
DOI 10.1007/978-1-4899-7413-6_14
Reprinted from Space Science Reviews Journal, DOI 10.1007/s11214-013-9959-8

Mechanisms of Spontaneous Reconnection:
From Magnetospheric to Fusion Plasma

Lev Zelenyi · Anton Artemyev

Received: 3 October 2012 / Accepted: 16 January 2013 / Published online: 1 March 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Very often space plasma is treated as collisionless. We check the validity of this
paradigm considering various regimes of tearing mode (spontaneous reconnection) includ-
ing effects of particle collisions and shear of magnetic field. We briefly describe Pitaevskii’s
effect of effective modification of collision frequency due to the finite particle Larmor ra-
dius in the presence of magnetic field. This effect results in a significant increase of the role
of collisionality, especially in a weakly magnetized systems. Another popular paradigm is
related with application of MHD description to collisionless or weakly collisional systems.
We show, that for current sheets observed in the Earth magnetotail and magnetopause as
well as for current sheets formed in Solar corona and in laboratory devices most appropriate
is the kinetic semi-collisional tearing regime. Role of “collisions” could play usual Coulomb
pair collisions of electrons and ions (e.g. in Solar corona) or effective collisions (scattering)
of electrons with the microturbulence wave modes. Transition to real MHD modes requires
either very large collisions frequencies and/or very large amplitudes of the magnetic field
shear. The largest domain in the parameter space is occupied by the kinetic regimes of tear-
ing mode growth where dissipation is provided either by Landau damping or by real (or
effective) collisions.

Keywords Tearing instability · Magnetic reconnection

1 Introduction

Starting from the original paper by Giovanelli (1947) reconnection of magnetic field lines
is considered as a main mechanism of magnetic energy dissipation. First MHD mod-
els describing quasi-stationary magnetic reconnection already included main elements of
this process: diffusion region (Sweet 1958), slow shock waves (Petschek 1964) and thin
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current sheet (Syrovatskii 1966). There are several comprehensive books (Parker 1994;
Priest and Forbes 2000; Biskamp 2000; Birn and Priest 2007) devoted to various aspects
of magnetic reconnection and related charged particle acceleration. The most of theories
can be attributed to the one of two possible approaches: kinetic collisionless approach and
fluid resistive approach.

Magnetic reconnection plays an important role in various plasma systems starting from
rarefied collisionless plasma of interplanetary medium and planetary magnetospheres and
going to a weakly collisional plasma of Solar corona and then to collision dominated plasma
of laboratory devices (see review by Yamada et al. 2010). Initialization of the magnetic re-
connection corresponds to the instability of current sheet separating magnetic fields with
opposite polarities. Therefore, the problem of relationship between collision and collision-
less reconnection regimes can be reformulated as a problem of current sheet instabilities in
presence of collisions with arbitrary frequency νeff and of an magnetic shear (also of an
arbitrary intensity). It should be noted that as was shown by Coppi et al. (1966b), heuris-
tically even the case with νeff = 0 could be reduced to collisional if one will take into
account that Landau damping (providing necessary dissipation for the case with νeff → 0)
could be roughly considered as supporting effective scattering of electrons with frequency
νeff ∼ vTe/λ, where λ is the wavelength of the mode and vTe is electron thermal velocity.

First paper devoted to instability of current sheet relative to the tearing mode was written
by Furth (1962). In this paper the stability of neutral current sheet with magnetic field rever-
sal was considered relative to a periodical fluctuation of a normal component of magnetic
field. The further development of theory of the tearing instability includes effects of elec-
tric field perturbation and effect of magnetic field shear (Laval et al. 1966). Investigation
of the tearing mode based on energy variation principle was developed for current sheets
(Schindler and Soop 1968) and generalized in the recent monograph by Schindler (2006).

Application of the tearing instability to collisionless plasma of the Earth magnetotail was
done in pioneering work by Coppi et al. (1966b). Further investigations have shown that the
principal role for this instability is played by the finite normal component of magnetic field,
which magnetizes electrons and destroy corresponding Landau resonant damping (Schindler
1974; Galeev and Zelenyi 1976). Magnetized electrons provide the effect of tearing stabi-
lization due to combination of the frozen-in condition and condition of quasi-neutrality. This
effect could be so strong that the spontaneous reconnection mode will be stable for the entire
parameter range (Pellat et al. 1991).

Stabilization of the magnetotail current sheet contradicts to numerous observations of
magnetic reconnection (see, e.g., Angelopoulos et al. 2008). This problem can be solved
by choice of proper initial equilibrium, which describes magnetotail current sheet with a
number of additional realistic effects. For example it was shown that embedded thin cur-
rent sheets often observed in the downtail are unstable relative to the tearing mode (Zelenyi
et al. 2008, 2010). Alternative idea corresponds to current sheet with the reversed longitudi-
nal gradient of the normal component of magnetic field. Such current sheets could become
unstable relative to the tearing mode (Sitnov and Schindler 2010) or to a more exotic insta-
bilities also resulting in magnetic reconnection (Pritchett and Coroniti 2011).

Although, stability problem for the magnetotail current sheet is of primary importance,
in this review we consider mainly the stability of current sheet without normal component
of magnetic field, but in presence of a shear magnetic field component having an arbitrary
intensity. Therefore our consideration deals with current sheet of planetary magnetopause.
Collisions (which is the primary goal of our paper) weakly influence the properties of equi-
librium current sheet solutions, but once the system unstable—collisions strongly control
the rate of instability growth. We will combine in our analysis effects of usual Coulomb
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collisions and effects of particle scattering at microturbulent fluctuations (“effective” colli-
sions). These effects correspond to plasma microturbulence and can be important for current
sheets in Solar corona and laboratory experiments.

2 Initial Equilibria

Harris current sheet (Harris 1962) can be considered as the simplest kinetic equilibrium
model describing the basic properties of space current sheets (in absence of the normal
component of magnetic field). This model corresponds to the velocity distribution fα for
particles with mass mα and charge qα introduced as shifted Maxwellian distribution:

fα = C0α exp
(−(Hα − vDαPy)/Tα

) = CαN(z) exp
(−(

v2
x + v2

z + (vy − vDα )
2
)
/vTα

)

where Hα = mα(v
2
x + v2

y + v2
z )/2 is particle energy, Py = mαvy + (qα/c)Ay is generalized

momentum, vDα is a constant particle drift velocity, Tα = mαv
2
Tα

/2 is particle temperature,
Cα = n0(2πvTα )

−3/2 is the constant of normalization with particle density in the central
region of current sheet, n0. Distribution of particle density is defined by function N(z) =
cosh−2(z/L), where L is the current sheet thickness. Here α denotes type of particles: α = i

for ions and α = e for electrons.
Density of cross-tail current supported by distribution function fα is jy(z) = (4π ×

B0/Lc) cosh−2(z/L) and resulting magnetic field acquires the simple form Bx =
B0 tanh(z/L). Therefore, in the central region of current sheet z ∼ 0 magnetic field Bx

changes sign. This region is filled by particles crossing z = 0 and oscillating in nonlin-
ear potential. Corresponding equation of particle motion across current sheet has the form
z̈ ≈ −z(const − z2) (Sonnerup 1971). Unmagnetized particles are trapped inside the re-
gion |z| < Rα , where Rα = √

Lρα with ρα = vTα /Ωα and Ωα = |qα|B0/mαc (Dobrowolny
1968). Reflecting from magnetic “walls” z = ±Rα , these particles move along current
sheet plane and can therefore interact with unstable waves accordingly to the Landau
mechanism (see review by Galeev 1979, and references therein). Several recent investi-
gation of tearing and drift instabilities were devoted to the precise calculations of the im-
pact of these resonant particles (see, e.g., Lapenta and Brackbill 1997; Daughton 1999;
Daughton and Karimabadi 2005; Karimabadi et al. 2005).

It can be noticed, that the velocity distribution of particles in the Harris current sheet
remains the same even if the guide component of magnetic field By = const is applied to the
sheet. To take into account inhomogeneous By = By(z) one needs to consider jx(z) current
and corresponding modification of the velocity distribution (see review by Roth et al. 1996,
and references therein). However, for simplified geometry with By = const we can restrict
our analysis by the modified Harris equilibrium distribution.

We consider below normal component Bz �= 0 only for illustrating effect of modification
of collision frequency (so called Pitaevskii effect). This effect could be very important for
weakly magnetized and weakly collisional plasmas. One should note, however, that presence
of Bz �= 0 brings principal topological change to the system configuration and results in
appearance of very different plasma equilibria (see models of 1D current sheet with Bz �= 0
in Kropotkin et al. 1997; Sitnov et al. 2000; Zelenyi et al. 2000). Modification of the current
sheet and corresponding accompanying effects are described in review by Zelenyi et al.
(2011).
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3 Dissipative Effects

Besides the Landau kinetic mechanism of dissipation providing the growth of certain wave
modes in the current sheets, there are more standard effects of direct energy dissipation
due to effective (turbulent conductivity) or Coulomb particle collisions. For magnetospheric
plasma system certain role in generation of effective conductivity can be played by whistler
waves (see, e.g., Deng and Matsumoto 2001), by Alfven-whistler mode (Huang and et al.
2012), and by lower-hybrid waves (see Huba et al. 1977; Fujimoto et al. 2011). Indepen-
dently of dispersion of waves forming turbulence, their interaction with particles can be
approximately considered as effective collisions with certain collision frequency νeff . For
example, collision frequency provided by weak lower-hybrid turbulence can be described
by expression

νeff = ωLH

(
1

2
ρi |d lnN/dz|

)3

(Ti/Te)
2

where ωLH is lower-hybrid frequency.
To take into account this effect in kinetic model of current sheet instability we use col-

lision integral in Bhatnagar-Gross-Krook (BGK) form (Bhatnagar et al. 1954), which was
originally designed for Coulomb collisions. So in the consideration below νeff could have
the meaning either of effective or Coulomb collision frequency. We consider only effect of
collisions on instability and neglect by their influence on the initial equilibrium. Collision
integral for perturbation of the velocity distribution f1α can be written as

Stf1α = −
∑

σ

vασ

(
f1α − f0α∫

f0αdv

(∫
f1αdv + mα

Tα

v
∫

vf1αdv
))

where νασ is frequency of collisions of α-type and σ -type particles: νie = μνei with
μ = me/mi . Linearized Vlasov equation gives following expression for f1α (Zelenyi and
Taktakishvili 1981):

f1α = qα

cTα

f0α

(
A1yvDα − cϕ1 + i

∫ 0

−∞

((
ωvy(τ ) − vDανα

)
A1y − ωαcϕ1

)
εα(τ )dτ

)

+
∑

σ

νασ f0α

∫ 0

−∞

(
n1α + v(τ )

∫
vf1αdv

)
n−1εα(τ )dτ (1)

where n = n0N(z), n1α = ∫
f1αdv, ωα = ω + iνα , να = ∑

σ νασ , and

εα = exp
(−iωατ + ik

(
x(τ) − x

))

Wavenumber of perturbation is k. Condition of quasineutrality n1e = n1i gives the perturba-
tion of the scalar potential ϕ1 as a function of the perturbation of the vector potential A1y .
Substituting (1) into Maxwell equation we obtain

d2A1y

dz2
− (

k2 + V0(z) + V <(z)
)
A1y = 0

V0(z) + V <(z) = −4πqα

c

∑

α

∫
vyf1αdv

(2)
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where we separate adiabatic impact V0 = −2L−2 cosh−2(z/L) and resonant impact V <.
Term V < can be taken as zero for |z| > Rα . The corresponding dispersion relation could
be obtained by matching solutions of (2) in the internal (|z| < Rα) and external (|z| > Rα)
regions. This technique is straightforward and described in details in may early publications
(Dobrowolny 1968; Galeev 1979; Zelenyi and Taktakishvili 1981)

L

2

∫ +∞

−∞

(
V <

e (z) + V <
i (z)

)
dx = 1 − (kL)2

kL
(3)

Dispersion relation (3) can be rewritten as

ω2
peL

2

c2

γ̄

ν̄e

(√
ρe

L

Ae(1 − Ai ) + Ai (1 − Ae)

1 − AeAi

+
√

ρi

L
Ai

)
= 1 − (kL)2

kL
(4)

where we neglect electron current density in the region Re < |z| < Ri in comparison with
ion current and introduce the following notations: ωpe is plasma frequency, γ̄ = γ /kvTe ,
ν̄e = νe/kvTe , and

Aα = −iνασ

Z0α

kvTα

(
1 + iναα

Z0α

kvTα

)−1

, α �= σ (5)

Plasma integral Znα (Kramp function) has a form

Znα(ωα/kvTα ) = 1√
π

∫ +∞

−∞

xne−x2
dx

x − (ωα/kvTα ) − iϑsignk
, ϑ → 0

There are several cases when analytical solutions of (4) could be obtained.
For very weak collisions ν̄e ∼ νi/kvTi

� 1 we have ωe � kvTi
� kvTe . Expansion of Z0α

function around zero value of ωα/kvTα gives the solution of (4):

γ̄ = 2√
π

(
ρe

L

)3/2 1 − (kL)2

kL
= γ̄0e (6)

This is classical growth rate of the electron tearing mode in absence of collisions and shear
(see, e.g., Galeev and Zelenyi 1976).

For very strong collisions ν̄e ∼ νi/kvTi
	 1 we can expand Z0α with ωα/kvTα 	 1 and

obtain equation for γ̄

γ̄ = γ̄0eν̄e

(
1 + Δi

Re

(
1 + ν̄−2

e μ−1/2 + γ̄ μ−1ν̄−1
e

)−1
)−1

(7)

where Δi = Ri if the mean free path λei = vTe/νei is larger than Ri , while Δi ∼ ν̄eμ
−1/2ρe >

Ri , if the mean free path λei is smaller than Ri . Here, therefore, we have three solutions
of (7). Together with (6) we have

γ̄ = γ̄0e

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, ν̄e � 1

ν̄e, 1 � ν̄e � μ−1/8, ρe/L < μ3/4

μ−1/4/ν̄e, μ−1/8 � ν̄e � μ−1/4, ρe/L < μ

(μL/ρe)
1/2, μ1/4(L/ρe)

1/2 < ν̄e

(8)
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Fig. 1 Modified collision
frequency as function of
bn = Bz/B0. Figure is adopted
from (Zelenyi and Taktakishvili
1981)

Equation (8) demonstrates how Coulomb (of effective) dissipation replaces the weak and
sensitive Landau damping as a driving mechanism of spontaneous reconnection. This effect
is especially important if Landau damping is switched off by the influence of a weak normal
component of magnetic field and tearing mode becomes linearly stable (Schindler 1974;
Galeev and Zelenyi 1976; Pellat et al. 1991; Quest et al. 1996). In this case the presence of
collisions provides relatively slow, but persistent growth of reconnecting modes. Resistive
mode (similar to the one described by (8) for Bz = 0 case, γ̄ ∼ ν̄e) emerges in this case,
even for the modes stable in collisionless regime. These dissipative modes are clearly seen
in numerical simulations (Lipatov and Zelenyi 1982), where numerical dissipation due to
“shot noise” effects is unfortunately unavoidable.

4 Pitaevskii Effect

It is necessary to note, that the presence of finite normal component of magnetic field in
the vicinity of the neutral plane Bx ≈ 0 results in modification of the collision frequency
(so called Pitaevskii effect, see Pitaevskii 1963). The nature of this effect is related with the
kinetic character of collision process, which is missed both in τ -approximation and BGK-
approach. Strictly speaking, collisions should be described by Landau collisional operator
(Pitaevskii and Lifshitz 1981), where all details of distribution function become important
(especially gradients of distribution function in a phase space). For short wavelength modes
kρen > 1 (ρen = vTe/Ωen is electron Larmor radius in the vicinity of current sheet neutral
plane with electron gyrofrequency in Bz field, Ωen ) perturbed distribution f1α ∼ exp(ikx −
iωt) ∼ exp(ikρen) sin(Ωent) becomes very inhomogeneous in the phase space and collisions
act much more effectively to smoothen it. Pitaevskii took this effect into account and have
shown that it could in a first approximation be reduced to the corresponding increase of
collision frequency:

ν̄e → ν̄mod = ν̄e ×
{

k2ρ2
en, k2ρ2

en > 1

1, k2ρ2
en < 1

Here we take into account that for current sheet geometry ρen = ρe/bn, where bn = Bz/B0

is the dimensional value of the normal component of the magnetic field. The corresponding
modification of νe can be found in Fig. 1 and have non-monotonous form.

Modified collision frequency νmod equals to νe for unmagnetized electrons, when
νe < Ωen. For strongly magnetized electrons kρen < 1 (i.e. when the wavelength of pertur-
bations becomes larger than electron gyroradius in Bz field) modified frequency also equals
to νe . Effect of Pitaevskii starts working in the region with kρen > 1. In this region modified
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collision frequency increases with decrease of bn as νmod ∼ b−2
n until νmod is smaller than

Ωen. When νmod = Ωen (i.e. bn = kρeν̄
1/3
e ), effect of Pitaevskii stops working. We decided to

remind about this effect, because it could be important even for a weakly collisional plasma
in a weak magnetic field characteristic for interplanetary (interstellar) space and planetary
magnetotails. Simple estimates of Reinolds numbers without taking into account the kinetics
of collision process could significantly underestimate their role.

5 Effects of Magnetic Field Shear and Collisional Dissipation

Very often plasma configurations in space and laboratory have the additional component of
magnetic field along the current supporting configuration. This component (toroidal in fu-
sion devices) could have small (magnetotail) or large (magnetopause) values, so we will con-
sider the general case when it could have an arbitrary value. In presence of a finite magnetic
field By motion of particles in the neutral plane can become magnetized by this component.
The critical value of By for such “magnetization” is defined as: B∗

y = B0ρα/Rα = B0
√

ρα/L.
If By < B∗

y particles can be considered as unmagnetized, because Larmor radius in By is
larger than the thickness of the central region of current sheet |z| < Rα . For such weak
By component its influence on system properties could be neglected. For By > B∗

y all par-
ticles are magnetized (Galeev and Zelenyi 1978; Karimabadi et al. 2005). For these two
regimes mechanisms of tearing mode growth are principally different (Drake and Lee 1977;
Zelenyi and Taktakishvili 1987). When electrons get magnetized a finite dissipation due to
Landau resonance interaction is replaced by the dissipation produced by electron inertia
(me �= 0).

Here we introduce dimensionless parameter by = By/B0 and consider regimes of the
tearing mode for various values of by . In contrast to the system with By = 0, tearing mode in
the current sheet with magnetic field shear is very sensitive to any perturbation of the scalar
potential ϕ (Coppi 1965; Galeev et al. 1986; Daughton and Karimabadi 2005). The spatial
domain can be separated into two regions: (1) central region in the vicinity of so called
singular surface which is the layer with k‖ = kxBx(z)/|B| = 0. In this region perturbations
of the electrostatic field −∇‖ϕ = −k‖ϕ are small and can not compensate perturbation of
the inductive field −c−1∂A‖/∂t , where A‖ = A1y(z)By/|B|. As a result, a finite electric field
E‖ = −∇‖ϕ − c−1∂A‖/∂t exists in the vicinity of singular surface and frozen-in condition
breaks down. (2) Outer region where inductive and potential parts of E‖ compensate each
other (E‖ = 0) and single fluid-approximation can be used. In the vicinity of the layer with
k‖ = 0 equations for perturbed vector and scalar potentials for the general case with both
shear (by �= 0) and collisional effects (ν �= 0) taken into account can be written as (Zelenyi
and Taktakishvili 1987)

d2ϕ

dz2
= G(z),

d2A‖
dz2

= ρ2
i

2R2
i b

2
y

ω

k‖c
G(z) (9)

where ω is frequency of perturbation and

G(z) =
(

ϕ(z) − ωA‖
k‖c

)
2R2

i

b2
yρ

2
i

∑

α

Z1α(1 + Xσ )

R2
αDα

, α �= σ

Xσ = Z1α

2iνασ ω

(k‖vTα )
2Dα

, α �= σ
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Dα = 1 + iναZ0α

k‖vTα

+ 2iνασ ωZ1α

(kavTα )
2

Argument of Znα function is ω/k‖vTα . To derive system of (9) we took into account several
assumptions: (1) we neglect particle drift vDα in the vicinity of the layer k‖ = 0; (2) we
assume that d2/dz2 	 k2 and d2/dz2 	 V0(z); (3) in the vicinity of the layer k‖ = 0 we
assume A‖ ≈ const �= 0, but we keep terms d2A‖/dz2; (4) we assume that ρi/by 	 Ri,Re

(By < B∗
y ), i.e. by � √

ρi/L (but by 	 √
ρe/L for an external solution).

One can get good physical insight to the problem considering the Doppler-shift of pertur-
bation for collisionless regime with γ > νe: ω′ = ω − ωD , where ωD = k‖v‖ ≈ k‖vTe . While
for collisional case γ < νe particles motion resembles the diffusion along magnetic field
lines. In this case Doppler-shift can be written as ωD ≈ k2

‖v
2
Te

/νe (Drake and Lee 1977). If the
value of Doppler-shift is much smaller than time scale of electric field variation (ωD � ω),
particle can be accelerated by E‖ in the vicinity of the layer k‖ = 0. Condition ωD � ω

defines the width of the singular region:

Δs =
{

Δ0
s = γ̄ byL, γ 	 νe

Δc
s = √

γ̄ ν̄ebyL, γ � νe

System (9) determines the dispersion relation valid for Δs � L:

1 − (kL)2

kL
= L

A‖

∫ +∞

−∞

d2A‖
dz2

dz (10)

This dispersion relation determines the growth rates for all regimes of the tearing mode de-
pending on by and νe . The important role is played by relation between scales Δs and δϕ ,
where δϕ defines the scale of ϕ variation, i.e. perturbations of vector potential A‖ are not
compensated by perturbations of the scalar potential in the domain |z| < δϕ . For systems
with Δs < δϕ kinetic regime of tearing mode is provided by resonant collisionless or col-
lisional interaction with particles in the region |z| < Δs (see left panel of the scheme in
Fig. 2). Electrostatic effects become important already outside the region of strong inter-
action of waves with electrons |z| < Δs . For |z| > Δs Doppler shift ∼ k‖(z)v‖ ∼ k‖(z)vTe

strongly reduces the resulting value of the perturbed current d2A‖/dz2 ∼ j‖.
For the opposite case Δs > δφ (see right panel of the scheme in Fig. 2) electrostatic effects

control the evolution of the system because the width of interaction region depends on the
width of the domain, where the frozen in condition E‖ = iωA‖/c− ik‖ϕ = 0 is violated. For
|z| > δϕ E‖ → 0 and interaction for the cases with Δs > δφ occurs in MHD regime, when
the dissipation could be provided either by collisional (∼νe) or inertial (∼me) resistivities.

Below we consider two different regimes of the tearing mode: (1) MHD regime, when
inertia or resistivity produce perturbation of current density with spatial scale exceeding
ion Larmor radius ρyi = ρi/by (δϕ ∼ ρyi < Δs ); (2) kinetic regime, when spatial scales of
current perturbation are smaller than ion Larmor radius (δϕ ∼ ρyi > Δs ).

5.1 Collisionless Systems

If collisional frequency is small (νe � γ ) one can neglect the real part of the frequency of
perturbation (Reω = 0, Imω = γ ) and consider only electron input to the growth of pertur-
bations. In this case system (9) takes a form

d2ϕ

dz2
= 2Ti

ρ2
yiTe

(
ϕ − ω

k‖c
A‖

)
Z1e,

d2A‖
dz2

= Ti

R2
i Te

ω

k‖c

(
ϕ − ω

k‖c
A‖

)
Z1e (11)
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Fig. 2 Schematic view of relation between spatial scales Δs and δφ in kinetic and MHD regimes

For kinetic regime (ϕ ∼ 0) we could substitute expression for d2A‖/dz2 (11) into dispersion
relation (10) with additional condition Z1e ≈ 1 valid for |z| 	 Δ0

s to obtain growth rate (see
Laval et al. 1966)

γ̄01 = 1√
π

(
1 + Ti

Te

)
1 − (kL)2

kL

(
ρe

L

)2 1

by

First equation of system (11) gives estimate of the spatial scale δϕ ≈ ρyi

√
Ti/2Te . Then limit

of this regime is defined by equation δϕ ≈ Δs : by < (L/ρe)
√

1/2μ.
For MHD regime δϕ < Δs we can use expansion Z1e ≈ (1/2)(z/Δs)

2 in the region
|z| < Δ0

s . Substitution of expression for d2A‖/dz2 (11) into dispersion relation (10) gives
(Zelenyi and Taktakishvili 1987)

γ̄02 = √
μ

(
ρe

L

)3(
4

(
1 + Ti

Te

)
Ti

TeI

1 − (kL)2

kL

)2

(12)

with I = 2πΓ (3/4)/Γ (1/4). It is worth to notice, that these two regimes match at demag-
netization point b∗

y , i.e. the ratio γ̄01/γ̄01 is some constant around unity, when by = b∗
y =

(L/ρe)
√

1/2μ (Galeev and Zelenyi 1977). For the first time this instability (inertial MHD
tearing mode) was found in the early paper by Coppi (1965). One can see that the such mode
could exist only in the very exotic case by >

√
mi/me (L ∼ ρi ) or equivalently for extremely

small plasma beta β < me/mi .

5.2 Collisional Systems

For the case with strong collisions να/k‖vTα 	 1 system (9) can be rewritten as

ρ2
yi

d2ϕ

dz2
= 2Ti

Te

(
ϕ − ω

k‖c
A‖

)
k2

‖v
2
Te

2γ νe + k2
‖v

2
Te

R2
e

d2A‖
dz2

= ω

k‖c

(
ϕ − ω

k‖c
A‖

)
k2

‖v
2
Te

2γ νe + k2
‖v

2
Te

(13)
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For kinetic regime (δϕ > Δs and ϕ → 0) the solution of the first equation of system (13) in
the region |z| > Δ0

s is the same as the solution of the first equation of collisionless system
(11). As a result, we obtain estimates of δϕ ≈ ρyi

√
Ti/2Te . Second equation of system (13)

after substitution into (10) with ϕ = 0 gives the growth rate for so called semi-collision
mode (Drake and Lee 1977):

γ̄sc = ν̄1/3
e

(
ρe

L

)4/3 1

π1/3b
2/3
y

((
1 + Ti

Te

)
1 − (kL)2

kL

)2/3

Growth rate γ̄sc matches γ̄01 at ν̄e = (ρe/L)2/by .
For MHD regime (δϕ < Δs ) we can obtain the solution of the first equation of system

(13):

ϕ(z) = ω

k‖c
A‖

z2

4δϕΔc
s

∫ π/2

0

√
sin θ exp

(
−z2 cos θ

4δϕΔc
s

)
dθ

Substituting ϕ(z) into the second equation of system (13) we obtain the expression for A‖,
which can be substituted into (10). As a result, we obtain growth rate of the well-known
resistive Furth-Killeen-Rosenbluth mode (Furth et al. 1963):

γ̄FKR = ν̄3/5
e

(
ρe

L

)6/5

μ1/5

(
1 − (kL)2

kL

2(Ti + Te)

TeI

)4/5

with I = 2πΓ (3/4)/Γ (1/4). Growth rates γsc and γFKR match at Δc
s ∼ ρyi .

5.3 Role of By

Collisionless growth rate for resonant tearing mode in neutral current sheet with By = 0
was estimates as γ̄0e ∼ (ρe/L)3/2 (Coppi et al. 1966b). Therefore, estimates of collision-
less growth rate for inertial mode γ̄01 ∼ (ρe/L)2/by with By �= 0 becomes equal to γ̄0e for
by = (ρe/L)1/2 � 1. This value of by corresponds to magnetization of electrons (By = B∗

y ),
i.e. ρe/by = Re for by = (ρe/L)1/2. For system with by > (ρe/L)1/2 growth rate is deter-
mined by electron inertial resistivity and described by expression γ01 ∼ (ρe/L)2/by until
frequency of collisions is small enough ν̄e < γ̄01. When ν̄e = γ̄01 and by > (ρe/L)1/2 (i.e.
ν̄e > (ρe/L)3/2) the semi-collisional regime, where inertial resistivity is replaced by the col-
lisional one (Drake and Lee 1977) establishes with γ̄sc ∼ ν̄

1/3
e /b

2/3
y . As we mention above

for very large by > (L/ρe)
√

1/2μ collisionless kinetic inertial mode transforms to MHD
inertial mode and growth rates also match quite well at By = B∗

y . Therefore, we have depen-
dence of the growth rate on by , where growth rate for intermediate regime by ∼ (ρe/L)1/2

can be obtained only by numerical solution of the corresponding dispersion equation (see
Zelenyi and Taktakishvili 1987). So, we see that the interplay of different mictroscales of
spontaneous reconnection process (scales of resonant or collisional electron interaction Δs ,
scale of the violation of the frozen in condition, δφ) determines the real modes and mecha-
nisms of its operating.

6 Discussion and Conclusions

The general character of the growth rates for spontaneous reconnection modes as function
of νe and by is shown in Fig. 3, where we also indicate parameter regions for various current
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sheets in different conditions existing in space and laboratory plasmas. Magnetotail cur-
rent sheet is typically characterized by small value of magnetic shear by � 1 (Petrukovich
2011). The level of high-frequency wave activity responsible for effective collisions is also
weak in this region (Coroniti 1985; Eastwood et al. 2009; Fujimoto et al. 2011). Therefore
“MT” domain is situated at a lower left corner of Fig. 3 in ν̄e � 1, by � 1 region. However,
this domain could be extended by including current sheets observed under active condi-
tions. For example, in the vicinity of the reconnection regions, where secondary X-lines
can be formed due to the tearing instability of current sheet located in the outflow region,
component By could be relatively strong (By ∼ B0, see, e.g., Nakamura and et al. 2008;
Wang and et al. 2012). Moreover, in case of strong By electric field fluctuations related to
flows of accelerated particles are often observed in outflow region supporting increase of ef-
fective collisions νe (Huang and et al. 2012) in agreement with theoretical estimates (Yoon
and Lui 2006). However, for weak values of By the intensity of these effective collisions
is low to be responsible for reconnection (Eastwood et al. 2009), and corresponding MT
domain can be expanded to semicollisional region only for sufficiently large By . Here we
also can mention alternative source of effective conductivity corresponding to stochastic ion
and electron motion in the current sheets (Horton and Tajima 1990; Numata and Yoshida
2002). For magnetopause current sheet shear of magnetic field is often strong enough to
provide by > 1 (Berchem and Russell 1982; Panov et al. 2008). Therefore, electrons and
ions are magnetized in the vicinity of the neutral plane by By . In this case “MP” domain
corresponds to the inertial mode with γ = γ01. However, similar to “MT” domain effective
collisions due to lower-hybrid and/or ion-cyclotron turbulence (Labelle and Treumann 1988;
Panov et al. 2006) could expand “MP” domain up to semi-collisional regime of the tearing
mode.

Current sheets detected in Solar corona (“SC” domain) correspond to strong (but fi-
nite) shear mi/me > by > 1 and weak, but finite, collisions (Priest and Forbes 2000;
Uzdensky 2003; Birn and Priest 2007). Development of the semi-collision tearing mode
in these current sheets results in spontaneous magnetic reconnection (initiating the onset
of Solar flares) and the subsequent electron acceleration. Here effective collisions due to
high-frequency turbulence could also contribute to the growth rate and help to destabilize
current sheet (Büchner 2007). We emphasize that the process of spontaneous reconnection
in Solar corona and upper Solar atmosphere is mostly kinetic. Neither the value of shear
component by , nor the degree of collisionality are strong enough to support this process to
be accomplished in MHD regime.

Laboratory devices with relatively cool plasma, where magnetic field configurations with
current sheet are produced, are located in Fig. 3 in the domain with strong electron collisions
(Frank 2010; Yamada et al. 2010; Frank et al. 2011) enhanced by effective collisions (Ji
et al. 2004). Magnetic reconnection in laboratory current sheets due to growth of collisional
Furth-Killeen-Rosenbluth tearing mode (Furth et al. 1963) are often observed and described
in details (see, e.g., Frank 2010). Moreover, laboratory devices can operate with relatively
strong magnetic shear By ∼ B0 induced initially and growing with development of current
sheet (Frank et al. 2005).

Finally tokamaks (“TK” domain) with high-temperature plasma are characterized by
strong toroidal field (Wesson 2004; Steinhauer 2011) (strong shear by 	 1 in our notations)
and moderately strong collisions. Although the degree of collisionality could be enhanced by
turbulence (see Budaev et al. 2011), tokamak domain most probably is located as semicolli-
sional regime at Fig. 3 especially for future devices for real hot fusion plasma confinement.
For tokamaks tearing instability plays important, although undesirable, role of destruction
of magnetic surface (see review Boozer 2012b, and references therein).
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Although, the analysis of reconnection mechanisms presented above is more appropriate
for description of reconnection in space plasma, here we would like to discuss briefly the
comparison with reconnection processes occurring in laboratory and tokamak experiments.
The theory of collisional reconnection in tokamaks is originated from paper by Kadomtsev
(1975) (see also review Kadomtsev 1987), where the model of resistive reconnection was
developed. This model predicts reconnection time ∼ ν

−1/2
e and is unable to explain the pow-

erful sawtooth instability related to fast reconnection (von Goeler et al. 1974). Physics of
this fast tokamak reconnection is essentially similar to models with large By presented in
this review. It is believed that m = 1 modes in tokamaks results in formation of magnetic
islands in the vicinity of a singular layer k · B = 0 (Rutherford 1973; Rosenbluth et al. 1973;
Zakharov 1980). Here the principal role is played by the electron inertia (Wesson 1990),
because plasma beta is small enough (β < mi/me) due to the large shear component of the
magnetic field. Weak level of collisions in tokamak plasma leads to the dominance of this
inertial mode, which can describe fast sawtooth reconnection (Porcelli 1991). Inertial m = 1
mode in tokamaks in principal corresponds to the current sheet thickness of the order of elec-
tron inertial length d ∼ m

1/2
e and develops with the growth rate γm=1 ∼ √

μ(ρi/d) ∼ √
μ.

The same estimates can be obtained for collisionless inertial tearing regime γ02 ∼ √
μ for

L ∼ d ∼ √
me (see (12)).

Important role of additional effective collisions (or anomalous diffusion) for inertial
m = 1 mode was considered by Drake and Kleva (1991). Authors have shown that sta-
bilization of m = 1 mode due to diamagnetic drifts (effect similar to Doppler-shift ef-
fect for collisionless mode, see discussion above and in Drake and Lee (1977)) results
in significal reduction of the growth rate. At the same time effective diffusion due to
drift instability can provide the increase of reconnection rate. The stabilization effect of
diamagnetic drifts for m = 1 mode was confirmed by experimental observation (Levin-
ton et al. 1994) and numerical modeling (Zakharov et al. 1993). Other possible candi-
date for the increase of the tearing growth rate in tokamaks reconnection with large shear
magnetic component is the gradient of electron pressure along field lines (Aydemir 1992;
Grasso et al. 1999). Presence of the finite electron compressibility results in appearance of
nonvanishing parallel electric field in the vicinity of the singular layer. In this case the struc-
ture of reconnection region resembles the one shown in Fig. 2 (left panel), where j‖ �= 0
domain is embedded into E‖ �= 0 domain (Kleva et al. 1995).

General model of two-fluid magnetic reconnection in tokamaks with two limits (β <

me/mi and β ∼ 1) can be found in Biskamp et al. (1997). In case of small plasma beta elec-
tron inertia plays the most important role, while large-β regime corresponds to separation
of electron and ion motions and Hall reconnection. The comprehensive review by Porcelli
et al. (2002) can be used to obtain more detailed information about inertial and Hall modes
of magnetic reconnection in tokamaks, while papers by Park et al. (2006b, 2006a); Igochine
et al. (2007) contain comparison of theoretical predictions and experimented observations.

Substantial difference between tearing modes developed in space and laboratory plas-
mas is provided by the difference of boundary conditions. The traditional approach to
growth rate calculations consists in matching of solutions of perturbed Vlasov-Maxwell
equations at the boundary separating inner region around the singular layer k · B = 0 and
outer region, where resonant wave-particle interaction or inertial effects can be neglected.
Therefore, to determine solutions in the outer region one needs to introduce the certain
external boundary conditions. The most appropriate approach for space systems consists
in consideration of infinitely distant boundaries with corresponding solutions quickly de-
creasing with distance from the singular layer (an example of alternative approach can

Reprinted from the journal 376



Mechanisms of Spontaneous Reconnection: From Magnetospheric to Fusion Plasma

Fig. 3 Regimes of tearing mode:
MT denotes magnetotail, MP
denotes magnetopause, SC
denotes solar corona, and TK
denotes tokamaks. Figure is
adopted from Zelenyi and
Taktakishvili (1981)

be found in Zelenyi and Kuznetsova 1984). Situation is different for tokamaks config-
urations, where outer boundaries are accessible and have well defined physical proper-
ties like infinite conductivity (Coppi et al. 1966a; Wesson 1966). In this case, the set of
external solutions is fully controlled by system geometry (see, e.g., Mikhailovskii 1978;
Pegoraro and Schep 1986, and references therein). Additionally, characteristic cylindrical-
like geometry of the tokamak system corresponds to appearance of local singularities of
solutions (Newcomb 1960). Such singularities are absent in simplified plane geometry typ-
ical for space systems. These two problems are not encountered in major of space-plasma
systems. Therefore, further comparison between spacecraft observations (and correspond-
ing theories) with tokamak and laboratory reconnections requires accurate consideration of
the geometry issue (see discussion in Boozer 2012a).

In conclusion, we can mention that for the major part of observed current sheets the semi-
collisions regime of spontaneous reconnection seems to play the most important role. This
regime principally cannot be described in a frame of MHD approach, until shear of magnetic
field becomes unrealistically strong. On the other hand, unlikely that pure kinetic mode with
unmagnetized electrons could be realized in realistic systems due to electron magnetization
by even very weak magnetic fields. As a result, it is principal that the regime of current
sheet destruction in the course of magnetic reconnection should be described in a frame of
kinetic models with careful taking into account effects of collisions, which also exist in many
seemingly collisionless configurations as effective collisions due to scattering of electrons at
microturbulence fluctuations. In addition it should be kept in mind that weak magnetization
(kρα > 1) of particle trajectories could substantially enhance collision frequencies formally
defined in simplified τ - or BGK descriptions due to kinetic properties of the exact collisional
operator. This effect known as Pitaevskii one could occur in a wide parameter range.
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