
129

CHAPTER 9

Flash Translation
Layer (FTL)
The flash translation layer (FTL) is a key component of the firmware in a

NAND-based solid-state drive (SSD). It is responsible for managing the

interaction between the host computer and the underlying NAND chips,

and it plays a crucial role in the performance and reliability of the SSD.

The FTL is implemented as a layer of software that sits between the

host computer and the NAND chips, and it serves several key functions:

mapping table, bad block management, wear leveling, and garbage

collection. These algorithms and data structures are designed to optimize

the performance and reliability of the SSD, and they are constantly

updated and refined as the SSD is used.

Figure 9-1. FTL block diagram

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_9

https://doi.org/10.1007/978-1-4842-9888-6_9#DOI

130

 Mapping Table
The FTL is responsible for mapping logical block addresses (LBAs) used

by the host to the physical pages and blocks on the NAND chips (physical

block address; PBA). This allows the host to access data on the SSD using

logical addresses, rather than having to know the specific physical location

of each block on the NAND chips. The data structure can simply be an

array, where the index is LBA and its value is PBA. This address translation

is necessary to ensure that data is correctly mapped to the physical

locations within the NAND flash memory. The FTL (flash translation layer)

acts as an intermediary to perform this translation.

This mapping table is stored in the RAM of the SSD for speed of access

and is persisted in flash memory in case of power failure. When the SSD

powers up, the table is read from the persisted version and reconstructed

into the RAM. The simple approach is to use page-level mapping to map

any logical page from the host to a physical page. This mapping policy

offers a lot of flexibility, but the major drawback is that the mapping table

requires a lot of RAM, which can significantly increase the manufacturing

costs. A solution to that would store only the part of the table required to

service the read request from the host in RAM. The disadvantage of this

approach would be needing to read from NAND (on demand) if the host

Table 9-1. Basic

Mapping Table

Chapter 9 Flash translation layer (Ftl)

131

read does not have a mapping table in RAM. This will have an impact on

random read performance.

A logical-to-physical block address table (mapping table) is an essential

component of SSD firmware. It is used to translate logical block addresses

(LBAs) used by the host system to physical block addresses (PBAs) on

the SSD. The mapping table is necessary because the physical blocks on

an SSD may wear out or become faulty over time, and the firmware must

be able to remap logical blocks to new physical blocks to maintain the

integrity of the data.

 Size of the Mapping Table
The size of the mapping table depends on the capacity of the SSD and the

addressing scheme used. In larger-capacity SSDs, the mapping table can

be substantial due to the increased number of LBAs and corresponding

PBAs. For example, a mapping table for a multi-terabyte SSD can contain

millions of entries.

Size of SSD: 128 GB

Number of clusters: Assuming each cluster is 4 KB (4 kilobytes), let’s

calculate the number of clusters:

134,217,728 KB (SSD size) / 4 KB (cluster size) = 33,554,432 clusters

Assuming each mapping table entry requires 4 bytes to store the

corresponding PBA (physical block address), we can calculate the total

RAM size required for the mapping table as follows:

Total RAM size required for mapping table = Number of clusters *

Number of bytes required to store the PBA

Total RAM size required = 33,554,432 clusters * 4 bytes =

134,217,728 bytes

Therefore, for an SSD with a size of 128 GB and a cluster size of 4 KB,

the mapping table would require approximately 134,217,728 bytes or 134

megabytes of RAM to store the mapping entries.

Chapter 9 Flash translation layer (Ftl)

132

 Storing the Mapping Table in RAM
Ideally, it would be advantageous to store the entire mapping table in

random access memory (RAM) for fast access. However, due to the

limitations of RAM capacity in most SSD designs (due to cost), it is often

impractical or impossible to load the complete mapping table into

memory. Instead, SSD firmware employs strategies to optimize the storage

of the mapping table. For example, a mapping table for a multi-terabyte

SSD can contain millions or even billions of entries.

 Partial Loading of the Mapping Table
To overcome RAM limitations, the mapping table is typically loaded

partially into RAM, focusing on the frequently accessed portions. The FTL

prioritizes loading the mapping entries required for active LBAs, ensuring

efficient and quick access to frequently accessed data. This partial loading

strategy allows the SSD to maintain acceptable performance while

conserving valuable RAM resources.

 Storage of Non-Loaded Mapping Entries
The mapping entries that are not loaded into RAM reside in the NAND

flash memory. These entries are accessed on an as-needed basis. When

an LBA that is not in the loaded portion of the mapping table needs to be

accessed, the FTL utilizes algorithms to locate the corresponding mapping

entry in the NAND flash memory. This retrieval process may introduce

some additional latency due to the need to access the slower NAND

storage.

Chapter 9 Flash translation layer (Ftl)

133

 Write/Update Operations
and the Mapping Table
During write/update operations, the mapping table undergoes

modifications to accommodate new LBAs and PBAs that result from data

writes, garbage collection, and wear leveling. To optimize the write/update

process, SSD firmware employs various techniques, including maintaining

a dirty cache buffer of the mapping table in RAM.

 Dirty Cache Buffer in RAM
A common approach is to utilize a portion of RAM as a cache buffer

for the mapping table. This buffer temporarily holds the mapping table

entries, which are modified before they are flushed back to the NAND flash

memory. The dirty cache buffer allows for efficient and quick updates

without constantly writing to the NAND, which can be time-consuming.

 Write/Update Process with Dirty Cache Buffer

When a write/update operation occurs, the SSD firmware first checks

the dirty cache buffer in RAM. If the mapping table entry for the specific

LBA already exists in the dirty cache buffer, it is updated directly in RAM,

avoiding unnecessary writes to the NAND flash memory. This approach

reduces latency and improves overall performance.

 Flush to NAND

To ensure data durability and to prevent loss in the event of a power

failure or system crash, the contents of the dirty cache buffer need to

be periodically flushed back to the NAND flash memory. This flushing

process involves writing the modified mapping table entries from the dirty

Chapter 9 Flash translation layer (Ftl)

134

cache buffer to their corresponding locations in the NAND. The frequency

of flushing can vary based on factors such as the size of the dirty cache

buffer and the SSD firmware’s internal policies.

 Mapping Table Management
and Optimization
As the SSD operates, the mapping table undergoes continuous updates to

accommodate new LBAs and PBAs resulting from write operations, garbage

collection, and wear leveling. Efficient management of the mapping table

involves carefully balancing the usage of RAM resources, the frequency

of flush operations, and the optimization of write/update processes. SSD

firmware employs various techniques, like buffering, compression, and

intelligent mapping algorithms, to optimize mapping- table management,

reduce write amplification, and improve overall SSD performance.

Figure 9-2. Multi-level mapping table

Chapter 9 Flash translation layer (Ftl)

135

The following is a step-by-step guide on how the mapping table

is created, accessed, and updated in the erase, read, and write path

of an SSD:

Initialization: When the SSD is first initialized, the

firmware creates a blank mapping table. This table

consists of a series of entries, each of which maps

a logical block address to a physical block address.

Initially, all of these entries are set to a default value,

indicating that the logical block has not yet been

mapped to a physical block.

Write: When the host system writes data to the SSD,

it sends a write command to the SSD along with

the LBA and the data to be written. The firmware

receives this command and determines which

physical block to write to. Then, it sends the data to

be written to that block and updates the mapping

table accordingly.

FTL performs a process called block allocation,

which involves selecting a suitable physical block

to store the data and updating the mapping table

Table 9-2. Mapping Table: Init

Chapter 9 Flash translation layer (Ftl)

136

to reflect the new mapping. This process takes into

account factors such as wear leveling, bad block

management, and optimizing data placement to

enhance performance and longevity.

Read: When the host system reads data from the SSD,

it sends a read command to the SSD along with the

LBA of the data to be read. The firmware receives this

command and looks up the corresponding entry in

the mapping table. If the entry is set to the default

value, the firmware returns an error to the host system

indicating that the requested data is not present

on the SSD (unmapped data). If the entry is set to a

physical block, the firmware reads the data from that

physical block and returns it to the host system.

Figure 9-3. Mapping table update during write path

Table 9-3. Mapping Table

after Write

Chapter 9 Flash translation layer (Ftl)

137

Table 9-4. Mapping Table

While Read

Garbage Collection: As physical blocks on the

SSD wear out or become faulty, during garbage

collection the firmware may need to update the

mapping table to remap logical blocks to new

physical blocks. Figure 9-4 shows an example of how

a physical block is written, unmapped, and moved

to a new physical block and the mapping table being

updated in parallel.

Chapter 9 Flash translation layer (Ftl)

138

Figure 9-4. Garbage collection for two SSD storage blocks—Block
A and Block B—as they progress through the data update mapping
table process

Physical Erase/Sanitize/Format: When the SSD

firmware receives an erase command, it selects

the physical block specified in the command and

erases it by setting all the bits in the block to 1. This

allows the block to be overwritten with new data.

Chapter 9 Flash translation layer (Ftl)

139

The firmware also updates the corresponding entry

in the mapping table to reflect the fact that the

logical block address is now mapped to an erased

physical block.

Trim: When the SSD firmware receives a trim

command, it marks the specified logical block

address as no longer in use. This may involve

updating the corresponding entries in the mapping

table to set them to the default value, indicating

that the logical blocks are not currently mapped to

any physical blocks. The trim operation does not

actually erase the physical blocks associated with

the logical blocks; rather, it simply informs the SSD

that these blocks are no longer needed and should

be erased at a later time.

This can improve the performance of writing data to

SSDs and help extend the lifespan of the SSD. TRIM is

available for SSDs that support the Serial ATA (SATA)

interface, while the UNMAP command serves a similar

purpose for Small Computer System Interface (SCSI)

Table 9-5. Mapping

Table after Physical

Erase/Sanitize

Chapter 9 Flash translation layer (Ftl)

140

SSDs, and the DEALLOCATE operation performs a

similar function in the nonvolatile memory express

(NVMe) command set for Peripheral Component

Interconnect Express SSDs.

The TRIM command works by enabling the operating

system to proactively notify the SSD which data

pages in a particular block can be erased. This

allows the SSD's controller to manage the available

storage space more efficiently for data. TRIM

eliminates any unnecessary copying of discarded

or invalid data pages during the garbage-collection

process, which is an internal SSD housekeeping

operation that manages and maintains available

storage space by moving valid data pages to

another block on the SSD so that the original block

containing invalid data pages can be erased. By

reducing the number of data pages that need to be

moved during garbage collection, TRIM can reduce

the number of program/erase cycles (P/E cycles) to

the NAND flash media and extend the endurance of

the SSD.

Using TRIM can provide benefits in terms of

performance and drive longevity. It can speed up

the write performance of the drive by avoiding

unnecessary copying of invalid data and extend

the lifespan of the drive by reducing the number of

erase cycles.

Chapter 9 Flash translation layer (Ftl)

141

Figure 9-5. Trim execution flow from host

Table 9-6. Mapping Table

after Trim

Chapter 9 Flash translation layer (Ftl)

142

Bad Block Management
Bad blocks on an SSD can be a major problem, as they can prevent the

device from functioning properly and may result in data loss. To address

this issue, the firmware on an SSD includes a feature called bad block

management, which is responsible for identifying and remapping bad

blocks on the NAND chips, which are blocks that can no longer be reliably

written to or read from due to physical defects or damage.

There are three types of bad blocks that the firmware

may encounter:

 1. Factory-marked bad blocks: Bad blocks (or initial

bad blocks), that is, blocks that do not meet the

manufacturer’s standards or have been tested by the

manufacturer and fail to meet the manufacturer’s

published standards, and have been identified as

bad blocks by the manufacturer when they leave the

factory.

 2. Used bad blocks: Those that have become

defective due to wear and tear during use, or that

have reached the end of their lifespan.

 3. False bad blocks: Those that are misjudged by

the controller due to abnormal power failures or

other issues.

 Factory Bad Block Assessment
When a specific physical block in the NAND flash memory is detected

as defective (bad block), the firmware must perform two fundamental

activities: record the flash address of the bad block and update the bad

block bitmap table.

Chapter 9 Flash translation layer (Ftl)

143

 Bad Block Flash Address
A bad block flash address contains essential information about the

physical block that is considered defective. The exact format/content of

this address depends on the NAND flash manufacturer. The firmware

needs this information to translate the flash address information into

meaningful data and to manage logical block mappings accurately.

 Recording Bad Block Flash Address
The firmware must promptly record the flash address of the detected bad

block. This information will be crucial in managing and avoiding future

access to the defective block during normal read and write operations. The

firmware should include protective measures to prevent any write or erase

commands from targeting these identified defective blocks. Attempting to

perform erase or program operations on such defective blocks will yield

unpredictable and indeterminate results.

 Initial Bad Block Handling Flow
When an SSD is powered up and mounted for the first time, the firmware

performs the initial bad block handling to identify and manage any

factory-marked defective physical blocks in the NAND flash memory.

The goal is to ensure that these bad blocks are appropriately marked and

avoided during subsequent read and write operations to maintain data

integrity and optimize SSD performance.

 Step 1: Power-Up and Mounting

The SSD is powered up, and the firmware initializes the device.

During the mounting process, the firmware initializes the bad block

management mechanism, including the bad block bitmap table.

Chapter 9 Flash translation layer (Ftl)

144

 Step 2: Reading the NAND Flash

As part of the initialization process, the firmware reads each block in the

NAND flash memory. The firmware checks for any errors or anomalies

during the read operation.

 Step 3: Identifying Bad Blocks

If a read operation encounters a defective physical block (bad block), the

firmware identifies it as a bad block and records the flash address of the

bad block in a bad block bitmap.

 Step 4: Updating Bad Block Bitmap

After identifying a bad block, the firmware updates the corresponding

entry in the bitmap table, indicating that the block is defective.

 Step 5: Skipping Bad Blocks

During subsequent read and write operations, the firmware checks the

bad block bitmap table. When accessing data, the firmware will skip any

blocks marked as bad in the bitmap table, effectively avoiding the defective

physical blocks.

 Step 6: Error Handling (Optional)

If the bad block causes any data corruption or errors during the read

operation, the firmware may implement error correction techniques or

take appropriate measures to ensure data integrity.

Chapter 9 Flash translation layer (Ftl)

145

Figure 9-6. Initial bad block scan flow

Chapter 9 Flash translation layer (Ftl)

146

 Used Bad Block Assessment
Used bad blocks are those that have become defective due to wear and

tear or that have reached the end of their lifespan. The firmware on an

SSD is responsible for identifying used bad blocks and managing them to

maintain the reliability and performance of the device. During program or

erase actions, if the status register of the operation fails, the SSD controller

will list this block as a bad block. Examples are as follows:

• An error occurred while executing the erase command.

• An error occurred while executing the write command.

• When the read command is executed, an error occurs;

when the read command is executed, if the number of

bit errors exceeds the error-correction capability of the

ECC, the block will be judged as a bad block.

To keep track of bad blocks, SSDs have a feature called a bad block

able (BBT), which is typically stored in a separate area of the NAND

memory. The BBT is read after each power-up to make it more efficient,

and it may also be backed up to protect against damage to the NAND

memory. The number of copies of the BBT that are backed up may vary

depending on the specific design strategy, with some SSDs backing up

with as many as eight copies. Figures 9-7 and 9-8 show basic (not the only

way) handling for used bad blocks.

Chapter 9 Flash translation layer (Ftl)

147

Figure 9-7. Handling bad block during erase operation

Chapter 9 Flash translation layer (Ftl)

148

Figure 9-8. Handling bad block during NAND program operation

There are generally two approaches to managing bad blocks: the bad

block skip strategy and the bad block replacement strategy. The bad block skip

strategy involves simply skipping over any bad blocks and not using them,

while the bad block replacement strategy involves replacing bad blocks with

good ones. Both approaches have their own benefits and drawbacks, and the

choice of which to use may depend on the specific requirements of the SSD.

Chapter 9 Flash translation layer (Ftl)

149

 Bad Block Skipping Strategy

 1. For the initial bad block, the bad block skip will

skip the corresponding bad block through BBT and

directly store the data in the next good block.

 2. For the new bad block, update the bad block to the

BBT, transfer the valid data in the bad block to the

next good block, and skip this bad block every time

you do the corresponding read, program, or erase in

the future.

 Bad Block Replacement Strategy
In general, the OP (over provision)-area free block is used to replace the

new block during use. Take garbage collection as an example. When the

garbage-collection mechanism is running, the valid page data in the block

that needs to be reclaimed is first moved to the free block, and then the

erase operation is performed on the block. It is assumed that the erase

status register is fed back at this time. When the erase fails, the bad block

management mechanism will update the block address to the new bad

block list, and at the same time write the valid data pages in the bad block

to the free block in the OP area. It will update the bad block management

table, and next time when writing data, it will skip the bad block and go

directly to the next available block.

The OP size varies from manufacturer to manufacturer; there are different

application scenarios, different reliability requirements, and different OP

sizes. There is a trade-off between OP and stability. The larger the OP, the

larger the available space for garbage collection in the process of continuous

writing, the more stable the performance, and the smoother the performance

curve. Conversely, the smaller the OP, the worse the performance stability, the

larger the available space for users, and the lower the cost.

Chapter 9 Flash translation layer (Ftl)

150

Generally speaking, OP can be set to 5 percent to 50 percent. An OP

of 7 percent is a common ratio. Unlike the 2 percent fixed block suggested

by the manufacturer, 7 percent is not a fixed block for OP. Instead, it is

dynamically distributed among all blocks, which is more conducive to the

wear-leveling strategy.

 Summary
In summary, the FTL is a critical component of the firmware in a NAND-

based SSD, and it plays a vital role in managing the interaction between

the host and the NAND chips. It is responsible for ensuring that data is

stored and retrieved efficiently, and it helps to maintain the performance

and reliability of the SSD over time.

Chapter 9 Flash translation layer (Ftl)

	Chapter 9: Flash Translation Layer (FTL)
	Mapping Table
	Size of the Mapping Table
	Storing the Mapping Table in RAM
	Partial Loading of the Mapping Table
	Storage of Non-Loaded Mapping Entries

	Write/Update Operations and the Mapping Table
	Dirty Cache Buffer in RAM
	Write/Update Process with Dirty Cache Buffer
	Flush to NAND

	Mapping Table Management and Optimization
	Bad Block Management
	Factory Bad Block Assessment
	Bad Block Flash Address
	Recording Bad Block Flash Address
	Initial Bad Block Handling Flow
	Step 1: Power-Up and Mounting
	Step 2: Reading the NAND Flash
	Step 3: Identifying Bad Blocks
	Step 4: Updating Bad Block Bitmap
	Step 5: Skipping Bad Blocks
	Step 6: Error Handling (Optional)

	Used Bad Block Assessment
	Bad Block Skipping Strategy
	Bad Block Replacement Strategy

	Summary

