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CHAPTER 9

Flash Translation 
Layer (FTL)
The flash translation layer (FTL) is a key component of the firmware in a 

NAND-based solid-state drive (SSD). It is responsible for managing the 

interaction between the host computer and the underlying NAND chips, 

and it plays a crucial role in the performance and reliability of the SSD.

The FTL is implemented as a layer of software that sits between the 

host computer and the NAND chips, and it serves several key functions: 

mapping table, bad block management, wear leveling, and garbage 

collection. These algorithms and data structures are designed to optimize 

the performance and reliability of the SSD, and they are constantly 

updated and refined as the SSD is used.

Figure 9-1. FTL block diagram
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 Mapping Table
The FTL is responsible for mapping logical block addresses (LBAs) used 

by the host to the physical pages and blocks on the NAND chips (physical 

block address; PBA). This allows the host to access data on the SSD using 

logical addresses, rather than having to know the specific physical location 

of each block on the NAND chips. The data structure can simply be an 

array, where the index is LBA and its value is PBA. This address translation 

is necessary to ensure that data is correctly mapped to the physical 

locations within the NAND flash memory. The FTL (flash translation layer) 

acts as an intermediary to perform this translation.

This mapping table is stored in the RAM of the SSD for speed of access 

and is persisted in flash memory in case of power failure. When the SSD 

powers up, the table is read from the persisted version and reconstructed 

into the RAM. The simple approach is to use page-level mapping to map 

any logical page from the host to a physical page. This mapping policy 

offers a lot of flexibility, but the major drawback is that the mapping table 

requires a lot of RAM, which can significantly increase the manufacturing 

costs. A solution to that would store only the part of the table required to 

service the read request from the host in RAM. The disadvantage of this 

approach would be needing to read from NAND (on demand) if the host 

Table 9-1. Basic 

Mapping Table
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read does not have a mapping table in RAM. This will have an impact on 

random read performance.

A logical-to-physical block address table (mapping table) is an essential 

component of SSD firmware. It is used to translate logical block addresses 

(LBAs) used by the host system to physical block addresses (PBAs) on  

the SSD. The mapping table is necessary because the physical blocks on 

an SSD may wear out or become faulty over time, and the firmware must 

be able to remap logical blocks to new physical blocks to maintain the 

integrity of the data.

 Size of the Mapping Table
The size of the mapping table depends on the capacity of the SSD and the 

addressing scheme used. In larger-capacity SSDs, the mapping table can 

be substantial due to the increased number of LBAs and corresponding 

PBAs. For example, a mapping table for a multi-terabyte SSD can contain 

millions of entries.

Size of SSD: 128 GB

Number of clusters: Assuming each cluster is 4 KB (4 kilobytes), let’s 

calculate the number of clusters:

134,217,728 KB (SSD size) / 4 KB (cluster size) = 33,554,432 clusters

Assuming each mapping table entry requires 4 bytes to store the 

corresponding PBA (physical block address), we can calculate the total 

RAM size required for the mapping table as follows:

Total RAM size required for mapping table = Number of clusters * 

Number of bytes required to store the PBA

Total RAM size required = 33,554,432 clusters * 4 bytes = 

134,217,728 bytes

Therefore, for an SSD with a size of 128 GB and a cluster size of 4 KB, 

the mapping table would require approximately 134,217,728 bytes or 134 

megabytes of RAM to store the mapping entries.
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 Storing the Mapping Table in RAM
Ideally, it would be advantageous to store the entire mapping table in 

random access memory (RAM) for fast access. However, due to the 

limitations of RAM capacity in most SSD designs (due to cost), it is often 

impractical or impossible to load the complete mapping table into 

memory. Instead, SSD firmware employs strategies to optimize the storage 

of the mapping table. For example, a mapping table for a multi-terabyte 

SSD can contain millions or even billions of entries.

 Partial Loading of the Mapping Table
To overcome RAM limitations, the mapping table is typically loaded 

partially into RAM, focusing on the frequently accessed portions. The FTL 

prioritizes loading the mapping entries required for active LBAs, ensuring 

efficient and quick access to frequently accessed data. This partial loading 

strategy allows the SSD to maintain acceptable performance while 

conserving valuable RAM resources.

 Storage of Non-Loaded Mapping Entries
The mapping entries that are not loaded into RAM reside in the NAND 

flash memory. These entries are accessed on an as-needed basis. When 

an LBA that is not in the loaded portion of the mapping table needs to be 

accessed, the FTL utilizes algorithms to locate the corresponding mapping 

entry in the NAND flash memory. This retrieval process may introduce 

some additional latency due to the need to access the slower NAND 

storage.
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 Write/Update Operations 
and the Mapping Table
During write/update operations, the mapping table undergoes 

modifications to accommodate new LBAs and PBAs that result from data 

writes, garbage collection, and wear leveling. To optimize the write/update 

process, SSD firmware employs various techniques, including maintaining 

a dirty cache buffer of the mapping table in RAM.

 Dirty Cache Buffer in RAM
A common approach is to utilize a portion of RAM as a cache buffer 

for the mapping table. This buffer temporarily holds the mapping table 

entries, which are modified before they are flushed back to the NAND flash 

memory. The dirty cache buffer allows for efficient and quick updates 

without constantly writing to the NAND, which can be time-consuming.

 Write/Update Process with Dirty Cache Buffer

When a write/update operation occurs, the SSD firmware first checks 

the dirty cache buffer in RAM. If the mapping table entry for the specific 

LBA already exists in the dirty cache buffer, it is updated directly in RAM, 

avoiding unnecessary writes to the NAND flash memory. This approach 

reduces latency and improves overall performance.

 Flush to NAND

To ensure data durability and to prevent loss in the event of a power 

failure or system crash, the contents of the dirty cache buffer need to 

be periodically flushed back to the NAND flash memory. This flushing 

process involves writing the modified mapping table entries from the dirty 
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cache buffer to their corresponding locations in the NAND. The frequency 

of flushing can vary based on factors such as the size of the dirty cache 

buffer and the SSD firmware’s internal policies.

 Mapping Table Management 
and Optimization
As the SSD operates, the mapping table undergoes continuous updates to 

accommodate new LBAs and PBAs resulting from write operations, garbage 

collection, and wear leveling. Efficient management of the mapping table 

involves carefully balancing the usage of RAM resources, the frequency 

of flush operations, and the optimization of write/update processes. SSD 

firmware employs various techniques, like buffering, compression, and 

intelligent mapping algorithms, to optimize mapping- table management, 

reduce write amplification, and improve overall SSD performance.

Figure 9-2. Multi-level mapping table
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The following is a step-by-step guide on how the mapping table 

is created, accessed, and updated in the erase, read, and write path 

of an SSD:

Initialization: When the SSD is first initialized, the 

firmware creates a blank mapping table. This table 

consists of a series of entries, each of which maps 

a logical block address to a physical block address. 

Initially, all of these entries are set to a default value, 

indicating that the logical block has not yet been 

mapped to a physical block.

Write: When the host system writes data to the SSD, 

it sends a write command to the SSD along with 

the LBA and the data to be written. The firmware 

receives this command and determines which 

physical block to write to. Then, it sends the data to 

be written to that block and updates the mapping 

table accordingly.

FTL performs a process called block allocation, 

which involves selecting a suitable physical block 

to store the data and updating the mapping table 

Table 9-2. Mapping Table: Init
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to reflect the new mapping. This process takes into 

account factors such as wear leveling, bad block 

management, and optimizing data placement to 

enhance performance and longevity.

Read: When the host system reads data from the SSD, 

it sends a read command to the SSD along with the 

LBA of the data to be read. The firmware receives this 

command and looks up the corresponding entry in 

the mapping table. If the entry is set to the default 

value, the firmware returns an error to the host system 

indicating that the requested data is not present 

on the SSD (unmapped data). If the entry is set to a 

physical block, the firmware reads the data from that 

physical block and returns it to the host system.

Figure 9-3. Mapping table update during write path

Table 9-3. Mapping Table 

after Write
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Table 9-4. Mapping Table 

While Read

Garbage Collection: As physical blocks on the 

SSD wear out or become faulty, during garbage 

collection the firmware may need to update the 

mapping table to remap logical blocks to new 

physical blocks. Figure 9-4 shows an example of how 

a physical block is written, unmapped, and moved 

to a new physical block and the mapping table being 

updated in parallel.
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Figure 9-4. Garbage collection for two SSD storage blocks—Block 
A and Block B—as they progress through the data update mapping 
table process

Physical Erase/Sanitize/Format: When the SSD 

firmware receives an erase command, it selects 

the physical block specified in the command and 

erases it by setting all the bits in the block to 1. This 

allows the block to be overwritten with new data. 
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The firmware also updates the corresponding entry 

in the mapping table to reflect the fact that the 

logical block address is now mapped to an erased 

physical block.

Trim: When the SSD firmware receives a trim 

command, it marks the specified logical block 

address as no longer in use. This may involve 

updating the corresponding entries in the mapping 

table to set them to the default value, indicating 

that the logical blocks are not currently mapped to 

any physical blocks. The trim operation does not 

actually erase the physical blocks associated with 

the logical blocks; rather, it simply informs the SSD 

that these blocks are no longer needed and should 

be erased at a later time.

This can improve the performance of writing data to 

SSDs and help extend the lifespan of the SSD. TRIM is 

available for SSDs that support the Serial ATA (SATA) 

interface, while the UNMAP command serves a similar 

purpose for Small Computer System Interface (SCSI) 

Table 9-5. Mapping 

Table after Physical 

Erase/Sanitize
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SSDs, and the DEALLOCATE operation performs a 

similar function in the nonvolatile memory express 

(NVMe) command set for Peripheral Component 

Interconnect Express SSDs.

The TRIM command works by enabling the operating 

system to proactively notify the SSD which data 

pages in a particular block can be erased. This 

allows the SSD's controller to manage the available 

storage space more efficiently for data. TRIM 

eliminates any unnecessary copying of discarded 

or invalid data pages during the garbage-collection 

process, which is an internal SSD housekeeping 

operation that manages and maintains available 

storage space by moving valid data pages to 

another block on the SSD so that the original block 

containing invalid data pages can be erased. By 

reducing the number of data pages that need to be 

moved during garbage collection, TRIM can reduce 

the number of program/erase cycles (P/E cycles) to 

the NAND flash media and extend the endurance of 

the SSD.

Using TRIM can provide benefits in terms of 

performance and drive longevity. It can speed up 

the write performance of the drive by avoiding 

unnecessary copying of invalid data and extend 

the lifespan of the drive by reducing the number of 

erase cycles.
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Figure 9-5. Trim execution flow from host

Table 9-6. Mapping Table 

after Trim
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Bad Block Management
Bad blocks on an SSD can be a major problem, as they can prevent the 

device from functioning properly and may result in data loss. To address 

this issue, the firmware on an SSD includes a feature called bad block 

management, which is responsible for identifying and remapping bad 

blocks on the NAND chips, which are blocks that can no longer be reliably 

written to or read from due to physical defects or damage.

There are three types of bad blocks that the firmware 

may encounter:

 1. Factory-marked bad blocks: Bad blocks (or initial 

bad blocks), that is, blocks that do not meet the 

manufacturer’s standards or have been tested by the 

manufacturer and fail to meet the manufacturer’s 

published standards, and have been identified as 

bad blocks by the manufacturer when they leave the 

factory.

 2. Used bad blocks: Those that have become 

defective due to wear and tear during use, or that 

have reached the end of their lifespan.

 3. False bad blocks: Those that are misjudged by 

the controller due to abnormal power failures or 

other issues.

 Factory Bad Block Assessment
When a specific physical block in the NAND flash memory is detected 

as defective (bad block), the firmware must perform two fundamental 

activities: record the flash address of the bad block and update the bad 

block bitmap table.
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 Bad Block Flash Address
A bad block flash address contains essential information about the 

physical block that is considered defective. The exact format/content of 

this address depends on the NAND flash manufacturer. The firmware 

needs this information to translate the flash address information into 

meaningful data and to manage logical block mappings accurately.

 Recording Bad Block Flash Address
The firmware must promptly record the flash address of the detected bad 

block. This information will be crucial in managing and avoiding future 

access to the defective block during normal read and write operations. The 

firmware should include protective measures to prevent any write or erase 

commands from targeting these identified defective blocks. Attempting to 

perform erase or program operations on such defective blocks will yield 

unpredictable and indeterminate results.

 Initial Bad Block Handling Flow
When an SSD is powered up and mounted for the first time, the firmware 

performs the initial bad block handling to identify and manage any 

factory-marked defective physical blocks in the NAND flash memory. 

The goal is to ensure that these bad blocks are appropriately marked and 

avoided during subsequent read and write operations to maintain data 

integrity and optimize SSD performance.

 Step 1: Power-Up and Mounting

The SSD is powered up, and the firmware initializes the device.

During the mounting process, the firmware initializes the bad block 

management mechanism, including the bad block bitmap table.
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 Step 2: Reading the NAND Flash

As part of the initialization process, the firmware reads each block in the 

NAND flash memory. The firmware checks for any errors or anomalies 

during the read operation.

 Step 3: Identifying Bad Blocks

If a read operation encounters a defective physical block (bad block), the 

firmware identifies it as a bad block and records the flash address of the 

bad block in a bad block bitmap.

 Step 4: Updating Bad Block Bitmap

After identifying a bad block, the firmware updates the corresponding 

entry in the bitmap table, indicating that the block is defective.

 Step 5: Skipping Bad Blocks

During subsequent read and write operations, the firmware checks the 

bad block bitmap table. When accessing data, the firmware will skip any 

blocks marked as bad in the bitmap table, effectively avoiding the defective 

physical blocks.

 Step 6: Error Handling (Optional)

If the bad block causes any data corruption or errors during the read 

operation, the firmware may implement error correction techniques or 

take appropriate measures to ensure data integrity.
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Figure 9-6. Initial bad block scan flow
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 Used Bad Block Assessment
Used bad blocks are those that have become defective due to wear and 

tear or that have reached the end of their lifespan. The firmware on an 

SSD is responsible for identifying used bad blocks and managing them to 

maintain the reliability and performance of the device. During program or 

erase actions, if the status register of the operation fails, the SSD controller 

will list this block as a bad block. Examples are as follows:

• An error occurred while executing the erase command.

• An error occurred while executing the write command.

• When the read command is executed, an error occurs; 

when the read command is executed, if the number of 

bit errors exceeds the error-correction capability of the 

ECC, the block will be judged as a bad block.

To keep track of bad blocks, SSDs have a feature called a bad block  

able (BBT), which is typically stored in a separate area of the NAND 

memory. The BBT is read after each power-up to make it more efficient, 

and it may also be backed up to protect against damage to the NAND 

memory. The number of copies of the BBT that are backed up may vary 

depending on the specific design strategy, with some SSDs backing up 

with as many as eight copies. Figures 9-7 and 9-8 show basic (not the only 

way) handling for used bad blocks.
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Figure 9-7. Handling bad block during erase operation
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Figure 9-8. Handling bad block during NAND program operation

There are generally two approaches to managing bad blocks: the bad 

block skip strategy and the bad block replacement strategy. The bad block skip 

strategy involves simply skipping over any bad blocks and not using them, 

while the bad block replacement strategy involves replacing bad blocks with 

good ones. Both approaches have their own benefits and drawbacks, and the 

choice of which to use may depend on the specific requirements of the SSD.
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 Bad Block Skipping Strategy

 1. For the initial bad block, the bad block skip will 

skip the corresponding bad block through BBT and 

directly store the data in the next good block.

 2. For the new bad block, update the bad block to the 

BBT, transfer the valid data in the bad block to the 

next good block, and skip this bad block every time 

you do the corresponding read, program, or erase in 

the future.

 Bad Block Replacement Strategy
In general, the OP (over provision)-area free block is used to replace the 

new block during use. Take garbage collection as an example. When the 

garbage-collection mechanism is running, the valid page data in the block 

that needs to be reclaimed is first moved to the free block, and then the 

erase operation is performed on the block. It is assumed that the erase 

status register is fed back at this time. When the erase fails, the bad block 

management mechanism will update the block address to the new bad 

block list, and at the same time write the valid data pages in the bad block 

to the free block in the OP area. It will update the bad block management 

table, and next time when writing data, it will skip the bad block and go 

directly to the next available block.

The OP size varies from manufacturer to manufacturer; there are different 

application scenarios, different reliability requirements, and different OP 

sizes. There is a trade-off between OP and stability. The larger the OP, the 

larger the available space for garbage collection in the process of continuous 

writing, the more stable the performance, and the smoother the performance 

curve. Conversely, the smaller the OP, the worse the performance stability, the 

larger the available space for users, and the lower the cost.
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Generally speaking, OP can be set to 5 percent to 50 percent. An OP 

of 7 percent is a common ratio. Unlike the 2 percent fixed block suggested 

by the manufacturer, 7 percent is not a fixed block for OP. Instead, it is 

dynamically distributed among all blocks, which is more conducive to the 

wear-leveling strategy.

 Summary
In summary, the FTL is a critical component of the firmware in a NAND- 

based SSD, and it plays a vital role in managing the interaction between 

the host and the NAND chips. It is responsible for ensuring that data is 

stored and retrieved efficiently, and it helps to maintain the performance 

and reliability of the SSD over time.

Chapter 9  Flash translation layer (Ftl)


	Chapter 9: Flash Translation Layer (FTL)
	Mapping Table
	Size of the Mapping Table
	Storing the Mapping Table in RAM
	Partial Loading of the Mapping Table
	Storage of Non-Loaded Mapping Entries

	Write/Update Operations and the Mapping Table
	Dirty Cache Buffer in RAM
	Write/Update Process with Dirty Cache Buffer
	Flush to NAND


	Mapping Table Management and Optimization
	Bad Block Management
	Factory Bad Block Assessment
	Bad Block Flash Address
	Recording Bad Block Flash Address
	Initial Bad Block Handling Flow
	Step 1: Power-Up and Mounting
	Step 2: Reading the NAND Flash
	Step 3: Identifying Bad Blocks
	Step 4: Updating Bad Block Bitmap
	Step 5: Skipping Bad Blocks
	Step 6: Error Handling (Optional)


	Used Bad Block Assessment
	Bad Block Skipping Strategy
	Bad Block Replacement Strategy

	Summary




