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Abstract Astrophysical fluids have very large Reynolds numbers and therefore turbulence
is their natural state. Magnetic reconnection is an important process in many astrophysical
plasmas, which allows restructuring of magnetic fields and conversion of stored magnetic
energy into heat and kinetic energy. Turbulence is known to dramatically change different
transport processes and therefore it is not unexpected that turbulence can alter the dynam-
ics of magnetic field lines within the reconnection process. We shall review the interaction
between turbulence and reconnection at different scales, showing how a state of turbulent
reconnection is natural in astrophysical plasmas, with implications for a range of phenom-
ena across astrophysics. We consider the process of magnetic reconnection that is fast in
magnetohydrodynamic (MHD) limit and discuss how turbulence—both externally driven
and generated in the reconnecting system—can make reconnection independent on the mi-
crophysical properties of plasmas. We will also show how relaxation theory can be used
to calculate the energy dissipated in turbulent reconnecting fields. As well as heating the
plasma, the energy dissipated by turbulent reconnection may cause acceleration of non-
thermal particles, which is briefly discussed here.

Keywords Magnetic reconnection · Turbulence · Magnetohydrodynamics · Cosmic
plasma · Fast reconnection · Solar flares · Dynamos

1 Introduction

Magnetic fields are observed in many astrophysical objects and it is accepted that these fields
play an essential role in the dynamics (e.g. Crutcher 1999; Beck 2002; Vallée 1997, 1998).
Magnetic fields are vital for magneto-rotational instability, transport and acceleration of cos-
mic rays and other energetic particles, accretion of matter, and activity in stellar atmospheres
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(e.g. Balbus and Hawley 1998; Parker 1992; Schlickeiser and Lerche 1985; Melrose 2009;
Elmegreen and Scalo 2004; Kotera and Olinto 2011). Crucially, magnetic fields provide a
means to store energy as well as to transport it.

For laminar fluids in the limit of zero resistivity, the topology of the field lines is a con-
stant of motion and the magnetic flux threading any fluid element is constant. This is the
basis of the textbook notion that in the limit of very small resistivity, which is typical for
astrophysical objects, the magnetic flux is “frozen in” and magnetic field lines resist passing
through one another or changing their topology (Moffat 1978).1

At the same time, changes of magnetic field topology are necessary for the generation
of magnetic fields by dynamos, and for many other phenomena. Magnetic reconnection is
a process that is responsible for topology changes and the annihilation of magnetic field on
faster time-scales than the (usually) extremely slow, process of global resistive diffusion. It
is now well-established that magnetic reconnection is a ubiquitous process across the uni-
verse, with important consequences for restructuring of magnetic fields and efficient release
of stored magnetic energy, such as in solar and stellar flares, coronal heating and planetary
magnetospheres; for reviews, see Biskamp (1996, 2000), Priest and Forbes (2000), Yamada
(2007), Zweibel and Yamada (2009), Yamada et al. (2011). Furthermore, reconnection is
common in laboratory plasmas, both in magnetically-confined fusion devices (e.g. Ono et al.
2012; Stanier et al. 2013) and in experiments specifically devised to study reconnection (e.g.
Yamada et al. 1990; Brown 1999; Yamada 2007). Whilst reconnection theory originated
mainly through 2D analytical models (Parker 1957; Sweet 1958; Furth et al. 1963; Petschek
1964; Hahm and Kulsrud 1985), recent research on astrophysical reconnection has increas-
ingly emphasised the role of 3D geometries and complex topologies. One strand of such
complexity is a close association between magnetic reconnection and turbulence, which is
the focus of this paper.

Turbulence is an almost universal process in astrophysical plasmas; as well as being
widely observed in laboratory plasmas, and associated there with the important and yet ill-
understood phenomenon of anomalous transport. For instance, in the interstellar medium,
supernovae explosions are thought to be the source of ubiquitously observed turbulent mo-
tions. It is generally accepted that the “Big Power Law in the Sky” (see Fig. 1) indicates
the presence of turbulence on scales from tens of parsecs to thousands of kilometres (Arm-
strong et al. 1995; Chepurnov and Lazarian 2010). Among other sources, evidence for this
comes from studies of atomic hydrogen spectra in molecular clouds and galaxies (Lazarian
and Pogosyan 1999; Stanimirović and Lazarian 2001; Padoan et al. 2006, 2009; Chepurnov
et al. 2010), see also the review by Lazarian (2009) and references therein; as well as re-
cent studies of emission lines and Faraday rotation (see Burkhart et al. 2010; Gaensler et al.
2011). Much work over recent years has been devoted to understanding fluid turbulence in
the presence of a magnetic field (e.g. Zank and Matthaeus 1993; Lazarian and Cho 2005).

In fact, the phenomena of reconnection and turbulence in magnetised plasmas, tradi-
tionally viewed as separate problems, should be studied together. This is inevitably a vast
subject, and in this review we touch only on some aspects of this, focussing only on mag-
netohydrodynamic (MHD) models. Recently, there has also been much emphasis on the in-
teraction between turbulence and reconnection in collisionless reconnection (e.g. Daughton
et al. 2011; Karimabadi et al. 2013) and Hall-MHD (e.g. Dmitruk and Matthaeus 2006), but
here we consider only fluid models. The many interesting recent developments in kinetic
models of turbulence and reconnection are discussed elsewhere in this volume. The interac-
tion between turbulence and reconnection within MHD are also reviewed by Lazarian et al.

1As we discuss later in Sect. 3.4, the very notion of frozen-in magnetic fields requires serious revisions.
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Fig. 1 Turbulence in the
interstellar gas as revealed by
electron density fluctuations.
“Big Power Law in the Sky” in
extended using WHAM data
(Armstrong et al. 1995). The
slope corresponds to that of
Kolmogorov turbulence (see
discussion in Armstrong et al.
(1995)). Modified from
Chepurnov and Lazarian (2010)

(2012b), focused more on a review of MHD turbulence (which is not covered here) and
on cosmic ray acceleration. A complementary review is provided by Servidio et al. (2011),
considering the role of reconnecting current sheets within 2D turbulence, in both MHD and
Hall-MHD frameworks.

Reconnection and turbulence may interact in a number of ways. Firstly, a realisation that
flows are turbulent on fluid scales can substantially modify the dynamics of reconnection
and lead to fast reconnection, as described in the following section and Sect. 3. Secondly,
turbulence on kinetic scales is also ubiquitous, and these microphysical processes interact
strongly with the global (fluid scale) dynamics (e.g. Karimabadi et al. 2013). Whilst discus-
sion of kinetic processes is beyond the scope of this paper, we discuss synergies between
the MHD and plasma-based approaches to reconnection in Sect. 4, and some effects of mi-
crophysics on fluid processes are mentioned in Sect. 5. Thirdly, within a single reconnecting
current sheet, there is natural tendency for fragmentation into a series of plasmoids, lead-
ing again to a turbulent scenario, as discussed briefly in Sect. 5. Fourthly, the dynamics of
a magnetised plasma involving instabilities and loss of equilibrium naturally lead to fine
structure and turbulence, as is discussed in Sect. 6.1—thus reconnection tends to occur in a
multiplicity of localised current sheets (or similar structures), with turbulence naturally aris-
ing. Reconnection in such complex fields is usually 3D rather than 2D, see Sect. 6.2. Finally,
an important consequence of turbulent reconnection in cosmic plasmas is the efficient dis-
sipation of stored magnetic energy—leading both to plasma heating and the energisation of
charged particles. An approach to the former, based on the idea of relaxation to a minimum
energy state, is outlined in Sect. 7, whilst the latter is reviewed in Sect. 8.
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2 “Classical” Reconnection Models and the Quest for Fast Reconnection

The first analytic model for magnetic reconnection was proposed independently by Parker
(1957) and Sweet (1958). Sweet-Parker reconnection has the virtue that it relies on a robust
and straightforward geometry. Two regions with uniform magnetic fields are separated by
thin current sheet. The speed of reconnection is given roughly by the resistivity divided by
the sheet thickness, i.e. Vrec ≈ η/�, where η is the resistivity. This suggests that the recon-
nection can be very fast for small � and by decreasing �, one can make reconnection as fast
as may be required. This is not true, however. Indeed, the conducting plasma in the current
sheet is constrained to move along the local field lines, and is ejected from the edge of the
current sheet at the Alfvén speed, VA. Since the width of the current sheet, �, limits the flux
of expelled fluid, � should be made as large as possible to enable faster reconnection. This
results, for steady-state reconnection, in a compromise, with the overall reconnection speed
reduced from the Alfvén speed by the square root of the Lundquist number, S ≡ LVA/η,
where L is the length of the current sheet. In most astrophysical contexts, S is very large
and the Sweet-Parker reconnection speed, VSP ≈ VAS−1/2, is very small. Fast reconnection
requires that the reconnection rate be independent of η or depend on S logarithmically.

Another early paradigm for reconnection, which treats the transient development of re-
connection rather than assuming a steady-state, is the tearing instability (Furth et al. 1963).
A magnetic field with a reversal—or more generally, a sheared field—may be linearly-
unstable to small perturbations, forming a chain of growing magnetic islands at the reversal
surface (or resonant surface, where k · B = 0). However, the growth rate scales with the
geometric mean of the Alfven and diffusive times, which again is too slow to explain phe-
nomena such as solar flares.

A further analytical model for reconnection is forced reconnection (Hahm and Kulsrud
1985), in which an external disturbance at the boundary triggers reconnection and energy-
release, in a field which may be tearing-mode stable. In the original model, a sinusoidal
disturbance is applied at the boundary of a field-reversal in a slab, leading initially to the
formation of a discontinuous current sheet which subsequently relaxes through reconnection
into a lower-energy state with a chain of magnetic islands. This model can be generalised
to a sheared force-free field (Vekstein and Jain 1998), with implications for solar coronal
heating. However, again the time-scale for energy-release is slow.

The realization that Sweet-Parker reconnection—and related time-dependent models
such a linear tearing mode—are inadequate to explain magnetic reconnection for solar
flares was immediately apparent, and this gave rise to much research on models of fast
reconnection—see reviews Biskamp (2000), Priest and Forbes (2000)—that used differ-
ent outflow conditions, avoiding the contradictory requirements on � of the Sweet-Parker
model. The first proposal was to replace the long current sheet with an X-point configu-
ration, so that the “sheet” thickness and length are comparable. The magnetic field lines
diverge from the “point” of reconnection, forming an X-type structure over the scale of the
system. This is the basis for the ingenious Petschek’s model of fast reconnection (Petschek
1964). The stability and the conditions for emergence of such structures were an issue for
extensive research over the years that followed.

It is easy to see that self-consistent X-point reconnection requires that the outflow pre-
vents a general collapse into a narrow current sheet. Otherwise we would expect that the
same bulk forces that brought the magnetic field lines together would lead to Sweet-Parker
reconnection, which corresponds to the collapse of the X-point to an extended Y-sheet.
Petschek (1964) proposed that slow-mode shocks on either side of the X-point would serve
this purpose. Moreover, these shocks are responsible for converting most of the magnetic
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energy into kinetic energy. The X-point in this model has an overall size which depends on
resistivity, but since the magnetic field decreases logarithmically when approaching the cur-
rent sheet (due to the assumption of the current-free magnetic field in the inflow region), the
resulting reconnection speed depends on lnS and can be an appreciable fraction of VA. Nu-
merical simulations with uniform resistivity (Biskamp 1996) have showed that in the MHD
limit, the shocks fade away and the contact region evolves into Sweet-Parker reconnection.
The suggested way to make the Petschek configuration stable was by introducing a local
non-uniform resistivity (Parker 1973; Ugai and Tsuda 1977; Scholer 1989; Ugai 1992; Yan
et al. 1992; Forbes 2001; Shibata and Magara 2011), which remained the favourite way of
accounting for fast reconnection for many years.

Plasma effects, such as anomalous resistivity (resistivity that depends on the current),
formally present the best bet for stabilising the reconnecting X-point and attaining Petschek
reconnection: see Sect. 5. However, there were several important issues that remained un-
resolved. First, it is not clear that this kind of fast reconnection persists on scales greater
than the ion inertial scale (see Bhattacharjee et al. 2003). Several numerical studies (Wang
et al. 2001; Smith et al. 2004; Fitzpatrick 2004) have found large-scale reconnection speeds
which depend on resistivity: hence, these are not true “fast reconnection”. Second, in many
circumstances the magnetic field geometry does not allow the formation of X-point recon-
nection. For example, a saddle-shaped current sheet—the generic configuration of fluxes
pressing against each other when one flux tube partially engulfs the other as they pulled
in opposite directions—cannot be spontaneously replaced by an X-point. The energy re-
quired to do so is comparable to the magnetic energy liberated by reconnection, and must be
available beforehand. Finally, the requirement that reconnection occurs only in collisionless
plasmas is very restrictive. Many astrophysical fluids are collisional. For example, while re-
connection in stellar coronae can be collisionless (at least, on the “dissipation” length-scale),
stellar chromospheres are collisional. Magnetic reconnection does happen in both regions.2

Different phases of the interstellar medium are also collisional and, while magnetic recon-
nection is more difficult to observe in those environments, there is an indirect way to infer
fast magnetic reconnection there (Lazarian et al. 2012b).

As an example, we mention that Yamada (2007) estimated that the scale of the recon-
necting current sheet should not exceed about 40 times the electron mean-free-path. This
condition is not satisfied in many environments, e.g. the InterStellar Medium (ISM). The
conclusion that stellar interiors and atmospheres, accretion disks, and the ISM does not al-
low fast reconnection is drastic and unpalatable. On the other hand, an intriguing possibility
is that in some environments, such as the solar corona, a local collisionless state may be
maintained, allowing fast reconnection (Uzdensky 2007).

Is there a way to make magnetic reconnection independent of resistivity within the MHD
framework? Turbulence may be the primary suspect, as most of astrophysical environments
are observed to be turbulent, as discussed in Sect. 1. We now discuss how turbulence may
resolve the fast reconnection problem.

3 The Role of Turbulence in Fast Reconnection

Turbulence is known to accelerate diffusion processes, making them independent of the
microphysical parameters. This reasoning was behind the ill-founded concept of turbulent

2In some of these environments, collisions with neutral gas may dominate over Coulomb collisions, strongly
affecting the reconnection process, so the distinction between “collisionless” and “collisional” may be an
over-simplification. We do not discuss this interesting issue further here.
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diffusivity within models of the kinematic dynamo (Moffat 1978). There, in direct analogy
with the turbulent diffusivity of a passive scalar, it was assumed that magnetic fields can be
mixed by turbulent motions up to the resistive scale. Naturally, in such circumstances, the
magnetic reconnection problem becomes trivial.

The problem with the “magnetic turbulent diffusion” idea is that realistic astrophysical
magnetic fields are important and therefore the small-scale magnetic mixing of oppositely-
directed magnetic fields is not applicable. In fact, the dynamical importance of magnetic
fields and the inability of the turbulence to bend them appreciably on the resistive scales
must be taken into account from the very early stages of the action of astrophysical dynamo.

Thus, in addressing the role of turbulence in astrophysical reconnection, one should con-
sider dynamically important magnetic fields. Lazarian and Vishniac (1999) [hereafter LV99]
proposed a 3D model for fast reconnection which depends on the presence of turbulence,
and magnetic field wandering.

We must note that the idea that turbulence and fieldline wandering can enhance the re-
connection rate has a long history. For instance, Speiser (1970) considered the effects of
turbulence on microscopic resistivity—further discussed in Sect. 5. The “Tangled Discharge
Model” was devised to explain relaxation in a Reversed Field Pinch and other fusion devices
through the existence of stochastic fields subject to turbulent reconnection (Rusbridge 1977,
1991). Similarly, Jacobson and Moses (1984) proposed that the current diffusivity should
be modified to include the diffusion of electrons across the large scale magnetic field due to
the small-scale field line stochasticity. These models involving field line wandering are also
closely linked to the idea of relaxation to a minimum energy state, see Sect. 7 below, and
provide a very useful picture of the interactions between turbulence and reconnection; but
they do not solve the fast reconnection problem. Further models considering the effects of
2D turbulence on reconnection are discussed in Sect. 3.3 below. We now proceed to show
how 3D fluid turbulence may provide a solution to the fast reconnection problem.

3.1 The LV99 Model

LV99’s model (see Fig. 2) uses the properties of turbulence to predict broad outflows from
extended current sheets. The diffusivity of magnetic field line trajectories in a turbulent
plasma implies that flows can follow local magnetic field lines without being confined to
the current sheet. When the turbulent diffusivity is less than the ohmic resistivity, this model
reduces to the Sweet-Parker reconnection model.

Let us consider the differences between the Sweet-Parker model of laminar reconnection
(Sect. 2) and LV99 which accounts for turbulence. The latter can be seen as a generalization
of the Sweet-Parker model (see Fig. 2) in the sense that the two regions of differing magnetic
directions are pressed up against one another over a broad contact region. This is a generic
configuration, which should arise naturally whenever a magnetic field has a non-trivial con-
figuration, whose energy could be lowered through reconnection. The outflow of plasma
and reconnected flux will fluctuate as the turbulence evolves and the field line connections
change, but the long term average will reflect the turbulent diffusion of the field lines. Con-
sequently, the essential difference between the Sweet-Parker model and the LV99 model is
that in the former, the outflow is limited by microphysical Ohmic diffusivity; while in LV99,
the large-scale magnetic field wandering determines the thickness of outflow. The latter de-
pends only on the turbulence properties and is independent of resistivity. This ensures that
the LV99 reconnection is fast.

For extremely weak turbulence, when the value of � arising from magnetic field wan-
dering becomes smaller than the width of the Sweet-Parker layer LS−1/2, the two models
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Fig. 2 Upper plot: The Sweet-Parker reconnection model. The outflow is confined to a thin layer of width
�, which is set by Ohmic diffusivity. The length of the current sheet is a macroscopic scale L � �. Magnetic
field lines are assumed to be laminar. Middle plot: Reconnection in the presence of stochastic magnetic field
lines. The stochasticity introduced by turbulence is weak and the mean field provides a clear direction. The
outflow width is set by the diffusion of the magnetic field lines, which is a macroscopic process, independent
of resistivity. Lower plot: An individual small-scale reconnection region. The reconnection over small patches
of magnetic field determines the local reconnection rate. The global reconnection rate is substantially larger
as many independent patches reconnect simultaneously. Conservatively, the LV99 model assumes that the
small scale events happen at a slow Sweet-Parker rate. From Lazarian et al. (2004)

are indistinguishable and the reconnection proceeds at the Sweet-Parker rate. Similarly, we
expect that when the turbulence-induced � is much larger than the Larmor radius of ions,
then the plasma effects should not be important.

With the Goldreich and Sridhar (1995) model of turbulence, LV99 obtained:

Vrec = VA

(
l

L

)1/2(
vl

VA

)2

, (1)

where l and vl are the energy injection scale and velocity at the injection scale, respectively.
This expression assumes that energy is injected isotropically at a scale l smaller than the
length of the current sheet L, which for sub-Alfvénic turbulence leads to the generation
of weakly-interacting waves at that scale. The waves transfer energy to modes with larger
values of k⊥ until at a scale ltrans = LM2

A, where MA is the Alfven Mach number, strong
turbulence sets in Lazarian (2006). It is important to note that the strongly turbulent eddies
have a characteristic velocity of vturb ≈ VA(vl/VA)2. In other words, the reconnection speed
is the large-eddy, strong-turbulent velocity multiplied factors which depend on whether the
current sheet length is smaller or larger than the large eddies (whose length is approximately
the injection scale). In this sense, the reconnection speed is insensitive to the exact mecha-
nism for turbulent power injection.

It is important to note three features of Eq. (1). First, and most important, it is indepen-
dent of resistivity. This is, by definition, fast reconnection. Second, we usually expect the
reconnection speed to be close to the turbulent eddy speed; the geometric ratios that enter
the expression, i.e. the injection scale l divided by the length of the reconnection layer L,
are typically of order unity. Reconnection will occur on dynamical time scales. Finally, we
note that in particular situations when the turbulence is extremely weak the reconnection
speed can be much slower than the Alfvén speed. Strong magnetic field prior to reconnec-
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tion presents such a case, which ensures that magnetic flux of opposite polarities can be
accumulated prior to reconnection in solar flares (see LV99, Lazarian and Vishniac 2009).

More recently, Eq. (1) was derived using ideas based on the well-known concept of
Richardson diffusion (Eyink et al. 2011). From the theoretical perspective this new deriva-
tion avoids rather complex considerations of the cascade of reconnection events that were
presented in LV99. Eyink et al. (2011) also show that the LV99 model is closely connected
with the idea of “spontaneous stochasticity” of magnetic fields in turbulent fluids.

The deep connection between magnetic turbulence and magnetic reconnection is thus
evident. LV99 showed that the Goldreich and Sridhar (1995) model, which envisages mixing
motions perpendicular to magnetic field lines, becomes self-consistent in the presence of
magnetic reconnection given by Eq. (1). Eyink et al. (2011) showed that the established
Lagrangian properties of 3D MHD turbulence require the LV99 reconnection with given by
Eq. (1).

We note that a theoretical model of turbulent reconnection was suggested recently by
Gao et al. (2012), based similarly to LV99 on the Goldreich and Sridhar (1995) theory
of Alfvenic turbulence. Unlike LV99 theory, these authors apply a mean-field approach to
the problem of magnetic reconnection and utilize the concept of hyper-resistivity, which has
some difficulties (e.g. Eyink et al. 2011). It was further argued in Eyink et al. (2011) that any
mean-field proof of fast reconnection is not tenable unless the reconnection rates obtained
are strictly independent of the length-scales and time-scales of averaging.

3.2 Numerical Testing of LV99 Model

The first test of the LV99 model using three-dimensional (3D) simulations was performed
in Kowal et al. (2009). LV99 is a model formulated in the MHD regime. Thus a set of
MHD equations was solved in Kowal et al. (2009, 2012b). The boundary conditions and the
manner of energy injection were varied between different simulations. In order to avoid the
complications of strong compressibility, high-beta simulations were used.

For numerical simulations it is easier to control not vl , but the energy injection power P .
For sub-Alfenic injection the power in the turbulent cascade is P ∼ v2

turb(VA/l) or v4
l /(lVA).

The amount of energy injected during one Alfvén time unit tA, which is constant in our
models, is tAP ∼ (L/VA)v4

l /(lVA). Therefore v2
l ∼ (l/L)1/2(P tA)1/2VA. Substituting v2

l in
Eq. (1) results in

Vrec ∼
(

l

L

)
(tAP )1/2 ∝ l P 1/2, (2)

which is the prediction that was tested in the numerical studies. In what follows we refer to
the injection power and scale using Pinj and linj , respectively.

The setup of the reconnection simulations is illustrated in Fig. 3, which is a 2D cut,
indicating the location of the diffusion region. The top and bottom of the computational
domain contain equal and opposite field components in the x̂ direction, as well as a sheared
component Bz (see the left panel of Fig. 3). Magnetic field lines enter through the top and
bottom and are bent by the inflow Vin as they move into the diffusion region. The diffusion
region has a length � in the x̂ direction and a thickness δ in the ŷ direction (see the left
panel of Fig. 3).

The numerical box is periodic in the ẑ direction and the diffusion region extends through
the entire domain. The projection of the magnetic topology on the xz plane shows that the
fieldlines in the upper region (solid lines in the right panel of Fig. 3) and in the lower region
(dashed lines) are offset by an angle α determined by the strength of the sheared compo-
nent B0z. Once the incoming magnetic lines enter the diffusion region, they are reconnected
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Fig. 3 A schematic of magnetic field configuration projected on the xy (left) and xz (right) planes. Left:
xy projection of the magnetic field lines. The gray area describes the diffusion region where the incoming
field lines reconnect. The longitudinal and transverse scales of the diffusion region are given by � and δ,
respectively. We use outflow and inflow boundary conditions in the x̂ and ŷ directions, respectively. Right:
xz projection of the magnetic field lines as seen from the top. Solid and dashed lines show the incoming field
lines from the upper and lower parts of the domain, respectively. We see that the oppositely-directed field lines
are not anti-parallel but are offset by an angle α determined by the strength of the sheared component Bz .
The ẑ boundary conditions can be open or periodic, depending on the model (from Kowal et al. 2009)

and the product of this process is ejected along the x direction with a speed Vout (the left
panel of Fig. 3).

In Kowal et al. (2009), the turbulence was driven using a method described by Alvelius
(1999), in which the driving term was implemented in the spectral space with discrete
Fourier components concentrated around a wave vector kinj corresponding to the injec-
tion scale linj = 1/kinj . In Kowal et al. (2012a), a new method of turbulence driving was
employed. Individual eddies with random locations of their centers and random orienta-
tions, either to velocity or magnetic field, at random moments in time were introduced. This
guarantees the randomness of the forcing with the new method. This new method drives
turbulence directly in real space, in contrast with the previous approach; therefore, it can
be applied locally. The turbulence is driven in a subvolume of the domain, whose size is
determined by two scales: the radius rd on the xz plane around the center of the domain and
the height hd describing the thickness of the driving region from the midplane.

All models are evolved without turbulence for several dynamical times in order to allow
the system to achieve stationary laminar reconnection. Then, at a given time tb we start
driving turbulence by increasing its amplitude to the desired level, until te . In this way we
let the system adjust to a new state. From time te , the turbulence is driven with the full
power Pinj .

The reconnection rate was measured using the method introduced in Kowal et al. (2009)
and described by the formula

Vrec = 1

2|Bx,∞|Lz

[∮
sign(Bx)E · dl − ∂t

∫
|Bx |dA

]
(3)

where Bx is the strength of reconnecting magnetic component, E is the electric field, dA

is an area element of an xz plane across which we perform the integration, dl is the line
element separating two regions of the YZ plane defined by the sign of Bx , |Bx,∞| is the
asymptotic absolute value of Bx , and Lz is the width of the box. The measures obtained
in this way were in good agreement with the measures obtained by calculating the inflow
velocity of the plasma and magnetic field at the boundaries.
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In Fig. 4, examples of xy-cuts (upper row) and xz-cuts (lower row) through the box
are shown. The driving is applied in real space and a large number of individual eddies is
injected in the magnetic field with random locations and random orientations.

Figure 5 shows averaged values of the reconnection speed Vrec in models with turbulent
power Pinj varying by more than one order-of-magnitude, from 0.1 to 2.0, for both models
with Fourier driving (black symbols) and with real-space driving (blue and red symbols).
Filled symbols represent the averaged reconnection rate in the presence of turbulence. The
dotted line corresponds to the reconnection rate without turbulence. The error bars show the
time variance of Vrec .

The reconnection rates for models with different types of driving confirm the theoretical
dependence of Vrec on the injected power, which scales as ∼ P

1/2
inj . There is no significant

difference between models in which turbulence was driven in velocity and in magnetic field.
This is in good agreement with the LV99 expectations that the reconnection rate should not
depend on the nature of the turbulent driving.

These recent numerical studies confirmed the main predictions of LV99.3 This motivated
applications of the model to explain astrophysical phenomena from star formation to cosmic
ray acceleration and gamma-ray bursts (Lazarian 2005, 2009; de Gouveia Dal Pino and
Lazarian 2005; Zhang and Yan 2011; Santos-Lima et al. 2010; Lazarian and Yan 2012;
Lazarian et al. 2012a). The most dramatic consequence of LV99 theory is that the magnetic
flux is not frozen in turbulent fluids (Vishniac and Lazarian 1999). This prediction was
strongly supported by the study in Eyink et al. (2011), where LV99 theory was related to the
concept of the Richardson diffusion of magnetic field. The latter was recently demonstrated
numerically in Eyink et al. (2013), providing an independent test of LV99. Future work
should consider the dependence on the guide-field, which is important for the solar corona
and other astrophysical applications.

3.3 2D and 3D Turbulent Reconnection

Studies of 2D reconnection were performed many years ago by Matthaeus and Lamkin
(1985, 1986). The authors studied 2D magnetic reconnection in the presence of external
turbulence, including the effects of multiple X-points as reconnection sites. An enhancement
of the reconnection rate was reported, but this claim was not supported by the calculation of
a long term average reconnection rate. Interestingly enough, a more recent study along the
approach in Matthaeus and Lamkin (1985) was performed by Watson et al. (2007), where
the effects of small-scale turbulence on 2D reconnection were carefully studied. However,
no significant effects of the turbulence on reconnection were reported. A more optimistic
conclusion is reached in Servidio et al. (2010) where reconnection on small scales with
dimensionless inflow speed 0.1–0.3 was reported. However, this was happening on small
scales, where the Sweet-Parker rates for the numerical set-up are comparable and therefore
the implications for the large-scale reconnection were unclear. In fact, the theoretical model
in Matthaeus and Lamkin (1985) does not predict the global reconnection rate.

We note that these studies did not include the effect of magnetic field wandering, which
is at the core of the LV99. In view of the differences between 2D and 3D turbulence (see
the corresponding discussion in Eyink et al. (2011)) it is not clear how to relate the 2D
results with 3D reconnection. The aforementioned papers on 2D turbulent reconnection did

3After LV99 was published, Kim and Diamond (2001) produced a study arguing that turbulence will not
change reconnection rates. The theoretical arguments in this study have been criticized by Lazarian et al.
(2004) and Eyink et al. (2011).
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Fig. 4 Topology and strength of the velocity field (left panel) and magnetic field (middle panel) in the
presence of fully developed turbulence for an example model with the new driving method at time t = 10.
In the right panel we show the distribution of the absolute value of current density |J| overlapped with the
magnetic vectors. The images show the xy-cut (upper row) and xz-cut (lower row) of the domain at the
midplane of the computational box. Turbulence is injected with power Pinj = 1 at scale kinj = 8 directly in
the magnetic field. From Kowal et al. (2012a)
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Fig. 5 The dependence of the reconnection speed Vrec on Pinj including the new models, in dimensionless
units as described in Kowal et al. (2012a). Blue symbols show models with the new driving, in which the
eddies where injected in magnetic field instead of velocity, as in the previous models (black symbols). The
dotted line corresponds to the Sweet-Parker reconnection rate for models with ηu = 10−3. A unique red
symbol shows the reconnection rates from a model with the new driving in velocity performed with higher
resolution (512 × 1024 × 512) and resistivity coefficient reduced to ηu = 5 · 10−4. Error bars represent the
time variance of Vrec . The size of symbols corresponds to the error of Vrec . From Kowal et al. (2012a)

not make predictions of how the reconnection should change with the level and properties
of turbulence.4

Furthermore, the approach in Matthaeus and Lamkin (1985, 1986) is radically different
from that in LV99. The former authors associate the increase of reconnection with the de-
velopment of X-point, Petsheck type reconnection: thus in, e.g. Servidio et al. (2010), the
modeling of 2D turbulent reconnection under the influence of Matthaeus and Lamkin (1985)
approach was focused on detecting X-points. However, X-points are not a part of LV99
model. There, it is shown that the reconnection is fast even if the small-scale events happen
at the low Sweet-Parker rate and correspond to Y-point reconnection. It is well known that
MHD turbulence is very different in 2D and 3D, e.g. the Alfven modes that are identified in
LV99 as the source of widening of the outflow region, are absent in 2D.

Whether 2D magnetic reconnection in the presence of turbulence is also fast is an inter-
esting question, but due to the different physics the answer to this question does not provide
much insight to understanding the real world 3D magnetic reconnection

3.4 LV99 Range of Applicability and Implications

The LV99 model of reconnection is applicable to collisional media, such as the ISM, which
is both turbulent and magnetized, and where Hall-MHD reconnection does not work (Ya-
mada 2007). For instance, for Hall-MHD reconnection to be applicable, it is required that
the Sweet-Parker current sheet δSP width ibe smaller than the ion inertial length di . Thus,
the “reconnection criterion for media to be collisionless” is (L/di)

1/2/(ωcτe) < 1, which

4By itself, the measurements of current densities in the aforementioned papers do not constrain the reconnec-
tion speed much. Indeed, one can get transient enhancements of current densities within slow Sweet-Parker
reconnection by decreasing �. One cannot reconnect much flux this way, however, as the decrease of �

would choke off the outflow and related magnetic reconnection.
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presents a stringent constraint on the possible rate of collisions. As a result magnetic re-
connection is mediated by the Hall-MHD only if the extent of the current sheet L does not
exceed 1012 cm. These are scales too small compared to the scales at which magnetic fields
in the ISM interact.

At the same time, the LV99 model works for collisionless media and it shows that the
microphysics of collisionless reconnection events does not change the resulting reconnection
rates. This point was further analyzed in Eyink et al. (2011) who concluded that for most of
astrophysical collisionless plasmas, the LV99 model should be applicable, provided that the
plasma is turbulent. The most stringent criterion for the application of LV99 theory coincides
with the applicability of the MHD approximation—see Sect. 4 below.

Solar flares inspired much of the earlier research on reconnection (Pneuman 1981; Priest
and Forbes 2002). Stochastic reconnection provides an explanation for solar flares that does
not involve plasma microphysics. Indeed, an important prediction of the LV99 model is re-
lated to the reconnection instability that arises in the situation when the initial structure of
the flux prior to reconnection is laminar. This allows magnetic flux to accumulate. Eventu-
ally, tearing and other instabilities enhance the reconnection rate and provide 3D turbulence.
This turbulence excites faster reconnection, creating positive feedback which results in a
flare (Lazarian and Vishniac 2009). This “reconnection instability” can explain the bursty
character of reconnection in solar flares and also gamma ray bursts (Lazarian et al. 2003;
Zhang and Yan 2011). Furthermore, the reconnection instability can be triggered by turbu-
lence from adjacent reconnection sites, as observed in Sych et al. (2009).

We should mention that observations of solar flares are consistent with LV99 predic-
tions. For instance, observations of the thick reconnection current outflow regions observed
in solar flares (Ciaravella and Raymond 2008) were predicted within LV99 model—at a
time when the competing plasma Hall models were predicting X-point localized reconnec-
tion. However, as plasma models have evolved to include tearing and formation of magnetic
islands (Drake et al. 2010)—see Sect. 5—one has to be more quantitative in comparing ob-
servations with the predictions from the competing theories. The corresponding comparison
was done in Eyink et al. (2013). There it was shown that the differences between the LV99
predictions and the measured thickness of the reconnection layers in Ciaravella and Ray-
mond (2008) arises from the isotropic manner of turbulence driving assumed for the sake of
simplicity in LV99 theory. If a more relevant anisotropic driving arising from magnetic re-
connection is accounted for, a good quantitative agreement between the measured thickness
of the reconnection regions and LV99 predictions can be obtained.

In the process of testing LV99 theory, one should keep in mind that, unlike Sweet-Parker
reconnection, the turbulent scenario exhibits outflow layers which consists of a multitude
of fractal current sheets. The thickness of an individual current sheet may be very narrow
and these may be dominated by anomalous plasma effects. Thus additional care should be
applied while testing the theory with in situ measurements.

The concept of flux-freezing violation induces numerous consequences for different
fields of astrophysics. For instance, star formation theory was formulated in the assump-
tion of magnetic flux being well frozen into plasmas with flux-to-mass ratio being changed
due to the diffusion of neutrals. Magnetic flux diffusion induced by turbulent reconnection
leads to the removal of magnetic flux from the star formation regions. This possibility was
discussed in Lazarian (2005) and was numerically confirmed in Santos-Lima et al. (2010).
Further theoretical studies of a new way of removing of magnetic flux from clouds and cores
are presented in Lazarian et al. (2012a).

We note that the turbulence that we consider may be either pre-existing or generated
within the reconnection layer itself. In most astrophysical situations the former situation
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is more common. Therefore, the issue that one has to answer dealing with reconnection in
astrophysical systems is how the pre-existing turbulence is accounted for in the reconnection
processes. Apparently, the laminar approximation is not a good assumption for most of
astrophysical high-Reynolds-number fluids.

4 Synergy of MHD and Plasma-Based Approaches to Reconnection

While our review is focused on fast magnetic reconnection that takes place in MHD regime,
in this section we sketch the relation with some different directions of reconnection re-
search. First of all, if the original models of magnetic reconnection, i.e. Sweet-Parker and
Petschek reconnection, are distinctly regular and laminar, the models that now are con-
sidered most promising, whether turbulent, as we discuss in this review, or plasmoid-type
(Karimabadi et al. 2013), include the distinct effects of stochasticity. This is a remarkable
shift of paradigm. Indeed, when LV99 model was introduced, its main competitor was X-
point Hall reconnection.

As we mentioned earlier, the LV99 theory based on MHD is not applicable to plasmas
unless the expected turbulent broadening of the outflow region is substantially larger than
the ion Larmor radius. Indeed, below the latter scale, no MHD description of the turbulent
magnetic field wandering is applicable. Only when the reconnection region is ∼ αρi then
one can talk about MHD turbulence broadening of the outflow region. The exact value of
α is difficult to define theoretically. A possible guess is that it should be sufficiently large,
e.g. in the range of 102 or 103 for the magnetic wandering not to be strongly affected by
plasma effects. For thinner current sheets we are in the regime where we expect to be the
domain of plasmoid reconnection. This is definitely the regime of magnetic reconnection
in magnetosphere (see the discussion in Eyink et al. (2011)) and possibly over parts of the
solar wind. The two examples present important cases of space plasmas that are intensively
studied through in situ observations.

The criterion of the turbulent broadening depends on the level of turbulence; in the case
when the initial magnetic configuration is laminar or only slightly turbulent, plasma instabil-
ities, e.g. tearing mode, are expected to dominate the initial dynamics of magnetic reconnec-
tion. However, both PIC simulations (e.g. Daughton et al. 2011; Karimabadi et al. 2013) and
MHD simulations (e.g. Hood et al. 2009; Beresnyak 2013) (see also Sect. 6 below) testify
that turbulence is generated in the process of reconnection. This turbulence should modify
the reconnection. One possible effect of turbulence is the suppression of instabilities, e.g.
the tearing instability, and the transition to pure turbulent reconnection (see also Rapazzo
et al. 2013) . If this is true, then plasma effects can trigger turbulent magnetic reconnection.
However, the identification of true turbulence in 3D MHD simulations is difficult, due to
the limited range of spatial scales. Further work is needed to identify whether, for example,
the fine-scale structures and complex flows identified by Hood et al. (2009) correspond to a
turbulent cascade of energy to small-scales.

5 Some Other Approaches to Turbulent Reconnection in MHD

We now consider some different aspects of the interaction between turbulence and reconnec-
tion within the MHD framework. An important approach towards understanding the desta-
bilisation of an initially laminar reconnection region can be traced back to the work of Shi-
bata and Tanuma (2001). This paper proposes a fractal reconnection scenario, in which
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an initial current sheet thins and becomes subject to tearing instability (if the sheet length is
longer than the critical wavelength for onset of tearing); the same process repeats on increas-
ingly smaller scales, leading to a fractal distribution of magnetic islands on scales down to
a microphysical limit such as the ion Larmor radius. At the same time, islands or plasmoids
ejected during the reconnection process may coalesce with others to form larger plasmoids.
Such a process is indeed observed in MHD simulations (Tanuma et al. 2001). The instabili-
ties, like tearing instability, open up the reconnection layer enabling a wide outflow.

Recently, Barta et al. (2010, 2011) used a 2.5D numerical MHD simulation with Adaptive
Mesh Refinement to demonstrate the formation of plasmoids on a very wide range of scales.
Further recent studies of fragmentation and coalescence of plasmoids include Loureiro et al.
(2009, 2012), Bhattacharjee et al. (2009). These instabilities can lead to fast reconnection
(Uzdensky et al. 2010). Similar merging and coalescence of plasmoids is also widely ob-
served in PIC simulations (e.g. Drake et al. 2010; Karlicky et al. 2012; Markidis et al. 2012;
Huang and Bhattarcharjee 2013).

Another idea which suggests a complex pattern of reconnections is “recursive reconnec-
tion” (Parnell et al. 2008). This numerical model, comprising two opposite-polarity sources
interacting with an overlying field, illustrates the role of magnetic topology described fur-
ther in Sect. 6. Reconnection can cause both opening and closing of magnetic flux, as closed
field interacts with open field: notably, this can happen recursively, with field lines opening
and closing repeatedly. This both enhances the global reconnection rate and leads to more
distributed heating.

Finally, we mention the interaction between MHD models of reconnection and kinetic-
scale turbulence—see also Karimabadi et al. (2013). In many astrophysical plasmas, there is
a complex interplay between large-scale fluid phenomena and microscales which are kinetic.
Indeed reconnection on MHD scales may itself generate kinetic instabilities (see Brown et al.
2013, this issue), whilst kinetic turbulence may influence the global reconnection dynamics.

Numerical simulations of collisionless plasma, such as Shay et al. (1998, 2004) and much
subsequent work, have been encouraging in showing that collisionless dissipation on small
scales may play an important role in achieving fast reconnection; for example, in the solar
corona. Furthermore, “anomalous resistivity”, driven by kinetic turbulence within current
sheets, in many cases almost certainly plays a far more important role in reconnection which
is described by MHD on the global scale, than classical Spitzer resistivity. Most MHD sim-
ulations of reconnection actually rely on some kind of anomalous resistivity, although the
resistivity model is not usually physically-motivated: see Gordovskyy et al. (2013b) for a re-
cent attempt to include a more realistic resistivity model, based on ion-acoustic turbulence,
in a MHD simulation. Predictions of anomalous resistivity from current-driven instabili-
ties leading to microturbulence, such as by Petkaki et al. (2006) and Buechner and Elkina
(2006), have important consequences for MHD reconnection. However, a full understanding
of the coupling between global fluid models and kinetic physics remains a subject for future
investigation.

6 Complex and 3D Fields and the Formation of Fine Structure

Using the solar corona as an example, we will now show that a state of topological com-
plexity with many localised current sheets—a state of turbulent reconnection—is natural in
astrophysical plasmas. A wealth of observations from a series of space-borne telescopes—
such as Solar Dynamic Observatory, and, most recently, Hi-C (Cirtain et al. 2013)—indicate
that the corona is highly dynamic and is full of fine structure (on scales at least down to
present resolution limits).
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6.1 Current Sheet Formation in the Solar Corona

The strong solar coronal magnetic field (with low β = 2μ0p/B2) is rooted in the dense
photosphere, where turbulent velocities move the footpoints of the magnetic field. The exis-
tence of current sheets in the solar coronal fields has been predicted to arise in the following
ways: (i) Complex footpoint motions in a simple initial field geometry, or “field line braid-
ing”. (ii) Complex initial fields with simple motions—including footpoint displacements in
fields with X-points, separators, separatrices etc., emergence of new magnetic flux and the
effects of discrete photospheric flux tubes. (iii) Simple initial fields with simple motions e.g.
forced magnetic reconnection and kink instability due to twisting motions. We now discuss
each of these three ideas.

The idea of current sheet formation due to braiding of the coronal flux tubes originates
with Parker (1972). It was proposed that as the footpoints of coronal flux tubes are slowly
moved by complex photospheric motions, the flux tubes develop a braided pattern for which
no smooth force-free equilibrium can be found. In consequence, the field, in the ideal MHD
limit, develops discontinuities (infinitely-thin current sheets). The coronal field thus is in
a state of turbulent reconnection, heating the coronal plasma through a process dubbed
“topological dissipation”. Parker proposed a simple theoretical paradigm for this process,
consisting of an initially uniform, straight field embedded in a perfectly-conducting plasma,
between two conducting planes (representing the photosphere), subject to slow motions of
the photospheric footpoints which lack symmetry. The subsequent equilibrium states of the
field are constrained by the footpoint connectivity.

The “Parker” model has led to a much subsequent work over 40 years; such as, recently
Low (2006), Rapazzo et al. (2007, 2013), Berger and Asgari-Targhi (2009). It is broadly
established that fine structure, including localised, very strong currents, indeed arises. How-
ever, there is still no consensus on the inevitability of true discontinuities (infinite currents)
in the ideal MHD limit, although Van Ballegoijen (1985) provided a methodology to find
a force-free equilibrium for any continuous footpoint motions, suggesting there are no dis-
continuities. For example, Ng et al. (2012) use Reduced-MHD (RMHD) simulations with
random footpoint motions to show that the energy dissipation rate is independent of the re-
sistivity, and that reconnection is much faster than Sweet-Parker. Wilmot-Smith et al. (2010)
and Pontin et al. (2011) create a field representing a simple braid of three flux tubes, which
is close to force-free equilibrium, using a Lagrangian relaxation scheme. They then use a
3D MHD simulation to show that this develops many small-scale current sheets and subse-
quently dissipates free magnetic energy by reconnection. It should be noted, however, that
these simulations consider loops with very weak transverse magnetic field components and
hence with very little free magnetic energy (i.e. the fields are always very close to a current-
free state); hence, their relevance to heating coronal Active Regions is questionable. The
same difficulty applies to the many works which use the RMHD approach, in which a weak
transverse field component is assumed.

Recent high resolution solar observations from Hi-C (Cirtain et al. 2013) indicate the
presence of untwisting coronal loops, which are suggested to be consistent with dissipation
of braided fields. However, as noted by Cargill (2013), these observations are equally consis-
tent with kink-unstable twisted loops (see Sect. 7 below). Indeed, both braiding and twisted
loop models results in a network of localised thin current layers, with turbulent reconnection.

It is very easy to form current sheets by footpoint motions of fields with complex topol-
ogy (i.e. with regions of different fieldline connectivity). For example, shearing the foot-
points of a 2D field configuration with a separatrix and multiple flux domains naturally
forms a current sheet along the separatrix (e.g. Vekstein et al. 1992), since neighbouring field
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lines on different sides of the separatrix may have very different footpoint displacements,
leading to a discontinuity in the field. Similarly, the fact that the photospheric footpoints of
the coronal field are actually concentrated into discrete isolated flux tubes naturally leads to
the formation of discontinuities (in the ideal limit) within the coronal magnetic field. Thus,
motions within flux sources, or motions of the flux sources themselves, inevitably generates
coronal reconnection (Browning et al. 1986; Lothian and Browning 1995). This scenario
has been dubbed “flux tube tectonics”, and explored in some depth (Priest et al. 2002). Fur-
thermore, models of new flux emerging into the corona from the solar interior involve the
interaction of two flux systems, again resulting in current sheet formation and considerable
topological structure, as demonstrated in 3D numerical simulations (e.g. Archontis et al.
2005; Parnell et al. 2010).

In fact, even the simplest field topologies and footpoint velocity profiles can generate
fine-scale structure in the corona. One example has already been mentioned in Sect. 2—
namely, forced reconnection. Here, a simple sinusoidal disturbance of a sheared force-free
field in a slab can generate a current sheet, leading to reconnection and a chain of magnetic
islands (Hahm and Kulsrud 1985; Vekstein and Jain 1998; Jain et al. 2005). If the external
disturbance consists of multiple modes in different directions, then a series of current sheets
will be formed at the various resonant surfaces, leading to overlapping islands with stochas-
tic field lines (Onofri et al. 2004). Another example is the nonlinear kink instability (see
Sect. 7): even smooth rotational motions of the footpoints of simple cylindrical flux tubes
can lead to the formation of a fragmented current structure with turbulent reconnection.

An important consequence of the ubiquitous presence of small-scale structure in the solar
atmosphere is that the resulting state of multiple reconnections may heat the coronal plasma.
Whilst it is generally accepted that large solar flares are a result of release of stored magnetic
energy by reconnection in a large-scale current sheet, a promising scenario for maintaining
the overall high temperature of the corona is the combined effect of many very small flare-
like events known as “nanoflares” (Parker 1988). We return to the coronal heating problem
in Sect. 7.

In summary, in the solar corona the topology is complex, and hence multiple reconnec-
tion sites are likely to exist (Maclean et al. 2009), with reconnection usually being 3D. The
coronal field is predicted to be in a constant state of turbulent reconnection. This theoreti-
cal picture is supported by observations. For example, observations of Type III radio bursts,
which are produced by beams of non-thermal electrons in the corona, indicate that energy
release is highly fragmented both in space and time (Chen et al. 2013). A similar picture is
likely to pertain in other astrophysical plasmas.

6.2 3D Reconnection Models

Whilst classical reconnection models are two-dimensional, as outlined in Sect. 2, most as-
trophysical phenomena are not well-described by 2D models, and much recent research
shows that the reconnection in 3D differs in quite fundamental ways. Even the definition of
reconnection is less clear. Schindler et al. (1988) suggest that reconnection can be identified
through the existence of localised parallel electric fields. Reconnection in 3D can occur at
3D magnetic nulls—but does not require the presence of nulls; in contrast to 2D reconnec-
tion which requires an X-point (a 2D null) or a field reversal (although 2.5D reconnection,
i.e. including a guide-field, also does not require nulls). Furthermore, the topological prop-
erties of 3D reconnection can be quite different. Whereas in 2D reconnection, there is a
simple pair-wise reconnection of flux tubes, with two incoming flux tubes “breaking and
re-joining” to form two flux tubes in the outflow, the situation is more complex in 3D (Priest
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et al. 2003; Cargill et al. 2010). In general, due to counter-rotating flows within the diffusion
region, it is not possible to uniquely match pairs of inflow and outflow fieldlines (Priest et al.
2003; Pontin et al. 2005). The properties of 3D reconnection are reviewed by Pontin (2011).

The topology of the magnetic field may be summarised through knowledge of the “mag-
netic skeleton” (Bungey et al. 1996). This comprises: field sources on the photospheric
boundary (which are usually, more or less, discrete); magnetic null points (usually 3D);
a set of flux domains bounded by separator surfaces (the 3D analogue of 2D separatrices);
and separator lines, which are the intersection of separators. Such topological features form
the likely sites of magnetic reconnection, as well as Quasi Separatrix Surfaces (Titov et al.
2002; Demoulin 2006) which are layers of strong divergence in field line connectivity. Re-
connection may occur at 3D null points (Priest and Titov 1996; Craig and Fabling 1996) but
also in the absence of nulls, with separator lines playing an important role (Longcope and
Cowley 1996; Parnell et al. 2010).

Understanding the nature of reconnection in 3D—and the inevitable interactions with
turbulence—is an important subject of future research.

7 Relaxation in Turbulent Reconnecting Plasmas

An important consequence of turbulent reconnection in astrophysical plasmas is the dissipa-
tion of stored magnetic energy. A large-scale energy release may cause a solar flare, whereas
the combination of many smaller energy releases may be the source of heating required to
maintain coronal plasma at temperatures of over a million degrees Kelvin. In order to pre-
dict the energy release, it is not necessary to calculate the detailed dynamics, if it is assumed
that the field relaxes towards the state of lowest possible magnetic energy. The appropriate
constraint for such relaxation, in the presence of multiple localised reconnections, is that the
global magnetic helicity

K =
∫

V

A · BdV, (4)

is conserved, where A is the vector potential (Taylor 1974, 1986). This follows since recon-
nection transfers helicity between flux tubes, without creating or destroying helicity. Also, it
can be shown that, if dissipation is confined to narrow current layers, with width much less
than the global length scale, then fractional helicity dissipation is much less than energy dis-
sipation (Berger 1984; Browning 1988). Note that in a volume in which magnetic fieldlines
cross the bounding surface (such as the corona, in which field lines cross the photosphere),
then the relative helicity must be used (Berger and Field 1984; Finn and Antonsen 1985).
The minimum energy state with conserved helicity is a constant-α or linear force-free field:

∇ × B = αB, (5)

where α, which is the ratio of parallel current to magnetic field, is spatially constant. Re-
laxation theory was developed by Taylor (1974) to explain the reversal of toroidal field in
Reverse Field Pinch devices, and has been successfully applied also to other laboratory de-
vices such as spheromaks (Taylor 1986; Jarboe 1994).

Heyvaerts and Priest (1984) first applied this idea to the solar corona, proposing that
the coronal field is continually stressed by slow photospheric footpoint motions, causing
it evolve through a series of nonlinear force-free fields satisfying (5) but with spatially-
varying α. The field then relaxes to a minimum energy state, conserving helicity whilst re-
leasing free magnetic energy as heat. This idea was developed by many others (e.g. Brown-
ing and Priest 1986; Browning et al. 1986; Dixon et al. 1988; Vekstein et al. 1993; Wolfson
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Fig. 6 The distribution of event
frequencies against the
magnitude of the energy release
for cylindrical twisted loops with
different aspect ratios (L/R,
where L and R are, respectively,
the loop length of radius). This
shows a power law distribution as
expected for nanoflares. From
Bareford et al. (2011)

et al. 1994; Kusano et al. 1994; Lothian and Browning 2000), and generalised to differ-
ent boundary conditions (Browning 1988; Dixon et al. 1989)—but it remained unclear how
far free magnetic energy could build up before the field relaxed. Thus, the energy release
depended on an unknown “relaxation time”. This problem was resolved by Browning and
Van der Linden (2003), who suggested that relaxation could be triggered by the onset of
ideal instability, such as kink instability in a twisted loop. In the case of a twisted cylindrical
loop in which the current profile arising from photospheric motions was parameterised by
a family with piecewise-constant α, the energy release was shown to depend on the current
profile at the point of instability onset (Browning and Van der Linden 2003).

Subsequently, Bareford et al. (2010, 2011) developed a relaxation-based model of coro-
nal heating due to random photospheric footpoint driving. The field in a cylindrical loop
evolves randomly through a series of equilibria until the threshold for ideal kink instability
is reached: at this point, the energy dissipated during a helicity-conserving relaxation to a
constant-α field is calculated. The process is repeated, with a cycle of stressing the field
followed by relaxation: thus, a distribution of heating events or “nanoflares” is built up. In
the case of localised twisting motions, in which the loop thus carries zero-net current, a
power-law distribution of event size vs. occurrence frequency can be generated (Bareford
et al. 2011); see Fig. 6. The average rate of energy dissipation, due to the repeated driving
and relaxation, is sufficient for heating a coronal Active Region. This provides an a priori
prediction of the distribution of nanoflare energies, whose combined effect heats the corona,
as first postulated by Parker (1988).

A strength of these models is that they require significant free energy to be stored be-
fore the onset of kink instability and heating, thus providing sufficient heating for Active
Regions requirements; see the discussion in Bareford et al. (2010), showing agreement with
the requirements on transverse field set by Parker (1988). This contrasts with RMHD mod-
els and similar models which use a small transverse field component. It is interesting to
investigate the behaviour of repeated heating events (e.g. Jain et al. 2005). Preliminary 3D
MHD simulations (Gordovskyy, private communication) suggest that a repeated series of
heating events may indeed be produced if the footpoint driving is maintained. On the other
hand, Rapazzo et al. (2013) suggest that, if the driving motions are turbulent, the fields may
become sufficiently incoherent that kink instability cannot arise.

Observational evidence to support Taylor’s hypothesis—of helicity-conserving relax-
ation to a minimum energy state—is found in a wide range of laboratory experiments (e.g.
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Fig. 7 The distribution of
currents (colour scale) and
velocities (arrows) at the loop
midplane during the later stages
of relaxation in a kink-unstable
twisted loop. From Hood et al.
(2009)

see Taylor (1986) and references therein). Furthermore, relaxation towards a constant-α state
is observed in solar flares (Nandy et al. 2003). Further verification of Taylor relaxation in
coronal loops, as well as understanding of how the relaxation takes place, is provided by 3D
MHD simulations of twisted cylindrical coronal loops (Browning et al. 2008; Hood et al.
2009; Bareford et al. 2013). These simulations consider an initially force-free cylindrical
twisted loop which is linearly unstable to the ideal kink mode. In the nonlinear phase of
the kink instability, a helical current ribbon forms, leading to fast reconnection and dissipa-
tion of magnetic energy, with the field subsequently reaching a new equilibrium with lower
energy.

Browning et al. (2008) show that helicity dissipation is much less than energy dissipation,
and that the final relaxed state is close to a constant-α field, consistent with Taylor relaxation.
The relaxation mainly occurs as the initial helical current sheet breaks up and fragments
(Hood et al. 2009), leading to distributed reconnection throughout the loop volume, with a
turbulent velocity profile, in which outflows from one current sheet drive reconnection in
its neighbour (see Fig. 7). The initially monolithic current sheet stretches and bifurcates,
with the smaller sheets then subsequently splitting repeatedly, in a manner somewhat anal-
ogous to the 2D “fractal reconnection” models described in Sect. 5. The α profile becomes
more uniform due to the multiple reconnections, as suggested long ago in the Tangled Dis-
charge Model (Rusbridge 1977, 1991); again, we see an association between reconnection
and fieldline wandering (see Sect. 3). The loop is heated throughout its volume.

The Taylor hypothesis only predicts the state of lowest possible energy, which may not
actually be attained if there are other constraints on the dynamics (Bhattacharjee et al. 1980),
or simply if there is not enough free energy to drive the relaxation. In the case of a loop
twisted by localised photospheric motions, which has zero net-current, the extent of the
disruption within the nonlinear phase of the instability is confined to a region with about 1.5
times the original loop radius; this leads to a partial relaxation in which the magnetic field
outside this is undisturbed (Hood et al. 2009; Bareford et al. 2013).

Yeates et al. (2010), based on simulations of an initially braided coronal loop, propose
that additional topological constraints, associated with the mapping of field lines from one
end of the loop to the other, may prevent full Taylor relaxation. However, their simulations
consider initial fields with little much free energy, and their final state in energetic terms is
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actually very close to the constant-α state—which is a potential field in this case. So Taylor
theory still provides a good estimate of the energy release, despite the incomplete relaxation.

Nevertheless, it is clear that full relaxation can never really occur in an astrophysical
plasma which is necessarily unbounded—unlike finite-volume laboratory plasmas. So re-
laxation must necessarily be limited spatially by the extent of the region of turbulent recon-
nection: a new theory of partial relaxation for unstable cylindrical loops which accounts for
this has been recently proposed by Bareford et al. (2013). Furthermore, relaxation is simi-
larly restricted by the onset of such a turbulent reconnecting state: it is quite possible for a
field to remain in a state with free energy—which is not the minimum energy state—until
relaxation is somehow triggered. As discussed above, an example of such a trigger is the
onset of ideal MHD instability, but there are likely to be many other possible mechanisms.

A full understanding of relaxation in astrophysical plasmas requires much further re-
search.

8 Turbulent Reconnection and Particle Energisation

The origin of high-energy particles in solar flares is a long-standing problem in astrophysics,
as well the acceleration of cosmic rays. Proposed mechanisms include both turbulence or ac-
celeration by direct electric fields in a reconnecting current sheet (see reviews Miller et al.
(1997), Zharkova et al. (2011)). However, turbulence models tend to rely on an arbitrary tur-
bulent field which is not related to the reconnection which is the primary source of energy-
release in a flare, whilst reconnection models with a localised coronal current sheet suffer
with difficulties, such as bringing in a large number of particles into a small current sheet
volume. Many aspects of flare particle acceleration can be explained by combining turbu-
lence with reconnection. This topic has been extensively reviewed elsewhere (e.g. Vlahos
et al. 2009; Cargill et al. 2012), as well as some aspects being discussed by Lazarian et al.
(2012b); we mention here some aspects of this topic which relate directly to our earlier
discussions of turbulent reconnection.

Firstly, the turbulent reconnection LV99 paradigm, described in Sect. 3, provides effec-
tive particle acceleration through First-order Fermi acceleration—in which particles bounce
between converging magnetic mirrors. Figure 8 illustrates the First-order Fermi acceleration
that takes place within a turbulent reconnection region (de Gouveia Dal Pino and Lazar-
ian 2005; Lazarian 2006).5 The acceleration happens as particles bounce back and forth
within shrinking magnetic loops (see Fig. 8). Recently, the acceleration of cosmic rays in
reconnection has been invoked to explain results on the anomalous cosmic rays obtained by
Voyager spacecrafts (Lazarian and Opher 2009; Drake et al. 2010), the local anisotropy of
cosmic rays (Lazarian et al. 2012b) and the acceleration of cosmic rays in clusters of galax-
ies (Brunetti and Lazarian 2011). Naturally, this process of acceleration widespread and not
limited to these examples. Numerical studies of the particle acceleration have shown differ-
ences in the acceleration process between 2D and 3D and confirmed the first-order Fermi
nature of the acceleration in turbulent reconnection layers (Kowal et al. 2011, 2012b).

The breakup of long current sheets into a chain of magnetic islands (Sect. 5) also has
consequences for particle acceleration (Kliem 1994; Li and Lin 2012). Gordovskyy et al.

5The predicted spectrum without taking the backreaction of the accelerated particles is N(E)dE ∼
E−5/2dE. Considerations in Drake et al. (2006) suggest that the spectrum of the particles can get shallower
if the backreaction is taken into account.

269 Reprinted from the journal



P. Browning, A. Lazarian

Fig. 8 First order-Fermi
acceleration as cosmic rays
bounce within a 3D loop of
reconnected flux that shrinks due
to magnetic reconnection. From
Lazarian (2005)

(2010a, 2010b) showed that two populations of accelerated particles arise in this case: a par-
ticle population trapped in the growing magnetic islands gains substantial energy, whereas
particles remaining on open fieldlines are predominantly thermal.

Particles can be accelerated in fields with turbulent current sheets, such as those aris-
ing from braiding footpoint motions (Turkmani et al. 2006) (see Sect. 6.1). Also, the frag-
mented current sheets in unstable twisted loops (see Sect. 7) provide an effective means for
distributed acceleration of charged particles in flares, with acceleration produced by the par-
allel electric fields within the current sheets. Using a relativistic guiding-centre test particle
code coupled to 3D MHD situations, Gordovskyy and Browning (2011) and Gordovskyy
and Browning (2012) show that particles gain energy through a series of almost discontin-
uous jumps, as they randomly encounter current sheets, in a manner reminiscent of earlier
cellular automaton models (Vlahos et al. 2004)—see Fig. 9.

As the loop first becomes kink-unstable, particles are accelerated in the helical current
ribbon which is quite radially localised, and leads to a narrow distribution of energetic parti-
cles. However, as described in Sect. 7, the current sheet breaks up into a distributed structure.
Thus, particles are accelerated throughout the loop, and the loop quickly fills with energetic
particles. The loop expands somewhat as it reconnects with the surrounding field, and hence
the spatial extent of the energetic particles grows in time. The particle energy spectrum
develops a non-thermal tail.

The particle spectrum is somewhat sensitive to the assumed resistivity profile. Assum-
ing a rather high value of a uniform background resistivity (Turkmani et al. 2006) tends to
over-estimate the number of accelerated particles (Gordovskyy and Browning 2012). If a
localised current-dependent resistivity is used, the fraction of energetic particles can be rela-
tively small, typically 5–10 %, validating the use of test particle modelling in this case. The
increased numerical resolution of the more recent simulations may also explain the decrease
in the fraction of energetic particles compared with earlier work, since the current sheets are
better resolved; see further discussion in Cargill et al. (2012).

In cylindrical loop models, energetic particles are inevitably quickly lost through the ends
of the loop. This may be mitigated by the effects of fieldlines convergence at the footpoints
(Gordovskyy et al. 2013a); but in fact, few energetic particles are mirrored as they tend to
have very small pitch-angles, a consequence of direct electric field acceleration. The con-
finement of particles within the loop is substantially modified by the occurrence of collisions
within the dense chromosphere at the loop footpoints: this causes pitch- angle scattering, al-
lowing more particles to be reflected and confined with the loop (Gordovskyy et al. 2013a).
The time-evolving energy spectrum in a loop with field line convergence, and incorporating
the effects of collisions with the stratified background plasma, is shown in Fig. 10.

Recently, a more self-consistent model of particle acceleration and transport in a twisted
coronal loop has been developed: this considers a curved loop, twisted by localised foot-
point motions, within a gravitationally-stratified atmosphere. The effects of transport and
acceleration are incorporated, including collisions as well as acceleration by direct electric
fields in a fragmented current sheet, with an anomalous resistivity dependent on the particle
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Fig. 9 Particle acceleration in a kink-unstable twisted loop due to fragmented current sheets. Showing (from
left to right), current isosurfaces, current at the midplane and spatial distributions of protons and electrons, at
successive times. From Gordovskyy and Browning (2012)

drift velocity (Gordovskyy et al. 2013b). Particles are mainly accelerated both at the loop
top and near the footpoints. Synthesised Hard X-ray emission is calculated, with footpoint
and looptop sources which evolve through the flare event.
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Fig. 10 Electron energy spectra in a kink-unstable twisted loop with field line convergence towards the
chromosphere, including the effects of collisions with the dense chromospheric plasma on the test particles,
at a series of times through the flare. From Gordovskyy et al. (2013a)

9 Summary

Turbulence is a common—almost universal—state for astrophysical plasmas. Magnetic re-
connection, which is an important process for restructuring of magnetic fields and dissipa-
tion of stored energy, interacts with turbulence in many ways. In this paper, we have given
an indication of some ways in which our understanding of reconnection, within the magne-
tohydrodynamic framework, is affected by taking account of the presence of turbulence. In
particular, we have shown how turbulence may resolve the long-standing fast reconnection
problem, and that a complex state of turbulent reconnection naturally arises in astrophysical
plasmas.

Our review is complementary to the reviews in this volume that investigate the possibility
of achieving fast magnetic reconnection appealing to plasma effects, e.g. plasmoid recon-
nection. The relation between these two approaches requires further studies; in particular,
at sufficiently small scales, the MHD description of the turbulent field wandering is not ap-
plicable and thus the model of turbulent reconnection we described is not applicable either.
At the same time, turbulence arising from the reconnection process that is reported in both
PIC and MHD simulations initiated with laminar magnetic fields is indicative that turbu-
lent reconnection may take over from reconnection dominated by plasma effects or tearing.
Further investigation of these situations is necessary.

The work described here, from many different perspectives, support the notion that tur-
bulence is intrinsic element of fast reconnection in most astrophysical environments and
that attempts to treat instabilities in reconnection systems, e.g. tearing instability, without
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accounting for the turbulence that these instabilities generate, are of limited relevance. At
the same time, turbulent reconnection is necessary for making modern models of MHD tur-
bulence self-consistent, allowing resolution of the magnetic knots produced by magnetic
eddies, mixing matter and magnetic fields as a part of the self-similar turbulent cascade.

Furthermore, using the solar corona as an example, we have shown that a state of turbu-
lent reconnection, with many small-scale current sheets interacting through complex flow
fields, naturally arises. Even in the case of very simple laminar driving motions (such as
rotation), the magnetic field naturally develops into a state filled with reconnecting current
sheets and turbulent flows. The energy release in such complex fields can be determined us-
ing the idea that the plasma undergoes helicity-conserving relaxation to a minimum energy
state. This has important consequences for understanding the heating the solar corona. As
well as heating the plasma, the energy dissipated by magnetic reconnection may be trans-
ferred to non-thermal ions and electrons: a turbulent reconnecting plasma is an effective
particle accelerator.
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