate a Markov-switching state variable into the parameters
of an otherwise standard multi-factor Cox-Ingersoll-Ross (CIR) model of the term
structure of interest rates. A closed-form solution for the yield curve is obtained
under log-linear approximation. They find that the key to the better empirical per-
formance of the regime-switching model is the added flexibility of the market price
of risk under multiple regimes, and regimes in the term structure model are inti-
mately related to bond risk premiums and the business cycle. Evans [26] develops
and estimates a dynamic term structure model under regime shifts for both nominal
and real interest rates in Britain. In a similar study, Ang et al. [4] also develops a
non-arbitrage regime-switching model of the term structure of interest rates with
both nominal bond yields and inflation data to efficiently identify the term structure
of real rates and inflation risk premia. Different from the model in Evans [26], Ang
et al. [4] allows inflation and real rates to be driven by two different regime vari-
ables. Dai et al. [17] emphasizes that not only regime shifts can affect parameters
of the state variables, but also regime-switching risk should be priced in dynamic
term structure models. Using monthly data on the U.S. Treasury zero-coupon bond
yields, they show that the priced regime-switching risk plays a critical role in cap-
turing the time variations in the expected excess bond returns. These studies all use
discrete-time models. More recent examples include Ferland et al. [28], Futami [30]
and Xiang and Zhu [51] among others.

In this paper we contribute to this literature by developing and estimating a
continuous-time model of the term structure of interests under regime shifts. Most
of the existing regime-switching models are specified in a discrete-time frame-
work. Compared to those models, our continuous-time model has several advan-
tages. (1) It uses an analytically simple representation of Markov regime shifts
that helps elucidate the effect of regime shifts on the yield curve; (2) It offers a
clear economic interpretation of the market price of regime-switching risk; (3) It
gives a tractable solution of the term structure of interest rates in the presence of
time-varying transition probabilities, regime-dependent mean reversion coefficients,
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priced regime-switching risk, and stochastic volatilities conditional on each regime
without using log-linear approximations; (4) A continuous-time model is also more
convenient in the applications of the pricing of interest rate derivatives.

The model presented in this paper falls within the broad class of affine models
of Duffie and Kan [20], Dai and Singleton [14], Duffee [19], and more recently
Aı̈t-Sahalia and Kimmel [1] and Le et al. [42]. The model implies that bond risk
premiums include two components under regime shifts. One is a regime-dependent
risk premium due to diffusion risk. The other is a regime-switching risk premium
that depends on the covariations between the discrete changes in bond prices and the
stochastic discount factor across different regimes. This new component of the term
premiums is associated with the systematic risk of recurrent shifts in bond prices
(or interest rates) due to regime changes and is an important factor that affects bond
returns.

One stylized fact about the term structure of interest rates is that long-term rates
do not attenuate in volatility. In the standard affine models, volatility of interest rates
depends the factor loadings, which can converge to zero quickly unless the underly-
ing state variables are very persistent (under the risk-neutral probability measure).
The model in the present paper shows that regime shifts introduce an additional
source of volatility that can equally affect both the short and the long end of the
yield curve. Therefore the model is able to generate volatile long-term interest rates
even when the underlying state variables are not very persistent.

Other continuous-time term structure models under regime shifts include Lan-
den [40] which uses a similar representation for Markov regime shifts as that in
the current paper. Landen [40], however, only solves the term structure of interest
rates under the risk-neutral probability measure, and is silent on the market price
of risk. Dai and Singleton [16] also proposes a continuous-time model of the term
structure of interest rates under regime shifts based on a different representation of
Markov regime shifts. Both studies did not implement their models empirically. Wu
and Zeng [50] develops a general equilibrium model of the term structure of interest
rates under regime shifts similar to that in Cox et al. [13]. The focus of their study is
on the general equilibrium interpretation of the regime-switching risk. And unlike
the present paper, they obtain the solution of the yield curve under log-linear ap-
proximations following Bansal and Zhou [5]. Separately, exponential affine models
of bond prices under regime switching are also derived in Elliott and Siu [24] and
Siu [46].

The rest of the paper is organized as follows. Section 3.2 presents the theoretical
model and examines the effects of regime shifts on the term structure of interest
rates. A closed-form solution of the term structure of interest rates is obtained for an
essentially affine model. Section 3.3 implements a two-factor version of the model
using Efficient Method of Moments and discusses the empirical results. Section 3.4
contains some concluding remarks and possible extensions of the model.



58 S. Wu and Y. Zeng

3.2 The Model

3.2.1 A Simple Representation of Markov Regime Shifts

In order to obtain a simple and closed-form solution of the yield curve, we first
show that Markov regime shifts can be modeled as a marked point process.1 The
main advantage of this new representation of regime shifts is that it allows us to
elucidates the role of regime shifts in determining the term structure of interest rates
with a clear interpretation of the regime-switching risk premiums.

We assume that there are N possible regimes and denote S(t) as the regime at
time t. Let the mark space U = {1,2, . . . ,N} be all possible regimes with the power
σ -algebra. We denote u as a generic point in U and A as a subset of U . A marked
point process or a random counting measure, m(t,A), is defined as the total number
of times we enter a regime that belongs to A during (0, t]. For example, m(t,{u})
simply counts the total number of times we enter regime u during (0, t]. We also
define η as the usual counting measure on U with the following two properties:
For A ∈U , η(A) =

∫

IAη(du) (i.e. η(A) counts the number of elements in A) and
∫

A f (u)η(du) =∑u∈A f (u).
The probability laws of the marked point process defined above, m(t, ·), can be

uniquely characterized by a stochastic intensity kernel,2 which is assumed to be

γm(dt,du) = h(u;S(t−),X(t))η(du)dt, (3.1)

where X(t) is a vector of other continuous state variables to be specified below;
h(u,S(t−),X(t)) is the conditional regime-shift (from regime S(t−) to u) inten-
sity at time t (we assume h(u,S(t−),X(t)) is bounded) that is measurable with
respect to u, S(t−) and X(t). The N ×N conditional intensity matrix of regime-
switching is H(X(t)) = {h( j, i,X(t))} with h(i, j,X(t)) = 0 when i = j. Heuristi-
cally, γm(dt,du) can be thought of as the (time-varying) conditional probability of
shifting from Regime S(t−) to Regime u during [t−, t + dt) given X(t) and S(t−).
Note that γm(t,A), the compensator of m(t,A),3 can be written as

γm(t,A) =
∫ t

0

∫

A
h(u,S(τ−),X(τ))η(du)dτ = ∑

u∈A

∫ t

0
h(u,S(τ−),X(τ))dτ.

1 In the context of continuous-time models, Landen [40] also uses a marked point process to rep-
resent Markov regime shifts in her model of the term structure of interest rates. However, we
use a different construction of the mark space that simplifies the corresponding random measure.
Other approaches to regime shifts include Hidden Markov Models (e.g. Elliott et al. [22]) and the
Conditional Markov Chain models (e.g. Yin and Zhang [52]). An application of Hidden Markov
Models to the term structure of interest rates can be found in Elliott and Mamon [23]. Bielecki and
Rutkowski [8, 9] are examples of the application of conditional Markov Chain models to the term
structure of interest rates.
2 See Last and Brandt [41] for detailed discussion of marked point process, stochastic intensity
kernel and related results.
3 This simply means that m(t,A)− γm(t,A) is a martingale.
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With the market point process appropriately defined, we now can represent the
regime, S(t), as an integral along m(·, ·) as that in He et al. [39],

S(t) = S(0)+
∫

[0,t]×U
(u− S(τ−))m(dτ,du). (3.2)

Note that m(dτ,du) is 0 most of time and only becomes 1 at a regime-switching time
ti with u = S(ti), the new regime at time ti. In other words, the above expression is
equivalent to a telescoping sum: S(t) = S(0)+∑ti<t(S(ti)− S(ti−1)).

We can also describe the evolution of regimes S(t) in a differential form

dS(t) =
∫

U
(u− S(t−))m(dt,du). (3.3)

To see the above differential equation is valid, assuming there is a regime shift from
S(t−) to u at time t, then S(t)− S(t−) = (u− S(t−)), implying S(t) = u.

Alternatively, we can express dS(t) as

dS(t) =
∫

U
(u− S(t−))γm(dt,du)+

∫

U
(u− S(t−))[m(dt,du)− γm(dt,du)]. (3.4)

where γm(dt,du) is the intensity kernel of m(dt,du). And by construction m(dt,du)−
γm(dt,du) is a matingale error term, and hence can be thought of as a regime-
switching shock whereas the first term is the conditional expectation of dS(t).4

3.2.2 Other State Variables

We assume that, in addition to the Markov regime-switching variable S(t), there are
L other continuous state variables represented by a L× 1 vector X(t). Without loss
of generality we assume that X(t) is given by the following stochastic differential
equation

dX(t) =Θ(X(t),S(t−))dt +Σ(X(t),S(t−))dW(t) (3.5)

whereΘ(X ,S) is a L×1 vector; Σ(X ,S) is a L×L matrix; W (t) is a L×1 vector of
standard Brownian motions that is independent of S(t). Note that in this specifica-
tion, both the drift term Θ(·, ·) and the diffusion term Σ(·, ·) are regime dependent.
This general specification also allows stochastic volatility within each regime. The
time-path of X(t), however, is continuous.

4 This is analogous to the representation of Markov regime shifts as an AR(1) process in discrete-
time models.
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3.2.3 The Term Structure of Interest Rates

Let M(t) denote the pricing kernel.5 We assume that M(t) is given by

dM(t)
M(t−) =− r(t−)dt−λ ′D(X(t),S(t−))dW(t)

−
∫

U
λS(u,S(t−),X(t))[m(dt,du)− γm(dt,du)]

(3.6)

where r(t) is the instantaneous short-term interest rate, λD(X ,S) is a L× 1 vector
of market prices of diffusion risk, and λS(u,S,X) is the market price of regime-
switching (from regime S(t−) to regime u) risk given Xt . The interpretations for λD

and λS will become much clearer from the discussions below.
Note that the explicit solution for M(t) can be obtained by Doleans-Dade expo-

nential formula [44] as follows

M(t) =
(

e−
∫ t

0 rτ−dτ
) (

e−
∫ t

0 λ ′D(Xτ ,Sτ−)dW (τ)− 1
2
∫ t

0 λ ′D(Xτ ,St−)λD(Xτ ,Sτ−)dτ
)

×
(

e
∫ t

0
∫

U λS(u,Sτ−,Xτ )γm(dτ,du)+
∫ t

0
∫

U log(1−λS)(u,Sτ−,Xτ )m(dτ,du)
) (3.7)

The term structure of interest rates can be obtained by a change of probability
measure. We first obtain the following two lemmas. The first lemma characterizes
the equivalent martingale measure under which the yield curve is determined. The
second lemma obtains the dynamic of the state variables under the equivalent mar-
tingale measure.

Lemma 3.1. For fixed T > 0, the equivalent martingale measure Q can be defined
by the Radon-Nikodym derivative below

dQ
dP

= ξ (T )/ξ0

where for t ∈ [0,T ]

ξ (t) =
(

e−
∫ t

0 λ ′D(Xτ ,Sτ−)dW (τ)− 1
2
∫ t

0 λ ′D(Xτ ,Sτ−)λD(Xτ ,Sτ−)dτ
)

×
(

e
∫ t

0
∫

U λS(u,Sτ−,Xτ )γm(dτ,du)+
∫ t

0
∫

U log(1−λS(u,Sτ−,Xτ )m(dτ,du)
) (3.8)

provided λD satisfies Kazamaki or Novikov’s criterion and λS and h (the stochastic
intensity kernel of m(t,A)) are all bounded functions.

Lemma 3.2. Under the risk-neutral probability measure Q, the dynamics of state
variables, X(t) and S(t), are given by the following stochastic differential equations
respectively

5 Absence of arbitrage is sufficient for the existence of the pricing kernel under certain technical
conditions, as pointed out by Harrison and Kreps [38].
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dX(t) = Θ̃(X(t),S(t−))dt +Σ(X(t),S(t−))dW̃(t) (3.9)

dS(t) =
∫

U
(u− S(t−))m̃(dt,du) (3.10)

where Θ̃(X ,S) = Θ(X ,S)− Σ(X ,S)λD(X ,S), W̃ (t) is a L× 1 standard Brown-
ian motion and m̃(t,A) is a marked point process with intensity matrix H̃(X) =
{h̃( j, i,X)} = {h( j, i,X)(1−λS( j, i,X))}, under Q, respectively.

Note that the compensator of m̃(t,A) under Q becomes

γ̃m(dt,du) = h̃(u,S(t−),X(t))η(du)dt = (1−λS(u,S(t−),X(t)))γm(dt,du).

In the absence of arbitrage, the price at time t− of a default-free pure discount
bond that matures at T , P(t−,T ), can be obtained as

P(t−,T ) = EQ
[

e−
∫ T
t rτ−dτ |Ft−

]

= EQ
[

e−
∫ T

t rτ−dτ |X(t),S(t−)
]

(3.11)

with the boundary condition P(T,T ) = 1. The last equality comes from the Markov
property of (X(t),S(t)). Without loss of generality, let P(t−,T ) = f (t,X(t),
S(t−),T ). The following proposition gives the partial differential equation deter-
mining the bond price.

Proposition 3.1. The price of the default-free pure discount bond f (t,X ,S,T ) de-
fined in (3.11) satisfies the following partial differential equation

∂ f
∂ t

+
∂ f
∂X ′

Θ̃ +
1
2

tr

(
∂ 2 f

∂X∂X ′
ΣΣ ′
)

+

∫

U
ΔS f h̃(u,S,X)η(du) = r f (3.12)

with the boundary condition f (T,X ,S,T ) = 1, where ΔS f ≡ f (t,X ,u,T )−
f (t,X ,S,T ).

3.2.4 Bond Risk Premiums Under Regime Shifts

In general equation (3.12) doesn’t admit a closed form solution for the bond price.
Nonetheless, the equation allows us to illustrate how regime shifts affect bond
risk premiums and give a clear interpretation the market price of regime-switching
risk, λS.

By Ito’s formula, we have

d f =

[
∂ f
∂ t

+
∂ f
∂X ′

θ (X ,S)+
1
2

tr

(
∂ 2 f

∂X∂X ′
Σ(X ,S)Σ ′(X ,S)

)]

d t +
∂ f
∂X ′

Σ(X ,S)d W

+
∫

U
ΔS f γm(dt,du)+

∫

U
ΔS f (m(dt,du)− γm(dt,du))

(3.13)
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Using (3.12), Lemma 3.2 as well as the definition of γm(dt,du) in Eq. (3.1), we
can easily obtain

Et−
(

d f
f

)

− rdt =

[
1
f
∂ f
∂X ′

Σ(X ,S)λD(X ,S)

]

dt

+

[∫

U

ΔS f
f
λS(u,X ,S)h(u,X ,S)η(du)

]

dt

(3.14)

The left-hand side of (3.14) gives the (instantaneous) expected excess return on
a zero-coupon bond, or risk premium. The equation shows that the bond risk pre-
mium includes two components under regime shifts. Conditional on regime S, the
first term is the minus of the covariance between the bond return, d f/ f , and the
change in the pricing kernel, dM/M, which can be interpreted as investors’ marginal
utility growth, due to shocks dW (t) (see Eq. (3.6) for the specification of M(t)). We
refer to this term in this paper as the diffusion risk premium. This risk premium is
in general time-varying due to the presence of X(t) and S(t) in Σ and λD.6 Equa-
tion (3.14) shows clearly that, compared to single-regime models in which the dif-
fusion risk premium depends only on X(t), regime shifts introduces an additional
source of time variation in the risk premiums as S(t) changes randomly over time.
Since researchers often attribute the failure of the expectation theory of the term
structure of interest rates to time-varying risk premiums, regime shifts therefore can
potentially improve the empirical performance of dynamic term structure models.
In fact, Bansal and Zhou [5] argues that the regime-dependence of the diffusion risk
premium plays a crucial role in enabling their econometric model to account for the
failure of the expectation theory.

Equation (3.14) also makes it clear that, under regime shifts, bond risk premi-
ums in general include a second component. To understand more clearly what the
second component is about, recall that −λS simply gives the impact of a regime-
switching shock m(dt,du)− γm(dt,du) on dM/M in Eq. (3.6), whereas ΔS f

f has a
similar interpretation in Eq. (3.13). Also recall that h(u,X ,S) is the regime-switching
intensity (from S to u). Therefore

∫

U
ΔS f

f λS(X ,S)h(u,X ,S)η(du) is again the mi-
nus of the covariance between the bond return, d f/ f , and the change of the pric-
ing kernel, dM/M, or the marginal utility growth, under a regime-switching shock
m(dt,du)− γm(dt,du) given X(t) and S(t−). We refer to this second component as
the regime-switching risk premium. This risk premium is present not only because
regime shifts have a direct impact on the bond price, ΔS f

f , but also because regime
shifts have a direct impact, −λS, on the pricing kernel or investors’ marginal utility.
As in the case of the diffusion risk premium, if the regime-switching shocks gener-
ate movements in the bond return and the pricing kernel (or marginal utility) in the
same direction, the covariance is positive and the risk premium is negative as the
bond offers investors a hedge against the risk of regime shifts. On the other hand,
If regime shifts generate movements in the bond return and the pricing kernel (or

6 It is possible that 1
f
∂ f
∂X ′ depends on X(t) and S(t) as well. Nonetheless in the broad class of affine

models, 1
f
∂ f
∂X ′ is a constant that depends only on the bond’s maturity.
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marginal utility) in the opposite directions, the covariance is negative and the risk
premium will be positive. In this case, regime shifts make the bond risky because
they decrease the asset’s return when investors’ marginal utility is high.

In some regime-switching models such as Bansal and Zhou [5], however, it is as-
sumed that regime-switching risk is not priced by fixing λS at zero. The assumption
is equivalent to assume that regime-switching is not an aggregate risk, and there-
fore the regime-switching shock m(dt,du)− γm(dt,du) doesn’t have a any impact
on dM

M given X and S (see Eq. (3.6)). Since most empirical regime-switching models
are motivated by business cycle fluctuations or shifts in monetary policies, it seems
important to treat regime shifts as an aggregate risk. Some empirical results such
as those from Dai et al. [17], suggest that λS not only is statistically significant, but
also economically important.

Finally, as we can see from Eq. (3.14), the regime-switching risk premium is
in general time-varying. This is simply because both the market price of regime-
switching risk λS and the regime-switching intensity h can depend on state variables
X(t) and S(t). Moreover, as we will show below, the term ΔS f

f is also time-varying

even in affine models, unlike the constant term 1
f
∂ f
∂X in the diffusion risk premium.

This property of regime-switching risk premium adds another flexibility to models
with multiple regimes.

3.2.5 An Affine Regime-Switching Model

To further illustrate the effects of regime shifts on the term structure of interest rates,
we resort to the tractable specifications of affine models that have been widely used
in the empirical studies. Duffie and Kan [20] and Dai and Singleton [14] have de-
tailed discussions of affine term structure models under diffusions. Duffie et al. [21]
deals with general asset pricing under affine jump-diffusions. Extensions of the stan-
dard affine models are discussed, for example, in Duffee [19] and Duarte [18] which
propose a class of essentially affine or semi-affine models. In models with regime
shifts, Landen [40], Bansal and Zhou [5], Evans [26], Dai et al. [17] and Ang and
Bekaert [4] among others all have similar affine structures. The main advantage
of affine models is that they can produce analytical solutions of the term struc-
ture of interest rates, and yet at the same time are flexible enough to accommodate
time-varying risk premiums and stochastic volatilities. The model we discuss be-
low generalizes the single-regime affine models to include regime-dependent mean
reversion coefficients, priced regime-switching risk as well as time-varying regime-
switching probabilities.

More specifically, we make the following parametric assumptions:

(1) Θ(X(t),S(t−)) = Θ0(S(t−))+Θ1(S(t−))X(t) where Θ0(S) is a L× 1 vector
andΘ1(S) is L×L matrix.
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(2) Σ(X(t),S(t−)) is a L×L diagonal matrix with the ith diagonal element given by

[Σ(Xt ,St−)]ii =
√

σ0,i(St−)+σ ′1,iXt for i = 1, · · · ,L where σ1,i is a L×1 vector.

We assume both σ0,i and σ1,i are positive.
(3) h(u,X(t),S(t−)) = eh0(u,St−)+h′1(u,St−)Xt where h1(u,St−) is a L× 1 vector.
(4) λD(X(t),S(t−)) = Σ(Xt ,St−)−1

(

λ0,D(St−) + λ1,DXt +Θ1(St−)Xt
)

where λ0,D

(St−) is a L×1 vector, and λ1,D is a L×L matrix that is constant across regimes.
(5) 1−λS(u,S(t−),X(t)) = eφ(u,St−)/h(u,St−,Xt) where h(u,St−,Xt) �= 0.
(6) The instantaneous short-term interest r(t−) is a linear function of the state vari-

ables X(t) given S(t−)

r(t−) = ψ0(S(t−))+ψ ′1X(t) (3.15)

where ψ0(S) is a regime-dependent constant and ψ1 is a L× 1 vector of con-
stants that are independent of regimes.7

The first three assumptions are about the dynamics of the state variables. For
X(t), Assumption (1) and (2) implies that its drift and volatility terms are all affine
functions of Xt conditional on regimes. In particular X(t) is given by

dX(t) =
[

Θ0(S(t−))+Θ1(S(t−))X(t)
]

dt +Σ(X(t),S(t−))dW(t), (3.16)

where

Σ(X(t),S(t−)) =

⎛

⎜
⎜
⎜
⎝

√

σ0,1(St−)+σ ′1,1Xt

. . .
√

σ0,L(St−)+σ ′1,LXt

⎞

⎟
⎟
⎟
⎠

Under this specification, the mean-reversion coefficient and the “steady-state”
value of X(t) are given by −Θ1(S) and −Θ1(S)−1Θ0(S), both can shift across
regimes. Moreover, the model also has a flexible specification for the volatility of
X(t) with regime specific σ0,i(S) and stochastic volatility in each regime σ ′1,iX(t).
Some empirical studies have shown that inflation in the U.S. has become less volatile
and less persistent in recent years compared to earlier periods, probably due to a
combination of the moderation of output volatility and changes in the monetary
policy that has provided a better anchor for long-run inflation expectations. If the
latent factors in X(t) are to capture the fundamental driving forces in the economy,
it is important to allow this kind of regime shifts in an empirical model of the term
structure of interest rates.8

7 If ψ1 is regime-dependent, an analytical solution of the yield curve is in general unavailable.
Bansal and Zhou [5] and Wu and Zeng [50] assume that ψ1 depends on regimes and obtain the
term structure of interest rates under log-linear approximation.
8 In order to obtain a closed form solution of the term structure of interest rates, we need to restrict
σ1 to be constant across regimes.



3 An Econometric Model of The Term Structure of Interest Rates 65

Assumption (3) implies that the log intensity of regime shifts is an affine func-
tion of the state variable Xt conditional on regimes. This assumption ensures the
positivity of the intensity function and also allows the transition probability to be
time-varying.

The next two assumptions deal with the market prices of risk. In the standard
affine models, the market price of (diffusion) risk is assumed to be proportional to
the volatility of the state variable Xt . Such a structure is intuitive: risk compensa-
tion goes to zero as risk goes to zero. However, since variances are nonnegative, this
specification limits the variation of the compensations that investors anticipate to re-
ceive when encountering a risk. More precisely, since the compensation is bounded
below by zero, it cannot change sign over time. This restriction, however, is relaxed
in the essentially affine models of Duffee [19]. Dai and Singleton [15] argues that
this extension is crucial for empirical models to account for the failure of the expec-
tation theory of the term structure of interest rates.

Following this literature, we use a similar specification as that of essentially
affine models for the market price of the diffusion risk in Assumption (4), but
with an extension to include multiple regimes. Under this assumption, condi-
tional on regimes, the diffusion risk premium of bonds will be proportional to
λ0,D(S(t−)) + λ1,DX(t) +Θ1(S(t−))X(t), a linear function of the state variable
X(t). Moreover Assumption (4) implies that, from Lemma 3.2, λ1,D is the risk
neutral mean reversion coefficient of X(t), which is assumed to be constant across
regimes. It turns out this is one of the crucial conditions that are necessary for ob-
taining closed form solutions of the term structure of interest rates under regime
shifts.9

For the market price of regime switching risk λS, Assumption (5) postulates that,
conditional on regimes, 1− λS is proportional to the inverse of regime-switching
intensity. Under this assumption, λS can be time-varying, and the higher the regime-
switching intensity, the higher the risk compensation. We restrict λS to take this
particular form because it implies that the risk neutral regime-switching intensity is
constant conditional on regimes, h̃(u,St−,Xt) = eφ(u,St−). This is another restriction
we need to impose on the model in order to obtain a closed-form solution of the
term structure of interest rates.

Proposition 3.2. Under the assumption (1)–(6), the price at time t− of a default-
free pure discount bond with maturity τ is given by P(t−,τ) = eA(τ,St−)+B(τ)′Xt and

the τ-period interest rate is given by R(t−,τ) = −A(τ,St−)
τ − B(τ)′Xt

τ , where B(τ) =
(B1(τ), · · · ,BL(τ))′, and A(τ,S) and B(τ,S) are given by the following ordinary
integral-differential equations

− ∂B(τ)
∂τ

−λ ′1,DB(τ)+
1
2
Σ ′1B2(τ) = ψ1 (3.17)

9 In the regime switching model of Bansal and Zhou [5], the risk-neutral mean reversion coeffi-
cient is allowed to shift across regimes. But the term structure of interest rates can only be solved
analytically under log linear approximation.
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and

− ∂A(τ,S)
∂τ

+B(τ)′[Θ0(S)−λ0,D(S)]+
1
2

B(τ)′Σ0(S)B(τ)

+
∫

U

[

eA(τ,u)−A(τ,S)− 1
]

eφ(u,S)η(du) = ψ0(S)
(3.18)

with boundary conditions A(0,S) = 0 and B(0) = 0, where B2(τ) = (B2
1(τ), · · · ,B2

L
(τ))′, and Σ1 and Σ0(S) are L×L matrices given by

Σ1 =

⎛

⎜
⎝

σ ′1,1
...

σ ′1,L

⎞

⎟
⎠ , and Σ0(S) =

⎛

⎜
⎝

σ0,1
. . .

σ0,L

⎞

⎟
⎠ . (3.19)

3.2.6 The Effects of Regime Shifts on the Yield Curve

With the analytical solution in Proposition 3.2, we can now further illustrate the
effects of regime shifts on the term structure of interest rates. First, the general
result for bond risk premiums in Eq. (3.14) is now simplified as

Et

(
dPt

Pt−

)

− rtdt = [λ ′0,D(St−)+X ′t λ
′
1,D +X ′tΘ

′
1(St−)]B(τ)dt

+

∫

U

(

eA(τ,u)−A(τ,St−)−1
)

(eh0(u;St−)+h′1(u;St−)Xt −eφ(u;St−))η(du)dt.

(3.20)

As in Eq. (3.14), the first term on the right hand side of Eq. (3.20) is the diffusion
risk premium and the second term is the regime-switching risk premium. In the
standard affine models without regime shifts, the risk premium is determined by
a linear function of the state variable X(t), that is [λ ′0,D +X ′t λ ′1,D + X ′tΘ ′1]B(τ).10

Moreover, only the factor loadings in the term structure of interest rates, B(τ), affect
the risk premium. The intercept term, A(τ), doesn’t enter the above equation.

By introducing regime shifts, Bansal and Zhou [5] B essentially makes the risk
premium a non-linear function of the state variable X(t) because the intercept term
λ0,D and the slope coefficient λ1,D+Θ1 are now both regime-dependent. Bansal and
Zhou [5] shows that it is mainly this feature of their model that provides improved
goodness-of-fit over the existing term structure models. One restriction of Bansal
and Zhou [5], however, is that they assume that the regime-switching risk is not
priced, λS(u;S,X) = 0. In the context of the above affine model, this is equivalent
to assume that eh0(u;S)+h′1(u;S)X = eφ(u;S), that is the risk neutral regime-switching

10 In the more restrictive CIR models, [λ ′0,D(St−) +X ′t λ1,D +X ′tΘ1(S)] is further restricted to be
proportional to the variance of the state variables.
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probabilities, eφ(u;S), is the same as the physical regime-switching probabilities
eh0(u;S)+h′1(u;S)X . Therefore the bond risk premium is still a linear function of the
state variable conditional on regimes.

In Dai et al. [17] and Ang and Bekeart [4], λS(u,S,X) is not restricted to be
zero.11 Equation (3.20) shows that this extension provides an additional flexibility
for the model to account for time-varying risk premiums observed in the data, be-
cause the second-term on the right-hand side of Eq. (3.20) is a highly non-linear
function of the state variable X(t) even conditional on regimes. The equation also
shows that the regime-switching risk, λS, directly affects the term structure of inter-
est rates through the intercept term, A(τ,S),12 while the diffusion risk, λD, affect the
yield curve through the factor loading, B(τ).13

One caveat of the affine models such as the one obtained in Proposition 3.2,
however, is the tension between the transition probabilities between regimes and the
market price of regime-switching risk. To obtain a closed form solution, affine mod-
els have to restrict the transition probabilities across regimes under the risk neutral
probability measure to be constant. In other words, h̃(u,S(t−),X(t)) needs to be
independent of X(t). In Eq. (3.20), that term is given by eφ(u,St−). On the other hand,
the transition probabilities under the the physical measure, h(u,S(t−),X(t)), are
given by eh0(u;St−)+h′1(u;St−)Xt in Eq. (3.20). If the model allows the transition proba-
bilities under the physical measure to be time varying, i.e. h1 �= 0, as many regime-
switching models do,14 we would impose that the regime-switching risk is priced.
This is because λS(u,S,X)h(u,S,X) = h(u,S,X)− h̃(u,X ,S), and in affine models
λS(u,S,X)h(u,S,X) = eh0(u;St−)+h′1(u;St−)Xt −eφ(u,St−), which implies that λS(u,S,X)
is not zero and must be time-varying as well. It is possible to loose this restriction
with more general models (i.e. with time-varying regime-switching probabilities and
zero market price of regime-switching risk), but probably at the cost of not being
able to obtain a closed form solution to the term structure of interest rates.

One stylized fact of the term structure of interest rates is that long-term interest
rates do not attenuate in volatility. In affine models without regime shifts, interest

rates are given by R(t,τ) =−A(τ)
τ − B(τ)′Xt

τ . Therefore the volatility of interest rates

is determined by the factor loading−B(τ)
τ alone, where B(τ) is given by the differen-

tial equation (3.17). To illustrate why the volatility of long-term interest rates might
pose a challenge to affine models, let’s consider the one-factor Gaussian model for
example. In this case, the solution to B(τ) depends on the value of λ1,D. If λ1,D� 0,
B(τ) will converge very quickly (at the rate of e−τλ1,D) to a constant as τ increases,

11 In Ang and Bekeart [4], however, the market price of regime-switching risk is not explicitly
defined. λS(u,S,X) can be derived from the specification of the pricing kernel.
12 Of course, A(τ ,S) also depends on the factor loading B(τ) through the differential equa-
tion (3.18).
13 See Siu [47] for a discussion of the pricing of regime-switching risk in equity market.
14 Hamilton [37] and Filardo [29] are examples of regime-switching models of business cycles with
time-varying transitions probabilities. In regime-switching models of interest rates, time-varying
transition probabilities are assumed in Gray [35], Boudoukh et al. [10] and more recently Dai et al.
[17] among others.
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hence so does the interest rate R(t,τ). In order to generate volatile long-term inter-

est rates, we need λ1,D ≈ 0, which implies B(τ) ≈ −τ and R(t,τ) ≈ −A(τ)
τ +X(t).

Long-term interest rates would be as volatile as short-term interest rates. But note
that λ1,D is the mean reversion coefficient of the state variable X(t) under the risk-
neutral probability measure. The requirement that λ1,D ≈ 0, therefore, is to assume
that X(t) is close to a unit root process under the risk-neutral probability measure.

In models with regime shifts, −A(τ,S(t−))
τ is stochastic and adds another source

of volatility for the interest rate R(t,τ). Since the volatility of −A(τ,S(t−))
τ will not

attenuate, this would translate directly into the volatility of long-term interest rates
even if λ1,D� 0.

3.3 Empirical Results

3.3.1 Data and Summary Statistics

The data used in this study are monthly interest rates from June 1964 to December
2001 obtained from the Center for Research in Security Prices (CRSP).15 These
are yields on zero-coupon bonds extracted from U.S. Treasury securities. There
are eight interest rates with maturities ranging from 1 month to 5 years. Table 3.1
contains their summary statistics. We can see that the yield curve is on average
upward-sloping and the large skewness and kurtosis suggest significant departure
from Gaussian distribution. As Timmermann [49] shows, Markov switching models
can generate such large skewness and kurtosis. Another feature of the data is that
long-term interest rates (for example, the 5-year rate) are almost as volatile as the
1-month rate. Moreover, volatilities of the interest rates have a hump-shaped struc-
ture as noted in Dai et al. [17]. The standard deviation increases from 2.45 % for
the 1-month rate to 2.60 % for the 6-month rate, and then declines to 2.32 % for
the 5-year rate. Also note that all interest rates are very persistent with high auto-
correlation coefficients. The 6-month and 5-year rate are plotted in Fig. 3.1.

We report in Table 3.2 the results from the standard regressions regarding the
expectation hypothesis, which states that a long-term interest rate is just the average
of the expected short-term interest rate over the life of the long-term bond. The
regression used to test this hypothesis is

i(Ri
t+ j−Ri+ j

t ) = α+βi j[ j(R
i+ j
t −R j

t )]+ ε i
t+ j

where Rk
t is the k-period interest rate at time t. Under the null hypothesis of the ex-

pectation theory, βi j = 1. However, as it is well known, most regressions produce
estimates of βi j that are significantly less than 1, and often are negative. Table 3.2
confirms this stylized fact. The estimates of βi j are either insignificantly different

15 To make our study comparable, we consider the roughly same sample period as that in Bansal
and Zhou [5].
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Table 3.1 Interest rates summary statistics

1M 3M 6M 1Y 2Y 3Y 4Y 5Y a

Mean 0.0594 0.0638 0.0659 0.0681 0.0702 0.0717 0.0729 0.0735
Std. dev. 0.0245 0.0258 0.0260 0.0252 0.0246 0.0238 0.0235 0.0232
Maximum 0.1614 0.1603 0.1652 0.1581 0.1564 0.1556 0.1582 0.1500
Minimum 0.0164 0.0171 0.0178 0.0192 0.0237 0.0296 0.0336 0.0367
Skewness 1.4278 1.3717 1.3122 1.1737 1.1288 1.1283 1.1003 1.0565
Kurtosis 5.4659 5.1336 4.9150 4.4157 4.1226 4.0313 3.9196 3.7344
Auto corr 0.947 0.971 0.971 0.970 0.976 0.978 0.979 0.981

a 1M, 3M, 6M indicate 1-, 3- and 6-month interest rates respectively. 1Y, 2Y, . . . , 5Y indicate 1-,
2-, . . . and 5-year interest rate respectively

from 0 or significantly negative. It is interesting to note, however, the yield spread
between 5- and 4-year rate predicts the future (4 years ahead) 1-year rate with cor-
rect sign and the expectation hypothesis can not be rejected. In fact, as maturity
increases, the estimate of βi j tends to increase from negative to positive, suggesting
that the expectation hypothesis might hold in longer terms.

Table 3.3 contains correlation coefficients between the expected excess bond re-
turns and a business cycle dummy variable, BC. NBER dates of business cycles
are used to distinguish between expansions (BC = 1) and recessions (BC = 0). Ex-
cess bond returns are obtained as the differences between holding-period returns (1-
month) on long-term bonds (1, 2, . . . , 5-year bonds respectively) and the 1-month
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Fig. 3.1 Historical interest rates and the business cycle. The figure plots the 6-month (series M6)
and 5-year (series Y5) interest rates during 1964–2001. NBER business cycle recessions are indi-
cated the shaded area
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Table 3.2 Expectation-hypothesis regression a

i+j=0.5 i+j=1 i+j=2 i+j=3 i+j=4 i+j=5

j=0.25 −0.8656
(0.3766)

j=0.5 −0.6564
(0.4669)

j=1 −0.8769 −1.2513 −1.6585 −1.6085
(0.3932) (0.4697) (0.5270) (0.6084)

j=2 −0.3395 −0.8568 −1.0011
(0.5879) (0.6337) (0.7539)

j=3 0.0554 −0.0619
(0.4221) (0.5583)

j=4 0.6853
(0.4681)

a This table reports the estimate of βi j in regression i(Ri
t+ j−Ri+ j

t ) = α+βi j[ j(Ri+ j
t −R j

t )]+ ε i
t+ j

where Rk
t is the k-year interest rate at time t . Under the null hypothesis of the expectation theory,

βi j = 1. Numbers in parentheses are Newy-White standard errors

interest rate.16 We can see from Table 3.3 that the correlation coefficients are all
negative, which is consistent with the counter-cyclical behavior of risk premiums
as documented in Fama and French [27]. Alternatively we can regress the ex-post
excess bond returns on the business cycle dummy and the yield spread of the pre-
vious period. We include the yield spread in the regression because empirical stud-
ies have suggested that yield spreads or forward rates contain information about
the state variables that drive the interest rates. Again, the regression coefficients on
the business cycle dummy variable are all negative and significant, confirming the
counter-cyclical property of bond risk premiums. Interestingly, if we don’t include
the business cycle dummy variable in the regressions, estimates of the coefficient on
the yield spread are all positive and significant (not reported in Table 3.3), indicat-
ing that yield spreads do forecast bond returns. Once we include the business cycle
dummy in the regressions, however, the dummy variable completely drives out the
predicating power of yield spreads for bond returns.

3.3.2 Estimation Procedure

The econometric methodology we adopt to estimate the term structure model in
Proposition 2 is Efficient Method of Moments (EMM) proposed in Bansal et al. [6]

16 Continuously compounded bond returns are Ht+Δ t ≡ −(τ−Δt)Rt+Δ t(τ−Δt)+ τRt (τ), where
Rt (τ) is the yield on a τ-year bond at time t . Since we don’t have data on Rt+Δ t(τ −Δt), we ap-
proximate it by Rt+Δ t(τ) for τ� Δt , where Δt = 1 month. Also note that Corr(Et (Ht+Δ t),BCt ) =
Corr(Ht+Δ t ,BCt) under rational expectations.
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Table 3.3 Correlation among bond returns and the business cycle a

RETY1 RETY2 RETY3 RETY4 RETY5 BC(-1)

RETY1 1
RETY2 0.9423 1
RETY3 0.9057 0.9632 1
RETY4 0.8515 0.9328 0.9592 1
RETY5 0.8506 0.9289 0.9553 0.9655 1
BC(−1) −0.1986 −0.1703 −0.1518 −0.1277 −0.1218 1

α̂i 0.8966 1.4411 0.0419 0.3453 0.3283
(0.4320) (1.2241) (1.5286) (1.8086) (1.8807)

β̂i −0.0335∗∗ −0.0596∗∗ −0.1153∗∗ −0.1202∗∗ −0.1270∗∗
(0.0096) (0.0213) (0.0298) (0.0383) (0.0443)

γ̂i −1.0916 0.1590 2.4134 2.7410 2.8611
(0.9559) (1.3883) (1.7150) (2.0863) (2.3112)

Adjusted R2 0.048 0.041 0.042 0.036 0.033

a The first six rows of this table report the sample correlation coefficients among the excess bond
returns and the business cycle. RETY1, RETY2, . . . , RETY5 are the ex-post holding-period (1-
month) returns on 1-, 2-, . . . , 5-year bonds minus the 1-month interest rate, respectively. BC is the
dummy variable for the business cycle with BC=1 indicating an expansion and BC=0 indicating
a recession. The last four rows report the OLS regression RETYit = c+αiSPi,t−1 + βiBCt−1 +
γi[SPi,t−1×BCt−1] + εi,t , where RETYi is the holding-period excess return on a i-year bond, SPi

is the yield spread between the i-year bond and the 1-month Bill. Numbers in parentheses are
Newy-West standard errors. An ∗∗ indicates the estimate is significant at 5 % level

and Gallant and Tauchen [31, 33].17 We assume that there are two distinct regimes
(N = 2) for S(t). Therefore (3.17) and (3.18) define a system of three differential
equations that must be solved simultaneously. Under regime shifts, the number of
parameters of the model increases quickly with each additional factor. In this paper,
we estimate a two-factor version of the model, and fit the model to the 6-month and
the 5-year interest rates as in Bansal and Zhou [5].

Under EMM procedure, the empirical conditional density of the observed interest
rates is first estimated by an auxiliary model that is a close approximation to the true
data generating process. Gallant and Tauchen [33] suggests a semi-nonparametric
(SNP) series expansion as a convenient general purpose auxiliary model. As pointed
out by Bansal and Zhou [5], one advantage of using the semi-nonparametric speci-
fication for the auxiliary model is that it can asymptotically converge to any smooth
distributions (see also Gallant and Tauchen [32]), including the density of Markov
regime-switching models. The dimension of this auxiliary model can be selected
by, for example, the Schwarz’s Bayesian Information Criterion (BIC).18 Table 3.4
reports the estimation results of the preferred auxiliary semi-nonparametric model.

17 Bansal and Zhou [5] and Bansal et al. [7] are excellent examples of applying EMM to esti-
mate the term structure model under regime shifts. Dai and Singleton [14] also provides extensive
discussions of estimating affine term structure models using EMM procedure.
18 As for model selection for regime switching models (or general Hidden Markov models), Scott
[45] gave an excellent review on limitations of various criteria, including BIC and AIC.



72 S. Wu and Y. Zeng

Table 3.4 Parameter estimates of SNP density a

Parameter Estimates Standard error

a(0,0) 1.00000 0.00000
a(0,1) 0.30987 0.07457
a(1,0) 0.05612 0.04619
a(0,2) −0.35596 0.06619
a(1,1) 0.10687 0.02843
a(2,0) −0.04299 0.03182
a(0,3) −0.02352 0.01820
a(3,0) −0.01374 0.01023
a(0,4) 0.03257 0.01022
a(4,0) 0.02216 0.00514

μ(1,0) −0.07309 0.01232
μ(2,0) −0.05375 0.00800
μ(1,1) 0.81742 0.03382
μ(1,2) 0.15274 0.03288
μ(2,1) 0.00221 0.03763
μ(2,2) 0.95765 0.03690

R(1,0) 0.01843 0.00295
R(2,0) 0.15853 0.01250
R(3,0) 0.18509 0.01616
R(1,1) 0.17234 0.02936
R(2,1) 0.11702 0.05355
R(1,2) 0.12163 0.02951
R(2,2) 0.09551 0.05472
R(1,3) 0.02379 0.03465
R(2,3) 0.10629 0.05286
R(1,4) 0.04649 0.02601
R(2,4) 0.07097 0.04875
R(1,5) 0.05068 0.02554
R(2,5) 0.02903 0.04716

a This table reports point estimates as well as their standard errors of the parameters in the preferred
SNP model according to BIC (BIC=−1.2488, AIC=−1.3786). a(i, j) are parameters of the Hermit
polynomial function. μ(i, j) are parameters of the VAR conditional mean. R(i, j) are parameters
of the ARCH standard deviation of the innovation z. See Gallant and Tauchen [33] or Bansal and
Zhou [5] for more detailed interpretations of these parameters

The score function of the auxiliary model are then used to generate moment condi-
tions for computing a chi-square criterion function, which can be evaluated through
simulations given the term structure model under consideration. A nonlinear opti-
mizer is used to find the parameter setting that minimizes the criterion function.
Gallant and Tauchen [31] shows that such estimation procedure yields fully effi-
cient estimators if the score function of the auxiliary model encompasses the score
functions of the model under consideration.

Without further normalization, however, Dai and Singleton [14] shows that affine
models as the one in Proposition 2 are under-identified. Therefore we restrict in
EMM estimation thatΘ1(S) and λ1,D are lower triangular matrixes. We also restrict



3 An Econometric Model of The Term Structure of Interest Rates 73

Table 3.5 Parameter estimates of the term structure model a

Regime 1 Regime 2

Θ0(S) Θ0,1 0.0050(0.0021) 0.0277(0.0025)
Θ0,2 0.0002(0.0038) −0.0003(0.0014)

Θ1(S) Θ1,11 −0.1743(0.0464) −0.2150(0.0049)
Θ1,12 0 0
Θ1,21 0.0198(0.0376) −0.0887(0.0065)
Θ1,22 −0.8476(0.1480) −0.6940(0.1946)

Σ0(S)
√σ0,1 0 0√σ0,2 0.0054(0.0006) 0.0091(0.0002)

Σ1 Σ 11
1 0.0018(0.0001) 0.0018

Σ 12
1 0 0

Σ 21
1 0 0

Σ 22
1 0 0

ΘQ
0 (S) ΘQ

0,1 0.0032(0.0002) 0.0015(0.0009)

ΘQ
0,2 0.0002 −0.0003

ΘQ
1 ΘQ

1,11 −0.0184(0.0057) −0.0184

ΘQ
1,12 0 0

ΘQ
1,21 0.5467(0.0084) 0.5467

ΘQ
1,22 −0.1203(0.0024) −0.1203

h0 −1.6458(0.0318) −1.2675(0.0320)
φ −0.5403(5.0976) −0.3500(2.3850)

χ2 = 23.42 zvalue= 5.03 d.o.f.= 6

a This table reports the EMM estimation result of the term structure model in Sect. 2.5. Numbers
in parentheses are standard errors. If an estimate is reported without a standard error, it means that
the parameter is not estimated, but fixed at that particular value. Regime-dependent parameters are
identified by their dependence on S. Parameter definitions can be found in Sect. 2.5. In particular,
ΘQ

0 (S) and ΘQ
1 are the risk-neutral counterparts of Θ0(S) and Θ1(S) respectively. This simply

implies that λ0,D =Θ0(S)−ΘQ
0 (S) and λ1,D = −ΘQ

1 . Note that ΘQ
1 (hence λ1,D) is not regime-

dependent

ψ1 = (1,0)′ and fix ψ0(S) = 0 so that the instantaneous short-term interest rate
rt = x1,t . In other words we restrict that the first state variable is simply the short-
term interest rate. Because of the relation between the regime-switching risk and the
transition probabilities as discussed in Sect. 2.6, we assume that the transition prob-
abilities are not time-varying, therefore we don’t force the regime-switching risk to
be priced. In other words, we fix h1(u,S) = 0. Under these restrictions, the model
has 29 parameters. After initial estimation, we further fix at zero those parameters
whose estimates are close to 0 and statistically insignificant, and re-estimate the
model. The final results are reported in Table 3.5.
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3.3.3 Discussions

Many empirical models of interest rates that incorporate regime switching are mo-
tivated by the recurrent shifts between different phases of the business cycle ex-
perienced by the aggregate economy. It is therefore interesting to see how the la-
tent regimes in our model of the term structure of interest rates correspond to the
business cycle. Following the approach in Bansal and Zhou [5], we first compute
interest rates of different maturities conditional on each regime, R̂(t,τ|St), using
the estimated term structure model reported in Table 3.5. An estimate of St is then
obtained by choosing the regime that minimizes the differences between the ac-
tually observed interest rates R(t,τ) and R̂(t,τ|St) or the pricing errors, that is,
Ŝt = arg min∑τ |R(t,τ)− R̂(t,τ|St)|. The estimated regimes are plotted in Fig. 3.2
together with the business cycle expansions and recessions identified by NBER.
Consistent with the result in Bansal and Zhou [5], the figure clearly shows that the
regimes underlying the dynamics of the term structure of interest rates are intimately
related to the fluctuations of the aggregate economy. Our model is able to identify
all six recessions in the sample period. The result is also consistent with the findings
from some earlier empirical studies, such as Estrella and Mishkin [25] and Chau-
vet and Potter [12] among others, that the yield curve has a significant predicative
power for the turning point of the business cycle.

The point estimates reported in Table 3.5 confirm that regime-switching indeed
seems to be an important feature of interest rate dynamics. For example, according
to the estimated parameters, the first factor has a lower long-run level (2.8 %) and
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Fig. 3.2 Estimated term structure regimes during 1964–2001. The figure plots the estimated inter-
est rates during 1964–2001. The two regimes are coded as 1 and 0. The shaded areas are economic
recessions dated by NBER
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smaller mean-reverting coefficient (0.1743), hence higher persistence, in Regime 1
than in Regime 2 where the long-run level is 12.89 % with a mean-reverting co-
efficient 0.2150. Since the volatility of the factor is specified to be proportional to
its level, these estimates imply that the factor exhibits higher volatility in Regime
2 than in Regime 1. The estimates of σ0,2 in Regime 1 and Regime 2 suggest that
the second factor also has higher volatility in Regime 2 than in Regime 1. These
results are consistent with early findings (Ang and Bekaert [3], for example) with
regard to the persistence and volatility of interest rates across different regimes. We
plot in Figs. 3.3 and 3.4 the estimated mean yield curve together with the observed
average yield curve in both regimes. We also plot in Fig. 3.5 the standard deviations
of the estimated interest rates together with the corresponding sample standard de-
viations in both regimes. We can see that our model fits the yield curve data reason-
ably well. The yield curve is upward sloping on average in Regime 1 and is flat or
slightly downward sloping in Regime 2. Moreover, interest rates are less volatile in
Regime 1 than in Regime 2. One stylized fact of the yield curve is that interest rate
volatility doesn’t seem to attenuate as maturity increases. Figure 3.5 shows that this
non-attenuating volatility is mainly a Regime 1 phenomenon where the volatility is
relatively low. On the other hand, in the high-volatility regime (Regime 2), interest
rate volatility does decline significantly as maturity increases.

In Table 3.5, ΘQ
0 (S) and ΘQ

1 are the risk-neutral counterparts of Θ0(S) and
Θ1(S). They imply that the coefficients of the market price of diffusion risk are
λ0,D(S) =Θ0(S)−ΘQ

0 (S) and λ1,D = −ΘQ
1 . Note that in order to obtain a closed-

form solution of the terms structure of interest rates, we have restricted ΘQ
1 , hence

.02

.03

.04

.05

.06

.07

.08

1 2 3 4 5 6 7 8

FITR 1 RBAR 1

Fig. 3.3 Estimated yield curve in regime 1. The figure plots the average of the estimated yield
curve (FITR1) regime 1. RBAR1 are the average interest rates during 1964–2001 in regime 1.
Interest rate maturity ranges from 1 month to 5 years
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Fig. 3.4 Estimated yield curve in regime 2. The figure plots the average of the estimated yield
curve (FITR2) regime 2. RBAR2 are the average interest rates during 1964–2001 in regime 2.
Interest rate maturity ranges from 1 month to 5 years
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Fig. 3.5 Interest rate volatility in two regimes. The figure plots the standard deviations of the fitted
yield curve (STDR1FIT, STDR2FIT) in regime 1 and 2 respectively. STDR1 and STDR2 are the
sample standard deviations of the interest rates in the two regimes. Interest rate maturity ranges
from 1 month to 5 years
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λ1,D, to be independent of regimes. Nonetheless, our model still allows λ0,D, hence
the market price of risk, to change across regimes, and the estimates of ΘQ

0 (S) and
Θ0(S) confirm that the market price of risk in Regime 1 is indeed very different from
that in Regime 2. λ0,D = 0.0018 in Regime 1 and λ0,D = 0.0262 in Regime 2. Bansal
and Zhou [5] also finds evidence that the market price of risk is regime-dependent
and shows that it is this feature of the market price of risk that accounts for the im-
proved empirical performance of their model over the existing ones. The difference
between the model in Bansal and Zhou [5] and the present one is that Bansal and
Zhou [5] restricts λ0,D to be zero and allows λ1,D to be regime-dependent, and as
a result, a closed-form solution of the term structure of interest rate can only be
obtained using log-linear approximations.

The negative regression coefficients reported in Table 3.2 strongly reject the ex-
pectation hypothesis of the term structure of interest rates. Researchers have often
pointed to the presence of time-varying risk premiums as the main cause for this
stylized fact about interest rates (see, for example, Dai and Singleton [15]). The
model of the term structure of interest rates in the present paper has a very flex-
ible specification of bond risk premiums. As Equation (3.20) shows, the risk pre-
mium is time-varying first because it is a function of the underlying state variable
X(t) as in the standard affine models. Regime-switching, however, makes the co-
efficients of the risk premium vary across regimes, therefore adds another source
of time-variation. Moreover, our model allows for the regime-switching risk to be
priced, therefore introduces a new component to bond risk premiums that is also
time-varying. To see how this flexible specification of bond risk premiums helps ac-
count for the stylized fact of the term structure of interest rates, we use the estimated
model to simulate interest rates of various maturities and run the same expectation-
hypothesis regressions as those reported in Table 3.2. The results are included in
Table 3.6. We can see that our model is able to replicate the negative regression
coefficients typically found in the literature.

Table 3.6 Expectation-hypothesis regression using simulated interest rates a

i+j=0.5 i+j=1 i+j=2 i+j=3 i+j=4 i+j=5

j=0.25 −1.9169
(0.1323)

j=0.5 −1.7966
(0.1033)

j=1 −1.6602 −1.8859 −2.1152 −2.3428
(0.0836) (0.0868) (0.0909) (0.0958)

j=2 −1.2804 −1.4769 −1.6721
(0.0680) (0.0696) (0.0717)

j=3 −1.0817 −1.2511
(0.0625) (0.0.0636)

j=4 −0.9612
(0.0600)

a This table reports the estimate of βi j in regression i(Ri
t+ j−Ri+ j

t ) = α+βi j[ j(Ri+ j
t −R j

t )]+ ε i
t+ j

where Rk
t is the k-year interest rate at time t using the simulated interest rates according to the

estimated term structure model in Sect. 2.5. Under the null hypothesis of the expectation theory,
βi j = 1. Numbers in parentheses are Newy-White standard errors
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Another stylized fact about the yield curve is that bond risk premiums are typi-
cally counter-cyclical as reported in Table 3.3. For 1- to 5-year bonds, the risk pre-
miums are all negatively correlated with the business cycle dummy variable. More-
over, simple regressions of the bond risk premiums on the business cycle dummy
variable and the yield spread also produce significantly negative coefficients on the
business cycle dummy variable in all cases. The dynamic model of term structure of
interest rates in the present paper allows us to estimate the instantaneous expected
excess return on a long-term bond based on Eq. (3.20). We can then compute the
same correlation coefficients as well as the simple regressions as those in Table 3.3
using the estimated bond risk premiums. The results are reported in Table 3.7. We
can see that the estimated risk premiums of different bonds are highly and posi-
tively correlated as in the data. The correlation coefficients between the estimated
risk premium and the business cycle dummy variable, however, are all negative and
are similar in magnitude to those found in the data. For example, for the 2-year
bond, the correlation coefficient is −0.1703 in the data. Using the estimated risk
premiums, the correlation coefficient is −0.1680. We also regress the estimated risk
premiums on the business cycle dummy variable and the yield spread. As in the
data, the regression coefficients on the business cycle dummy variable are all nega-
tive and significant (except for the 1-year bond) in Table 3.7. A difference, though,
is that the yield spread seems to retain its predictive power for bond returns even
in the presence of the business cycle dummy variable when the estimated bond risk

Table 3.7 The estimated bond risk premiums and the business cyclea

RPY1 RPY2 RPY3 RPY4 RPY5 BC

RPY1 1
RPY2 0.9776 1
RPY3 0.9446 0.9925 1
RPY4 0.9159 0.9799 0.9969 1
RPY5 0.8947 0.9687 0.9917 0.9987 1
BC −0.1290 −0.1680 −0.1872 −0.1980 −0.2043 1

α̂i 0.1663∗∗ 0.3978∗∗ 0.6884∗ 1.0270∗ 1.4032
(0.0799) (0.1999) (0.3630) (0.5638) (0.7937)

β̂i −0.0028 −0.0100∗∗ −0.0210∗∗ −0.0352∗∗ −0.0517∗∗
(0.0017) (0.0043) (0.0078) (0.0120) (0.0169)

γ̂i −0.0550 −0.1059 −0.1544 −0.1996 −0.2441
(0.0883) (0.2210) (0.4313) (0.6232) (0.8774)

Adjusted R2 0.038 0.051 0.057 0.060 0.062

a The first six rows of this table report the correlation coefficients among the estimated bond risk
premiums and the business cycle. RPY1, RPY2, . . . , RPY5 are the instantaneous expected excess
return on 1-, 2-, . . . , 5-year bonds, respectively, given in (3.20) in Sect. 2.6. BC is the dummy
variable for the business cycle with BC=1 indicating an expansion and BC=0 indicating a recession.
The last four rows report the OLS regression RPYit = c+αiSPt + βiBCt + γi[SPt ×BCt ] + εi,t ,
where RPYi is the risk premium on the i-year bond, SP is the yield spread between the 5-year bond
and the 1-month Bill. Numbers in parentheses are Newy-West standard errors. An ∗ indicates the
estimate is significant at 10 % level. An ∗∗ indicates the estimate is significant at 5 % level.
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Fig. 3.6 Regime-switching risk premiums. The figure plots the estimated regime-switching risk
premiums on the 5-year bond during 1964–2001. The shaded areas are economic recessions dated
by NBER

premiums are used in the regression (Table 3.7), whereas the business cycle dummy
variable completely drives out the predicating power of yield spreads in the data
(Table 3.3)

One interesting question about the term structure models under regime shifts
is that whether or not the regime-switching risk is priced. In our model, the
market price of regime-switching risk, λS(u,S,X), is given by λS(u,S,X) = 1−
eφ(u,S)/eh0(u,S). From the estimates in Table 3.5, λS = 1 − e−0.5403/e−1.6458 =
−2.0207 in Regime 1 and λS = 1− e−0.3500/e−1.2675 =−1.5030 in Regime 2. With
the estimate of the market price of regime-switching risk, the risk premium asso-
ciated with regime-switching shocks can be obtained by the second term in (3.20).
Figure 3.6 plots the estimated regime-switching risk premiums during the sample
period. These values seem economically important and suggest that the regime-
switching risk is indeed priced by bond investors. The standard errors of the esti-
mate of φ in both regimes, however, are very big (5.0976 and 2.3850 respectively).
In fact, among all the estimated parameters, φ is the least accurately estimated one.
Notice that λS = 0 when φ(u,S) = h0(u,S). With the larger standard errors, we are
in fact not able to reject that φ(u,S) = h0(u,S), or λS = 0 in both regimes. The
uncertainty regarding the regime-switching risk premiums may have reflected the
caveat of affine models under regime shifts as we discussed above. In order to ob-
tain a closed-form solution of the term structure of interest rates in an affine model,
we have to restrict the risk-neutral regime-switching probabilities to be constant.
This implies that the model would force the regime-switching risk to be priced if
the regime-switching probabilities are allowed to be time-varying under the physi-
cal probability measure. In this paper we choose not to impose a non-zero market
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price of regime-switching risk a prior by using a less general specification of the
regime-switching probabilities. Our empirical results suggest that more studies are
needed in order to get a better assessment of the regime-switching risk premiums.

3.4 Conclusion

Using an analytically simple representation of Markov regime shifts, this paper de-
velops and estimates a continuous-time affine model of the term structure of interest
rates under the risk of regime-switching. The model elucidates the dynamic effects
of regime shifts on the yield curve and bond risk premiums. The empirical results
show that the model is able to account for many salient features of the term structure
of interest rates and confirm that regime-switching indeed seems to be an important
property of interest rate movements. There are still some uncertainties regarding the
magnitude of the regime-switching risk premiums that warrant the development of
more general dynamic models of the term structure of interest rates under regime
shifts.

In the current model, regimes, though a latent variable to econometricians, are
assumed to be observable to bond investors. A natural extension is to assume that
the regimes are not observable to bond investors either, and that the investors must
learn the regimes through other observable state variables. One example is that the
regimes may represent different stances of the monetary policy and bond investors
must infer from different signals about the true intentions of the central bank.

It should be noted that the model developed in the current paper is an empirical
one. The regimes identified by the model lack clear structural interpretations. An-
other extension of the present paper is to incorporate the model of the term structure
of interest rates into a well specified macroeconomic model with regime shifts. With
such a structural model, we will be able to identify and interpret different regimes in
terms of macroeconomic fundamentals. These extensions are left for future studies.
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Chapter 4
The LIBOR Market Model:
A Markov-Switching Jump Diffusion Extension

Lea Steinrücke, Rudi Zagst, and Anatoliy Swishchuk

Abstract This paper demonstrates how the LIBOR Market Model of Brace et al.
(Math Financ 7(2):127–147, 1997) and Miltersen et al. (J Financ 52(1):409–430,
1997) may be extended in a way that not only takes into account sudden market
shocks without long-term effects, but also allows for structural breaks and changes
in the overall economic climate. This is achieved by substituting the simple dif-
fusion process of the original LIBOR Market model by a Markov-switching jump
diffusion. Since interest rates of different maturities are modeled under different
(forward) measures, we investigate the effects of changes between measures on all
relevant quantities. Using the Fourier pricing technique, we derive pricing formula
for the most important interest rate derivatives, caps/caplets, and calibrate the model
to real data.

4.1 Introduction

Of all derivatives traded on over-the-counter (OTC) markets, contracts on interest
rates clearly take the most prominent role, as in terms of notional value, they account
to around 78 % of all contracts traded (BIS Quarterly Review, June 2012). When
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compared to other financial markets, the interest-rate segment takes a somewhat
special role, as researchers have to face the special challenge of working with a
continuum of bond maturities and hence an infinite number of underlyings. As a
consequence, certain questions arise that do not require consideration in commodity
or stock markets, in particular, when it comes to the identification of no-arbitrage
conditions. For a long time, starting in the 1970s, short rate models were used as the
main tool for the pricing and hedging of interest-rate products. Even though they
still remain important in certain applications, their role in the derivatives market
has been gradually replaced – first by the instantaneous forward rates approach of
Heath et al. [24], and, more recently in 1997, by the so-called LIBOR market model
(LMM). It was in particular the latter, introduced by Miltersen et al. [30] and Brace
et al. [10], that revolutionized the pricing of interest-rate derivatives. By turning
towards the consideration of simple rather than instantaneous forward rates, it was
finally possible to analytically price some of the most widely traded interest-rate
products, caps and floors, with a Black (1976)-type formula. The new approach to
modeling was especially based on exploring the relation between the simple rates
and the bond prices. Shortly after, Jamshidian [26] adapted the approach to the swap
market and the pricing of swaptions.

Since its introduction in 1997, the LMM has experienced an unprecedented raise
in popularity and has become the most popular pricing approach among prac-
titioners. The model has, however, been criticized for not being suited to ade-
quately reproduce the market-observed prices of interest-rate derivatives. In par-
ticular, the presumption that the LIBOR dynamics can be modeled as diffusion
processes with deterministic coefficients has been challenged. Rebonato [33], for
instance, has pointed out that log-normal dynamics are incapable of reproducing
heavy tails, jumps or non-flat volatility surfaces. In response to these shortcom-
ings, a large amount of extensions has been introduced over the course of years.
Inter alia, it was proposed to replace the simple log-normal processes of the original
model by displaced diffusions [28], Lévy processes [15], generalized jump diffu-
sions [22, 5], Markov-switching geometric Brownian motions [18], processes with
stochastic volatility [2, 4] and general semimartingales [27]. Even extensions ac-
counting for default risk were brought forth [14, 13].

In the approach presented here, two of the most promising concepts are merged:
generalized jump diffusions and Markov-switching processes. By doing so, we cre-
ate an extension to the original LMM that is suitable to incorporate sudden market
shocks into the interest-rate dynamics and, at the same time, accounts for changes
in the overall economic climate. Jump diffusions, on the one hand, are immediate
generalizations to ordinary diffusion processes which are expanded by a component
accounting for sudden up- or downward movements in the market. As demonstrated
by Belomestny and Schoenmakers [5], modeling the simple interest rate through
jump diffusions is not only suited to reflect sudden jumps observed in the mar-
ket dynamics, but also allows to successfully capture the non-flat implied volatil-
ity surfaces typically observed in the interest-rate derivatives markets. As these
jumps should be thought of as random shocks, they typically do not have an impact
on the overall economic environment. Nonetheless, Rebonato and Joshi [35] and
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Rebonato [34] present considerable evidence indicating that there are in fact differ-
ent economic phases. This observation is incorporated into the model by the intro-
duction of a Markov-switching feature: All jump diffusion parameters are assumed
to be dependent on an underlying finite-state space Markov chain moving according
to the overall economic development.

In the following chapter, we have chosen a structure that should enable even those
readers that are not too familiar with market models and/or Markov-switching jump
diffusions to follow the main ideas and intuitions behind the model. Keeping this
in mind, the proofs presented are rather intuitive sketches intended to convey the
underlying ideas rather than mathematically rigorous arguments. All considerations
are nonetheless based on mathematically impeccable concepts. Those that are inter-
ested in the exact details are referred to Steinrücke et al. [40], where all underlying
proofs are demonstrated. There, the concept is furthermore extended to the swap
market model and the pricing of swaptions.

The chapter is divided into six sections. Section 4.2 is pointed at getting the
reader acquainted with the fundamental tools needed when working with the LI-
BOR market model – Girsanov’s Theorem, the Doléans-Dade exponential and the
Change-of-Numéraire Technique. Next, Sect. 4.3 gives a quick introduction to the
log-normal LIBOR market model of Brace et al. [10] and Miltersen et al. [30], fol-
lowed by Sect. 4.4, where the framework for the Markov-switching jump diffusion
extension to the original model is introduced. It is explained how the dynamics of
different LIBOR rates can be interrelated and the special role of the Markov chain
under measure changes is investigated. Then, in Sect. 4.5, it is demonstrated how
caps/caplets, one of the most important families of interest-rate derivatives, can be
priced within a Markov-switching jump diffusion framework. Last, but not least,
Sect. 4.6 gives an idea of how the proposed extension can be successfully calibrated
to market data. Section 4.7 finally wraps up the main results and gives an outlook to
possible future research.

4.2 Mathematical Preliminaries

Given the finite time horizon T ∗ > 0, let the interest-rate market be modeled on the
complete stochastic basis (Ω ,F ,F,P), i.e., (Ω ,F ) is a measurable space, F is a
filtration on F satisfying the usual conditions of right-continuity and completeness,
and P denotes the physical measure of the market. The convenience of considering
a market with an only finite time horizon is that any local martingale can be treated
as a martingale [7]. It is furthermore assumed that the market is frictionless with
bank account (Bt)t∈[0,T ∗], B0 = 1, and zero-coupon bonds (B(t,T ))t∈[0,T ] trading
for every maturity 0 ≤ T ≤ T ∗. The bonds of different maturities are the so-called
primary traded instruments of the interest-rate market. Also, the ad-hoc assumption
is made that all processes involved are specified in such a way that all operations
to be performed (differentiation in the T -variable, differentiation in the t-variable
under the integral sign and interchange of order of integration) are well-defined.
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While the pricing in stock markets is largely dependent on changing the P-
dynamics of a given stock to the dynamics under some risk-neutral measure (as-
suming it exists), pricing in the interest-rate market involves changes to measures
associated with different numéraires than the simple bank account B. For this, the
Change-of-Numéraire Technique is needed (see, e.g., [11] or [42]):

Theorem 4.1 (Change-of-Numéraire Technique). Let (Y (t))t∈[0,T ∗] be a primary
traded asset of the market and Q an equivalent martingale measure (EMM) under
which

(

B−1
t Y (t)

)

t∈[0,T∗] follows a martingale. Let A = (A(t))t∈[0,T∗] and

E = (E (t))t∈[0,T ∗] be two arbitrary numéraires, satisfying that the discounted pro-

cesses
(

B−1
t A(t)

)

t∈[0,T∗] and
(

B−1
t E (t)

)

t∈[0,T∗] are both Q-martingales. Then, the
following holds:

• There exists an equivalent probability measure QA,

dQA

dQ

∣
∣
∣
∣
Ft

:=
A(t)

A(0)Bt
, t ∈ [0,T ∗] ,

such that
(

A(t)−1Y (t)
)

t∈[0,T∗] is a QA-martingale.

• The Radon-Nikodým derivative of QE with respect to QA is given as

dQE

dQA

∣
∣
∣
∣
Ft

:=
E (t)
A(t)

· A(0)
E (0)

, ∀ t ∈ [0,T ∗] .

• For any contingent claim D = D(T ) with underlying Y , the time-t-price is given
as

BtEQ

[
D
BT

∣
∣
∣
∣
Ft

]

= A(t)EQA

[
D

A(T )

∣
∣
∣
∣
Ft

]

= E (t)EQE

[
D

E (T )

∣
∣
∣
∣
Ft

]

.

The “numéraires of choice” for our purposes are the bonds (B(t,T ))t∈[0,T ] with
maturities 0 < T ≤ T ∗, for which it is natural to assume that B(t,T ) > 0. The
measure QT associated with the numéraire (B(t,T ))t∈[0,T ∗] is named T -forward
measure.

By nature of the upcoming extension, the main role in the following considera-
tions will be played by so-called jump diffusion processes. Let H be an arbitrary
probability measure and (E,E ) a measurable space which satisfies certain techni-
cal properties. A jump diffusion Z = (Z (t))t∈[0,T∗] is the solution to the stochastic
differential equation

dZ (t) = Z (t−)dY (t)

= Z (t−)
(

α (t)dt + δ (t)dWH (t)+
∫

E
γ (t,z)

(

μ−νH
)

(dt,dz)
)

, (4.1)

where WH is a multi-dimensional standard H -Brownian motion, μ is an integer-
valued random measure on the mark space [0,T ∗]×E , νH is the H -compensator
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measure associated with μ ,1 and the coefficient functions α , δ and γ satisfy certain
predictability and integrability assumptions (see, e.g., Jacod and Shiryaev [25] or
Protter [31]). The solution to (4.1) is given by the so-called stochastic exponential
or Doléans-Dade exponential Z = E (Y ), and satisfies

Z (t) = Z (0) · exp
(∫ t

0

(

α (s)− 1
2
‖δ (s)‖2 )ds+

∫ t

0
δ (s)′ dWH (s)

+

∫ t

0

∫

E
ln(1+ γ (s,z))

(

μ−νH
)

(ds,dz)

+

∫ t

0

∫

E

[

ln(1+ γ (s,z))− γ (s,z)]νH (ds,dz)
)

.

It can be shown, that any jump diffusion is a special semimartingale, i.e., it allows
for the representation

Z = Z (0)+M+A, (4.2)

where Z (0) is finite and F0-measurable, M a local martingale, A a process of finite
variation and M (0) = A(0) = 0. In extension to ordinary semimartingales, A is in
addition predictable and decomposition (4.2) is unique [25]. The fact of Z being
a special semimartingale allows for the use of a variety of results related to the
theory on special semimartingales and especially the corresponding version of Itō’s
Lemma. The other important theorem that will be frequently used is the following
version of Girsanov’s Theorem. Note that measure changes do not have an impact
on the jump measure, but only on the compensator ν .

Theorem 4.2 (Girsanov’s Theorem). Let (Ω ,F ,F,H ) be a complete stochas-
tic basis with H an arbitrary probability measure. Furthermore, let WH (t) be
a d-dimensional H -Brownian motion and μ an integer-valued random measure
with mark space ([0,T ∗]×E,B ([0,T ∗])⊗E ) and H -compensator νH (dt,dz) =
λH (t)kH (t,dz)dt. λH and kH denote the predictable jump intensity and the
marker distribution, respectively, and it is assumed that kH (t,A) is predictable
∀ A ∈ E . Also, let θ be a d-dimensional predictable process and Φ (t,z) a non-
negative predictable function satisfying the usual integrability assumptions. Define
the process Z (t) by Z (0) = 1 and

dZ (t)
Z (t−) = θ (t)dWH (t)+

∫

E
(Φ(s,z)− 1)

(

μ(ds,dz)−νH (ds,dz)
)

1 Intuitively speaking, the H -compensator measure νH contains all the distributional information
related to the random measure μ under H . In more precise terms: Assuming that μ satisfies
certain regularity conditions, ν is defined as the a.s. unique predictable random measure with the
following property: For any predictable stochastic process f : Ω × [0,T ∗]×E → R with | f | ∗ μ
an increasing, locally integrable process, the process M, M (ω, t) :=

∫ t
0

∫

E f (ω, s, z)μ(ω,ds,dz)−
∫ t

0

∫

E f (ω, s, z)ν(ω,ds,dz) is a (local) martingale with respect to H [38].
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It is assumed that EH [Z(t)] = 1 for all 0≤ t ≤ T . Define the equivalent measure
R ∼H by the Radon-Nikodým derivative dR/dH |Ft = Z (t). Then, the following
holds:

(i) The process WR is a R-Brownian motion,

dWR (t) = dWH (t)−θ (t)dt.

(ii) The a.s. unique predictable R-compensator of μ is given as

νR (dt,dz) :=Φ (t,z)νH (dt,dz) .

The corresponding jump intensity and the marker distribution are

λR (t) = φ (t)λH (t) and kR (t,dz) = ZE (z)kH (t,dz) ,

respectively, where φ (t) :=
∫

E Φ (t,z)kH (t,dz), and ZE (z) := Φ (t,z)/φ (t)
for φ (t)> 0, ZE (z) = 1 otherwise.

4.3 The Log-Normal LIBOR Framework

A frequent approach2 to modeling interest-rate markets is based on the consideration
of instantaneous forward interest rates. Most intuitively, these can be understood as
those interest rates that can be locked in today to guarantee a certain future spot
rate. The instantaneous forward rate f (t,T ) at time t for the future time point T is
defined by the limit

f (t,T ) = lim
δ→0

1
δ

ln
B(t,T )

B(t,T + δ )
.

One can easily construct a portfolio that allows to replicate the desired forward
rate via simple means (see [39], p. 423). Zero-bond prices can be easily recovered
from instantaneous forward rates by the well-known formula

B(t,T ) = exp

(

−
∫ T

t
f (t,s)ds

)

. (4.3)

By investigating the instantaneous forward rates and their relation to the bond
dynamics, Heath et al. [24] were able to derive an arbitrage-free framework for the
stochastic evolution of the whole yield curve. In detail, the authors assumed that
under a given measure P and for a fixed maturity t ≤ T ≤ T ∗, each instantaneous
forward rate f (.,T ) evolves as a diffusion process.

2 The introductory Sect. 4.3 is mainly based on Brigo and Mercurio [11], Filipovic [20], Rebonato
[33] and Zagst [42].
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While models for instantaneous forward rates have since been increasingly ex-
tended and amended (see, e.g., the jump diffusion model in a semimartingale setting
by Björk et al. [6, 7]), the approach bears the intrinsic problem of working with in-
finitely many interest rates which are not directly observable in the market. Even
more severe, the most basic interest-rate derivatives on the market (caps and swap-
tions) cannot be evaluated via a closed-form pricing formula. It was mainly these
problems that gave rise to a new approach to modeling, where simple instead of
instantaneous forward rates are considered: The LIBOR market model.

4.3.1 An Introduction to the LIBOR Market Model:
The Log-Normal Dynamics

In order to define forward LIBOR rates, first a tenor structure 0 = T0 < T1 <
.. . < TN is fixed, with constant tenor δ ≡ Ti+1− Ti, i = 1, . . . ,N − 1. δ is a frac-
tion of a year (usually δ = 1/4 or δ = 1/2). The forward LIBOR or simple rate
Li (t) := L(t,Ti,Ti+1) at time t with maturity Ti and expiry Ti+1 is the simple interest
an investor can lock in at t for the future interval [Ti,Ti+1] and is given by the relation

1+ δ ·Li (t) =
B(t,Ti)

B(t,Ti+1)
. (4.4)

This is indeed the simple forward interest rate for the interval [Ti,Ti+1], as it can
be easily replicated by the following payoff scheme: On the one hand, at time t, the
investor goes long both a bond B(t,Ti) with maturity Ti and a forward contract on
the simple interest rate Li on one monetary unit for the interval [Ti,Ti+1]. The initial
value of this portfolio is B(t,Ti). At time Ti, the bond payoff of 1 is invested at the
forward-contract secured interest rate Li and yields payoff 1+ δLi (t) at time Ti+1.
On the other hand, at time t, the investor goes short 1+ δLi (t) zero coupon bonds
with maturity Ti+1, yielding a portfolio with initial value −B(t,Ti+1)(1+ δLi (t)).
The payoff of the portfolio at time Ti+1 is−(1+ δLi (t)). By no-arbitrage, it follows
that the initial portfolio values have to coincide, B(t,Ti) = (1+ δLi (t))B(t,Ti+1),
which, in turn, immediately implies (4.4). Taking the expiry of one LIBOR rate as
the maturity of the next then leaves us with an array of N− 1 LIBOR rates.3

The natural question that arises is how the dynamics of each forward LIBOR rate
in (4.4) can be modeled. In the case considered by Brace et al. [10], the only source
of randomness in the market is a d-dimensional standard Q-Brownian motion WQ ,
and the market filtration F is the augmented and completed version of the filtration
FWQ

. The authors showed that the LIBOR rate setting can be directly embedded
into the framework of instantaneous forward rates: By (4.3),

3 Most authors substitute the accurate term “forward LIBOR rate” for Li (t) = L(t,Ti,Ti+1) by the
more convenient shortened expression “LIBOR rate”. Strictly speaking, this is only appropriate
when t = Ti, but since no great confusion should be expected, we will also follow this convention.
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Li (t) =
1
δ

[

exp

(∫ Ti+1

Ti

f (t,s)ds

)

− 1

]

, (4.5)

and the LIBOR rate dynamics may be straight-forwardly derived from the underly-
ing instantaneous forward rate model. Having mentioned this, one might be tempted
to think that the two approaches of instantaneous and simple forward rates can be
used interchangeably, but this is a fallacious conclusion. In the words of Glasser-
man and Kou [22], we are dealing with more than a question about the choice of
variables. It could be noted, e.g., that (4.5) involves an integral and hence prevents
forthright inversion of the expression.

Nonetheless, the embedding is very useful to show that the model is arbitrage-
free and that there exists a spot martingale measure Q, under which all bonds
discounted with the money market account B are martingales. Furthermore, one
can show that each LIBOR rate follows a martingale under an appropriately cho-
sen forward measure. To verify the latter claim, observe that the right-hand side
Fi (t) := B(t,Ti)/B(t,Ti+1) in (4.4) can in fact be interpreted as the price of a for-
ward contract on a bond with maturity Ti, with the expiry of the contract being
Ti+1. The bonds involved, B(t,Ti) (serving as underlying) and B(t,Ti+1) (serving
as numéraire), are primary traded assets of the market, and hence, B(t,Ti)/Bt and
B(t,Ti+1)/Bt are Q-martingales. Let Qi+1 denote the Ti+1-forward measure asso-
ciated with numéraire B(t,Ti+1). Then, by the Change-of-Numéraire Theorem 4.1,
Fi(t) is a Qi+1-martingale, with the Radon-Nikodým derivative being given as

ηi+1 (t) :=
dQi+1

dQ

∣
∣
∣
∣
Ft

=
B(t,Ti+1)

Bt
· 1

B(0,Ti+1)
for all 0≤ t ≤ Ti.

Since each forward LIBOR rate Li differs from Fi only by the addition and multi-
plication of constants 1 and δ , it follows immediately that Li is a Qi+1-martingale as
well. As a result, the martingale representation theorem for Brownian markets (see,
e.g., Zagst [42], p. 31) implies that each forward LIBOR rate Li can be modeled
as a geometric Brownian motion with drift 0 under the respective forward measure
Qi+1,

dLi (t) = Li (t) ·σi (t)
′ dW i+1 (t) , Li (0) = li, (4.6)

where W i+1 is assumed to be a d-dimensional Qi+1-Brownian motion, σi a pre-
dictable d-dimensional vector function satisfying

∫ Ti
0 ‖σi (s)‖2 ds <∞Qi+1-a.s. and

li is determined according to (4.4) evaluated at 0. The solution to the SDE in (4.6)
is given by the stochastic exponential

Li (t) = Li (0) · exp

(∫ t

0
σi (s)

′ dW i+1 (s)− 1
2

∫ t

0
‖σi (s)‖2 ds

)

. (4.7)

Given the exponential form, the i-th LIBOR rate is non-negative, whenever
Li (0) ≥ 0, which can be ensured by an initial term structure of the zero-coupon
bonds B(0,Ti), i = 1, . . . ,N which is positive and non-increasing in the maturity,
0 < B(0,TN)≤ . . .≤ B(0,T1).
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4.3.2 Pricing of Caps and Floors in the Log-Normal LMM

The main reason for the raving success of the LMM almost immediately follow-
ing its publication can be found in the implications which it had on the evalua-
tion of some of the most important interest-rate instruments, caps and floors (be-
ing composed of caplets and floorlets, respectively), among others. The model fi-
nally allowed for a closed-form evaluation of these instruments in terms of Black’s
formula [8].

An interest-rate caplet (floorlet) is an instrument that protects its owner against
too high (low) interest rates. At time Ti, the interest rate Li is fixed for the period
[Ti,Ti+1]. The owner of the caplet (floorlet) receives a payment at time Ti+1 that is
equal to the amount in which the interest δ · Li (Ti) exceeds (falls below) the pre-
specified strike δK,

δ · (Li (Ti)−K)+
[

δ · (K−Li (Ti))
+ ] . (4.8)

A caplet (floorlet) can thus be seen as an interest-rate market equivalent to what
a European call (put) option is on the stock market. An interest-rate cap (floor) is
then a strip of caplets over a collection of time periods [Ti,Ti+1], T0 < T1 . . . < TN ,
where at the end of each period the buyer of the contract receives a payment, if the
interest rate fixed at the beginning of the period exceeds (falls below) the fixed, pre-
specified strike price K. The time-t payoff of the cap equals the time-t payoff of all
remaining caplets,

∑
i=1,...,n−1;Ti≥t

δ
Bt

BTi+1

(Li (Ti)−K)+ .

Note that the strike K is the same for all caplets of which the cap is composed.
Since a change in sign is the only difference between the payoff of cap/caplets and
floor/floorlets, it suffices to henceforth concentrate on the former.

By the usual principle of risk-neutral valuation and the Change-of-Numéraire
Theorem 4.1, the price at time t of entering into a caplet contract on the i-th LIBOR
rate Li equals

Capleti (t) =EQ

[ Bt

BTi+1

·δ · (Li (Ti)−K)+
∣
∣
∣Ft

]

= δ ·B(t,Ti+1) ·EQi+1

[

(Li (Ti)−K)+
∣
∣Ft
]

. (4.9)

Under dynamics (4.7), the pricing relation (4.9) can be evaluated using a Black-
Scholes type argument (see [37], p. 18):

Theorem 4.3 (Black’s Formula for Caplets and Floorlets). The time-t price of a
caplet on the i-th LIBOR rate Li with strike K is given by

Capleti (t) = δ ·B(t,Ti+1) ·
[

Li (t) ·N
(

d̃1
)−K ·N (

d̃2
)]

, (4.10)
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where N denotes the cumulative distribution function of the standard normal dis-
tribution and

d̃1,2 =
ln
(

Li(t)
K

)

± 1
2

∫ Ti
t ‖σi (s)‖2 ds

√
∫ Ti

t ‖σi (s)‖2 ds
. (4.11)

The time-t price of a floorlet on the i-th LIBOR rate Li with strike K is given by

Floorleti (t) = δ ·B(t,Ti+1) ·
[

K ·N (− d̃2
)−Li (t) ·N

(− d̃1
)]

.

As the cap over the time period [0,Tn], 0 < n ≤ N− 1, is nothing more than a
series of caplets with the same underlying strike K, its price is given as

Cap(t) = ∑
i=1,...,n−1;Ti≥t

Capleti (t) .

4.4 The Markov-Switching Jump Diffusion (MSJD) Extension
of the LMM

Figure 4.1 depicts the movements of the implied volatilities of seven USD ATM
caps with different maturities between 1 and 10 years in the time frame 2003/01/01–
2012/06/22. There are two major observations that can be made: On the one hand,
there seem to be market phases, where prices tend to be more volatile than during
other times. On the other hand, one can observe sudden jumps occurring at cer-
tain time points, which cannot be properly explained in a diffusion model of the
type (4.6), as large displacement are very unlikely to occur for normally distributed

2003−01−02 2004−12−02 2006−11−03 2008−10−14 2010−09−14 2012−06−22
0

0.2

0.4

0.6

0.8

1

1.2

1.4 1y Cap
2y Cap
3y Cap
4y Cap
5y Cap
7y Cap
10y Cap

Fig. 4.1 ATM implied volatilities (in %) for maturities 1y, 2y, 3y, 4y, 5y, 7y and 10y
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increments. These observations motivate the following proposed extension to the
log-normal LMM, where the diffusion process in (4.6) is substituted by a process
that is suited to overcome the observed shortcomings. In detail, the ordinary diffu-
sion is replaced by a so-called Markov-switching jump diffusion (MSJD) process.
As the name foretells, this process is a jump diffusion whose coefficient functions
are deterministic conditional on the state of a given underlying finite-state Markov
chain representing the overall market movement. It is worthwhile noting that in the
special case, where the jump part equals 0 and the Markov chain can only take on
one state, the MSJD extension coincides with the original log-normal LMM.

4.4.1 Presenting the Extended Framework

In extension to the log-normal LMM, let the bond structure again be positive and
non-increasing in the maturity. Furthermore, assume, as before, the existence of a
bank account (Bt)t∈[0,T ∗] and a risk-neutral measure Q with respect to which all
discounted bonds (B(t,T )/Bt)t∈[0,T ] follow martingales, 0 < T ≤ T ∗. In addition to
before, let X be a continuous, time-homogeneous, finite Markov chain, taking values
in the standard basis E = {e1, . . . ,eM} of RM . The infinitesimal generator of X with
respect to the terminal measure QN is given as A . The filtration generated by X is
denoted by FX . It can be shown [16] that X has a semimartingale representation,

Xt = X0 +

∫ t

0
A ′Xsds+Mt (4.12)

where M = (Mt)t≥0 is a right-continuous, square-integrable RM-valued martingale
with respect to

(

P,FX
)

. Also, let μ be an integer-valued random jump measure
defined on the mark space [0,T ∗]×Rk, which is taken to be of finite activity i.e.
μ
(

[0, t]×Rk
)

< ∞ for all t ∈ [0,T ∗].
In extension to (4.6), we propose to model each LIBOR rate Li, i = 1, . . . ,N− 1,

as a Markov-switching jump diffusion, where the diffusion dynamics of (4.6) are
not only augmented by a jump part, but additionally all parameter functions are
dependent on the underlying Markov chain X . In detail, we assume that every Li is
governed by the SDE

dLi (t)
Li (t−) = σi (t,Xt−)′ dW i+1 (t)+

∫

Rk
ψi (t,Xt−,z)

(

μ−ν i+1
Xt−
)

(dt,dz) , (4.13)

with W i+1 a d-dimensional Brownian motion and ν i+1
Xt− the predictable Qi+1-

compensator of μ . σi denotes the regime-dependent volatility and ψi the regime-
dependent jump function associated with the jump term. The objects involved (i.e.,
processes, measures and compensators) are to satisfy the subsequent assumptions:

(I) X is the only source of randomness for the volatilities and jump functions.
For all i ∈ {1, . . . ,N− 1}, these are defined as
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σi (t) = σi (t,Xt−) =
M

∑
j=1

〈

Xt−,e j
〉

σi (t,e j) , t ∈ [0,Ti] ,

ψi (t,z) = ψi (t,Xt−,z) =
M

∑
j=1

〈

Xt−,e j
〉

ψi (t,e j,z) , t ∈ [0,Ti]

with 〈., .〉 denoting the usual scalar product, and volatilities and jump func-

tions satisfying ∑M
j=1
∫ Ti

0

∥
∥σi (s,e j)

∥
∥2

ds < ∞, for i = 1, . . . ,N − 1 and

∑M
j=1
∫ Ti

0

∫

Rk |ψi (s, j,z)|ν i
j (ds,dz)<∞, for i = 1, . . . ,N−1. For t > Ti, we set

σi (t,Xt−)≡ 0 and ψi (t,Xt−,z) ≡ 0, for all i = 1, . . . ,N− 1. The introduction
of such an underlying driving Markov chain is a convenient and commonly
used tool to incorporate endogenous structural breaks into the interest rate
dynamics (see, e.g., [23], [12], or, more recently, [17]).

(II) Conditional on the Markov chain X , the QN-Wiener process W N and the QN-
compensated jump measure μ−νN

Xt− are independent. Similar to (I), this is a
somewhat standard assumption and has, e.g., been employed by Belomestny
and Schoenmakers [5].

(III) The QN-compensator νN (dt,dz) of μ is the predictable compensator associ-
ated with a homogeneous Markov-switching marked Poisson process,

νN
Xt− (dt,dz) = kN (Xt−,dz)λN (Xt−)dt =

M

∑
j=1

〈

Xt−,e j
〉

kN
j (dz)λN (e j)dt

with λN (e j) being the jump intensity and kN
j (dz) the conditional distribution

of the markers in state e j (see, e.g., Björk et al. [7], Eberlein et al. [14], or
Belomestny and Schoenmakers [5]).

While the intuition behind requirements (II) and (III) will be elaborated further
in Sect. 4.4.2, there is already a remark in place both with respect to requirement (I)
and the question of no-arbitrage:

Remark 4.1 (Model Specification/No-Arbitrage Conditions).

• Observe that volatilities, jump functions and compensators are dependent on Xt−
rather than on Xt in order to ensure predictability. In combination with the re-
quirement that μ is integer-valued, this is a necessary assumption to define a
special semimartingale of the type (4.1), as introduced in Sect. 4.2. The solu-
tion to the stochastic differential equation in (4.13) is accordingly given by the
Doléans-Dade exponential

Li(t) = Li(0) · exp
(

− 1
2

∫ t

0
‖σi(s,Xs−)‖2 ds+

∫ t

0
σi(s,Xs−)′dW i+1(s)

+

∫ t

0

∫

Rk
ln(1+ψi (s,Xs−,z))

(

μ−ν i+1
Xs−
)

(ds,dz)

+

∫ t

0

∫

Rk
[ln(1+ψi (s,Xs−,z))−ψi (s,Xs−,z)]ν i+1

Xs− (ds,dz)
)

.
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In combination with the non-decreasing, positive structure of bond prices, this
immediately yields the non-negativity of all LIBOR rates, Li ≥ 0, 1≤ i≤ N−1.

• The other important issue that requires some consideration is the question if the
model introduced above is free of arbitrage. Fortunately, one may show that no-
arbitrage does in fact hold, for instance by embedding of the MSJD-extension
into the generalized HJM framework of Björk et al. (1997). Absence of arbi-
trage then follows from the no-arbitrage condition in the instantaneous forward
rate model, for which no-arbitrage conditions are already known, and the exis-
tence of a spot martingale measure Q can be ensured. The detailed proof on the
embedding can be found in Steinrücke et al. [40].

4.4.2 The Measure Changes and Its Consequences

Oftentimes, interest-rate products are not dependent on only one LIBOR rate, but
rather multiple ones of different maturities. In order to be able to evaluate these in-
struments, it is necessary to see how the dynamics of LIBOR rates with different
maturities can be interrelated. We investigate the consequences of measure changes
for the Wiener processes and the compensators first, before turning towards exam-
ining the Markov chain and its generator under different measures.

4.4.2.1 The Measure Changes, the Wiener Process and the Compensator

In order to see how Wiener processes and compensator measures under different
forward measures are related to each other, we employ the Change-of-Numéraire
Theorem 4.1 in combination with Girsanov’s Theorem 4.2. Observe first that the
Radon-Nikodým derivativeηi+2,i+1 (t) associated with a measure change fromQi+2

to Qi+1 is given by

ηi+2,i+1 (t) :=
dQi+1

dQi+2

∣
∣
∣
∣
Ft

=
B(0,Ti+2)

B(0,Ti+1)
· B(t,Ti+1)

B(t,Ti+2)
=

B(0,Ti+2)

B(0,Ti+1)
· [1+ δLi+1 (t)]

and, following from (4.13), can be easily shown to have dynamics

dηi+2,i+1 (t)
ηi+2,i+1 (t−) =

δLi+1 (t−)
1+ δLi+1 (t−)

×
[

σi+1 (t,Xt−)′ dW i+2 (t)+
∫

Rk
ψi+1 (t,Xt−,z)

(

μ−ν i+2
Xt−
)

(dt,dz)
]

(4.14)
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for i = N−2, . . . ,1. Iteratively, using Girsanov’s Theorem, it follows that the Qi+1-
Wiener process and the Qi+1-compensator ν i+1

Xt− may be expressed in terms of their

QN-counterparts as follows,

W i+1 (t) =−
∫ t

0

N−1

∑
j=i+1

δLj (s−)
1+ δLj (s−)σ j (s,Xs−)ds+WN (t) , (4.15)

ν i+1
Xt− (dt,dz) =

N−1

∏
j=i+1

(

1+
δLj (t−)ψ j (t,Xt−,z)

1+ δLj (t−)
)

νN
Xt− (dt,dz) . (4.16)

Girsanov’s Theorem 4.2 allows us even to make a statement about how jump
intensity and the distribution of the markers change. When changing from QN to
QN−1, e.g., the relation between intensities and marker distributions is given as
follows,

λN−1 (t,Xt−) = λN (Xt−)
∫

Rk
[1+ γN−1 (t,Xt−)ψN−1 (t,Xt−,z)]kN (Xt−,dz)

kN−1 (Xt−,dz) =
1+ γN−1 (t,Xt−)ψN−1 (t,Xt−,z)

∫

Rk [1+ γN−1 (t,Xt−)ψN−1 (t,Xt−,z)]kN (Xt−,dz)
kN (Xt−,dz)

where γN−1 (t,Xt−) = δ LN−1(t−)
1+LN−1(t−) . By inserting (4.15) and (4.16) into (4.13), the

dynamics of each LIBOR rate Li, i = 1, . . . ,M can be expressed in terms of QN ,

dLi (t)
Li (t−) =−

N−1

∑
j=i+1

δLj (t−)
1+ δLj (t−)σi (t,Xt−)′σ j (t,Xt−)dt +σi (t,Xt−)′ dW N (t)

−
∫

Rk
ψi (t,Xt−,z)

(
N−1

∏
j=i+1

(

1+
δLj (t−)

1+Lj (t−) ·ψi (t,Xt−,z)
)

− 1

)

νN
Xt− (dt,dz)

+

∫

Rk
ψi (t,Xt−,z)

(

μ−νN
Xt−
)

(dt,dz) ,

with W N being a QN Brownian motion and νN
Xt− the QN-compensator of μ . As

complicated as this expression might look, the representation is necessary in order
to allow for the pricing of more evolved financial products than caplets.

Examining (4.15) and (4.16), we can deepen our understanding of requirements
(II) and (III):

Remark 4.2 (Measure Changes and Model Assumptions (II) and (III)).
At first sight, it was not immediately obvious, why assumption (II) was only speci-
fied for the terminal measure QN . Assuming a similar independence structure under
all other measures Q2,. . . ,QN−1 would in fact be quite convenient, but unfortu-
nately, this feature cannot be transferred from the terminal measure to any other
forward measure. In fact, since in representations (4.15) and (4.16), both W i+1 (t)
and ν i+1

Xt− contain terms Li+1, . . . ,LN−1, which in turn contain integral terms involv-
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ing W N and νN
Xt− , no such independence may be assumed for Wiener process and

the compensated measure under any of the measures Qi+1 apart from QN .
There is a problem of similar nature arising for requirement (III). We speci-

fied the terminal compensator νN
Xt− to be the compensator of a time-homogeneous

Markov switching measure associated with a marked Poisson process, with Markov-
switching jump intensity λN (Xt−) and marker distribution kN

Xt− (dz). This means,
that conditional on the state of the Markov chain, the compensator is deterministic.
From (4.16), it is immediately obvious, why we could only make this specifica-
tion for the terminal measure, as this property is not preserved under the measure
change, when switching to any other measure Qi+1, i = 1, . . . ,N − 2, due to the
factors δLi/(1+ δLi), j = i+ 1, . . . ,N.

Both points mentioned turn out to be particularly inconvenient when it comes
to pricing in Sect. 4.5. Not all is lost, however, since one may follow a proposal of
Belomestny and Schoenmakers [5] and approximate (4.15) and (4.16) by freezing
the Lj’s at 0,

dW i+1 (t)≈ dW̃ i+1 (t) =
N−1

∑
j=i+1

δLj (0)
1+ δLj (0)

σ j (t,Xt−)dt + dWN (t) , (4.17)

ν i+1
Xt− (dt,dz)≈ ν̃ i+1

Xt− (dt,dz) :=
N−1

∏
j=i+1

(

1+
δLj (0)ψ j (t,Xt−,z)

1+ δLj (0)

)

νN
Xt− (dt,dz) .

(4.18)

This immediately yields as a consequence that ν̃ i+1
Xt− is state-dependent deter-

ministic and the independence between compensator and Wiener process may be
preserved.

4.4.2.2 The Measure Changes and the Markov Chain

The other question that needs to be considered is in which way the measure change
influences the Markov chain. Since the dynamics of the i-th LIBOR rate are given
with respect to the new measure Qi+1, we are interested in also expressing the
Markov chain with respect to this measure rather than staying with QN . So far, we
have used the simple, no-index notation A for the infinitesimal generator of X . This
is a reasonable choice, since we can show that the infinitesimal generator, if first
given with respect to the terminal measure QN , is not affected by measure changes
towards any other forward measure Qi+1. This fact is captured in the following
proposition for measure changes from Qi+1 to Qi:

Proposition 4.1 (Markov Chain under the Measure Change). The measure change
from Qi+1 to Qi has no influence on the infinitesimal generator of the Markov chain
X.

Proof. For details, see Steinrücke et al. [40]. The idea is the following: By defini-
tion, the infinitesimal generator under the Ti-forward measure Qi is given as
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A i f (x) = lim
t↓0

EQi
[ f (Xt)|X0 = x]− f (x)

t
=: lim

t↓0
EQi

x [ f (Xt)]− f (x)
t

(4.19)

for any bounded, Borel-measurable function f , for which this limit exists. By appli-
cation of the Change-of-Numé raire Theorem 4.1, (4.19) may be rewritten as

A i f (x) = lim
t↓0

⎡

⎣

EQi+1

x

[
dQi

dQi+1

∣
∣
Ft
· f (Xt)

]

−EQi+1

x [ f (Xt)]

t

⎤

⎦

︸ ︷︷ ︸

Ri(Xt )

+A i+1 f (x) . (4.20)

Using the law of iterated expectation and the martingale property of the Radon-
Nikodým derivative with initial value 1, one may show that Ri (Xt) = 0. Hence,
A i =A i+1, and the proposition holds. ��
Remark 4.3 (The Infinitesimal Generator and the Change from Q to Qi+1).
The same statement about the invariability of the generator of the Markov chain is
true when changing from the spot martingale measure Q to Qi+1. The claim can be
proved in a similar fashion as in Proposition 4.1.

4.5 Pricing in the MSJD Framework

Having specified and elaborated the dynamics of the MSJD extension to the LMM,
the next step is to turn to the pricing of caplets/caps. For convenience, recall that
each LIBOR rate is following dynamics

dLi (t)
Li (t−) = σi (t,Xt−)′ dW i+1 (t)+

∫

Rk
ψi (t,Xt−,z)

(

μ−ν i+1
Xt−
)

(dt,dz) , (4.21)

where σi and ψi are state-dependent predictable functions, W i+1 is a d-dimensional
Qi+1-Brownian motion and ν i+1

Xt− is the Qi+1-compensator measure of the integer-
valued random measure μ . There are different possibilities of how volatilities, jump
functions and compensators in the MSJD framework can be specified. Since the
calibration of the model involves the fitting of parameters related to a wide range of
LIBOR rates with different maturities, a first step is to limit the dimension to d = 1
and k = 1.4 In the particular case considered here, it is furthermore assumed that
both volatilities and jump functions are regime-dependent constant, i.e.,

4 At least in the case, where no jumps are considered, this is a justifiable assumption, when it
comes to caplet pricing. Similar to pricing formulas (4.10) and (4.11) developed in the log-normal
LMM, our considerations will show that prices depend only on the norm of σi, that is ‖σi (t,Xt−)‖,
and not on σi (t,Xt−) itself. As underlined, e.g., by Filipovic [20], p. 213, there is thus no gain in
flexibility for caplet pricing by introducing additional dimension into the model. Note, nonetheless,
that this is no longer true for swaption pricing.
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σi (t,Xt−) = σi (Xt−) ,ψi (t,Xt−,z) = ψi (Xt−,z) ∀ i = 1, . . . ,N− 1. (4.22)

This specification appears a bit crude, but has the advantage that it allows for
explicit pricing. In any case, the assumption should be seen in the light of changes
in X being a direct indicator for overall changing market conditions and can be in-
terpreted in accordance with assumption (I).

Let Q be an appropriately chosen spot martingale measure, under which all dis-
counted bonds B(t,T1)/Bt , . . . ,B(t,TN)/Bt follow martingales. Like in the intro-
ductory section on the log-normal LMM, the price of a caplet can be determined as

Capleti (t) = δ ·B(t,Ti+1) ·EQi+1

[

(Li (Ti)−K)+
∣
∣Ft
]

. (4.23)

Already when not taking into consideration a Markov-switching feature, it is usu-
ally not possible to analytically price caplets/caps in a jump-diffusion framework.
In this case, many authors employ the techniques of either Laplace- or Fourier-
transforms. It turns out, that the Laplace transform is indeed one possible path to
follow, when working with the yet more complicated MSJD models. To this end, let
t = 0 for simplicity. Caplet price (4.23) may also be expressed as

Capleti (0) = δ ·B(0,Ti+1) ·K ·EQi+1

[(

eYi(Ti)−ki − 1
)+
]

,

with Yi (t) := ln(Li (t)/Li (0)) = ln(Li (t))− ln(Li (0)) and ki = ln(K/Li (0)). Fol-
lowing the derivation in Raible [32], the caplet’s price can be determined via the
Laplace-transform

Capleti (0) = KexkiδB(0,Ti+1)
1
π

∫ ∞

0
Re

(

eiuki
φi (ix− u,Ti)

x2 + x− u2+ iu(2x+ 1)

)

du,

(4.24)

for some x < −1, where φi (u, t) = EQi+1 [exp(iuYi (t))] denotes the characteristic
function of Yi under the corresponding Ti+1 forward measure. In order to be able to
evaluate (4.24), it is necessary to find a closed-form expression for φi (ix− u,Ti) for
all 1≤ i≤ N− 1.

4.5.1 Determining the Characteristic Function of YN−1

The crucial point in the pricing of and calibration to caplets is to start with the
LIBOR rate LN−1 (t) of longest maturity TN−1 whose dynamics are given as

dLN−1 (t)
LN−1 (t−) = σN−1 (t,Xt−)dW N (t)+

∫

R
ψN−1 (t,Xt−,z)

(

μ−νN
Xt−
)

(dt,dz) .

(4.25)
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As observed before, this LIBOR rate takes a special role among the other rates,
because it is the only rate, where the jump distribution is known and the intensity is
constant when conditioned on the state of the underlying Markov chain,

νN
Xt− (dt,dz) = λN (Xt−)kN (Xt−,dz)dt.

In order to derive the characteristic function of YN−1 (t)= ln(LN−1 (t)/LN−1 (0)),
one observes that the dynamics of YN−1 are given by the Doléans-Dade exponential

LN−1(t) = LN−1(0) · exp
(

− 1
2

∫ t

0
σ2

N−1(s,Xs−)ds+
∫ t

0
σN−1(s,Xt−)dW N(s)

−
∫ t

0

∫

R
ψN−1(s,Xs−,z)νN

Xs−(ds,dz)

+
∫ t

0

∫

R
ln(1+ψN−1(s,Xs−,z))μ(ds,dz)

)

.

It then immediately follows that the dynamics of YN−1(t)= ln(LN−1(t)/LN−1(0))
are given as

dYN−1 (t) =− 1
2
σ2

N−1 (t,Xt−)dt +σN−1 (t,Xt−)dW N (t)

−
∫

R

ψN−1 (t,Xt−,z)νN
Xt− (dt,dz)+

∫

R
ln(1+ψN−1 (t,Xt−,z))μ (dt,dz) .

(4.26)

For X being in a fixed state, say Xt− ≡ e j, we write YN−1 (t, j) and (4.26) reads

dYN−1 (t, j) =− 1
2
σ2

N−1 (t,e j)dt +σN−1 (t,e j)dW N (t)

−
∫

R

ψN−1 (t,e j,z)νN
j (dt,dz)+

∫

R
ln(1+ψN−1 (t,e j,z))μ (dt,dz) .

(4.27)

The characteristic function of YN−1 (t, j) can be easily determined:

Proposition 4.2 (Characteristic Function of YN−1 (., j)). The characteristic func-
tion φN−1 (u, t, j) =EQN [exp(iuYN−1 (t, j))] of YN−1 (., j) is given as

φN−1 (u, t, j) = exp

(∫ t

0
ζN−1 (s,e j ,u)ds

)

,

with

ζN−1 (s,e j,u) :=−u2

2
σ2

N−1 (s,e j)− 1
2

iuσ2
N−1 (s,e j)− iuλN (e j)

∫

R
ψN−1 (s,e j ,z)kN (e j,dz)

+λN (e j)

∫

R
[exp(iu ln(ψN−1 (s,e j ,z)+1))−1]kN (e j,dz) .
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Proof. Observing that the first and third term in (4.27) are deterministic, it suffices
to analyze the second and fourth term, which are, by definition, independent. The
claim then follows from the general form of characteristic functions for Brownian
motions and marked Poisson processes. ��

Clearly, it also follows then that the characteristic function φN−1 (u, t) of YN−1 is
given as

φN−1 (u,t) =EQN

[

exp
(

iuYN−1 (t)
)]

=EQN

[

EQN

[

exp(iuYN−1 (t))
∣
∣FX

t

]]

=EQN

[

exp
(∫ t

0

[

− u2

2
σ2

N−1 (s,Xs−)− 1
2

iuσ2
N−1 (s,Xs−)

− iuλN (Xs−)
∫

R
ψN−1 (s,Xs−,z)kN (Xs−,dz)

+λN (Xs−)
∫

R
[exp(iu ln(ψN−1 (s,Xs−,z)+1))−1]kN (Xs−,dz)

]

ds
)]

,

by the law of iterated expectation. Set

ZN−1 (t,u) = exp
(∫ t

0

[

− u2

2
σ 2

N−1 (s,Xs−)− 1
2

iuσ 2
N−1 (s,Xs−)

− iuλN (Xs−)
∫

R
ψN−1 (s,Xs−, z)kN (Xs−,dz)

+λN (Xs−)
∫

R
[exp (iu ln(ψN−1 (s,Xs−, z)+1))−1]kN (Xs−,dz)

]

ds
)

.

Then, given that volatility and jump function are regime-dependent constant,
φN−1 (u, t) =EQN [ZN−1 (t,u)] may be evaluated as follows:

Proposition 4.3 (Characteristic Function of YN−1). Let X be a Markov chain
with infinitesimal generator A taking its values in the M-dimensional state space
E = {e1, . . . ,eM}. Furthermore, let σi (t,Xt−) = σi (Xt−) and ψi (t,Xt−,u) =
ψi (Xt−,u) of each state be non-time-dependent. Then, the characteristic function
φN−1 (u, t) =EQN [exp(iuYN−1 (t))] of YN−1 is given as

φN−1 (u, t) = 〈1M,exp(CN−1 (u) · t)X0〉 (4.28)

where 1M ∈ RM is the vector consisting only of ones, 〈., .〉 the Euclidean scalar
product in RM and CN−1 (u) given as

CN−1 (u) =A ′+ diag(ζN−1 (e1,u) , . . . ,ζN−1 (eM,u)) ,

and ζN−1 (e j,u)≡ ζN−1 (t,e j,u), j = 1, . . . ,M, as in Proposition 4.2.

Proof. This proof can conceptually be traced back to an idea as initially introduced
by Elliott and Valchev [18]. The proof is in parts based on the considerations in
Elliott and Valchev [18]. Set Gt = Xt ·ZN−1 (t,u). Then, using the semimartingale
decomposition for Markov chains and integration by parts, one may show that



104 L. Steinrücke et al.

Gt = X0+

∫ t

0

[

A ′+ diag(ζN−1 (s,e1,u) , . . . ,ζN−1 (s,eM,u))
]

Gsds+
∫ t

0
(. . .)dMs,

where M is a martingale with respect to FX . Taking expectations yields, under ap-
plication of Fubini’s Theorem,

EQi+1 [Gt ] = X0 +
∫ t

0

[

A ′+diag(ζN−1 (s,e1,u) , . . . ,ζN−1 (s,eM ,u))
]

︸ ︷︷ ︸

=:Bs

EQi+1 [Gs]ds+0. (4.29)

For any time-independent matrix, the Lappo-Danilevskiı̂ condition, i.e.
Bs
∫ s

t Bvdv =
∫ s

t BvdvBs, always holds. Consequently, by Lemma 4.2.1 in Adrianova
[1], the solution to (4.29) is then given as

EQi+1 [Gt ] = exp

(∫ t

0
Bsds

)

X0 = exp
(

t · [A ′+diag(ζN−1 (s,e1,u) , . . . ,ζN−1 (s,eM ,u))
])

X0.

As 1M := (1, . . . ,1)′ ∈ RM and X is taking its values in E = {e1, . . . ,eM}, we
have 〈1M,XTi〉= 1. This yields the claim. ��
Remark 4.4 (Limitations and Possible Extensions). Note that a most convenient sim-
plification of ΦN−1 (u, t) in the form

ΦN−1 (u, t) =
〈

1M,exp
(

A ′ · t) · exp(diag(ζN−1 (e1,u) , . . . ,ζN−1 (eM,u)) · t)Xt

〉

=
〈

1M,C ·diag
(

eλ1·t , . . . ,eλM ·t
)

·C−1

× diag
(

eζN−1(e1,u)·t , . . . ,eζN−1(eM ,u)·t
)

Xt

〉

, (4.30)

as proposed in Elliott and Wilson [19], with λ1, . . . ,λM the real eigenvalues of
A , and C the matrix consisting of the corresponding eigenvectors {c1, . . . ,cM}, is
in general not possible. This follows from the fact that for matrix exponentials,
exp(A+B) = exp(A)exp(B) usually does not hold and therefore the second equal-
ity sign in (4.30) is in general not true. The second bad news is that whenever the
coefficient functions are not constant in time, i.e.

σi (t,Xt−) �≡ σi (Xt−) and ψi (t,Xt−,z) �≡ ψi (Xt−,z) ,

the Lappo-Danilevskiı̂ condition is usually violated and a solution to (4.29) cannot
be derived so easily.

There is, fortunately, some good news as well: There are techniques how the
linear homogeneous system (4.29) may be approximated numerically, in the case
that the coefficient functions are not state-dependent constant. One possible way
is the so-called Magnus expansion [29] yielding the characteristic function to be
given as
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φN−1(u, t) =
〈

1M,
[nTN−1

∏
k=0

exp(Ω (tk, tk−1))
]

·Xt

〉

,

on an approximation grid covering the whole interval [0,TN−1], and all Ω (tk, tk−1)
are linear combinations of integrals and nested commutators involving the matrix
Bs on the corresponding interval (tk−1, tk]. Further details on the employment of the
Magnus expansion can be found in Blanes et al. [9].

4.5.2 Determining the Characteristic Function
of Yj, j = 1, . . . ,N−2

As the derivation of Proposition 4.3 is dependent on the fact that, conditional on
X , the compensator is deterministic, the strategy cannot be straight-forwardly ex-
tended to the pricing of caplets on the other LIBOR rates. We may, however, use
observation (4.18) in Sect. 4.4.2, and approximate the respective compensators ν i+1

Xt−
in terms of the terminal compensator νN

Xt− . Writing L̃i for the approximated LIBOR
dynamics under (4.18), one observes that in a situation where ψi is constant condi-
tional on the state Xt−,ψi (t,Xt−,z) =ψi (Xt−,z), the compensator is state-dependent
deterministic with regime-dependent constant jump intensity. Consequently, we are
back in the setting of the previous proposition and the approximative characteristic
function of Ỹi = ln L̃i (t)− ln L̃i (0), i = 1, . . . ,N− 2 can be determined accordingly.

4.6 Calibration

Having developed formulae for the pricing of caplets/caps, the ultimate step is to
find parameters that can accurately reproduce the observed market prices for these
products. With the LIBOR rate dynamics being given as

dLi (t)
Li (t−) = σi (t,Xt−)dW i+1 (t)+

∫

R
ψi (t,Xt−,z)

(

μ−ν i+1
Xt−
)

(dt,dz) , (4.31)

the fitting procedure entails determining the parameters specifying the rate matrix
A , the volatilities σi (t,Xt−), the jump functions ψi (t,Xt−,z) and the compensators
ν i+1

Xt− (dt,dz), i = 1, . . . ,N− 1, for a given observation period of market data. Even
for very simple specifications of volatilities, jump functions and compensators, it
is easy to see that the calibration procedure entails determining a wide range of
parameters. It is hence reasonable to make some further simplifying assumptions to
limit the number of parameters to be estimated. Some straight-forward requirements
are, for example, the following:

• The Markov chain takes its values in a state space with only two states, E =
{e1,e2}.
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• Wiener processes and mark space are one-dimensional.5

• Volatilities σi(t,Xt−)≡ σi(Xt−) and jump termsψi (t,Xt−,z) = ez−1 are regime-
dependent constant.

• The marker distribution of the QN-compensator νN
Xt− is Markov-switching Gaus-

sian,

νN
Xt− (dt,dz) = λN (Xt−)

1
√

2πv2
J (Xt−)

exp

(

− (z−mJ (Xt−))2

2v2
J (Xt−)

)

dz dt.

• The Qi+1-compensators ν i+1
Xt− , 1≤ i≤ N− 2, are approximated as

ν̃ i+1
Xt− (dt,dz) =

N−1

∏
j=i+1

(

1+
δLj (0)(ez− 1)

1+ δLj (0)

)

νN
Xt− (dt,dz) . (4.32)

Under this specification, we successfully calibrated the model in a multi-step pro-
cedure based on a combination of bootstrapping techniques, Markov-Chain Monte
Carlo methods and non-linear optimization algorithms, which were all implemented
in MATLAB. As the calibration procedure entails a number of rather extensive steps,
only the results shall be presented here. Further details on the methods employed can
be found in Steinrücke et al. [40]. In view of the large amount of parameters char-
acterizing the interest rate dynamics, a joint estimation is unfortunately not possible
which in turn lead us to the employment of the hereafter elaborated iterative proce-
dure. The method employed proved to be robust and lead to reasonable results.

4.6.1 The Data

For the calibration of the MSJD extension of the LMM, we employed data over a
time period of more than 9 years, encompassing all trading days between 2003/01/01
and 2012/06/22 (2,464 days). The data source was Thomson Reuters. In detail, we
considered USD ATM caps with maturities 1y, 2y, 3y, 4y, 5y, 7y and 10y years,
quoted in volatilities v1, v2, v3, v4, v5, v7 and v10. As caplet prices are usually not
directly quoted on the market, they were derived from the available cap information
using a bootstrapping technique based on the Black (1976)-formula for caplet prices.
For the caps with given maturities, this yielded prices for 39 caplets with maturities
(0.25, . . . ,9.75) and expiries (0.5, . . . ,10). Figure 4.2 depicts the (forward) volatil-
ity of the caplets with maturities 1y, 1.25y, 1.5y and 1.75y. 6 Figure 4.3 depicts the

5 Given these assumptions, the specified model can be seen as a simple, straight-forward gener-
alization to the one-dimensional LIBOR model of Brace et al. [10], where not only the volatility,
but also parameters characterizing jumps and structural breaks in the market can be derived in
the calibration procedure. The reduction to one-dimensional spaces allows to significantly reduce
the amount of parameters to be fitted. All challenges met and a more detailed explanation on the
necessity of employing a multi-step iterative procedure may be found in Steinrücke et al. [40].
6 Observe that the bootstrapping procedure assumes constant volatilities for caplets in between
caps of succeeding maturity. For example, for t = 0, the (identical) volatilities σ1y for caplets with
maturities 1y, 1.25y, 1.5y and 1.75y are derived based on the formula
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corresponding caplet prices. Even from pure eyesight, it is apparent, that there are
times of low (in particular in the time frame between∼2004/12/02 and 2007/08/21)
and high fluctuation (in particular in the time frame between ∼2009/12/08 and
2011/06/21) in the market.

2003−01−02 2004−12−02 2006−11−03 2008−10−14 2010−09−14 2012−06−22
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Fig. 4.2 Fitted (forward) caplet volatility (in %) for maturities 1y, 1.25y, 1.5y and 1.75y
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Fig. 4.3 Fitted caplet prices for maturities 1y, 1.25y, 1.5y and 1.75y

Cap
(

0,2y,K2y
)−Cap

(

0,1y,K1y
)

= Caplet
(

0,1y,σ1y,K2y
)

+Caplet
(

0,1.25y,σ1y,K2y
)

+Caplet
(

0,1.5y,σ1y,K2y
)

+Caplet
(

0,1.75y,σ1y,K2y
)

,

where Caplet
(

0,Tj,σ1y,K2y
)

denotes the price of a caplet at t = 0 with maturity Tj , expiry Tj+1
and ATM cap strike K2y for maturity 2y, evaluated by the Black [8]-formula for constant volatility
σ1y. For details, see, e.g., Filipovic [20], p.215 seqq.
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4.6.2 Discussion of the Results of the Calibration

For the employed calibration routine, all market-observed caplet prices could be
perfectly reproduced within the MSJD extension. It may hence be concluded that
this extension is a suitable generalization to existing LIBOR market models and can
help to account for jumps and overall market trends. The detailed results for the
different steps of the calibration are as follows:

4.6.2.1 Most Likely Path and Infinitesimal Generator of the Markov Chain

The most likely state of the Markov chain at each time point was derived based on
the market observed cap volatilities, using an MCMC routine for Markov-switching
Vasicek processes (Gibbs-sampler with 100,000 draws, burn-in of 20,000). The day-
by-day estimates for each volatility are depicted in Fig. 4.4. As the path estimates
for different cap volatilities turn out to be very similar, it seemed reasonable to take
the average over all estimates and round to the closest integer (1 or 2) in order to
receive an overall estimate for the most likely path of the Markov chain. Based on
this average path, the rate matrix A and the corresponding stationary distribution π
were estimated to be given as

A =

(−10.7910 10.7910
17.9111 −17.9111

)

and π =

(
0.6239
0.3761

)

.

The findings coincide with the intuition that the market is more likely to reside
in a ‘normal’ state than in the excited state as π1� π2 (see also Svoboda [41]).
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Fig. 4.4 Estimated states of the economy at all days of the time series, for cap volatilities v1,. . . ,v10
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4.6.2.2 Parameters Specifying the Compensator Measure with Respect to P

The next step entailed the estimation of the parameters specifying the compensator
with respect to the physical measure P. These were derived based on the termi-
nal LIBOR rate LN−1, by splitting the time series according to the different states
derived in the previous step and using an MCMC algorithm for jump diffusions
on each of these time series (again a Gibbs-sampler with 100,000 draws, burn-in
of 20,000). Figure 4.5 depicts the logarithmized time series as well as jump times
and sizes for both time series displaying the success of the algorithm to identify
occasions jump times (counted as incidences over time) and sizes. As the sampled
parameters in Table 4.1 display, there is a tendency in state e1 towards jumps into a
positive direction, while jumps in state e2 have a slightly downwards tendency. This
coincides with the intuition that in times of crises and market unrest, a downwards
tendency should also manifest itself in the jump sizes. Also, it seems that in times of
crises, jumps happen more often, as λP(e2) > λP(e1). Table 4.1 also displays the
standard errors for the sampled parameters.7

It should be mentioned that both Gibbs samplers, for the determination of the
parameters describing the Markov chain and the jump parameters, display very good
sampling behavior. The Markov chain generated by each sampler mixes well, as the
parameter space is exploited nicely, and the time to convergence is quick (there is
hardly any burn-in time until the samples are drawn from a non-changing range
of values). Exemplarily, this can be seen in the trace plot for

(

λP(e1),λP(e2)
)

in
Fig. 4.6. Trace plots for all other parameters exhibit a similar convergece behavior.

Table 4.1 Parameter estimates for the compensator νP

Parameters Sampled values Standard error

(λP (e1),λP (e2)) (0.1823,0.2263) (8.6105 ·10−05,3.1956 ·10−04)
(mJ(e1),mJ(e2)) (0.0014,−0.0053) (1.2693 ·10−05,1.8959 ·10−05)
(v2

J(e1),v2
J(e2)) (0.0026,0.0026) (1.2317 ·10−06,2.8182 ·10−06)

4.6.2.3 Volatility Parameters in the Model Specification Without Jumps

In a next step, we derived first volatility estimates for the respective states, by ignor-
ing the jump part in (4.31) and simply considering a Markov-switching log-normal
model. Based on market-observed caplet prices of every day and the pricing for-
mula (4.24), we ran a non-linear optimization routine to derive a first estimate of the
volatilities σ̃i (e j), i = 1, . . . ,N1, i = 1,2. In order to guarantee for a unique solution,
we let

7 The variance of the ergodic distribution π of the generated Markov chain X is given as
Σ 2 = Varπ (X1)+2∑∞

t=2 Covπ (X1,Xt). For details on the estimation of the standard error, Σ̂/(N−
burn-in) in the MCMC context, see, e.g., Flegal [21], p. 59 seqq.
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Fig. 4.5 The graphics depict the logarithmized LIBOR rates for the time series both in state e1 and
e2 (bottom picture for (a) and (b)). The top picture in both cases depicts the sampled jump times
(counted as incidences over time) and sizes. (a) Jump times and sizes for state e1. (b) Jump times
and sizes for state e2

Qi+1 (Xt = e1) · σ̃i (e1)+Qi+1 (Xt = e2) · σ̃i (e2) = σMKT
i , (4.33)

which reflects the reasonable assumption that the market-observed volatility is the
investors’ expected volatility, based on two possible states for each day with corre-
sponding volatilities σ̃i (e1) and σ̃i (e2). Caplet prices could be perfectly recovered
at all times.
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Fig. 4.6 Trace plot of λ (e1) (green) and λ (e2) (blue)

4.6.2.4 Final Estimates for Volatility and Jump Parameters

In a last step, we derived the final estimates for volatility and jump parameters in a
model with jumps, by combining the estimates from the previous steps.8 For sim-
plicity, it was assumed that the jump size distribution is unaffected by a measure
change from P to QN , kN

Xt− ≡ kPXt− . In contrast, the intensity was allowed to dif-

fer between P and QN . Assuming that the intensities do not change over time, by
Girsanov’s Theorem 4.2 there exists a φ(Xt−) ≡ c such that

(

λN(e1),λN(e2)
)

=
c · (λP(e1),λP(e2)

)

. We found that an estimate of c = 0.6 yields very good results
for the algorithm minimizing the distance between model and market prices. Set-
ting up some further appropriate constraints, another non-linear optimization rou-
tine based on the time series of caplet prices CapletN−1 and c = 0.6 was run to
determine the volatility σN−1 for each time point of the time series. Finally, the
compensators for all other LIBOR rates were approximated through relation (4.32)
and σi, i = 1, . . . ,N − 2, were estimated by non-linear optimization based on the
respective caplet prices Capleti.

All market prices in the investigated observation period were perfectly repro-
duced. The estimates for the jump parameters can be found in Table 4.2. Observe
the similarity of the result to the calibration for the (non Markov-switching) jump
diffusion model of Belomestny and Schoenmakers [5], where the jump intensity is
estimated as 0.1.

8 In favor of computation time we only considered every tenth day in the available time series for
the calibration of the remaining parameters.
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Table 4.2 Parameter estimates for the terminal compensator νN

Parameters Estimates

(λN (e1) ,λN(e2)) (0.1094,0.1358)
(mJ(e1),mJ(e2)) (0.0014,−0.0053)
(v2

J(e1),v2
J(e2)) (0.0026,0.0026)
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Fig. 4.7 Fitting of σ9.75(e1) (dotted) and σ9.75(e2) (dashed) and the observed market volatility
(solid) for the caplet with longest maturity 9.75 (in %). The depicted time frame is 2004/12/02
until 2006/11/03

Final volatility estimates (σ9.75(e1),σ9.75(e2)) are depicted in Fig. 4.7. As the
volatility estimated are rather close together, only days between 2004/12/02 and
2006/11/03 are shown. Figure 4.8 shows the fitting of the volatilities for the LIBOR
rate with maturity 3.75 for the same time frame. Also here, caplet prices Caplet3.75
were perfectly reproduced for all time points.

4.7 Conclusion

This chapter has set out to encounter the shortcomings of the log-normal LIBOR
market model by replacing the ordinary diffusion of the original model by a Markov-
switching jump diffusion process. With LIBOR rates being martingales under their
corresponding forward measures, we proposed to model each of the rates as a
Markov-switching jump diffusion without drift under the corresponding measure.
With measure changes playing the central role within the model, we gave the intu-
ition, why a measure change between forward measures and risk-neutral measure
has no effect on the infinitesimal generator of the underlying Markov chain. Wiener
processes and Markov-switching compensator, however, do follow different dynam-
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Fig. 4.8 Fitting of σ3.75(e1) (dashed) and σ3.75(e2) (dotted) and the observed market volatility
(solid) for the caplet with maturity 3.75 (in %). The depicted time frame is 2004/12/02 until
2006/11/03

ics under different measures and we derived expressions for their interrelations. We
observed the particularity that, while assuming that under the terminal measure,
Wiener and jump part are independent, this independence is lost when changing to
any other measure. Similarly, time-independence of the jump intensity and jump
distribution in the Markov-switching compensator cannot be carried over from the
terminal measure to any other measure.

While the introduced interest-rate dynamics are rich enough to incorporate both
sudden shocks and overall market movement into the model, we showed that they
are still simple enough to allow for the pricing of caps/floors. Under the assumption
of volatilities being modeled as Markov-switching constants, we showed that the
characteristic functions of the logarithmized LIBOR rates needed for pricing with
Laplace transforms can be derived in analytical form. Eventually, we demonstrated
in the last section that the model can be successfully calibrated to market-observed
cap/caplet prices, even though this procedure is related to a considerable amount
of effort. In particular, it is necessary to make additional reasonable assumptions
to further specify the parameters to be estimated. Ex post, all assumptions made
turned out to be reasonable, as market prices could be perfectly recovered in all
cases considered.

At the same time, Sect. 4.6 also gave rise to some interesting questions and as-
pects for further investigation. It appears that the assumption of modeling volatilities
as regime-dependent constants is too restrictive, as for the fitted observation times,
volatility parameters turned out to be far from being constant when considered over
the entire time period. Future research could examine if other volatility specifica-
tions can yield more satisfactory results. In our calibration routine, we moreover
only considered a Markov chain with two states, helping us to set assumptions for
the calibration of the model. However, it is reasonable to assume that a Markov
chain with three or four states might be suited even better to represent global eco-
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nomic trends. Incorporating a bigger number of states into the model would require
developing new approaches to calibration and could be the focus of further analysis.
Also, the choice for modeling of jumps was rather simple. This raises the interesting
as well as challenging question of how more complicated jump terms could be in-
cluded into the approach. Another issue that would require further investigation is if
the presented approach is in fact capable of reproducing market-observed volatility
skews/smiles, by calibrating the model not only to caplets corresponding to ATM
caps, but also to caps of different strikes. We also did not look into hedging issues,
as these would have been beyond the scope of this paper, and are therefore left to
future research (cf., e.g., Baaquie et al. [3] and Rebonato et al. [36]).

In summary, the MSJD extension to the LIBOR Market Model has been shown to
not only considerably enrich the possible dynamics under which interest rates can be
modeled, but also provided an appropriate basis for further research and discussion.
A possible future focus lies in the calibration of these models.
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Chapter 5
Exchange Rates and Net Portfolio Flows:
A Markov-Switching Approach

Faek Menla Ali, Fabio Spagnolo, and Nicola Spagnolo

Abstract In this paper we investigate the impact of net bond and equity portfolio
flows on exchange rate changes. Two-state Markov-switching models are estimated
for Canada, the euro area, Japan and the UK exchange rates vis-à-vis the US dollar.
Our results suggest that the relationship between net portfolio flows and exchange
rate changes is nonlinear for all currencies considered but Canada.

5.1 Introduction

Financial markets deregulation has led to a dramatic increase in international capital
mobility across most developed economies. To give an example of the magnitude
of such a shift, gross cross-border portfolio investments in equities and bonds for
the US were accounting for only 4 % of GDP in 1975, this proportion surged to
100 % in the early of 1990s and has reached 245 % by 2000 [20]. Not surprisingly
the recent literature has focused on the impact (causal effect) that the increased
capital mobility across-borders has had on exchange rate dynamics especially in the
light of the poor performance of macroeconomic models to explain such dynamics
(see [24]).

Recent works have shown that the microstructure dynamics of exchange rates,
currency order flows, explains a significant proportion of exchange rate movements
(e.g., Evans and Lyons [12], Payne [25], Rime et al. [27], and Chinn and Moore [8];
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among others). Furthermore, Hau and Rey [20], in an influential study, argued that
portfolio flows and order flows are closely aligned since both flows are driven by
investors’ behavior. To this end, the ongoing empirical literature has produced con-
vincing evidence that portfolio investment flows do affect the dynamics of exchange
rates to a large extent, using different data sets.

Froot et al. [15], using daily data on cross-border flows for 44 countries, found a
positive contemporaneous correlation between net portfolio investment inflows and
both equities expressed in US dollar and currency returns, as well as strong positive
correlation between net portfolio inflows and lagged equity and currency returns.
Furthermore, Brooks et al. [3], using quarterly data from 1988:01 to 2000:03, ex-
amined the impact of portfolio and foreign direct investment flows on the yen-dollar
and the euro-dollar exchange rates. They found that, while the yen-dollar exchange
rate was tracked by mainstream macroeconomic variables such as interest rate dif-
ferential and current account, the euro-dollar exchange rate was driven primarily by
bilateral net portfolio investment flows. More specifically, equity inflows from the
euro area towards the US implied a depreciation of the euro against the US dollar.

Siourounis [28], using monthly data for the US exchange rate vis-à-vis the UK,
Japan, Germany, and Switzerland over the period 1988–2000, provided evidence
that equity flows rather than bond flows are tracing the evolution of exchange rates.
The study was conducted using an unrestricted vector autoregressive model in which
net cross-border capital flows, equity return differentials, exchange rate changes,
and interest rate differentials were set endogenously. Furthermore, by employing an
equilibrium framework in which exchange rate changes, stock returns, and capital
flows are jointly set under incomplete foreign exchange risk trading feature, Hau
and Rey [20] showed that the correlation between equity flows and exchange rate
changes is significant in 6 out of 17 OECD countries considered. When pooling
the data across the countries, the correlation became highly significant. Chaban [6]
argued that Hau and Rey’s results were not specifically supported in commodity-
exporting countries, namely Canada, Australia, and New Zealand. While Chaban
argued that commodity prices play a significant role in the transmission of shocks
in these countries, Ferreira Filipe [13] showed that differences in country-specific
shocks volatility also play a role in these countries and should therefore be ac-
counted for.

Recently Kodongo and Ojah [22], using monthly data over the period 1997:1–
2009:12 for four African countries, namely Egypt, Morocco, Nigeria, and South
Africa, showed that the dynamic relationship between real exchange rate changes
and international portfolio flows is country-specific and time-dependent. Further-
more, Combes et al. [9], employing a pooled mean group estimator for a sample
of 42 emerging and developing economies over the period 1980–2006, showed that
public and private inflows, primarily portfolio investment inflows, result in an ap-
preciation of the real effective exchange rate.

The empirical evidence on the effects of portfolio inflows on exchange rate dy-
namics has been investigated assuming a linear dependence. We argue that this ap-
proach is quite limited and do not allow to capture the dynamics observed in the
exchange rates over the last few decades. This paper contributes to the existing
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literature by using a Markov-switching framework which allows us to propose an
alternative way of measuring the relationship between net equity and bond portfo-
lio investment flows and exchange rate changes. As shown by Engle and Hamilton
[11], Bekaert and Hodrick [1], Engle [10], Caporale and Spagnolo [5], Frömmel
et al. [14], Chen [7], Brunetti et al. [4] among others, the Markov regime-switching
model is particularly appropriate to model exchange rate dynamics. We use bilat-
eral quarterly data from the US vis-à-vis Canada, the euro area, Japan, and the UK
over the period 1990:01–2011:04. To the best of our knowledge, the nonlinear de-
pendence between both variables has not been explored in the literature yet. The
nonlinear model employed in this paper separates periods of high and low states of
the world for the endogenous variable (exchange rate changes), and therefore al-
lows us to separate the causal effects for periods of exchange rate appreciation and
depreciation as well as high volatility and low volatility.

The paper is organized as follows. Section 5.2 describes the econometric model.
Section 5.3 provides details on the data set. Section 5.4 discusses the results; and
Sect. 5.5 offers some concluding remarks.

5.2 The Model

We propose an alternative way of detecting the causal dynamics between net port-
folio flows and exchange rate changes for the US vis-à-vis Canada, the euro area,
Japan, and the UK. The regime-switching model considered in this paper1 allows
for shifts in the mean (periods of currency appreciation and depreciation) and in
variance (periods of high volatility and low volatility) and is given by:

rt = μ(st)+
4

∑
i=1

φirt−i +α(st)nb ft−1 +β (st)ne ft−1 +σ(st)εt , εt ∼ N(0,1)

(5.1)

μ(st) =
2

∑
i=1

μ (i)1{st = i}, σ(st ) =
2

∑
i=1

σ (i)1{st = i}, (t ∈ T)

where rt = changes of exchange rates, nb ft−1 = net bond flows, ne ft−1 = net eq-
uity flows. Given that st is unobserved, estimation of (5.1) requires restrictions on
the probability process governing st ; it is assumed that st follows a first-order, ho-
mogeneous, two-state Markov chain. This means that any persistence in the state is
completely summarized by the value of the state in the previous period. Therefore,
the regime indicators {st} are assumed to form a Markov chain on S with transition
probability matrix P′ = [pi j]2×2, with:

pi j = Pr(st = j|st−1 = i), i, j ∈ S, (5.2)

1 The model is based on the Markov switching representation proposed by Hamilton [16, 17].
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and pi1 = 1− pi2 (i ∈ S), where each column sums to unity and all elements are non-
negative. The probability law that governs these regime changes is flexible enough to
allow for a wide variety of different shifts, depending on the values of the transition
probabilities. For example, values of pii (i ∈ S) that are not very close to unity im-
ply that structural parameters are subject to frequent changes, whereas values near
unity suggest that only a few regime transitions are likely to occur in a relatively
short realization of the process. {εt} are i.i.d. errors with E(εt ) = 0 and E(ε2

t ) = 1.
{st} are random variables in S = {1,2} that indicate the unobserved state2 of the
system at time t. It is assumed that {εt} and {st} are independent. Also, note that
the independence between the sequences {εt} and {st} implies that regime changes
take place independently of the past history of {rt}.

We are interested in documenting estimates of the low-high phase exchange rate
changes, μ l and μh, and most importantly in investigating the extent to which net
bond flows and net equity flows are associated with the low-high phase exchange
rate changes. The autoregressive lag dimension is selected according to the Schwarz
Bayesian Criterion (SBC), allowing up to four lags. Therefore, the parameters vector
of the mean equation (5.1) is defined by μ (i) (i = low,high) and σ (i) (i = low,high),

which are real constants, and the autoregressive terms
4
∑

i=1
φi, up to four lags. α =

(

α l ,αh
)

and β =
(

β l ,β h
)

measure the impact of net bond flows and net equity
flows respectively on exchange rate changes. The parameter vector is estimated by
maximum likelihood. The density of the data has two components, one for each
regime, and the log-likelihood function is constructed as a probability weighted sum
of these two components. The maximum likelihood estimation is performed using
the EM algorithm described by Hamilton [16, 17].

Furthermore, we estimate the linear model commonly used in the literature and
consider it as a benchmark. This is given by:

rt = μ+
4

∑
i=1

φirt−i +αnb ft−1 +βne ft−1 +σεt , εt ∼ N(0,1) (5.3)

where the parameters vector of the mean equation (5.2) is defined by the constant
parameters (μ ,φi,α,β ,σ) .

5.3 Data

The variables employed in this paper are net bond flows (nb ft), net equity flows
(ne ft) and exchange rates (Et) for the US vis-à-vis Canada, the euro area, Japan,
and the UK. Throughout, the US is considered to be the domestic economy. We
use quarterly data from 1990:01 to 2011:04. Data on exchange rates are from the
IMF’s International Financial Statistics (IFS), whereas portfolio investment flows

2 Regime 1 is labelled as the low regime, whereas regime 2 as the high regime.
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are sourced from the USA Treasury International Capital (TIC) System.3 Exchange
rate changes are calculated as rt = 100×(Et/Et−1). For the euro area exchange rate,
the ECU is considered prior to the introduction of the euro in 1999.

Table 5.1 Descriptive statistics

Variables Mean St. dev Skewness Ex. Kurtosis JBa

Canada

r 0.102 2.766 −0.736 8.1592 104.34[0.000]
nb f 0.355 1.897 3.358 23.535 1692.2[0.000]
ne f 0.192 1.653 0.762 6.2477 46.660[0.000]

Euro area
r −0.035 4.773 −0.509 2.9354 3.7741[0.151]
nb f 0.303 1.523 −0.072 4.1495 4.8655[0.087]
ne f 0.032 1.547 0.128 3.4093 0.8451[0.655]

Japan
r 0.902 4.953 0.501 3.613 5.015[0.081]
nb f 0.972 1.307 −0.185 3.330 0.894[0.639]
ne f −0.403 1.959 −1.186 9.737 184.9[0.000]

UK
ra −0.282 4.812 −1.625 8.7961 160.0[0.000]
nb f a 0.873 1.450 −2.685 17.829 901.6[0.000]
ne f a 0.0001 1.781 −0.141 5.8607 29.95[0.000]

a r, nbf, and nef indicate exchange rates changes, net bond flows and net equity flows, respectively;
JB is the Jarque-Bera test for normality

Net portfolio flows, on the other hand, are constructed as the difference between
portfolio inflows and outflows. Inflows and outflows are measured as net purchases
and sales of domestic investors (equities and bonds) by foreign residents, and net
purchases and sales of foreign assets (equities and bonds) by domestic investors,
respectively. Following Heimonen [21], the euro area portfolio flows were calcu-
lated aggregating the data for the individual EMU countries (Austria, Belgium-
Luxemburg, Finland, France, Germany, Ireland, Italy, the Netherlands, Portugal,
and Spain). Furthermore, following Brennan and Cao [2], Hau and Rey [20], and
Chaban [6], flows were normalized by the average of their absolute values over the
previous four quarters.

Summary statistics for the variables considered are displayed in Table 5.1. The
mean quarterly change for exchange rates is positive (US dollar depreciation) for
Japan and Canada, while it is negative (US dollar appreciation) for the UK and the
euro area. The mean quarterly net bond flows and net equity flows, on the other hand,
is positive in all cases but for equity flows in Japan, thereby indicating the existence
of net bond and net equity inflows towards the US (net bond and net equity outflows
from the counterpart countries). Exchange rate changes, as expected, exhibit higher
volatility than net portfolio (bond and equity) flows. Furthermore, skewness and

3 The data are obtained from the US Treasury Department website: http://www.treasury.gov/
resource-center/data-chart-center/tic/Pages/country-longterm.aspxhe

http://www.treasury.gov/resource-center/data-chart-center/tic/Pages/country-longterm.aspxhe
http://www.treasury.gov/resource-center/data-chart-center/tic/Pages/country-longterm.aspxhe
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excess kurtosis characterize all the series with the exceptions of net bond flows in
Japan and all variables of the euro area.4 Finally, the Jarque-Bera (JB) test statistics
shows evidence of no normality in all series but net bond flows in Japan and net
equity flows and exchange rate changes in the euro area.

5.4 Empirical Results

The first step of our analysis is to estimate the benchmark model Eq. (5.3) by stan-
dard OLS. Results, reported in Table 5.2, indicate that, for all countries, neither
equity flows, nor bond flows have statistically significant effects on exchange rate
changes. These findings are consistent with those of Hau and Rey [20] and Chaban
[6] but contradicts Brooks et al. [3] who found a statistical significant linkage in the
euro area.

The null hypothesis of linearity against the alternative of a Markov regime
switching cannot be tested directly using a standard likelihood ratio (LR) test.
We properly test for multiple equilibria (more than one regime) against linearity
using the Hansen’s [18, 19] standardized likelihood ratio test. The value of the

Table 5.2 Parameter estimates for linear modelsa

Japan Canada UK Euro area

μ1 0.523
(0.635)

−0.014
(0.343)

−0.209
(0.583)

−0.0723
(0.484)

α1 0.003
(0.437)

0.232
(0.177)

0.023
(0.426)

0.126
(0.323)

β1 0.119
(0.235)

0.033
(0.210)

−0.042
(0.242)

0.329
(0.313)

φ1 0.238
(0.108)

∗∗ 0.384
(0.110)

∗ 0.343
(0.105)

∗ 0.246
(0.109)

∗∗

φ2 −0.309
(0.101)

∗ −0.235
(0.111)

∗∗ −0.310
(0.106)

∗ −0.206
(0.111)

∗∗

φ3 0.332
(0.112)

∗ − − −
σ1 4.265 3.024 4.194 4.369

Log Like −237.933 −212.093 −242.764 −240.485
LB(8) 0.685

[0.702]
5.622
[0.466]

6.222
[0.398]

8.143
[0.227]

LB2
(8) 0.466

[0.875]
0.479
[0.866]

0.157
[0.995]

0.338
[0.947]

JB 19.68
[0.000]

31.34
[0.000]

33.47
[0.000]

3.470
[0.176]

a Standard errors and P-values are reported in (.) and [.], respectively. ∗∗∗, ∗∗, ∗ indicate significance
levels at the 1, 5, and 10%, respectively. LB(8) and LB2

(8) are respectively the Ljung-Box test
[23] of significance of autocorrelations of eight lags in the standardized and standardized squared
residuals. JB is the Jarque-Bera test for normality

4 In the euro area, net bond flows exhibit only excess kurtosis, whereas exchange rate changes
exhibit only skewness.
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standardized likelihood ratio statistics and related P-values (Table 5.3) under the
null hypothesis5 Hansen [18, 19] provide strong evidence in favor of a two-state
Markov switching specification. This procedure requires the evaluation of the like-
lihood function across a grid of different values for the transition probabilities and
for each state-dependent parameter. We also test for the presence of a third state
(Table 5.3). The results provide strong evidence in favor of a two-state regime-
switching specification.

Table 5.3 Markov switching state dimension: Hansen testa

Standardized LR test Linearity vs two-states Two states vs three-states
Canada

LR 4.123 0.2731
M = 0 (0.001) (0.643)
M = 1 (0.002) (0.677)
M = 2 (0.003) (0.690)
M = 3 (0.009) (0.715)
M = 4 (0.011) (0.722)

Euro area
LR 4.021 0.2567
M = 0 (0.001) (0.612)
M = 1 (0.002) (0.654)
M = 2 (0.004) (0.686)
M = 3 (0.008) (0.701)
M = 4 (0.010) (0.715)

Japan
LR 3.985 0.2451
M = 0 (0.001) (0.599)
M = 1 (0.003) (0.611)
M = 2 (0.004) (0.671)
M = 3 (0.007) (0.689)
M = 4 (0.012) (0.699)

UK
LR 3.769 0.2113
M = 0 (0.001) (0.587)
M = 1 (0.002) (0.599)
M = 2 (0.003) (0.645)
M = 3 (0.006) (0.661)
M = 4 (0.013) (0.688)

a The Hansen’s standardized Likelihood Ratio test (LR) p-values, in round brackets, are calculated
according to the method described in Hansen [18], using 1,000 random draws from the relevant
limiting Gaussian processes and bandwidth parameter M = 0,1, . . . ,4. Test results for the presence
of a third state are also reported

5 The p-value is calculated according to the method described in Hansen [19], using 1,000 random
draws from the relevant limiting Gaussian processes and bandwidth parameter M = 0, 1, . . . , 4. See
Hansen [18] for details.
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Table 5.4 Parameter estimates for regime-switching models: Canadaa

Model I Model II Model III Model IV

μ1 −0.024
(0.288)

−1.326
(0.456)

∗∗∗ −0.242
(0.246)

2.202
(1.411)

μ2 − 1.981
(0.855)

∗∗ − −0.341
(0.240)

α1 0.101
(0.127)

0.214
(0.171)

0.908
(0.778)

−0.254
(0.905)

α2 5.394
(1.832)

∗∗∗ 0.455
(0.559)

0.091
(0.113)

0.118
(0.113)

β1 0.313
(0.166)

∗ −0.147
(0.276)

−0.678
(0.911)

−1.771
(0.944)

∗

β2 −2.108
(1.019)

∗∗ −0.045
(0.312)

0.267
(0.143)

∗ 0.278
(0.138)

∗∗

φ1 − − 0.235
(0.112)

∗∗ 0.216
(0.105)

∗∗

φ2 − −0.267
(0.111)

∗∗∗ − −
σ1 2.328

(0.231)

∗∗∗ 2.705
(0.222)

∗∗∗ 4.667
(0.786)

∗∗∗ 4.420
(0.714)

∗∗∗

σ2 − − 1.778
(0.175)

∗∗∗ 1.781
(0.165)

∗∗∗

P 0.942
(0.038)

∗∗∗ 0.946
(0.040)

∗∗∗ 0.887
(0.101)

∗∗∗ 0.874
(0.088)

∗∗∗

1−Q 0.584
(0.235)

∗∗ 0.077
(0.065)

0.043
(0.033)

0.041
(0.029)

Log like −211.096 −214.209 −203.051 −201.650
AIC 438.192 448.418 426.102 425.3
LB(8) 9.061

[0.337]
22.811
[0.088]

11.364
[0.181]

8.542
[0.382]

LB2
(8) 0.897

[0.524]
0.498
[0.852]

1.4344
[0.201]

1.073
[0.394]

JB 3.379
[0.184]

31.595
[0.000]

2.9871
[0.224]

3.411
[0.181]

a See notes of Table 5.2

Maximum likelihood (ML) estimates are reported in Tables 5.4–5.7. We estimate
four nested Markov switching models. Model IV is the general model and allows
for shifts in mean, μ(st), variance, σ(st), bond, α(st ), and equity, β (st) parameters;
Model III constraints the mean to be not regime dependent, whereas Model II con-
straints the variance to be constant. Finally Model 1 allows for switches in the bond
and equity flows parameters only. Following Psaradakis and Spagnolo [26], we use
the Akaike Information Criteria (AIC) to identify the best among the four estimated
models. The models selected are Model II (shift in mean) for Canada and the UK,
and Model III (shift in variance) for the euro area and Japan.6 The model selected
appears to be well identified: parameters are significant and the standardized resid-

6 We use the AIC to choose the best fitted model among the candidate models considered. For
example, in the cases of US/Canada and US/UK, Model II is favored according to the AIC. This
implies that in both cases the switching in exchange rate changes is driven primarily by the mean,
but not the variance.
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Table 5.5 Parameter estimates for regime-switching models: Euro Areaa

Model I Model II Model III Model IV

μ1 −0.173
(0.508)

−4.417
(0.453)

∗∗∗ −0.069
(0.464)

−3.346
(0.944)

∗∗∗

μ2 − 3.393
(0.474)

∗∗∗ − 3.296
(0.673)

∗∗∗

α1 −1.126
(0.584)

∗ 0.165
(0.349)

−1.662
(0.427)

∗∗∗ 0.405
(0.540)

α2 1.106
(0.469)

∗∗ 0.173
(0.215)

1.070
(0.478)

∗∗ 0.250
(0.244)

β1 0.147
(0.437)

−0.335
(0.276)

0.095
(0.451)

−0.003
(0.398)

β2 0.380
(0.502)

0.145
(0.292)

0.359
(0.479)

0.158
(0.373)

φ1 0.195
(0.105)

∗ − − −
φ2 −0.321

(0.110)

∗∗∗ −0.431
(0.086)

∗∗∗ −0.225
(0.109)

∗∗∗ −0.260
(0.102)

∗∗

φ3 − 0.253
(0.077)

∗∗∗ − −
φ4 −0.150∗

0.081
−0.185
(0.072)

∗∗ − −
σ1 3.893

(0.323)

∗∗∗ 2.355
(0.218)

∗∗∗ 2.891
(0.462)

∗∗∗ 3.345
(0.597)

∗∗∗

σ2 − − 4.418
(0.475)

∗∗∗ 2.468
(0.404)

∗∗∗

P 0.943
(0.068)

∗∗ 0.699
(0.085)

∗∗∗ 0.882
(0.097)

∗∗∗ 0.757
(0.106)

∗∗∗

1−Q 0.078
(0.063)

0.236
(0.067)

∗∗∗ 0.081
(0.062)

0.249
(0.089)

∗∗∗

Log like −235.708 −229.687 −242.444 −239.090
AIC 493.416 483.374 504.888 500.18
LB(8) 5.282

[0.382]
6.892
[0.228]

5.465
[[0.706]

3.246
(0.918)

LB2
(8) 0.862

[0.553]
0.758
0.640]

0.408
[0.911]

0.775
[0.626]

JB 6.827
[0.032]

8.251
(0.016)

5.321
[0.069]

4.548
[0.102]

a See notes of Table 5.2

uals exhibit no signs of linear or non-linear dependence.7 The periods of high and
low exchange rate changes (Canada and UK) and of high and low exchange rate
volatility (euro area and Japan) seem to be accurately identified by the filter proba-
bilities. Figures 5.1–5.4 show the plots for exchange rate changes, rt , along with the
corresponding estimated filter probabilities.

More specifically, for Canada the mean value of−1.3 (1.9) in regime low (high)
indicates a regime characterized by US dollar appreciation (depreciation) against the
Canadian dollar. The probability of staying in regime low (high) is 0.94 (0.92). The
filter probabilities (see Fig. 5.1) show a relatively low number of switches consis-
tently with the high regime persistency. There are 52 quarters (61.18 % of the whole
sample) where the process is in the low regime and 33 quarters (38.82 %) where

7 The exchange rate lag dimension is chosen according to the SBC (allowing up to four lags), Lags
found insignificant are excluded.
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Table 5.6 Parameter estimates for regime-switching models: Japana

Model I Model II Model III Model IV

μ1 0.902
(0.621)

−3.663
(0.891)

∗∗∗ 0.819
(0.646)

−3.688
(0.828)

∗∗∗

μ2 − 3.679
(0.621)

∗∗∗ − 3.627
(0.644)

∗∗∗

α1 −1.378
(1.013)

−0.001
(0.595)

−2.158
(0.652)

∗∗∗ −0.002
(0.553)

α2 0.898
(0.546)

∗ −0.140
(0.382)

0.736
(0.537)

−0.136
(0.395)

β1 0.894
(0.439)

∗∗ 0.137
(0.371)

0.544
(0.436)

0.133
(0.341)

β2 −0.220
(0.341)

0.005
(0.199)

0.028
(0.280)

0.007
(0.206)

φ2 −0.280
(0.104)

∗∗∗ −0.519
(0.080)

∗∗∗ −0.296
(0.114)

∗∗∗ −0.503
(0.083)

∗∗∗

σ1 4.047
(0.363)

∗∗∗ 3.125
(0.255)

∗∗∗ 2.669
(0.721)

∗∗∗ 2.880
(0.422)

∗∗∗

σ2 − − 4.496
(0.447)

∗∗∗ 3.237
(0.322)

∗∗∗

P 0.828
(0.128)

∗∗∗ 0.885
(0.062)

∗∗∗ 0.815
(0.117)

∗∗∗ 0.883
(0.063)

∗∗∗

1−Q 0.106
(0.069)

0.056
(0.031)

∗ 0.057
(0.042)

0.056
(0.031)

∗

Log Like −246.704 −234.806 −246.208 −234.600
AIC 511.408 489.612 512.416 491.2
Q(8) 3.425

[0.843]
10.555
[0.159]

4.105
[0.847]

5.156
[0.740]

ARCH(8) 0.588
[0.783]

0.527
[0.831]

0.411
[0.909]

0.490
[0.858]

JB 8.989
[0.011]

10.080
[0.006]

6.335
[0.042]

7.706
[0.021]

a See notes of Table 5.2

the process is in the high regime. However, equity flows and bond flows are found
to be insignificant in either regime. These findings are in line with previous stud-
ies, see Chaban [6], and Ferreira Filipe [13]. In the case of the UK, while the mean
value associated with the low regime is insignificant, the significant mean, 0.84, of
the high regime indicates a US dollar depreciation against the British pound. The
probability of staying in a low (high) regime is 0.28 (0.96), with the number of
regime switches, being quite frequent when the process is in the low state. There
are 4 quarters (4.60 % of the total sample) where the process is in the low regime
and 83 quarters (95.40 %) where the process is in the high regime (see Fig. 5.2).
Equity flows and bond flows are found to have a significant impact on exchange rate
changes in the low regime. These results suggest that both equity and bond inflows
towards the US or equity and bond outflows from the UK result in an appreciation
of the US dollar against the British pound.

The shift in variance, in the case of the euro area, separates periods of low volatil-
ity (σ l = 2.9) from high volatility (σh = 4.4). The probability of staying in the low
(high) regime is 0.88 (0.92). Both regimes are quite persistent, well capturing the
cluster effect. There are 36 quarters (42.35 % of the total sample) where the pro-
cess is in the low regime and 49 quarters (57.65 %) where the process is in the high
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Table 5.7 Parameter estimates for regime-switching models: UKa

Model I Model II Model III Model IV

μ1 0.127
(0.387)

−1.932
(4.355)

0.026
(0.417)

10.317
(4.944)

∗∗

μ2 − 0.847
(0.454)

∗ − 0.303
(0.363)

α1 −15.231
(1.430)

∗∗∗ −14.173
(4.976)

∗∗∗ −2.179
(1.646)

−25.548
(5.634)

∗∗

α2 0.282
(0.291)

−0.219
(0.324)

0.266
(0.313)

0.076
(0.258)

β1 −1.565
(0.790)

∗ −2.119
(1.201)

∗ −0.310
(1.143)

−3.783
(1.312)

∗∗

β2 −0.117
(0.150)

−0.160
(0.188)

−0.079
(0.153)

−0.143
(0.150)

φ1 0.326
(0.078)

∗∗∗ − 0.417
(0.098)

∗∗∗ 0.326
(0.073)

∗∗∗

φ2 −0.369
(0.074)

∗∗∗ − − −0.256
(0.091)

∗∗∗

φ3 0.175
(0.075)

∗∗ − − −
φ4 −0.146

(0.076)

∗ − − −
φ5 0.145

(0.068)

∗∗ − − −
σ1 2.399

(0.190)

∗∗∗ 3.051
(0.239)

∗∗∗ 7.244
(1.250)

∗∗∗ 4.590
(1.624)

∗∗∗

σ2 − − 2.289
(0.253)

∗∗∗ 2.410
(0.214)

∗∗∗

P 0.480
(0.219)

∗∗∗ 0.280
(0.245)

∗∗∗ 0.881
(0.097)

∗∗∗ 0.330
(0.284)

∗∗∗

1−Q 0.026
(0.018)

0.037
(0.021)

∗ 0.025
(0.026)

0.042
(0.024)

∗

Log like −203.040 −237.161 −227.047 −216.853
AIC 432.08 492.322 474.094 457.706
LB(8) 24.28

[0.060]
5.349
[0.719]

10.63
[0.155]

4.931
[0.552]

LB2
(8) 0.900

[0.523]
0.717
[0.675]

0.652
[0.730]

0.256
[0.977]

JB 0.402
[0.817]

3.848
[0.146]

0.418
[0.811]

0.187
[0.910]

a See notes of Table 5.2

regime. While net equity flows appear to be insignificant, net bond flows are signifi-
cant in the low regime, suggesting that net bond inflows towards the US (or net bond
outflows from the euro area) result in a US dollar appreciation against the euro.

Finally, in the case of Japan, volatility in the high regime (σh = 4.5) is 73 %
higher than in the low regime (σ l = 2.6), with the associated transition probabili-
ties being equal to 0.81 and 0.94 for the low and high regimes, respectively. There
are 20 quarters (23.53 % of the total observations) where the process is in the low
variance regime and 65 quarters (76.47 %) where the process is in the high vari-
ance regime. Net bond flows are found to have a significant impact on exchange
rate changes only in periods of low volatility, in other words inflows towards the US
or outflows from Japan result in a US dollar appreciation against the Japanese yen.
Our findings contradict what was found by Siourounis [28], where the impact of net
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Fig. 5.1 Exchange rate changes, rt , and the transition probabilities for Canada. Regime 1 denotes
the probability of staying in the low (appreciation) regime, while regime 2 indicates the probability
of staying in the high (depreciation) regime

Fig. 5.2 Exchange rate changes, rt , and the transition probabilities for the Euro area. Regime 1 de-
notes the probability of staying in the less volatile regime, while regime 2 indicates the probability
of staying in the higher volatile regime
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Fig. 5.3 Exchange rate changes, rt , and the transition probabilities for Japan. Regime 1 denotes
the probability of staying in the less volatile regime, while regime 2 indicates the probability of
staying in the higher volatile regime

equity flows compared to net bond flows is shown to be rather limited. This applies
to both the euro area and Japan. Furthermore, Brooks et al. [3] reported that the
yen is likely to be driven by macroeconomic variables rather than portfolio flows.
However, using Markov switching specifications, we found that the impact of port-
folio flows, primarily bond flows, appears to impact on the US dollar-Japanese yen
exchange rate.

5.5 Conclusions

In this paper we have provided some empirical evidence on the causal relationship
between net equity and bond portfolio flows and exchange rate changes for the last
two decades. The focus of this paper is on the nonlinear casual dynamics and the
methodology adopted differentiates this study from most other contributions to the
literature. Our argument is that investors behave differently in a bullish market com-
pared to a bearish one. Therefore linear models proposed in the literature are not rich
enough to accommodate those different behaviors. Our empirical results show that
there is evidence of a nonlinear relationship in three (euro area, Japan and UK) of
the four countries under examination. Canada was the only case where net portfolio
inflows were found not to impact on exchange rate dynamics. This result is in line
with previous studies on commodity exporting countries ([6, 13]). The debate on
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Fig. 5.4 Exchange rate changes, rt , and the transition probabilities for UK. Regime 1 denotes the
probability of staying in the low (appreciation) regime, while regime 2 indicates the probability of
staying in the high (depreciation) regime

the linkages between portfolio inflows and exchange rate appreciation/depreciation
is still open, but our findings indicate that careful consideration should be given to
the often neglected nonlinearities involved. Interesting areas which might be con-
sidered for possible future research include studies of the behavior of developed and
emerging countries exchange rates and an analysis of the out of sample forecasting
performance of our proposed nonlinear approach.
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Chapter 6
Hedging Costs for Variable Annuities Under
Regime-Switching

Parsiad Azimzadeh, Peter A. Forsyth, and Kenneth R. Vetzal

Abstract A general methodology is described in which policyholder behaviour is
decoupled from the pricing of a variable annuity based on the cost of hedging it,
yielding two weakly coupled systems of partial differential equations (PDEs): the
pricing and utility systems. The utility system is used to generate policyholder with-
drawal behaviour, which is in turn fed into the pricing system as a means to deter-
mine the cost of hedging the contract. This approach allows us to incorporate the
effects of utility-based pricing and factors such as taxation. As a case study, we con-
sider the Guaranteed Lifelong Withdrawal and Death Benefits (GLWDB) contract.
The pricing and utility systems for the GLWDB are derived under the assumption
that the underlying asset follows a Markov regime-switching process. An implicit
PDE method is used to solve both systems in tandem. We show that for a large class
of utility functions, the pricing and utility systems preserve homogeneity, allowing
us to decrease the dimensionality of the PDEs and thus to rapidly generate numer-
ical solutions. It is shown that for a typical contract, the fee required to fund the
cost of hedging calculated under the assumption that the policyholder withdraws
at the contract rate is an appropriate approximation to the fee calculated assuming
optimal consumption. The costly nature of the death benefit is documented. Results
are presented which demonstrate the sensitivity of the hedging expense to various
parameters.
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6.1 Introduction

Variable annuities are unit-linked insurance products. These products are a class of
insurance vehicles that provide the buyer with particular guarantees without requir-
ing them to sacrifice full control over the funds invested. These funds are usually
invested in a collective investment vehicle such as a mutual fund and the writer’s
position is secured by the deduction of a proportional fee applied to each investors’
account.

We propose a method for pricing such contracts when the value of the underly-
ing investment follows a Markovian regime-switching process. Regime-switching
was introduced by Hamilton [10], while its application to long-term guarantees was
popularized by Hardy [11], who demonstrated its effectiveness by fitting to the S&P
500 and the Toronto Stock Exchange 300 indices. Regime-switching has thus been
suggested as a sensible model for pricing variable annuities [30, 19, 3, 33, 23, 14]
due to their long-term nature. An alternative to this model is stochastic volatility
[13]. However, it could be argued that due to the long-term nature of these guar-
antees, it is more useful to choose a model which allows for the incorporation of a
long-term economic perspective. A regime-switching process has parameters which
are economically meaningful, and it is straightforward to adjust these parameters to
incorporate economic views. This is perhaps more difficult for a stochastic volatil-
ity model, which is typically calibrated to short term option prices. Furthermore,
the adoption of stochastic volatility requires an additional dimension in the corre-
sponding partial differential equation (PDE) while the regime-switching model adds
complexity proportional to the number of regimes considered, and as a result is com-
putationally less intensive. Moreover, it is straightforward (in the regime-switching
framework) to allow for different levels of the risk-free interest rate across regimes.
The alternative of incorporating an additional stochastic interest rate factor would
add an extra dimension to the PDE, with the associated costs of complexity.

We demonstrate our methodology by considering a specific variable annuity:
the Guaranteed Lifelong Withdrawal and Death Benefits (GLWDB) contract. The
GLWDB is a response to a general reduction in the availability of defined bene-
fit pension plans, allowing the buyer to replicate the security of such a plan via
a substitute. The GLWDB is bootstrapped via a lump sum payment to an insurer,
S (0), which is invested in risky assets. We term this the investment account. As-
sociated with the GLWDB contract are the guaranteed withdrawal benefit account
and the guaranteed death benefit account, hereafter referred to as the withdrawal
and death benefits for brevity. We also refer to these as the auxiliary accounts. Both
auxiliary accounts are initially set to S (0). At a finite set of withdrawal dates, the
policyholder is entitled to withdraw a predetermined fraction of the withdrawal ben-
efit (or any lesser amount), even if the investment account diminishes to zero. This
predetermined fraction is referred to as the contract withdrawal rate. If the policy-
holder wishes to withdraw in excess of the contract withdrawal rate, they can do
so upon the payment of a penalty. Typical GLWDB contracts include penalty rates
that are decreasing functions of time. Upon death, the policyholder’s estate receives
the maximum of the investment account and death benefit. These contracts are often
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bundled with ratchets (a.k.a. step-ups), a contract feature that periodically increases
one or more of the auxiliary accounts to the investment account, provided that the in-
vestment account has grown larger than the respective auxiliary account. Moreover,
bonus (a.k.a. roll-up) provisions are also often present, in which the withdrawal ben-
efit is increased if the policyholder does not withdraw on a given withdrawal date.

This contract can be considered as part of a greater family of insurance vehicles
offering guaranteed benefits that have emerged as a result of a recent trend away
from defined benefits [4]. Our approach can easily be extended to include features
present in an arbitrary member of this family. There exists a maturing body of work
on pricing these contracts. Bauer et al. [2] introduce a general framework for pricing
various products in this family. Monte Carlo techniques and numerical integration
are employed, and loss-maximizing (from the perspective of the insurer) withdrawal
strategies are considered. Holz et al. [12] compute the fair fee for Guaranteed Life-
long Withdrawal Benefit (GLWB) contracts via a Monte Carlo method. Milevsky
and Salisbury [21] employ a numerical PDE approach to price the Guaranteed Min-
imum Withdrawal Benefits (GMWB) contract. Shah and Bertsimas [29] introduce
a GLWB model with stochastic volatility and consider static strategies. Kling et al.
[17] provide an extension of the variable annuity model under stochastic volatility.
Piscopo and Haberman [27] consider a model with stochastic mortality risk.

In the general area of financial derivatives, the traditional approach is to assume
that the policyholder acts so as to maximize the value of owning the contract. The
no-arbitrage price of the contract is then calculated as the cost to the writer of the
contract of establishing a self-financing hedging strategy that is guaranteed to pro-
duce at least enough cash to pay off any future liabilities resulting from the policy-
holder’s future decisions with respect to the contract (in the context of the assumed
pricing model). Since derivative payoffs are a zero sum game, this is equivalent to
establishing a price on the basis of assuming a worst case scenario to the contract
writer. We will refer to the assumption of such behaviour by policyholders here as
loss-maximizing strategies, as they represent worst case outcomes for the insurer.
Such strategies produce an upper bound on the fair price of the contract, but it is far
from clear that policyholders actually behave in this manner. Instead, for any of a
number of reasons, a policyholder may deviate from loss-maximizing behaviour.

In order to account for this, we provide a new approach here in which we de-
couple policyholder withdrawal behaviour from the contract pricing equations, and
generate said behaviour by considering a policyholder’s utility. This general ap-
proach is applicable to any contract involving policyholder behaviour, and results
in two weakly coupled systems of PDEs. In the context of GLWDBs, this allows
for the easy modeling of complex phenomena such as risk aversion and taxation.
Solving the PDEs backwards in time allows us to employ the Bellman principle to
ensure that the policyholder is able to maximize his or her utility. Since our ap-
proach incorporates this added generality, we will generally avoid the use of the
term “no-arbitrage” below, and instead refer to the cost of hedging. Of course, un-
der the specific case of loss-maximizing behaviour by the policyholder, our cost of
hedging coincides with the traditional no-arbitrage price.
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In Sect. 6.2, we introduce a system of regime-switching PDEs used to determine
the hedging costs of the GLWDB contract. In Sect. 6.3, we introduce a system of
regime-switching PDEs used to model a policyholder’s utility and describe how this
system is used alongside the system introduced in Sect. 6.2 to determine the cost
of hedging the guarantee assuming optimal consumption. In Sect. 6.4, we discuss
our numerical methodology. In Sect. 6.5, we present results under both the assump-
tion that the policyholder behaves so as to maximize the cost of the guarantee (i.e.
the loss-maximizing strategy) and the assumption that the policyholder maximizes
utility.

Overall, the contributions of this work are:

• We introduce a general methodology that allows for the decoupling of policy-
holder behaviour from the cost of hedging the contract.

– This approach yields two weakly coupled systems of PDEs: the pricing and
utility systems.

– This approach abandons the arguably flawed notion of a policyholder acting
only so as to maximize the cost of a guarantee.

• We model the long-term behaviour of the underlying stock index (or mutual fund)
by a Markovian regime-switching process.

• We present the pricing and utility systems for the GLWDB contract.
• We show sufficient conditions for the homogeneity of the systems. This result

is computationally significant, as it is used to reduce the dimensionality of the
systems.

• We find that assuming optimal consumption yields a hedging cost fee that is very
close to the fee calculated by assuming that the policyholder follows the static
strategy of always withdrawing at the contract rate. This is a result of particular
practical importance as it suggests that policyholders will generally withdraw at
the contract rate. This substantiates pricing contracts under this otherwise seem-
ingly naı̈ve assumption.

• We find that the inclusion of a death benefit is often expensive. This may account
for the failure to properly hedge this guarantee and the subsequent withdrawal of
contracts including ratcheting death benefits from the Canadian market.

• We demonstrate sensitivity to various parameters and we consider the adoption
of exotic fee structures in which the proportional fee applies not just to the in-
vestment account but rather to the greater of this account and one or more of the
auxiliary accounts.

6.2 Hedging Costs

We begin by considering a basic model for pricing GLWDBs under which policy-
holder withdrawal behaviour is determined so as to maximize the value of the guar-
antee (i.e. the loss-maximizing strategy). We extend previous work by Forsyth and
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Vetzal [8] via the introduction of a death benefit. For simplicity, we first consider the
single-regime case and subsequently extend this model to include regime-switching.

6.2.1 Derivation of the Pricing Equation

Let M (t) be defined as the instantaneous rate of mortality per unit interval. The
fraction of policyholders still alive at time t is

R (t) = 1−
∫ t

0
M (s)ds,

where t = 0 is the time at which the contract is purchased. Let S (t) be the amount
in the investment account of any policyholder of the GLWDB contract who is still
alive at time t. Let W (t) and D(t) be the withdrawal and death benefits at time t.
Assume that the underlying value of the investment account is described by

dS = (μ−α)Sdt +σSdZ

where Z is a Wiener process. The constant α represents the total fee structure of
the contract. It is comprised of two terms. First, the underlying investment fund
has a proportional management fee αM . Second, the insurer charges for the cost of
hedging the contractual features through a proportional fee αR, which we will refer
below to as the hedging cost fee. The total proportional deduction applied to the
investor’s account is α = αM +αR. If we suppose that αM is fixed, the pricing prob-
lem becomes one of finding αR such that the insurer can follow a hedging strategy
which (in principle) can eliminate risk. This will be discussed further in Sect. 6.4.3.
S tracks the index Ŝ which follows

dŜ = μ Ŝdt +σ ŜdZ.

It is assumed that the insurer is unable to short S for fiduciary reasons.
We proceed by a hedging argument ubiquitous in the literature [31, 5, 3]. Let

U (S,W,D, t) be the cost of funding the withdrawal and death benefits at time t
years after purchase for investment account value S, withdrawal benefit W , and death
benefit D. The value of U is adjusted to account for the effects of mortality. We
assume that this contract was purchased at time zero by a buyer aged x0. Let T be
the smallest time at which R (T ) = 0 (we assume that such a time exists; i.e. no
policyholder lives forever). The insurer has no obligations at time T and hence

U (S,W,D,T ) = 0. (6.1)

The writer creates a replicating portfolio Π by shorting one contract and taking a
position of x units in the index Ŝ. That is,

Π (S,W,D, t) =−U (S,W,D, t)+ xŜ.
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The contractually specified times at which withdrawals and ratchets occur are re-
ferred to as event times, gathered in the set T = {t1, t2, . . . , tN−1} and ordered by

0 = t1 < t2 < .. . < tN−1 < tN = T.

Note that time zero (but not tN = T ) is also referred to as an event time even if no
withdrawals or ratchets are prescribed to occur at time zero.

Following standard portfolio dynamics arguments [see, e.g. 8] and noting that
between event times, dU is a function solely of S and t, we can use Itô’s lemma to
yield

dΠ =−
[(

1
2
σ2S2 ∂ 2U

∂S2 +(μ−α)S
∂U
∂S

+
∂U
∂ t

)

dt +σS
∂U
∂S

dZ

]

+ x
[

μ Ŝdt +σ ŜdZ
]

+R (t)αRSdt−M (t) [0∨ (D− S)]dt,

where a∨b = max(a,b). The term R (t)αRSdt represents the fees collected by the
hedger, while M (t) [0∨ (D− S)]dt represents the surplus generated by the death
benefit as paid out to the estates of deceased policyholders. Taking x =

(

S/Ŝ
) ∂U
∂S

yields

dΠ =

(

−1
2
σ2S2 ∂ 2U

∂S2 +αS
∂U
∂S
− ∂U

∂ t
+R (t)αRS−M (t) [0∨ (D− S)]

)

dt.

(6.2)
As this increment is deterministic, by the principle of no-arbitrage, the correspond-
ing portfolio process must grow at the risk-free rate. That is,

dΠ = rΠdt = r

(

−U +
S

Ŝ

∂U
∂S

Ŝ

)

dt. (6.3)

Substituting (6.3) into (6.2),

1
2
σ2S2 ∂ 2U

∂S2 +(r−α)S
∂U
∂S

+
∂U
∂ t
− rU−R (t)αRS+M (t) [0∨ (D− S)] = 0.

(6.4)
Let

V (S,W,D, t) =U (S,W,D, t)+R (t)S (6.5)

be the cost of funding the entire contract at time t. Substituting into (6.4), we arrive
at

1
2
σ2S2 ∂ 2V

∂S2 +(r−α)S
∂V
∂S

+
∂V
∂ t
− rV +R (t)αMS+M (t)(S∨D) = 0. (6.6)

We stress that V satisfies the above PDE only between a pair of adjacent event times
tn and tn+1. We discuss the behaviour of V across event times (e.g. from t−n to t+n ) in
Sect. 6.2.2.
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6.2.2 Events

Remark 6.1 (Notation). In order to reduce clutter, we will sometimes refer to
V (S,W,D, t) as V (x, t), where x = (S,W,D). We will often use this notation for
other functions of (S,W,D) as well. We refer to a point x as a state.

6.2.2.1 Event Times

Across event times, V is not necessarily continuous as a function of t. We restrict V
to be a càglàd function of t so that for all x, V (x, t) = lims↑t V (x,s) and V (x, t+) =
lims↓t V (x,s) exist. Whenever t ∈ T , V (x, t) and V (x, t+) can be regarded as the
price of the contract “immediately before” and “immediately after” the event time,
respectively.

6.2.2.2 Withdrawal Strategy

We isolate the withdrawal strategy by introducing a function γ (x, t) describing the
policyholder’s actions at state x and t ∈T .

• γ (x, t) = 0 indicates that the policyholder does not withdraw anything.
• γ (x, t) ∈ (0,1] indicates a nonzero withdrawal less than or equal to the contract

withdrawal amount, the maximum amount one can withdraw without incurring
a penalty.

• γ (x, t)∈ (1,2] indicates withdrawal at more than the contract withdrawal amount.

γ (x, t) = 2 is referred to as a full surrender, as it corresponds to the scenario in
which the policyholder withdraws the entirety of their investment account, while
γ (x, t) ∈ (1,2) is referred to as a partial surrender.

Remark 6.2 (Abstract strategy). We stress that we have not yet made any assump-
tions about policyholder behaviour. The decoupling of policyholder behaviour from
the hedging cost equations is the guiding philosophy of this work, and allows us
to model complex phenomena visible to the policyholder, but not necessarily vis-
ible to the writer. To be more precise, we assume that the insurer can observe the
policyholder’s strategy, though not the factors which determine that strategy. The
robustness of this approach is made concrete via the model developed in Sect. 6.3,
which considers the effects of taxation and nonlinear utility functions on a policy-
holder’s withdrawal strategy.

Denote the cost of funding the contract at state x and event time t ∈T assuming
the policyholder performs action λ ∈ [0,2] by

v(x, t,λ ) =V
(

f(x, t,λ ) , t+
)

+R (t) f (x, t,λ ) (6.7)
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where f represents cash flow from the writer to the policyholder and f : R3×T ×
[0,2]→ R

3 describes the state of the contract after the event. The cash flow is ad-
justed to account only for the fraction of holders still alive at time t, R (t). The actual
(observed) cost of funding the contract is obtained simply by passing the withdrawal
strategy employed by the policyholder γ to v. That is,

V (x, t) = v(x, t,γ (x, t)) . (6.8)

We cast a withdrawal event in the form (6.7) by considering the three cases enumer-
ated above (i.e. λ = 0, λ ∈ (0,1], and λ ∈ (1,2]) separately.

In the following, we refer to TWithdraw ⊂ T as the set of times at which with-
drawals are prescribed and TRatchet ⊂ T as the set of times at which ratchets are
prescribed. We begin by assuming TWithdraw

⋂
TRatchet = /0 (i.e. ratchets and with-

drawals do not occur simultaneously) and subsequently relax this assumption.

6.2.2.3 Bonus

At a time t ∈ TWithdraw, nonwithdrawal is indicated by λ = 0. If the policyholder
chooses not to withdraw, the withdrawal benefit is amplified by 1 + B(t), where
B(t) is the bonus rate available at t. By the principle of no-arbitrage,

v(S,W,D, t,0) =V

⎛

⎜
⎝S, W (1+B(t)) , D
︸ ︷︷ ︸

f(x,t,0)

, t+

⎞

⎟
⎠ .

6.2.2.4 Withdrawal Not Exceeding the Contract Rate

At a time t ∈ TWithdraw, the contract withdrawal amount for withdrawal benefit W
is G(t)W , where the contract withdrawal rate at time t, G(t), is specified by the
contract. The amount withdrawn by the policyholder when λ ∈ (0,1] is λG(t)W .
We express this type of withdrawal as

v(S,W,D, t,λ ) =V

⎛

⎜
⎝(S−λG(t)W )∨0, W, (D−λG(t)W )∨0
︸ ︷︷ ︸

f(x,t,λ )

, t+

⎞

⎟
⎠+R (t)λG(t)W

︸ ︷︷ ︸

f (x,t,λ )

.

For the particular contract that we are considering, the death benefit is reduced
whenever any withdrawals are made.

6.2.2.5 Partial or Full Surrender

At a time t ∈ TWithdraw, the amount withdrawn if λ ∈ (1,2] is

G(t)W +(λ − 1)(1−κ (t))S′
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where S′= (S−G(t)W )∨0 is the state of the investment account after a withdrawal
at the contract withdrawal amount and κ (t) ∈ [0,1] is the penalty rate incurred at t
for withdrawing above the contract withdrawal amount. For a typical contract, κ (t)
is monotonically decreasing in time. We express this type of withdrawal as

v(S,W,D, t,λ ) =V

⎛

⎜
⎝(2−λ )S′, (2−λ )W, (2−λ )D
︸ ︷︷ ︸

f(x,t,λ )

, t+

⎞

⎟
⎠

+R (t)
(

G(t)W +(λ − 1)(1−κ (t))S′
)

︸ ︷︷ ︸

f (x,t,λ )

.

6.2.2.6 Ratchets

At a time t ∈ TRatchet, the withdrawal benefit is increased to the investment account
if the latter has grown larger than the former in value. Note that the value of the
withdrawal benefit W can never decrease, unless a penalty has been incurred for
withdrawing over the contract withdrawal rate. Although ratchets are not controlled
by the policyholder, we can still write a ratchet event in the form (6.7) by

v(S,W,D, t,λ ) =V

⎛

⎜
⎝S, S∨W, D
︸ ︷︷ ︸

f(x,t,λ )

, t+

⎞

⎟
⎠

irrespective of the value of λ . We also explore the possibility of a ratcheting death
benefit.

6.2.2.7 Simultaneous Events

When multiple events are prescribed to occur at the same time, we simply apply
them one after the other. Naturally, without a particular order, the pricing problem
is not well-posed: the contract is ambiguous. If a withdrawal and a ratchet are pre-
scribed to occur at the same time, we assume that the withdrawal occurs before
the ratchet. As we are solving the PDE backwards in time in order to employ the
Bellman principle, these events are applied in reverse order (in backwards time).

6.2.3 Loss-Maximizing Strategies

For all states x and event times t ∈T , assuming v is a continuous function of λ , let

Γ (x, t) = argmax
λ∈[0,2]

[v(x, t,λ )] (6.9)
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Since we are maximizing (6.7),Γ (x, t) is simply the set of all actions that maximize
the cost of the contract at x and t. If the writer is interested in computing the hedging
cost for the contract in the worst-case scenario, the withdrawal strategy is assumed
to satisfy

γ (x, t) ∈ Γ (x, t) (6.10)

for all x and t ∈ T . Any such strategy is termed a loss-maximizing withdrawal
strategy.

Remark 6.3 (An unfortunate choice of terms). A loss-maximizing withdrawal strat-
egy is often referred to as an optimal strategy in the literature. The adoption of the
term optimal is an arguably unfortunate one, as an optimal strategy is not necessar-
ily “optimal” for the policyholder. We stress that an optimal strategy as typically
referred to in the literature is simply one that maximizes losses for the writer, and
use instead the term “loss-maximizing” for the remainder of this work in order to
avoid confusion.

6.2.4 Regime-Switching

We extend the formulation to include a regime-switching framework in which shifts
between states are controlled by a continuous-time Markov chain. Letting S =
{1,2, . . . ,M} be the state-space consisting of M regimes, we assume that in regime
i ∈S , the underlying investment account evolves according to

dS = (μi−α)S+σiSdZ+
M

∑
j=1

S (Ji→ j− 1)dXi→ j

where

dXi→ j =

{

1 with probability δi, j + qi→ jdt

0 with probability 1− (δi, j + qi→ jdt)

and δi, j is the Kronecker delta. Here, qi→ j is the objective (P measure) rate of
transition from regime i to j whenever i �= j and

qi→i =−
M

∑
j=1
j �=i

qi→ j.

Ji→ j ≥ 0 is the relative jump size in S associated with a transition from regime i to j.
We take Ji→i = 1 for all i so that jumps in the underlying are not experienced unless
there is a change in regime. Let Vi (S,W,D, t) be the cost of funding a GLWDB in
regime i. Following a combination of the hedging arguments in Sect. 6.2.1 and “the
Appendix”, we arrive at the system of PDEs
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LiVi +
M

∑
j=1
j �=i

[

qQi→ jVj (Ji→ jS,W,D, t)
]

+
∂Vi

∂ t
+R (t)αMS+M (t)(S∨D) = 0 ∀i ∈S

(6.11)

where

Li =
1
2
σ2

i S2 ∂ 2

∂S2 +
(

ri−α−ρQ

i

)

S
∂
∂S
−
(

ri− qQi→i

)

.

qQi→ j is the risk-neutral rate of transition from regime i to j whenever i �= j and

qQi→i =−
M

∑
j=1
j �=i

qQi→ j.

Furthermore, ρQ

i is defined as

ρQ

i =
M

∑
j=1
j �=i

[

qQi→ j (Ji→ j− 1)
]

=
M

∑
j=1

[

qQi→ jJi→ j

]

.

Equation (6.11) is referred to as the pricing system.
The events introduced in the single-regime model are simply applied to each

regime separately. That is, the regime-switching analogues of (6.7) and (6.8) are

vi (x, t,λ ) =Vi
(

f(x, t,λ ) , t+
)

+R (t) f (x, t,λ ) (6.12)

and
Vi (x, t) = vi (x, t,γi (x, t)) . (6.13)

Likewise, the withdrawal strategy becomes regime-dependent. The regime-
switching analogue of (6.9) and (6.10) is

γi (x, t) ∈ Γi (x, t) = argmax
λ∈[0,2]

[vi (x, t,λ )] . (6.14)

6.3 Optimal Consumption

Using a loss-maximizing strategy yields the largest hedging cost fee. Any other
strategy will, by definition, yield a smaller fee. Using the fee generated by a loss-
maximizing strategy ensures that the writer can, at least in theory, hedge a short
position in the contract with no risk. However, insurers are often interested in using
a less conservative method for pricing contracts so as to decrease the hedging cost
fee while minimizing their exposure. We now extend the framework introduced in
Sect. 6.2 to strategies based on optimal consumption from the perspective of the
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policyholder. As usual, we first consider the single-regime case and subsequently
provide the extension to include regime-switching.

6.3.1 Utility PDE

Let V (S,W,D, t) be the mortality-adjusted utility of holding a GLWDB contract
at t with investment account value S, withdrawal benefit W and death benefit D.
Following standard arguments, we express the evolution of a policyholder’s utility
by

1
2
σ2S2 ∂ 2V

∂S2 +(μ−α)S
∂V
∂S

+
∂V
∂ t
−βV +M (t)uB (S∨D) = 0. (6.15)

Here, uB (x) is the bequest utility, the utility received from bequeathing x, and β
is the rate of time preference. Note that (6.15) depends on the real-world drift μ as
opposed to the risk-free rate r. We represent the worthlessness of holding a GLWDB
after all death benefits have been paid by

V (S,W,D,T ) = 0. (6.16)

The drift-diffusion form (6.15) corresponds to a standard additive utility
specification.

6.3.2 Events

As in (6.7) and (6.8), we parameterize an event occurring at t ∈ T by writing it in
the form

v(x, t,λ ) =V
(

f(x, t,λ ) , t+
)

+R (t) f (x, t,λ ) (6.17)

along with
V (x, t) = v (x, t,γ (x, t)) . (6.18)

f is defined implicitly for each event type in Sect. 6.2.2. It should be noted that the
function f does not represent a cash flow, but rather an influx of utility to the holder.
That is,

f (x, t,λ ) = uC ( f (x, t,λ )) ,

where f is defined for each event type in Sect. 6.2.2 and uC (y) is the consumption
utility, the utility received from consuming y.
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6.3.3 Consumption-Optimal Withdrawal

We refer to a withdrawal strategy that satisfies

γ (x, t) ∈ Γ (x, t) = argmax
λ∈[0,2]

[v(x, t,λ )] (6.19)

(for all states x and event times t ∈T ) as a consumption-optimal withdrawal strat-
egy. Since we are maximizing (6.17), Γ (x, t) is simply the set of all actions that
maximize the policyholder’s utility at x and t.

It should be noted that we are not interested in the value of the numerical solu-
tion to the utility PDE but rather in the withdrawal strategy generated by it. Instead
of adopting the optimal withdrawal strategy introduced in Sect. 6.2.3, we feed the
withdrawal strategy generated by the policyholder’s utility into the pricing problem.
Given the Cauchy data V (·, tn+1) and V (·, tn+1):

1. Solve V (·, t+n ) using (6.6) and Cauchy data V (·, tn+1).
2. Solve V (·, t+n ) using (6.15) and Cauchy data V (·, tn+1).
3. Determine γ (·, tn) s.t. (6.19) is satisfied. In doing so, determineV (·, tn) by (6.17)

and (6.18).
4. Use γ (·, tn), (6.7) and (6.8) to determine V (·, tn).

The propagation of information in this procedure is depicted in Fig. 6.1.

.. .

.. .

.. .

V (·,tn+1) V (·,tn+) V (·,tn)

V (·,tn+1) V (·,tn+)

γ (·,tn)

V (·,tn)

.. .

.. .

Fig. 6.1 A graph depicting the propagation of information in the pricing procedure

Remark 6.4 (Ensuring uniqueness). Step 3 requires that for each x, we determine
γ (x, tn). The expression (6.19) suggests that γ (x, tn) need not be unique. To ensure
the uniqueness of V , we need a way to break ties between consumption-optimal
strategies. Formally, we substitute condition (6.19) for

γ (x, t) = c
(

Γ (x, t)
)

where c is a choice function on the power set of [0,2]. For example, a choice func-
tion c that selects the smallest element (e.g. c({0,1,2}) = 0) corresponds to a poli-
cyholder who will always withdraw the least amount possible to break a tie.
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6.3.4 Regime-Switching

Assuming the regime-switching model introduced in Sect. 6.2.4, define
V i (S,W,D, t) as the mortality-adjusted utility of holding a GLWDB contract at time
t years after purchase in regime i ∈S . Following standard arguments, we arrive at

∂V i

∂ t
+L iV i +

M

∑
j=1
j �=i

[

qi→ jV j (Ji→ jS,W,D, t)
]

+M (t)uB
i (S∨D) = 0 ∀i ∈ S (6.20)

where

L i =
1
2
σ2

i S2 ∂ 2

∂S2 +(μi−α)S
∂
∂S
− (βi− qi→i) .

Equation (6.20) is referred to as the utility system. Note that this system of PDEs
does not depend on the risk-neutral rates of transition qQi→ j as in Sect. 6.2.4, but

instead on the objective (P measure) rates of transition qi→ j. We use the symbols uB
i

and uC
i to stress that the utility functions can, in general, be regime-dependent.

As in Sect. 6.2.4, events and the corresponding withdrawal strategies become
regime-dependent. The regime-switching analogue of (6.17) and (6.18) is

vi (x, t,λ ) =V i
(

f(x, t,λ )t+
)

+R (t)uC
i ( f (x, t,λ )) (6.21)

and
V i (x, t) = vi (x, t,γi (x, t)) . (6.22)

Likewise, the regime-switching analogue of (6.19) is

γi (x, t) ∈ Γ i (x, t) = argmax
λ∈[0,2]

[vi (x, t,λ )] . (6.23)

In this way, at any event time, the policyholder’s utility in regime i (i.e. V i) is directly
related to the price in regime i (i.e. Vi). In particular, the algorithm presented in
Sect. 6.3.3 becomes:

1. Solve {V1 (·, t+n ) , . . . ,VM (·, t+n )} using (6.11) and Cauchy data {V1 (·, tn+1) , . . . ,
VM (·, tn+1)}.

2. Solve
{

V 1 (·, t+n ) , . . . ,V M (·, t+n )
}

using (6.20) and Cauchy data
{

V 1 (·, tn+1) , . . . ,
V M (·, tn+1)

}

.
3. For each regime i,

a. Determine γi (·, tn) such that (6.23) is satisfied. In doing so, determineV i (·, tn)
by (6.21) and (6.22).

b. Use γi (·, tn), (6.12) and (6.13) to determine Vi (·, tn).
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6.3.5 Hyperbolic Absolute Risk-Aversion

We consider policyholder consumption to be governed by hyperbolic absolute risk-
aversion (HARA) utility [20]:

uC
i (y;ai,bi, pi) = lim

p→pi

1− p
p

(
aiy

1− p
+ bi

)p

. (6.24)

We take uB
i (y) = hiuC

i (y), where hi is termed the bequest motive. This is a fairly flex-
ible and general class of utility functions that can be parameterized so that marginal
utility is finite at a consumption level of zero. This is potentially of interest in our
context since it allows for the possibility that the policyholder will decide to not
withdraw any amount at a withdrawal date. Otherwise, with infinite marginal utility
at a consumption level of zero, the policyholder will always withdraw some positive
amount.

6.4 Numerical Method

6.4.1 Homogeneity

Let V denote the column vector consisting of V1, V2, . . ., VM. We define V similarly.

Remark 6.5 (Technical assumptions). We assume that all regime-switching jumps
are unity (i.e. Ji→ j = 1 for all i and j), that V (resp. V) is a classical solution (i.e.
twice differentiable in the investment account S and once in t on (tn, tn+1) for all
1≤ n < N) satisfying a growth condition to ensure uniqueness (recall that parabolic
PDEs do not, in general, admit unique solutions [9]) and that the functions σi, ri,
α , qQi→ j, μi, βi and qi→ j are bounded and continuous. Under these assumptions, it is
possible to use the parametrix method [18] to construct a Green’s function (denoted
by F) representation for V (resp. V) on t ∈ (tn, tn+1]. A more detailed list of these
assumptions is provided by Azimzadeh [1]. We further assume that the functions σi,
ri, α , and qQi→ j, μi, βi and qi→ j are independent of S, W and D and exploit this fact
in Lemma 6.1.

Definition 6.1 (Homogeneous function). A function s : X → Y between two cones
is said to be homogeneous of order k∈Z if for all η > 0 and x∈X , ηks(x)= s(ηx) .
We say V is homogeneous if for each i ∈S , Vi is homogeneous.

Theorem 6.1 (Price homogeneity under loss-maximizing strategy). Suppose that
a loss-maximizing strategy is employed by the policyholder. Then, V(x, t) is homo-
geneous of order 1 in x.

This fact is established via a series of lemmas. Namely, we show that if V(x, tn+1)
is homogeneous in x, so too is V(x, t+n ) (Lemma 6.1). That is, the system (6.11)
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composed of the operators L1, L2, . . ., LM preserves homogeneity. Then, we show
that if V(x, t+n ) is homogeneous in x, so too is V(x, tn) (Lemma 6.2). That is, homo-
geneity is preserved across event times under a loss-maximizing strategy. By (6.1)
and (6.5), we have V(x, tN = T )= 0. Since this is trivially homogeneous, the desired
result follows by induction.

Lemma 6.1 (Pricing system homogeneity between event times). Suppose that for
some n with 1 ≤ n < N,V(x, tn+1) is homogeneous of order 1 in x. Then, for all
t ∈ (tn, tn+1], V(x, t) is homogeneous of order 1 in x.

Proof. If we let τ = tn+1− t and

g(S,W,D, t) =R (t)αMS+M (t)(S∨D) ,

we can write (Remark 6.5)

V(S,W,D, t) =
∫ ∞

0
F

(

log
S′

S
,τ,0

)

V
(

S′,W,D, tn+1
) 1

S′
dS′

+

∫ τ

0

∫ ∞

0
F

(

log
S′

S
,τ,τ ′

)
(

g
(

S′,W,D, tn+1− τ ′
)

1
) 1

S′
dS′dτ ′.

where 1 is a column vector of ones. The fact that F depends on S′ and S only through
log(S′/S) is discussed by Azimzadeh [1] and stems from the assumption that σi, ri,
α and qQi→ j are independent of S, W and D (Remark 6.5). The substitution S′ = SS′′
yields

V(S,W,D, t) =
∫ ∞

0
F
(

logS′′,τ,0
)

V
(

SS′′,W,D, tn+1
) 1

S′′
dS′′

+
∫ τ

0

∫ ∞

0
F
(

logS′′,τ,τ ′
)(

g
(

SS′′,W,D, tn+1− τ ′
)

1
) 1

S′′
dS′′dτ ′.

Since V(x, tn+1) and g(x, t) are both homogeneous in x, it is now straightforward to
extend V(x, t)’s homogeneity to t ∈ (tn, tn+1]. ��
Remark 6.6 (Unit jump size assumption). The assumption that the jump sizes are
unity Ji→ j = 1 is required in order to use the standard Green’s function form. How-
ever, Lemma 6.1 also holds for the case of non-unit jump sizes, but the proof is
somewhat more lengthy.

Lemma 6.2 (Loss-maximizing strategy preserves homogeneity). Suppose that
for some regime i ∈S and for some n with 1≤ n < N, Vi (x, t+n ) is homogeneous of
order 1 in x and that the policyholder employs a loss-maximizing strategy γi (·, tn).
Then, Vi (x, tn) is homogeneous of order 1 in x.

Proof. We leave it to the interested reader to show that f(x, tn,λ ) and f (x, tn,λ )
defined implicitly in Sect. 6.2.2 are homogeneous of order 1 in x. From this and the
presumed homogeneity of Vi (x, t+n ), it follows that vi (x, tn,λ ) defined by (6.12) is
homogeneous of order 1 in x. Let η > 0 and x be arbitrary. By (6.14),



6 Hedging Costs for Variable Annuities Under Regime-Switching 149

γi (ηx, tn) ∈ Γi (ηx, tn)

= argmax
λ∈[0,2]

[vi (ηx, tn,λ )]

= argmax
λ∈[0,2]

η [vi (x, tn,λ )]

= argmax
λ∈[0,2]

[vi (x, tn,λ )]

= Γi (x, tn) � γi (x, tn) .

From this, it follows that vi (x, tn,γ (ηx, tn)) = vi (x, tn,γ (x, tn)). Specifically,

Vi (ηx, tn) = vi (ηx, tn,γ (ηx, tn)) = ηvi (x, tn,γ (ηx, tn)) = ηvi (x, tn,γ (x, tn)) = ηVi (x, tn) .

��
The homogeneity of the pricing problem allows us to reduce it from a system of

coupled three-dimensional PDEs to a system of coupled two-dimensional PDEs. By
Theorem 6.1, for η > 0,

Vi (S,W,D, t) =
1
η

Vi (ηS,ηW,ηD, t) .

Suppose W > 0. Choosing η =W �/W with W � > 0 yields

Vi (S,W,D, t) =
W
W �

Vi

(
W �

W
S,W�,

W �

W
D, t

)

, (6.25)

which reveals that we need only solve the problem for two values of the withdrawal
benefit: W � and zero. We refer to this reduction in dimensionality as a similarity
reduction.

Theorem 6.2 (Utility homogeneity under consumption-optimal strategy). Sup-
pose that a consumption-optimal strategy is employed by the policyholder, and that
for all regimes i ∈ S , uB

i and uC
i are homogeneous of order p. Then V(x, t) and

V (x, t) are homogeneous of orders 1 and p, respectively, in x.

The proof of this is almost identical to that of Theorem 6.1, and is hence left to
the interested reader. It should be noted that the above assumes that ties in strategies
are broken as in Remark 6.4.

Corollary 6.1 (Power law homogeneity). For all regimes i ∈S , take bi = 0 and
pi = p in (6.24) for some constant p �= 0. Suppose that a consumption-optimal strat-
egy is employed by the policyholder. Then, V(x, t) and V(x, t) are homogeneous of
order 1 and p, respectively, in x.

Proof. This follows directly from Theorem 6.2 and the fact that uC
i (x;a,b, p) is

homogeneous of order p in x and b. ��
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This encompasses a large family of economically relevant functions, namely the
power law (a.k.a. isoelastic) utility functions. Under power law utility, we can reduce
the system of three-dimensional PDEs to a system of two-dimensional PDEs. As
before, we get

V i (S,W,D, t) =

(
W
W �

)p

V i

(
W �

W
S,W �,

W �

W
D, t

)

,

along with (6.25) whenever W > 0 and W � > 0.

6.4.2 Localized Problem and Boundary Conditions

We approximate the original problem, posed on (S,W,D, t) ∈ R
3
≥0× [0,T ] , on the

truncated domain

(S,W,D, t) ∈ [0,SMax]×W × [0,DMax]× [0,T ] ,

where W = [0,∞) when a similarity reduction is applied and W = [0,WMax] other-
wise. We clamp regime-switching jumps that drive the underlying above SMax. That
is, we take min(Ji→ jS,SMax) (instead of Ji→ jS) to be the value of the investment ac-
count after a jump from regime i to j. No boundary conditions are needed at S = 0,
W = 0, D = 0, W = WMax and D = DMax. That is, it is sufficient to substitute one
of the aforementioned boundary values of S, W or D into (6.11) and (6.20) to re-
trieve the relevant behaviour. At S = SMax, for each W and D, we impose instead the
linearity conditions [32]

Vi (SMax,W,D, t) =Ci (t)SMax and V i (SMax,W,D, t) =Ci (t)SMax ∀i ∈S

in an attempt to estimate the true asymptotic behaviour of the contract. Substituting
the above into (6.11) and (6.20) yields two ordinary differential equations (ODEs)
in which Ci and Ci are the dependent variables. These are solved numerically along-
side the rest of the domain. Errors introduced by the above approximations are
small in the region of interest, as verified by numerical experiments. At t = T , (6.1)
and (6.16) suggest

Vi (S,W,D,T ) =V i (S,W,D,T ) = 0 ∀i ∈S .

We use Crank-Nicolson time-stepping with Rannacher smoothing [28]. We dis-
cretize the diffusive term using a second-order centered difference, while the con-
vective term is discretized using a centered difference only when the corresponding
backward Euler scheme is monotone. Otherwise, an upwind discretization is em-
ployed. Variable-size timestepping is used (see Johnson [15] for an expository treat-
ment). The resulting linear system is solved using fixed-point iteration. The details
of this approach are described by d’Halluin et al. [6] and Kennedy [16].
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6.4.3 Determining the Hedging Cost Fee

At contract inception, the withdrawal and death benefits are set to the initial value
of the investment account, S (0). That is, W (0) = S (0) and D(0) = S (0). If we
overload our previous definition of Vi as parameterized by the fee, αR, the problem
becomes one of determining αR such that

VI (S (0) ,W (0) ,D(0) ,0;αR)−R (0)
︸ ︷︷ ︸

1

S (0) = 0, (6.26)

where I is the regime observed at time zero. This is a requirement stating that αR

must be selected so as to compensate the writer for the hedging costs. We term
such a value of αR the hedging cost fee. Equation (6.26) is solved numerically using
Newton’s method.

6.5 Results

We begin by performing experiments under the assumptions (i) that the policyholder
behaves so as to maximize the writer’s losses and (ii) that the policyholder always
withdraws at the contract rate. We consider a handful of numerical tests based on
perturbations to the base case data in Table 6.1. We subsequently move to consider-
ing consumption-optimal strategies, in which we use the base case data in Tables 6.1
and 6.3. Throughout this section, various rates are presented in basis points (bps).

6.5.1 Loss-Maximizing and Contract Rate Withdrawal

All tests in this section are performed on perturbations to the base case data in Ta-
ble 6.1. Table 6.2 documents wide variation in the hedging cost fee across different
volatility and interest rate parameters for the two regimes considered, and for the
cases with a ratcheting death benefit, with a nonratcheting death benefit, and without
a death benefit. Of course, in any otherwise identical scenario, the loss-maximizing
withdrawal assumption results in a higher fee since this represents the worst case
scenario for the insurer. As we might expect, higher volatility is associated with an
increase in the cost of hedging and thus a higher fee. The fee is also quite sensi-
tive to the levels of the risk-free interest rate across the two regimes. The presence
of a death benefit results in a notably increased fee, particularly if this feature is
ratcheting.
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Table 6.1 Pricing system base case data with regime-dependent parameters obtained from
O’Sullivan and Moloney [25] by calibration to FTSE 100 options in January 2007

Parameter Value
Volatility σ1 σ2 0.0832 0.2141
Risk-free rate r1 r2 0.0521 0.0521
Rate of transition qQ1→2 qQ2→1 0.0525 0.1364
Jump magnitude J1→2 J2→1 1 1
Initial regime I 1
Initial investment S(0) 100
Management rate αM 100 bps
Contract rate G 0.05
Bonus rate B 0.05
Initial age x0 65
Expiry time T 57
Mortality data [26]
Ratchets Triennial
Withdrawals Annual

Time t Penalty κ (t)
1 0.03
2 0.02
3 0.01
≥4 0

Table 6.2 The value of the hedging cost fee for perturbations to the data in Table 6.1. For each
perturbation, fees are calculated under the loss-maximizing (left) and contract rate withdrawal
(right) strategies. Values are reported to the nearest basis point

Hedging cost fee αR (bps)
Parameters Ratcheting Nonratcheting No

death benefit death benefit death benefit
Base case (Table 6.1) 54 48 37 24 27 19

Initial regime = 2 158 113 139 75 86 52
(r1, r2) = (0.04,0.06) 79 72 62 43 44 33
(r1, r2) = (0.03,0.07) 124 114 106 76 73 57
(r1, r2) = (0.02,0.08) 239 212 224 156 129 104
(σ1,σ2) = (0.10,0.20) 62 56 45 29 31 22
(σ1,σ2) = (0.15,0.25) 133 123 107 69 70 51

6.5.1.1 Withdrawal Analysis

We now turn to a brief exploration of loss-maximizing withdrawal strategies by
the policyholder. Figures 6.2 and 6.3 show these strategies under each regime
(Table 6.1) at t = 1,2, . . . ,6 assuming that the corresponding hedging cost fee is
charged for hedging the contract and that D = 100. In either regime, if W is much
bigger than S, the strategy always involves withdrawing at the contract rate, but
the strategy in other regions can be quite complex. We note that in the less volatile
regime (Fig. 6.2), the withdrawal strategy does not involve surrender for t ≤ 3, prior
to the vanishing of surrender charges at t > 3 (Table 6.1). However, in the more
volatile regime (Fig. 6.3), the policyholder is more willing to surrender the contract,
despite the large penalties at times t = 1 and t = 2. Also note that in this regime, the
policyholder’s willingness to surrender (for large values of S) vanishes at t = 3 in
anticipation of the triennial ratchet. The complexity of these loss-maximizing strate-
gies provides some further motivation for our consumption-based approach, since it
may seem implausible that individual policyholders would actually implement such
strategies.
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Fig. 6.2 Observed loss-maximizing strategies at D = 100 under regime 1. The hedging cost fee
αR ≈ 37 bps is used (Table 6.2). The subfigures, from top-left to bottom-right, correspond to t =
1,2, . . . ,6

Fig. 6.3 Observed loss-maximizing strategies at D = 100 under regime 2. The hedging cost fee
αR ≈ 139bps is used (Table 6.2). The subfigures, from top-left to bottom-right, correspond to
t = 1,2, . . . ,6
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6.5.1.2 Management Rate

Figure 6.4 shows the relationship between the hedging cost fee and the management
rate (i.e. the proportional management expense fee αM). As is to be expected, the
fee grows superlinearly as a function of the management rate, since the management
rate acts as a drag on the investment account. This confirms the observation by
Forsyth and Vetzal [8] that the use of mutual funds with high management fees as
the underlying investment for variable annuities results in higher costs for the insurer
compared to a policy written on funds with low management fees (e.g. exchange-
traded index funds). We also see that for both the loss-maximizing and contract
rate withdrawal strategy, the death benefit adds significant value to the contract,
consistent with the results reported in Table 6.2. Again, the disparity between the
ratcheting and nonratcheting death benefit is even more pronounced.

6.5.1.3 Alternate Fee Structure

Some insurers have adopted alternate fee structures that are functions of the auxil-
iary accounts. In general, the risky account evolves according to

dS = (μS−αF (S,W,D, t))dt +σSdZ.

A comparison of the usual fee structure F = S with F = S∨W on a contract with-
out death benefits for various values of the management rate αM under the loss-
maximizing strategy is shown in Fig. 6.5. We see that for sufficiently small man-
agement rates, the alternate fee structure reduces the hedging cost fee. However, as
the management fee increases, the fee calculated under the alternate fee structure
surpasses its vanilla counterpart. When the management rate is relatively low, it has
a comparatively small impact in terms of decreasing the value of the investment ac-
count and hence exerts limited influence on the value of the guarantee. Moreover,
since the total rate α = αM +αR applies to the greater of the investment account
and the guarantee benefit, the size of the fee in such cases is comparatively small.
However, as the management rate increases, the value of the guarantee rises and
eventually a higher fee is needed to fund the cost of hedging.

6.5.2 Consumption-Optimal Withdrawal

All tests in this section are performed on perturbations to the base case data in
Tables 6.1 and 6.3.
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Fig. 6.4 Sensitivity of hedging cost fee to the management rate. (a) Loss-maximizing strategy.
(b) Contract-rate strategy

6.5.2.1 Risk-Aversion

Suppose the management rate, αM , is zero. If for all regimes i ∈ S we take the
parameterization shown in Table 6.4, the consumption-optimal strategy reduces to
the loss-maximizing strategy (this can be verified by direct substitution). Reflecting
this, we refer to this parameterization as the degeneracy parameterization. Since
the degeneracy parameterization corresponds to the loss-maximizing strategy, it is
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Fig. 6.5 Sensitivity of hedging cost fee to the management rate for different fee structures. (a)
Initial regime I = 1; no death benefit. (b) Initial regime I = 2; no death benefit

guaranteed to yield the highest possible hedging cost fee. We stress that this holds
only when the management rate is zero, as in Table 6.4. The utility parameters under
this parameterization uB

i (x) = hiuC
i (x;ai = 1,bi = 0, pi = 1) correspond to the case

of risk-neutral utility: uB
i (x) = uC

i (x) = x.
Although the above only holds under the degeneracy parameterization, we expect

to see large hedging cost fees under parameterizations that are close to the degen-
eracy parameterization. Figure 6.6 shows the effect of simultaneously varying the
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Table 6.3 Consumption system base case data with rate of time preference obtained from
Nishiyama and Smetters [24]

Parameter Value
Drift rate μ1 μ2 0.1 0.1
Time preference β1 β2 0.032 0.032
HARA scaling a1 a2 1 1
HARA offset b1 b2 0 0
Risk-aversion p1 p2 0.5 0.5
Bequest motive h1 h2 1 1
Rate of transition q1→2 q2→1 0.0525 0.1364

regime-dependent drifts μ1 and μ2 and risk-aversion parameters p1 and p2 on the
hedging cost fee for the base case data in Tables 6.1 and 6.3 for a contract with-
out death benefits. When μ1 = μ2 = 0.0521 and p1 = p2 = 1, a global maximum
appears on each surface. As expected, the parameterization μ1 = μ2 = 0.0521 and
p1 = p2 = 1 is close to the degeneracy parameterization (Tables 6.1 and 6.3 specify
α = 100bps≈ 0 and βi = 0.032≈ 0.0521 = ri), and hence these maxima (27 and
84 bps, rounded to the nearest basis point) are very close to the hedging cost fees for
each regime calculated under the loss-maximizing strategy (27 and 86 bps, rounded
to the nearest basis point; see Table 6.2). Realistically, these maxima are not of
great interest to the insurer as they occur where the drift of the investment account
is equal to the risk-free rate of return. More interestingly, both surfaces exhibit a
large “plateau” region (i.e. where the gradient is approximately zero) for which the
consumption-optimal hedging cost fee is close to that calculated under the contract
rate withdrawal strategy. This suggests that for a large family of parameters, the pol-
icyholder withdraws at nearly the contract rate. This can be verified by comparing
the hedging cost fee here for the two regimes with those shown in Table 6.2 (19 and
52 bps, rounded to the nearest basis point).

Table 6.4 Degeneracy parameterization

Parameter αM μi βi ai bi pi hi

Value 0 ri−ρQ

i ri 1 0 1 1

6.5.2.2 Taxation

It has been suggested by Moenig and Bauer [22] that a policyholder’s strategy de-
pends on the taxation of his withdrawals. We assume that withdrawals are taxed
on the American last-in first-out (LIFO) basis and that earnings in the underlying
investment account grow on a tax-deferred basis.

This requires the addition of another path dependent variable Q(t), which is
referred to as the tax base at time t. The tax base denotes what amount of the
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Fig. 6.6 Effects of varying drift and risk-aversion on the hedging cost fee. (a) Initial regime I = 1;
no death benefit. (b) Initial regime I = 2; no death benefit
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Table 6.5 Sensitivity of the hedging cost fee to the tax rate. Values are reported to the nearest tenth
of a basis point

0 % 10 % 20 % 30 % 40 % 50 %

Initial regime I = 1 18.0 18.9 19.2 18.7 17.7 16.3
Initial regime I = 2 54.7 55.8 56.3 56.7 57.0 57.2

underlying investment account is nontaxable. Initially, Q(0) = S (0). Q is piecewise
constant between withdrawals. When a withdrawal of size w is made at time t,

Q
(

t+
)

= Q
(

t−
)− (w− [S(t−)−Q

(

t−
)]∨0

)∨0
︸ ︷︷ ︸

Nontaxable portion of the withdrawal

.

The introduction of the tax base variable introduces an additional dimension for
which the PDEs must be solved. We assume that policyholders optimize their after-
tax consumption. Table 6.5 shows the effect of the tax rate on the hedging cost fee
for the base case contract without death benefits. We find that for typical levels of
risk-aversion, taxation has a small effect on the fee. Even for extreme tax rates of
50 %, the fee changes by at most several basis points.

6.6 Conclusion

We have introduced a general methodology that allows for the decoupling of poli-
cyholder behaviour from the pricing (i.e. determining the cost of hedging) of a vari-
able annuity. Assuming that the underlying investment follows a regime-switching
process, this yields two weakly coupled systems of PDEs: the pricing and utility
systems. When considering strategies contingent on the policyholder’s level of con-
sumption, the utility system is used to generate policyholder withdrawal behaviour,
which is in turn fed into the pricing system as a means to determine the cost of
hedging the contract. Our methodology is general enough to allow us to consider
any withdrawal strategy contingent on either the cost of hedging the contract or the
policyholder’s level of consumption.

We have adopted the GLWDB as a case study. A similarity reduction transforms
our systems of three-dimensional PDEs to systems of two-dimensional PDEs, al-
lowing us to generate numerical solutions with speed. In the absence of a death ben-
efit, these systems further simplify into systems involving one-dimensional PDEs,
which (for a reasonable number of regimes) can be solved with minimal computa-
tional effort.

Since GLWDB contracts are held over long periods of time, regime-switching
serves as a natural model for the process followed by the underlying asset. This pro-
cess can incorporate stochastic interest rates and volatility in a simple and intuitive
manner. It is also possible to have policyholder preferences which differ between
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regimes. Results obtained under various regime-switching processes indicate that
the hedging cost fee is extremely sensitive to the regime-dependent parameters.

We show that the inclusion of a death-benefit yields large fees for typical con-
tract values under both the loss-maximizing strategy and the static strategy of always
withdrawing at the contract rate. We observe an even more pronounced disparity be-
tween the no-arbitrage fee generated by a contract with nonratcheting death benefits
compared to a contract with ratcheting death benefits. These findings are consis-
tent with the phasing out of products including ratcheting death benefits from the
Canadian market.

We find that for a large family of utility functions, the consumption-optimal strat-
egy yields a hedging cost fee that is very close to the hedging cost fee calculated by
assuming that the policyholder withdraws at the contract rate. This can be under-
stood as substantiating the otherwise seemingly naı̈ve assumption that the policy-
holder “generally” withdraws at the contract rate. Adopting the contract rate with-
drawal strategy renders the pricing problem computationally simple, as this strategy
is deterministic and can easily be implemented in either the PDE or an equivalent
Monte Carlo formulation.

Acknowledgements This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Global Risk Institute in Financial Services (Toronto).

Appendix

In this Appendix, we derive the no-arbitrage regime-switching PDEs for general
contingent claims. Following along the lines of this Appendix, the reader should
have no difficulty combining these arguments with those in Sect. 6.2 to obtain the
final equation (6.11).

Regime-Switching Model

Regime-Switching PDEs

Consider the M-regime process S evolving according to

dS (t) = ai (S (t) , t)dt + bi (S (t) , t)dZ (t)+
M

∑
j=1

S (t)(Ji→ j− 1)dXi→ j (t)

in which dS describes the increment of S assuming that the regime at time t is i. We
restrict Ji→i = 1 for all i so that jumps in the underlying are not experienced unless
there is a change in regime.
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In the relevant literature, it is often mentioned that the introduction of the regime-
switching underlying S yields an incomplete market [34, 7], if the hedging portfolio
contains only the underlying asset and the risk-free account. We consider instead
a complete market consisting of the bond and M independent hedging instruments.
Note that the assumption of the availability of M instruments is not farfetched; we
need only find M instruments written on the regime-switching underlying S. Often,
it is possible to take S itself as one of these instruments (this scenario is detailed
elsewhere in this Appendix).

We follow the formulation of a regime-switching framework as derived by
Kennedy [16]. Consider a portfolio Π short an option V and with positions in
instruments F (1), F (2), . . ., F(M). We assume that the trading instruments depend
only on S (t) and t. Let B represent the money market process with risk-free rate r

(i.e. dB = rBdt). Denote by Vi and F (k)
i the values of the option and kth instrument

in regime i, and ω(k) is the number of units of instrument i. Assuming that regime i
is observed at time t,

Π (S (t) , t) =−Vi (S (t) , t)+
M

∑
k=1

[

ω(k)F (k)
i (S (t) , t)

]

+B(t) . (6.27)

The increment of the above portfolio can be written as

dΠ (S (t) , t) =−dVi (S (t) , t)+
M

∑
k=1

[

ω(k)dF(k)
i (S (t) , t)

]

+ dB(t) . (6.28)

where

dVi = μ̂idt + σ̂idZ +
M

∑
j=1

ΔVi→ jdXi→ j

μ̂i =
1
2

b2
i
∂ 2Vi

∂S2 + ai
∂Vi

∂S
+
∂Vi

∂ t

σ̂i = bi
∂Vi

∂S
ΔVi→ j =Vj (Ji→ jS, t)−Vi (S, t)

and

dF(k)
i = μ̄ (k)

i dt + σ̄ (k)
i dZ +

M

∑
j=1

ΔF (k)
i→ jdXi→ j

μ̄ (k)
i =

1
2

b2
i
∂ 2F (k)

i

∂S2 + ai
∂F (k)

i

∂S
+
∂F (k)

i

∂ t

σ̄ (k)
i = bi

∂F (k)
i

∂S

ΔF (k)
i→ j = F (k)

j (Ji→ jS, t)−F(k)
i (S, t) .
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Substituting these expressions into (6.28) yields

dΠ (t) =

[
M

∑
k=1

[

ω(k)μ̄ (k)
i

]

+ rB− μ̂i

]

dt +

[
M

∑
k=1

[

ω(k)σ̄ (k)
i

]

− σ̂i

]

dZ

+
M

∑
j=1

[
M

∑
k=1

[

ω(k)ΔF (k)
i→ j

]

−ΔVi→ j

]

dXi→ j. (6.29)

To make the portfolio deterministic, we eliminate Brownian risk by

M

∑
k=1

ω(k)σ̄ (k)
i = σ̂i (6.30)

and jump risk by
M

∑
k=1

ω(k)ΔF (k)
i→ j = ΔVi→ j ∀ j ∈S . (6.31)

Note that the jump risk equation corresponding to j = i relates a zero change in the
hedging instruments to zero change in the option, so that to eliminate jump risk, we
need only satisfy M− 1 equations.

Given that the portfolio is deterministic, the principle of no-arbitrage requires
rΠdt = dΠ . Using the expressions (6.27) and (6.29), we write this as

M

∑
k=1

ω(k)
(

μ̄ (k)
i − rF(k)

i

)

= μ̂i− rVi. (6.32)

Equations (6.30)–(6.32) make for a total of M + 1 equations in M unknowns. This
system has a solution if and only if one of the equations is a linear combination of
the others. We denote by ξi, qQi→1, qQi→2, . . ., qQi→M the weights under which the linear
dependence requirement

ξi

(
M

∑
k=1

[

ω(k)σ̄ (k)
i

]

− σ̂i

)

=
M

∑
j=1
j �=i

qQi→ j

(
M

∑
k=1

[

ω(k)ΔF (k)
i→ j

]

− dVi→ j

)

+
M

∑
k=1

[

ω(k)
(

μ̄ (k)− rF(k)
i

)]

− (μ̂i− rVi)

holds true. Rearranging this expression,

M

∑
k=1

⎡

⎢
⎣ω(k)

⎛

⎜
⎝ξiσ̄

(k)
i −

M

∑
j=1
j �=i

[

qQi, jΔF (k)
i→ j

]

−
(

μ̄i− rF(k)
i

)

⎞

⎟
⎠

⎤

⎥
⎦

− ξiσ̂i +
M

∑
j=1
j �=i

[

qQi→ jΔVi→ j

]

+ μ̂i− rVi = 0.
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Since this must hold for any position ω(1), ω(2), . . ., ω(M), we write the above as

ξiσ̄
(k)
i −

M

∑
j=1
j �=i

qQi→ jΔF (k)
i→ j =

(

μ̄ (k)
i − rF(k)

i

)

∀k ∈S (6.33)

and

ξiσ̂i−
M

∑
j=1
j �=i

qQi→ jΔVi→ j = μ̂i− rVi. (6.34)

This procedure effectively decouples the hedging instruments from the option V .
Resolving the symbols μ̂i and σ̂i in (6.34) yields

1
2

b2
i
∂ 2Vi

∂S2 +(ai− ξibi)
∂Vi

∂S
− rVi+

M

∑
j=1
j �=i

[

qQi→ jΔVi→ j

]

+
∂Vi

∂ t
= 0, (6.35)

which describes a system of M PDEs: one for each regime. The more familiar form
above reveals ai−ξibi as the risk-neutral drift and the qQi→ j terms as the risk-neutral
transition intensities.

We express this more compactly by defining

qQi→i =−
M

∑
j=1
j �=i

qQi→ j

and noting that

M

∑
j=1
j �=i

qQi→ jΔVi→ j =
M

∑
j=1
j �=i

qQi→ jVj (Ji→ jS, t)−Vi

M

∑
j=1
j �=i

qQi→ j =
M

∑
j=1
j �=i

qQi→ jVj (Ji→ jS, t)+ qQi→iVi

so that (6.35) becomes

1
2

b2
i
∂ 2Vi

∂S2 +(ai− ξibi)
∂Vi

∂S
−
(

r− qQi→i

)

Vi +
M

∑
j=1
j �=i

[

qQi→ jVj (Ji→ jS, t)
]

+
∂Vi

∂ t
= 0.

(6.36)

Eliminating the Market Price of Risk

It is often possible to eliminate the market price of risk ξibi from (6.36) [16]. For
example, let

ai (S (t) , t) = (μi−α)S (t)
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and
bi (S (t) , t) = σiS (t) .

Under these parameters, (6.36) becomes

1
2
σ2

i S2 ∂ 2Vi

∂S2 +(μi−α−ξiσi)S
∂Vi

∂S
−
(

r−qQi→i

)

Vi +
M

∑
j=1
j �=i

[

qQi→ jVj
(

Ji→ jS, t
)]

+
∂Vi

∂ t
= 0.

(6.37)

Suppose further that S itself is not tradeable but tracks the tradeable index Ŝ with

dŜ (t) = μiŜ (t)dt +σiŜ (t)dZ (t) .

Take the 1st instrument, F (1), to be Ŝ so that

μ̄ (1)
i = μiŜ

σ̄ (1)
i = σiŜ

ΔF (1)
i→ j = Ŝ (Ji→ j− 1) .

Substituting this into (6.33) for k = 1 yields

ξiσiŜ−
M

∑
j=1
j �=i

qQi→ j Ŝ (Ji→ j− 1) = ξiσiŜ−ρQ

i Ŝ = μiŜ− rŜ.

More compactly, we write this as

ξiσiŜ =
(

ρQ

i + μi− r
)

Ŝ (6.38)

where

ρQ

i =
M

∑
j=1
j �=i

qQi→ j (Ji→ j− 1) =
M

∑
j=1

qQi→ jJi→ j .

Whenever Ŝ is equal to zero, S is necessarily zero so that the term associated with
the market price of risk in (6.37) also vanishes. We are thus only interested in the
case in which Ŝ �= 0, under which (6.38) states that

ξiσi = ρQ

i + μi− r.

Substituting the above into (6.37),

1
2
σ2

i S2 ∂ 2Vi

∂S2 +
(

r−α−ρQi
)

S
∂Vi

∂S
−
(

r−qQi→i

)

Vi +
M

∑
j=1
j �=i

[

qQi→ jVj
(

Ji→ jS, t
)]

+
∂Vi

∂ t
= 0.
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Chapter 7
A Stochastic Approximation Approach
for Trend-Following Trading

Duy Nguyen, George Yin, and Qing Zhang

Abstract This work develops a feasible computation procedure for trend-following
trading under a bull-bear switching market model. In the asset model, the drift of
the stock price switches between two parameters corresponding to an uptrend (bull
market) and a downtrend (bear market) according to a partially observable Markov
chain. The objective is to buy and sell the underlying stock to maximize an expected
return. It is shown in Dai et al. (SIAM J Financ Math 1:780–810, 2010; Optimal
trend following trading rules. Working paper) that an optimal trading strategy can
be obtained in terms of two threshold levels. Finding the threshold levels turns out to
be a difficult task. In this paper, we develop a stochastic approximation algorithm to
approximate the threshold levels. One of the main advantages of this approach is that
one need not solve the associated HJB equations. We also establish the convergence
of the algorithm and provide numerical examples to illustrate the results.

7.1 Introduction

This paper develops a numerical procedure to approximate the trend-following trad-
ing strategy. The idea of trend following is to go long at the beginning of a bull
market and exit when the trend reverses. A trend-following trader purchases shares
when the prices go up to a certain level from the bottom and sells when the prices
start to fall.

There is an extensive literature devoted to trading and portfolio management
strategies. For instance, Merton [11] pioneered the continuous-time portfolio
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selection with utility maximization, which was subsequently extended to incorpo-
rate transaction costs by Magill and Constantinides [10]; see also Davis and Norman
[5], Shreve and Soner [12], Liu and Loewenstein [9], Dai and Yi [2], and references
therein. Zhang and Zhang [17] obtained an optimal trading strategy in a mean re-
verting market. Other work relevant to mean reverting strategies can be found in
Dai et al. [1], Song et al. [13], Zervos et al. [16], among others. In connection with
trend-following trading, Iwarere and Barmish [7] developed an confidence inter-
val approach to identify trading opportunities. Dai et al. [3] provided a theoretical
justification of a trend-following strategy in a bull-bear switching market. They em-
ployed the conditional probability in the bull market to generate trade signals. How-
ever, the work imposed a somewhat unrealistic assumption: Only one share of stock
is allowed to be traded. Such restriction was removed in Dai et al. [4]. It is shown
in these papers that the optimal trading rule can be determined by two threshold
levels. Buy if the conditional probability of bull market given up to date stock price
is higher than the upper level and sell if it falls below the lower level. Note that in
both [3, 4] partial differential equations are extensively used to character the optimal
trading rules. Then a finite difference method is used to solve the associated HJB
equations.

While the recent progress provided some useful results, the computational issue
remains a real challenge. In this paper, we focus on computational aspect and aim
to provide an easily implementable alternative. Instead of solving the complicated
partial differential equations, we use a stochastic approximation approach to find the
optimal threshold levels. We model the market trends using a geometric Brownian
motion with regime switching. Two regimes are considered: the uptrend (bull mar-
ket) and downtrend (bear market). The switching process is modeled as a two-state
Markov chain which is not directly observable. In addition, we assume all funds
are available to trade. Moreover, to keep things simple, we consider only one round
trip trading (buying the stock and then selling it). The objective is to maximize the
expected percentage gain. We construct a stochastic approximation algorithm and
establish its convergence. In addition, we also carry out extensive Monte Carlo sim-
ulations and real market tests.

The rest of the paper is arranged as follows. We present the problem formulation
in the next section. Section 7.3 is devoted to convergence analysis. Then in Sect. 7.4,
we report numerical experiment results.

7.2 Problem Formulation

Let St be the asset price at time t satisfying the equation

dSt

St
= μ(αt)dt +σdWt , S0 = x, (7.1)
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where μ(i) = μi, i = 1,2, is the expected rate of return, σ > 0 the volatility, Wt a
standard Brownian motion, and αt a Markov chain with state space M = {1,2}.
The process αt represents the market mode at each time t. That is, αt = 1 indicates
a bull market and αt = 2 a bear market. Naturally, we assume that μ1 > 0 > μ2. Let

Q =

(−λ1 λ1

λ2 −λ2

)

be the generator of αt for some λ1 > 0 and λ2 > 0. Throughout

the paper, we assume that {αt} and {Wt} are independent.
Let T denote a finite time and let 0≤ τ ≤ ν ≤T be stopping times so that one

buys the stock at τ and sells at ν . In this paper, we consider only one round-trip
trading (one buying and selling cycle). In addition, we trade all available funds. Our
objective is to choose τ and ν to maximize the reward function

J(τ,ν) = E

[

log

(
Sν
Sτ

)]

. (7.2)

In this paper, we assume that only the stock price St is observable at time t. The
market trend αt is not directly observable, which leads to a control problem with
incomplete information. It is necessary to convert the problem into a completely
observable one. One way to achieve this is to use the Wonham filter [14]; see also
Elliott et al. [6].

Let pt = P(αt = 1|Ss : 0 ≤ s ≤ t) denote the conditional probability of αt = 1
(bull market) given the stock price up to time t. Then the Wonham filter in terms of
pt satisfies the following stochastic differential equation (SDE)

d pt = [−(λ1 +λ2)pt +λ2]dt +
(μ1− μ2)pt(1− pt)

σ
dŴt , (7.3)

where dŴt is an innovation process given by

dŴt =
d log(St)− [(μ1− μ2)pt + μ2−σ2/2]dt

σ
. (7.4)

To have a quick view of the dependence of pt on (St ,αt ), we take λ1 = 0.36,
λ2 = 2.53, μ1 = 0.18, μ2 = −0.77, and σ = 0.184 and plot the sample path of
randomly generated (St ,αt) and the corresponding pt in Fig. 7.1.

In view of (7.4), we rewrite (7.1) in terms of pt and Ŵt :

dSt = St [(μ1− μ2)pt + μ2]dt + StσdŴt .

It follows that

Sν = Sτ exp

(∫ ν

τ
[(μ1− μ2)pr + μ2−σ2/2]dr+σ(Ŵν−Ŵτ)

)

.
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Fig. 7.1 A sample path of (St ,αt) and the corresponding pt

Therefore, the reward in (7.2) can be written in terms of pt and Ŵt as

J(τ,ν) = E

[∫ ν

τ
[(μ1− μ2)pr + μ2−σ2/2]dr+σ(Ŵν−Ŵτ)

]

= E

[∫ ν

τ
[(μ1− μ2)pr + μ2−σ2/2]dr

]

.
(7.5)

In [3], it is shown that the optimal strategy is determined by threshold levels θ b

(buy level) and θ s (sell level) with θ s < θ b. In this paper, we develop an alternative
approach and use a stochastic approximation approach to find the optimal threshold
level (θ s,θ b). Let

φ(θ ) = φ(θ b,θ s) = E

(∫ ν(θ)

τ(θ)

[

(μ1− μ2)pr + μ2− σ2

2

]

dr

)

, (7.6)

where
τ(θ ) = inf{t : pt ≥ θ b},
ν(θ ) = inf{t > τ(θ ) : pt ≤ θ s}.

The idea can be explained as follows. Although φ(θ ) is not observable due to the
involvement of expectation, we can measure φ(θ ) with some noise. The simplest
of such measurement may be written as φ(θ )+ χ(ξ ,θ ) where χ(ξ ,θ ) is the noise.
In lieu of such a simple form, we consider a much more general form in that the
noise corrupted observation or measurement of φ(θ ) is φ̃(θ ,ξ ). That is, nonadditive
noise is allowed and complex nonlinear function form can be incorporated in our
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formulation. We also assume that Eξ [φ̃(θ ,ξ )] = φ(θ ) and for the moment let us
assume that φ̃ (θ ,ξ ) depends smoothly on θ .
To proceed, we describe the stochastic approximation procedure and illustrate the
use of φ̃(θ ,ξ ).

0. Initialization: Choose an initial threshold estimate θ0 = (θ b
0 ,θ

s
0).

1. Simulation: Generate {pt : t ≤T } using (7.3)
2. Iteration: With n > 0 and θn = (θ b

n ,θ s
n) computed, carry out one step stochastic

approximation to find updated threshold θn+1 = (θ b
n+1,θ

s
n+1). Let e1 = (1,0),

e2 = (0,1), cn = 1/n1/6, and ξ±n,i are noise sequences.

(a) Find τ(θn + cne1)< ν(θn), compute φ̃ (θn + cne1,ξ+
n,1).

(b) Find τ(θn− cne1)< ν(θn), compute φ̃ (θn− cne1,ξ−n,1).
(c) Find τ(θn)< ν(θn + cne2), compute φ̃ (θn + cne2,ξ+

n,2).

(d) Find τ(θn)< ν(θn− cne2), compute φ̃ (θn− cne2,ξ−n,2).
(e) Use (a)–(d), find the gradient estimate ∇φ̃ (θn,ξn) = (∇iφ̃ (θn,ξn)) of φ(θ )

by

∇iφ̃ (θn,ξn) =
1

2cn
[φ̃(θn + cnei,ξ+

n,i)− φ̃(θn− cnei,ξ−n,i)], for i = 1,2.

(f) Update one step the parameter estimate by using stochastic approximation
method (SA) given by

θn+1 = θn +
1
n
∇φ̃ (θn,ξn). (7.7)

3. Repeat step 2 with n← n+1 until ||θn−θn+1||2 < ε with a prescribed tolerance
level ε or with n = N for some large N.

To proceed, we use the techniques developed in [8] to analyze the algorithm.

7.3 Asymptotic Properties

In the convergence analysis, we use the idea that on each “small” interval, the noise
ξ varies much faster than the “state” θ . Thus with θ “fixed”, the noise will be
eventually averaged out resulting in an averaged system that can be characterize by
a system of ordinary differential equations. Define

tn =
n

∑
j=1

1
j
,

m(t) = max{n : tn ≤ t},
θ 0 = θn, for t ∈ [tn, tn+1) and θ n(t) = θ 0(tn + t).
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Note that θ 0(·) is a piecewise constant interpolation of θn on the interval [tn, tn+1)
and θ n(·) is its shift. Next, for i = 1,2, we define

bi
n =

φ(θn + cnei)−φ(θn− cnei)

2cn
− ∂φ(θn)

∂θ i ,

ρ i
n = [φ̃(θn + cnei,ξ+

n,i)− φ̃(θn− cnei,ξ−n,i)]
−En[φ̃ (θn + cnei,ξ+

n,i)− φ̃(θn− cnei,ξ−n,i)],
ψ i

n = [Enφ̃(θn + cnei,ξ+
n,i)−φ(θn + cnei)]

−[Enφ̃ (θn− cnei,ξ−n,i)−φ(θn− cnei)],

where En denotes the condition expectation with respect to Fn - the σ−algebra
generated by {ξ±j : j < n}. Write bn = (b1

n,b
2
n)
′. In the above, ψ i

n and bi
n for i = 1,2

represent the noise and bias, and {ρn = (ρ1
n ,ρ2

n )
′} is a martingale difference se-

quence. It is also reasonable to assume that after taking the conditional expectation,
the resulting function is smooth. Thus we have separate the noise into two part, un-
correlated noise {ρn} and correlated noise {ψn = (ψ1

n ,ψ2
n )
′}. With these notations,

the algorithm in (7.7) can be written as following

θn+1 = θn +
1
n
∇φ(θn)+

1
n
ψn

2cn
+

1
n
ρn

2cn
+

bn

n
. (7.8)

Note that in fact, both ψn and bn are θ dependent. In what follow, when it is needed,
we write ψn = ψ(θn,ξn) where ξn includes ξ±n .
To proceed with the analysis of the algorithm (7.7), we assume the following con-
ditions hold.

(A1) For each ξ , φ̃ (·,ξ ) is a continuous function.
(A2) For each 0 < N < ∞ and each 0 < T < ∞, the set {sup|θ |≤N φ̃ (θ ,ξn) : n ≤

m(T )} is uniformly integrable.
(A3) The sequences {ξ±n } are bounded. For each θ in a bounded set and for each

0 < T < ∞

sup
n

m(T+tn)−1

∑
j=n

1
j

√

E|E j
ψ j(θ ,ξ j)

2c j
|< ∞, lim

n
sup

0≤i≤m(T+tn)
E|ψn

i |= 0,

where for i≤ m(T + tn),

ψn
i = (n+ i)

m(T+tn)+i−1

∑
j=n+i

1
2 jc j

En+i[ψ j(θn+i+1,ξ j)−ψ j(θn+i,ξ j)].

(A4) The second derivative of φ(·) is continuous.

Before we proceed to the analysis of the algorithm, let us recall the definition of
weak convergence. We say a sequence of R2-valued random variables Zn converges
weakly to a random variable Z iff for any bounded and continuous function h(·),

Eh(Zn)→ Eh(Z) as n→ ∞,
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and Zn is said to be tight iff for each η > 0, there exist a compact set Kη ⊂ R
2 such

that
P(Zn ∈ Kη)≥ 1−η for all n.

Let Sν = {x ∈ R
r : |x| < ν} be the ν-sphere. We say that the process ζ n,ν is an

ν-truncation of the process ζ n if ζ n,ν (t) = ζ (t) up until the first exist from Sν and

lim
m→∞

limsup
n

P
(

sup
t≤T
|ζ n,ν | ≥ m

)

= 0 for each T < ∞.

Next let qν be a smooth function such that qν(θ )= 1 when |θ | ≤ ν and qν(θ ) = 0
when |θ | ≥ ν+ 1. We define {θνn } recursively by θν1 = θ1 and

θνn+1 = θνn +
[1

n
∇φ(θn)+

1
n
ψn

2cn
+

1
n
ρn

2cn
+

bn

n

]

qν(θνn ), n≥ 1. (7.9)

Define the interpolation of θνn as θ 0,ν = θνn for t ∈ [tn, tn+1) and θ n,ν(t) = θ 0,ν(t +
tn). Thus θ n,ν is a ν-truncation of θ n ( see [8, p. 278]).
In what follows, we first show that the truncated process {θ n,ν(·)} is tight in
D2[0,∞) – the space of R

2-valued functions that are right continuous, have left-
hand limits, and endowed with the Skorohod topology. We then obtain the weak
convergence of θ n,ν and characterize the limit as a solution of an ODE. Finally, by
letting ν → ∞, we conclude that the untruncated process {θ n(·)} also converges.

Lemma 7.1. Under conditions (A1)–(A4),

m(t+s+tn)−1

∑
k=m(t+tn)

1
k

[ψk +ρk

2ck

]

qν(θνk ) converges in probability as n→ ∞.

The convergence is uniform in t.

Proof. First recall that {ρn} is a martingale difference sequence. The orthogonality
implies that

Em(t+tn)

∣
∣
∣

m(t+s+tn)−1

∑
k=m(t+tn)

1
k
ρk

2ck
qν(θνk )

∣
∣
∣

2

≤ K
m(t+s+tn)−1

∑
k=m(t+tn)

1

k10/6
Em(t+tn)|ρk|2→ 0 as n→ ∞.

(7.10)

Using the same technique as in [15, Lemma 3.1], we can show that

Em(t+tn)

∣
∣
∣

m(t+s+tn)−1

∑
k=m(t+tn)

1
k
ψk

2ck
qν(θνk )

∣
∣
∣

2→ 0 in mean as n→ ∞. (7.11)

Thus the lemma is proved. ��
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Theorem 7.1. Under conditions (A1)–(A4), θ n(·) converges weakly to θ (·), which
is a solution of

θ̇ = ∇φ(θ )

provided that the ordinary differential equation above has a unique solution for each
initial condition.

Proof. The proof of the weak convergence requires that we first verify the sequence
{θ n(·)} is tight. By virtue of the Prohorov’s theorem which states that on a complete
separable metric space, tightness is equivalent to sequentially compact, can then
extract a convergent subsequence. We next characterize the limit by showing that it
is the solution of a martingale problem with a desired operator. The proof is divided
into three steps.

(i) Tightness of {θ n,ν(·)}. Note that

θ n,ν(t) = θ̃ n,ν(t)+
m(t+tn)−1

∑
k=1

1
k

[ψk +ρk

2ck

]

qν(θνk ).

For any η > 0, let 0≤ t, and 0≤ s≤ η . We have

Em(t+tn)|θ̃ n,ν(t + s)− θ̃ n,ν(t)|2

≤ KEm(t+tn)

∣
∣
∣

m(t+s+tn)−1

∑
k=m(t+tn)

1
k
[∇φ(θνk )+ bk]q

ν(θνk )
∣
∣
∣

2
,

where Em(t+tn) denotes the conditional expectation on the σ -algebra generated
by Fm(t+tn). By the mean of the boundedness of {θνk }, we have

Em(t+tn)

∣
∣
∣

m(t+s+tn)−1

∑
k=m(t+tn)

1
k
∇φ(θνk )q

ν(θνk )
∣
∣
∣

2 ≤ K[(t + s+ tn)− (t + tn)]
2 ≤ Kη2.

(7.12)
Similarly

Em(t+tn)

∣
∣
∣

m(t+s+tn)−1

∑
k=m(t+tn)

1
k

bkqν(θνk )
∣
∣
∣

2 ≤ Kη2. (7.13)

Using (7.11)–(7.13), taking limsupn and then followed by letting η → 0, we
obtain

lim
η→0

limsup
n→∞

sup
0≤s≤η

E[Em(t+tn)|θ n,ν(t + s)−θ n,ν(t)|2] = 0 (7.14)

Combining (7.14) with the result of Lemma 7.1, the tightness criterion in [8,
p. 47] yields the tightness of {θ n,ν(·)}.

(ii) Characterization of the limit process. Sine {θ n,ν(·)} is tight by the Prohorov’s
theorem, we can extract a convergent subsequence which is sill denoted by
{θ n,ν(·)} for notational simplicity. Let θν(·) be its limits. We characterize the
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limit process. For each t,s≥ 0, Lemma 7.1 implies that

θ n,ν(t + s)−θ n,ν(t) =
m(t+s+tn)−1

∑
k=m(t+tn)

1
k
[∇φ(θ n,ν

k )+ bk]q
ν(θνk )+ o(1), (7.15)

where o(1)→ 0 in probability uniformly in t. By a truncated Taylor expansion
and (A4), it can be verified that

bnqν(θ n,ν
n ) = O(c2

n/cn) = O(cn).

Thus

E
∣
∣
∣

m(t+s+tn)−1

∑
k=m(t+tn)

1
k

bkqν(θνk )
∣
∣
∣→ 0 as n→ ∞ uniformly in t.

Therefore

m(t+s+tn)−1

∑
k=m(t+tn)

1
k

bkqν(θνk )→ 0 as n→ ∞ in probability uniformly in t (7.16)

Note that there is an increasing sequence of positive integers {ml} and a de-
ceasing sequence of positive real numbers {δl} such that m(t + tn) ≤ ml ≤
ml+1− 1≤ m(t + tn + s)− 1 for any t,s > 0 and that

1
δl

ml+1−1

∑
j=ml

1
j
→ 1 as n→ ∞.

Also note that in the choice above, δl depends on n so we could write it as δ n
l .

However, to keep the notation simple, we write it as δl in what follows. Then
we can write the right-hand side of (7.15) as follow

m(t+s+tn)−1

∑
k=m(t+tn)

1
k
∇φ(θ n,ν

k )qν(θνk )

= ∑
l:m(t+tn)≤ml≤ml+1−1≤m(t+tn+s)−1

ml+1−1

∑
k=ml

1
k
∇φ(θ n,ν

k )qν(θνk )

= ∑
l:m(t+tn)≤ml≤ml+1−1≤m(t+tn+s)−1

ml+1−1

∑
k=ml

1
k
∇φ(θ n,ν

ml
)qν(θνml

)+ o(1)

= ∑
l:m(t+tn)≤ml≤ml+1−1≤m(t+tn+s)−1

δl
1
δl

ml+1−1

∑
k=ml

1
k
∇φ(θ n,ν

k )qν(θνk )+ o(1)

= ∑
l:m(t+tn)≤ml≤ml+1−1≤m(t+tn+s)−1

δl∇φ(θ n,ν
ml

)qν(θνml
)+ o(1),

(7.17)
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where o(1)→ 0 in probability uniformly in t. Using (7.15)–(7.17) for any
bounded and continuous function h(·), continuous differentiable function f (·),
any positive integer κ , any ti ≤ t with i ≤ κ , we can show that there is a se-
quence {ẽn} of real numbers such that ẽn→ 0 as n→ ∞, and that

Eh(θ n,ν(ti) : i≤ κ)[ f (θ n,ν(t + s))− f (θ n,ν(t))]
= Eh(θ n,ν(ti) : i≤ κ)
×
[

∑
l:m(t+tn)≤ml≤ml+1−1≤m(t+tn+s)−1

δl∇ f ′(θ n,ν
ml

)∇φ(θ n,ν
ml

)qν(θνml
)
]

+ ẽn

→ Eh(θ n,ν(ti) : i≤ κ)
∫ t+s

t
∇ f ′(θ n(u))∇φ(θ n(u))qν(θν (u))du as n→ ∞.

(7.18)
In the above, we have used the weak convergence of θ n,ν(·) to θν(·) and Sko-
rohod representation. On the other hand, the weak convergence and the Skoro-
hod representation yield that

Eh(θ n,ν(ti) : i≤ κ)[ f (θ n,ν(t + s))− f (θ n,ν(t))]
→ Eh(θν(ti) : i≤ κ)[ f (θν (t + s))− f (θν(t))] as n→ ∞. (7.19)

Then (7.17) and (7.18) lead to the fact that θν(·) is solution of the martingale
problem with the operator given by

Lν f (θν ) = ∇ f ′(θν)∇φ(θν )qν(θ ),

or equivalently, θν(·) is the solution of the truncated differential equation

θ̇ ν = ∇φ(θν )qν (θν).

(iii) The convergence of the untruncated sequence {θ n(·)}. We so far have worked
with a fixed but arbitrary integer ν . In this step, we examine the asymptotic
properties as ν → ∞. The details are similar to that of [8, p. 284] and thus
omitted for brevity. ��

7.4 Numerical Examples

In this section, we demonstrate the performance of our algorithm. First, we carry out
Monte Carlo simulations to illustrate the method. Then we test how the algorithm
works in real market.

Using the SDE in (7.3), we rewrite pt in term of the stock price St by

d pt = f (pt)dt +
(μ1− μ2)pt(1− pt)

σ2 d log(St), (7.20)
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where f is a third-order polynomial of pt given by

f (p) =−(λ1 +λ2)p+λ2− (μ1− μ2)p(1− p)((μ1− μ2)p+ μ2−σ2/2)
σ2 .

It is easy to check that f (0) = λ2 > 0 and f (1) = −λ1 < 0. Furthermore, it is
readily seen that f (p) approaches ±∞ as |p| → ∞. Therefore, f has exactly one
root ξ ∈ (0,1). When the stock prices stay as a constant, pt is attracted to ξ . This
attractor is unbiased choice for p0. Moreover, since (μ1− μ2)pt(1− pt)/σ2 ≥ 0,
pt moves in the same direction as the stock prices. This is also intuitive since the
movement of stock price forms trends. We will estimate pt simply by replacing the
differential equation in (7.20) with a difference using the trading day as the step size
on the finite horizon [0,Ndt]

pt+1 = pt + f (pt)dt +
(μ1− μ2)pt(1− pt)

σ2 log

(
St+1

St

)

,

where t = 0,dt,2dt, . . . ,Ndt.
Note that it is possible that pt > 1 or pt < 0 for some t. To keep pt ∈ [0,1], we
truncate the process and follow the truncated equation instead:

pt+1 = min
(

max
(

pt + f (pt)dt +
(μ1− μ2)pt(1− pt)

σ2 log(
St+1

St
),0
)

,1
)

.

Example 7.1 (Monte Carlo simulations). In this example, we choose the parameters
with the following specifications:

Table 7.1 Monte Carlo parameter values

λ1 λ2 μ1 μ2 σ K ρ

0.36 2.53 0.18 −0.77 0.184 0.001 0.0679

These parameters were used in [4] for DJIA index. We generate sample paths of
St and pt using Eqs. (7.1) and (7.3) with N = 50,000 steps, step size dt = 1/N, and
T = 1. One sample path of St is given in Fig. 7.2. The corresponding pt is given in
Fig. 7.3 and (θ b

n ,θ s
n) in Fig. 7.4. We start with initial guess (θ b

0 ,θ
s
0) = (0.9,0.7) and

perform stochastic approximation (7.7) with 1,000 iterations. We then use different
seeds to perform the algorithm using 500 replications. After taking the sample mean
we obtain (θ b,θ s) = (0.916,0.725), and φ = 0.0401 which is equivalent to 4.01%
gain obtained in one round-trip transaction.

We next perturb the parameters to see the dependence of the threshold level. Our
tests show that the threshold (θ b,θ a) is not sensitive to changes in these parameters.
These are summarized in Table 7.2.

Next we simulate this trend-following strategy and compare it with the buy-and-
hold strategy by using a large number of sample paths. Again, we use the parameter
values given in Table 7.1. The average returns of the trend-following (TF) strategy
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on one unit invested on simulated paths are listed on Table 7.3 together with the
average number of trades on each path. We also list the average return of the buy
and hold (BH) strategy for comparison. These results are given in Table 7.3.
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Fig. 7.2 A random sample path of stock prices
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Fig. 7.3 A sample path of pt
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Fig. 7.4 Buy and sell thresholds

Table 7.2 Thresholds with different parameters

λ1 λ2 μ1 μ2 σ θ b θ s

0.36 2.53 0.18 −0.77 0.184 0.916 0.725
0.36 2.53 0.18 −0.77 0.174 0.917 0.725
0.36 2.53 0.18 −0.77 0.194 0.916 0.727
0.36 2.53 0.17 −−−0.71 0.184 0.915 0.730
0.36 2.53 0.19 −0.83 0.184 0.917 0.731
0.36 2 0.18 −0.77 0.184 0.915 0.724
0.36 3 0.18 −0.77 0.184 0.916 0.725
0.3 2.53 0.18 −0.77 0.184 0.915 0.733
0.42 2.53 0.18 −0.77 0.184 0.916 0.718

Table 7.3 Monte Carlo simulation: 20 years

No. of sample paths TF (%) BH (%) No. of trades

10,000 11.51 4.64 36.53
50,000 11.55 4.71 36.58
100,000 11.51 4.67 36.64

We next investigate the performance of our strategy on each sample path. We
use the parameters in Table 7.1 and the buy-sell threshold (θ b,θ s) = (0.916,0.725).
The result of simulation is collected in Table 7.4. We can see that the result is very
sensitive to each individual sample path, but our strategy clearly outperforms the
buy and hold strategy.
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Table 7.4 Ten single-path simulations

Trend following (%) Buy and hold (%) No. of trades

11.61 4.42 22
7.10 2.40 40
6.70 2.92 46
5.50 2.11 50
13.89 6.31 32
14.72 9.32 30
13.50 10.70 40
12.78 5.35 32
9.96 6.56 40
12.33 3.70 32

Next, we show that the trend-following strategy is not sensitive to small changes
in these thresholds by examining the dependence of the performance on the thresh-
old level (θ b,θ s). The results are summarized in Table 7.5. We can see from
Table 7.5 that shifting the thresholds has little impact on the performance.

Table 7.5 Shifting the thresholds

θ b θ s TF (%) BH (%) No. of trades

0.906 0.718 11.55 4.71 37.16
0.915 0.724 11.54 4.69 36.58
0.916 0.727 11.59 4.70 36.78
0.917 0.731 11.44 4.58 37.39
0.925 0.733 11.51 4.72 36.25

Example 7.2 (Real Market Tests). In this example, we examine how our algorithm
works in the real markets. We test on the historical data of SSE (01/03/2000–
12/30/2011) and SP500 (01/03/1972–12/30/2011). To run the SA algorithm, we
need to determine the parameters. We regard a decline of more than 19% as a bear
market and a rally of 24% or more as a bull market. Statistic of bull and bear mar-
kets for SSE index in 12 years from 2000 to 2011 are shown in Table 7.6. Similar
for SP 500, see [3] for more details.

Table 7.6 Statistics of bull and bear markets

Index λ1 λ2 μ1 μ2 σ

SSE(00-11) 1 1 1 −1 0.253
SP500(72-11) 0.353 2.208 0.196 −0.616 0.173

The testing results for trading SSE and SP 500 are summarized in Table 7.7. The
annual return with trend following, and buy and hold strategy is collected along
with annual Sharpe ratio. Using our trend-following trading strategy, e.g. SSE, one
dollar invested in the beginning of 2000 returns $5.30 at the end of 2011 while
buy and hold strategy returns $1.61 in the same period. The annual return for trend
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following and buy and hold are 14.90 and 4.05%, respectively. The story for SP500
is similar: one dollar invested in the beginning of 1972 with trend following returns
$15.68 which corresponds to the annual return 7.12% at the end of 2011 while
buy hold returns $12.36 which corresponds to the annual return 6.49% in the same
period. The equity curves for SSE and SP 500 tests are given in Figs. 7.5 and 7.7,
respectively. The natural logarithms of the corresponding indices (setting the initial
to 1) are given in Figs. 7.6 and 7.8, respectively. For example, in Fig. 7.5, the equity
curve is obtained by following our trend-following rule and invest $1 to begin with.
Then in Fig. 7.7, we plot the equity curve beginning with $1 in the SP500 index.
It is clear that the trend-following strategy not only outperforms the buy and hold
strategy in total return, but also has a smoother equity curve which means higher
Sharpe ratio. In addition, when sitting on cash, 3 % interest rate is added to the
equity curve for the SSE and 6.79 % for the SP500.

Table 7.7 Testing results for trend following with real stock data

Index(time frame) TF (%) BH (%) TF Sharpe ratio BH Sharpe ratio 10 year bond (%)

SSE(00-11) 14.90 4.05 1.159 0.461 3.00
SP500(72-11) 7.12 6.49 0.1172 0.1052 6.79
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Fig. 7.5 The equity curve with trend following of SP500 between 1972 and 2011
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Fig. 7.7 The equity curve with trend following of SSE between 2000 and 2011
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Chapter 8
A Hidden Markov-Modulated Jump Diffusion
Model for European Option Pricing

Tak Kuen Siu

Abstract The valuation of a European-style contingent claim is discussed in a hid-
den Markov regime-switching jump-diffusion market, where the evolution of a hid-
den economic state process over time is described by a continuous-time, finite-state,
hidden Markov chain. A two-stage procedure is used to discuss the option valua-
tion problem. Firstly filtering theory is employed to transform the original market
with hidden quantities into a filtered market with complete observations. Then a
generalized version of the Esscher transform based on a Doléan-Dade stochastic
exponential is employed to select a pricing kernel in the filtered market. A partial-
differential-integral equation for the price of a European-style option is presented.

8.1 Introduction

The valuation of contingent claims has long been a very important issue in the theory
and practice of finance. The seminal works of Black and Scholes [2] and Merton [27]
pioneered the development of option valuation theory and significantly advanced
the practice of option valuation in the finance industry. The Black-Scholes-Merton
option valuation is deeply immersed in the practice in the finance industry to the
extent that it is rather uneasy to find a market practitioner in the City who has never
heard of the Black-Scholes-Merton option pricing model. There may be two major
reasons why the Black-Scholes-Merton option pricing model is so popular in the
finance industry. Firstly, the pricing model is preference-free which means that the
price of an option does not depend on the subjective view or risk preference of a
market agent. Secondly, there is a closed-form expression for the price of a standard
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European call option which is easy to implement in practice. Despite the popular-
ity of the Black-Scholes-Merton option pricing model, its use has been constantly
challenged by both academic researchers and market practitioners. Particularly, the
geometric Brownian motion assumption underlying the model cannot explain some
important empirical features of asset price dynamics, such as the heavy-tails of the
return’s distribution, the time-varying volatility, jumps and regime-switchings. Fur-
thermore, the model cannot explain some systematic empirical features of option
prices data, such as the implied volatility smile or smirk. There is a large amount of
literature which extend the Black-Scholes-Merton model with a view to providing
more realistic modeling frameworks for option valuation.

Markovian regime-switching models are one of the major classes of econometric
models which can incorporate some stylized facts of asset price dynamics, such as
the heavy-tails of the return’s distribution, the time-varying volatility and regime-
switchings. Though Markovian regime-switching models have a long history in
engineering, their general philosophy and principle appeared in some pioneering
works in statistics and econometrics. Quandt [31] and Goldfeld and Quandt [18]
described nonlinearity in economic data using regime-switching regression mod-
els. Tong [37, 38] pioneered the fundamental principle of probability switching in
nonlinear time series analysis. Hamilton [20] pioneered and popularized the use
of Markov-switching autoregressive time series models in economics and econo-
metrics. Recently much effort has been devoted to the use of Markovian regime-
switching models for option valuation. A general belief is that Markovian regime-
switching models can incorporate the impact of structural changes in economic con-
ditions on asset prices which is particularly relevant for pricing long-dated options.
Some works on option valuation in Markovian regime-switching models include
Naik [30], Guo [19], Buffington and Elliott [3], Elliott et al. [9, 13], Siu [33, 34],
Siu et al. [35], Elliott and Siu [10, 12], amongst others.

Jump-diffusion models are an important extension of the geometric Brownian
motion for modeling asset price dynamics. This class of models captures jumps,
or spikes, in returns due to extraordinary market events or news via jump compo-
nents described by compound Poisson processes. There is a main difference between
Markovian regime-switching models and jump-diffusion models. In a Markovian
regime-switching model, there are jumps in the model coefficients corresponding
to regime switches, but no jumps in the return process. In a jump-diffusion model,
there are jumps in the return process, but no jumps in the model coefficients. Mer-
ton [28] pioneered the use of a jump-diffusion model for option valuation, where
a compound Poisson model with lognormally distributed jump sizes was used to
describe the jump component. Kou [25] pioneered option valuation under another
jump-diffusion model for option valuation, where the jump amplitudes were expo-
nentially distributed. It seems a general belief that jump-diffusion option valuation
models may be suitable for pricing short-lived options by capturing the impact of
sudden jumps in the return processes on option prices. Furthermore it is known
that jump-diffusion option valuation models can incorporate some empirical fea-
tures of asset price dynamics, such as jumps, heavy-tails of the return’s distribution,
and of option prices, such as implied volatility smiles. Bakshi et al. [1] provided a
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comprehensive empirical study on various option valuation models and found that
incorporating both jumps and stochastic volatility is vital for pricing and internal
consistency. Pan [32] and Liu et al. [26] provided theoretical and empirical supports
on the use of jump-risk premia in explaining systematic empirical behavior of option
prices data, respectively.

Both jump-diffusion models and Markovian regime-switching models play an
important role in modeling asset price dynamics and option valuation. It may be
of interest to combine the two classes of models and establish a class of “second-
generation” models, namely, Markovian regime-switching jump-diffusion models.
The rationale behind this initiative is to fuse the empirical advantages of the two
classes of models so that a generalized option valuation model based on the wider
class of “second-generation” models may be suitable for pricing short-lived and
long-dated options traded in the finance and insurance industries, respectively.
Indeed, this initiative was undertaken by some researchers, for example, Elliott
et al. [13] and Siu et al. [35], where Markovian regime-switching jump-diffusion
models were used to price financial options and participating life insurance policies,
respectively. In both Elliott et al. [13] and Siu et al. [35], the modulating Markov
chain governing the evolution of the “true” state of an underlying economy over
time was assumed observable. However, in practice, it is difficult, if not impossible,
to directly observe the “true” state of the underlying economy. Consequently it is of
practical interest to consider a general situation where the modulating Markov chain
is hidden or unobservable. In a recent paper, Elliott and Siu [12] considered a hidden
Markovian regime-switching pure jump model for option valuation and addressed
the corresponding filtering issue.

In this paper, the valuation of a European-style contingent claim in a hidden
Markov regime-switching jump-diffusion market is discussed. In such market, the
price process of an underlying risky security is described by a generalized jump-
diffusion process with stochastic drift and jump intensity being modulated by a
continuous-time, finite-state, hidden Markov chain whose states represent different
states of a hidden economic environment. A two-stage procedure is used to discuss
the option valuation problem. Firstly filtering theory is employed to transform the
original market with hidden quantities into a filtered market where the hidden quan-
tities in the original market are replaced by their filtered estimates. Consequently,
the filtered market is one with complete observations. Then the option valuation
problem is considered in the filtered market which is deemed to be incomplete due
to the presence of price jumps in the market. We employ a generalized version of
the Esscher transform based on a Doléan-Dade stochastic exponential to select a
pricing kernel in the filtered market. A partial-differential-integral equation (PDIE)
for the price of a European-style option is presented. This work is different from
that in Elliott and Siu [12] in at least two aspects. Firstly, the price process of the
risky share we consider here has a diffusion component. Secondly, in Elliott and
Siu [12], the selection of a pricing kernel using a generalized version of the Esscher
transform was first considered in a market with hidden observations. Filtering theory
was then applied to transform the market into one with complete observations. This
paper may partly serve as a brief review for some mathematical techniques which
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are hopefully relevant to pricing European-style options under a hidden regime-
switching jump-diffusion model. In Siu [36], an American option pricing problem
is considered under the hidden regime-switching jump-diffusion model.

The paper is structured as follows. The next section presents the price dynamics
in the hidden Markov regime-switching jump-diffusion market. In Sect. 8.3, we dis-
cuss the use of filtering theory to turn the original market into the filtered market and
give the filtering equations for the hidden Markov chain. The use of the generalized
Esscher transform to select a pricing kernel and the derivation of the PDIE for the
price of the European-style option are discussed in Sect. 8.4. The final section gives
concluding remarks.

8.2 Hidden Regime-Switching Jump-Diffusion Market

A continuous-time financial market with two primitive investment securities, namely
a bond and a share, is considered, where these securities can be traded continuously
over time in a finite time horizon T := [0,T ], where T <∞. As usual, uncertainty is
described by a complete probability space (Ω ,F ,P) where P is a real-world proba-
bility measure. The following standard institutional assumptions for the continuous-
time financial market are imposed:

1. The market is frictionless, (i.e., there are no transaction costs and taxes in trad-
ing the investment securities);

2. Securities are perfectly divisible, (i.e., any fractional units of the securities can
be traded);

3. There is a single market interest rate for borrowing and lending;

To describe the evolution of the hidden economic state over time, we con-
sider a continuous-time, finite-state, hidden Markov chain X := {X(t)|t ∈ T } on
(Ω ,F ,P). In practice, the “true” state of an underlying economy is not observable.
Consequently, it makes practical sense to use a hidden Markov chain to represent
different modes of the underlying economic environment. Using the convention in
Elliott et al. [8], we identify the state space of the chain X with a finite set of stan-
dard unit vectors E := {e1,e2, · · · ,eN} in ℜN , where the jth-component of ei is the
Kronecker product δi j for each i, j = 1,2, · · · ,N. The space E is called the canoni-
cal state space of the chain X. The statistical laws of the chain X are described by
a family of rate matrices {A(t)|t ∈ T }, where A(t) := [ai j(t)]i, j=1,2,··· ,N and ai j(t)
is the instantaneous transition rate of the chain X from state ei to state e j at time
t. So if pi(t) := P(X(t) = ei) and p(t) := (p1(t), p2(t), · · · , pN(t))′ ∈ℜN , then p(t)
satisfies the following Kolmogorov forward equation:

dp(t)
dt

= A(t)p(t) , p(0) = E[X(0)] .

Here E is an expectation under P.



8 A Hidden Markov-Modulated Jump Diffusion Model for European Option Pricing 189

Let FX := {FX(t)|t ∈T } be the right-continuous,P-complete, natural filtration
generated by the chain X. Then Elliott et al. [8] obtained the following semimartin-
gale dynamics for the chain X under P:

X(t) = X(0)+
∫ t

0
A(u)X(u−)du+M(t) , t ∈ T . (8.1)

Here M := {M(t)|t ∈ T } is an ℜN-valued, square-integrable, (FX,P)-martingale.
Since the process {∫ t

0 A(u)X(u−)du|t ∈ T } is FX-predictable, X is a special semi-
martingale, and so the above decomposition is unique. This is called the canonical
decomposition (see, for example, Elliott [6], Chapter 12 therein).

For each t ∈T , let r(t) be the instantaneous interest rate of the bond B at time t,
where r(t)> 0. Then the price process of the bond {B(t)|t ∈ T } evolves over time
as follows:

B(t) = exp

(∫ t

0
r(u)du

)

, t ∈ T ,

B(0) = 1 .

To simplify our discussion, we assume that the interest rate process {r(t)|t ∈ T } is
a deterministic function of time t. In general, one may consider the situation where
the interest rate depends on the hidden Markov chain X. However, in this situation,
it may be difficult, if not impossible, to use filtering theory, (or in particular the
separation principle), to turn the hidden Markovian regime-switching market into
one with complete observations. This is one of the main focuses in the paper.

As in Elliott and Siu (2013), we now describe the jump component in the price
process of the risky share. Let Z := {Z(t)|t ∈T } be a real-valued pure jump process
on (Ω ,F ,P) with Z(0) = 0, P-a.s. It is clear that

Z(t) = ∑
0<s≤t

(Z(s)−Z(s−)) .

Let B(T ) and B(ℜ0) be the Borel σ -fields generated by open subsets of T and
ℜ0 := ℜ\{0}, respectively. Suppose {γ(·, ·,ω)|ω ∈ Ω} is the random measure
which selects finite jump times Tk and the corresponding non-zero random jump
sizes ΔZ(Tk) := Z(Tk)−Z(Tk−), k = 1,2, · · · , of the pure jump process Z. Then

γ(dt,dz,ω) = ∑
k≥0

δ(Tk ,ΔZ(Tk))
(dt× dz)I{Tk<∞,ΔZ(Tk) �=0} ,

where δ(Tk,ΔZ(Tk))(dt× dz) is the random Dirac measure, or point mass, at the point
(Tk,ΔZ(Tk)) and IE is the indicator function of the event E . To simplify the notation,
we write γ(du,dz) for γ(dt,dz,ω) unless otherwise stated.

So, for each t ∈ T ,

Z(t) =
∫ t

0

∫

ℜ0

zγ(du,dz) .
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To specify the statistical laws of the Poisson random measure γ(dt,dz), we consider
the hidden Markov regime-switching compensator:

νX(t−)(dt,dz) :=
N

∑
i=1
〈X(t−),ei〉λi(t)ηi(dz|t)dt ,

where for each i = 1,2, · · · ,N
1. {λi(t)|t ∈T } is the jump intensity process of Z when the economy is in the ith

state; we suppose that {λi(t)|t ∈T } is FZ-predictable, where FZ := {F Z(t)|t ∈
T } is the right-continuous,P-complete, natural filtration generated by the pure
jump process Z;

2. For each t ∈ T and each i = 1,2, · · · ,N, ηi(dz|t) is the conditional Lévy mea-
sure of the random jump size of γ(dt,dz) given that there is a jump at time t
and that the economy is in the ith state; we assume that {ηi(dz|t)|t ∈ T } is an
F

Z-predictable measure-valued process on (Ω ,F ,P).
3. The subscript “X(t−)” is used here to emphasize the dependence of νX(t−)

(dt,dz) on X(t−).
Then the random measure γ̃(·, ·) defined by putting:

γ̃(dt,dz) := γ(dt,dz)−νX(t−)(dt,dz) ,

is a martingale random measure under P, and hence, it is called the compensated
random measure of γ(·, ·). For discussions on random measures, one may refer to
Elliott (1982), Chapter 15 therein.

Let W := {W (t)|t ∈ T } be a standard Brownian motion on (Ω ,F ,P) with re-
spect to the P-augmentation of its natural filtration F

W := {FW (t)|t ∈T }. To sim-
plify our discussion, we assume that W is stochastically independent of X and Z
under P. For each t ∈T , let μX(t) and σ(t) be the appreciation rate and the volatil-
ity of the risky share at time t, respectively. We suppose that μX(t) is modulated by
the chain X as:

μX(t) := 〈μ(t),X(t)〉 .

Here μ(t) := (μ1(t),μ2(t), · · · ,μN(t))′ ∈ ℜN such that for each i = 1,2, · · · ,N and
each t ∈ T , μi(t) > r(t), P-a.s., and {μ(t)|t ∈ T } is an F

W -predictable process;
μi(t) represents the appreciation rate of the risky share at time t when the hidden
economy is in the ith-state at that time; the scalar product 〈·, ·〉 selects the component
in the vector of the appreciation rates that is in force at a particular time according
to the state of the hidden economy at that time; the superscript X in μX is used to
emphasize the dependence of the appreciation rate μX on the chain X.

Furthermore, we assume that the volatility process {σ(t)|t ∈T } is FW -predictable
and that for each t ∈ T , σ(t) > 0, P-a.s. In general, one may consider a situation
where the volatility depends the hidden Markov chain X. However, there may be
two potential concerns about this generalization. Firstly, it complicates the filtering
issue and it is difficult, if not impossible, to derive an exact, finite-dimensional filter
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of the chain X in this general situation. Secondly, some difficulties may arise in the
interpretation of the information structure of the asset price model. Particularly, it
was noted in Guo [19] and Gerber and Shiu [17] that in the case of a Markovian
regime-switching geometric Brownian motion, the volatility parameter can be com-
pletely determined from a given price path of the risky share. More specifically, it
can be identified by means of the predictable quadratic variation. Thirdly, it was
noted in Merton [29] that appreciation rates of risky securities are a lot harder to es-
timate than their volatilities. It may not be unreasonable to assume that the volatility
does not depend on the hidden Markov chain X. Lastly, if the volatility is assumed to
be modulated by the chain X, filtering theory (or in particular the separation princi-
ple) may be difficult to apply to turn the hidden Markovian regime-switching market
into one with complete observations. One may also refer to Elliott and Siu [11] for
related discussions.

We suppose that under the real-world measure P the price process of the risky
share is governed by the following hidden Markovian regime-switching, jump-
diffusion model:

dS(t)
S(t−) =

(

μX(t)+
N

∑
i=1

(ez− 1)〈X(t),ei〉λi(t)ηi(dz|t)
)

dt

+σ(t)dW (t)+
∫

ℜ0

(ez− 1)γ̃(dt,dz) .

Write, for each t ∈T ,

Y (t) := ln(S(t)/S(0)) .

This is the logarithmic return from the risky share over the time interval [0, t].
Applying Itô’s differentiation rule to Y (t) then gives:

dY (t) =

(

μX(t)− 1
2
σ2(t)+

N

∑
i=1

z〈X(t),ei〉λi(t)ηi(dz|t)
)

dt

+σ(t)dW(t)+
∫

ℜ0

zγ̃(dt,dz) .

Since the coefficients in the price process, or the return process, of the risky share
depends on the hidden Markov chain X, the hidden Markovian regime-switching
jump-diffusion market is one with partial observations. In the next section we shall
use filtering theory to transform this market into one with complete observations.

We end this section by specifying the information structure of our market model.
Let FY := {FY (t)|t ∈T } be the P-augmentation of the natural filtration generated
by the return process Y := {Y (t)|t ∈ T }. This is the observable filtration in our
market model. For each t ∈T , let G (t) :=FX(t)∨F (t). Write G := {G (t)|t ∈T }
representing the full information structure of the model.
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8.3 Filtering Theory and Filtered Market

Filtering theory has been widely used by the electrical engineering community to
decompose observations from stochastic dynamical systems into signal and noise.
Particularly, it has been widely used in signal processing, system and control en-
gineering, radio and telecommunication engineering. In this section we shall first
discuss the use of filtering theory to transform the original market with partial
observations to a filtered market with complete observations. The general philos-
ophy of this idea is in the spirit of that of the separation principle used in stochastic
optimal control theory for partially observed stochastic dynamical systems, see, for
example, Fleming and Rishel [15], Kallianpur [22] and Elliott [6]. Then we shall
outline the basic idea of a reference probability approach, whose history can be
traced back to the work of Zakai [39], to derive a stochastic differential equation for
the unnormalized filter of the hidden Markov chain X given observations about the
return process of the risky asset. This filtering equation is called the Zakai equation
in the filtering literature. The derivation of the filtering equation resembles to that in
Wu and Elliott [11] and Elliott and Siu [11], so only key steps are presented and the
results are stated without giving the proofs. Due to the presence of stochastic inte-
grals in the Zakai equation, its numerical computation may be rather uneasy. From
the numerical perspective, it may be more convenient to consider ordinary differen-
tial equations than stochastic differential equations. Using the gauge transformation
technique in Clark [5], we shall give a (pathwise) linear ordinary differential equa-
tion governing the evolution of a “transformed” unnormalized filter of the chain X
over time. This filter is robust with respect to the observation process in the Skoro-
hod topology and has an advantage from the numerical perspective. Using a version
of the Bayes’ rule, the normalized filter can be recovered from the (transformed)
unnormalized one.

8.3.1 The Separation Principle

The use of the filtering theory to transform the original market to the filtered market
involves the use of the innovations approach which is also called the separation prin-
ciple. This approach has two steps. The first step introduces innovations processes
which are adapted to the observable filtration. The second step expresses the price
processes with hidden quantities in terms of these innovations processes and filtered
estimates of the hidden quantities.

For any integrable, G-adapted process {φ(t)|t ∈T }, let {φ̂(t)|t ∈T } be the FY -
optional projection of {φ(t)|t ∈ T } under the measure P . Then, for each t ∈ T ,

φ̂ (t) = E[φ(t)|FY (t)] ,P-a.s.

The optional projection takes into account the measurability in (t,ω) ∈ T ×Ω .
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Define, for each t ∈ T ,

h(t) := μ(t)− 1
2
σ2(t) .

Then the return process Y of the risky share is written as:

Y (t) =
∫ t

0
h(u)du+

∫ t

0
σ(u)dW (u)+

∫ t

0

∫

ℜ0

zγ(du,dz) .

Write, for each t ∈T ,

Y1(t) =
∫ t

0
h(u)du+

∫ t

0
σ(u)dW (u) , Y2(t) :=

∫ t

0

∫

ℜ0

zγ(du,dz) ,

so that

Y (t) = Y1(t)+Y2(t) .

Consider then the following F
Y -adapted process Ŵ := {Ŵ (t)|t ∈ T }:

Ŵ (t) :=W (t)+
∫ t

0

(
h(u)− ĥ(u)

σ(u)

)

du , t ∈ T .

Then following standard filtering theory, (see, for example, [15, 22, 6]), Ŵ is an
(FY ,P)-standard Brownian motion. The process Ŵ is called the innovation process
for the diffusion part Y1 of the return process Y of the risky share.

We now define the innovation process for the jump part Y2 of the return pro-
cess Y of the risky share. Consider the G-adapted process Q := {Q(t)|t ∈ T } on
(Ω ,F ,P) which is defined by putting:

Q(t) :=
∫ t

0

∫ ∞

0
z(γ(du,dz)−νX(u−)(du,dz)) , t ∈ T ,

so that Q is a (G,P)-martingale.
Define

ν̂(dt,dz) :=
N

∑
i=1

〈

X̂(t),ei
〉

λi(t)ηi(dz|t)dt ,

and

γ̂(dt,dz) := γ(dt,dz)− ν̂(dt,dz) .

The following lemma was due to Elliott [7]. We state the result here without
giving the proof.
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Lemma 8.1. Let Q̂ := {Q̂(t)|t ∈T } be the FZ-adapted process defined by setting:

Q̂(t) :=
∫ t

0

∫

ℜ0

zγ̂(du,dz) .

Then Q̂ is an (FY ,P)-martingale.

The process Q̂ is then used here as the innovations process of the jump part Y2 of
the return process of the risky share.

The following lemma then gives a representation for the price process of the
risky share in terms of the two innovations processes Ŵ and Q̂ under the real-world
measure P. Since the result is rather standard, we just state it without giving the
proof.

Lemma 8.2. Under the real-world measure P, the return process of the risky
share is:

dY (t) =

(

ĥ(t)+
N

∑
i=1

z
〈

X̂(t),ei
〉

λi(t)ηi(dz|t)
)

dt +σ(t)dŴ(t)

+

∫

ℜ0

zγ̂(dt,dz) ,

and the price process of the risky share is:

dS(t)
S(t−) =

(

μ̂X(t)+
N

∑
i=1

(ez− 1)
〈

X̂(t),ei
〉

λi(t)ηi(dz|t)
)

dt +σ(t)dŴ(t)

+

∫

ℜ0

(ez− 1)γ̂(dt,dz) .

It is obvious that the return and price processes of the risky share in Lemma 8.2
only involve observable quantities. Consequently, we adopt these dynamics as the
return and price processes of the risky share in the filtered market.

8.3.2 Filtering Equations

The reference probability approach to derive a filtering equation for the chain X is
now discussed. We start with a reference probability measure P

† on (Ω ,F ) under
which the return process Y of the risky share becomes simpler and does not depend
on the chain X. That is, under P†,

1. Y1 is a Brownian motion with 〈Y1,Y1〉 (t) =
∫ t

0 σ2(u)du, where {〈Y1,Y1〉 (t)|t ∈
T } is the predictable quadratic variation of Y1;
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2. The Poisson random measure γ(dt,dy) has an unit intensity for random jump
times and the conditional Lèvy measure η(dz|t) for random jump sizes so that

γ̃†(dt,dz) := γ(dt,dz)−η(dz|t)dt ,

is an (FY ,P†)-martingale random measure;
3. Y1 and γ(·, ·) are stochastically independent;
4. The chain X has the family of rate matrices, {A(t)|t ∈T }.

Define

Λ1(t) := exp

(∫ t

0
σ−2(u)h(u)dY1(u)− 1

2

∫ t

0
σ−2(u)h2(u)du

)

,

Λ2(t) := exp

[

−
∫ t

0

( N

∑
i=1

〈X(u−),ei〉
∫

ℜ0

(gi(z|u)− 1)η(z|u)dz

)

du

+

∫ t

0

∫

ℜ0

( N

∑
i=1
〈X(u−),ei〉 log(gi(z|u))

)

γ(du,dz)

]

,

where gi(z|t) := λi(t)ηi(dz|t)
η(dz|t) , for each i = 1,2, · · · ,N.

Consider the G-adapted process Λ := {Λ(t)|t ∈T } defined by putting:

Λ(t) :=Λ1(t) ·Λ2(t) .

It is not difficult to check that Λ is a (G,P)-martingale, and hence, E[Λ(T )] =
1. Consequently the real-world measure P equivalent to P

† on G (T ) can be re-
constructed using the Radon-Nikodym derivativeΛ(T ) as follows:

dP
dP†

∣
∣
∣
∣
G (T )

:= Λ(T ) .

Using a version of Girsanov’s theorem for jump-diffusion processes, it can be shown
that under P,

1. Λ := {Λ(t)|t ∈T } is the unique solution of the following stochastic differential-
integral equation:

Λ(t) = 1+
∫ t

0
Λ(u)h(u)σ−2(u)dY1(u)

+
N

∑
i=1

∫ t

0
〈X(u),ei〉

∫

ℜ0

Λ(u−)(gi(z|u)− 1)γ̃†(du,dz) .
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2. The process

W (t) :=
∫ t

0
σ−1(u)dY1(u)−

∫ t

0
σ−1(u)h(u)du , t ∈ T ,

is a standard Brownian motion.
3. γ(dt,dz) is the Poisson random measure with the compensator:

νX(t−)(dt,dz) :=
N

∑
i=1
〈X(t−),ei〉λi(t)ηi(dz|t)dt ,

so that

γ̃(dt,dz) := γ(dt,dz)−νX(t−)(dt,dz) ,

is a martingale random measure.

Consequently, under P, the return process Y of the risky share is:

Y (t) = Y1(t)+Y2(t) =
∫ t

0
h(u)du+

∫ t

0
σ(u)dW (u)+

∫ t

0

∫

ℜ0

zγ(du,dz) .

The ultimate goal of filtering is to evaluate X̂ which is an F
Y -optional projection

of X under P. Then, for each t ∈ T ,

X̂(t) = E[X(t)|FY (t)] , P-a.s.

Indeed, X̂(t) is an optimal estimate of X(t) in the least square sense.
Write, for each t ∈ T ,

q(t) := E†[Λ(t)X(t)|F (t)] ,

where E† is an expectation under the reference probability measure P
† and q(t) is

called an unnormalized filter of X(t). Instead of evaluating X̂(t) directly, a filtering
equation governing the evolution of the unnormalized filter q(t) over time is first
derived. Before presenting the filtering equation, we need to define some notation.

For each t ∈T , let Z(t, ·) :Ω →ℜ0 be a random variable with a strictly positive
conditional Lèvy measure η(dz|t) under the reference measure P

†. Then, for each
t ∈ T and each i = 1,2, · · · ,N, the random variable Gi(t, ·) : Ω → ℜ+, where ℜ+

is the positive real line, is defined as:

Gi(t,ω) :=
λi(t)ηi(Z(t,ω)|t)
η(Z(t,ω)|t) := gi(Z(t,ω)|t) ,

for some measurable function gi(·|t) on (ℜ0,B(ℜ0)).
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Note that Gi(t,ω) is well-defined since η(dz|t) > 0. Again, to simplify the no-
tation, we suppress the notation “ω” unless otherwise stated. We now define the
following diagonal matrices:

diag(G(t)− 1) := diag(G1(t)− 1,G2(t)− 1, · · · ,GN(t)− 1) ,

diag(λ (t)− 1) := diag(λ1(t)− 1,λ2(t)− 1, · · · ,λN(t)− 1) .

Here diag(y) denotes the diagonal matrix with diagonal elements being given by
the components in a vector y; 1 := (1,1, · · · ,1)′ ∈ℜN .

For each i = 1,2, · · · ,N and each t ∈ T , let hi(t) := μi(t)− 1
2σ

2(t) and h(t) :=
(h1(t),h2(t), · · · ,hN(t))′ ∈ℜN . Write, for each t ∈ T ,

J(t) :=
∫ t

0

∫

ℜ0

γ(du,dz) .

Then the following theorem is standard and gives the Zakai stochastic differential
equation for the unnormalized filter q(t) (see, for example, Elliott and Siu [11],
Theorem 4.1 therein). We state the result without giving the proof.

Theorem 8.1. For each t ∈ T , let

B(t) := diag(h(t)) .

Then under P†, the unnormalized filter q(t) satisfies the Zakai stochastic differential
equation:

q(t) = q(0)+
∫ t

0
A(u)q(u)du+

∫ t

0
B(u)q(u)σ−2(u)dY1(u)

+

∫ t

0
diag(G(u)− 1)q(u)dJ(u)−

∫ t

0
diag(λ (u)− 1)q(u)du .

(8.2)

The filtering equation in Theorem 8.1 involves stochastic integrals. This may be a
disadvantage for numerical implementation. Using the gauge transformation tech-
nique of Clark [5], the filtering equation can be simplified as a (pathwise) linear
ordinary differential equation. The key steps are presented in the sequel.

Define, for each i = 1,2, · · · ,N and each t ∈ T ,

γi(t) := exp

(∫ t

0
hi(u)σ−2(u)dY1(u)− 1

2

∫ t

0
h2

i (u)σ
−4(u)du

+

∫ t

0
(1−λi(u))du+

∫ t

0
logGi(u)dJ(u)

)

. (8.3)

Then the gauge transformation matrix Γ (t) is defined as:

Γ (t) := diag(γ1(t),γ2(t), . . . ,γN(t)) .
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Write, for each t ∈ T , Γ−1(t) for the inverse of Γ (t). The existence of Γ−1(t)
is guaranteed by the definition of Γ (t) and the positivity of γi(t) for each i =
1,2, · · · ,N.

Take, for each t ∈T ,

q̄(t) := Γ−1(t)q(t) .

This is called a transformed unnormalized filter of X(t).
Then the following theorem gives a (pathwise) linear ordinary differential equa-

tion governing the transformed process {q̄(t)|t ∈T }. Again we state the result with-
out giving the proof which is rather standard (see, for example, Elliott and Siu [11],
Theorem 4.2 therein).

Theorem 8.2. q̄ satisfies the following first-order linear ordinary differential
equation:

dq̄(t)
dt

:= Γ−1(t)A(t)Γ (t)q̄(t) , q̄(0) = q(0) .

Finally, using a version of the Bayes’ rule,

X̂(t) := E[X(t)|F (t)]

=
E†[Λ(t)X(t)|F (t)]

E†[Λ(t)|F (t)]

=
q(t)
〈q(t),1〉

:=
Γ (t)q̄(t)
〈Γ (t)q̄(t),1〉 ,

so the normalized filter X̂(t) can be “recovered” from the (transformed) unnormal-
ized one q̄(t).

8.4 Generalized Esscher Transform in the Filtered Market

The main theme of this section is to determine a pricing kernel in the filtered market
described in Sect. 8.3.1 using a generalized version of the Esscher transform based
on a Doléan-Dade stochastic exponential. Firstly, let us recall that in the filtered mar-
ket, the price process of the risky share under the real-world measure P is governed
by the following stochastic differential equation with jumps:

dS(t)
S(t−) =

(

μ̂(t)+
N

∑
i=1

(ez− 1)
〈

X̂(t),ei
〉

λi(t)ηi(dz|t)
)

dt +σ(t)dŴ(t)

+

∫

ℜ0

(ez− 1)γ̂(dt,dz) .
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The presence of jumps renders the filtered market incomplete. Consequently,
there is more than one equivalent martingale measure, or pricing kernel, in the mar-
ket. Though there are different approaches to select a pricing kernel in an incomplete
market, we focus here on the Esscher transformation approach which was pioneered
by the seminal work of Gerber and Shiu [16]. Note that the local characteristics of
the price process of the risky share in the filtered market are F

Y -predictable pro-
cesses, so the price process is a semimartingale beyond the class of Lévy processes.
Consequently, the original version of the Esscher transform in Esscher [14] and Ger-
ber and Shiu [16] cannot be applied in this situation. Bühlmann et al. [4], Kallsen
and Shiryaev [23] and Jacod and Shiryaev [21] considered a generalized version
of the Esscher transform for measure changes for general semimartingales and dis-
cussed its application for option valuation. This version of the Esscher transform is
defined using the concepts of Doléan Dade stochastic exponential and the Laplace
cumulant process. It was used in Elliott and Siu [12] to select a pricing kernel in
a hidden regime-switching pure jump process. In the sequel, we shall first define
the generalized Esscher transform and give the local condition in terms of the local
characteristics of the price process of the risky share in the filtered market. Then we
present the price dynamics of the risky share under an equivalent (local)-martingale
measure selected by the generalized Esscher transform.

Let L (Y ) be the space of processes θ := {θ (t)|t ∈ T } satisfying the following
conditions:

1. θ is FY -predictable;
2. θ is integrable with respect to the return process Y ; that is, the (stochastic)

integral process {(θ ·Y )(t)|t ∈ T }, where (θ ·Y )(t) :=
∫ t

0 θ (u)dY (u) is well-
defined.

Consider, for each θ ∈L (Y ), the following exponential process:

Dθ (t) := exp((θ ·Y )(t)) , t ∈T .

Note that {(θ ·Y )(t)|t ∈ T } is a semimartingale, so Dθ := {Dθ (t)|t ∈ T } is also
called an exponential semimartingale.

Define, for each θ ∈L (Y ), the following semimartingale:

H θ (t) :=
∫ t

0

(

ĥ(u)θ (u)+
1
2
σ2(u)θ 2(u)

+
N

∑
i=1

∫

ℜ0

(ez− 1−θ (u)z)〈X̂(u),ei
〉

λi(u)ηi(dz|u)
)

du

+

∫ t

0
σ(u)θ (u)dŴ (u)+

∫ t

0

∫

ℜ0

(eθ(u)z− 1)γ̂(du,dz) .

Using Itô’s differentiation rule, it can be shown that

Dθ (t) = 1+
∫ t

0
Dθ (u−)dH θ (u) .
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From Theorem 13.5 in Elliott [6], Dθ is the unique solution of the above integral
equation. It is the Doléans-Dade exponential of H θ := {H θ (t)|t ∈ T }. Symboli-
cally, it is typified as:

Dθ (t) = E (H θ )(t) , t ∈ T .

Again from Theorem 13.5 in Elliott [6],

Dθ (t)=exp

(

H θ (t)− 1
2
< (H θ )c,(H θ )c > (t)

)

∏
0<u≤t

(1+ΔH θ (u))e−ΔH
θ (u) ,

where

1. (H θ )c := {(H θ )c(t)|t ∈ T } is the continuous part of H θ ;
2. {< (H θ )c,(H θ )c > (t)|t ∈ T } is the predictable quadratic variation

of (H θ )c.

Note that H θ is called the stochastic logarithm of Dθ or the exponential trans-
form of {(θ ·Y )(t)|t ∈ T }. Since H θ is a special semimartingale, its predictable
part of finite variation, denoted as K θ := {K θ (t)|t ∈ T }, is uniquely determined
as:

K θ (t) =
∫ t

0

(

ĥ(u)θ (u)+
1
2
σ2(u)θ 2(u)

+
N

∑
i=1

∫

ℜ0

(ez− 1−θ (u)z)〈X̂(u),ei
〉

λi(u)ηi(dz|u)
)

du .

It was noted in Kallsen and Shiryaev [23] that the Laplace cumulant process of {(θ ·
Y )(t)|t ∈ T } is the predictable part of finite variation of H θ . This is also called
the Laplace cumulant process of Y at θ . The Doléan-Dade stochastic exponential
E (K θ ) := {E (K θ )(t)|t ∈T } of K θ is the unique solution of the following linear
stochastic differential equation:

E (K θ )(t) = 1+
∫ t

0
E (K θ )(u)dK θ (u) .

As in Kallsen and Shiryaev [23], the modified Laplace cumulant process of Y at
θ is defined by the process ˜K θ := { ˜K θ (t)|t ∈ T } such that

exp( ˜K θ (t)) = E (K θ )(t) .

By differentiation, ˜K θ (t) =K θ (t), P-a.s., for each t ∈ T .
Then the density process of the generalized Esscher transform associated with

θ ∈L (Y ) is defined as the process Λθ := {Λθ (t)|t ∈ T }, where

Λθ (t) :=
exp((θ ·Y )(t))
E (K θ )(t)

.
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Note that the Laplace cumulant process E (K θ ) is the normalization constant and
may be thought of as a generalization of the moment generation function in the
“first-generation” of the Esscher transform in Gerber and Shiu [16].

From the definition of ˜K θ ,

Λθ (t) = exp

(

(θ ·Y )(t)− ˜K θ (t)

)

= exp

(

(θ ·Y )(t)−K θ (t)

)

= exp

(

−
N

∑
i=1

∫ t

0

∫

ℜ0

(ez− 1−θ (u)z)〈X̂(u),ei
〉

λi(u)ηi(dz|u)

+

∫ t

0

∫

ℜ0

θ (u)zγ̂(du,dz)

)

× exp

(∫ t

0
θ (u)σ(u)dŴ (u)

−1
2

∫ t

0
θ 2(u)σ2(u)du

)

, P-a.s.

Using Itô’s differentiation rule,

Λθ (t) = 1+
∫ t

0
Λθ (u)θ (u)σ(u)dŴ (u)+

∫ t

0

∫

ℜ0

Λθ (u−)(eθ(u)z− 1)γ̂(du,dz) .

This is an (FY ,P)-local martingale. We suppose here that θ ∈L (Y ) is such thatΛθ

is an (FY ,P)-martingale, so E[Λθ (T )] = 1.
Consequently, for each θ ∈L (Y ), a new probability measure Pθ ∼ P on FY (T )

by putting:

dPθ

dP

∣
∣
∣
∣
FY (T )

:=Λθ (T ) .

To preclude arbitrage opportunities, we must determine θ ∈L (Y ) such that the
discounted price process of the risky share {S̃(t)|t ∈ T }, where S̃(t) :=
exp(−∫ t

0 r(u)du)S(t), is an (FY ,Pθ )-(local)-martingale, (i.e., Pθ is an equivalent
(local)-martingale measure). This is called the (local)-martingale condition. A nec-
essary and sufficient condition for the (local)-martingale condition is given in the
following theorem.

Theorem 8.3. The (local)-martingale condition holds if and only if for each t ∈ T ,
there exists an F

Y -progressively measurable process {θ (t)|t ∈ T } such that

μ̂(t)− r(t)+θ (t)σ2(t)+
N

∑
i=1

∫

ℜ0

〈

X̂(t),ei
〉

eθ(t)z(ez− 1)λi(t)ηi(dz|t) = 0 , P-a.s.

(8.4)

Proof. The proof is standard, so only key steps are given. Note that {S̃(t)|t ∈ T }
is an (FY ,Pθ )-(local)-martingale if and only if {Λθ (t)S̃(t)|t ∈ T } is an (FY ,P)-
(local)-martingale, for some F

Y -progressively measurable process {θ (t)|t ∈ T }.
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The result then follows by applying Itô’s product rule to Λθ (t)S̃(t) and equating the
finite variation term of Λθ (t)S̃(t) to zero. ��
From Theorem 8.3, the risk-neutral Esscher parameter {θ (t)|t ∈ T } of the gener-
alized Esscher transformΛθ is obtained by solving Equation (8.4). In the particular
case where the jump component is absent, the risk-neutral Esscher parameter is
given by:

θ (t) =
r(t)− μ̂(t)
σ2(t)

=−β (t)
σ(t)

,

where β (t) is the market price of risk of the particular case of the filtered market
where jumps are absent and is defined as:

β (t) :=
μ̂(t)− r(t)

σ(t)
.

The following lemma gives the probability laws of the return process Y of the
risky share under Pθ . It is a direct consequence of a Girsanov transform for a mea-
sure change, so we only state the result.

Lemma 8.3. The process defined by:

Ŵ θ (t) := Ŵ (t)−
∫ t

0
θ (u)σ(u)du , t ∈T ,

is an (FY ,Pθ )-standard Brownian motion. Furthermore, the process defined by:

γ̂θ (dt,dz) := γ(dt,dz)−
N

∑
i=1

〈

X̂(t),ei
〉

λi(t)e
θ(t)zηi(dz|t)dt ,

is an (FY ,Pθ )-martingale.
Under Pθ , the price process of the risky share is given by:

dS(t) = S(t)r(t)dt + S(t)σ(t)dŴθ (t)+ S(t−)
∫

ℜ0

(ez− 1)γ̂θ (dt,dz) .

To simplify our analysis, we suppose here that the probability law of the chain X
remains unchanged after the measure change from P to P

θ . Consequently, under Pθ ,
the semimartingale dynamics for the chain X are:

X(t) = X(0)+
∫ t

0
A(u)X(u)du+M(t) , t ∈ T .

Furthermore, we assume that Ŵ θ , γ̂θ and X are stochastically independent under Pθ .



8 A Hidden Markov-Modulated Jump Diffusion Model for European Option Pricing 203

8.5 European-Style Option

In this section, we shall consider the valuation of a standard European-style op-
tion in the filtered market and derive a partial differential integral equation (PDIE)
for the option price. Consider a European-style option written on the risky share
S whose payoff at the maturity time T is H(S(T )) ∈ L2(Ω ,FY (T ),P), where
L2(Ω ,FY (T ),P) is the space of square-integrable random variables on
(Ω ,FY (T ),P) and H : ℜ→ℜ is a measurable function.

Conditional on the observed information FY (t) at the current time t, the price of
the European option at time t is given by:

V (t) = Eθ
[

exp

(

−
∫ T

t
r(u)du

)

H(S(T ))|FY (t)

]

.

Here Eθ is an expectation under the measure Pθ .
Note that {(S(t),q(t))|t ∈ T } is jointly Markovian with respect to the observed

filtration F
Y . Consequently if S(t) = s ∈ (0,∞) and q(t) = q ∈ℜN ,

V (t) = Eθ
[

exp

(

−
∫ T

t
r(u)du

)

H(S(T ))|FY (t)

]

= Eθ
[

exp

(

−
∫ T

t
r(u)du

)

H(S(T ))|(S(t),q(t)) = (s,q)
]

:= V †(t,s,q) ,

for some function V † : T × (0,∞)×ℜN→ℜ.
For each t ∈ T , let V (t,s,q) := exp(−∫ t

0 r(u)du)V †(t,s,q). Then

V (t,s,q) = Eθ
[

exp

(

−
∫ T

0
r(u)du

)

H(S(T ))|FY (t)

]

.

This is an (FY ,Pθ )-martingale.
For each t ∈ T , let

Ĵθ (t) :=
∫ t

0

∫

ℜ0

γ̂θ (du,dz) .

Then using Lemma 8.3 and Theorem 8.1, the unnormalized filter process under the
risk-neutral measure Pθ is given by:

dq(t) =
(

A(t)+B(t)σ−2(t)(ĥ(t)+σ2(t)θ (t))

+
N

∑
i=1

∫

ℜ0

diag(G(t)− 1)
〈

X̂(t),ei
〉

eθ(t)zλi(t)ηi(dz|t)
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−diag(λ (t)− 1)
)

q(t)dt +B(t)σ−1(t)q(t)dŴ θ (t)

+diag(G(t)− 1)q(t)dĴθ(t) .

To simplify the notation, we write

αθ (t) := A(t)+B(t)σ−2(t)(ĥ(t)+σ2(t)θ (t))

+
N

∑
i=1

∫

ℜ0

diag(G(t)− 1)
〈

X̂(t),ei
〉

eθ(t)zλi(t)ηi(dz|t)

−diag(λ (t)− 1) ∈ℜN ⊗ℜN ,

so

dq(t) = αθ (t)q(t)dt +B(t)σ−1(t)q(t)dŴ θ (t)+diag(G(t)− 1)q(t)dĴθ (t) .

Under Pθ , the price process of the risky asset is:

dS(t) = S(t)r(t)dt + S(t)σ(t)dŴθ (t)+ S(t−)
∫

ℜ0

(ez− 1)γ̂θ (dt,dz) .

Suppose V : T × (0,∞)× (0,∞)N → ℜ is a function in C 1,2(T × (0,∞)×
(0,∞)N), whereC 1,2(T ×(0,∞)×(0,∞)N) is the space of functionsV (t,s,q) which
are continuously differentiable in t ∈ T and twice continuously differentiable in
(s,q) ∈ (0,∞)× (0,∞)N .

The following theorem gives the partial differential integral equation (P.D.I.E.)
for the price of the European-style option V .

Theorem 8.4. Let q− := q(t−) and s− := S(t−), for each t ∈ T . Write y′ for the
transpose of a vector, or matrix, y. Define, for each t ∈ T ,

βθ (t) :=
N

∑
i=1

diag(G(t)− 1)
〈

X̂(t),ei
〉

λi(t)
∫

ℜ0

eθ(t)z(ez− 1)ηi(dz|t) ∈ℜN⊗ℜN .

Then the option price V †(t,s,q) at time t satisfies:

∂V †

∂ t
+
∂V †

∂ s
s(μ̂(t)+θ (t)σ2(t))+

〈
∂V †

∂q
,(αθ (t)−βθ (t))q(t)

〉

+
1
2
∂ 2V †

∂ s2 σ2(t)s2 + s

〈
∂ 2V †

∂q∂ s
,B(t)q(t)

〉

+
1
2
(B(t)q(t))′

∂ 2V †

∂q2 (B(t)q(t))

+
N

∑
i=1

〈

X̂(t),ei
〉
∫

ℜ0

(

V †(t,s−ez,q−diag(G(t)))−V †(t,s−,q−)
)

×eθ(t)zλi(t)ηi(dz|t) = r(t)V † ,

with the terminal condition V †(T,S(T ),q(T )) = H(S(T )).
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Proof. The proof is standard. For the sake of completeness, we give the proof here.
Applying Itô’s differentiation rule to V (t,s,q) gives:

V (t,s,q) = V (0,s0,q0)+
∫ t

0

∂V
∂u

du+
∫ t

0

∂V
∂ s

S(u)

(

r(u)−
N

∑
i=1

〈

X̂(u),ei
〉

λi(u)

×
∫

ℜ0

eθ(u)z(ez− 1)ηi(dz|u)
)

du−
∫ t

0

〈
∂V
∂q

,diag(G(u)− 1)q(u)
〉

×
N

∑
i=1

〈

X̂(u),ei
〉

λi(u)
∫

ℜ0

eθ(u)z(ez− 1)ηi(dz|u)
)

du

+

∫ t

0

∂V
∂ s

S(u)σ(u)dŴθ (u)+
∫ t

0

〈
∂V
∂q

,αθ (u)q(u)
〉

du

+

∫ t

0

〈
∂V
∂q

,B(u)q(u)
〉

σ−1(u)dŴ θ (u)+
∫ t

0

∂ 2V
∂ s2 σ

2(u)S2(u)du

+

∫ t

0
S(u)

〈
∂ 2V
∂q∂ s

,B(u)q(u)
〉

du+
1
2

∫ t

0
(B(u)q(u))′

∂ 2V
∂q2 (B(u)q(u))du

+
N

∑
i=1

∫ t

0

〈

X̂(u),ei
〉
∫

ℜ0

(

V (u,S(u−)ez,q(u−)diag(G(u)))

−V (u,S(u−),q(u−))
)

eθ(u)zλi(u)ηi(dz|u)du

+

∫ t

0

∫

ℜ0

(

V (u,S(u−)ez,q(u))−V(u,S(u−),q(u−))
)

γ̂θ (du,dz) .

Rearranging then gives:

V (t,s,q) = V (0,s0,q0)+

∫ t

0

[
∂V
∂u

+
∂V
∂ s

S(u)

(

r(u)−
N

∑
i=1

〈

X̂(u),ei
〉

λi(u)

×
∫

ℜ0

eθ(u)z(ez−1)ηi(dz|u)
)

−
〈
∂V
∂q

,diag(G(u)−1)q(u)
〉

×
N

∑
i=1

〈

X̂(u),ei
〉

λi(u)
∫

ℜ0

eθ(u)z(ez−1)ηi(dz|u)+
〈
∂V
∂q

,αθ (u)q(u)
〉

+
1
2
∂ 2V
∂ s2 σ

2(u)S2(u)+S(u)

〈
∂ 2V
∂q∂ s

,B(u)q(u)
〉

+
1
2
(B(u)q(u))′

∂ 2V
∂q2 (B(u)q(u))

+
N

∑
i=1

〈

X̂(u),ei
〉
∫

ℜ0

(

V (u,S(u−)ez,q(u−)diag(G(u)))−V (u,S(u−),q(u−))
)

×eθ(u)zλi(u)ηi(dz|u)
]

du+
∫ t

0

∂V
∂ s

S(u)σ(u)dŴθ (u)

+
∫ t

0

〈
∂V
∂q

,B(u)q(u)
〉

σ−1(u)dŴθ (u)

+

∫ t

0

∫

ℜ0

(

V (u,S(u−)ez,q(u))−V (u,S(u−),q(u−))
)

γ̂θ (du,dz).
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Using the martingale condition (8.4) and the definition of βθ (t),

V (t, s,q) = V (0, s0,q0)+
∫ t

0

[
∂V
∂u

+
∂V
∂ s

S(u)(μ̂(u)+θ (u)σ 2(u))+

〈
∂V
∂q

, (αθ (u)−βθ (u))q(u)
〉

+
1
2
∂ 2V
∂ s2 σ

2(u)S2(u)+S(u)

〈
∂ 2V
∂q∂ s

,B(u)q(u)
〉

+
1
2
(B(u)q(u))′

∂ 2V
∂q2 (B(u)q(u))

+
N

∑
i=1

〈

X̂(u),ei
〉
∫

ℜ0

(

V (u,S(u−)ez,q(u−)diag(G(u)))−V (u,S(u−),q(u−))
)

×eθ(u)zλi(u)ηi(dz|u)
]

du+
∫ t

0

∂V
∂ s

S(u)σ (u)dŴ θ (u)

+
∫ t

0

〈
∂V
∂q

,B(u)q(u)
〉

σ−1(u)dŴ θ (u)

+

∫ t

0

∫

ℜ0

(

V (u,S(u−)ez,q(u))−V (u,S(u−),q(u−))
)

γ̂θ (du,dz) .

Note that the discounted price process {V(t,S(t),q(t))|t ∈ T } is an (FY ,Pθ )-
martingale. It must be a special semimartingale. Consequently, the du-integral terms
must sum to zero, and hence,

∂V
∂ t

+
∂V
∂ s

S(t)(μ̂(t)+θ (t)σ2(t))+

〈
∂V
∂q

,(αθ (t)−βθ (t))q(t)
〉

+
1
2
∂ 2V
∂ s2 σ

2(t)S2(t)+ S(t)

〈
∂ 2V
∂q∂ s

,B(t)q(t)
〉

+
1
2
(B(t)q(t))′

∂ 2V
∂q2 (B(t)q(t))

+
N

∑
i=1

〈

X̂(t),ei
〉
∫

ℜ0

(

V (t,S(t−)ez,q(t−)diag(G(t)))−V(t,S(t−),q(t−))
)

×eθ(t)zλi(t)ηi(dz|t) = 0 .

Therefore, the result follows by applying the differentiation rule to

V †(t,s,q) = exp

(

−
∫ t

0
r(u)du

)

V (t,s,q)

again. ��
The result in Theorem 8.4 may be extended from the class of smooth functions

C 1,2(T ×(0,∞)×(0,∞)N) to a wider class of functions in which a generalized Itô’s
differentiation rule holds. The wider class of functions may include differences of
two convex functions, (see, for example, [24]).
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8.6 Conclusion

We discussed a two-stage approach for pricing a European-style option in a hidden
Markovian regime-switching jump-diffusion model. Filtering theory was first used
to turn the original market with partial observations to a filtered market with com-
plete observations. Then the option valuation problem was considered in the filtered
market where the hidden quantities in the original market were replaced by their
filtered estimates. The generalized Esscher transform for semimartingales was used
to select a pricing kernel in the incomplete filtered market. By noticing that the price
process and the unnormalized filter process of the hidden Markov chain are jointly
Markovian with respect to the observed filtration, a partial differential-integral equa-
tion governing the price of the European-style option was derived.
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Chapter 9
An Exact Formula for Pricing American
Exchange Options with Regime Switching

Leunglung Chan

Abstract This paper investigates the pricing of American exchange options when
the price dynamics of each underlying risky asset are assumed to follow a Markov-
modulated Geometric Brownian motion; that is, the appreciation rate and the volatil-
ity of each underlying risky asset depend on unobservable states of the economy
described by a continuous-time hidden Markov process. We show that the price of
an American exchange option can be reduced to the price of an American option.
Then, we modify the result of Zhu and Chan (An analytic formula for pricing Amer-
ican options with regime switching. Submitted for publication, 2012), a closed-form
analytical pricing formula for the American exchange option is given.

9.1 Introduction

Option pricing is an important field of research in financial economics from both
a theoretical and practical point of view. The pioneering work of Black and Sc-
holes [2] and Merton [25] laid the foundations of the field and stimulated important
research in option pricing theory, its mathematical models and its computational
techniques. A spread option is an option whose payoff depends on the price spread
between two correlated underlying risky assets. If the asset prices are S1 and S2, then
the payoff function to a spread put option with a strike K is max{K− (S1− S2),0}.
The spread options are traded either on an exchange or largely in the over-the-
counter markets. The spread options are ubiquitous. The spread options are widely-
used in various markets such as the currency and foreign exchange markets, the en-
ergy markets and the commodity futures markets (for instance, see Carmona and
Durrleman [5] for an excellent survey). Some papers for pricing spread options
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under the Geometric Brownian motions (GBMs) include Ravindran [28], Shimko
[29] and Venkatramanan and Alexander [31]. Even in the GBMs setting, there is no
closed-form solution for European-style spread options except a special case with
strike K = 0. This is the only case for which one has a solution in a closed form via
Black-Scholes for the price of the spread option with zero strike (for instance, see
[24]). Two approaches such as analytical approximations and numerical methods
have been used for the pricing of spread options. For analytical approximations, see
Kirk [21], Eydeland and Wolyniec [16] and Deng et al. [8]. For numerical methods,
see Hurd and Zhou [20]. Beyond the GBMs framework, Dempster and Hong [7]
priced spread options under a stochastic volatility model in order to capture volatil-
ity skews on the two underlying assets. Cheang and Chiarella [6] priced exchange
options under jump-diffusion dynamics. Benth et al. [1] priced exchange options on
a bivariate jump market and stability to model risk.

Despite its popularity the Black-Scholes-Merton model fails in various ways,
such as the fact that implied volatility is not constant. During the past few decades
many extensions to the Black-Scholes-Merton model have been introduced in the
literature to provide more realistic descriptions for asset price dynamics. In par-
ticular, many models have been introduced to explain the empirical behavior of
the implied volatility smile and smirk. Such models include the stochastic volatil-
ity models, jump-diffusion models, models driven by Lévy processes and regime
switching models.

Maybe the simplest way to introduce additional randomness into the standard
Black-Scholes-Merton model is to let the volatility and rate of return be functions
of a finite state Markov chain. There has been considerable interest in applications
of regime switching models driven by a Markov chain to various financial prob-
lems. Many papers in a regime switching framework include Elliott and van der
Hoek [10], Guo [18], Elliott et al. [12, 13, 14, 15] and Buffington and Elliott [3, 4].
In addition, Siu et al. [30] priced the value of credit default swaps under a Markov-
modulated Merton structural model. Yuen and Yang [32] proposed a recombined
trinomial tree to price simple options and barrier options in a jump-diffusion model
with regime switching. Yuen and Yang [33] used a trinomial tree method to price
Asian options and equity-indexed annuities with regime switching. Zhu et al. [36]
derived a closed-form solution for European options with a two-state regime switch-
ing model. Zhu and Chan [35] derived a closed-form solution for American options
under a two-state regime switching model.

In this paper, we investigate the pricing of American spread options with strike
K = 0 when the price dynamics of each underlying risky asset are assumed to fol-
low a Geometric Brownian motion with a constant correlation. The spread options
with strike K = 0 is called exchange options. We derive analytical solutions for
American exchange options by means of the homotopy analysis method (HAM).
HAM was initially suggested by Ortega and Rheinboldt [27]. The HAM consists of
some standard methods such as Lyapunov’s small artificial method, the δ -expansion
method, Adomian decomposition method, and the Euler transform, so that it has the
great generality. Consequently, the HAM provides us an useful tool to solve highly
nonlinear problems in science and mathematical finance. For instance, the HAM
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has been successfully used to solve a number of heat transfer problems, see Liao
and Zhu [23]. Zhu [34] proposed to adopt HAM to obtain an analytic pricing for-
mula for American options in the Black-Scholes model. Gounden and O’Hara [17]
extended the work of Zhu to pricing an American-style Asian option of floating
strike type in the Black-Scholes model.

Obviously, it is important to guarantee the convergence of an approximation se-
ries. Unfortunately, near all previous analytic approximation methods such as per-
turbation methods, Lyapunov’s artificial small parameter method, Adomian decom-
position method, the δ -expansion method, cannot guarantee the convergence of ap-
proximation series, this is the reason why they are valid mainly for weakly nonlin-
ear problems. However, based on the homotopy in topology, the HAM provides us a
great freedom to introduce a non-zero auxiliary parameter, namely the convergence-
control parameter h, into the so-called zeroth-order deformation equation. One can
find some proper values of h to guarantee the convergence of the homotopy series.
For more details, we refer to Liao [22]. In addition, Odibat [26] studied the con-
vergence of the homotopy analysis method when applied to nonlinear problems.
The sufficient condition for convergence of the method and the error estimate are
presented in his work. Without the loss of generality, we choose h = 1 in this paper.

This paper is organized as follows. Section 9.2 describes the dynamics of the
asset price under the Markov-modulated Geometric Brownian motion. Section 9.3
formulates the partial differential equations for the prices of European spread op-
tions and American spread options. In the case of an exchange option, the governing
PDEs are reduced into two-dimensional PDEs which are just ordinary European or
American options’ PDEs. Section 9.4 presents an exact, closed-form solution for
the American exchange options. The final section contains a conclusion.

9.2 Asset Price Dynamics

Consider a complete probability space (Ω ,F ,P), where P is a real-world proba-
bility measure. Let T denote the time index set [0,T ] of the model. Write {Wt}t∈T
for a standard Brownian motion on (Ω ,F ,P). Suppose the states of an econ-
omy are modelled by a finite state continuous-time Markov chain {Xt}t∈T on
(Ω ,F ,P). Without loss of generality, we can identify the state space of {Xt}t∈T
with a finite set of unit vectors X := {e1,e2, . . . ,eN}, where ei = (0, . . . ,1, . . . ,0) ∈
RN . We suppose that {Xt}t∈T and {Wt}t∈T are independent.

Let A be the generator [ai j]i, j=1,2,...,N of the Markov chain process. From
Elliott et al. [11], we have the following semi-martingale representation theorem
for {Xt}t∈T :

Xt = X0 +
∫ t

0
AXsds+Mt , (9.1)

where {Mt}t∈T is an RN-valued martingale increment process with respect to the
filtration generated by {Xt}t∈T .
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We consider a financial model with three primary traded assets, namely a money
market account B and two risky assets or stocks with respective prices S1(t) and
S2(t) at time t. Suppose the market is frictionless; the borrowing and lending interest
rates are the same; the investors are price-takers.

The instantaneous market interest rate {r(t,Xt)}t∈T of the bank account is given
by:

rt := r(t,Xt) =< r,Xt > , (9.2)

where r := (r1,r2, . . . ,rN) with ri > 0 for each i = 1,2, . . . ,N and < ·, · > denotes
the inner product in RN .

We suppose the dynamics of the price process {Bt}t∈T for the bank account are
described by:

dBt = rtBtdt , B0 = 1 , (9.3)

Suppose the stock appreciation rates {μ1(t)}t∈T , {μ2(t)}t∈T and the volatilities
{σ1(t)}t∈T and {σ2(t)}t∈T of S1(t) and S2(t) depend on {Xt}t∈T and are described
by:

μ1(t) := μ1(t,Xt) =< μ1,Xt > , μ2(t) := μ2(t,Xt) =< μ2,Xt >,

σ1(t) := σ1(t,Xt) =< σ1,Xt > , σ2(t) := σ2(t,Xt) =< σ2,Xt > , (9.4)

where μ1 :=(μ1
1 ,μ

2
1 , . . . ,μ

N
1 ), μ2 :=(μ1

2 ,μ
2
2 , . . . ,μ

N
2 ), σ1 :=(σ1

1 ,σ
2
1 , . . . ,σ

N
1 ), σ2 :=

(σ1
2 ,σ2

2 , . . . ,σN
2 ) with σ i

1 > 0 and σ i
2 > 0 for each i = 1,2, . . . ,N and < ·, ·> denotes

the inner product in RN .
We assume that the dynamics of the underlying risky asset prices S1(t) and S2(t)

over time are modelled by the following stochastic differential equations:

dS1(t) = μ1S1(t)dt +σ1S1(t)dW 1
t ,

dS2(t) = μ2S2(t)dt +σ2S2(t)dW 2
t ,

S1(0) = s1, S2(0) = s2,

(9.5)

where (W 1
t )t∈T and (W 2

t )t∈T are Brownian motions with E[dW 1
t dW 2

t ] = ρdt; ρ ∈
(−1,1) is a constant correlation coefficient. Note that W 2

t can be decomposed over
a basis of uncorrelated Brownian motions W 1

t , (W 1
t )
⊥:

W 2
t = ρW1

t +
√

1−ρ2(W 1
t )
⊥. (9.6)

Setting Ŵ 1
t =W 1

t and Ŵ 2
t = (W 1

t )
⊥, Eqs. (9.5) become

dS1(t) = μ1S1(t)dt +σ1S1(t)dŴ 1
t ,

dS2(t) = μ2S2(t)dt +σ2ρS2(t)dŴ 1
t +σ2

√

1−ρ2S2(t)dŴ 2
t , (9.7)
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where Ŵ 1
t and Ŵ 2

t are independent standard Brownian motions. Let Ft be the σ -
algebra generated by the random variables Ŵ 1

s and Ŵ 2
s for s≤ t. Then the processes

(Ŵ 1
s )t∈T and (Ŵ 2

s )t∈T are Ft -Brownian motions.

9.3 Problem Formulation

In this section, we formulate the partial differential equations for the prices of Eu-
ropean spread options and American spread options.

It is assumed that under the risk-neutral measure Q the price dynamics of the
underlying risky assets S1(t) and S2(t) satisfy

dS1(t) = rtS1(t)dt +σ1S1(t)dŴ 1
t ,

dS2(t) = rt S2(t)dt +σ2ρS2(t)dŴ 1
t +σ2

√

1−ρ2S2(t)dŴ 2
t .

(9.8)

Write G̃ (t) for the σ -field FW (t)∨FX(T ), for each t ∈ T . Then, given G̃ (t), a
conditional price of a European spread option V is:

V (t,S1,S2,X) = EQ[e−
∫ T

t ruduV (S1(T ),S2(T ))|G̃ (t)] . (9.9)

Given S1(t) = s1, S2(t) = s2 and X(t) = x, a price of a European spread option V is:

V (t,s1,s2,x) = EQ[e−
∫ T

t ruduV (S1(T ),S2(T ))|S1(t) = s1,S2(t) = s2,X(t) = x].

(9.10)

Let Vi := V (t,s1,s2,ei), for each i = 1,2, . . . ,N. Write V := (V1,V2, . . . ,VN)
′, so

V (t,s1,s2,x) = 〈V,x〉. Applying the Feynman-Kac formula to Eq. (9.10), then V :=
V (t,s1,s2,x) satisfies the system of partial differential equations (PDEs)

∂V
∂ t

+
1
2
σ2

1 s2
1
∂ 2V

∂ s2
1

+ρσ1σ2s1s2
∂ 2V
∂ s1∂ s2

+
1
2
σ2

2 s2
2
∂ 2V

∂ s2
2

+ rts1
∂V
∂ s1

+ rts2
∂V
∂ s2

− rtV + 〈V,Ax〉= 0 , (9.11)

with terminal condition:

V (T,s1,s2,x) = (K− (s1− s2))
+ , (9.12)

and boundary condition:

lim
s1→∞

V (t,s1,s2,x) = 0 . (9.13)



216 L. Chan

So, if X(t) := ei (i = 1,2, . . . ,N),

σ1(t) = σ1i ,σ2(t) = σ2i, V (t,s1,s2,x) =V (t,s1,s2,ei) :=Vi , (9.14)

and Vi (i = 1,2, . . . ,N) satisfy the following system of PDEs:

∂Vi

∂ t
+

1
2
σ2

1is
2
1
∂ 2Vi

∂ s2
1

+ρσ1iσ2is1s2
∂ 2Vi

∂ s1∂ s2
+

1
2
σ2

2is
2
2
∂ 2Vi

∂ s2
2

+ ris1
∂Vi

∂ s1
+ ris2

∂Vi

∂ s2

− riVi + 〈V,Aei〉= 0 , (9.15)

with the terminal condition:

V (T,s1,s2,ei) = (K− (s1− s2))
+ , i = 1,2, . . . ,N, (9.16)

and boundary condition:

lim
s1→∞

V (t,s1,s2,ei) = 0 , i = 1,2, . . . ,N . (9.17)

With K = 0, the price of an exchange option satisfies the following system of PDEs:

∂Vi

∂ t
+

1
2
σ2

1is
2
1
∂ 2Vi

∂ s2
1

+ρσ1iσ2is1s2
∂ 2Vi

∂ s1∂ s2
+

1
2
σ2

2is
2
2
∂ 2Vi

∂ s2
2

+ ris1
∂Vi

∂ s1
+ ris2

∂Vi

∂ s2

− riVi + 〈V,Aei〉= 0 , (9.18)

with the terminal condition:

V (T,s1,s2,ei) = (s2− s1)
+ , i = 1,2, . . . ,N, (9.19)

and boundary condition:

lim
s1→∞

V (t,s1,s2,ei) = 0 , i = 1,2, . . . ,N . (9.20)

The three-dimensional PDEs for the price of an exchange option can be reduced into
a two-dimensional PDEs either by the method of change measure or by a similar-
ity reduction. We adopt the PDE approach to reduce the dimensionality. From the
definition of an exchange option and the fact that S1(T ) and S2(T ) are linear in the
initial conditions s1 and s2 respectively, Vi has a linear homogeneous property:

λVi(s1,s2) =Vi(λ s1,λ s2), (9.21)

for any λ > 0, so taking λ = 1
s2

, we have

Vi(t,s1,s2) = s2V ′i (t,
s1

s2
) (9.22)
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where V ′i (t,y) = Vi(t,y,1). The derivatives of Vi can be expressed in terms of those
of V ′i . We have

∂Vi

∂ s1
=
∂V ′i
∂y

,
∂Vi

∂ s2
=V ′i −

s1

s2

∂V ′i
∂y

.

We observe that s1
∂Vi
∂ s1

+ s2
∂Vi
∂ s2

= Vi, so that ris1
∂Vi
∂ s1

+ ris2
∂Vi
∂ s2
− riVi = 0. After sub-

stitution and simple calculation, Eq. (9.18) is reduced to the following PDE for V ′i

∂V ′i
∂ t

+
1
2

y2σ2
i
∂ 2V ′i
∂y2 +

〈

V′,Aei
〉

= 0 (9.23)

where σi =
√

σ2
1i +σ2

2i− 2ρσ1iσ2i. The boundary condition is

V ′i (T,y) = (1− y)+. (9.24)

Now consider an American exchange option. Given that St = S and that Xt = X , the
price of an American exchange put option at time t is given by:

V (t,T,S1,S2,X)

= sup
τ∈[t,T ]

EQ
[

exp

(

−
∫ T

t
rudu

)
(

S2(T )−S1(T )
)+
∣
∣
∣
∣
S1(t) = S1,S2(t) = S2,Xt = X

]

= sup
τ∈[t,T ]

EQ
[

S2(T )exp

(

−
∫ T

t
rudu

)
(

1− S1(T )
S2(T )

)+
∣
∣
∣
∣
S1(t) = S1,S2(t) = S2,Xt = X

]

= sup
τ∈[t,T ]

s2(0)E
Q̃
[

exp

(

−
∫ T

t
rudu

)
(

1−y
)+
∣
∣
∣
∣
y(t) = y,Xt = X

]

= s2V ′(t,T,y,X) (9.25)

where the supremum is taken over the set of stopping times τ taking values in [t,T ]

and dQ̃
dQ = 1

s2(0)
S2(T ).

Let V′ := V′(t,T,y) = (V ′(t,T,y,e1), . . . ,V ′(t,T,y,eN)) = (V ′1, . . . ,V
′
N). When

Xt = ei (i = 1,2, . . . ,N), the continuation region is given by:

C i = {(y, t) ∈R+× [0,T ]|V ′(t,T,y,ei)> (1− y)+} , (9.26)

and the stopping region is given by:

S i = {(y, t) ∈R+× [0,T ]|V ′(t,T,y,ei) = (1− y)+} . (9.27)

As in Buffington and Elliott [4], we write C i
t for the t-section of C i, for each

i = 1,2, . . . ,N and t ∈ [0,T ]. Let y fi(t) = y f (t,ei) denote the critical price of the
American put when Xt = ei (i = 1,2, . . . ,N); that is, when the state Xt = ei and the
price of the underlying risky asset at time t falls below y fi(t), it is rational for the
holder of the American put to exercise the option at time t. Note that y fi(T ) =K, for
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each i = 1,2, . . . ,N. Then, by Elliott and Kopp [9] and Buffington and Elliott [4],

C i
t = (y fi(t),∞) , i = 1,2, . . . ,N . (9.28)

The price for an American exchange option V := s2V ′ := s2V ′(t,T,y,x) where
V ′(t,T,y,x) satisfies the system of partial differential equations (PDEs)

∂V ′i
∂ t

+
1
2

y2σ2
i
∂ 2V ′i
∂y2 +

〈

V′,Aei
〉

= 0. (9.29)

The boundary conditions are

V ′i (t,T,y fi(t)) = 1− y fi(t), (9.30)

∂V ′i
∂y

(t,T,y fi(t)) =−1, (9.31)

V ′i (T,T,y) = (1− y)+. (9.32)

Note that the above free boundary system of PDEs for the price of American ex-
change option is just an American put option with the strike K = 1 and the underly-
ing process y.

Now, we restrict ourselves to a special case with the number of regimes N being
2 in order to simplify our discussion. In this two-state regime switching model, we
have two regions: the common continuation region and the transition region. We
first discuss the American put value function in the common continuation region
where y > y f2(t) and V ′1, V ′2 satisfy the equations:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V ′1
∂ t + 1

2 y2σ2
1
∂ 2V ′1
∂y2 + 〈V′,Ae1〉= 0

V ′1(t,T,y f1(t)) = 1− y f1(t)
∂V ′1
∂y (t,T,y f1(t)) =−1

V ′1(T,T,y) = max{1− y,0}
limy→∞V ′1(t,T,y) = 0

(9.33)

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V ′2
∂ t + 1

2 y2σ2
2
∂ 2V ′2
∂y2 + 〈V′,Ae2〉= 0

V ′2(t,T,y f2(t)) = 1− y f2(t)
∂V ′2
∂y (t,T,y f2(t)) =−1

V ′2(T,T,y) = max{1− y,0}
limy→∞V ′2(t,T,y) = 0.

(9.34)

Now consider the transition region between the two stopping curves:

Γ : {(y, t) : y f1(t)≤ y≤ y f2(t)}
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In this region V ′2 =V ′(t,T,y,e2) = 1−y and V ′1 satisfies the Black-Scholes equation

∂V ′1
∂ t

+
1
2

y2σ2 ∂ 2V ′1
∂y2 + a11V

′
1− a11(1− y) = 0 , (9.35)

with a terminal condition

V ′1(T,T,y) = max{1− y,0}.

Also, continuity on y f1(t) gives:

V ′1(t,T,y) = 1− y f1(t)

and smoothness on y f1(t) gives:

∂V ′1
∂y

(t,T,y f1(t)) =−1. (9.36)

9.4 A Closed-Form Formula

In this section, we modify the result of Zhu and Chan [35] to obtain a closed-form
formula for the price of an American exchange option under a two-state regime
switching model by means of the homotopy analysis method. The pricing American
exchange option PDEs is just the American option PDEs. The closed-form formula
for the price of an American option under a two-state regime switching model is
given by Zhu and Chan [35]. We state the following closed-form solution for the
price of the American exchange option under a two-state regime switching model
which was due to Zhu and Chan [35].

Lemma 9.1. Let τi := σ2
i

2 (T − t), λi =
2aii
σ2

i
and xi = ln

( y
y fi(τi)

)

. Then the American

exchange put price Vi = s2V ′i , i = 1,2 in the common continuation region is given as
follows:

Vi = s2V ′i = s2

∞

∑
n=0

V̄ n
i (τi,xi)

n!
, i = 1,2 (9.37)

with the initial guess V̄ 0
i (τi,xi) is given by a closed-form solution of a European put

option with a two-state regime switching (for instance, see Zhu et al. [36]):

V 0
i (t,y)
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= e−ri(T−t) +
1

4π
√

2

√
ye−

1
2 (ri+a21+a12+

σ2
1 +σ2

2
8 )(T−t)

∫ ∞

0

(−1)i−12 f̂1(ρ)(a21 +a12)

M(ρ)(ρ4 + 1
16 )(σ

2
1 −σ2

2 )

×
{

eXi(ρ)
[

(2ρ2− 1
2
)sin( f̂2(ρ)+θ (ρ)−Yi(ρ))− (2ρ2 +

1
2
)cos( f̂2(ρ)+θ (ρ)−Yi(ρ))

]

− e−Xi(ρ)
[

(2ρ2− 1
2
)sin( f̂2(ρ)+θ (ρ)+Yi(ρ))− (2ρ2 +

1
2
)cos( f̂2(ρ)+θ (ρ)+Yi(ρ))

]}

+
2 f̂1(ρ)
M(ρ)

{

eXi(ρ)
[

sin( f̂2(ρ)+θ (ρ)−Yi(ρ))+cos( f̂2(ρ)+θ (ρ)−Yi(ρ))
]

− e−Xi(ρ)
[

sin( f̂2(ρ)+θ (ρ)+Yi(ρ))+cos( f̂2(ρ)+θ (ρ)+Yi(ρ))
]}

+
f̂1(ρ)
ρ4 + 1

16

{

eXi(ρ)
[

(2ρ2− 1
2
)sin( f̂2(ρ)−Yi(ρ))− (2ρ2 +

1
2
)cos( f̂2(ρ)−Yi(ρ))

]

+ e−Xi(ρ)
[

(2ρ2− 1
2
)sin( f̂2(ρ)+Yi(ρ))− (2ρ2 +

1
2
)cos( f̂2(ρ)+Yi(ρ))

]}

dρ,

(9.38)

for i = 1,2, where

τ =
σ2

1 −σ2
2

4
(T − t), α =

2(a12− a21)

σ2
1 −σ2

2

, μ2 =
4a12a21

(σ2
1 −σ2

2 )
2
,

M(ρ) =
{
[

(
1
4
+α)2−ρ4 + μ2]2 + 4ρ4(

1
4
+α)2

} 1
4

,

θ (ρ) =
1
2

tan−1
[

2ρ2( 1
4 +α)

( 1
4 +α)2−ρ4 + μ2

]

,

Xi(ρ) = (−1)i−1M(ρ)τ cosθ (ρ), Yi(ρ) = (−1)i−1M(ρ)τ sinθ (ρ)

and

f̂1(ρ) = e
− ρ√

2
| ln(y)+ri(T−t)|

, f̂2(ρ) =
ρ2

4
(σ2

1 +σ2
2 )(T− t)− ρ√

2
| ln(y)+ri(T− t)|.

Then each V̄ n
i (τi,xi),n = 1,2,. . . , is recursively given by

V̄ n
1 (τ1,x1) = − 2√

π

∫ ∞

0

∫ ∞

(x1+η1)/2
√τ1

φn
1

(

τ1− (x1 +η1)
2

4ξ 2
1

)

× e−[(x1+η1)/ξ1]
2−ξ 2

1 dξ1dη1 +
∫ τ1

0

{
eη1√
π

[

ex1
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×
∫ x1/2

√
τ1−η1

−x1/2
√
τ1−η1

f n
1 (η1,2

√
τ1−η1ξ1 + x1)e

√
τ1−η1ξ1−ξ 2

1 dξ1

+

∫ ∞

x1/2
√
τ1−η1

[

ex1 f n
1 (η1,2

√
τ1−η1ξ1 + x1)

+ e−x1 f n
1 (η1,2

√
τ1−η1ξ1− x1)

]× e
√
τ1−η1ξ1−ξ 2

1 dξ1

]

− 2
√
τ1−η1eτ1

∫ ∞

x1/2
√
τ1−η1

f n
1 (η1,2

√
τ1−η1ξ1− x1)

× e2
√
τ1−η1ξ1 erfc

(

ξ1 +
√
τ1−η1

)

dξ1

}

dη1,

(9.39)

V̄ n
2 (τ2,x2) = − 2√

π

∫ ∞

0

∫ ∞

(x2+η2)/2
√τ2

φn
2

(

τ2− (x2 +η2)
2

4ξ 2
2

)

× e−[(x2+η2)/ξ2]
2−ξ 2

2 dξ2dη2 +

∫ τ2

0

{
eη2√
π

[

ex2

×
∫ x2/2

√
τ2−η2

−x2/2
√
τ2−η2

f n
2 (η2,2

√
τ2−η2ξ2 + x2)e

√
τ2−η2ξ2−ξ 2

2 dξ2

+
∫ ∞

x2/2
√
τ2−η2

[

ex2 f n
2 (η2,2

√
τ2−η2ξ2 + x2)

+ e−x2 f n
2 (η2,2

√
τ2−η2ξ2− x2)

]× e
√
τ2−η2ξ2−ξ 2

2 dξ2

]

− 2
√
τ2−η2eτ2

∫ ∞

x2/2
√
τ2−η2

f n
2 (η2,2

√
τ2−η2ξ2− x2)

× e2
√
τ2−η2ξ2 erfc

(

ξ2 +
√
τ2−η2

)

dξ2

}

dη2,

(9.40)

where

f n
i (τi,xi) =

{−Li[V̄ 0
i (τi,xi)]+ ˜Ai(τi,xi,0), if n = 1

n ∂ n−1 ˜Ai
∂ pn−1 |p=0, if n≥ 2,

(9.41)

φn
i (τi) =

{

V̄ 0
i (τi,0)− ∂V̄ 0

i
∂xi

(τi,0)− 1, if n = 1
0, if n≥ 2.

(9.42)

Here Li is a differential operator defined as

Li =
∂
∂τi
− ∂ 2

∂x2
i

, (9.43)
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˜Ai =Li[V̄i]−Ai, i = 1,2 and Ai is a functional defined as

A1[V̄1(τ1,x1, p), ȳ f1(τ1, p)]

= L1(V̄1)−λ1(V̄1− V̄2)− 1
ȳ f1(τ1, p)

dȳ f1(τ1, p)

dτ1

∂V̄1

∂x1
(τ1,x1, p) (9.44)

A2[V̄2(τ2,x2, p), ȳ f2(τ2, p)]

= L2(V̄2)−λ2(V̄2− V̄1)− 1
ȳ f2(τ2, p)

dȳ f2(τ2, p)

dτ2

∂V̄2

∂x2
(τ2,x2, p). (9.45)

We also obtain the exact, explicit and closed-form formula for the optimal exercise
boundaries y fi(τi), i = 1,2 in the form:

y f1(τ1) =
2√
π

∞

∑
n=0

1
n!

{

eτ1

∫ ∞

0
e−η1

∫ ∞

η1/2
√τ1

φn
1

(

τ1− η2
1

4ξ 2
1

)

× e−(η1/ξ1)
2−ξ 2

1 dξ1dη1

+

∫ τ1

0

[

eη1

∫ ∞

0
f n
1 (η1,2

√
τ1−η1ξ1)e

√
τ1−η1ξ1−ξ 2

1 dξ1

− √π√τ1−η1eτ1

∫ ∞

0
f n
1 (η1,2

√
τ1−η1ξ1)

× e2
√
τ1−η1ξ1 erfc

(

ξ1 +
√
τ1−η1

)

dξ1
]

dη1

}

,

(9.46)

and

y f2(τ2) =
2√
π

∞

∑
n=0

1
n!

{

eτ2

∫ ∞

0
e−η2

∫ ∞

η2/2
√τ2

φn
2

(

τ2− η2
2

4ξ 2
2

)

× e−(η2/ξ2)
2−ξ 2

2 dξ2dη2

+

∫ τ2

0

[

eη2

∫ ∞

0
f n
2 (η2,2

√
τ2−η2ξ2)e

√
τ2−η2ξ2−ξ 2

2 dξ2

− √π√τ2−η2eτ2

∫ ∞

0
f n
2 (η2,2

√
τ2−η2ξ2)

× e2
√
τ2−η2ξ2 erfc

(

ξ2 +
√
τ2−η2

)

dξ2
]

dη2

}

.

(9.47)

Lemma 9.2. Let τ1 :=
σ2

1
2 (T− t), λ1 =

2a11
σ2

1
and x1 = ln

( y
y f1(τ1)

)

. Then the American

exchange put price V1 = s2V ′1, in the transition region is given as follows:

V1 = s2V ′1 = s2

∞

∑
n=0

V̄ n
1 (τ1,x1)

n!
, (9.48)
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and V2 = s2V ′1 = s2(1− y).
The final analytic solution at each order is then:

V̄ n
1 (τ1,x1) =

∫ ∞

0
ψn

1 (ξ1)G(x1,ξ1,τ1)dξ1−
∫ τ1

0
φn

1 (η1)G(x1,0,τ1−η1)dη1

=

∫ τ1

0

∫ ∞

0
f̃ n
1 (η1,ξ1)G(x1,ξ1,τ1−η1)dξ1dη1,

(9.49)

where

G(x1,ξ1,τ1) =
1

2
√
πτ1

{

exp

[−(x1− ξ1)
2

4τ1

]

+ exp

[−(x1 + ξ1)
2

4τ1

]

− 2
√
πτ1 exp

[

τ1 + x1 + ξ1
]

× erfc

(
x1 + ξ1

2
√
τ1

+
√
τ1

)}

, (9.50)

f̃ n
1 (τ1,x1) =

{−L1[V̄ 0
1 (τ1,x1)]+ ¯A1(τ1,x1,0), if n = 1

n ∂ n−1 ¯A1
∂ pn−1 |p=0, if n≥ 2,

(9.51)

φn
1 (τ1) =

{

V̄ 0
1 (τ1,0)− ∂V̄ 0

1
∂x1

(τ1,0)− 1, if n = 1
0, if n≥ 2.

(9.52)

Here L1 is a differential operator defined as

L1 =
∂
∂τ1
− ∂ 2

∂x2
1

, (9.53)

ˆA1 is a functional defined as

ˆA1[V̄1(τ1,x1, p), ȳ f1(τ1, p)]

= L1(V̄1)−λ1(V̄1 + ex1 ȳ f1(τ1, p)− 1)− 1
ȳ f1(τ1, p)

dȳ f1(τ1, p)

dτ1

∂V̄1

∂x1
(τ1,x1, p)

(9.54)

and ¯A1 =L [V̄1]− ˆA1.
The optimal exercise boundary y f1(τ1) is given by

y f1(τ1) =
∞

∑
n=0

ȳn(τ1)

n!
, (9.55)
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where

ȳn(τ1) =−V̄ n
1 (τ1,0). (9.56)

For exact solutions in the form of infinite series, quite often it is difficult to theo-
retically show the convergence of the series. Although sometimes the convergency
is assumed (e.g. see Hildebrand [19]), it is more reasonable to at least show the
convergency through numerical evidence of the computed results of the solution.
Zhu [34] was the first who applied the HAM to the American put option under the
Black-Scholes environment. Using the Landau transform and the HAM, Zhu [34]
gave a solution in the form of infinite recursive series involving double integrals.
With a 30th-order approximation through numerical integration, Zhu [34] numeri-
cally demonstrated the convergence of his results. At the same line of Zhu [34], we
shall consider the numerical examples in our future research.

9.5 Conclusion

We consider the pricing of an American exchange option in a two-state regime
switching model. We show that the price of an American exchange option can be
reduced to the price of an American option. Then, we modify the result of Zhu
and Chan [35], a closed-form analytical pricing formula for the American exchange
option is presented.

Acknowledgements We wish to thank the referees for helpful comments.
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Chapter 10
Parameter Estimation in a Weak Hidden
Markov Model with Independent Drift
and Volatility

Xiaojing Xi and Rogemar S. Mamon

Abstract We develop a multivariate higher-order Markov model, also known as
weak hidden Markov model (WHMM), for the evolution of asset prices. The means
and volatilities of asset’s log-returns are governed by a second-order Markov chain
in discrete time. WHMM enriches the usual HMM by incorporating more informa-
tion from the past thereby capturing presence of memory in the underlying market
state. A filtering technique in conjunction with the Expectation-Maximisation algo-
rithm is adopted to develop the optimal estimates of model parameters. To ensure
that the errors between the “true” parameters and estimated parameters are due only
to the estimation method and not from model uncertainty, recursive filtering algo-
rithms are implemented to a simulated dataset. Using goodness-of-fit metrics, we
show that the WHMM-based filtering techniques are able to recover the “true” un-
derlying parameters.

10.1 Introduction

We propose a general extension of the WHMM-modulated model for asset price dy-
namics by allowing the drift and volatility components to be driven by two indepen-
dent WMCs not necessarily having the same number of states. That is, for instance,
the drift may have three states whilst the volatility has only two states and the asset
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returns components are driven by different Markov chains. In recent years, Marko-
vian regime-switching models have received considerable interests in economics,
finance and actuarial science. In a pioneering work, Hamilton [10] proposed a class
of discrete-time Markov-switching autoregressive time series models. In Hamilton’s
model, the parameters are governed by a discrete-time, finite-state Markov chain so
that the parameters have different values according to the state of the chain in a given
period. This idea gives a natural and simple way to model the cyclical behaviour or
the impact of changes in the financial market on the dynamics of financial time
series. Many empirical studies reveal that Markovian regime-switching model can
provide a better description of economic and financial series then that from a single
regime model. Hardy [11] proposed a Markov regime-switching lognormal model
for stock returns, and implemented the model on S&P500 and the Toronto Stock Ex-
change 300 indices; it was found that the regime-switching model performed better
than the GARCH model in terms of goodness of fit. A survey of regime switching
frameworks in econometric time series modelling and the differences between ob-
servation switching and Markov switching are given in Lange and Rohbek [13]. Ang
and Timmermann [1] discussed the impact of regime switching on equilibrium asset
prices and suggested that regimes exist in a variety of financial series such as fixed
income, equity and currency markets. A three-state model in which the asset prices
are highest in the “good” regime and lowest in the “bad” regime was considered in
Veronesi [23].

Calvet and Fisher [3] suggested that a regime-switching mechanism can account
for time-varying state and asymmetric reaction of equilibrium stock prices to news
arrivals. A well-known class of such models is the HMM, in which a hidden Markov
chain is employed to describe the random transition of the hidden state of an econ-
omy. HMM can provide a reasonably realistic description of some important empir-
ical features such as heavy-tails of the returns distribution and time-varying condi-
tional volatility. Due to their empirical successes, HMMs have been widely adopted
in modelling financial time series. Rydén, et al. [20] considered an HMM for mod-
elling daily return series, and investigated the capability of HMM to capture the se-
ries’ stylised facts. By applying the model to S&P500 daily returns, the results sug-
gest that the HMM can describe most of the observed features of the time series data
except for the slowly decaying autocorrelation function of the absolute return. Early
studies of HMM for financial time series include Tyssedal and Tjotheim [22], Pagan
and Schwert [19] and Sola and Leroux [14]. The monograph by Elliott, et al. [5]
provides a comprehensive discussion of parameter estimation under the HMM set-
up using filtering techniques. Since then, many researchers apply some of these
techniques to finance and economics. Elliott et al. [6] developed robust filtering
equations for a continuous-time HMM to estimate the volatility of a risky asset.
Mamon et al. [18] derived and implemented the filters on logreturn of commodity
prices, and compared the HMM to ARCH and GARCH models with respect to the
prices’ predictability. The HMM filtering method is applied to many other financial
problems, for example, asset allocation [7, 9], interest rate modelling [8, 27], option
pricing [15], and so on.
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Although quite popular, the simple homogeneous Markov switching model is
memoryless, which seems inadequate for real-world data. It is well-known in the
economic and finance literature that the states of an economy and financial time
series possess long-range dependence property, which can be verified through a
simple plot of an empirical autocorrelation function. Motivated by this empirical
phenomenon, we consider a WHMM as more flexible and generalises the HMM.
The basic idea of an nth-order HMM is that the behaviour of the underlying Markov
chain at present time depends on its behaviour in the past n time steps. WHMM is
popular in speech and text recognition, but is rather new in probing the finer struc-
tures of the financial market. Bulla and Bulla [2] examined the fit of WHMMs to
18 daily sector return series and suggested that the stylised fact of slowly decaying
autocorrelation can be described better by WHMMs. Yu et al. [26] explored the use
of WHMMs to capture long-range dependence; they derived the recursive formula
for the autocovarriance function over different time scales and the estimator of the
Hurst parameter. Their empirical results demonstrated that WHMM captures long-
range dependence if one state is heavy-tailed distributed. By weakening the Markov
assumption, WHMMs provide a simple and flexible way to describe the duration de-
pendence through their dependence on backward time recurrence. This has led some
authors to investigate applications of WHMMs in the fields of financial derivatives,
for example, risk management [21], option pricing [4], interest rate modelling [12],
and asset return modelling [25].

Mamon and Jalen [17] proposed a method based on tensors to transform two in-
dependent chains into one Markov chain so that the regular filtering technique can
be applied. This method is then implemented on the Dow Jones and NASDAQ in-
dices. In this paper, we investigate a WHMM under the situation when the drift and
volatility of the given data are assumed driven by two independent weak Markov
chains (WMCs). In particular, we suppose that the rate of return of a risky asset is
governed by a WHMM with two underlying WMCs. The tensor-based transforma-
tion is adopted and the filtering technique for WHMMs under one chain is subse-
quently applied. Numerical study based on simulated observation data is carried out
to demonstrate the effectiveness of this method. We also provide error analyses for
different combination of states through the h-step ahead prediction performance.

This article is organised as follows. In Sect. 10.2, we present the modelling
framework of WHMM. The dynamics of a risky asset price under the WHMM ex-
tension is described. By utilising a measure-change method, we derive recursive
filters for the state of the WMC and other processes of interests. Parameter estima-
tion based on EM algorithm is established in Sect. 10.3. In Sect. 10.4, we implement
the filters under the proposed extended set-up on simulated data. The method is ex-
amined using different algorithm starting values. We generate one- and five-step
ahead forecasts for different models and compare the forecasting performance via
four error metrics. We give a conclusion in Sect. 10.5.
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10.2 Modelling Background

We present a WHMM for modelling asset prices, where the drift and volatility have
independent probability behaviour. In the sequel, all vectors are denoted by bold
English or Greek letters in lowercase and all matrices are denoted by bold letters
in uppercase. Fix a complete probability space (Ω ,F ,P), where P is a real-world
probability measure. Define a discrete-time WMC {xk}, k ≥ 0 on (Ω ,F ,P) with
a finite-state space S = {s1,s2, . . . ,sN}. The states of the MC represent different
states of the economy. Without loss of generality, the points in S can be identified
with the canonical basis {e1,e2, . . . ,eN}⊂RN , where ei =(0, . . . ,0,1,0, . . . ,0)� and
� denotes the transpose of a vector. In particular, 〈xk,ei〉 stands for the event that
the economy is in state i at time t and 〈 , 〉 stands for the inner product in RN .

In this article, we concentrate on a second-order WMC to simplify the discussion
and present a complete characterisation of the parameter estimation. The probability
of the next time step for a second-order WMC depends on the information on current
and previous time steps. Let A ∈ RN×N2

be the transition probability matrix of xk.
Each entry almv :=P(xk+1 = el |xk = em,xk−1 = ev), l,m,v∈ 1, . . . ,N is the transition
probability that x enters state l given that the current and previous states were states
m and v, respectively. The salient idea in the filtering method for WHMM is that a
second-order Markov chain is transformed into a first-order Markov chain through
a mapping ξ , and then we may apply the regular filtering method. The mapping ξ
is defined by

ξ (er,es) = ers, for 1≤ r,s≤ N,

where ers is an RN2−unit vector with unity in its ((r−1)N+s)th position. The iden-
tification of the new first-order Markov chain with the canonical basis is given by

〈ξ (xk,xk−1),ers〉= 〈xk,er〉〈xk−1,es〉.

We further assume that the new Markov chain has a new transition probability ma-
trix, ΠΠΠ ∈RN2×N2

, given by

πi j =

{

almv if i = (l− 1)N +m, j = (m− 1)N + v
0 otherwise.

Each non-zero element πi j represents the probability

πi j = almv = P(xk = el |xk−1 = em, xk−2 = ev),

and each zero represents an impossible transition. Following the arguments in Elliott
et al. [5], the new Markov chain ξ (xk,xk−1) has the semi-martingale representation

ξ (xk,xk−1) =ΠΠΠξ (xk−1,xk−2)+ vk, (10.1)

where {vk}k≥1 is a sequence of RN2
martingale increments.
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Let Sk, k ≥ 1, be the asset price at time k and yk denote the logarithmic incre-
ments. Xi and Mamon [25] examined the case where the drift and volatility of yk

are governed by the same hidden Markov chain. In particular, yk is assumed to have
the dynamics

yk+1 = f (xk)+σ(xk)zk+1 = 〈f,xk〉+ 〈σσσ ,xk〉zk+1. (10.2)

The sequence {zk} is a sequence of N(0,1) IID random variables, which are in-
dependent of the x-process. In this study, we consider the case when the drift and
volatility have independent states and probabilistic behaviour. That is, we assume yk

has the dynamics
yk+1 = 〈f,x1

k〉+ 〈σσσ ,x2
k〉zk+1, (10.3)

where xi is an Ni-state WMC on state space Si with transition matrix Ai ∈ RNi×N2
i .

Suppose the drift and volatility have the form f = ( f1, f2, . . . , fN1) ∈ RN1 and σσσ =
(σ1,σ2, . . . ,σN2) ∈ RN2 respectively. In order to apply the regular WHMM filtering
technique, we aim to re-formulate the hidden WMCs so that the dynamics of yk

have the same form as in Eq. (10.2). Let⊗ denote the tensor product. Following the
idea in [17], we transform the two chains, x1

k and x2
k , into a new WMC xk using

Kronecker product or tensor product, i.e., xk = x1
k ⊗ x2

k . Then xk is an N1N2-state
WMC with transition matrix A=A1⊗A2. Write 1N for the vector (1,1, . . . ,1)∈RN .
The reformulated drift and volatility are given by

ααα = f⊗ 1N2,

ηηη = 1N1 ⊗σσσ .

Therefore the dynamics of yk in Eq. (10.3) can be rewritten as

yk+1 = 〈ααα,xk〉+ 〈ηηη,xk〉zk+1. (10.4)

We demonstrate the workings of this transformation through a numerical example
in Sect. 10.4.

10.3 Filters and Parameter Estimation

Under the real-world measure P, we cannot observe the hidden state of the economy
xk directly. Instead, we are given market observations yk, which contain information
about xk. Certainly, the unknown drift and volatility are highly dependent on the
WMC. Thus, the estimation of parameters is tantamount to “filtering” the noise out
of the observations to recover the hidden WMC. However, the derivation of filters
under P is complicated. Exploiting the Kolmogorov’s Extension theorem, we note
that there exists a reference probability measure P̄ under which

• yk’s are N(0,1) IID random variables and
• x is a finite state WMC satisfying (10.1) and Ē[vk|Yk] = 0.
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Under P̄, yk does not depend on xk, and therefore it is more convenient to evaluate
the filtered estimates. The calculation starts with P̄ and then we perform a measure
change to construct the real-world measure P equivalent to P̄. Consider a Yk-adapted
process Λk, k ≥ 0 defined by

λl =
φ
(

σ(xl−1)
−1(yl− f (xl−1))

)

σ(xl−1)φ(yl)
, (10.5)

Λk =
k

∏
l=1

λl , k ≥ 1, Λ0 = 1, (10.6)

where φ(z) is the probability density function of a standard normal random vari-
able Z.

Define the Radon-Nikodŷm derivative of P with respect to P̄ by

dP
dP̄

∣
∣
∣
Yk

:= Λk. (10.7)

Suppose Xk is a Yk-adapted process. Write X̂k :=E[Xk|Yk] and γ(Xk) := Ē[ΛkXk|Yk].
Then by Bayes’ theorem for conditional expectation (see, for example, p. 22 of
Elliott et al. [5]), we have

X̂k =
Ē[ΛkXk|Yk]

Ē[Λk|Yk]
=
γ(Xk)

γ(1)
. (10.8)

Let us derive the conditional expectation of ξ (xk,xk−1) given Yk under P. Write

pi j
k := P(xk = ei,xk−1 = e j|Yk) = E[〈ξ (xk,xk−1),ei j〉|Yk] (10.9)

with pk = (p11
k , . . . , pi j

k , . . . , pNN
k ) ∈ RN2

. Hence, by Bayes’ theorem for conditional
expectation,

pk = E[ξ (xk,xk−1)|Yk] =
γ(ξ (xk,xk−1))

γ(1)
. (10.10)

Note that
N

∑
i, j=1

〈ξ (xk,xk−1),ei j〉= 〈ξ (xk,xk−1),1N2〉= 1. (10.11)

Let qk = γ(ξ (xk,xk−1)) so that

〈qk,1N2〉= Ē[Λk〈ξ (xk,xk−1),1N2〉|Yk] = γ(1). (10.12)

From Eqs. (10.10) and (10.12), we get the conditional distribution of ξ (xk,xk−1)
under P as

pk =
qk

〈qk,1N2〉 . (10.13)
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In order to estimate the state process ξ (xk,xk−1), we shall establish the recursion
for the process qk. Define the diagonal matrix Bk ∈ RN2×N2

by

Bk = diag(b1
k , . . . ,b

N
k , . . . ,b

1
k, . . . ,b

N
k ) (10.14)

where diag(v) is a diagonal matrix whose diagonal entries are the components of
the vector v and

bi
k =

φ ((yk− fi)/σi)

σiφ(yk)
. (10.15)

To estimate the parameters of the model, we first present the set of quantities
that are pertinent to the derivation. Three of these processes are related to the state
process and one is related to both the state and observation processes. For r,s, t =
1, . . . ,N, these quantities are defined by

• Jrst
k , the number of jumps from (es,et ) to state er up to time k,

Jrst
k =

k

∑
l=1

〈xl ,er〉〈xl−1,es〉〈xl−2,et〉 (10.16)

• Ors
k , the occupation time of x spent in state (er,es) up to time k,

Ors
k =

k

∑
l=1

〈xl−1,er〉〈xl−2,es〉 (10.17)

• Or
k, the occupation time spent by x in state er up to time k,

Or
k =

k

∑
l=1

〈xl−1,er〉 (10.18)

• T r
k (g), the level sum for the state er,

T r
k (g) =

k

∑
l=1

g(yl)〈xl−1,er〉. (10.19)

Here, g is a function with the form g(y) = y or g(y) = y2, for 1≤ l ≤ k.

The two propositions that follow are straightforward extensions of the main re-
sults in Xi and Mamon [25], where N = N1×N2, and thus their proofs are im-
mediate. They provide the recursive formulae for the vectors γ

(

Jrst
k ξ (xk,xk−1)

)

,
γ
(

Ors
k ξ (xk,xk−1)

)

, γ
(

Or
kξ (xk,xk−1)

)

and γ
(

T r
k (g)ξ (xk,xk−1)

)

, which are the un-
normalised filtered estimates for Jrst

k , Ors
k , Or

k and T r
k (g), respectively.

Proposition 10.1. Let Vr,1≤ r≤N be an N2×N2 matrix such that the ((i−1)N+
r)th column of Vr is eir for i = 1 . . .N and zero elsewhere. If B is the diagonal matrix
defined in Eq. (10.14) then

qk+1 = Bk+1ΠΠΠqk (10.20)



234 X. Xi and R.S. Mamon

and

γ(Jrst
k+1ξ (xk+1,xk)) =Bk+1ΠΠΠγ(Jrst

k ξ (xk,xk−1))+ br
k+1〈ΠΠΠest ,ers〉〈qk,est〉ers,

(10.21)

γ(Ors
k+1ξ (xk+1,xk)) =Bk+1ΠΠΠγ(Ors

k ξ (xk,xk−1))+ br
k+1〈qk,ers〉ΠΠΠers, (10.22)

γ(Or
k+1ξ (xk+1,xk)) =Bk+1ΠΠΠγ(Or

kξ (xk,xk−1))+ br
k+1VrΠΠΠqk, (10.23)

γ(T r
k+1(g)ξ (xk+1,xk)) =Bk+1ΠΠΠγ(T r

k (g)ξ (xk,xk−1))+ g(yk+1)b
r
k+1VrΠΠΠqk.

(10.24)

Similar to Eq. (10.11), the unnormalised filtered estimates for γ(Jrst
k ), γ(Ors

k ),
γ(Or

k) and γ(T r
k (g)) can be determined by taking the inner products with 1N2 . For

example,
γ(Jrst

k ) =
〈

γ(Jrst
k ξ (xk,xk−1)),1N2

〉

.

The normalised estimates are obtained by dividing γ(Jrst
k ) by γ(1), that is, Ĵrst

k =
γ(Jrst

k )/γ(1).
We now briefly illustrate the EM algorithm for estimating the optimal parameters

using the filters in Proposition 10.1. The parameters in our model are given by the
set

θ = {arst , fr, σr.1≤ r,s, t ≤ N}.
The EM method is a two-stage estimation technique; these stages are the expectation
and maximisation steps. The algorithm proceeds by initially selecting any set of
parameters, denoted by θ0, for the model. The change to a new set of parameters
is described by a change of probability measure from P0 to Pθ . This means that the
likelihood function for estimating the parameter θ based on the given information
Y is

L(θ ) = E0

[
dPθ
dP0

∣
∣
∣Y

]

.

The logarithm of the Radon-Nykodŷm derivative of the new measure with respect
to the old measure is then calculated. A set of parameters that maximise the condi-
tional log-likelihood is then determined. It is shown in [24] that the sequence of the
estimated log-likelihood is monotonically increasing and the sequence of estimates
converges to a local maximum of the expectation of the estimated likelihood func-
tion. This method yields a self-tuning approximation of the maximum likelihood
estimate. As an example, let us consider the case of estimating the transition matrix.
Note that the non-zero entries of ΠΠΠ are the same as the entries of A. We estimate the
matrix A then constructΠΠΠ for the calculation of filters. We first perform a change of
measure from Pθ to Pθ̂ for this method. Under Pθ , x is a WMC with transition matrix
A = (arst). In [16], it is proved that under Pθ̂ , x is still a WMC and the transition
matrix is Â = (ârst). To replace A by Â, the likelihood function

dPθ
dP0

∣
∣
∣
Yk

= Γ A
k ,
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Γ A
k =

k

∏
l=2

N

∏
r,s,t=1

(
ârst

arst

)〈xl ,er〉〈xl−1,es〉〈xl−2,et 〉

is considered. In case arst = 0, take ârst = 0 and ârst/arst = 1. The maximum likeli-
hood estimates are given in the following proposition.

Proposition 10.2. Suppose the observation is d-dimensional and the set of parame-
ters {ârst , f̂r, σ̂r} determines the dynamics of yk, k ≥ 1. Then the EM estimates for
these parameters are given by

ârst =
Ĵrst

k

Ôst
k

=
γ(Jrst

k )

γ(Ost
k )

, ∀pairs (r,s), r �= s, (10.25)

f̂r =
T̂ r

k

Ôr
k

=
γ(T r

k (y))

γ(Or
k)

, (10.26)

σ̂r =

√

T̂ r
k (y

2)− 2 f̂rT̂ r
k (y)+ f̂ 2

r Ôr
k

Ôr
k

. (10.27)

The recursions in Eqs. (10.21)–(10.24) can be used to obtain dynamic parameter
estimates given in Proposition 10.2. In other words, every time a set of financial time
series observations is available up to time k, new parameters ârst(k), f̂r(k), σ̂r(k), 1≤
r,s, t ≤ N are obtained from Eqs. (10.25) to (10.27) through filtering recursions.
The parameter estimation is then self-tuning as recursive filters for the unobserved
Markov chain and related processes in Proposition 10.1 can easily get updated every
time new information arrives.

10.4 Numerical Implementation

In this section, we demonstrate the implementation of the filtering technique in
the estimation of model parameters using simulated data. Suppose we are given
a set of data generated from a process with a 3-state drift and 2-state volatility:
f = ( f1, f2, f3) and σσσ = (σ1,σ2). The re-formulated drift and volatility vectors are

ααα = f⊗ 12 = ( f1, f1, f2, f2, f3, f3)

ηηη = 13⊗σσσ = (σ1,σ2,σ1,σ2,σ1,σ2).

Note that the new WMC x has six states. Instead of estimating all values in ααα and ηηη ,
we only estimate f and σσσ , then reformulate ααα and ηηη for the recursive filters. In this
way, the algorithm estimates fewer parameters than the actual 6-state model, but it
is rich enough to capture all information.

The steps of the algorithm are as follows:

1. Initialise f, σσσ , A1 and A2.
2. Construct ααα, ηηη , A and ΠΠΠ .
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3. Calculate the filters in Proposition 10.1 using ααα , ηηη , A and ΠΠΠ .
4. Using a new batch of yk values, compute new estimates of f, σσσ and A using the

recursive filters in Proposition 10.2.
5. Construct the new ααα , ηηη and ΠΠΠ , and use these estimates as the initial values in

the processing of the next batch of data points. Repeat from step. 3

Clearly, the algorithm allows us to generate new estimates when new information
arrives.

We illustrate the proposed scheme using simulated data. For our simulated ob-
servation data, two sets of 1,000-point WMCs were generated with the following
parameter “true” values:

A1 =

⎛

⎝

0.8 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.8 0.8 0.8 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.8 0.8

⎞

⎠ ,

A2 =

(
0.7 0.7 0.3 0.3
0.3 0.3 0.7 0.7

)

.

The initial states of both WMCs are state 1. The “true” values of the drift and volatil-
ity components are f = (0.04,0,−0.02) and σσσ = (0.02,0.05), respectively. Using
the dynamics in Eq. (10.3), 1,000 simulated observation points are obtained, which
can be considered as daily returns of an asset price. We run our on-line algorithm
in batches consisting of 10 data points per batch this produces a set of updated pa-
rameter estimates and therefore, the parameters were updated every 2 weeks. We
call the processing of a batch of data as one complete algorithm pass or step. In our
simulation study, there are 100 algorithm steps.

An important aspect to consider when implementing the EM algorithm is to
determine the number of states. Erlwein and Mamon [8] determined the optimal
number of regimes using the Akaike information criteria and found that a two-state
HMM outperforms other multi-state HMMs in capturing the dynamics of the Cana-
dian short rates proxied by the 30-day T-bill yields. Indeed, the number of states
can be any reasonable value indicated by the data. In our case, we run the algorithm
using different choices for the number of states to obtain the parameter estimates. In
order to compare the performance of various WHMM model candidates, we com-
pare their corresponding 1-step ahead forecasts under different goodness-of-fit mea-
sures.

Figure 10.1 displays the evolution of f and σσσ estimates under various WHMM
settings. Initial values of f and σσσ are indicated below each plot, which were based on
the values chosen for the “true” parameter values. All initial entries of the transition
matrix, A, are set to 1/N. Parameter estimates achieve stability after approximately
five steps as shown by the plots in Fig. 10.1a–c. In plot in Fig. 10.1d, convergence is
attained after 25 steps. Our experiment shows that the convergence can be achieved
with other reasonable starting values. However, the choice of initial parameter val-
ues and the model setting affect the speed of convergence.
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Fig. 10.1 Evolution of parameter estimates under different model settings. (a) 1-state drift and
2-state volatility with initial values f = 0 and σσσ =(0.01,0.04). (b) 2-state drift and 2-state volatility
with initial values f=(0.03,−0.03) and σσσ =(0.01,0.03). (c) 3-state drift and 2-state volatility with
initial values f = (0.03,0,−0.03) and σσσ = (0.01,0.03). (d) 2-state drift and 3-state volatility with
initial values f = (0.03,0) and σσσ = (0.01,0.02,0.03)

The semi-martingale representation of a WMC in Eq. (10.1) and the definition of
A lead to

E[xk+h|Yk] = AΠΠΠ h−1pk, h≥ 1.
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Table 10.1 Comparison of 1-step ahead forecast errors

f σσσ RMSE AME RAE APE

1-state 1-state 1.3911 1.0233 0.1010 0.0440
1-state 2-state 1.0780 0.7001 0.0691 0.0282
2-state 3-state 1.0842 0.7010 0.0690 0.0819
2-state 1-state 1.0787 0.7006 0.0692 0.0820
2-state 2-state 1.0824 0.7088 0.0700 0.0285
3-state 2-state 1.0742 0.6854 0.0687 0.0279

Table 10.2 Comparison of 5-step ahead forecast errors

f σσσ RMSE AME RAE APE

1-state 1-state 2.6274 1.8770 0.1854 0.0775
1-state 2-state 2.4653 1.7449 0.1723 0.0705
2-state 3-state 2.4717 1.7477 0.1726 0.0706
2-state 1-state 2.4653 1.7450 0.1723 0.0705
2-state 2-state 2.4689 1.7470 0.1725 0.0706
3-state 2-state 2.4648 1.7442 0.1722 0.0704

The h-step ahead forecasts of the logarithmic increment yk is

E[yk+h|Yk] = 〈f,AΠΠΠh−1pk〉,

and the conditional variance of yk+h is

Var[yk+h|Yk] = f�diag(AΠΠΠ h−1pk)f+σσσ�diag(AΠΠΠ h−1pk)σσσ −〈f,AΠΠΠh−1pk〉2.

We compare the forecasting performance of different WHMM settings. To as-
sess the goodness-of-fit of the h-step ahead forecasts, we evaluate the root mean
square (RMSE), absolute mean error (AME), relative absolute error (RAE) and ab-
solute percentage error (APE) for h = 1 and h = 5. These errors are reported in
Tables 10.1 and 10.2. In both cases of h = 1 and h = 5, the model with 3-state drift
and 2-state volatility gives the best fit in terms of lowest forecasting errors. Hence,
the estimation method works very well given that it provides the best results consis-
tent with the data-generating process.

Note that the 1-state drift and volatility model produces the highest errors under
all metrics. It is apparent that the single-regime model is not able to capture the
dynamics of the data series. Furthermore, the model with 2-state drift and 3-state
volatility produces higher errors than those from the other 2-state volatility models.
Since the data were simulated using 2-state volatility, a model with more states will
lead to an overestimation of parameters and consequently generates large errors.
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10.5 Conclusion

We extended a WHMM framework to model the evolution of a risky asset by consid-
ering the drift and volatility of the logarithmic increments governed by two indepen-
dent hidden Markov chains. A tensor-based technique was employed to convert the
two independent WMCs into a single WMC. Filtered estimates of the drift, volatil-
ity and the state of the new WMC were derived based on EM algorithm. Numerical
examples on simulated data were given. Other than the true number of states, we
also considered other combinations of states for drift and volatility, and analysed
the resulting prediction errors. Our empirical results suggest that using the number
of states and the initial values indicated by the observation data will make the model
perform better. Indeed, our study confirms that starting values do directly affect the
algorithm performance. The determination at the outset of the correct number of
states for each parameter via error analysis or other methods improves the estima-
tion approach’s performance. It is definitely worth exploring the effectiveness and
efficiency of the proposed filtering and parameter estimation technique on other
models in finance and economics.

References

1. Ang, A., Timmermann, A.: Regime changes and financial markets. Ann. Rev.
Financ. Econ. 4, 313–337 (2012)

2. Bulla, J., Bulla, I.: Stylised facts of financial time series and hidden semi-
Markov models. Comput. Stat. Data Anal. 51, 2192–2209 (2006)

3. Calvet, L.E., Fisher, A.J.: Multifrequency news and stock returns. J. Financ.
Econ. 86, 178–212 (2007)

4. Ching, W.K., Siu, T.K., Li, L.M.: Pricing exotic options under a higher-order
Markovian regime. J. Appl. Math. Decis. Sci. 1–15 (2007) Article ID 18014

5. Elliott, R.J., Moore, J., Aggoun, L.: Hidden Markov Models: Estimation and
Control. Springer, New York (1995)

6. Elliott, R.J., Malcolm, W.P., Tsoi, A.H.: Robust parameter estimation for asset
price models with Markov modulated volatilities. J. Econ. Dyn. Control 27,
1391–1409 (2003)

7. Elliott, R.J., Siu, T.K., Badescu. A.: On mean-variance portfolio selection un-
der a hidden Markovian regime-switching model. Econ. Model. 27, 678–686
(2010)

8. Erlwein, C., Mamon, R.: An online estimation scheme for a Hull-White model
with HMM-driven parameters. Stat. Methods Appl. 18(1), 87–107 (2009)

9. Erlwein, C., Mamon, R., Davison, M.: An examination of HMM-based invest-
ment strategies for asset allocation. Appl. Stoch. Model Bus. Ind. 27, 204–221
(2011)

10. Hamilton, J.: A new approach to the economic analysis of nonstationary time
series and the business cycle. Econometrica 57(2), 357–384 (1989)



240 X. Xi and R.S. Mamon

11. Hardy. M.R.: A regime-switching model of long-term stock returns. North Am.
Actuar. J. 5, 41–53 (2001)

12. Hunt, J., Devolder, P.: Semi-Markov regime switching interest rate models and
minimal entropy measure. Phys. A Stat. Mech. Appl. 390, 3767–3781 (2011)

13. Lange, T., Rahbek, A.: An introduction to regime switching time series model.
In: Lange, T., Rahbek, A. (eds.) Handbook of Financial Time Series, pp. 871–
887. Springer, Berlin/Heidelberg (2009)

14. Leroux. B.G.: Maximum-likelihood estimation for hidden Markov models.
Stoch. Process. Appl. 40, 127–143 (1992)

15. Liew, C.C, Siu, T.K.: A hidden Markov-switching model for option valuation.
Insur. Math. Econ. 47, 374–384 (2010)

16. Luo, S., Tsoi, A.H.: Filtering of hidden weak Markov chain-discrete range ob-
servation. In: Mamon, R.S., Elliott, R.J. (eds.) Hidden Markov Models in Fi-
nance, pp. 106–119. Springer, New York (2007)

17. Mamon, R.S., Jalen. L.: Parameter estimation in a regime-switching model
when the drift and volatility are independent. In: Proceedings of 5th Interna-
tional Conference on Dynamic Systems and Applications, pp. 291–298. Dy-
namic Publishers, Atlanta (2008)

18. Mamon, R.S., Erlwein, C., Gopaluni, R.B.: Adaptive signal processing of asset
price dynamics with predictability analysis. Inform. Sci. 178, 203–219 (2008)

19. Pagan, A.R., Schwert, G.W.: Alternative models for conditional stock volatility.
J. Econ. 45, 267–290 (1990)

20. Rydén, T., Terasvirta, T., Asbrink, S.: Stylized facts of daily return series and
the hidden Markov model. J. Appl. Econ. 13, 217–244 (1998)

21. Siu, T., Ching, W., Fung, E., Ng, M. Li, X.: A high-order Markov-switching
model for risk measurement. Comput. Math. Appl. 58, 1–10 (2009)

22. Tyssedal, J.S., Tjostheim, D.: An autoregressive model with suddenly changing
parameters and an application to stock market prices. Appl. Stat. 37, 353–369
(1988)

23. Veronesi, P.: How does information affect stock returns? J. Financ. 55, 807–837
(2009)

24. Wu, C.: On the convergence properties of the EM algorithm. Ann. Stat. 11,
95–103 (1983)

25. Xi, X., Mamon, R.S.: Parameter estimation of an asset price model driven by a
weak hidden Markov chain. Econ. Model. 28, 36–46 (2011)

26. Yu, S., Liu, Z., Squillante, M.S., Xia, C.H., Zhang, L.: A hidden semi-Markov
model for web workload self-similarity. In: Proceedings of 21st IEEE Interna-
tional Performance, Computing, and Communications Conference, pp. 65–72,
Phoenix (2002)

27. Zhou, N., Mamon, R.: An accessible implementation of interest rate models
with Markov-switching. Expert Syst. Appl. 39(5), 4679–4689 (2012)



Chapter 11
Parameter Estimation in a Regime-Switching
Model with Non-normal Noise

Luka Jalen and Rogemar S. Mamon

Abstract This paper deals with the estimation of a Markov-modulated regime-
switching model for asset prices, where the noise term is assumed non-normal con-
sistent with the well-known observed market phenomena that log-return distribu-
tions exhibit heavy tails. Hence, the proposed model augments the flexibility of
the current Markov-switching models with normal perturbation whilst still achiev-
ing dynamic calibration of parameters. In particular, under the setting where the
model’s noise term follows a t-distribution, we employ the method of change of ref-
erence probability measure to provide recursive filters for the estimate of the state
and transition probabilities of the Markov chain. Although recursive filters are no
longer available for the maximum likelihood estimation of the model’s drift and
volatility components under the current extension, we show that such estimation
is tantamount to solving numerically a manageable system of nonlinear equations.
Practical applications with the use of simulated and real-market data are included to
demonstrate the implementation of our proposed algorithms.

11.1 Introduction

Various authors previously considered a discrete-time, finite-state Markov chain
which is observed through a real-valued function whose values are corrupted by
noise assumed to be independent and identically distributed (IID) normals. See for
example, Mamon and Elliott [5], Erlwein and Mamon [3], Erlwein et al. [4], and
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Date et al. [1], amongst others. It is, however, an accepted fact that the noise dis-
torting the true state of the observable processes does not necessarily follow the
normal distribution. In financial time series modeling, assumptions of normal IID
noise term results in tails thinner than those observed in the market.

Moving away from the normality assumption, i.e., employing non-normal noise,
complicates considerably the algebra involved in the calculation of filters. Despite
this inherent complexity, this paper attempts to relax the assumption on the noise
term and explore the implications. The noise term is assumed to have a general
distribution, and even depend on the state of the underlying Markov chain. With
this flexibility and extension, it is in general not possible to come up with all the
recursive filtering equations for the parameter re-estimation just like in the current
literature. Despite this drawback, recursive filters for estimating the transition prob-
abilities could be derived without regard to the distribution of the noise. However,
numerical methods are necessary in order to approximate the remaining parameters,
namely, the drift vector ααα and volatility vector βββ of the observation process in the
proposed modeling framework of this paper.

This chapter is structured as follows. In Sect. 11.2, the modeling set up is intro-
duced giving the dynamics of the state, which is captured by the Markov chain, and
observation processes. The change of reference probability technique, as it applies
to our modelling formulation, is discussed in Sect. 11.3. We establish the filtering
equations in Sect. 11.4. In Sect. 11.5, we apply the Expectation-Maximisation algo-
rithm to find the representation of the optimal estimates for the transition probabili-
ties in terms of the filters. A system of equations is given whose solutions provide the
optimal estimates of the drift and volatility. Section 11.6 contains several examples
illustrating parameter estimation using simulated and observed market data. Model
validation is performed via error analysis. This chapter is concluded in Sect. 11.7.

11.2 Model Set Up

It is assumed that all processes are defined on a complete probability space (Ω ,F ,P).
Suppose xk is a homogenous Markov chain with a finite state space. Without loss of
generality, we can assume that the state space of xk is associated with the canonical
basis {e1, . . . ,eN} ∈ R

N and ei = (0, . . . ,0,1,0, . . . ,0)�, where � denotes the trans-
pose of a vector. Further, assume that x0 is given, or its distribution is known and
ΠΠΠ = (π ji) is the transition probability matrix with π ji = P(xk+1 = e j | xk = ei), 1≤
i, j ≤ N. Additionally, xk is not observed directly, rather there is an observation
process

yk+1 = 〈ααα,xk〉+ 〈βββ ,xk〉zk+1(xk), (11.1)

where {zk+1(xk)} is a sequence of independent random variables with a distribution
function φxk(·), possibly dependent on the state of the Markov chain. It is a known
result (cf. Elliott et al. [2]) that xk has a semimartingale representation given by

xk+1 =Πxk + vk+1, (11.2)
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where vk+1 is a martingale increment, and ααα = (α1,α2, . . . ,αN)
� and βββ = (β1,β2,

. . . ,βN)
� are the respective drift and volatility parameters.

The filtrations or histories associated with our processes are: (i) Fk, the complete
filtration generated by x0,x1, . . . ,xk; (ii) Yk, the complete filtration generated by
y0,y1, . . . ,yk; and (iii) Hk :=Fk ∨Yk.

11.3 Reference Probability Measure

Adopting the idea of change-of-measure-based filtering approach in discrete time,
we consider a real-world measure P under which the signal model with the real-
valued y process on (Ω ,F ,P) has the dynamics

xk+1 = Πxk + vk+1

yk+1 = 〈ααα,xk〉+ 〈βββ ,xk〉zk+1(xk).

We introduce a new probability measure Q via a Radon-Nikodŷm derivative

dP
dQ

∣
∣
∣
Hk

=Λk,

such that under Q the random variable yk+1 has density φxk (·). Write

λl :=
N

∑
i=1

〈xl−1,ei〉
φei

( yl−αi
βi

)

βiφei(yl)
,

Λk :=
k

∏
l=1

λl , Λ0 = 1.

(11.3)

Lemma 11.1. Write Φ(·) := ∑N
i=1〈xk,ei〉φei(·). Under Q, the yk’s are IID random

variables following Φ(·), which is a mixture of φei(·) distributions.

Proof. Using Bayes’ theorem for conditional expectation, we have

Q(yk+1 ≤ t |Hk) = E
Q[I(yk+1 ≤ t) |Hk

]

=
E
[

λ−1
k+1I(yk+1 ≤ t) |Hk

]

E
[

λ−1
k+1 |Hk

] . (11.4)

Now,

E
[

λk+1 |Hk
]

=

∫ ∞

−∞
〈βββ ,xk〉Φ(yk+1)

Φ(zk+1)
Φ(zk+1)dzk+1 = 1. (11.5)



244 L. Jalen and R.S. Mamon

Therefore, we can write

Q(yk+1 ≤ t |Hk) = E
Q[I(yk+1 ≤ t) |Hk

]

=

∫ ∞

−∞
〈βββ ,xk〉Φ(yk+1)

Φ(zk+1)
Φ(zk+1)I(yk+1 ≤ t)dzk+1

=

∫ t

−∞
Φ(yk+1)dyk+1 = Q(yk+1 ≤ t), (11.6)

and the result follows. ��
Remark 11.1. The converse of Lemma 11.1 may be proved similarly. That is, if we
start with a probability measure Q on (Ω ,F ) such that under Q, xk is a Markov
chain with dynamics xk+1 = ΠΠΠxk + vk+1 and {yk} is a sequence of IID random
variables with a distribution function Φ(·) then under P, zk is a sequence of IID
random variables following the distribution Φ(·) on (Ω ,F ).

Our aim is to estimate x given the observation under P, the real-world probability.
Under P, even the recursive formulae for xk are not linear in xk, and this undoubtedly
leads to complications to their evaluation. So, calculations will be performed under
Q due to the convenience of the IID assumptions for yk’s; see Elliott et al. [2] for
more details.

Write ξξξ k := E
Q
[

Λkxk | Yk
]

. Observing that ∑N
i=1〈xk,ei〉= 1, we have

N

∑
i=1

E
Q[〈Λkxk,ei〉|Yk

]

=
N

∑
i=1

〈EQ[Λkxk | Yk],ei〉=
N

∑
i=1

〈ξξξ k,ei〉. (11.7)

In addition, letting

p̂i
k = P(xk = ei | Yk) and p̂k =

(

p̂1
k, . . . , p̃N

k

)

, (11.8)

we get an explicit expression for the conditional distribution of xk under P given Yk

given by

p̂k =
ξξξ k

∑N
i=1〈ξξξ k,ei〉

. (11.9)

Equation (11.9) provides the optimal estimate for the state of the Markov chain.
Its update as new information becomes available is given in the next section.

11.4 Recursive Estimation

We present a recursive filter for the vector process ξξξ k as well as derive the recursive
filtering relations and formulae which will be used in turn for the estimation of
transition probabilities. Write D for the diagonal matrix whose i-th element on the
diagonal is
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φei

( yl−αi
βi

)

βiφei(yl)
. (11.10)

Lemma 11.2. If ξξξ k := E
Q
[

Λkxk | Yk
]

, D is a matrix with diagonal elements of the
form (11.10) and ΠΠΠ a transition matrix corresponding to the Markov chain xk then

ξξξ k+1 =ΠΠΠDξξξ k. (11.11)

Proof. From the definition of ξξξ k, we have

ξξξ k+1 := E
Q[Λk+1xk+1 | Yk+1

]

(11.12)

and therefore,

ξξξ k+1 = E
Q[Λk+1xk+1 | Yk+1

]

= E
Q[Λkλk+1

(

ΠΠΠxk + vk+1
) | Yk+1

]

= E
Q

⎡

⎣Λk

⎛

⎝

N

∑
i=1
〈xk,ei〉

φei

(
yk+1−αi

βi

)

βββ iφei(yk+1)

⎞

⎠ΠΠΠxk

∣
∣
∣
∣
∣
∣

Yk+1

⎤

⎦

=
N

∑
i=1

E
Q[Λk〈xk,ei〉 | Yk+1

]φei

( yk+1−αi
βi

)

βiφei(yk+1)
ΠΠΠei =ΠΠΠDξξξ k. (11.13)

��
In addition to the optimal state estimation presented in Lemma 11.2, we also aim

to estimate the parameters of the model given in Eqs. (11.1) and (11.2), i.e., estimate
the vectors ααα and βββ , and transition matrix ΠΠΠ . To do this, we define the processes,
Or

k , J sr
k , and T r

k for the respective occupation time, number of jumps of x from r
to s up to time k, and related auxiliary processes, as follows:

Or
k+1 =

k+1

∑
i=1

〈xi,er〉 (11.14)

J rs
k+1 =

k+1

∑
i=1

〈xi,er〉〈xi,es〉 (11.15)

T r
k+1(g) =

k+1

∑
i=1

〈xi,er〉g(y), (11.16)

for some function g(y) in the estimation of αi, and being replaced by h(y) in the
estimation of βi.

Notation: For any Y -adapted process C, we shall use the notation γ(C)k :=
E

Q[ΛkCk | Yk].

Theorem 11.1. If D is the diagonal matrix as defined in (11.10), the recursive rela-
tions for the vector processes γ(J srx)k, γ(Orx)k and γ(T rx)k are
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γ(J srx)k = ΠΠΠD(yk)γ(J srx)k−1 + 〈ξξξ k−1,er〉
φer

( yk−αr
βr

)

βrφer(yk)
πsres (11.17)

γ(Orx)k = ΠΠΠD(yk)γ(Orx)k−1 + 〈ξξξ k−1,er〉
φer

( yk−αr
βr

)

βrφer(yk)
ΠΠΠer (11.18)

γ(T r(g)x)k = ΠΠΠD(yk)γ(T r(g)x)k−1 + 〈ξξξ k−1,er〉
φer

( yk−αr
βr

)

βrφer(yk)
g(yk)Πer. (11.19)

Proof.

γ(J srx)k = E
Q[ΛkJ

sr
k xk | Yk

]

= E
Q[Λk−1λk(J

sr
k−1 + 〈xk−1,er〉〈xk,es〉)xk | Yk

]

=
N

∑
i=1

E
Q[Λk−1〈xk−1,er〉J sr

k−1 | Yk
][ N

∑
r=1

〈xk−1,er〉φer(yk−αi)

φer (yk)

]

+E
Q[Λk−1〈xk−1,er〉 | Yk

]φer(yk−αr)

φer (yk)
πsres

= ΠΠΠD(yk)γ(J srx)k−1 + 〈ξξξ k,er〉φer(yk−αr)

φer (yk)
πsres.

The proofs of the two other recursive formulae, namely γ(Orx)k and γ(T rx)k

follow similar arguments and are thus omitted. ��
To make the results of Theorem 11.1 usable in the optimal estimation of a scalar

quantity, we note that

γ(C)k = γ(Ck〈xk,1〉) = γ(〈Ckxk,1〉) = 〈γ(Ckxk),1〉.

11.5 Parameter Estimation

In order to estimate the parameters of the model, the Expectation-Maximisation
(EM) algorithm is employed to determine the optimal approximation for each pa-
rameter in the set θθθ . Initial values for the EM algorithm are assumed to be given.
Updated parameter approximations are then carried out based on the maximisation
of the conditional expected log-likelihoods. Recursive filters for the occupation time
process and jump process can be used for the dynamic optimal estimation of transi-
tion probabilities.
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11.5.1 EM Algorithm and the Estimation of Transition
Probabilities

The EM algorithm entails the change of measure from Pθθθ to Pθ̂θθ . Under Pθθθ , x is a
Markov chain with transition matrix ΠΠΠ . Under Pθ̂θθ , x is still a Markov chain with
transition matrix Π̂ΠΠ and the set of optimal parameters is obtained by maximising

E
θθθ
[

dPθ̂θθ

dPθθθ

∣
∣
∣ Y
]

with respect to the set of parameters θ̂θθ , where

dPθ̂θθ

dP

∣
∣
∣
∣
∣
Hk

=
k

∏
l=1

(
N

∏
s,r=1

(
π̂sr

πsr

)〈xl ,es〉〈xl−1,er〉
)

.

Theorem 11.2. If at time k the sequence of observations y1, . . . ,yk is available and
the parameter set θθθ = {πsr,αr,βr} determine the model then the EM estimates for
the transition probabilities are

π̂sr =
γ(J srx)k

γ(Orx)k
. (11.20)

Proof. Using the Radon-Nikodŷm derivative of Pθ̂θθ with respect to Pθθθ we have

log
dPθ̂θθ

dPθθθ =
k

∑
l=1

log

(
N

∏
s,r=1

(
π̂sr

πsr

)〈xl ,es〉〈xl−1,er〉
)

=
k

∑
l=1

N

∑
s,r=1

(log π̂sr− logπsr)〈xl ,es〉〈xl−1,er〉

=
N

∑
s,r=1

J sr
k log π̂sr +R, (11.21)

where the R does not involve π̂sr. Observe that ∑N
s=1J

sr
k = Or

k , hence

N

∑
s=1

Ĵ sr
k = Ôr

k . (11.22)

The π̂sr’s optimal estimate is the value that maximises the log-likelihood function
in (11.21) subject to the constraint ∑N

s=1 π̂sr = 1.
Introducing the Lagrange multiplier δ , we consider the function

L(π̂ ,δ ) =
N

∑
r,s=1

Ĵ sr
k log π̂sr + δ

(
N

∑
s=1

π̂sr− 1

)

+R(πsr). (11.23)

Differentiating (11.23) with respect to π̂sr and δ and equating the derivatives to 0,
we have
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1
π̂sr

Ĵ sr
k + δ = 0. (11.24)

Equation (11.24), however, can be re-written as

π̂sr =
Ĵsr

k

−δ . (11.25)

Therefore,
N

∑
s=1

π̂sr =
∑N

s=1 Ĵ
sr

k

−δ . (11.26)

Considering ∑N
s=1 π̂sr = 1 together with (11.22), Eq. (11.26) simplifies to

δ =−Ôr
k .

Thus, from Eq. (11.25), the optimal estimate for π̂sr is

π̂sr =
Ĵ sr

k

Ôr
k

=
γk(J

sr
k )

γk(Or
k )

. ��

In the completely general case, i.e., making no assumptions concerning the distri-
bution of the noise term, it is not possible to derive the formulae for the re-estimation
of the model parameters. Again, in order to use the EM algorithm one needs to
change the measure from Pθθθ to Pθ̂θθ which depends on the specific distribution func-
tion of the noise assumed for a model.

Furthermore, it is not possible to obtain recursive filtering formulae that could
provide updates straightforwardly for the model parameters apart from the transi-
tion probabilities in the general case. One needs to resort to numerical methods in
evaluating the maximum likelihood. As will be shown in the next subsection for the
case where noise follows the Student’s t-distribution, we can reduce the estimation
problem to finding a zero of a function. This is then a relatively simple numerical
problem that can be solved quickly using modern computers.

11.5.2 Student’s t-Distributed Noise Term

In this subsection, we focus on the model in (11.1) when a Student’s t-distribution
with ν degrees of freedom governs the noise term. In general, the noise term can be
a function of the state of the underlying Markov chain xk. Write ννν = (ν1, . . . ,νn)

�
for the vector of degrees of freedom and consider again

yk+1 = 〈ααα,xk〉+ 〈βββ ,xk〉zk+1(〈ννν ,xk〉),
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where {zk+1(νi)} is a sequence of independent random variables following the Stu-
dent’s t-distribution with νi degrees of freedom. For simplicity, we assume that νi is
assigned and not estimated from the data.

Theorem 11.3. Let y1, . . . ,yk be a sequence of observations available at time k and
let the parameter set θθθ = {πsr,αr,βr} determine the model. Then the EM estimates
for {α̂ααr, β̂ββ r} are solutions to the following system of equations:

(νi + 1)γ(T (i)(gα̂i)x)k = 0,

where gα̂i : y �−→ α̂i− y
βiνi +(α̂i− y)2 , and

(νi + 1)

(

γ(T (i)(hβ̂i
)x)k− γ(O(i)x)k

β̂i

)

= 0,

where hβ̂i
: y �−→ β̂iνi

β̂iνi +(y−αi)2
.

Proof. Consider the parameters αi, i ∈ {1,2, . . . ,N}. To get the updates for param-
eters α̂i from αi, we first consider the factors λk+1’s in the likelohood function. We
have

λk+1 (xk,yk+1) =
φ〈xk,ννν〉

(
yk+1−〈xk,α̂αα〉
〈xk,βββ 〉

)

φ〈xk,ννν〉
(

yk+1−〈xk,ααα〉
〈xk,βββ 〉

)

=

(

1+ (yk+1−〈xk,α̂αα〉)2

〈xk,βββ 〉2〈xk,ννν〉
)− 〈xk ,ννν〉+1

2

(

1+ (yk+1−〈xk,ααα〉)2

〈xk,βββ 〉2〈xk,ννν〉
)− 〈xk ,ννν〉+1

2

=

(

〈xk,βββ 〉2〈xk,ννν〉+ y2
k+1− 2yk+1〈xk, α̂αα〉+ 〈xk, α̂αα〉2

〈xk,βββ 〉2〈xk,ννν〉+ y2
k+1− 2yk+1〈xk,ααα〉+ 〈xk,ααα〉2

)− 〈xk ,ννν〉+1
2

.(11.27)

Write Λ∗k+1

(

xk,yk+1
)

:= ∏k
l=1λ ∗l+1

(

xl ,yl+1
)

, and introduce a new measure P∗
defined by

dP∗

dP

∣
∣
∣
Hk

=Λk+1
(

xk,yk+1
)

. (11.28)

Now,

logΛ∗k+1 = −
k

∑
l=1

〈xl ,ννν〉+ 1
2

log

(

〈xk,βββ 〉2〈xl ,ννν〉+ y2
l+1− 2yl+1〈xl , α̂αα〉+ 〈x,α̂αα〉2

〈xk,βββ 〉2〈xl ,ννν〉+ y2
l+1− 2yl+1〈xl ,ααα〉+ 〈x,ααα〉2

)

= −
k

∑
l=1

n

∑
i=1
〈xl ,ei〉νi + 1

2
log
(

βiνi + y2
l+1− 2yl+1α̂i + α̂2

i

)

+R, (11.29)

where R is independent of α̂ .



250 L. Jalen and R.S. Mamon

We wish to find the maximum of

E

[
dP∗

dP

∣
∣
∣ Yk

]

(11.30)

at α̂αα . To do this, we differentiate the expected value in (11.30) with respect to α̂i

and equate the resulting derivative to zero.
We have

∂
∂α̂i

E
[

logΛ∗k | Yk
]

= E

[ ∂
∂α̂i

logΛ∗k
∣
∣
∣ Yk

]

= E

[

(νi + 1)
k

∑
l=1

〈xl−1,ei〉 α̂i− yl

βiνi +(α̂i− yl)2

∣
∣
∣ Yk

]

. (11.31)

It can be seen from (11.31) that in order to maximise (11.30) one needs to find α̂i

which makes the weighted sum of the differences yl − α̂i equal to zero. Given this
structure of the equation, a recursive estimation procedure for α̂i is not feasible. We
find

∂
∂α̂i

E
[

logΛ∗k | Yk
]

= (νi + 1)E
[ k

∑
l=1

〈xl−1,ei〉 α̂i− yl

βiνi +(α̂i− yl)2

∣
∣
∣ Yk

]

= (νi + 1)γ(T (i)(gα̂i)x)k

where gα̂i : y �−→ α̂i− y
βiνi +(α̂i− y)2 ,

(11.32)

which finishes the proof of the first part.
In order to get the updated parameter β̂i from βi, we need to consider the factors

λ ∗∗k+1

(

xk,yk+1
)

=
φ〈xk,ννν〉

( yk+1−〈xk,ααα〉
〈xk,β̂ββ 〉

)

φ〈xk,ννν〉
( yk+1−〈xk,ααα〉

〈xk,βββ 〉
)

=

(

1+ (yk+1−〈xk,ααα〉)2

〈xk,β̂ββ 〉2〈xk,ννν〉
)− 〈xk ,ννν〉+1

2

(

1+ (yk+1−〈xk,ααα〉)2

〈xk,βββ 〉2〈xk,ννν〉
)− 〈xk ,ννν〉+1

2

=

(

〈xk,βββ 〉2〈xk,ννν〉〈xk, β̂ββ 〉2 + 〈xk,βββ 〉2
(

yk+1−〈xk,ααα〉
)2

〈xk,βββ 〉2〈xk,ννν〉〈xk, β̂ββ 〉2 + 〈xk, β̂ββ 〉2
(

yk+1−〈xk,ααα〉
)2

)− 〈xk ,ννν〉+1
2

.(11.33)

Write Λ∗∗k+1

(

xk,yk+1
)

= ∏k
l=1λ ∗∗l+1

(

xl ,yl+1
)

and consider a new measure P∗
defined via

dP∗

dP

∣
∣
∣
Hk

=Λk+1
(

xk,yk+1
)

. (11.34)
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Now,

logΛ∗∗k+1 =−
k

∑
l=1

〈xl ,ννν〉+ 1
2

(

log
(

〈xk,βββ〉2〈xk,ννν〉〈xk, β̂ββ 〉2

+ 〈xk,βββ〉2
(

yk+1−〈xk,ααα〉
)2
)

− log
(

〈xk,βββ〉2〈xk,ννν〉〈xk, β̂ββ 〉2 + 〈xk, β̂ββ〉2
(

yk+1−〈xk,ααα〉
)2
))

.

(11.35)

Similar to the situation of calculating the EM estimates for α̂i, it is not possible
to get a recursive estimation procedure for β̂i, unless a standard normal noise term
is assumed. However, it is still possible to re-estimate β̂i numerically.

Following similar principles employed in deriving Eq. (11.31), we need to differ-
entiate (11.35) with respect to β̂i and equate the resulting derivative to zero. Doing
this, we have

∂
∂ β̂i

E
[

logΛ∗∗k | Yk
]

= E

[ ∂
∂ β̂i

logΛ∗∗k

∣
∣
∣ Yk

]

=
νi + 1

2
E

[ k

∑
l=1

〈xl−1,ei〉
(

2β̂iνiβ 2
i

β̂ 2
i νiβ 2

i +β 2
i (yl−αi)2

+
2β̂iνiβ 2

i + 2β̂i(yl−αi)
2

β̂ 2
i νiβ 2

i + β̂ 2
i (yl−αi)2

) ∣
∣
∣ Yk

]

=
νi + 1

2
E

[ k

∑
l=1

〈xl−1,ei〉
(

2β̂iνi

β̂iνi +(yl−αi)2

− 1

β̂i

2β 2
i νi + 2(yl−αi)

2

β 2
i νi +(yl−αi)2

) ∣
∣
∣ Yk

]

=
(

νi + 1
)

E

[ k

∑
l=1

〈xl−1,ei〉
(

β̂iνi

β̂iνi +(yl−αi)2
− 1

β̂i

) ∣
∣
∣ Yk

]

= (νi + 1)

(

γ(T (i)(hβ̂i
)x)k− γ(O ix)k

β̂i

)

(11.36)

where hβ̂i
: y �−→ β̂iνi

β̂iνi +(y−αi)2
.

This completes the proof. ��
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Remark 11.2. Performing further manipulations of Eq. (11.31), we have

∂
∂α̂i

E
[

log(Λk) | Yk
]

= E

[

(νi + 1)
∑k

l=1〈xl−1,ei〉(α̂i− yl)∏k
j=1, j �=l

(

βiνi +(α̂i− y j)
2
)

∏k
l=1

(

βiνi +(α̂i− yl)2
)

∣
∣
∣
∣
Yk

]

= E

[

∑k
l=1〈xl−1,ei〉(α̂i− yl)(νi + 1)∏k

j=1, j �=l

(

βiνi +(α̂i− y j)
2
)

∏k
l=1

(

βiνi +(α̂i− yl)2
)

∣
∣
∣
∣
Yk

]

= E

[

∑k
l=1〈xl−1,ei〉(α̂i− yl)

(

βiνk
i +O(νk−1

i )
)

βiνk
i +O(νk−1

i )

∣
∣
∣
∣
Yk

]

. (11.37)

Consider the case of normally distributed noise terms by letting νi → ∞. It is
apparent from the above that we would recover the known EM parameter estimate
for αi, derived for example in Eq. 18 of Mamon et al. [6]. Hence, it can be updated
via the recursive filters known in the current literature.

The result in Remark 11.2 can be obtained by observing that

lim
νi→∞

[ ∂
∂α̂i

E
[

log(Λk) | Yk
]]

= E

[
k

∑
l=1

〈xl−1,ei〉(α̂i− yl)

]

= α̂iE

[
k

∑
l=1

〈xl−1,ei〉
]

−E

[
k

∑
l=1

〈xl−1,ei〉yl

]

= α̂iγ(O ix)k− γ(T (i)(y)x)k. (11.38)

Since Eq. (11.38) has to be zero, we get the optimal estimate for the drift, which is
the ratio of T to O , under the assumption of normally distributed noise terms.

11.6 Numerical Application of the Filters

11.6.1 Filtering Using Simulated Data

We provide a numerical demonstration of the results presented in the previous sec-
tion. We investigate the performance of the filtering recursions on a simulated data
set to concentrate on the accuracy of the estimation approach and thus, do not have
to deal with the issue of model uncertainty. The filtering algorithm is tested on three
sets of simulated data generated from a Markov chain process with two, three and
four states. In each of the three examples presented below, 200 data points were
generated by simulation in accordance with the model

yk+1 = 〈ααα,xk〉+ 〈βββ ,xk〉zk+1(〈ννν ,xk〉), (11.39)
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where {zk(νi)} is a sequence of independent random variables following a Student’s
t-distribution with νi = 3 degrees of freedom.

The filtering procedure is applied to the simulated data for three different num-
bers of states of the underlying Markov chain, with the re-estimation period con-
taining 50 data points. In other words, the parameters are re-estimated upon the
revelation of 50 new data points. All calculations were performed in Matlab, on a
1.83 Ghz dual core processor. The results of running the filtering algorithm with
the computing times for the three examples are given. We also present the graphs
of the simulated data (“true” data) versus the estimated values. For all graphs, the
estimated values are calculated as ααα�x̂l, where x̂l is the filtered state vector after
the l-th data point is processed, and x̂k = E[xk] = p̂k is calculated using Eq. (11.9).
In each example, we state the errors of the estimated parameters, calculated as the
second norm of the difference between the filtered parameters and the ones used to
simulate the data (“true” parameters underlying the data). The error metrics are

||ααα− α̂αα||2 =
√

(α1− α̂1)2 + . . .+(αN− α̂N)2,

||βββ − β̂ββ ||2 =
√

(β1− β̂1)2 + . . .+(βN− β̂N)2,

||ΠΠΠ − Π̂ΠΠ ||2 =
√

eigmax

(

(ΠΠΠ − Π̂ΠΠ)�(ΠΠΠ − Π̂ΠΠ )
)

,

where eigmax denotes the largest eigenvalue of a matrix.
The error is calculated after each re-estimation of the parameter values and de-

creasing errors depict the improvement in filtering as more data is processed. Due
to the nature of the EM algorithm behind the parameter re-estimation procedure, a
good guess of initial values in filtering is required. In all three examples presented
below, we are able to set initial values for the transition matrix ΠΠΠ in a random man-
ner but with some heuristic structure. The elements of the matrix are drawn from
a uniform distribution over (0,1) and then normalized to ensure the columns of ΠΠΠ
sum up to one.

Here, we are not interested in trying to calculate the one-step (or more) ahead
predictions; we are simply examining the performance of the filtering itself. Appli-
cations of the filtering algorithm to observed data are endeavours that require more
in-depth analysis and are considered in Sect. 11.6.2.

Example 11.1. The values used to simulate the data for the case of a two-state
Markov chain are reported in Table 11.1 and the initial values for α and β used
in filtering are displayed in Table 11.2. The transition matrix ΠΠΠ used as an initial
guess for filtering was random, i.e., its elements were drawn from the uniformly
distributed random numbers on interval (0,1). The calculated final values of the pa-
rameters are reported in Table 11.3 and the errors on the parameter estimates are
displayed in Table 11.4. The graph of the simulated data (blue) together with the
estimated value is shown in Fig. 11.1 and the total calculation time is 24.8 s.

Example 11.2. For the three-state Markov chain, the initial values for the data sim-
ulation are reported in Table 11.5. The values for ααα and βββ used as initial guesses
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Table 11.1 Values of parameters (ΠΠΠ ,ααα,βββ ) used in the simulation for a two-state Markov chain

ΠΠΠ =

[

0.8 0.3
0.2 0.7

]

, ααα =

[

1
−1

]

and βββ =

[

0.09
0.10

]

Table 11.2 Initial values of parameters (ααα ,βββ ) used in filtering for a two-state Markov chain

ααα =

[

0.90
−0.90

]

and βββ =

[

0.10
0.09

]

Table 11.3 Final values of parameters (ΠΠΠ ,ααα,βββ ) calculated from the simulated data for a two-state
Markov chain

P̂ =

[

0.7590 0.2924
0.2421 0.7091

]

, α̂ =

[

1.0205
−1.0046

]

and β̂ =

[

0.1073
0.1281

]

Table 11.4 Errors of the estimated parameter values in the case of a two-state Markov chain

Re-estimation Errors
number ααα βββ ΠΠΠ
1 0.0556 0.0396 0.1367
2 0.0375 0.0329 0.0763
3 0.0247 0.0330 0.0645
4 0.0210 0.0330 0.0599

in the filtering process can be found in Table 11.6 whilst the initial guesses for the
transition matrix are random, its elements were drawn from uniformly distributed
random numbers on interval (0,1). The outputs of the filtering algorithm are re-
ported in Table 11.7 with the errors reported in Table 11.8. The graph of the simu-
lated data (blue) versus the estimated values is shown in Fig. 11.2. Finally, the entire
calculation took 56.3 s.

Table 11.5 Values of parameters (ΠΠΠ ,ααα,βββ ) used to simulation for a three-state Markov chain

ΠΠΠ =

⎡

⎣

0.8 0.2 0.05
0.1 0.7 0.15
0.1 0.1 0.80

⎤

⎦ , ααα =

⎡

⎣

0
1
−1

⎤

⎦ and βββ =

⎡

⎣

0.08
0.09
0.10

⎤

⎦

Table 11.6 Initial values of parameters (ααα ,βββ ) used in filtering for a three-state Markov chain

ααα =

⎡

⎣

0.01
0.90
−0.90

⎤

⎦ and βββ =

⎡

⎣

0.1
0.1
0.1

⎤

⎦
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Fig. 11.1 Simulated data (blue) with the estimated values (green-fine dotted lines)

Table 11.7 Final values of parameters (ΠΠΠ ,ααα,βββ ) calculated from the simulated data for a three-
state Markov chain

Π̂ΠΠ =

⎡

⎣

0.8157 0.1641 0.0465
0.0982 0.7238 0.0618
0.0944 0.1168 0.8937

⎤

⎦ , α̂αα =

⎡

⎣

0.01335
1.0156
−1.0063

⎤

⎦ and β̂ββ =

⎡

⎣

0.1471
0.0855
0.0957

⎤

⎦

Table 11.8 Errors of the estimated parameter values in the case of a three-state Markov chain

Re-estimation Errors
number ααα βββ ΠΠΠ
1 0.0607 0.0191 0.6159
2 0.0212 0.0574 0.2058
3 0.0192 0.0711 0.1066
4 0.0215 0.0674 0.1288

Example 11.3. Finally, we present the results for the case of a four-state Markov
chain driving the observation process. The values used for data simulation are ex-
hibited in Table 11.9 and the initial guesses for the filtering algorithm in Table 11.10
with the transition matrix are random as in the previous two examples. The cal-
culation time for the implementation under the four-state Markov chain is 120.1
seconds. The estimated parameter values for the vectors ααα and βββ can be found in
Table 11.11 whilst the graph of the simulated data and the estimated values is dis-
played in Fig. 11.3. The errors of the parameters for each re-estimation are given in
Table 11.12.

As illustrated in the above examples, we can still use partially the filtering-based
estimation technique despite departure from the assumption of normally distributed
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Fig. 11.2 Simulated data (blue solid line) with the estimated values (green fine-dotted line)

Table 11.9 Values of parameters (ΠΠΠ ,ααα,βββ ) used in the simulation for a four-state Markov chain

ΠΠΠ =

⎡

⎢
⎢
⎣

0.80 0.15 0.05 0.05
0.10 0.70 0.05 0.05
0.05 0.10 0.80 0.10
0.05 0.05 0.10 0.80

⎤

⎥
⎥
⎦
, ααα =

⎡

⎢
⎢
⎣

0.0
0.5
−0.5
−1.0

⎤

⎥
⎥
⎦

and βββ =

⎡

⎢
⎢
⎣

0.06
0.07
0.08
0.09

⎤

⎥
⎥
⎦

Table 11.10 Initial values of parameters (ααα ,βββ ) used in filtering for a four-state Markov chain

ααα =

⎡

⎢
⎢
⎣

0.01
0.40
−0.40
−1.20

⎤

⎥
⎥
⎦

and βββ =

⎡

⎢
⎢
⎣

0.1
0.1
0.1
0.1

⎤

⎥
⎥
⎦

Table 11.11 Final values of parameters (ΠΠΠ ,ααα,βββ ) calculated from the simulated data for a four-
state Markov chain

Π̂ΠΠ =

⎡

⎢
⎢
⎣

0.8184 0.1043 0.1299 0.0478
0.0995 0.7379 0.0898 0.1168
0.0441 0.0338 0.7745 0.0545
0.0442 0.1298 0.0151 0.7869

⎤

⎥
⎥
⎦
, α̂αα =

⎡

⎢
⎢
⎣

−0.0115
0.5479
−0.4837
−1.0201

⎤

⎥
⎥
⎦

and β̂ββ =

⎡

⎢
⎢
⎣

0.0935
0.0563
0.0762
0.0974

⎤

⎥
⎥
⎦

noise term. The calculations are, nonetheless, more demanding due to the fact that
one needs to resort to numerical methods in the estimation of the drift and volatil-
ity parameters. Hence, the total computation time is longer. Considering the ability
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Fig. 11.3 Simulated data (blue solid line) with the estimated values (green fine-dotted line)

Table 11.12 Errors of the estimated parameter values in the case of a four-state Markov chain

Re-estimation Errors
number ααα βββ ΠΠΠ
1 0.0901 0.0435 0.5193
2 0.0594 0.0473 0.1752
3 0.0462 0.0461 0.1575
4 0.0389 0.0371 0.1976

to employ recursive formulae for re-estimating the transition probabilities and state
of the Markov chain, it is still worth going through the procedure of changing the
measure along with re-estimating the remaining parameters. It is also evident from
Figs. 11.1 to 11.3 that the estimated values follow very closely the state of the un-
derlying Markov chain after the first parameter re-estimation. Parameters were re-
estimated after processing 50 data points, however there is no notable difference in
the goodness of fit after the second and third parameter update. Therefore, assuming
the dynamics of the observation data do not change much, there is no need to in-
crease the frequency of re-estimations, i.e., lengthen the data window for each pass.
An algorithm pass or step in this case comprises of 50 data points.
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11.6.2 Application of the Filters to Observed Market Data

In the previous subsection, we showed that the derived filters were successfully used
to estimate the parameters of the model on a simulated data set. In this section, we
illustrate that the filters can also be applied on a larger data set of observed market
data. We consider both the NASDAQ and DOW JONES data sets for the period 28
February 2003–16 February 2007.

Suppose Sk is a sequence of asset prices. Then, we can observe the logarithmic
increments

yk = lnSk− lnSk−1 = ln
Sk

Sk−1

or
Sk = Sk−1 exp(yk−1).

The logarithmic increments are assumed driven by a function f of the underlying
Markov chain and some noise term, that is, yk = f (xk,zk+1). Here, {zk} is a se-
quence of IID random variables following a Student’s t-distribution with 3 degrees
of freedom.

Table 11.13 Summary statistics for the NASDAQ and DOW JONES logarithmic returns for the
period 28/02/2003–16/02/2007

Statistic NASDAQ data DOW JONES data

Mean 3.998×10−4 4.819×10−4

Median −4.834×10−4 4.585×10−4

Standard deviation 0.008 0.007
Skewness 0.446 0.124
Kurtosis 4.532 4.881
Range 0.063 0.072
Minimum −0.026 −0.036
Maximum 0.036 0.035
Count 1,000 1,000

Table 11.14 Comparison of RMSEs and computational time in seconds for the DOW JONES and
NASDAQ data

Data set Number of MC states RMSE Computational time (s)

2 3.2258 ×10−3 86.3
NASDAQ 3 3.1522×10−3 166.4

4 3.1163×10−3 303.3

2 1.1243 ×10−3 81.0
DOW JONES 3 1.0983×10−3 153.9

4 1.0859×10−3 252.06

The filters from the previous section are applied to both data sets whose summary
statistics are given in Table 11.13.
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Fig. 11.4 NASDAQ actual returns series (blue solid line) and one-step ahead predictions (green
fine-dotted line)
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Fig. 11.5 DOW JONES actual returns series (blue solid line) and one-step ahead predictions (green
fine-dotted line)

The data were processed in batches of 50 data points and the parameters were
re-estimated using the results of Theorems 11.2 and 11.3. Table 11.14 depicts the
fitting errors (RMSEs) and the computational time in seconds needed to complete
the calculations under the assumption of student’s t-distributed noise term. Com-
pared with the naive, no change model E[yk+1 | yk] = yk, which has the RMSEs of
7.2682× 10−3 and 8.3338× 10−3 for the NASDAQ and DOW JONES data sets
respectively, the HMM based filters perform very well. In Figs. 11.4 and 11.5, we
present the plots of returns of the actual data and the one step-ahead predictions
for the period 05 May 2004–18 February 2005. The respective plots of the NAS-
DAQ and DOW JONES returns as well as the actual observations vis-à-vis the one
step ahead predictions for the entire period of our investigation are displayed in
Figs. 11.4 and 11.5. These figures are generated using a three-state Markov chain in
conjunction with the filtering and estimation procedures put forward in this paper.

11.7 Conclusions

We revisited the estimation techniques from HMM filtering theory and extended the
framework that allows non-normal noise term. Recursive procedure was obtained
for the re-estimation of transition probabilities of the underlying Markov chain. We
provided a system of non-linear equations to enable the re-estimation of the drift
and volatility parameters. Concentrating specifically on the noise following the Stu-
dent’s t-distribution, we gave examples outlining the implementation of the filters
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and re-estimation of model parameters as well as the optimal state of the Markov
chain. Our results can be adopted to capture the dynamics of other financial variables
for the purpose of financial modeling. In particular, applications to pricing, risk man-
agement and portfolio optimization with a view of testing the model’s performance
using historical financial data are a natural course for future research exploration.
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