
119

CHAPTER 8

SSD Firmware Design
Considerations
In this chapter, we will discuss the design considerations for solid-state

drive (SSD) firmware. We will start by discussing the different types of SSDs

and their requirements. We will then discuss the different components of

SSD firmware and how they interact with each other. We will also discuss

the different challenges that need to be addressed in the design of SSD

firmware.

 Design Considerations

 1. SSD host interface: SATA, NVME, SAS, USB, etc.

 2. Cache (RAM) memory availability:

• To transfer data to/from host/SSD

• Mapping table

 3. Number of processors and their internal memory

availability

 4. Number of NAND channel supports

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_8

https://doi.org/10.1007/978-1-4842-9888-6_8#DOI

120

 5. Type of NAND used, characteristics, and limitations:

SLC, MLC

• Limited number of program/erase cycles (SLC:

100,000, TLC: 3,000, QLC: 1,000)

• Erase block-wise, write page-wise; erase

before write.

 6. Performance requirements

 7. Benchmark requirements

At a high level, an SSD operates by using a series of memory chips to

store data. These memory chips are organized into pages and blocks, with

each page typically able to store around 16 kilobytes (KB) of data and each

block consisting of multiple pages. In order to write data to an SSD, the

firmware must first erase the designated block. This is necessary because

NAND flash memory cells can only be written to if they are in the erased

state. After the erase operation is complete, write the pages within the

block in a sequential order. Recall that this serves as a basic foundation on

which we can build.

Once a page has been written to, it cannot be overwritten directly.

Instead, the firmware must first erase the block that the page is a part of,

which will also erase all of the other pages in the block. Rather than erasing

and rewriting the same block, a new erased block should be chosen with a

similar P/E (program/erase) cycle. This process is known as wear leveling

and is used to ensure that all of the blocks in a die have been written to an

equal number of times, thus extending the lifespan of the SSD.

One of the key components of SSD firmware is the mapping table,

which is used to keep track of the location of data on the drive. The

mapping table maps logical block addresses (LBAs) to physical block

addresses (PBAs), which represent the location of data on the drive. When

data is written to the drive, the SSD firmware uses the mapping table to

determine the location where the data should be stored.

Chapter 8 SSD Firmware DeSign ConSiDerationS

121

When data is read from an SSD, the firmware uses the mapping table to

determine the physical block where the data is stored. The firmware then

retrieves the data from the physical block and sends it back to the host device.

One of the key challenges in designing SSD firmware is ensuring that

it is able to efficiently manage the various processes involved in storing

and retrieving data. This includes optimizing the wear-leveling algorithm

to minimize the number of times that blocks have to be erased, as well as

managing the mapping table to ensure that data can be retrieved quickly.

Another important aspect of SSD firmware is ensuring data integrity.

Because an SSD has no moving parts, it is less susceptible to physical

damage than a traditional hard-disk drive (HDD). However, SSDs can still

fail due to a variety of factors, including the failure of memory chips or the

corruption of data. To protect against data loss, SSD firmware typically

includes error-correcting code (ECC) and other mechanisms to detect and

correct errors.

 Unexpected Shutdown
An unexpected shutdown in an SSD occurs when the power to the device is

unexpectedly interrupted while the device is in operation. This can happen

due to power outages, surges, spikes, sags, or brownouts, as well as by

manually removing the SSD from the system while it is powered on. What

happens to data in transit to the SSD when there is an unexpected power

interruption is an item overlooked by many industrial Original Equipment

Manufacturer (OEM) host system designers. Limiting the system’s exposure

to data loss should be high on the list of design priorities.

This power loss will not cause issues during an idle or read operation,

but if a write operation is occurring, there is the potential for some data

loss or worse. Power loss during a write is also known as Write Abort. The

main consequences of an unexpected shutdown during a write operation

are file-system corruptions and internal device data corruption.

Chapter 8 SSD Firmware DeSign ConSiDerationS

122

File-system corruptions occur when the operating system is unable

to update the file-system records before the power is lost. Most operating

systems will perform a file-system repair operation on the next power-up.

Or it can typically be repaired by running a command or utility on the next

power-up.

Internal device data corruption is more severe, as it can result in the

entire flash drive’s becoming unusable due to the corruption of the SSD’s

internal metadata, requiring a low-level format, which results in the

loss of all data on the drive. To minimize the risk of data loss due to an

unexpected shutdown, system designers should, in the design process,

prioritize recovering the system effectively after such events.

One option is to take frequent recovery points and implement

algorithms to find and restore data up until the restore point. Additionally,

a special algorithm can be implemented to find the last page that was

successfully written in a block. This can help protect against power

interruptions and reduce the risk of data loss without the use of capacitors,

which are often used to provide a temporary power source during

unexpected shutdowns. By implementing these measures in the SSD

firmware, designers can effectively address the issue of unexpected power

loss and ensure the integrity of data in transit to the solid-state drive.

 Power-Loss Protection
To effectively handle unexpected shutdowns and protect against data loss,

designers have several options. One approach is to use power-

loss protection capacitors in the hardware design of the SSD firmware.

These capacitors provide a temporary power source in the event of an

unexpected power loss, allowing the firmware to complete any in-progress

writes and save any buffered data to the NAND.

In enterprise computing, data-loss protection is considered to be much

more critical than it is in client computing. During an unexpected power

loss, the SSD firmware can detect the power loss using hardware support

Chapter 8 SSD Firmware DeSign ConSiDerationS

123

and take steps to ensure all the unsaved data in the SSD is saved to maintain

the integrity of data. This may include completing any in-progress writes

to lower or upper pages (TLC), dumping buffered writes from non-volatile

memory into the NAND (using SLC for faster write speed), or using hold-up

circuitry to preserve enough time and energy to save the Flash Translation

Layer (FTL) mapping table and other un-flushed data to the NAND.

 Power-Loss Design Considerations
The power-loss protection mechanism in SSD firmware is a vital aspect of

ensuring data integrity and preserving content metadata during unexpected

power failures. While the volatile RAM translation table facilitates fast data

access and updates during normal SSD operation, it is susceptible to data loss

in the event of power loss. To address this challenge, the firmware adopts a

proactive approach by utilizing persistent data structures stored in the non-

volatile NAND flash array. These data structures contain essential content

metadata and enable the reconstruction of the translation table during the

next drive initialization. The firmware employs error protection mechanisms

such as error-correcting codes (ECC) to safeguard the stored metadata from

potential corruption. During the power-loss handling process, the firmware

detects power loss, stores content metadata in the NAND flash array either

alongside user data or in a separate block, and subsequently reconstructs

the volatile RAM translation table on SSD initialization. This comprehensive

power-loss protection mechanism ensures data reliability, minimizes data

loss risks, and contributes to the robustness and efficiency of SSDs.

Individual modules need to maintain persistent data for simplicity

and efficient operation. To ensure data integrity and recoverability, this

persistent data is periodically saved from volatile RAM to the non-volatile

NAND flash at restore points. Each module is responsible for updating its

respective data structures, allocated in designated sections in RAM. Restore

points can be created after the first boot, following an unexpected shutdown,

when the persistent data buffer is full, or in response to program errors.

Chapter 8 SSD Firmware DeSign ConSiDerationS

124

During restoration after an unexpected shutdown, minimizing the read

time for persistent data from NAND is crucial to achieve faster boot times.

Hence, efficient data-retrieval mechanisms should be employed. Regardless

of whether the shutdown was safe or unsafe, during every subsequent

boot, all restore-point data structures should be restored to their previous

state, ensuring the system’s consistent operation. To safeguard against data

corruption, these data blocks should be protected by robust error-protection

mechanisms, such as error-correcting codes (ECCs).

In extreme scenarios, if error correction fails, the device should still

be able to boot, albeit in a read-only (RO) mode, ensuring that the data

remains intact and is not subjected to further risks. The combination of

efficient restore points, error protection, and robust recovery mechanisms

ensures the reliability and resilience of the system in handling unexpected

events and contributes to an overall improved user experience.

Figure 8-1. System restore point for unexpected shutdown handling

Chapter 8 SSD Firmware DeSign ConSiDerationS

125

Figure 8-2. Unexpected shutdown during user data write

The design considerations of SSD firmware are a complex process that

involves optimizing various algorithms and data structures in order to

maximize the performance and reliability of the drive.

 Best Practices for Optimizing and Maintaining
SSD Firmware
Next we will examine some key concepts for optimizing and maintaining

SSD firmware, including reducing DRAM (dynamic random access

memory, volatile memory) access, minimizing the code in the critical path

of read and write operations, and managing firmware state snapshots. As

fellow programmers, it is important that you understand the best practices

for optimizing and maintaining SSD firmware. SSDs are becoming

Chapter 8 SSD Firmware DeSign ConSiDerationS

126

increasingly popular, and their firmware is complex. SSD firmware can

have a significant impact on performance, reliability, and security. By

following best practices, programmers can develop firmware that is more

efficient, reliable, secure, and user-friendly.

One of the key considerations for optimizing SSD firmware is reducing

the number of accesses to the DRAM on the drive. DRAM is a type of

memory that is used by the SSD to store data temporarily, but accessing

it can be slow and consume a significant amount of power. By reducing

the number of accesses to the DRAM, it is possible to improve the

performance of the SSD and reduce its power consumption.

One way to reduce DRAM access is to include less code in the critical

path of read and write operations. The critical path is the sequence of

operations that are performed when data is being read from or written to

the drive. By reducing the amount of code in the critical path, it is possible

to speed up these operations and reduce the amount of time that the drive

spends accessing the DRAM.

Another approach to reducing DRAM access is to schedule read

operations for data maintenance tasks, such as garbage collection and

wear leveling. By performing these tasks during times when the drive

is not being heavily used, it is possible to reduce their impact on the

performance of the drive and minimize the number of accesses to

the DRAM.

In addition to reducing DRAM access, it is also important to manage

the firmware state snapshot data (management data). The firmware state

snapshot is a copy of the firmware that is stored on the drive and is used

to restore the firmware in the event of a failure. By managing this data

carefully—i.e., keeping the management data as small as possible and

writing only when necessary and when firmware is idle—it is possible to

reduce the amount of space that is used by the firmware state snapshot,

which can help to improve the overall performance and reliability of

the drive.

Chapter 8 SSD Firmware DeSign ConSiDerationS

127

 Summary
In conclusion, optimizing and maintaining SSD firmware requires a careful

balance of performance, power consumption, and reliability. By focusing

on reducing DRAM access, minimizing the code in the critical path of read

and write operations, and managing the firmware state snapshot data, it

is possible to create SSD firmware that is optimized for performance and

reliability.

Chapter 8 SSD Firmware DeSign ConSiDerationS

	Chapter 8: SSD Firmware Design Considerations
	Design Considerations
	Unexpected Shutdown
	Power-Loss Protection
	Power-Loss Design Considerations
	Best Practices for Optimizing and Maintaining SSD Firmware

	Summary

