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           Physiology of Growth Hormone 

    Regulatory Mechanism of GH Secretion 

 Daily rhythmical growth hormone (GH) secretion controls its serum concentration. 
A total of 70 % of daily GH secretion occurs with the fi rst episode of slow-wave 
sleep [ 1 ]. GH secretion is also affected by serum glucose density, amino acids, free 
fatty acids, drugs, and GH itself. These various conditions stimulate the hypothala-
mus and regulate secretion of three hypothalamic hormones, growth hormone 
releasing hormone (GHRH), ghrelin, and somatostatin. These signals eventually 
control GH secretion from GH-producing cells, expressing the specifi c receptors for 
them, in the pituitary gland [ 2 ] (Fig.  8.1 ).

   GHRH selectively induces GH secretion from the pituitary gland through the 
GHRH receptor [ 3 ,  4 ]. Somatostatin suppresses GH pulse amplitude and fre-
quency, and inhibits central GHRH release via direct synaptic connections with 
hypothalamic neurons, but does not affect GH biosynthesis [ 2 ]. Hypothalamic 
GHRH and somatostatin are secreted in independent waves and interact to gener-
ate pulsatile GH release together with additional GH secretagogues (GHS). Ghrelin 
binds to the GHS receptor to induce hypothalamic GHRH and pituitary GH [ 5 ,  6 ]. 
The greatest amount of ghrelin is secreted from gastric cells rather than from the 
hypothalamus. Plasma ghrelin concentrations increase when fasting, and decrease 
after food intake [ 7 ].  
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    Mechanism of GH Action 

 GH stimulates linear body growth through differentiation and proliferation of the 
cells in the growth plate in children. GH also acts on many peripheral tissues other 
than the growth plate, and plays important roles in homeostasis, such as glycemic 
effects, hydration, protein anabolism, and lipid degradation [ 8 ] (Fig.  8.1 ). 

 At least part of the growth effect by GH is through endocrine, autocrine, and 
paracrine mechanisms of insulin-like growth factor I (IGF-I). GH action in body 
growth may be explained through three pathways involving IGF-I. In one pathway, 
GH acts through GH receptor (GHR) expression in hepatocytes and generation of 
IGF-I [ 9 ]. Consequently, serum IGF-I levels increase and IGF-I acts on peripheral 
tissues as a hormone by an endocrine mechanism. In a second pathway, GH acts on 
peripheral tissues, not the liver, promoting IGF-I generation, and this IGF-I affects 
local tissues by an autocrine/paracrine system [ 10 ]. Expression of GHR, IGF-I, 
and IGF-I receptor has been detected in chondrocytes, osteoblasts, osteoclasts, 
myocytes, and adipocytes. In a third pathway, GH affects peripheral tissues directly. 
For Laron syndrome in which there is defi ciency of GHR, extrinsic IGF-I adminis-
tration does not have a suffi cient effect on growth in spite of its biological activi-
ties, such as improvement of hyperglycemia [ 11 ]. This phenomenon implies a 
direct action of GH.   

  Fig. 8.1    Stimulation and action of intrinsic GH. GH is secreted in the pituitary gland and stimu-
lated by hypothalamic hormones, such as GHRH and ghrelin, and is suppressed by somatostatin. 
GH acts on many peripheral tissues and plays a role in linear growth, bone metabolism, adipose 
metabolism, protein metabolism, and saccarometabolism       
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    GH Treatment 

    History 

 In the 1950s, human GH was fi rst used to stimulate linear growth in a child with 
hypopituitarism [ 12 ]. At that time, GH was extracted and purifi ed from the pituitary 
grand. Because the supply of the extracted GH was limited, GH treatment was 
restricted to children with the most severe and unequivocal GH defi ciency (GHD). 
Delays in diagnosis and treatment, interruptions in treatments, and dosage restric-
tions were common during this time. Consequently, while GH accelerated growth 
of these individuals, adult height was usually less than average [ 13 – 15 ]. 

 In 1985, Creutzfeldt–Jakob disease (CJD) was recognized in patients who had 
received GH. Distribution of pituitary-derived GH was stopped. Subsequently, in 
the United States, CJD was diagnosed in seven recipients of GH [ 16 ,  17 ]. Fortunately, 
192- and 191-amino-acid biosynthetic GHs were approved in 1985 and 1987, 
respectively. The production of GH by biological systems transplanted with the  GH  
gene yields a virtually unlimited supply of GH. 

 Biosynthetic GH treatment eliminated the risk of CJD and offered children with 
severe GHD an opportunity for optimal treatment. Children with milder forms of 
inadequate GH secretion, previously excluded from receiving GH, could become 
treated. In addition, metabolic effects of GH, apart from linear growth promotion, 
are now being studied extensively, leading to new indications for GH treatment [ 18 ].  

    Approved Disorders and the Effi cacy of GH Treatment 

 Approved disorders for GH treatment have been expanding in the world in spite of 
its high cost, with expectations of promoting linear growth. Currently, these growth 
disorders are GHD, short children with small for gestational age (SGA), Turner 
syndrome (TS), chronic renal insuffi ciency (CRI), Prader–Willi syndrome (PWS), 
short stature homeobox (SHOX) haploinsuffi ciency, achondroplasia (ACH), hypo-
chondroplasia (HCH), Noonan syndrome (NS), and idiopathic short stature (ISS) 
(Table  8.1 ). The type of approved disorders, criteria of diagnosis, and treatment 
dose vary and depend on the country.

   GH treatment was started primarily for classical GHD patients to promote linear 
growth. Untreated patients with GHD have profound short stature, averaging nearly 
−5 standard deviation (SD) [ 19 – 21 ]. In many countries, pediatric endocrinologists 
have developed guidelines for diagnosis, criteria for starting treatment, treatment 
regimens, criteria for continuing treatment, and criteria for fi nishing treatment. GH 
treatment in GHD patients gradually improved their adult height SD score by 
approximately −1.3 SD, although most patients failed to reach their genetic target 
heights [ 22 ,  23 ]. 
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 SGA is a term used to describe a neonate’s birth size based upon appropriate 
auxological standards for healthy infants. Approximately 86 % of SGA children 
achieve a length within the normal range by 12 months [ 24 ,  25 ]. Catch-up growth in 
the normal range is virtually always complete by 2 years of age [ 26 ]. Overall, 
8–14 % of SGA infants become short in stature with an adult height of approxi-
mately 1 SD [ 27 ,  28 ]. SGA children achieve a fi nal height within the normal height 
range after 7.8 years of GH treatment [ 29 ]. The effects of GH extend beyond linear 
growth and potentially include important effects on body composition, muscle mass 
and function, bone mass, metabolism, behavior, and cognitive function, and even 
quality of life, IQ, and bone mineral content [ 30 ,  31 ]. 

 TS is characterized by short stature, cubitus valgus, webbing of the neck, and 
sexual infantilism [ 32 ]. Over 95 % of TS patients eventually fall below the −2 SD, 
and their adult height is typically approximately 20 cm below the mean for females 
of their respective ethnic group. GH treatment in TS patients improves their fi nal 
height to 8.5 cm above the mean projected adult height and there is a mean height 
gain due to GH of +7.2 cm [ 33 ,  34 ]. 

 Growth failure is still a major obstacle to successful rehabilitation of children 
with CRI. The mean height SD score at the start of renal replacement therapy is 
approximately −2, indicating that half of the patients have a short stature [ 35 ,  36 ]. 
Similarly, the mean fi nal height SD score of CRI patients is reported to be signifi -
cantly reduced and varies between −1.4 in girls and −2.2 in boys in various reports 
[ 37 ,  38 ]. GH treatment for short stature in CRI became available approximately 20 
years ago [ 39 ]. The fi nal height of CRI patients after extended GH treatment appears 
to be an average of 1.0–1.5 SD [ 40 ,  41 ]. 

 PWS is a neurogenetic disorder characterized by mental and physical abnormali-
ties. The mean adult height achieved by men and women with PWS is 155–162 and 
148–150 cm, respectively [ 42 ,  43 ]. The GH-defi cient state commonly associated 
with PWS, as evidenced by reduced GH secretion, low serum IGF-I levels, and 
clinical features typical of GHD, has provided a rationale for trials assessing the 

    Table 8.1    Approved diseases for GH in various countries as of 2013   

 GHD 
 Adult 
GHD  SGA  TS  CRI  PWS 

 SHOX 
haploinsuffi ciency  ACH  HCH  NS  ISS 

 USA  ○  ○  ○  ○  -  ○  ○  -  -  ○  ○ 
 UK  ○  ○  ○  ○  ○  -  ○  -  -  -  - 
 France  ○  ○  ○  ○  ○  ○  ○  -  -  -  - 
 Germany  ○  ○  ○  ○  ○  ○  ○  -  -  -  - 
 Sweden  ○  ○  ○  ○  ○  ○  -  -  -  -  - 
 Japan  ○  ○  ○  ○  ○  ○  -  ○  ○  -  - 
 Taiwan  ○  ○  ○  ○  -  -  -  -  -  -  - 
 Australia  ○  ○  -  ○  ○  -  -  -  -  -  - 

  ○: Approved, -: not approved;  USA  United States of America,  UK  United Kingdom of Great 
Britain,  GHD  growth hormone defi ciency,  TS  Turner syndrome,  CRI  chronic renal insuffi ciency, 
 SGA  small for gestational age,  PWS  Prader–Willi syndrome,  ACH  achondroplasia,  HCH  hypo-
chondroplasia,  NS  Noonan syndrome,  ISS  idiopathic short stature  
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effi cacy of GH treatment. However, currently, the duration of treatment is limited. 
Longitudinal growth has been shown to increase by GH treatment in PWS [ 44 ,  45 ]. 
Some reports have shown that growth continues to improve by GH treatment in 
PWS, with the result that the target height SD score can be reached [ 46 ]. 

 NS is a genetic syndrome with many features similar to TS, and is characterized 
by pulmonary valvular stenosis, visual problems, clotting disorders, and short stat-
ure [ 47 ]. Although approximately half of NS patients will reach an adult height 
within 2 SD of the population mean, the mean adult height of NS is approximately 
162.5 cm and 153 cm for males and females, respectively  [ 48 ]. GH treatment in NS 
improves the fi nal height SD score to 1.7 [ 49 ]. Additionally, pretreatment baseline 
cortical bone mineral density (BMD) is reported to be in the low–normal range and 
it increases over 2 years of GH therapy [ 50 ]. In the majority of reports, GH treat-
ment induced catch-up growth in most of the NS patients. First data on long-term 
outcome demonstrate an effect comparable with or even better than that in TS. 

 ISS is a purely descriptive term that refers to a child, adolescent, or adult with a 
height below the age reference for population and sex, in whom, with current diag-
nostic tools, no etiological diagnosis is made [ 51 ]. The mean fi nal height is similar 
to the mean predicted height in ISS. There is a large interindividual variation that is 
primarily correlated with the initial height SD score and bone age delay at start of 
GH treatment [ 52 ]. GH for ISS in a supraphysiological dosage increases the fi nal 
height by approximately 7 cm, but for the individual child, the height gain is diffi -
cult to predict.  

    Side Effects 

 Recombinant biosynthetic GH preparations are highly purifi ed and free of contami-
nants. The possibility of viral transmission through GH has been virtually elimi-
nated. Antigenicity of GH preparations is also low, although GH antibodies can be 
detected in 10–30 % of treated children [ 53 ]. With rare exceptions (less than 0.1 %), 
these antibodies do not impede effects of GH. 

 Laboratory indications of hypothyroidism can be found in as many as 25 % of 
GHD children treated with GH [ 54 ]. GHD patients, who display subnormal noctur-
nal thyroid-stimulating hormone surges, signifying preexisting central hypothyroid-
ism, are more likely to display subnormal T4 and free T4 levels during GH therapy 
[ 55 ]. However, most studies have indicated that children with normal thyroid func-
tion before treatment do not develop signifi cant perturbations in thyroid hormone 
metabolism during GH therapy. 

 Administration of unphysiological high concentrations of GH may lead to 
defects in glucose metabolism [ 56 ]. When intrinsic GH secretion is increased, as in 
sleep, oral or intravenous glucose tolerance tests show a defect in glucose metabo-
lism [ 57 ]. This defect of glucose metabolism lasts even after fi nishing GH treatment 
and normalization of serum GH concentrations. 
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 Edema and sodium retention rarely occur early in the course of GH therapy, 
which is attributable to an anti-natriuretic effect on the renal tubules of GH and/or 
IGF-I. Minor elevations in plasma renin activity and aldosterone observed in the fi rst 
3 days of treatment resolve within 1 or 2 weeks [ 58 ]. Occasionally, fl uid shifts within 
the central nervous system are suffi cient to cause benign intracranial hypertension, 
with symptoms of headache, visual loss, vomiting, and papilledema. Direct fl uid-
retaining properties of GH and/or action of locally produced IGF-I on cerebrospinal 
fl uid production are speculated to be causative. Cessation of GH therapy reverses 
symptoms in spite of continued GH treatment [ 59 ]. Resumption of GH treatment has 
been successfully accomplished with re-initiation at a lower dosage and a gradual 
return to the initial dosage. Performing a fundoscopic examination is recommended 
in all patients before initiation of GH therapy and periodically thereafter [ 60 ].   

    Growth Hormone and Bone 

    Effect of GH on Bone and Cartilage Metabolism 

 GH acts directly on the perichondrial layer in the growth plate of growing bones, 
and promotes proliferation and differentiation of pre-chondrocytes, as well as pro-
motes IGF-I synthesis (Fig.  8.2 ). Pre-chondrocytes proliferate and differentiate to 

  Fig. 8.2    Schematic representation of bone metabolism by GH. GH stimulates differentiation and 
proliferation of chondrocytes directly and through IGF-I synthesis. This endochondral ossifi cation 
leads to linear growth. GH also stimulates differentiation and proliferation in osteoblasts and 
osteoclasts. Consequently, GH affects bone metabolism and, consequently, linear growth and bone 
mineral density       
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chondrocytes in the proliferative zone of growth plates by acquiring the ability for 
reaction to IGF-I and for generation of IGF-I [ 61 ].

   Osteoblasts express GHR and IGF-I receptor, and have the ability of generating 
IGF-I [ 62 ]. Therefore, GH promotes synthesis of IGF-I in osteoblasts, and IGF-I 
acts on these cells through the autocrine/paracrine system. In osteoblastic culture, 
IGF-I stimulates differentiation of osteoblasts to osteocytes by promoting prolifera-
tion of osteoblasts, expression of type I collagen, and activation of alkaline phos-
phatase, and by suppressing expression of matrix metalloproteinase 1 [ 63 ]. However, 
it is still unclear whether GH action on osteoblasts occurs through IGF-I or there is 
a direct pathway. 

 GH action is also detected in osteoclasts. Precursors of osteoclasts express GHR, 
and GH promotes their differentiation to osteoclasts. Factors promoting osteoclast 
differentiation are generated by GH-stimulated osteoblasts and bone marrow cells 
[ 64 ]. These fi ndings show that GH promotes bone resorption through its direct 
effect on bone marrow cells or through osteoblasts. In fact, when GH is adminis-
tered in pediatric patients, bone resorption markers are elevated before growth is 
detected and bone formation markers are elevated. 

 GH promotes bone turnover, including bone generation and bone resorption; GH 
consequently promotes longitudinal bone growth while maintaining BMD suitable 
for increasing quantities of bone (Fig.  8.2 ). Since GH also increases mass and 
strength of the skeletal muscles, mechanical stress may be another factor for GH 
effect on increasing BMD [ 65 ]. Although the effect of GH on BMD is still contro-
versial in certain conditions such as burn injury, BMD is indeed correlated with 
nocturnal GH secretion in young healthy men and acromegaly [ 66 ,  67 ]. Moreover 
lumbar BMD is reduced in pediatric GHD patients, and GH treatment increases 
BMD in GHD and other diseases [ 68 – 71 ]. 

 For the considerable variability in response to GH treatment, several prediction 
models that attempt to estimate the growth response to GH treatment have been 
developed [ 72 – 75 ]. As a result, in growing children, markers of bone metabolism 
refl ect skeletal growth and development. For example, urinary deoxypyridinoline 
and serum pyridinoline, bone resorption markers, are strongly related to height 
velocity. These results imply that bone metabolism and linear growth are closely 
related to each other.  

    Approved GH Treatment in Skeletal Dysplasia 

 Skeletal dysplasia is a heterogeneous group of diseases affecting the skeleton. The 
estimated incidence is 30–45 in every 100,000 newborns. The fi nal height differs 
substantially between the various disorders, but is often in the range of 110–130 cm 
[ 76 ]. Currently, although a remarkably short stature has been detected in various 
skeletal dysplasias, only three skeletal dysplasias have been approved for GH treat-
ment: ACH, HCH and SHOX haploinsuffi ciency [ 77 ] (Table  8.1 ). 
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 ACH is the most common type of rhizomelic short-limb dwarfi sm caused by 
activating point mutations in the fi broblast growth factor receptor 3 ( FGFR3 ) gene 
[ 78 ,  79 ]. The incidence of ACH is estimated as 1 in 25,000 live births. The average 
adult height of ACH is approximately 132 cm (−6.8 SD) for males and 124 cm (−6.4 
SD) for females [ 80 ]. FGFR3 is expressed in the growth plate, and its activation 
suppresses IGF-I expression and cell proliferation, and promotes apoptosis of 
 chondrocytes. GH administration increases  IGF-I  expression in chondrocytic cell 
lines expressing mutated  FGFR3  and prevents these cells from apoptosis [ 81 ]. This 
could explain one of the mechanisms by which GH therapy improves disturbed 
bone growth in ACH. 

 GH treatment in ACH has been approved only in Japan, since 1997. As a short- 
term effect, GH administration increases height velocity from (mean ± SD) 3.8 ± 0.9 
to 6.6 ± 1.6 cm/year in patients with ACH for at least 6 months [ 81 ]. In longer-term 
studies, GH treatment in ACH patients promotes their height velocity in the fi rst 
treatment year and promotes their linear growth, with a gain of 1–1.5 SD over 3–6 
years, although height velocity is low after the second year of treatment (Fig.  8.3 ) 
[ 82 – 84 ]. More than 15 years have passed since approval, but reports on the long- 
term effect of GH on ACH regarding the prognosis of height and bone mineral 
metabolism have still not been published.

   HCH is also mainly caused by mutations of the  FGFR3  gene and is characterized 
by short stature and abnormal body proportions, although not as severe as in ACH. 
The fi nal height in HCH is compromised and in the range of 132–147 cm [ 85 ,  86 ]. 
GH treatment for HCH has been approved only in Japan at the same time as ACH 
in 1997. Several reports have shown that the median height SD score is approxi-
mately −3.2 SD at the start of GH therapy for HCH and it improves plus 1 SD after 
2–5 years of GH treatment [ 87 ,  88 ]. Because some HCH patients have no mutation 
in the  FGFR3  gene, but characteristic facial features, bone deformities, and dispro-
portionate short stature are observed, there are still some doubts as to the certainty 
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of the diagnosis in some of the patients diagnosed with HCH. Therefore, clinical 
studies of GH treatment, including genetic background data, are required. 

 Dyschondrosteosis, or Leri–Weill syndrome, is a mesomelic skeletal disorder 
caused by a deletion or mutation in the  SHOX  gene [ 89 ]. In dyschondrosteosis, 
there are abnormal proportions due to short legs, and the adult height in these indi-
viduals is variable, but in most patients it is reduced. However, a reduction in height 
appears to be sex-specifi c, with a greater loss of height in females compared with 
males [ 90 ]. Isolated SHOX haploinsuffi ciency is observed in 56–100 % of patients 
with Leri–Weill dyschondrosteosis and in 1–14 % of ISS [ 91 ]. Short stature 
observed in patients with TS is partially explained by haploinsuffi ciency of the 
 SHOX  gene [ 92 ]. Because GH treatment in TS improves the fi nal height SD score, 
GH treatment in patients with SHOX haploinsuffi ciency has been approved in some 
countries. Prepubertal children with isolated SHOX defects treated with GH during 
2 years present with a similar growth response to that of TS patients [ 93 ] and reach 
their fi nal height with a height SD score gain of 1.1 ± 0.7 after 4.7 years [ 94 ]. The 
gain in the height SD score during the fi rst year of GH therapy for patients with 
SHOX haploinsuffi ciency shows an increase of 0.7 SD [ 95 ]. The sitting height ratio 
SD score does not change during 1 year of GH treatment in patients with SHOX 
haploinsuffi ciency. Adult height in GH treatment for dyschondrosteosis has not 
been published yet.   

    Challenging Trials of GH Treatment 

 GH treatment has been attempted in many diseases with short stature, such as Down 
syndrome, Cornelia de Lange syndrome, Kabuki syndrome, Fanconi anemia, 
Rubinstein–Taybi syndrome, Klippel–Feil syndrome, Diamond–Blackfan anemia, 
and skeletal dysplasia. We discuss below regarding GH treatment in skeletal dyspla-
sia, focusing on GH and bone, such as osteogenesis imperfecta (OI) and X-linked 
hypophosphatemic (XLH) rickets. Because the fi nal height of each disorder has not 
been determined yet, further evidence of GH treatment in all challenging disorders 
needs to be gathered. 

    Osteogenesis Imperfecta 

 OI is an autosomal dominant disorder caused by dysfunction of type I collagen pro-
teins. OI is characterized by congenital-decreased BMD, bone fragility, short stat-
ure, blue sclerae, progressive bone deformities, and dentinogenesis imperfecta [ 96 , 
 97 ]. Clinical severity varies widely from lethal to mild with non-deformity. Recently, 
OI patients were classifi ed into eight types according to their severity [ 98 ,  99 ]. 
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 The most popular internal treatment of OI is bisphosphonates suppressing bone 
resorption. Bisphosphonates in OI children increase BMD and result in dramati-
cally decreased bone fractures [ 97 ]. Because growth defi ciency is constantly present 
in severe OI and common in mild to moderate forms of OI, GH could be used in OI 
for stimulating bone metabolism or for increasing linear growth [ 100 ,  101 ]. 

 Although there are few reports of GH treatment in patients with OI, GH action 
positively affects bone growth and bone turnover by stimulating osteoblasts, colla-
gen synthesis, and longitudinal bone growth [ 102 ,  103 ]. A recent study also sug-
gested that combined bisphosphonate and GH treatment in OI patients for 1 year 
positively increases BMD and growth velocity, and does not affect the peripheral 
fracture rate [ 104 ]. Although GH treatment in OI has not been approved yet, GH 
may be expected to improve symptoms of OI patients.  

    X-Linked Hypophosphatemic Rickets 

 XLH rickets is the most common form of hereditary rickets and is characterized by 
short stature, rickets, osteomalacia, and hypophosphatemia [ 105 ]. XLH rickets is 
due to mutations in the phosphate-regulating gene with homologies to endopepti-
dases on the X chromosome ( PHEX ), which encodes a membrane-bound endopep-
tidase expressed in mineralizing tissues (i.e., bone and teeth) [ 106 ]. Although the 
precise function of PHEX protein still remains to be determined, inactivation of 
PHEX reduces serum phosphate levels by suppressing proximal tubular phosphate 
reabsorption and intestinal phosphate absorption though synthesis of fi broblast 
growth factor 23 [ 107 ]. This has been shown to be causative for renal phosphate 
wasting and diminished 1α-hydroxylation of 25(OH) vitamin D [ 108 ,  109 ]. 

 Combined treatment with oral phosphates and activated vitamin D (calcitriol) 
has been shown to improve growth and skeletal abnormalities in XLH rickets [ 110 –
 112 ]. Even with optimal medical treatment, many XLH rickets patients do not dem-
onstrate catch-up growth to achieve normal stature [ 113 – 115 ]. Mean adult height in 
cohorts of treated XLH rickets patients ranges from −2.8 to −1.7 SD [ 116 ]. 

    IGF-I increases  Phex  expression in bone and sodium-dependent phosphate 
cotransporter mRNA expression in the kidney, and increases circulating phos-
phate concentration through these two mechanisms [ 117 ]. Previous studies have 
shown that administration of GH increases renal tubular phosphate reabsorption 
and serum concentrations of 1,25(OH) 2 D, suggesting that GH is involved in phos-
phate homeostasis and in renal 1α-hydroxylation of vitamin D through IGF-I 
[ 118 ,  119 ]. Although some studies have shown that GH treatment increases the 
growth rate of XLH rickets patients, some studies have suggested that GH might 
make deformities of XLH rickets worse. The effect of GH in XLH rickets is still 
controversial  [ 118 – 122 ]. Further investigation may be able to add GH treatment to 
the standard choice in the future.  
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    Other Skeletal Dysplasias 

 Metaphyseal chondrodysplasia (MCD) Schmid type is caused by inactive mutations 
in the  type X collagen  gene and treatment-free adult height is approximately 
 130–160 cm [ 123 ]. One-year GH treatment in patients with MCD Schmid type was 
reported to improve height from −3.2 SD to −2.7 SD [ 124 ]. No fi nal heights from 
GH treatment in patients with MCD Schmid type are available. 

 MCD McKusick type, also known as cartilage-hair hypoplasia (CHH), is charac-
terized by short-limbed short stature, hypoplastic hair, defective immunity, and 
diminished erythrocyte generation [ 125 ]. CHH is caused by several mutations in the 
 RNA component of mitochondrial RNA processing endoribonuclease  gene [ 126 ]. 
Adult height of CHH patients is reported as approximately 131.1 cm in males and 
122.5 cm in females [ 127 ]. GH treatment increased height of a CHH patient from 
−4.2 to −2.1 SD together with limb lengthening [ 128 ], but another report showed no 
benefi t of the treatment [ 129 ]. 

 Spondyloepiphyseal dysplasia is caused by the mutation or deletion of the type 
II collagen ( COL2A1 ) gene and is characterized by severe short stature and a mark-
edly short trunk, with a fi nal height of 100–125 cm [ 130 ]. GH treatment in 17 
patients with spondyloepiphyseal dysplasia did not result in a signifi cant increase in 
the height SD score during the fi rst year of treatment, although some patients did 
appear to benefi t [ 123 ]. However, the sitting height SD score was improved from 2.7 
to 1.8. No adult heights from GH treatment in patients with spondyloepiphyseal 
dysplasia are available. 

 Pseudoachondroplasia is caused by mutation in the cartilage oligomeric matrix 
protein ( COMP ) gene and is characterized by severe short stature with a waddling 
gait, deformity of the legs, short fi ngers, loose joints, and ligamentous laxity [ 131 ]. 
The fi nal height is approximately 80–130 cm. Only one report described that GH 
treatment was given to four patients with pseudoachondroplasia, and that GH did 
not increase annual height gain in the fi rst year of the treatment [ 124 ]. The increase 
in height of seven patients with pseudoachondroplasia was not signifi cant, with a 
median gain of 0.2 SD [ 123 ]. No adult heights in patients with pseudoachondropla-
sia who had GH treatment have been reported.   

    Conclusion 

 Physiological GH secreted by the pituitary gland and extrinsic recombinant GH 
have the ability to promote bone elongation and linear growth of children, as well as 
regulate bone mineral metabolism with accelerating bone turnover. Currently, GH 
treatment has been established for many disorders. However, there are many types 
of diseases with short stature, and treatment of these patients is still limited. 
Although more evidence is required, GH has the possibility to be useful for other 
skeletal dysplasias, including metabolic bone diseases, because of its potential 
capacity for regulating bone mineral metabolism.     
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