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CHAPTER 1

Introduction to  
SSD Firmware
Welcome to the world of SSD firmware! This chapter marks the beginning 

of your journey into the intricate world of solid-state drive (SSD) firmware. 

In this chapter, I will lay the foundation by exploring the fundamental 

concepts and essential aspects of SSD firmware. My goal is to provide 

you with a clear understanding of what SSDs are, the role of firmware in 

optimizing their performance, and the key differences that set SSDs apart 

from traditional hard-disk drives (HDDs).

�What Is SSD?
A solid-state drive (SSD) is a type of storage device that uses flash memory 

to store data. Compared to traditional hard drives, which use spinning 

disks to store data, SSDs are much faster, more reliable, and more energy 

efficient. However, to take full advantage of the capabilities of an SSD, 

it is necessary to use specialized software known as SSD firmware. SSD 

firmware is the embedded software that controls the functions and 

features of an SSD. It is responsible for managing the storage, retrieval, 

and protection of data on the drive. SSD firmware is typically stored on the 

drive’s non-volatile memory and is executed by the drive’s controller when 

the drive is powered on. It plays a critical role in ensuring the reliable and 

efficient operation of an SSD.
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The first SSD, introduced in the late 1970s, used simple firmware 

that was primarily responsible for interfacing with the host system and 

translating its commands into actions on the drive. At the beginning, 

SSDs were introduced for use in early IBM supercomputers, but they were 

not often used due to their high cost. Over time, as SSD technology has 

evolved, the firmware has become increasingly complex, adding features 

such as wear leveling, garbage collection, and encryption. In addition, the 

capabilities of SSD firmware have improved over time to support larger 

SSDs, with current firmware able to support drives with capacities of up to 

100 TB or more.

Today, SSD firmware is a crucial component of modern storage systems, 

providing numerous benefits over traditional hard disk drives (HDDs),  

such as faster access to data, higher reliability, and lower power 

consumption. It also enables advanced features such as data protection, 

power management, and error correction, which are essential for 

maintaining the integrity and performance of the drive.

Figure 1-1.  Comparison of HDD and SSD
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In addition to supporting larger SSDs, modern SSD firmware is also 

designed to improve the performance of the drive. For example, SSD 

firmware can optimize the process of reading and writing data to the drive, 

and it can also improve the reliability of the drive by using techniques such 

as error-correcting code (ECC) and wear leveling.

There are several different types of SSD that are commonly used, 

including data-center SSDs, client SSDs, external SSDs, and enterprise 

SSDs. Each of these types of SSD has its own unique set of requirements, 

and the firmware that is used with these drives is specifically designed to 

meet those requirements.

One important consideration when designing SSD firmware is the type 

of memory that is used in the drive. The most common types of memory 

used in SSDs are single-level cell (SLC), multi-level cell (MLC), triple-level 

cell (TLC), and quadruple-level cell (QLC). Each of these types of memory 

has its own unique characteristics, and the firmware that is used with the 

drive must be optimized to take advantage of those characteristics. SLC 

memory is generally considered to be the most reliable and robust type of 

memory, but it is also the most expensive. MLC, TLC, and QLC memory 

are generally less expensive than other types, but they are also less reliable 

and have lower endurance, meaning they can’t withstand as much wear 

and tear (less P/E cycle (program/erase Cycle) compared to SLC). In 

addition, the firmware design and implementation for MLC, TLC, and 

QLC memory can be more complex compared to other types of memory. 

This means that the firmware used to control and manage the memory 

may be more intricate and require more effort to design and implement. In 

general, MLC, TLC, and QLC memory are less durable and more complex 

to work with compared to other types of memory, but they can be a cost-

effective option for certain applications.

Another important consideration when designing SSD firmware is the 

type of host interface that is supported. The host interface is the interface 

that connects the SSD to the rest of the system, and different interfaces have 

different performance characteristics. The most common types of host 
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interface for SSDs are SATA, USB, NVMe, and SAS (Serial-Attached Small 

Computer System Interface (SCSI). SATA is the most common and widely 

supported interface, but it has relatively low performance compared to other 

interfaces. NVMe is a newer interface that is designed specifically for high-

performance storage devices, and it can provide much higher performance 

than SATA. USB is a universal interface that is commonly used for external 

storage devices, but it has lower performance than other interfaces. SAS is 

a high-performance interface that is commonly used in enterprise storage 

systems, but it is not as widely supported as SATA or NVMe.

Figure 1-2.  SSD block diagram

This book is a basic resource that covers the fundamental principles 

and technical aspects of SSD firmware and is designed to provide a basic 

understanding of the key concepts and technologies used in SSD firmware. 

The guide is divided into several chapters, each of which covers a different 

aspect of SSD firmware. The first few chapters provide an overview of SSD 

firmware, including the key features and benefits of SSDs and the ways in 

which they differ from traditional hard-disk drives (HDDs). These chapters 

help with understanding the role of the SSD firmware in managing the 

read and write operations of the drive and also dive into the history and 

evolution of SSD firmware.

The further chapters delve into the inner workings of SSD firmware, 

exploring fundamental NAND operations, various techniques for error 

correction, and strategies for endurance management. They also cover 
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common SSD firmware features, design considerations, and the all- 

important flash translation layer. The chapters then examine the flow 

of user data and exception handling in an SSD, as well as performance 

optimization and debugging support. Finally, the book concludes 

with a look to the future, examining the cutting-edge technologies and 

innovations that are shaping the future of SSD firmware.

This book may provide a valuable resource for anyone interested 

in understanding the technical details of SSD firmware basics and how 

firmware impacts the performance and reliability of solid-state drives. 

Whether you are a firmware engineer, a computer science student, or 

simply someone interested in learning more about SSDs, this book is sure 

to provide you with a basic information and insights.

�Summary
In this chapter, we covered the basics of SSD firmware. You have learned 

that SSD firmware is the software that controls the operation of an 

SSD. You have also learned that SSD firmware is responsible for tasks 

such as managing the wear leveling of the NAND flash memory, garbage 

collection, and error correction.

You have also learned about the different types of SSD that are 

commonly used, including data center SSDs, client SSDs, external SSDs, 

and enterprise SSDs. We have discussed the different types of memory that 

are used in SSDs, such as SLC, MLC, TLC, and QLC. We have also looked 

at the different types of host interfaces that are supported by SSDs, such 

as SATA, USB, NVMe, and SAS. This chapter set the stage for a deeper dive 

into the intricate workings of SSD firmware, promising insights into NAND 

operations, error correction techniques, performance optimization, and 

future innovations.
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CHAPTER 2

Understanding the 
Role of Firmware 
in SSDs
Picture the hardware of a solid-state drive (SSD) as the engine of a 

car, and the firmware as the driver who controls and optimizes its 

performance. In the SSD world, firmware takes center stage, fine-tuning 

every interaction between the physical components and the digital world. 

This chapter embarks on a journey to unveil the firmware’s pivotal role 

in SSDs, breaking down its intricate responsibilities and how it makes 

things happen.

�What Is Firmware?
For SSDs to work properly and help us with tasks, they rely on both 

hardware and firmware. The hardware consists of the physical 

components of the device, such as the processor, memory, and storage. 

The firmware, meanwhile, is the software that runs on the device and 

controls the hardware. It is responsible for ensuring that the device 

performs its designated tasks and functions properly.
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The primary role of SSD firmware is to manage the storage, retrieval, 

and protection of data on the drive. Firmware is typically embedded into 

the hardware during the manufacturing process and is not intended to be 

modified by the user.

In SSDs, firmware plays a crucial role in the performance and 

functionality of the drive. It controls the various hardware components of 

the drive, such as the memory chips and interface controller, and manages 

the data stored on the SSD. Additionally, SSD firmware provides many 

advanced features that are essential for maintaining the performance and 

reliability of the drive. For example, it can include wear-leveling algorithms 

that distribute data evenly across the drive to prevent excessive wear on 

any one area of the drive, garbage-collection algorithms that reclaim 

unused space on the drive to improve performance, and algorithms to 

reduce write amplification. (Write amplification is a process that increases 

the amount of data written to the drive beyond the amount of data that the 

user writes.)

SSD firmware can also include encryption capabilities to protect data 

on the drive, as well as power-management functions to help conserve 

energy and extend the lifespan of the drive. These features are essential 

for modern SSDs, which are often used in high-performance computing 

environments and require the highest levels of data protection and 

reliability.

Additionally, SSD firmware is responsible for managing the internal 

data structures of the drive, such as the journaling data that is used to keep 

track of changes to the data on the drive. This allows the drive to recover 

from any errors or power failures that may occur.

Another important function of SSD firmware is to manage thermal 

throttling, which is the process by which the drive reduces its performance 

in order to prevent overheating. This can help to protect the drive from 

damage and extend its lifespan.
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When we use our devices, they often run multiple programs at the 

same time. Over time, this can lead to a decrease in system performance 

and slower operation. One solution to this problem is to replace the 

hardware with new parts. However, this can be expensive and time- 

consuming. A more cost-effective and simpler solution is to update the 

firmware that the system runs on. Firmware updates can fix bugs, improve 

performance, and add new features to the device, all without the need to 

replace any hardware.

Firmware updates for SSDs can be installed by the user and are 

typically available for download from the manufacturer’s website. It is 

important to keep the firmware of an SSD up to date to get the most out of 

the drive and to ensure its proper functioning.

Updating the firmware on an SSD can bring several benefits, including 

improved performance, increased stability, and access to new features. For 

example, a firmware update may optimize the performance of the drive by 

improving instruction times, out-of-order execution, branch prediction, 

and speculative execution time. It may also fix bugs that have developed 

over time and prevent the need for expensive repairs or bug fixes in 

the future.

In addition to these benefits, updating the firmware on an SSD can 

help to prevent the drive from becoming obsolete. By adopting the 

additional functionalities and capabilities that come with the firmware 

update, users can ensure that their SSD remains compatible with newer 

technologies and is able to keep up with changing needs.

Finally, SSD firmware is responsible for managing the mapping of 

logical block addresses to physical block addresses on the drive. This is 

necessary because the data on the drive is typically organized into blocks, 

and the firmware must manage the mapping of these blocks to the actual 

physical locations on the drive where the data is stored. This is an essential 

part of the drive’s overall performance and reliability.
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�Summary
This chapter pulled back the curtain on the unsung hero of SSDs: 

firmware. Think of it as the conductor of an orchestra, ensuring each 

instrument (component) plays in harmony to create a beautiful symphony 

(performance). Firmware’s primary job is to manage data storage, 

retrieval, and safeguarding. It makes sure no single spot on the drive wears 

out prematurely and reclaims space that’s not being used. It even handles 

tricky maneuvers like reducing the amount of data written, thus extending 

the drive’s lifespan. Firmware is also the brain behind encryption and 

energy-saving tricks, crucial in today’s demanding computing world.

The chapter also highlighted firmware updates, like giving your car a 

software upgrade. These updates fine-tune the drive’s performance, fix 

bugs, and even add new features without needing to swap parts. They’re 

your SSD’s way of staying sharp and relevant, much like updating your 

phone’s software. Lastly, firmware’s task of mapping logical data to 

physical locations was emphasized—the GPS of your SSD, ensuring data 

arrives at its destination smoothly. This chapter has shown that firmware is 

the true wizard behind the scenes of SSD engineering.
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CHAPTER 3

The History and 
Evolution of SSD 
Firmware
In this chapter, we delve into the historical evolution of solid-state 

drive (SSD) firmware, tracing its journey from its rudimentary origins 

to its present-day complexities. Our exploration begins with the early 

days of SSD technology, when firmware was a modest tool focused on 

basic interfacing tasks. As time progressed, firmware transitioned into 

a powerhouse of advanced functionalities. Our analysis concludes by 

examining the contemporary challenges and innovative solutions that 

underscore the realm of SSD firmware engineering.

�History
The history of SSD firmware can be traced back to the early days of SSD 

technology, when the first SSDs were introduced in the late 1970s. At that 

time, SSD firmware was a relatively simple piece of software that was 

primarily responsible for interfacing with the host system and translating 

its commands into actions on the drive.
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Early SSD firmware was focused on ensuring data integrity and 

reliability. This was important because early SSDs were prone to data 

loss due to the instability of its memory. To address this issue, early SSD 

firmware included basic features such as error-correction algorithms. 

These algorithms were used to detect and correct errors in the data stored 

on the drive, improving the reliability and integrity of the data.

Over the next several decades, as SSD technology continued to 

evolve, the firmware also evolved to include more advanced features and 

capabilities. For example, early SSDs lacked the wear-leveling algorithms 

that are now commonly found in modern drives, which distribute data 

evenly across the drive to prevent excessive wear on any one area of 

the drive.

Similarly, early SSDs did not have the garbage-collection algorithms 

that are now standard in modern drives, which reclaim unused space on 

the drive to improve performance. These and other advanced features 

were gradually added to SSD firmware as the technology matured and the 

demands on SSDs increased.

Today, SSD firmware is a crucial component of modern storage systems, 

providing numerous benefits over traditional hard-disk drives (HDDs),  

such as faster access to data, higher reliability, and lower power 

consumption. It also enables several advanced features, such as data 

protection, power management, and error correction, which are essential 

for maintaining the integrity and performance of the drive.

One of the main challenges in achieving high performance with SSDs 

is their tendency to become bogged down by random input/output (IO) 

operations (IO operations are tasks that involve reading or writing data 

from or to the SSD, such as when you save a file or load a program), which 

occurs when the drive receives a large number of small, random read and 

write requests. To address this issue, SSD firmware began to incorporate 

stream concepts, which involve grouping together related IO requests and 
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processing them as a single, larger request. This can significantly improve 

the performance of the drive by reducing the number of small IO requests 

and allowing the drive to operate more efficiently.

Another important aspect of SSD firmware is IO determinism, 

which refers to the ability of the drive to consistently deliver predictable 

performance. In the early days of SSDs, the performance of the drive 

could vary greatly depending on the workload, leading to unpredictable 

and inconsistent results. Modern SSD firmware includes features such as 

host cache, which uses system memory to store frequently accessed data, 

allowing the drive to deliver more consistent and predictable performance.

In summary, the history of SSD firmware reflects the evolution of 

SSD technology itself. Starting with simple firmware that was primarily 

responsible for interfacing with the host system, it has gradually evolved to 

include a wide range of advanced capabilities that are critical for modern 

storage systems.

�Summary
This chapter has discussed the history and evolution of SSD firmware. We 

have seen how firmware has evolved from a simple piece of software to a 

complex and sophisticated piece of technology. We have also seen how 

firmware has helped to improve the performance, reliability, and efficiency 

of SSDs.

The chapter has also discussed some of the challenges that SSD 

firmware faces today. One of the main challenges is the need to improve 

the performance of SSDs under random IO conditions. Another challenge 

is the need to improve the IO determinism of SSDs.

Despite these challenges, SSD firmware continues to evolve and 

improve. As SSD technology continues to develop, we can expect to see 

even more advanced features and capabilities in the future.
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CHAPTER 4

Basics of Flash 
Memory
In this chapter, we will discuss different memory types and delve into 

the world of flash memory, exploring its different types and focusing on 

two primary types: NAND and NOR flash memory. We will discuss the 

architecture of NAND flash memory and its fundamental operations, 

including reading, writing, and erasing data. Understanding these basic 

operations is crucial to grasp how NAND flash memory functions and how 

it is utilized in solid-state drive (SSD) firmware. By the end of this chapter, 

you will have gained valuable insights into the basics of flash memory, 

enabling you to comprehend its architecture and the fundamental 

operations it supports.

�Memory Types
Flash memory is a type of non-volatile memory that is used in a variety of 

electronic devices, including SSDs. Non-volatile memory can retain data 

even when the power is turned off, making it ideal for storing important 

information.

There are several different types of flash memory available, including 

NOR and NAND, as you can see in Figure 4-1.
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Figure 4-1.  Memory types

�NOR Flash Memory
NOR flash memory is capable of random access, meaning that data can be 

read or written to any location on the memory chip. It is commonly used 

in devices that require fast access to small amounts of data. It is possible 

to read/write one byte of data at a time. Erase operation is in sector wise. 

NOR flash memory is less dense, meaning it consumes more physical area 

and costs more than NAND flash memory.

�Characteristics of NOR Flash Memory

The following are characteristics of NOR flash memory:

•	 Cost per bit is high.

•	 Code execution is easy.

•	 Capacity is low.

•	 Write speed is slower.

•	 Read speed is faster.

•	 Power consumption on standby is low.
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�NOR Memory Architecture

Take a look at the NOR memory architecture in Figure 4-2.

Figure 4-2.  NOR memory architecture  
Source: Wikipedia

NOR memory is a type of flash memory that uses NOR gates to store 

data. The gates are arranged in a grid, with each gate storing a single bit 

of data. The grid is divided into words, with each word containing a fixed 

number of bits.

To read data from NOR memory, the controller sends a read command 

to the memory. The memory then transfers the data from the selected 

word to the controller.

To write data to NOR memory, the controller sends a write 

command to the memory. The memory then writes the new data to the 

selected word.

�NAND Flash Memory
NAND flash memory, however, is a type of flash memory that is optimized 

for high-capacity storage and fast data transfer. It is commonly used in 

SSDs and other storage devices, such as USB drives and memory cards. 

NAND memory is made up of tiny transistors that are arranged in a 
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grid and can be used to store data in the form of bits (0s and 1s). It is 

fast and efficient, making it ideal for use in SSDs, and it is also relatively 

inexpensive and widely available.

�NAND Memory Architecture

Take a look at the NAND memory architecture in Figure 4-3.

Figure 4-3.  NAND memory architecture  
Source: Wikipedia

NAND memory is a type of flash memory that uses floating-gate 

transistors to store data. The transistors are arranged in a grid, with each 

transistor storing a single bit of data. The grid is divided into pages, with 

each page containing a fixed number of bits.

To read data from NAND memory, the controller sends a read 

command to the memory. The memory then transfers the data from the 

selected page to the controller.

To write data to NAND memory, the controller sends a write 

command to the memory. The memory then erases the selected page and 

writes the new data to the page.
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�Similarities
NAND and NOR memory are both types of flash memory. They both use 

transistors to store data, and they both have a grid-like structure.

�Differences
The main difference between NAND and NOR memory is the way that 

they store data. NAND memory uses floating-gate transistors, while NOR 

memory uses NOR gates. This difference in the way that they store data 

affects the performance and the features of the two types of memory.

NAND memory is generally faster than NOR memory, but it is also 

more expensive. NAND memory is also more durable than NOR memory.

NOR memory is slower than NAND memory, but it is also less 

expensive. NOR memory is also easier to program than NAND memory.

�A Flash Memory Cell

Figure 4-4.  A flash memory cell
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Flash memory, which is used in SSDs, combines the characteristics 

of ROM (read-only memory) and RAM (random access memory). It can 

retain information even when there is no power, like ROM, and it can be 

repeatedly erased and rewritten, like RAM. This is made possible through 

the use of a special type of transistor in flash memory.

Let’s break down how it works in a simplified manner, as follows:

	 1.	 Typical Transistors: In typical memory transistors, 

there are three connections: source, drain, and gate. 

The source is where electricity enters, the drain is 

where it exits, and the gate controls the flow. When 

the gate is closed, no current can flow, turning the 

transistor off and storing a zero (0). When the gate is 

open, power flows through, activating the transistor 

and storing a one (1).

	 2.	 Limitations of Typical Transistors: However, a 

typical transistor cannot remember its state when 

the power is switched off. When power is turned 

back on, it’s difficult to determine whether the 

transistor was on or off before the power was 

removed.

	 3.	 Flash Memory Transistors: Flash memory 

transistors have an additional connection called a 

floating gate. This floating gate is placed on top of 

the main gate. When the gate is open, electricity 

seeps through the first gate and remains trapped 

between the first and second gates, even when the 

power is off. Refer to Figure 4-5.

	 4.	 Retaining Information: The floating gate in flash 

memory allows it to remember its state even 

when the power is off. If you try to push current 
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through the transistor, the stored energy prevents 

it, representing a zero. Clearing the stored energy 

allows the current to flow, representing a one. 

This way, the flash transistor retains information 

regardless of whether the power is on or off.

Figure 4-5.  Floating gate NMOS transistor

Figure 4-6.  Programming floating gate NMOS transistor
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Figure 4-7.  Erasing floating gate NMOS transistor

Figure 4-8.  Reading floating gate NMOS transistor
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Table 4-1.  Cell Node Voltages Required in Different 

Memory Operations

Operation Gate Drain Source Bulk

Read 4.5 SA 0 0

Program 8.0 5.0 0 0

Erase -8.0 Float 8.0 8.0

�NAND Memory Organization
•	 The package is the memory chip, which contains one 

or more dies.

•	 The die is the smallest unit that can independently 

execute commands and report status.

•	 Each die contains one or more planes. Identical, 

concurrent operations can take place on each plane, 

although with some restrictions.

•	 Each plane contains a number of blocks, which are the 

smallest unit that can be erased. Remember that, as it’s 

really important.

•	 Each block contains a number of pages, which are the 

smallest unit that can be programmed.
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�Addressing
It is NAND memory addressing. How physical nand can be addressed or 

accessed by Firmware.

Figure 4-9.  The organizational structure of a NAND flash device 
Source: Micron Technology Inc.

Figure 4-10.  NAND flash die layout  
Source: AnandTech
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�Erase
In a flash memory device, the erase operation is responsible for changing 

the state of a cell from "0" to "1" by removing electrons from the floating 

gate. It is important to note that a single cell cannot be directly changed 

from "1" to "0"; instead, the erase operation must be performed on a 

block-by-block basis. This means that before new data can be written to a 

block (through the programming process), the block must first be erased 

to ensure that it is empty. It is worth noting that the erase operation 

typically has a longer latency than the read and program operations, 

meaning it can take longer to complete. For example, the read, program, 

and erase latencies for a Micron 8 GB flash chip are 25 μs, 220 μs, and 1500 

μs, respectively. As a result, the erase operation can be a performance 

bottleneck in NAND flash memories, and various firmware algorithms 

have been developed to minimize the impact of the long erase latency on 

overall performance.

Figure 4-11.  Erase level Vth distribution

�Write
The program operation is performed on a page level. This means that 

the operation targets a specific page of memory on the drive. When the 

controller of the SSD requests a program operation on the NAND device, 

it specifies the chip select (CE) and provides the row address of the page 
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to be targeted. The controller then transfers the data to be programmed 

to the NAND device and sends a final program command to complete the 

operation.

It is important to note that a page on an SSD cannot be written more 

than once without first performing an erase operation. This is because an 

erase operation is required to clear the page of any existing data before 

new data can be written to it. As a result, every time a program operation 

is performed on a page, it must be preceded by an erase operation. This 

ensures that the page is ready to accept new data and that the program 

operation is successful.

It is also important to say that pages need to be written in consecutive 

order within the block; page number 0 is to be written first followed 

by page 1. Writing out of sequence is not allowed, as violating this rule 

aggravates the bit error rate. A single block does not need to be written all 

at once. That is, a block can be written with pages from 0 to 11, and later on 

with pages from 12 to 32, for example. Generally, pages need to be written 

as a whole at once, though some memories support so-called partial page 

programming, which allows a subpage of 512 bytes + correlated spare area 

to be written.

The data to be written will be provided by the host or result from 

firmware internal data management. Firmware first transfers the data 

from cache to the NAND internal cache register. Once the data transfer 

is completed the programming should start; i.e., writing to actual 

NAND cells.
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Figure 4-12.  Program level Vth distribution

�Read

Figure 4-13.  Read sensing graph
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From the perspective of the NAND chips themselves, the read operation 

involves activating the appropriate word line to select the desired page of 

cells, and then reading the data stored in those cells by sensing the voltage 

levels on the bit lines. The NAND chips are organized into blocks, which 

are further divided into pages. Each page stores a fixed amount of data, 

typically 4 KB to 16 KB (or more), depending on the specific NAND device.

To read a specific page, the controller must first locate the block 

that contains the page and then activate the appropriate word line 

to select the page within that block. The read operation is typically 

performed by the SSD’s controller, which uses firmware to manage the 

communication with the NAND chips and handle the necessary data 

transfer and error correction. The firmware is responsible for optimizing 

the read performance by minimizing the number of accesses required and 

maximizing the data transfer rate.

�Program/Erase Cycle (P/E Cycle)
The program/erase (P/E) cycle is a fundamental aspect of NAND flash 

memory, which is commonly used in SSDs. NAND flash memory works 

by storing data in cells that are grouped into blocks. Each cell can store a 

single bit of data, and a group of cells is needed to store a larger amount of 

data. To write new data to a cell, the cell must first be erased, which is done 

by applying a high voltage to the cell. As we already explained, this process 

is known as the erase cycle.

Table 4-2.  NAND Basic Operations Timings

-
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Once the cell has been erased, new data can be written to it using a 

process called programming, which involves applying a lower voltage to 

the cell. The process of writing new data to a cell by first erasing it and then 

programming it with new data is known as the P/E cycle. The P/E cycle is 

a key factor in the endurance of NAND flash memory, as the erase cycle 

can cause wear on the cells over time. As a result, NAND flash memory 

has a limited number of P/E cycles that it can withstand before it begins to 

degrade. This is known as the endurance of the memory.

To extend the endurance of NAND flash memory, it is important to 

minimize the number of P/E cycles that the memory undergoes. One 

way to do this is to use the TRIM command, which allows the operating 

system to inform the SSD which data blocks are no longer in use and can 

be erased. This can reduce the number of P/E cycles by eliminating the 

need to move invalid data during the garbage-collection process, which 

is an internal SSD housekeeping operation that manages and maintains 

available storage space.

The number of bits that can be stored in each cell of a NAND flash 

memory drive can also affect the maximum number of program/erase (P/E)  

cycles that the drive can support. Table 4-3 provides an overview of the 

different types of NAND cells based on the number of bits they can store.

Table 4-3.  PEC Cycle Based on NAND Cell Type

-
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As the number of bits per cell increases, the number of supported P/E 

cycles tends to decrease. Single-level cell (SLC) NAND, which can store one 

bit per cell, generally has the highest endurance, while quad-level cell (QLC)  

NAND, which can store four bits per cell, has the lowest endurance. It is 

important to consider the endurance of an SSD when selecting a drive, as 

a drive with a lower endurance may not be suitable for use in cases that 

involve a high number of P/E cycles.

�Summary
This chapter has discussed the basics of flash memory, including its 

different types, architecture, and fundamental operations. We have seen 

how NAND flash memory works and how it is used in SSDs. We have 

also seen the different types of operations that can be performed on 

NAND flash memory, such as erase, program, and read. We have also 

discussed the P/E cycle, which is a key factor in the endurance of NAND 

flash memory.
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CHAPTER 5

3D Vertical NAND
Now, welcome to the exciting world of 3D vertical NAND! In this chapter, 

we will cover a cutting-edge technology that has revolutionized the way we 

store data. 3D vertical NAND is a remarkable advancement in NAND flash 

memory, allowing us to stack memory cells vertically to increase storage 

capacity and performance significantly.

You might be wondering how this technology works and what makes it 

so special. We will walk through the basics of 3D vertical NAND, explaining 

its unique architecture and how it overcomes the limitations of traditional 

2D planar NAND. You’ll discover the advantages and benefits of this 

innovative technology, along with its real-world applications and the 

impact it has on various industries.

By the end of this chapter, you will have a clear understanding of how 

3D vertical NAND works and how it has transformed data storage, making 

it a technology crucial to modern electronic devices. So, let’s dive in and 

explore the fascinating world of 3D vertical NAND!

�Evolution of 3D Vertical NAND Technology
The rapid growth in data traffic globally is pushing the boundaries of 

NAND flash memory technology. The industry-standard 2D planar NAND 

technology has inherent limitations when it comes to expanding storage 

capacity without compromising performance and reliability. This has 

created a need for innovative solutions to meet the increasing demands for 

data storage.
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To address these challenges, the industry has introduced a 

groundbreaking approach known as 3D vertical NAND (V-NAND) flash 

memory technology. This innovation has revolutionized the design and 

architecture of NAND flash memory by stacking memory cells vertically 

in a three-dimensional structure, as opposed to the traditional two-

dimensional planar arrangement. This vertical stacking allows for the 

creation of multiple layers of memory cells, resulting in significantly higher 

memory capacities (Figure 5-1).

By adopting a 3D V-NAND structure, the industry has overcome 

the limitations associated with capacity expansion in 2D planar NAND 

technology. This vertical stacking not only enables higher storage densities 

but also eliminates performance and reliability issues caused by capacity 

constraints. With more memory cells packed into each chip, the industry 

has achieved remarkable advancements in storage capacity while 

maintaining or even enhancing performance and reliability characteristics.

The vertical stacking of memory cells in 3D V-NAND technology offers 

several advantages. First, it allows for increased memory capacity within a 

smaller physical footprint, which is particularly beneficial in applications 

where space is a constraint. Additionally, the three-dimensional structure 

enables better control of electrical properties, resulting in improved 

performance and endurance.

This innovation in flash memory technology has had a significant 

impact on the storage industry, enabling the development of high-capacity 

solid-state drives (SSDs) that can handle the ever-growing volumes of data. 

The adoption of 3D V-NAND technology has facilitated advancements in 

areas such as cloud computing, data centers, mobile devices, and other 

storage-intensive applications.

Chapter 5  3D Vertical NAND



33

Figure 5-1.  2D vs. 3D NAND comparison block diagram

�Unlocking New Possibilities with Vertical 
NAND Architecture
Figure 5-2 compares the storage density of 2D planar NAND and 3D 

V-NAND flash memory. As shown, 3D V-NAND can achieve up to 10x 

greater storage density than 2D planar NAND. This is because 3D V-NAND 

stacks memory cells vertically on top of each other, while 2D planar NAND 

stacks memory cells horizontally on a silicon wafer.

The higher storage density of 3D V-NAND allows for larger capacity 

NAND chips to be produced. This has made it possible to create NAND 

flash memory devices such as solid-state drives (SSDs) and USB flash 

drives with capacities of several terabytes.
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Figure 5-2.  Bird's-eye view of the V-NAND structure

In the pursuit of fitting more memory cells into a smaller space, 

the limitations of 2D planar NAND flash memory become evident. The 

shrinking size makes it challenging for light to penetrate the mask and 

transfer the desired pattern onto the photoresist, ultimately hindering the 

patterning process. This inherent limitation restricts the widespread use of 

2D planar NAND flash memory in today’s demanding memory landscape.

However, 3D V-NAND overcomes these patterning limitations by 

adopting a vertical architecture. Unlike the close proximity of cells in 2D 

planar NAND, 3D V-NAND creates a wider gap between each cell, enabling 

efficient patterning. While the cell-to-cell spacing in traditional planar 

NAND typically ranges from 15 to 16 nanometers (nm), 3D V-NAND offers 

an impressive 30nm to 40nm of space between cells, revolutionizing 

NAND flash technology.

This vertical architecture has opened new doors for memory 

advancement, allowing for higher capacities and enhanced performance. 

By overcoming the constraints of patterning, 3D V-NAND flash memory 

has become a game-changer in the industry, meeting the demands of 

today’s memory-intensive applications.
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2D NAND 3D NAND

Figure 5-3.  2D planar NAND vs. 3D Vertical NAND

�Advantages of 3D Vertical NAND
3D vertical NAND has several advantages over traditional planar NAND, as 

follows:

	 a.	 Higher Storage Capacities: The vertical stacking 

of memory cells enables significant increases in 

storage capacities. With more layers of cells, 3D 

V-NAND offers the potential for greater memory 

densities, allowing for storage devices with larger 

capacities.

	 b.	 Improved Performance: 3D V-NAND can deliver 

enhanced read and write speeds compared to 2D 

planar NAND. The vertical structure reduces the 

distance that signals need to travel, resulting in 

faster data access and transfer rates.
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	 c.	 Enhanced Endurance: Vertical NAND architecture 

improves the endurance of the memory cells. The 

increased space between cells reduces interference, 

leading to improved reliability and longevity.

	 d.	 Energy Efficiency: 3D V-NAND technology offers 

improved energy efficiency, allowing for longer 

battery life in portable devices and reduced power 

consumption in data centers.

�Applications of 3D Vertical NAND
The advantages offered by 3D vertical NAND make it well suited for 

various applications, including the following:

	 a.	 Solid-State Drives (SSDs): SSDs equipped with 

3D V-NAND deliver high-speed data storage and 

retrieval, making them ideal for use in laptops, 

desktops, and enterprise storage solutions. The 

increased storage capacity enables SSDs to meet the 

demands of modern data-intensive applications.

	 b.	 Mobile Devices: Smartphones, tablets, and other 

portable devices benefit from the compact size 

and high storage capacities of 3D V-NAND. These 

devices require reliable and fast storage solutions 

to handle multimedia content, applications, and 

operating systems.

	 c.	 Data Centers and Cloud Computing: The scalability 

and performance of 3D V-NAND make it a valuable 

technology for data centers and cloud computing 

environments. The increased storage densities and 

improved reliability contribute to efficient data 

management and faster processing speeds.
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�Understanding 3D Vertical 
NAND Architecture

Figure 5-4.  3D vertical NAND layered architecture

The unique architecture of 3D vertical NAND involves intricate vertical 

cell stacking and layering, which enables higher storage density and better 

performance. A block consists of vertically stacked layers of NAND flash 

cells, each consisting of grid of cells connected by Wordlines (WLs) and 

Bit Lines (BLs).

The vertical cell stacking approach ensures that more memory cells 

can be packed in a smaller space. This is achieved by placing multiple 

layers of memory cells on top of each other, making the most efficient use 

of available silicon area.

Each memory cell in 3D vertical NAND still consists of a transistor and 

a floating gate, just like in traditional NAND flash memory. However, the 

arrangement of these components is optimized for vertical stacking.

�Layers and Pages
A 3D vertical NAND chip is composed of multiple layers, and each layer 

is divided into pages. Within a layer, pages are accessed individually for 

read and write operations. The vertical stacking of pages allows for greater 

memory capacity without increasing the chip’s physical size.
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�Charge Trapping Technology
In 3D vertical NAND, memory cells use a charge trapping technology, 

unlike the floating-gate technology found in traditional NAND. Charge 

trapping stores charge in a non-conductive layer, preventing data loss due 

to electron leakage, which was a challenge in floating-gate technology. 

This enhanced data retention capability contributes to the reliability and 

longevity of 3D vertical NAND.

The 3D vertical NAND cell (also known as a V-NAND cell) is a type of 

NAND flash memory cell that is stacked vertically on top of other NAND 

flash memory cells. This allows for significantly greater storage density 

than traditional 2D planar NAND cells, which are stacked horizontally on a 

silicon wafer.

As shown in Figure 5-5, the 3D vertical NAND cell consists of three 

main components:

The charge storage film: This layer is made of a 

material that can trap electrons. The number of 

electrons trapped in this layer determines the state of 

the cell (0 or 1).

The control gate: This gate is used to control the flow 

of electrons into and out of the charge trap layer.

The channel layer: This layer is made of a 

semiconducting material that allows electrons to 

flow through it.
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3D Vertical NAND Cell

Control
·Gate

The written electron

Cell 
current

Nitride film
(Charge storage 
film)

Insulator

Information stored in nitride film (Charge 
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Cell current (Ic)

Figure 5-5.  3D NAND cell

To store a bit of data in a 3D vertical NAND cell, a voltage is applied to 

the control gate. This causes electrons to flow into or out of the charge trap 

layer, depending on the desired state of the cell. Once the desired state has 

been achieved, the voltage is removed and the electrons are trapped in the 

charge trap layer.

The 3D vertical NAND cell is a highly efficient way to store data. It 

offers significantly greater storage density than traditional 2D planar 

NAND cells, while also being more energy-efficient. This makes it the ideal 

choice for a wide range of applications, including solid-state drives (SSDs), 

USB flash drives, and mobile devices.
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�Bit Line and Word Line Architecture
The bit lines and word lines form the essential structure of 3D vertical 

NAND. Bit lines run vertically through all layers, connecting the memory 

cells within a column. Word lines, however, run horizontally, connecting 

the memory cells across a row in each layer.

�Control and Decoding Circuits
Control and decoding circuits are responsible for managing the flow of 

data in 3D vertical NAND. These circuits decode address inputs, control 

the selection of memory cells during read and write operations, and 

handle other essential functionalities.

�Memory Cell Size and Density in 3D Vertical 
NAND Flash Memory Technology
3D vertical NAND (V-NAND) flash memory technology is a type of non-

volatile memory that stacks memory cells vertically to increase storage 

density and capacity. One of the factors that affects the density and capacity 

of V-NAND chips is the size of the memory cells. As technology advances, 

manufacturers can reduce the size of the memory cells to fit more of them 

in a given area, resulting in higher density and larger capacity NAND 

chips. However, shrinking the cell size also poses some challenges, such as 

increased interference and reduced reliability. To overcome these challenges, 

V-NAND technology uses techniques such as charge trap flash (CTF) 

and tunnel field-effect transistor (TFET) to improve the performance and 

endurance of the memory cells. Moreover, V-NAND technology can also use 

different levels of charge to store multiple bits per cell, such as quad-level cell 

(QLC) or even higher, to further increase the storage capacity of NAND chips.
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�Understanding NAND Cell Types Supported: 
SLC, MLC, and TLC (QLC)
There are different types of memory cells, including SLC (single-level cell), 

MLC (multi-level cell), and TLC (triple-level cell). Each cell type comes 

with its own characteristics, influencing how data is stored, accessed, and 

managed. We’ll discuss the principles of reading, writing, and erasing data 

from 3D vertical NAND flash.

�SLC
3D vertical NAND SLC Vth distribution refers to the distribution of 

threshold voltages (Vth) of the memory cells in a 3D vertical NAND SLC 

flash memory device. Vth is a critical parameter that determines the 

performance and reliability of a NAND flash memory device. A narrow 

Vth distribution is desirable, as it indicates that all of the memory cells 

have similar Vth values. This makes it easier to read and write data to the 

memory cells, and it also reduces the risk of errors.

Single Level Cell (SLC)

VTH

1 0

Figure 5-6.  3D vertical NAND SLC Vth distribution

•	 2 States (1 Erase + 1 Program) = 1 bit of information 

per cell
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�MLC
3D vertical NAND MLC Vth distribution refers to the distribution of 

threshold voltages (Vth) of the memory cells in a 3D vertical NAND MLC 

flash memory device. MLC NAND flash memory devices can store more 

than one bit (2-4) of data per memory cell, which requires a wider Vth 

range than SLC NAND flash memory devices. However, a narrow Vth 

distribution is still desirable for MLC NAND flash memory devices, as it 

improves performance and reliability.

Multi Level Cell  (MLC)

VTH

1
1

0
1

0
0

1
0

Upper Page Data

Lower Page Data

Figure 5-7.  3D vertical NAND MLC Vth distribution

•	 4 States (1 Erase + 3 Program)

= 2 bits of information per cell

= 2x capacity of SLC!

Chapter 5  3D Vertical NAND



43

�TLC

Triple Level Cell  (TLC)

VTH

1
1
1

0
1
1

0
0
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Middle Page Data
Lower Page Data
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0
0

0
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1
1
0

Figure 5-8.  3D vertical NAND TLC Vth distribution

8 States (1 Erase + 7 Program)

= 3 bits of information per cell

= 1.5x capacity of MLC

= 3.0x capacity of SLC

�Read and Write Operations in 3D 
Vertical NAND
3D vertical NAND exhibits remarkable read and write operations owing to 

its unique vertical architecture. During a read operation, the control gate 

voltage is adjusted, allowing the flow of current through the memory cell. 

The resulting current state is then sensed to determine the stored data. 

The vertical stacking of memory cells enables faster read operations by 

reducing the distance the current needs to travel, resulting in reduced read 

latency.
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Write operations in 3D vertical NAND involve programming the 

memory cell to store data. The voltage applied to the control gate elevates 

the electron energy in the floating gate, causing the charge to be trapped, 

representing either a 0 or 1. The vertical architecture enhances write 

performance by reducing the parasitic capacitance between memory cells, 

enabling faster and more efficient write operations.

VTH
E

VTH

VTARG

VTH

VTARG

(a) Erased State

(b) First 
programming 
pulse

(b) Nth 
programming 
pulses

Figure 5-9.  3D vertical NAND SLC incremental programming pulse
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Apply Programming pulse

START

Verify most cells have VTH 

higher than VTARG

END

PASS

FAIL

tPROG ~1500us

Figure 5-10.  3D vertical NAND SLC incremental programming pulse 
flow chart
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VTH
E

VTH

VLPONLY

VTH

(a) Erased State

(b) Program 
Lower Page x1 x0

11 01 00 01

LP = 1 LP = 0

UP = 1 UP = 0 UP = 0 UP = 1

(c) Program 
Upper Page

Figure 5-11.  3D vertical NAND MLC program sequence

•	 Data is programmed to the device one page at a time.

•	 The cells are either left in the erased state or 

programmed to an intermediate state, depending on 

the lower page data.

•	 An intermediate read determines the previously 

programmed lower page data, and the cell distribution 

for the WL is “finalized” using the upper page data.

Figure 5-12.  Reading data from 3D vertical NAND MLC
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•	 Lower page can be read using a single read 

voltage (VB).

•	 Upper page can be read using a pair of read  

voltages (VA,VC).

•	 A page read (from NAND cell to NAND cache) typically 

takes up to 100us.

Erasing MLC 3D vertical NAND block
Erasing an MLC 3D vertical NAND block is the process of resetting all of 

the memory cells in the block to the same state. This is done by applying a 

high voltage to the block. The high voltage causes electrons to flow out of 

the charge trap layers in the memory cells, erasing the data.

Erasing MLC 3D vertical NAND blocks is more complex than erasing 

SLC NAND blocks because of the wider Vth range of MLC memory cells. 

To ensure that all of the memory cells in an MLC block are properly erased, 

the erase voltage must be carefully controlled.

There are a number of different methods for erasing MLC 3D vertical 

NAND blocks. One common method is to use a partial erase scheme. In 

a partial erase scheme, the erase voltage is gradually increased until all 

of the memory cells in the block are erased. This method is more energy-

efficient than erasing the block at a single high voltage, but it takes longer.

Another method for erasing MLC 3D vertical NAND blocks is to use a 

full erase scheme. In a full erase scheme, the erase voltage is set to a high 

value for a fixed period of time. This method is faster than a partial erase 

scheme, but it consumes more energy.

The best method for erasing MLC 3D vertical NAND blocks depends 

on the specific application. For example, applications that require high 

performance may be willing to sacrifice some energy efficiency in order to 

achieve faster erase times.
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Figure 5-13.  Erasing MLC 3D vertical NAND block

Figure 5-14.  Flow Diagram for 3D vertical NAND block erase MLC
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�Endurance and Data Retention Capabilities
Endurance and data retention are crucial aspects of NAND flash memory. 

3D vertical NAND excels in both areas due to its improved memory 

cell design and materials. The vertical structure reduces crosstalk and 

interference between memory cells, leading to improved data-retention 

capabilities. As a result, data stored in 3D vertical NAND remains intact for 

longer periods, even under challenging conditions.

Additionally, the vertical stacking design contributes to enhanced 

endurance by reducing wear on individual memory cells. This translates to 

a higher number of program-erase cycles before memory cell degradation, 

making 3D vertical NAND a reliable choice for data-intensive applications 

that require frequent read and write operations.

�Speed and Efficiency Compared to 2D 
Planar NAND
Compared to traditional 2D planar NAND, 3D vertical NAND offers 

notable speed and efficiency advantages. The vertical stacking of memory 

cells results in shorter electrical pathways, reducing data access times and 

improving overall system performance.

With faster read and write operations, 3D vertical NAND outperforms 

2D planar NAND in data access speed, making it an excellent choice for 

applications requiring real-time data processing. Moreover, the improved 

efficiency of 3D vertical NAND contributes to lower power consumption, 

leading to energy savings and prolonged battery life in portable devices.
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�Advancements in Storage Capacity with 3D 
Vertical NAND
One of the most significant achievements of 3D vertical NAND is the 

substantial advancement in storage capacity. The vertical cell stacking 

allows for a more efficient use of space, enabling the integration of 

multiple memory-cell layers within the same footprint.

As a result, 3D vertical NAND-based data storage solutions can achieve 

much higher capacities compared to traditional 2D planar NAND devices. 

This breakthrough has enabled the development of solid-state drives (SSDs)  

and memory modules with unprecedented storage capabilities, catering to 

the ever-growing demands of data-intensive applications.

�Summary
With this very brief chapter on 3D Vertical NAND, we have covered the 

basics only. As you delve into this exciting field of advanced memory 

technology, you will gain a deeper understanding of how 3D vertical 

NAND is revolutionizing data storage and setting the stage for future 

innovations in the semiconductor industry. As engineers and developers, 

your expertise in harnessing the capabilities of 3D vertical NAND will be 

instrumental in creating next-generation storage solutions that cater to the 

evolving needs of our data-driven world. Embrace the power of 3D vertical 

NAND and unlock the endless possibilities it holds for shaping the future 

of storage technology from here.
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CHAPTER 6

Basic Understanding 
of NAND Flash 
Interface
In this chapter, we will examine the fundamental aspects of NAND flash 

memory and explore how it can be effectively utilized in embedded 

systems and be made into a product. We will delve into the essential 

aspects of NAND flash communication, including the commands 

it supports, data transfer procedures, commands, response packet 

information, and much more. By understanding the key features of NAND 

flash, engineers can leverage its power, density, and cost advantages to 

create efficient and reliable subsystems for various applications, including 

solid-state drives (SSDs), mobile phones, flash memory cards, USB flash 

drives, and audio/video players.

NAND flash supports a set of specific commands that facilitate 

various operations, such as read, write, erase, and status checking. We 

will thoroughly examine each command, its purpose, and the relevant 

response packet information. A clear understanding of these commands 

is crucial for effectively managing data access and storage in NAND 

flash memory.

© Gopi Kuppan Thirumalai 2023 
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�Basic NAND IO Interfacing Pin Details

Table 6-1.  NAND IO Interfacing Pin Details

PIN Description

CE# Chip enable

CE# serves as the chip enable signal for the NAND flash device. When CE# is not 

asserted (held high), the NAND flash remains in standby mode and does not respond 

to any control signals. Activating CE# allows the device to operate and respond to 

commands.

WE# Write enable

WE# is responsible for clocking data, address, or commands into the NAND flash 

device. When WE# is low, data, addresses, or commands are written to the device, 

and the relevant information is latched into the internal registers.

RE# Read enable

RE# is used to enable the output data buffers of the NAND flash device. When RE# is 

low, data from the device's internal memory cells is available on the data bus for read 

operations.

CLE Command latch enable

CLE is a control signal used to latch commands and addresses into the NAND flash 

device. When CLE is set to a high state, commands are latched into the command 

register on the rising edge of the WE# signal.

ALE Address latch enable

When ALE is high, addresses are latched into the NAND flash address register on the 

rising edge of the WE# signal.

I/O[7:0] Data bus (I/O[15:0} for x16 parts)

The data bus pins (DQ pins) are used for bidirectional data transfer between the 

NAND flash device and the host system. During write operations, the host inputs 

command, address, and data to the NAND flash through these pins. During read 

operations, the device outputs data to the host using the same pins.

(continued)
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Table 6-1.  (continued)

PIN Description

WP# Write protect

WP# is a write protect signal that can be used to block any program and erase 

operations on the flash array. When WP# is active low, write operations are prevented, 

providing a hardware-based write protection mechanism.

R/B# Ready/busy

The R/B# signal indicates the status of the NAND flash device. If the device is busy 

with an erase, program, or read operation, the R/B# signal is asserted low. It is an 

open drain signal and requires a pull-up resistor to ensure proper signal levels

Figure 6-1.  Basic CPU NAND interconnect
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�NAND Flash Interface Basics
The NAND flash memory interface is an essential aspect of hardware 

design when integrating NAND into a system. In a NAND flash memory 

interface, data is transferred into or out of the NAND flash register in 

8- or 16-bit chunks at a time. During a program operation, the data to be 

programmed is loaded into the data register on the rising edge of the write 

enable (WE#) signal. To enable random access to data or movement within 

the register, special commands are used, such as RANDOM DATA INPUT and 

READ FOR INTERNAL DATA MOVE.

When it comes to outputting data from the data register, the read 

enable (RE#) signal is employed. Activating RE# allows the current data to 

be output, and the register then increments to the next location, enabling 

sequential data retrieval.

For seamless integration with other memory types, NAND flash utilizes 

the chip enable (CE#) and read enable (RE#) signals in combination. When 

CE# or RE# are not asserted LOW, the output buffers are set to a tri-state 

mode, allowing NAND flash to share the data bus with other memory 

types, like NOR Flash, SRAM, or DRAM. This characteristic is known as 

“chip enable don’t care.”

NAND flash operations are initiated by issuing a command cycle, 

where the command is placed on I/O[7:0], CE# is set LOW, and command 

latch enable (CLE) is set HIGH. A WE# clock is then used to clock the 

commands, addresses, and data into the NAND flash device on the rising 

edge of WE#. It's essential to understand this command-driven approach 

to efficiently manage data access and system control.

Most commands require a series of address cycles followed by 

a second command cycle. However, it’s important to note that new 

commands should not be issued while the NAND flash device is busy 

with ongoing operations. The RESET and READ STATUS commands are 

exceptions to this rule and can be issued even when the device is busy.
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The NAND flash memory interface involves the communication 

protocol used to read, write, and erase data from the NAND device. The 

most common NAND flash interfaces used in consumer electronics and 

computing devices are the Open NAND Flash Interface (ONFI) and Toggle 

Mode Interface.

�Open NAND Flash Interface (ONFI)
ONFI is an industry-standard interface for NAND flash memory that 

allows for faster data transfer rates and improved compatibility between 

NAND devices and NAND controllers. It defines a set of commands and 

timing requirements that facilitate communication between the controller 

and the NAND flash memory. ONFI supports both asynchronous and 

synchronous data transfer modes.

In asynchronous mode, the data transfer is initiated by the controller, 

and the NAND flash memory responds accordingly. In synchronous mode, 

the data transfer is synchronized to the system clock, allowing for higher 

data transfer rates.

�Toggle Mode Interface
Toggle Mode Interface is another high-speed interface commonly used 

in NAND flash memory. It provides faster data transfer rates compared to 

traditional interfaces. Toggle Mode Interface employs a bidirectional data 

bus and a separate command/address bus to enable faster read and write 

operations.

Toggle Mode Interface has two versions, namely, Toggle Mode 1.0 and 

Toggle Mode 2.0. Toggle Mode 2.0 offers higher data transfer rates and 

improved performance compared to Toggle Mode 1.0.
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Toggle 2.0 is a high-performance flash memory interface that supports 

data read and write operations using bidirectional. It implements double 

data rate (DDR) without a clock, and is compatible with the functions 

and commands supported by conventional flash memory (i.e., SDR flash 

memory). Toggle 2.0 flash memory provides high data transfer rates 

based on the high-speed Toggle DDR interface and saves power by using 

separated DQ voltage.

Toggle DDR 2.0 flash memory supports an interface speed of up to 

200 MHz (400 Mbps), which is more than ten times faster than the data 

transfer rate offered by SDR flash memory (40 Mbps). Toggle DDR flash 

memory transfers data at high speed using data strobe (DQS), which 

behaves as a clock. However, DQS is only used when data is transferred so 

as to optimize power consumption.

Toggle DDR flash memory is the most appropriate choice for 

applications that require high-capacity and high-performance 

flash memory.

�Command Cycles for NAND 
Flash Operations
The NAND flash memory employs a set of basic command sequences 

for its operation. The addresses are multiplexed into eight I/Os, and all 

commands, addresses, and data are written through DQ [7:0] pins by 

bringing WE (write enable) low while CE (chip enable) is low. The data is 

latched on the rising edge of WE.

To facilitate the multiplexing of commands and addresses, NAND 

flash utilizes command latch enable (CLE) and address latch enable (ALE) 

signals. CLE is used to multiplex command data via the DQ[7:0] pins, while 

ALE is employed to multiplex address data via the same pins.
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Commands that apply to a specific page or block typically have a 

second command, while commands that apply to a target have only a first 

command. These basic command sets enable efficient control and access 

to specific operations within the NAND flash memory, ensuring reliable 

and fast data transfers.

Figure 6-2.  Command cycles for NAND flash operations

�Addressing
In NAND flash memory, addressing involves two types: the column 

address and the row address. Understanding how these addresses work is 

essential to grasp how data is accessed and organized within the memory.
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�Column Address
The column address is used to access specific bytes within a page of the 

NAND flash memory. Think of it as the “byte offset” into the page, allowing 

the system to pinpoint the exact location of data within a page. Notably, for 

a DDR interface (double data rate), the least significant bit of the column 

address is always set to zero. This ensures that an even number of bytes is 

always transferred, promoting efficient data handling.

�Row Address
The row address serves a broader purpose. It is used to address entire 

pages and blocks within the NAND flash memory. By utilizing the row 

address, the system can access specific pages or blocks as needed. When 

both the column and the row addresses are required, the column address 

is always issued first, followed by the row addresses in separate 8-bit 

address cycles.

�Addressing Functions
Some operations only require row addresses, such as block erase. In such 

cases, the column addresses are not issued, streamlining the process for 

specific functions.

�Address Cycle Order
When issuing both column and row addresses, the first address cycle 

always contains the least significant address bits, while the last address 

cycle contains the most significant address bits. This logical order ensures 

that the system can accurately interpret the address information.
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�Handling Unused Bits
In the most significant cycles of both the column and the row addresses, some 

bits may not be utilized for specific memory configurations. To maintain 

consistency, any unused bits in these cycles must be cleared to zero.

In addition to understanding the column and row addresses, there are 

certain constraints that the host must adhere to when accessing NAND 

flash memory to ensure proper and safe operation.

�Address Limitations

A crucial consideration is that a firmware must not attempt to access an 

address of a page or block beyond the maximum page address or block 

address supported by the NAND flash memory. Accessing addresses 

beyond these limits can result in unintended behavior—data corruption.

�Valid Address Range

Before performing any erase, read, or write operations, the host must verify 

that the target address falls within the valid address range of the NAND 

flash memory. The valid address range is determined by the maximum 

page and block addresses supported by the memory device.

�Address Validation

The firmware in the SSD controller or the host system should include 

proper address validation mechanisms to ensure that any incoming 

address requests are within the valid range. If an invalid address is 

detected, the system should handle it gracefully, either by rejecting the 

request or by raising appropriate error flags.
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By adhering to the address limitations, the firmware can prevent 

unintended consequences and ensure the stability and reliability of data 

operations on the NAND flash memory. Proper validation and error- 

handling mechanisms play a crucial role in safeguarding the integrity of 

data and the long-term health of the memory device.

BLOCK ADDRESS PAGE ADDRESS

Row Address Format

Bit 0Bit n

Figure 6-3.  NAND row address format

Table 6-2.  2Gb SLC NAND Flash Addressing Scheme

Cycle I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0

First CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0

Second LOW LOW LOW LOW CA11 CA10 CA9 CA8

Third BA7 BA6 PA5 PA4 PA3 PA2 PA1 PA0

Fourth BA15 BA14 BA13 BA12 BA11 BA10 BA9 BA8

Fifth LOW LOW LOW LOW LOW LOW LOW BA16

Notes: Block address concatenated with page address = actual page address.

CAx = Column Address

PAx = Page Address

BAx = Block Address

The page address and the block address, collectively, constitute the row address (and number of bits 

depends on the NAND die size)

The most significant address byte is the fifth cycle; the least significant address byte is the first cycle.
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The addressing scheme for a 2Gb NAND flash device is represented 

in Table 6-2. When accessing specific data within the page, the first and 

second address cycles (or bytes) indicate the column address, defining the 

starting byte. For example, if the last column location is 2112, its address 

would be 08h in the second byte and 3Fh in the first byte. The page address 

within the block is determined by PA[5:0], while BA[16:6] identifies the 

block address.

In most PROGRAM and READ operations, the full 5-byte address is 

required to access data accurately. However, for operations that involve 

random data access within the page, only the first and second bytes (or 

cycles) are necessary. Meanwhile, when performing the BLOCK ERASE 

operation, only the three most significant bytes (third, fourth, and fifth) are 

utilized to select the block.

Table 6-3.  Command Cycles and Address Cycles

Command Command 

Cycle 1

Number of

Address

Cycles

Data

Cycles

Required 1

Command

Cycle2

Valid

During

Busy

READ PAGE 00h 5 No 30h No

READ PAGE CACHE 

SEQUENTIAL

31h – No – No

READ PAGE CACHE 

SEQUENTIAL LAST

3Fh – No – No

READ for INTERNAL DATA 

MOVE

00h 5 No 35h No

RANDOM D ATA READ 05h 2 No E0h

READ ID 90h 1 No – No

READ STATUS 70h – No – Yes

(continued)
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Command Command 

Cycle 1

Number of

Address

Cycles

Data

Cycles

Required 1

Command

Cycle2

Valid

During

Busy

PROGRAM PAGE 80h 5 Yes 10h No

PROGRAM PAGE CACHE 80h 5 Yes 15h No

PROGRAM for INTERNAL 

DATA MOVE

85h 5 Optional 10h No

RANDOM DATA INPUT 85h 2 Yes – No

ERASE BLOCK 60h 3 No D0h No

RESET FFh – No – Yes

Table 6-3.  (continued)

�NAND Flash Commands
When any NAND flash command is issued, CE# and ALE must be LOW, 

CLE must be asserted, and write clocks (WE#) must be provided. When 

any NAND flash address is issued, CE# and CLE must be LOW, ALE must 

be asserted, and write clocks (WE#) must be provided. While the device is 

busy, only two commands can be issued: RESET and READ STATUS.

�RESET Operation
The simplest NAND flash command is the RESET (FFh) command. The 

RESET command does not require an address or subsequent cycle(s). 

Simply assert CLE and issue a write clock with FFh on the data bus, and 

a RESET operation is performed. This RESET command must be issued 

immediately following power-up and prior to issuing any other command.
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RESET is one of two commands that can be issued while the NAND 

flash device is busy. If the device is busy processing a previous command, 

issuing a RESET command aborts the previous operation. If the previous 

operation was an ERASE or PROGRAM command, issuing a RESET command 

aborts the command prematurely, and the desired operation does not 

complete. ERASE and PROGRAM can be time-consuming operations; issuing 

the RESET command makes it possible to abort either and reissue the 

command at a later time.

Figure 6-4.  RESET command timing diagram

�READ ID Operation
The READ ID (90h) command requires one dummy address cycle (00h), 

but it does not require a second command cycle. After the command 

and dummy addresses are issued, the ID data can be read out by keeping 

CLE and ALE LOW and toggling the RE# signal for each byte of ID. READ ID 

response depends on the manufacturer specifications, which typically 

include Manufacturer ID, Device ID, Cell Type, page size, etc.
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Figure 6-5.  READ ID timing diagram

�READ STATUS Operation
READ STATUS (70h) is the second command that can be issued while the 

NAND flash device is busy. This command does not require an address 

or second command cycle. The status of the NAND flash device can be 

monitored by issuing the RE# clock signal following the READ STATUS 

command. If the READ STATUS command is used to monitor the ready 

state of the device, the command should be issued only one time, and the 

status can be re-read by reissuing the RE# clock. Alternatively, the RE# 

signal can be kept LOW, waiting to receive the appropriate status bit before 

proceeding. READ STATUS also reports the status of the write-protect signal, 

and the pass/fail status of previous PROGRAM or ERASE operations. It is 

mandatory that the pass status be attained on PROGRAM or ERASE operations 

to ensure proper data integrity.

�READ STATUS Response
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Figure 6-6.  READ STATUS timings application example

Note  If the Ready/Busy pin signals of multiple devices are common 
wired as shown in Figure 6-6, the READ STATUS function can be 
used to determine the status of each individually selected device.

�ERASE Operation
The BLOCK ERASE (60h) operation erases an entire block. To issue a 

BLOCK ERASE operation, use the WE# signal to clock in the ERASE (60h) 

command with CLE asserted. Next, clock in three address cycles, keeping 
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ALE asserted for each byte of address. (These three address cycles are the 

most significant address cycles and include the block address and the 

page address.) The page address portion (the six low-order bits of the third 

address cycle) is ignored, and only the block address portion of the three 

most significant bytes is used. After the address is inputted completely, 

issue the second command (command cycle 2) of D0h, which is clocked in 

with WE# while CLE is being asserted. This confirms the ERASE operation, 

and the device goes busy for approximately 5us. When the device 

completes this operation, it is ready for another command. The READ 

STATUS command can be issued at any time, even when the device is busy 

during the ERASE operation. The microprocessor or controller can monitor 

the device via the READ STATUS command.

Figure 6-7.  Timing diagram for ERASE BLOCK operation
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Figure 6-8.  Flow diagram for ERASE BLOCK operation

�PROGRAM Operations
PROGRAM operations can only program bits to 0 and assume that the user 

started with a previously erased block. If the user does not want to program 

a bit (or group of bits), the bits can be kept in the erased state by setting 

that particular bit/group to 1. When the PROGRAM PAGE (80h) command 

is received, the input register is reset (internally) to all 1s. This supports 
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inputting only bytes of data that are to be programmed with 0 bits. The 

PROGRAM operation starts with the 80h command (with CLE asserted). Next, 

de-assert CLE and assert ALE to input the full five address cycles. After the 

command and address are inputted, data is inputted to the register. When 

all the data has been inputted, the 10h command is issued to confirm the 

previous command and start the programming operation. It is mandatory 

that the user read the status and check for successful operation. If the 

operation is not successful, the block should be logged as a bad block and 

not be used in the future. All data should be moved to a good block.

Figure 6-9.  Timing diagram for program operation
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Figure 6-10.  Flow diagram for PROGRAM operation

�READ Operation
A READ operation starts with the 00h command, followed by five address 

cycles, then the 30h command to confirm the command sequence. After 

the READ transfer time (tR) has elapsed, the data is loaded into the register 

and ready for outputting. Asserting RE# enables the NAND flash device 

to output the first byte of data corresponding to the column address 

specified. Subsequent RE# transitions output data from successive column 

locations. When the RE# signal is HIGH (not asserted), the IO lines are  

tri-stated. Reading past the end of the device results in invalid data.
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Figure 6-11.  Timing diagram for READ with random data out 
operation

Data Register

Cache Register

NAND Flash 
Memory Array

1

1

Page - P

Page P

Page P

Figure 6-12.  NAND flash array internal working during read 
operation
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�RANDOM DATA READ Operation
The user can directly access random data by issuing the 05h command, 

two address cycles, and an E0h confirmation cycle. When the page has 

been read from the array, this command provides rapid access to the data.

Data Register

Cache Register

NAND Flash 
Memory Array

1

Page - P

Page P

Page P
Page P to RAM

Figure 6-13.  NAND flash array internal working during RANDOM 
READ DATA out

Figure 6-14.  Flow diagram for READ operation with RANDOM 
DATA out operation
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�Typical NAND Packet Structure

Figure 6-15.  NAND flash internal packet structure

NAND flash memory utilizes a structured data format known as the NAND 

PACKET, which comprises both the data area and the spare area. The spare 

area can be employed to store essential firmware-related information 

and an error-correcting code (ECC) used for error-correction purposes. 

In this structure, for example, the data area consists of 512 bytes, and it is 

accompanied by a 16-byte spare area, creating a total of 528 bytes for the 

combined areas.

To ensure data integrity, ECC is a critical component in NAND flash. 

The example NAND flash memory we are considering here includes a  

64-byte spare area for each page, with 16 bytes per 512-byte sector. 

Within this spare area, the ECC can be stored along with other software 

information, like wear-leveling or logical-to-physical block-mapping 

details. ECC can be implemented either in hardware or software, with 

hardware-based implementation offering better performance.

During a programming operation, the ECC unit calculates the ECC 

based on the data stored in the sector, and the code is then written to the 

corresponding spare area. When reading out the data, the ECC is also 

retrieved, and the reverse operation is applied to verify the correctness 

of the data. The ECC algorithm is capable of correcting data errors, and 
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the level of correction depends on the strength of the algorithm used. 

This inclusion of ECC, whether in hardware or software, ensures a robust 

solution at the system level.

For error correction, different ECCs are available, each offering varying 

levels of correction capability. Simple Hamming codes are the easiest 

to implement in hardware, but they can only correct single-bit errors. 

Reed-Solomon codes, however, provide more robust error-correction 

capabilities and are commonly used in many NAND flash controllers in 

the market. Additionally, BCH codes are gaining popularity due to their 

improved efficiency over Reed-Solomon codes.

�PAGE READ CACHE MODE Operation
As we have seen before, the NAND flash device actually has two registers: 

a data register and a cache register. The attributes of these two registers 

play an important role in the various NAND flash caching modes. The 

PAGE READ CACHE MODE command enables the user to pipeline the next 

sequential access from the array while outputting the previously accessed 

data. This double-buffered technique makes it possible to hide the READ 

transfer time (tR). Data is initially transferred from the NAND flash array 

to the data register. If the cache register is available (not busy), the data is 

quickly moved from the data register to the cache register. After the data 

has been transferred to the cache register, the data register is available 

and can start to load the next sequential page from the NAND flash array. 

Using the PAGE READ CACHE MODE command delivers a performance 

improvement over a traditional PAGE READ command on an 8-bit input/

output (IO) device. PAGE READ CACHE MODE can be especially useful during 

system boot-up, when large amounts of data are typically read from the 

NAND flash device and start-up time is critical.
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Figure 6-16.  NAND flash array internal working during cache read 
operation

Figure 6-17.  NAND page read and NAND page cache read timing 
diagram comparison

�PROGRAM PAGE CACHE Operation
PROGRAM PAGE CACHE MODE provides a performance improvement over 

normal PROGRAM PAGE operations. PROGRAM PAGE CACHE MODE is a  

double-buffered technique that enables the controller to input data 
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directly to the cache register and uses the data register as a holding area 

to supply data for programming the array. This frees the cache register so 

that the next sequential page operation can be loaded in parallel. In many 

applications, the programming time (tPROG) can be completely hidden. 

As with the PAGE READ CACHE MODE command, the data register is used to 

maintain the data throughput during the entire programming cycle. This 

frees the cache register to receive the next page of data from the controller.

Figure 6-18.  NAND flash array internal working during cache 
program operation
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Figure 6-19.  NAND page program and NAND page cache program 
timing diagram comparison
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�Advanced Command Sets

Table 6-5.  NAND Advanced Command Sets

Command Command Cycle 

Set- 1

Number of

Address

Cycles Set-1

Command

Cycle Set-2

Number of

Address

Cycles Set-2

MULTI PLANE READ 00h – 32h 5 00h – 30h 5

READ PAGE CACHE SEQUENTIAL 00h – 32h – 00h – 31h 5

RANDOM DATA READ OUTPUT 05h 5 E0h -

MULTI PLANE PROGRAM PAGE 80h – 11h 5 80h – 10h 5

MULTI PLANE PROGRAM PAGE 

CACHE

80h – 11h 5 80h – 1Ah 5

ERASE BLOCK 60h 3 D0h -

As NAND flash technology continues to evolve, manufacturers have 

introduced extended command sets to enhance the performance and 

efficiency of these memory devices. These extended commands provide 

additional capabilities beyond the standard commands traditionally used 

with NAND flash. Understanding and utilizing these extended commands 

can greatly improve the overall performance and reliability of the 

storage device.

Extended NAND commands enable more efficient data transfer and 

management, making them particularly valuable in scenarios where speed 

and responsiveness are crucial, which is necessary even in an SD card. 

These commands allow simultaneous reading or writing from multiple 

planes within the NAND flash, significantly improving data access rates. 
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By leveraging these capabilities, developers can optimize read and write 

operations, making their device more responsive and efficient.

One of the key features of extended NAND commands is their ability 

to support multi-plane operations. With multi-plane reads, multiple 

data planes can be accessed simultaneously, reducing latency and 

boosting read performance. Similarly, multi-plane writes allow data to be 

programmed into multiple planes concurrently, speeding up the writing 

process and enhancing overall write efficiency.

Another advantage of extended NAND commands is their support for 

cache operations. Multi-plane cache reads and writes (double-buffered 

technique) makes it possible to hide the read transfer tREAD /program 

time: tPROG, further improving system performance. This double-buffered 

technique makes it possible to hide the READ transfer time (tR). Data is initially 

transferred from the NAND flash array to the data register for both the planes 

simultaneously. If the cache register is available (not busy), the data is quickly 

moved from the data register to the cache register in both planes.

�Address Input Restrictions 
for Multi-Plane Operations
Multi-plane capability can significantly enhance data transfer rates and 

improve overall system performance. However, when utilizing multi- 

plane operations, there are specific address input restrictions that must be 

followed to enable this functionality correctly, as follows:

•	 Sequential Addressing: When performing multi- 

plane operations, the NAND flash memory requires 

sequential addressing of pages within each plane. 

This means that the pages accessed in a multi-plane 

operation should be in consecutive order within their 
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respective planes. Sequential addressing ensures 

efficient data retrieval and programming, as the NAND 

flash device can optimize the internal read and write 

operations for consecutive page access instances.

•	 Identical Page Select Command: For each plane 

involved in a multi-plane operation, the Page Select 

command must be identical. This command specifies 

the page address within the block and helps the NAND 

flash device identify the specific pages that need to be 

accessed in the multi-plane operation. By using the 

same Page Select command for all planes, the NAND 

flash memory can effectively synchronize the read or 

write operations across different planes.

•	 Address Set Commands: The address input for 

multi-plane operations requires a specific sequence 

of address set commands. These commands are 

responsible for loading the address information into 

the NAND flash memory before the multi-plane read or 

write operation can be initiated. The first and second 

sets of commands must be used to set the page address 

and block address, respectively. Careful adherence 

to this sequence ensures that the NAND flash device 

correctly interprets the addresses and performs the 

intended multi-plane operation.

•	 Boundary Limitations: Multi-plane operations must 

be confined within a block of each plane. Crossing the 

boundaries of different planes during a multi-plane 

operation is not supported. Thus, all the pages involved 

in a multi-plane operation should belong to the same 
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block within their respective planes. This limitation 

ensures that the multi-plane operations are effectively 

contained within the boundaries of each block, 

avoiding any data conflicts or data corruption that 

might occur when operating across block boundaries.

�Multi-plane Read
The Multi-Plane Read operation is an extension of the standard Page 

Read operation. It allows reading data from multiple pages simultaneously, 

which enhances read performance. After issuing the command cycle 

set-1 commands, the device quickly returns to the ready state, and data 

from the selected pages are transferred to cache registers. The multi-plane 

addresses are set through specific commands. Once the data is loaded 

into the cache registers, it can be read out using the MULTI PLANE RANDOM 

DATA OUTPUT command. The Page Select command should be the same 

between planes in the repeatable sequence. This enables efficient and 

rapid access to data from multiple pages within the NAND flash memory.
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Figure 6-20.  Flow diagram for multi-plane read with random data 
out operation

�MULTI- PLANE RANDOM CACHE READ  
Operation
The Multi Plane Random Cache Read function allows reading data 

from multiple pages into the cache registers ahead of the command 31h. 

This operation is beneficial as it allows for faster access to data since the 

selected pages are loaded into the page register while the host reads data 
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from the cache register. This process enables a quick return to the ready 

state (R/B HIGH) unless the previous data is still being loaded. The multi-

plane addresses are set through specific commands, and the activated 

planes for the first Multi Plane Random Cache Read are retained for 

subsequent address sequences until the Multi Plane Random Cache 

operation is completed with command 3Fh. It's important to use identical 

Page Select commands between planes within the repeatable sequence. 

This mechanism optimizes data retrieval and improves overall read 

performance from multiple pages within the NAND flash memory.

Figure 6-21.  Flow diagram for multi-plane cache read with random 
data out operation
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Figure 6-21.  (continued)
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�Multi Plane Program Operation
The Multi Plane Full Sequence Program function expands the effective 

programmable page size by using multiple pages. The host can load 

data for another page using command 11h as the second command. 

After issuing the 11h command, the R/B signal returns HIGH (ready 

Figure 6-21.  (continued)

Chapter 6  Basic Understanding of NAND Flash Interface



86

state) in a short period since it is not an actual programming operation. 

When loading data for the last page, the command 80h is used before 

loading data, and command 1Ah/10h is issued after data loading as the 

second command. After the command 10h, all the data loaded into 

each page starts to be programmed simultaneously into the flash array. 

It’s important to ensure that the multi-plane addresses are correctly set 

through the first and second sets of commands. This feature enables an 

efficient and streamlined process for programming data across multiple 

pages, effectively extending the programmable page size in the NAND 

flash memory.
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Figure 6-22.  Flow diagram for multi-plane program operation
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�Multi Plane Cache Program Operation
The Multi Plane Cache Full Sequence Program is an enhanced 

version of the Cache Full Sequence Program. In this operation, multiple 

pages are loaded for programming, and then command 15h is issued. 

After that command, R/B returns HIGH once the transfer of data from the 

cache register to the page register is completed. The internal program 

operation begins after R/B returns, while other pages can still be loaded 

by the host. At the final page loading for the entire Multi Plane Cache 

Program, command 10h is needed to complete the operation, and R/B 

stays busy for a specific period known as tPROG. It's essential to note that 

the Multi Plane Cache Program should only be done within a block of 

each plane and should not extend beyond the boundary of the plane. 

The activated planes for the first Multi Plane Cache Full Sequence 

Program will be used in the next address sequence until the entire Multi 

Plane Cache Full Sequence Program is completed by command 10h. 

This feature allows efficient and coordinated programming of multiple 

pages in the NAND flash memory, enhancing the overall performance and 

functionality of the device.
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Figure 6-23.  Flow diagram for multi-plane cache program operation
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�Multi Block Erase Operation
Multi Block Erase provides the option to erase multiple blocks, with 

each block belonging to a different plane, all at the same time. However, 

it’s essential to note that the same plane address should not be set twice 

within a set of address settings for the Multi Block Erase operation. 

This restriction ensures that blocks from each plane are only erased once 

and prevents any unintended or duplicate erasures, thereby maintaining 

data integrity and preventing data loss. By utilizing Multi Block 

Erase, developers can efficiently manage and erase multiple blocks, 

optimizing the overall performance and management of the NAND flash 

memory device.
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Figure 6-24.  Flow diagram for multi-plane block erase operation
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�Summary
In conclusion, this chapter provided a brief overview of the fundamental 

concepts and principles behind interfacing with NAND flash memory. 

We began by introducing hardware-interfacing aspects, and also explored 

the pin configurations, signal descriptions, and timing diagrams essential 

for proper communication between the NAND flash memory and the 

CPU/processor. We explored the multi-plane operation, a powerful 

feature of 3D vertical NAND that allows simultaneous access to multiple 

pages in different planes. Understanding the address input restrictions 

and command sequences for multi-plane operations is essential for 

maximizing the benefits of this technology.

Moreover, we looked into the NAND flash interface standards, such 

as ONFI (Open NAND Flash Interface) specification and Toggle Mode 

DDR NAND interface. Standardization plays a crucial role in ensuring 

compatibility, interoperability, and ease of integration in various 

applications.

A robust understanding of NAND flash memory interfacing is vital 

for engineers and developers working on embedded systems, solid-state 

drives, and various other applications. By grasping the concepts covered 

in this chapter, they can design efficient, optimized, and reliable NAND 

flash-based solutions that cater to a wide range of industries and meet the 

diverse needs of modern computing and data storage.
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CHAPTER 7

Common SSD 
Firmware Features
In this chapter, we will discuss the common solid-state drive (SSD) 

firmware features. We will start by discussing the mapping table, which 

is used to store the mapping between logical block addresses (LBAs) 

and physical block addresses (PBAs). We will then discuss bad block 

management, which is used to identify and manage bad blocks on the 

drive. We will also discuss wear leveling, which is used to distribute writes 

evenly across the drive to extend its lifespan. Garbage collection is another 

important feature that is used to reclaim unused space on the drive. We 

will also discuss data retention, error handling, power-loss protection, and 

unexpected shutdown support.

Wear leveling is a technique used by SSD firmware to distribute writes 

across the drive in an efficient manner, with the goal of extending the 

lifespan of the drive. Because an SSD has a limited number of program/

erase cycles before the memory cells begin to degrade, it is important to 

ensure that the cells are written to an equal number of times. Wear-leveling 

algorithms in SSD firmware select the best blocks (lower P/E cycle count) 

to erase and to distribute writes to in a way that maximizes the number of 

available blocks for writing.

Static wear leveling helps to prevent the problem of non-uniform 

usage of blocks in a block pool by identifying the cold data on the drive 

and relocating it to a block with a high program/erase count. In some 
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cases, a block may hold “cold” data that is not overwritten by the host for 

a long time, causing that block to not be freed for erasure and reuse. This 

can lead to uneven distribution of program/erase (P/E) cycles among the 

blocks, with some blocks reaching their end of life sooner than others. 

The wear-leveling scheme identifies such “cold” blocks and moves their 

data to a “hot” block, allowing the cold block to be erased and used again. 

This helps to distribute P/E cycles evenly among all blocks in the pool, 

prolonging the overall lifespan of the block pool.

Garbage collection is a related process that is used to reclaim space 

on an SSD that has been marked as no longer in use. This can involve 

consolidating data from multiple blocks into a single block and then 

erasing the original blocks.

The main objective of garbage collection is to free up available blocks 

in a system by moving valid data from a source block with less-valid data 

to a new block. This allows the space in the source block to be reclaimed 

and used again. One approach to choosing which block to free up is for the 

firmware to maintain a count of the valid data in each block and select the 

block with the least amount of valid data for garbage collection.

However, the writes involved in compaction, which is the process of 

moving valid data from the source block to a new block, are not initiated 

by the host. This results in a phenomenon known as write amplification, 

where the SSD is written more than the amount of data originally received 

from the host. Write amplification increases the number of program/

erase (P/E) cycles on the SSD, which can impact the host write speed and 

shorten the lifespan of the SSD. Therefore, it is important to minimize the 

need for compaction operations and only perform them when necessary.

In addition to freeing up space in the source block, another objective of 

garbage collection is to move data from a block that is experiencing errors 

to a healthy block. This helps to avoid data loss due to errors in the NAND 

flash memory, which can occur over time as the number of P/E cycles 

increases. By moving the data from a bad block to a good block, you ensure 

the data can still be accessed by the host without error.
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�Significance of Garbage Collection in SSDs
Fragmentation occurs as a result of data updates and deletions, leading to 

scattered data blocks across the NAND flash memory. Garbage collection 

helps consolidate these blocks, reducing the need for scattered reads 

and writes and improving performance. This is because when the data 

is compacted together, they are more likely to be located in contiguous 

memory blocks. This makes it easier for the flash controller to access the 

data, which can lead to improved performance.

�Types of Garbage Collection Strategies
�Full Garbage Collection
Full garbage collection, also known as complete garbage collection, 

involves the relocation and consolidation of all valid data blocks within the 

NAND flash memory. Its objective is to eliminate fragmentation entirely by 

moving data blocks to contiguous regions. This type of garbage collection 

is typically performed during idle or low-activity periods when the SSD has 

sufficient available resources to carry out the extensive relocation process.

Full garbage collection offers the advantage of achieving optimal 

storage utilization and minimizing write amplification. By consolidating 

data blocks, it reduces the need for scattered read and write operations, 

resulting in improved overall performance. However, full garbage 

collection can be time consuming and resource intensive, making it less 

suitable for an application/workload with frequent write operations.

�Partial Garbage Collection
Partial garbage collection involves the relocation and consolidation of only a 

subset of valid data blocks within the NAND flash memory. Unlike full garbage 

collection, partial garbage collection targets specific areas or segments of the 

SSD that exhibit higher fragmentation or higher invalid block density.
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Partial garbage collection strikes a balance between the benefits of full 

garbage collection and the resources required to perform the operation. 

It helps reduce write amplification and improves performance in specific 

areas prone to fragmentation. By selectively addressing regions with 

higher fragmentation, partial garbage collection provides a more efficient 

approach for optimizing storage utilization and enhancing overall SSD 

performance.

�Dynamic Garbage Collection
Dynamic garbage collection combines elements of both full and partial 

garbage collection strategies. It dynamically determines the level of 

garbage collection required based on real-time workload and system 

conditions. The decision to perform either full or partial garbage collection 

is made by the SSD firmware based on factors such as the level of 

fragmentation, the available resources, and the workload intensity.

Dynamic garbage collection offers the flexibility to adapt garbage- 

collection operations to the specific needs of the SSD. It optimizes 

performance by selectively targeting heavily fragmented areas while 

minimizing the impact on overall system resources. By dynamically 

adjusting the garbage-collection approach, SSDs can strike a balance 

between performance optimization and resource utilization, ensuring 

efficient data management in varying workload scenarios.

�Error-Triggered Garbage Collection
Error-triggered garbage collection is a specialized type of garbage 

collection that is initiated in response to program errors, read errors, or 

erase errors encountered during SSD operation. These errors can include 

issues such as uncorrectable bit errors, unresponsive blocks, program 
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failure, or failed erase operations. When such errors occur, the SSD 

firmware triggers a dedicated garbage-collection process to relocate data 

from the problematic blocks, mark the blocks as invalid, and reclaim them 

for future use.

Error-triggered garbage collection aims to mitigate the impact of errors 

on SSD performance and data integrity. By promptly identifying and 

handling faulty blocks, it helps to maintain the overall health and reliability 

of the SSD. This type of garbage collection ensures that erroneous blocks 

are not used for data storage, minimizing the chances of data corruption 

or loss.

Engineers need to carefully consider the types of garbage-collection 

strategies based on the specific SSD characteristics, workload patterns, and 

performance requirements of their systems. The choice of full, partial, or 

dynamic garbage collection can have a significant impact on the efficiency, 

performance, and longevity of the SSD. Understanding these strategies 

empowers engineers to design and implement effective garbage- 

collection algorithms tailored to the unique needs of their applications 

and environments.

�Garbage Collection Read Process
The garbage collection read process is a critical step within the garbage- 

collection mechanism of an SSD. During garbage collection, valid data is 

relocated and consolidated to optimize storage efficiency. In this chapter, 

we will explore the garbage collection read process in detail, focusing on 

retrieving valid data, handling incomplete or interrupted reads, and the 

role of address translation during compaction reads.
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�Retrieving Valid Data during Compaction
During the garbage-collection process, the SSD firmware needs to retrieve 

valid data from the blocks that are being compacted. This involves reading 

the contents of the valid data blocks that will be relocated. The firmware 

accesses the NAND flash memory to retrieve the stored data, which can 

include file contents, application data, or any other user data.

To retrieve the valid data, the firmware utilizes the mapping table, 

which contains the mapping between logical block addresses (LBAs) and 

their corresponding physical block addresses (PBAs). The mapping table 

allows the firmware to accurately locate the physical location of the data 

within the NAND flash memory. By referencing the mapping table, the 

firmware can identify the specific valid data blocks that need to be read 

during the compaction process.

Once the garbage collection is completed, the firmware must ensure 

that the valid data is still accessible. This is done by maintaining a mapping 

of the old and new locations of data. When a read request is received, the 

firmware first checks the mapping to see if the data has been compacted. If 

it has, the firmware then reads the data from the new location.

�Handling Incomplete or Interrupted Reads
It is possible for a read request to be interrupted before it is completed. This 

can happen if the SSD is powered off or if the firmware encounters an error. 

When this happens, the firmware must resume the read request from the 

point at which it was interrupted to restart the relocation process gracefully. 

To ensure data integrity and maintain the consistency of the compaction 

process, the SSD firmware employs error-handling and error-correction 

mechanisms. These mechanisms involve implementing error-detection 

codes, such as cyclic redundancy checks (CRC), and error-correction codes, 

such as Reed-Solomon codes.

Chapter 7  Common SSD Firmware Features



99

If an incomplete or interrupted read occurs, the firmware can use the 

error-detection and -correction codes to identify and rectify any potential 

errors in the read data. By applying these error-correction techniques, 

the firmware can recover the missing or corrupted data and ensure the 

successful completion of the compaction process.

�Address Translation during 
Compaction Reads
Address translation plays a crucial role during the compaction read 

process. The firmware utilizes the address translation mechanisms to 

convert the logical block addresses (LBAs) into their corresponding 

physical block addresses (PBAs) when retrieving valid data.

The address translation process involves accessing the mapping table, 

which stores the LBAs and their corresponding PBAs. By looking up the 

mapping table, the firmware can obtain the accurate physical location 

of the data within the NAND flash memory. This translation allows the 

firmware to read the correct data blocks during the compaction process 

and maintain the integrity of the data.

The mapping table is a key aspect of SSD operations and is essential 

for efficient data retrieval and management. The firmware’s ability to 

accurately translate LBAs into PBAs ensures that valid data is correctly 

accessed during the compaction read process.

Once the garbage collection is completed, the mapping table must be 

updated to reflect the new location of data. This is done by the firmware 

during the compaction process. When a read request is received, the 

firmware first checks the mapping table to see if the address has been 

updated. If it has, the firmware then uses the new address to read the data.

By understanding the intricacies of the compaction read process, 

designers and engineers can develop effective garbage-collection 

algorithms and optimize the performance of SSDs. Considerations such 
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as data retrieval, error handling, and address translation contribute to the 

overall reliability and efficiency of the compaction read process in SSD 

firmware.

Here are some additional details about the compaction read process:

•	 The compaction read process is a complex operation 

that requires careful coordination between the 

firmware and the hardware.

•	 The firmware should maintain a mapping of the old 

and new locations of data.

•	 The firmware must handle incomplete or interrupted 

reads gracefully.

•	 The firmware must update the mapping table to reflect 

the new location of data.

�Writing Data during Compaction
During the garbage-collection process, when valid data blocks are 

relocated and consolidated the SSD firmware must write the data to the 

new blocks and free up the source blocks. This process ensures that the 

data remains accessible and retrievable after compaction.

The firmware retrieves the valid data from the source blocks and writes 

it to the target blocks. The actual data transfer occurs by programming 

the NAND flash memory cells with the valid data from source blocks. The 

firmware ensures that the data is accurately written to the target blocks, 

preserving the integrity of the information.
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�Address Mapping and Updating
Address mapping and updating play a crucial role in the compaction 

write process. As the valid data is moved to new blocks, the firmware 

must update the corresponding address mappings in the mapping table. 

This update ensures that the logical block addresses (LBAs) are correctly 

associated with the new physical block addresses (PBAs).

The firmware modifies the mapping table entries to reflect the new 

mappings between LBAs and PBAs. By updating the mapping table, the 

firmware maintains an accurate translation between LBAs requested by 

the host system and the physical location of the data within the NAND 

flash memory.

�Managing Block Erasure and Wear-Leveling
As part of the compaction write process, the SSD firmware must manage 

block erasure and consider wear leveling while allocating new blocks. 

When data is relocated to new blocks, the source blocks become invalid 

and are eligible for erasure to reclaim them for future use.

The firmware schedules the erasure of the invalidated blocks, typically 

during idle periods or when there is sufficient available time for the 

operation. By erasing these blocks, the firmware ensures that they are 

ready to be used for new data storage, optimizing the efficiency of the 

NAND flash memory.

Additionally, wear-leveling mechanisms come into play during the 

compaction write process; i.e., when a new target block is chosen. The 

firmware evenly distributes write operations across the blocks, preventing 

specific blocks from experiencing excessive wear. This approach extends 

the overall lifespan and reliability of the SSD by maintaining balanced 

usage of the NAND flash memory.
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Effective management of block erasure and wear leveling is crucial for 

maintaining the performance and longevity of an SSD. Properly handling 

these aspects during the compaction write process ensures efficient data 

relocation, optimal storage utilization, and prolonged SSD lifespan.

By understanding the intricacies of the compaction write process, 

designers and engineers can develop robust garbage-collection algorithms 

and optimize the performance of SSDs. The accurate writing of data, 

address mapping and updating, and effective block erasure and wear- 

leveling management contribute to the overall reliability and efficiency of 

the compaction write process in SSD firmware.

�Handling Unexpected Power-Off Conditions 
in Garbage Collection
Handling unexpected power-off conditions is a critical aspect of the 

garbage-collection mechanism in an SSD. Power-loss events can occur 

unexpectedly and pose a risk to data consistency and system stability. 

A design should be considered for handling unexpected power-off 

conditions in garbage collection, including ensuring data consistency 

during power loss, write journaling and recovery mechanisms, and 

managing incomplete compaction operations.

�Ensuring Data Consistency during Power Loss
During the garbage-collection process, an unexpected power loss can 

interrupt ongoing compaction operations (either read from source blocks 

or while writing to destination block, or while updating the mapping 

table), potentially leading to data inconsistencies. It is crucial to ensure 

data consistency, even in the face of power failures.

To do so, the SSD firmware employs various mechanisms, including 

transactional updates and atomic operations. These mechanisms ensure 
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that compaction operations are performed in a consistent and atomic 

manner. Atomic operations ensure that either all or none of the updates 

related to compaction are applied, preventing partial or inconsistent 

modifications.

Furthermore, the firmware may employ techniques such as write 

buffering or power-loss protection capacitors. Write buffering temporarily 

stores data in volatile memory before it is permanently written to the 

NAND flash memory. Power-loss protection capacitors provide enough 

energy to complete ongoing write operations and safely flush buffered data 

in the event of a sudden power loss.

By implementing these techniques, the firmware minimizes the 

risk of data corruption or loss during unexpected power-off conditions, 

maintaining data consistency in the face of power failures.

�Write Journaling and Recovery Mechanisms
Write journaling is a common technique used to handle unexpected 

power-off conditions in garbage collection. It involves keeping a log or 

journal of write operations during the compaction process. The write 

journal captures the modifications made to the mapping table and 

data blocks.

In the event of an unexpected power loss, the firmware can consult 

the write journal upon system restart. By replaying the recorded write 

operations, the firmware can recover the system to a consistent state and 

ensure the integrity of the compaction process.

Recovery mechanisms are employed to resume or recover incomplete 

compaction operations after a power loss. These mechanisms involve 

identifying the point of interruption and resuming or reperforming the 

necessary compaction steps from that point onward. The recovery process 

ensures that the SSD can continue the garbage collection process without 

compromising data integrity or system stability.
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�Managing Incomplete Compaction Operations
In the event of a power loss or system interruption during compaction, the 

SSD firmware must handle incomplete operations to maintain the integrity 

of the garbage-collection process.

The firmware employs techniques such as rollback or forward recovery 

to manage incomplete compaction operations. Rollback involves undoing 

or reverting the partially completed operations to return the system to 

a consistent state. Forward recovery, meanwhile, involves resuming or 

completing the remaining operations from the point of interruption.

During recovery, the firmware may perform additional checks, such 

as verifying the integrity of the data or looking for any inconsistencies 

caused by the interruption. These checks help ensure that the recovered 

compaction process does not introduce data errors or inconsistencies.

By effectively managing incomplete compaction operations, the 

firmware minimizes the impact of power-loss events and ensures that the 

garbage-collection process can be resumed or recovered without data 

corruption or loss.

Proper handling of unexpected power-off conditions in garbage 

collection is crucial for maintaining data consistency, system stability, 

and the overall reliability of an SSD. Ensuring data consistency during 

power loss, implementing write journaling and recovery mechanisms, and 

managing incomplete compaction operations contribute to the robustness 

and effectiveness of the garbage-collection process.

�Performance Considerations 
in Garbage Collection
Performance must be considered when designing and implementing 

garbage-collection algorithms in SSD firmware. In this section, we will 

explore the various performance considerations associated with garbage 
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collection. We will discuss the impact of compaction on SSD performance, 

the concept of write amplification, and strategies to minimize performance 

degradation.

�Impact of Compaction on SSD Performance
The compaction process in garbage collection can have an impact on the 

performance of an SSD. As valid data is relocated and consolidated, the 

following factors come into play:

•	 Read Performance: During compaction, the firmware 

needs to read valid data from the source blocks and 

write it to the target blocks. The time required for these 

read operations can impact overall read performance. 

If the compaction process involves a significant amount 

of data movement, it can lead to increased read 

latencies.

•	 Write Performance: The write performance of an SSD 

can be affected during compaction due to the extensive 

write operations involved. Writing valid data to new 

blocks and updating the mapping table can increase 

the write workload on the NAND flash memory, 

potentially resulting in longer write latencies.

•	 Overhead: Garbage collection introduces additional 

overhead in terms of CPU utilization and memory 

resources. The firmware needs to manage various data 

structures, perform address translation, and handle 

error correction, all of which require computational 

resources.
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•	 To minimize the impact of compaction on SSD 

performance, firmware designers must optimize 

garbage-collection algorithms, utilize efficient data 

management techniques, and leverage SSD-specific 

optimizations.

�Write Amplification and Its Effects
Write amplification is a critical factor that affects SSD performance and 

longevity. It refers to the ratio between the amount of data written by the 

host system and the actual amount of data programmed into the NAND 

flash memory.

During the compaction process, write amplification can occur due to 

several factors, including the following:

•	 Data Relocation: When valid data is moved from 

source blocks to target blocks, additional data 

movement and rewriting may be required. This can 

result in a higher amount of data being written to the 

NAND flash memory than what was initially written by 

the host system.

•	 Mapping Table Updates: Updating the mapping 

table with new address mappings during compaction 

requires additional write operations to NAND, 

contributing to write amplification.

Higher write amplification leads to increased wear on the NAND 

flash memory and reduced overall SSD lifespan. It also impacts write 

performance and can result in decreased write endurance.
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�Strategies to Minimize Performance Degradation
To mitigate the performance degradation caused by compaction and write 

amplification, the following strategies can be employed:

•	 Efficient Data Placement: Optimizing data placement 

during compaction can minimize the need for 

scattered read and write operations. By consolidating 

data and placing it sequentially, read and write 

performance can be improved.

•	 Dynamic Compaction: Implementing dynamic 

compaction techniques allows the firmware to adjust 

the compaction process based on workload patterns. 

By intelligently managing the compaction workload, 

the firmware can optimize performance and resource 

utilization.

•	 Advanced Garbage-Collection Algorithms: Designing 

and implementing advanced garbage-collection 

algorithms can help minimize the frequency and 

impact of compaction operations. These algorithms 

intelligently identify and prioritize the most fragmented 

or invalid blocks for compaction, reducing unnecessary 

data movement.

•	 Write Optimization Techniques: Leveraging write 

optimization techniques, such as write combining or 

coalescing, can reduce the number of write operations 

required during compaction, minimizing write 

amplification and improving write performance.
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By incorporating these strategies, firmware designers can mitigate the 

performance degradation caused by compaction and write amplification, 

resulting in improved overall SSD performance, longevity, and user 

experience.

�Balancing Garbage Collection and Host 
Write Operations
Balancing the workload between garbage collection and host write 

operations is crucial for maintaining optimal performance and efficiency 

in SSDs. In this section, we will explore various strategies and techniques 

to achieve a balance between garbage collection and host write operations, 

ensuring smooth operation and maximizing the lifespan of the SSD.

�Understanding the Workload Characteristics
To effectively balance garbage collection and host write operations, it 

is essential to understand the workload characteristics of the system. 

Analyzing the workload patterns, such as write intensity, read-to-write ratio, 

and data access patterns, provides insight into the optimal distribution of 

resources between garbage collection and host write operations.

By monitoring and analyzing the workload, firmware designers can 

make informed decisions on when and how frequently to trigger garbage- 

collection processes, considering the workload’s impact on performance, 

wear leveling, and overall system stability.

�Garbage Collection Prioritization
Garbage collection can be prioritized to ensure a balanced workload. 

It involves determining the order and scheduling of garbage-collection 

processes based on various factors, such as block fragmentation, block 

erasure count, or data invalidation rate.
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Critical factors to consider in prioritizing garbage collection include 

avoiding excessive write amplification, minimizing data migration, and 

preventing fragmentation. By prioritizing garbage collection based on 

these factors, firmware designers can prevent performance degradation 

and optimize the utilization of resources.

�Dynamic Resource Allocation
Dynamic resource allocation is a technique that involves dynamically 

adjusting the allocation of system resources, such as CPU cycles, memory, 

and IO bandwidth, between garbage collection and host write operations. 

This technique allows the firmware to adaptively allocate resources based 

on the current system workload and requirements.

During periods of high host write activity, resources can be allocated 

to prioritize host write operations, ensuring that application-level 

performance is not compromised. Conversely, during periods of lower 

write activity, more resources can be dedicated to garbage collection to 

minimize the impact of garbage-collection processes on the system’s 

performance.

�Over-Provisioning
Over-provisioning is the practice of reserving a portion of the NAND flash 

memory capacity for garbage-collection and wear-leveling purposes. 

By allocating a reserved space, typically a percentage of the total SSD 

capacity, firmware designers can ensure sufficient free blocks are available 

for garbage collection without impacting the available storage capacity for 

host write operations.

Over-provisioning helps to mitigate write amplification, reduce 

data migration frequency, and extend the lifespan of the SSD. Firmware 

designers can adjust the amount of over-provisioning based on the specific 

requirements and characteristics of the system.
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�Adaptive Garbage Collection
Adaptive garbage collection techniques utilize algorithms that dynamically 

adjust the garbage-collection process based on real-time workload 

conditions. These algorithms monitor factors such as write patterns, free 

block availability, and wear leveling to determine the most suitable time 

and intensity for garbage collection.

By adapting garbage collection operations to the workload, firmware 

designers can ensure an optimal balance between garbage collection and 

host write operations. This approach helps prevent excessive performance 

degradation and ensures efficient resource utilization.

�Drawbacks of Garbage Collection 
and Minimizing Their Impact
Garbage collection presents certain drawbacks that can impact the overall 

efficiency and lifespan of the SSD. Following are some of the drawbacks of 

garbage collection and strategies to minimize their impact.

�Write Amplification
One of the primary drawbacks of garbage collection is write amplification, 

which refers to the increased number of write operations performed by 

the SSD compared to the writes initiated by the host system. Garbage 

collection involves moving valid data from source blocks to target blocks, 

which can result in additional writes due to data migrations, metadata 

updates, and address mapping modifications.
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�Performance Degradation
Garbage collection can lead to performance degradation, primarily due 

to increased read and write latencies caused by data movements and 

additional operations. The extensive read and write operations involved 

in garbage collection can consume CPU cycles, memory resources, and IO 

bandwidth, affecting the overall performance of the SSD.

�Increased Power Consumption
Garbage collection can result in increased power consumption due to 

additional read, write, and erase operations. These operations consume 

energy and contribute to the overall power consumption of the SSD.

�Impact on Endurance
Garbage collection can contribute to the wear-out of NAND flash memory 

cells. Each program-erase cycle affects the lifespan of the memory, 

and garbage-collection operations involve numerous write and erase 

operations.

Firmware designers can employ the following strategies to mitigate the 

drawbacks of garbage collection:

•	 Optimizing the garbage-collection algorithm to 

minimize the time and resources required for data 

movements.

•	 Utilizing adaptive garbage-collection algorithms that 

dynamically adjust the intensity and timing of garbage 

collection based on workload patterns.

•	 Employing techniques like parallelization to distribute 

the computational load across multiple cores or 

processing units.
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By minimizing the performance impact of garbage collection, the SSD 

can maintain optimal responsiveness and throughput. The following are 

ways to do so:

•	 Utilize advanced wear-leveling techniques to 

evenly distribute write operations across the NAND 

flash memory.

•	 Employ write optimization strategies such as write 

combining or coalescing to reduce the number of write 

operations during garbage collection.

By minimizing write amplification, the impact on the SSD’s 

performance, endurance, and lifespan can be significantly reduced.

�Other Concerns
�Data Retention
Data retention is another important concept in SSD firmware design. 

Because an SSD has no moving parts, it is less susceptible to physical 

damage than is a traditional hard disk drive (HDD). However, SSDs can 

still lose data for a variety of reasons, including the failure of memory chips 

or the corruption of data. “Data retention” also refers to the amount of 

time that data stored on an SSD can be retained and remain readable after 

the power has been turned off. This is an important consideration when 

choosing an SSD, as data retention is a key factor in the reliability and 

long-term performance of the drive.

There are a few different factors that can affect data retention in an 

SSD, including the type of memory technology used, the design and 

quality of the drive, and the ambient temperature and humidity conditions 

in which the drive is stored.
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In general, SSDs tend to have longer data retention periods than 

traditional hard drives, as they do not have moving parts and are less 

susceptible to physical wear and tear. However, it is important to note 

that all SSDs will eventually lose their stored data, and the data retention 

period will vary depending on the specific drive and its usage conditions.

Periodic read is a data retention mechanism used in some SSD 

firmware to periodically read and verify the data stored on the drive. 

This process helps to identify and correct any errors that may have 

occurred during the writing or reading of data, and can improve the 

overall reliability and data retention of the drive. Periodic reads are 

typically performed automatically by the drive without the need for user 

intervention. These mechanisms are usually used in conjunction with 

other data retention techniques, such as wear-leveling algorithms and 

error-correcting codes, in order to ensure the maximum possible data 

retention period for the drive.

�Read Disturb
When reading data from NAND flash memory, a phenomenon called read 
disturb can occur, causing neighboring cells in the same memory block 

to unintentionally change over time. This happens when a cell is read 

repeatedly without any intervening erase operations. Although the read 

cell itself may not fail, one of the nearby cells may experience a change 

during a subsequent read.

To prevent the read disturb issue, the flash controller keeps track of 

the total number of reads to a specific block since the last erase. Once 

this count exceeds a predetermined limit, the affected block’s data is 

copied to a new block, then the affected block is erased and added back 

to the available block pool. After the erase process, the original block is 

essentially restored to its initial condition.
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If the flash controller fails to intervene in a timely manner, a read 

disturb error may occur. In such cases, if the errors are too numerous to 

correct using an error-correcting code, data loss could potentially happen.

To ensure data integrity and prevent read disturb–related errors, the 

flash controller actively manages the number of reads to each block, 

copying and erasing blocks as necessary. This intervention helps maintain 

the reliability and long-term performance of the NAND flash memory.

Figure 7-1.  Read disturb probability based on P/E cycle
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Figure 7-2.  Vth distributions before and after read disturb

�Program Disturbance
Program disturbance is a phenomenon that can occur when an SSD is 

being written to, in which the process of writing to one page can cause 

the data on nearby pages to become corrupted. This can be a particular 

problem in multi-level cell (MLC) SSDs, which store multiple bits of data 

per memory cell, which can potentially affect the integrity of the data 

stored on the drive.

To minimize the effects of program disturbance, SSD firmware 

includes algorithms that perform a read-and-verify operation immediately 

after writing the physical page data to the drive. This operation involves 

reading back the data that was just written to the drive and comparing it 

to the original data to ensure that it was written correctly (ECC check). 

Depending on the specific scheme implemented in the firmware, this 

read-and-verify operation may be performed immediately after writing the 

data, or it may be performed after a delayed interval.

Overall, the use of algorithms to minimize the effects of program 

disturbance and recover from silent read failure is an important part of the 

firmware in SSDs and helps to ensure the reliability and data retention of 

the drive.
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Figure 7-3.  Program disturb

�Write Amplification
Write amplification is another important concept in SSD firmware design. 

Because an SSD cannot overwrite data directly, each write operation 

requires a block to be erased first. This can result in a situation where the 

amount of data written to the drive is greater than the amount of data 

actually being stored, a phenomenon known as write amplification. SSD 

firmware includes algorithms to minimize write amplification, such as by 

using compression and deduplication to reduce the amount of data that 

needs to be written to the drive.

Factors that can affect the write amplification factor (WAF) include 

garbage-collection processes, which involve moving data around within 

the SSD to make space for new data, and the frequent storage of firmware 

management data in the NAND memory of the SSD, which can lead to 

additional data writes. A higher WAF indicates more data is being written 

to the SSD than was originally written by the host, leading to reduced 

performance and a shortened lifespan for the SSD. Meanwhile, a lower 

WAF indicates more-efficient data writing, resulting in better performance 

and a longer lifespan for the SSD.

The write amplification factor (WAF) is calculated by dividing the 

amount of data written to the SSD by the amount of data written by the host 

(see Figure 7-4). A WAF of 1 indicates that there is no write amplification, 
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meaning that the amount of data written to the SSD is equal to the amount 

of data written by the host. A WAF greater than 1 indicates that the SSD has 

written more data to the disk than was written by the host, resulting in write 

amplification. For example, if an SSD writes 8 GB of data to the disk and the 

host writes 2 GB of data, the WAF would be 4, indicating significant write 

amplification. But if the SSD writes 5 GB of data and the host writes 5 GB of 

data, the WAF would be 1, indicating no write amplification.

Figure 7-4.  Write amplification factor

�Over-provisioning
Over-provisioning is the practice of allocating more memory to an 

SSD than is actually needed for user data. This can provide a number of 

benefits, including improved performance and increased endurance. 

SSD firmware can take advantage of over-provisioning by using the extra 

memory for wear leveling and garbage collection, which can help extend 

the lifespan of the drive.

It is the difference between the physical capacity of the flash memory 

and the logical capacity presented through the operating system (OS) as 

available for the user. During the garbage-collection, wear-leveling, and 

bad block–mapping operations on the SSD, the additional space from over- 

provisioning helps lower the write amplification when the controller writes 

to the flash memory. Over-provisioning is represented as a percentage 

ratio of extra capacity to user-available capacity, as seen in Figure 7-5.

Figure 7-5.  Over-provisioning calculation
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�Encryption
Self-encrypting drives (SEDs) are a type of SSD that uses hardware-based 

encryption to secure data at rest. One of the main benefits of SEDs is that 

they provide a secure and efficient way to protect data from unauthorized 

access. SEDs use hardware-based encryption to encrypt data as it is 

written to the drive, and they decrypt it as it is read. This means that the 

data is always encrypted while it is stored on the drive, and it cannot be 

accessed without the correct password or key.

There are several technologies and standards used to implement 

SEDs in SSD firmware. The most common of these is the Advanced 

Encryption Standard (AES). One of the challenges of implementing SEDs 

in SSD firmware is that they can have a negative impact on performance. 

Encrypting and decrypting data are tasks that require additional 

processing resources, which can slow down the drive and reduce its overall 

performance. To mitigate this impact, SSD manufacturers can optimize 

their firmware to minimize the overhead of encryption and decryption, or 

use hardware acceleration to offload these tasks onto dedicated hardware.

�Summary
In summary, SSD firmware is a complex and critical component of an SSD, 

responsible for managing the various processes involved in storing and 

retrieving data, ensuring data integrity, and optimizing the performance 

of the drive. By understanding concepts such as wear leveling, garbage 

collection, data retention, program disturbance, error handling, write 

amplification, and over-provisioning, we can better appreciate the 

engineering that goes into creating reliable and high-performance storage 

devices.
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CHAPTER 8

SSD Firmware Design 
Considerations
In this chapter, we will discuss the design considerations for solid-state 

drive (SSD) firmware. We will start by discussing the different types of SSDs 

and their requirements. We will then discuss the different components of 

SSD firmware and how they interact with each other. We will also discuss 

the different challenges that need to be addressed in the design of SSD 

firmware.

�Design Considerations

	 1.	 SSD host interface: SATA, NVME, SAS, USB, etc.

	 2.	 Cache (RAM) memory availability:

•	 To transfer data to/from host/SSD

•	 Mapping table

	 3.	 Number of processors and their internal memory 

availability

	 4.	 Number of NAND channel supports
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	 5.	 Type of NAND used, characteristics, and limitations: 

SLC, MLC

•	 Limited number of program/erase cycles (SLC: 

100,000, TLC: 3,000, QLC: 1,000)

•	 Erase block-wise, write page-wise; erase 

before write.

	 6.	 Performance requirements

	 7.	 Benchmark requirements

At a high level, an SSD operates by using a series of memory chips to 

store data. These memory chips are organized into pages and blocks, with 

each page typically able to store around 16 kilobytes (KB) of data and each 

block consisting of multiple pages. In order to write data to an SSD, the 

firmware must first erase the designated block. This is necessary because 

NAND flash memory cells can only be written to if they are in the erased 

state. After the erase operation is complete, write the pages within the 

block in a sequential order. Recall that this serves as a basic foundation on 

which we can build.

Once a page has been written to, it cannot be overwritten directly. 

Instead, the firmware must first erase the block that the page is a part of, 

which will also erase all of the other pages in the block. Rather than erasing 

and rewriting the same block, a new erased block should be chosen with a 

similar P/E (program/erase) cycle. This process is known as wear leveling 

and is used to ensure that all of the blocks in a die have been written to an 

equal number of times, thus extending the lifespan of the SSD.

One of the key components of SSD firmware is the mapping table, 

which is used to keep track of the location of data on the drive. The 

mapping table maps logical block addresses (LBAs) to physical block 

addresses (PBAs), which represent the location of data on the drive. When 

data is written to the drive, the SSD firmware uses the mapping table to 

determine the location where the data should be stored.
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When data is read from an SSD, the firmware uses the mapping table to 

determine the physical block where the data is stored. The firmware then 

retrieves the data from the physical block and sends it back to the host device.

One of the key challenges in designing SSD firmware is ensuring that 

it is able to efficiently manage the various processes involved in storing 

and retrieving data. This includes optimizing the wear-leveling algorithm 

to minimize the number of times that blocks have to be erased, as well as 

managing the mapping table to ensure that data can be retrieved quickly.

Another important aspect of SSD firmware is ensuring data integrity. 

Because an SSD has no moving parts, it is less susceptible to physical 

damage than a traditional hard-disk drive (HDD). However, SSDs can still 

fail due to a variety of factors, including the failure of memory chips or the 

corruption of data. To protect against data loss, SSD firmware typically 

includes error-correcting code (ECC) and other mechanisms to detect and 

correct errors.

�Unexpected Shutdown
An unexpected shutdown in an SSD occurs when the power to the device is 

unexpectedly interrupted while the device is in operation. This can happen 

due to power outages, surges, spikes, sags, or brownouts, as well as by 

manually removing the SSD from the system while it is powered on. What 

happens to data in transit to the SSD when there is an unexpected power 

interruption is an item overlooked by many industrial Original Equipment 

Manufacturer (OEM) host system designers. Limiting the system’s exposure 

to data loss should be high on the list of design priorities.

This power loss will not cause issues during an idle or read operation, 

but if a write operation is occurring, there is the potential for some data 

loss or worse. Power loss during a write is also known as Write Abort. The 

main consequences of an unexpected shutdown during a write operation 

are file-system corruptions and internal device data corruption.
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File-system corruptions occur when the operating system is unable 

to update the file-system records before the power is lost. Most operating 

systems will perform a file-system repair operation on the next power-up. 

Or it can typically be repaired by running a command or utility on the next 

power-up.

Internal device data corruption is more severe, as it can result in the 

entire flash drive’s becoming unusable due to the corruption of the SSD’s 

internal metadata, requiring a low-level format, which results in the 

loss of all data on the drive. To minimize the risk of data loss due to an 

unexpected shutdown, system designers should, in the design process, 

prioritize recovering the system effectively after such events.

One option is to take frequent recovery points and implement 

algorithms to find and restore data up until the restore point. Additionally, 

a special algorithm can be implemented to find the last page that was 

successfully written in a block. This can help protect against power 

interruptions and reduce the risk of data loss without the use of capacitors, 

which are often used to provide a temporary power source during 

unexpected shutdowns. By implementing these measures in the SSD 

firmware, designers can effectively address the issue of unexpected power 

loss and ensure the integrity of data in transit to the solid-state drive.

�Power-Loss Protection
To effectively handle unexpected shutdowns and protect against data loss, 

designers have several options. One approach is to use power- 

loss protection capacitors in the hardware design of the SSD firmware. 

These capacitors provide a temporary power source in the event of an 

unexpected power loss, allowing the firmware to complete any in-progress 

writes and save any buffered data to the NAND.

In enterprise computing, data-loss protection is considered to be much 

more critical than it is in client computing. During an unexpected power 

loss, the SSD firmware can detect the power loss using hardware support 
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and take steps to ensure all the unsaved data in the SSD is saved to maintain 

the integrity of data. This may include completing any in-progress writes 

to lower or upper pages (TLC), dumping buffered writes from non-volatile 

memory into the NAND (using SLC for faster write speed), or using hold-up 

circuitry to preserve enough time and energy to save the Flash Translation 

Layer (FTL) mapping table and other un-flushed data to the NAND.

�Power-Loss Design Considerations
The power-loss protection mechanism in SSD firmware is a vital aspect of 

ensuring data integrity and preserving content metadata during unexpected 

power failures. While the volatile RAM translation table facilitates fast data 

access and updates during normal SSD operation, it is susceptible to data loss 

in the event of power loss. To address this challenge, the firmware adopts a 

proactive approach by utilizing persistent data structures stored in the non-

volatile NAND flash array. These data structures contain essential content 

metadata and enable the reconstruction of the translation table during the 

next drive initialization. The firmware employs error protection mechanisms 

such as error-correcting codes (ECC) to safeguard the stored metadata from 

potential corruption. During the power-loss handling process, the firmware 

detects power loss, stores content metadata in the NAND flash array either 

alongside user data or in a separate block, and subsequently reconstructs 

the volatile RAM translation table on SSD initialization. This comprehensive 

power-loss protection mechanism ensures data reliability, minimizes data 

loss risks, and contributes to the robustness and efficiency of SSDs.

Individual modules need to maintain persistent data for simplicity 

and efficient operation. To ensure data integrity and recoverability, this 

persistent data is periodically saved from volatile RAM to the non-volatile 

NAND flash at restore points. Each module is responsible for updating its 

respective data structures, allocated in designated sections in RAM. Restore 

points can be created after the first boot, following an unexpected shutdown, 

when the persistent data buffer is full, or in response to program errors.
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During restoration after an unexpected shutdown, minimizing the read 

time for persistent data from NAND is crucial to achieve faster boot times. 

Hence, efficient data-retrieval mechanisms should be employed. Regardless 

of whether the shutdown was safe or unsafe, during every subsequent 

boot, all restore-point data structures should be restored to their previous 

state, ensuring the system’s consistent operation. To safeguard against data 

corruption, these data blocks should be protected by robust error-protection 

mechanisms, such as error-correcting codes (ECCs).

In extreme scenarios, if error correction fails, the device should still 

be able to boot, albeit in a read-only (RO) mode, ensuring that the data 

remains intact and is not subjected to further risks. The combination of 

efficient restore points, error protection, and robust recovery mechanisms 

ensures the reliability and resilience of the system in handling unexpected 

events and contributes to an overall improved user experience.

Figure 8-1.  System restore point for unexpected shutdown handling
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Figure 8-2.  Unexpected shutdown during user data write

The design considerations of SSD firmware are a complex process that 

involves optimizing various algorithms and data structures in order to 

maximize the performance and reliability of the drive.

�Best Practices for Optimizing and Maintaining 
SSD Firmware
Next we will examine some key concepts for optimizing and maintaining 

SSD firmware, including reducing DRAM (dynamic random access 

memory, volatile memory) access, minimizing the code in the critical path 

of read and write operations, and managing firmware state snapshots. As 

fellow programmers, it is important that you understand the best practices 

for optimizing and maintaining SSD firmware. SSDs are becoming 
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increasingly popular, and their firmware is complex. SSD firmware can 

have a significant impact on performance, reliability, and security. By 

following best practices, programmers can develop firmware that is more 

efficient, reliable, secure, and user-friendly.

One of the key considerations for optimizing SSD firmware is reducing 

the number of accesses to the DRAM on the drive. DRAM is a type of 

memory that is used by the SSD to store data temporarily, but accessing 

it can be slow and consume a significant amount of power. By reducing 

the number of accesses to the DRAM, it is possible to improve the 

performance of the SSD and reduce its power consumption.

One way to reduce DRAM access is to include less code in the critical 

path of read and write operations. The critical path is the sequence of 

operations that are performed when data is being read from or written to 

the drive. By reducing the amount of code in the critical path, it is possible 

to speed up these operations and reduce the amount of time that the drive 

spends accessing the DRAM.

Another approach to reducing DRAM access is to schedule read 

operations for data maintenance tasks, such as garbage collection and 

wear leveling. By performing these tasks during times when the drive 

is not being heavily used, it is possible to reduce their impact on the 

performance of the drive and minimize the number of accesses to 

the DRAM.

In addition to reducing DRAM access, it is also important to manage 

the firmware state snapshot data (management data). The firmware state 

snapshot is a copy of the firmware that is stored on the drive and is used 

to restore the firmware in the event of a failure. By managing this data 

carefully—i.e., keeping the management data as small as possible and 

writing only when necessary and when firmware is idle—it is possible to 

reduce the amount of space that is used by the firmware state snapshot, 

which can help to improve the overall performance and reliability of 

the drive.
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�Summary
In conclusion, optimizing and maintaining SSD firmware requires a careful 

balance of performance, power consumption, and reliability. By focusing 

on reducing DRAM access, minimizing the code in the critical path of read 

and write operations, and managing the firmware state snapshot data, it 

is possible to create SSD firmware that is optimized for performance and 

reliability.
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CHAPTER 9

Flash Translation 
Layer (FTL)
The flash translation layer (FTL) is a key component of the firmware in a 

NAND-based solid-state drive (SSD). It is responsible for managing the 

interaction between the host computer and the underlying NAND chips, 

and it plays a crucial role in the performance and reliability of the SSD.

The FTL is implemented as a layer of software that sits between the 

host computer and the NAND chips, and it serves several key functions: 

mapping table, bad block management, wear leveling, and garbage 

collection. These algorithms and data structures are designed to optimize 

the performance and reliability of the SSD, and they are constantly 

updated and refined as the SSD is used.

Figure 9-1.  FTL block diagram
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�Mapping Table
The FTL is responsible for mapping logical block addresses (LBAs) used 

by the host to the physical pages and blocks on the NAND chips (physical 

block address; PBA). This allows the host to access data on the SSD using 

logical addresses, rather than having to know the specific physical location 

of each block on the NAND chips. The data structure can simply be an 

array, where the index is LBA and its value is PBA. This address translation 

is necessary to ensure that data is correctly mapped to the physical 

locations within the NAND flash memory. The FTL (flash translation layer) 

acts as an intermediary to perform this translation.

This mapping table is stored in the RAM of the SSD for speed of access 

and is persisted in flash memory in case of power failure. When the SSD 

powers up, the table is read from the persisted version and reconstructed 

into the RAM. The simple approach is to use page-level mapping to map 

any logical page from the host to a physical page. This mapping policy 

offers a lot of flexibility, but the major drawback is that the mapping table 

requires a lot of RAM, which can significantly increase the manufacturing 

costs. A solution to that would store only the part of the table required to 

service the read request from the host in RAM. The disadvantage of this 

approach would be needing to read from NAND (on demand) if the host 

Table 9-1.  Basic 

Mapping Table
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read does not have a mapping table in RAM. This will have an impact on 

random read performance.

A logical-to-physical block address table (mapping table) is an essential 

component of SSD firmware. It is used to translate logical block addresses 

(LBAs) used by the host system to physical block addresses (PBAs) on  

the SSD. The mapping table is necessary because the physical blocks on 

an SSD may wear out or become faulty over time, and the firmware must 

be able to remap logical blocks to new physical blocks to maintain the 

integrity of the data.

�Size of the Mapping Table
The size of the mapping table depends on the capacity of the SSD and the 

addressing scheme used. In larger-capacity SSDs, the mapping table can 

be substantial due to the increased number of LBAs and corresponding 

PBAs. For example, a mapping table for a multi-terabyte SSD can contain 

millions of entries.

Size of SSD: 128 GB

Number of clusters: Assuming each cluster is 4 KB (4 kilobytes), let’s 

calculate the number of clusters:

134,217,728 KB (SSD size) / 4 KB (cluster size) = 33,554,432 clusters

Assuming each mapping table entry requires 4 bytes to store the 

corresponding PBA (physical block address), we can calculate the total 

RAM size required for the mapping table as follows:

Total RAM size required for mapping table = Number of clusters * 

Number of bytes required to store the PBA

Total RAM size required = 33,554,432 clusters * 4 bytes = 

134,217,728 bytes

Therefore, for an SSD with a size of 128 GB and a cluster size of 4 KB, 

the mapping table would require approximately 134,217,728 bytes or 134 

megabytes of RAM to store the mapping entries.
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�Storing the Mapping Table in RAM
Ideally, it would be advantageous to store the entire mapping table in 

random access memory (RAM) for fast access. However, due to the 

limitations of RAM capacity in most SSD designs (due to cost), it is often 

impractical or impossible to load the complete mapping table into 

memory. Instead, SSD firmware employs strategies to optimize the storage 

of the mapping table. For example, a mapping table for a multi-terabyte 

SSD can contain millions or even billions of entries.

�Partial Loading of the Mapping Table
To overcome RAM limitations, the mapping table is typically loaded 

partially into RAM, focusing on the frequently accessed portions. The FTL 

prioritizes loading the mapping entries required for active LBAs, ensuring 

efficient and quick access to frequently accessed data. This partial loading 

strategy allows the SSD to maintain acceptable performance while 

conserving valuable RAM resources.

�Storage of Non-Loaded Mapping Entries
The mapping entries that are not loaded into RAM reside in the NAND 

flash memory. These entries are accessed on an as-needed basis. When 

an LBA that is not in the loaded portion of the mapping table needs to be 

accessed, the FTL utilizes algorithms to locate the corresponding mapping 

entry in the NAND flash memory. This retrieval process may introduce 

some additional latency due to the need to access the slower NAND 

storage.
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�Write/Update Operations 
and the Mapping Table
During write/update operations, the mapping table undergoes 

modifications to accommodate new LBAs and PBAs that result from data 

writes, garbage collection, and wear leveling. To optimize the write/update 

process, SSD firmware employs various techniques, including maintaining 

a dirty cache buffer of the mapping table in RAM.

�Dirty Cache Buffer in RAM
A common approach is to utilize a portion of RAM as a cache buffer 

for the mapping table. This buffer temporarily holds the mapping table 

entries, which are modified before they are flushed back to the NAND flash 

memory. The dirty cache buffer allows for efficient and quick updates 

without constantly writing to the NAND, which can be time-consuming.

�Write/Update Process with Dirty Cache Buffer

When a write/update operation occurs, the SSD firmware first checks 

the dirty cache buffer in RAM. If the mapping table entry for the specific 

LBA already exists in the dirty cache buffer, it is updated directly in RAM, 

avoiding unnecessary writes to the NAND flash memory. This approach 

reduces latency and improves overall performance.

�Flush to NAND

To ensure data durability and to prevent loss in the event of a power 

failure or system crash, the contents of the dirty cache buffer need to 

be periodically flushed back to the NAND flash memory. This flushing 

process involves writing the modified mapping table entries from the dirty 
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cache buffer to their corresponding locations in the NAND. The frequency 

of flushing can vary based on factors such as the size of the dirty cache 

buffer and the SSD firmware’s internal policies.

�Mapping Table Management 
and Optimization
As the SSD operates, the mapping table undergoes continuous updates to 

accommodate new LBAs and PBAs resulting from write operations, garbage 

collection, and wear leveling. Efficient management of the mapping table 

involves carefully balancing the usage of RAM resources, the frequency 

of flush operations, and the optimization of write/update processes. SSD 

firmware employs various techniques, like buffering, compression, and 

intelligent mapping algorithms, to optimize mapping-table management, 

reduce write amplification, and improve overall SSD performance.

Figure 9-2.  Multi-level mapping table
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The following is a step-by-step guide on how the mapping table 

is created, accessed, and updated in the erase, read, and write path 

of an SSD:

Initialization: When the SSD is first initialized, the 

firmware creates a blank mapping table. This table 

consists of a series of entries, each of which maps 

a logical block address to a physical block address. 

Initially, all of these entries are set to a default value, 

indicating that the logical block has not yet been 

mapped to a physical block.

Write: When the host system writes data to the SSD, 

it sends a write command to the SSD along with 

the LBA and the data to be written. The firmware 

receives this command and determines which 

physical block to write to. Then, it sends the data to 

be written to that block and updates the mapping 

table accordingly.

FTL performs a process called block allocation, 

which involves selecting a suitable physical block 

to store the data and updating the mapping table 

Table 9-2.  Mapping Table: Init

Chapter 9  Flash Translation Layer (FTL)



136

to reflect the new mapping. This process takes into 

account factors such as wear leveling, bad block 

management, and optimizing data placement to 

enhance performance and longevity.

Read: When the host system reads data from the SSD, 

it sends a read command to the SSD along with the 

LBA of the data to be read. The firmware receives this 

command and looks up the corresponding entry in 

the mapping table. If the entry is set to the default 

value, the firmware returns an error to the host system 

indicating that the requested data is not present 

on the SSD (unmapped data). If the entry is set to a 

physical block, the firmware reads the data from that 

physical block and returns it to the host system.

Figure 9-3.  Mapping table update during write path

Table 9-3.  Mapping Table 

after Write
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Table 9-4.  Mapping Table 

While Read

Garbage Collection: As physical blocks on the 

SSD wear out or become faulty, during garbage 

collection the firmware may need to update the 

mapping table to remap logical blocks to new 

physical blocks. Figure 9-4 shows an example of how 

a physical block is written, unmapped, and moved 

to a new physical block and the mapping table being 

updated in parallel.
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Figure 9-4.  Garbage collection for two SSD storage blocks—Block 
A and Block B—as they progress through the data update mapping 
table process

Physical Erase/Sanitize/Format: When the SSD 

firmware receives an erase command, it selects 

the physical block specified in the command and 

erases it by setting all the bits in the block to 1. This 

allows the block to be overwritten with new data. 

Chapter 9  Flash Translation Layer (FTL)



139

The firmware also updates the corresponding entry 

in the mapping table to reflect the fact that the 

logical block address is now mapped to an erased 

physical block.

Trim: When the SSD firmware receives a trim 

command, it marks the specified logical block 

address as no longer in use. This may involve 

updating the corresponding entries in the mapping 

table to set them to the default value, indicating 

that the logical blocks are not currently mapped to 

any physical blocks. The trim operation does not 

actually erase the physical blocks associated with 

the logical blocks; rather, it simply informs the SSD 

that these blocks are no longer needed and should 

be erased at a later time.

This can improve the performance of writing data to 

SSDs and help extend the lifespan of the SSD. TRIM is 

available for SSDs that support the Serial ATA (SATA) 

interface, while the UNMAP command serves a similar 

purpose for Small Computer System Interface (SCSI) 

Table 9-5.  Mapping 

Table after Physical 

Erase/Sanitize
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SSDs, and the DEALLOCATE operation performs a 

similar function in the nonvolatile memory express 

(NVMe) command set for Peripheral Component 

Interconnect Express SSDs.

The TRIM command works by enabling the operating 

system to proactively notify the SSD which data 

pages in a particular block can be erased. This 

allows the SSD's controller to manage the available 

storage space more efficiently for data. TRIM 

eliminates any unnecessary copying of discarded 

or invalid data pages during the garbage-collection 

process, which is an internal SSD housekeeping 

operation that manages and maintains available 

storage space by moving valid data pages to 

another block on the SSD so that the original block 

containing invalid data pages can be erased. By 

reducing the number of data pages that need to be 

moved during garbage collection, TRIM can reduce 

the number of program/erase cycles (P/E cycles) to 

the NAND flash media and extend the endurance of 

the SSD.

Using TRIM can provide benefits in terms of 

performance and drive longevity. It can speed up 

the write performance of the drive by avoiding 

unnecessary copying of invalid data and extend 

the lifespan of the drive by reducing the number of 

erase cycles.
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Figure 9-5.  Trim execution flow from host

Table 9-6.  Mapping Table 

after Trim
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Bad Block Management
Bad blocks on an SSD can be a major problem, as they can prevent the 

device from functioning properly and may result in data loss. To address 

this issue, the firmware on an SSD includes a feature called bad block 

management, which is responsible for identifying and remapping bad 

blocks on the NAND chips, which are blocks that can no longer be reliably 

written to or read from due to physical defects or damage.

There are three types of bad blocks that the firmware 

may encounter:

	1.	 Factory-marked bad blocks: Bad blocks (or initial 

bad blocks), that is, blocks that do not meet the 

manufacturer’s standards or have been tested by the 

manufacturer and fail to meet the manufacturer’s 

published standards, and have been identified as 

bad blocks by the manufacturer when they leave the 

factory.

	2.	 Used bad blocks: Those that have become 

defective due to wear and tear during use, or that 

have reached the end of their lifespan.

	3.	 False bad blocks: Those that are misjudged by 

the controller due to abnormal power failures or 

other issues.

�Factory Bad Block Assessment
When a specific physical block in the NAND flash memory is detected 

as defective (bad block), the firmware must perform two fundamental 

activities: record the flash address of the bad block and update the bad 

block bitmap table.
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�Bad Block Flash Address
A bad block flash address contains essential information about the 

physical block that is considered defective. The exact format/content of 

this address depends on the NAND flash manufacturer. The firmware 

needs this information to translate the flash address information into 

meaningful data and to manage logical block mappings accurately.

�Recording Bad Block Flash Address
The firmware must promptly record the flash address of the detected bad 

block. This information will be crucial in managing and avoiding future 

access to the defective block during normal read and write operations. The 

firmware should include protective measures to prevent any write or erase 

commands from targeting these identified defective blocks. Attempting to 

perform erase or program operations on such defective blocks will yield 

unpredictable and indeterminate results.

�Initial Bad Block Handling Flow
When an SSD is powered up and mounted for the first time, the firmware 

performs the initial bad block handling to identify and manage any 

factory-marked defective physical blocks in the NAND flash memory. 

The goal is to ensure that these bad blocks are appropriately marked and 

avoided during subsequent read and write operations to maintain data 

integrity and optimize SSD performance.

�Step 1: Power-Up and Mounting

The SSD is powered up, and the firmware initializes the device.

During the mounting process, the firmware initializes the bad block 

management mechanism, including the bad block bitmap table.
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�Step 2: Reading the NAND Flash

As part of the initialization process, the firmware reads each block in the 

NAND flash memory. The firmware checks for any errors or anomalies 

during the read operation.

�Step 3: Identifying Bad Blocks

If a read operation encounters a defective physical block (bad block), the 

firmware identifies it as a bad block and records the flash address of the 

bad block in a bad block bitmap.

�Step 4: Updating Bad Block Bitmap

After identifying a bad block, the firmware updates the corresponding 

entry in the bitmap table, indicating that the block is defective.

�Step 5: Skipping Bad Blocks

During subsequent read and write operations, the firmware checks the 

bad block bitmap table. When accessing data, the firmware will skip any 

blocks marked as bad in the bitmap table, effectively avoiding the defective 

physical blocks.

�Step 6: Error Handling (Optional)

If the bad block causes any data corruption or errors during the read 

operation, the firmware may implement error correction techniques or 

take appropriate measures to ensure data integrity.
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Figure 9-6.  Initial bad block scan flow
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�Used Bad Block Assessment
Used bad blocks are those that have become defective due to wear and 

tear or that have reached the end of their lifespan. The firmware on an 

SSD is responsible for identifying used bad blocks and managing them to 

maintain the reliability and performance of the device. During program or 

erase actions, if the status register of the operation fails, the SSD controller 

will list this block as a bad block. Examples are as follows:

•	 An error occurred while executing the erase command.

•	 An error occurred while executing the write command.

•	 When the read command is executed, an error occurs; 

when the read command is executed, if the number of 

bit errors exceeds the error-correction capability of the 

ECC, the block will be judged as a bad block.

To keep track of bad blocks, SSDs have a feature called a bad block  

able (BBT), which is typically stored in a separate area of the NAND 

memory. The BBT is read after each power-up to make it more efficient, 

and it may also be backed up to protect against damage to the NAND 

memory. The number of copies of the BBT that are backed up may vary 

depending on the specific design strategy, with some SSDs backing up 

with as many as eight copies. Figures 9-7 and 9-8 show basic (not the only 

way) handling for used bad blocks.
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Figure 9-7.  Handling bad block during erase operation
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Figure 9-8.  Handling bad block during NAND program operation

There are generally two approaches to managing bad blocks: the bad 

block skip strategy and the bad block replacement strategy. The bad block skip 

strategy involves simply skipping over any bad blocks and not using them, 

while the bad block replacement strategy involves replacing bad blocks with 

good ones. Both approaches have their own benefits and drawbacks, and the 

choice of which to use may depend on the specific requirements of the SSD.

Chapter 9  Flash Translation Layer (FTL)



149

�Bad Block Skipping Strategy

	 1.	 For the initial bad block, the bad block skip will 

skip the corresponding bad block through BBT and 

directly store the data in the next good block.

	 2.	 For the new bad block, update the bad block to the 

BBT, transfer the valid data in the bad block to the 

next good block, and skip this bad block every time 

you do the corresponding read, program, or erase in 

the future.

�Bad Block Replacement Strategy
In general, the OP (over provision)-area free block is used to replace the 

new block during use. Take garbage collection as an example. When the 

garbage-collection mechanism is running, the valid page data in the block 

that needs to be reclaimed is first moved to the free block, and then the 

erase operation is performed on the block. It is assumed that the erase 

status register is fed back at this time. When the erase fails, the bad block 

management mechanism will update the block address to the new bad 

block list, and at the same time write the valid data pages in the bad block 

to the free block in the OP area. It will update the bad block management 

table, and next time when writing data, it will skip the bad block and go 

directly to the next available block.

The OP size varies from manufacturer to manufacturer; there are different 

application scenarios, different reliability requirements, and different OP 

sizes. There is a trade-off between OP and stability. The larger the OP, the 

larger the available space for garbage collection in the process of continuous 

writing, the more stable the performance, and the smoother the performance 

curve. Conversely, the smaller the OP, the worse the performance stability, the 

larger the available space for users, and the lower the cost.
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Generally speaking, OP can be set to 5 percent to 50 percent. An OP 

of 7 percent is a common ratio. Unlike the 2 percent fixed block suggested 

by the manufacturer, 7 percent is not a fixed block for OP. Instead, it is 

dynamically distributed among all blocks, which is more conducive to the 

wear-leveling strategy.

�Summary
In summary, the FTL is a critical component of the firmware in a NAND-

based SSD, and it plays a vital role in managing the interaction between 

the host and the NAND chips. It is responsible for ensuring that data is 

stored and retrieved efficiently, and it helps to maintain the performance 

and reliability of the SSD over time.
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CHAPTER 10

User Data Flow
In this chapter, we will discuss the user data flow in solid-state drive (SSD) 

firmware. We will start by discussing the write path, which is the process of 

writing data from the host to the NAND flash memory. We will then discuss 

the read path, which is the process of reading data from the NAND flash 

memory and transferring it back to the host.

�Write Path
In SSD firmware, the write path refers to the process of writing data 

from the host to the NAND flash memory. When the host sends a write 

request command, the device allocates a cache buffer to receive the data. 

The data is then transferred from the host to the device cache, where it 

is transformed and prepared for writing to the NAND memory by the 

firmware translation layer (FTL). This process includes adding error- 

correcting codes (ECCs) to the data to ensure its integrity.

Once the data has been prepared for writing, the FTL programs it 

into the NAND memory. When the program is completed successfully, 

it updates the mapping table with the physical block address (PBA) for 

the corresponding logical block addresses (LBAs) that were successfully 

written. The goal of this process is to achieve the maximum write 

performance by ensuring that the NAND throughput is utilized to its full 

potential.
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To achieve this goal, the FTL arranges and performs independent 

tasks on the write path in parallel on different threads or CPUs, and 

sequences the NAND programming while preparing the next set of NAND 

programming. It also arranges the data for programming in a way that 

is most optimal for NAND operations, such as by using multi-plane and 

multi-die techniques to maximize channel and die capacity.

Figure 10-1.  Host write data path

�Read Path
The read path refers to the process of reading data from the NAND flash 

memory and transferring back to the host. This is a critical path in the 

system, as the host expects the device to read data with low latency.

The read process begins when the host issues a read command, which 

is processed by the FTL. The FTL translates the logical block address (LBA) 

of the requested data into a physical block address (PBA), and then sends 

a NAND read command to the PBA. The FTL monitors the progress of the 

read command and transfers the data from the NAND cache buffer to a 

read buffer inside the flash controller.
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If the data is found to be error-free, it is transferred from the read buffer 

to the SSD cache. From there, it is transferred to the host. If the data needs 

to be corrected and is within the correction capability of the SSD firmware, 

it is corrected before being transferred to the host.

Figure 10-2.  Host data read path

Overall, the write and read paths in SSD firmware are complex 

processes that involve a series of steps to ensure the efficient and reliable 

reading of data to and from the NAND memory. By optimizing these 

processes and carefully managing the data transfer, SSD manufacturers 

can improve the performance and reliability of their drives.

�Summary
This chapter has discussed the user data flow in SSD firmware. We have 

seen how the write and read paths are two critical processes that ensure 

the efficient and reliable transfer of data between the host and the SSD. We 

have also seen how the SSD firmware can optimize these processes to 

improve the performance and reliability of the drive.
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CHAPTER 11

Throttling
Throttling is a crucial feature in solid-state drive (SSD) firmware design. 

It aims to manage and regulate the drive’s temperature and power 

consumption to ensure optimal performance, reliability, and data 

integrity. Excessive heat and power usage can lead to performance 

degradation and potential hardware damage. The SSD firmware 

incorporates intelligent throttling mechanisms to mitigate these risks and 

maintain efficient operation under varying workloads and environmental 

conditions.

�Thermal Throttling
�Temperature Monitoring
The firmware continuously monitors the SSD’s temperature using 

onboard temperature sensors. When the temperature reaches predefined 

thresholds, the thermal throttling mechanism is triggered.

�Throttling Mechanism
Upon detecting high temperatures, the firmware enacts thermal throttling, 

which reduces the SSD’s operating frequency and performance to prevent 

overheating. This proactive approach prevents thermal-induced errors 

and prolongs the drive’s lifespan.
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�Temperature Recovery
As the temperature decreases, the firmware gradually restores the SSD’s 

operating frequency to normal levels. This adaptive approach ensures that 

the SSD efficiently manages temperature fluctuations while maximizing 

performance.

�Design Consideration
Thermal throttling in SSD firmware involves the use of periodic credits 

to manage NAND access requests based on the temperature of the drive. 

The throttling module periodically monitors the temperature sensor using 

system support and determines the current throttling state. Based on this 

state, the module provides appropriate credit values to the flash controller 

module. These credits are consumed by the flash controller module while 

scheduling NAND access.

When the supplied credits are exhausted, the firmware must initiate 

a slowdown of all NAND operations to reduce the temperature. This is 

achieved by entering an idle mode where all ongoing operations are 

stalled, and the hardware remains in an idle state for the remaining period 

of the throttling cycle. During this time, the CPUs and hardware are in a 

sleep mode; they wake up at the start of the next thermal throttling cycle. 

This proactive approach prevents the drive from overheating, ensuring 

reliable performance and data integrity, even under challenging thermal 

conditions.
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Figure 11-1.  Thermal throttling sequence diagram
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Figure 11-2.  Thermal throttling flow diagram

�Power Throttling
�Power Monitoring
The firmware continuously monitors the SSD’s power consumption. If the 

power consumption exceeds predefined thresholds, the power throttling 

mechanism is activated.
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�Throttling Mechanism
Upon reaching critical power levels, the firmware initiates power 

throttling, limiting the drive’s power consumption. By doing so, the SSD 

avoids overloading power supplies and prevents potential data corruption 

or hardware damage.

�Power Recovery
Once power consumption stabilizes within safe limits, the firmware 

gradually restores the SSD’s power usage to normal levels. This adaptive 

approach ensures that the SSD operates efficiently under varying power 

conditions.

�Combined Throttling
�Synergistic Operation
Thermal and power throttling mechanisms can work in tandem. If the 

SSD encounters both high temperatures and excessive power usage 

simultaneously, the firmware optimizes the throttling strategy to address 

both issues effectively.

�Priority Management
In cases where thermal and power constraints conflict, the firmware 

intelligently prioritizes the most critical aspect to ensure the SSD’s 

continued operation with minimal risk.
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�Dynamic Performance Adjustments
�Workload Awareness
The firmware dynamically adjusts throttling based on the SSD’s 

workload. For demanding tasks, the drive may temporarily tolerate 

higher temperatures or more power consumption to maintain optimal 

performance. During low-intensity tasks, throttling may be more 

aggressive to conserve energy and reduce heat generation.

�Logging and Reporting
�Event Logging
The firmware maintains a log of thermal and power throttling events, 

providing visibility into the drive’s operational conditions and any 

corrective actions taken.

�Health Monitoring
The firmware also tracks and reports the drive’s health status, which 

includes both thermal- and power-related metrics, to facilitate system 

monitoring and preventive maintenance.

Throttling is a crucial mechanism used to regulate NAND flash access 

and prevent potential overheating, power consumption, and performance 

issues. Understanding the principles and implementation of throttling is 

vital for engineers and developers working on solid-state drives and other 

NAND flash-based systems.
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We began by exploring the different types of throttling, including 

thermal throttling and power throttling. Thermal throttling helps control 

NAND flash temperature by adjusting access rates based on temperature 

measurements. Meanwhile, power throttling efficiently manages power 

consumption during NAND flash operations to prevent excessive 

power draw.

�Summary
In conclusion, understanding the intricacies of throttling in NAND flash 

is vital for optimizing the performance, reliability, and longevity of NAND 

flash-based systems. Engineers and developers must be well versed 

in implementing effective throttling strategies to ensure the smooth 

operation of devices and prevent potential damage or data loss due to 

excessive temperatures or power consumption.
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CHAPTER 12

Exception Handling
In this chapter, we will discuss exception handling in solid-state drive (SSD)  

firmware. We will start by discussing the different types of errors that can 

occur in SSDs, such as read errors, program errors, and erase errors. We will 

then discuss how to handle these types of errors and how to mitigate them 

in SSD firmware.

Exception handling is an important aspect of SSD firmware 

development. SSDs are complex systems that are prone to various types 

of errors, including read errors, program errors, and erase errors. In this 

chapter, we will discuss how to handle these types of errors and how to 

mitigate them in SSD firmware.

�Read Errors
Read errors occur when the SSD is unable to read data from the NAND 

flash memory cells. This can be caused by a variety of factors, such as 

defects in the NAND cells, interference from external sources, faulty 

hardware, or temperature variations during read operations. For example, 

broadening of VTH distributions due to noise can lead to read errors.
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Figure 12-1.  Read error due to Vth distribution shift

�Handling
SSDs can fix NAND read errors by using special codes and techniques. 

These codes can help to identify and correct errors that occur when 

reading data from NAND memory. Other methods, such as retrying the 

read or adjusting the read voltage, may also be used to fix errors.

Another common approach to handling read errors in enterprise-level 

SSDs is to use a redundant array of independent disks (RAID) technology. 

RAID is a technique that involves grouping multiple SSDs together to form 

a single logical storage unit. The data on the SSDs is striped across the 

drives, which allows the SSDs to work together to improve performance 

and reliability. In the event of a read error on one of the SSDs, the data can 

be reconstructed from the other SSDs in the RAID group.

In addition to error-correcting code (ECC), wear-leveling algorithms, 

and RAID technology, there are a couple of other approaches to handling 

read errors in enterprise-level SSDs that are worth mentioning, as follows:

Reed-Solomon error correction: Reed-Solomon error correction is a 

technique that is similar to ECC, but it is more powerful and can correct 

a larger number of errors. It works by adding extra parity bits to the data, 

which can be used to detect and correct errors that occur when the data is 

read back from the SSD.
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Low-density parity-check (LDPC) codes: LDPC codes are another 

type of error-correcting code that can be used to detect and correct 

errors in data stored on an SSD. LDPC codes are particularly effective 

at correcting errors that are caused by noise or interference in the data 

transmission process.

�Program Errors
Program errors occur when the SSD is unable to write data to the NAND 

cells. This can be caused by a variety of factors, such as defects in the 

NAND cells, interference from external sources, faulty hardware, or P/E 

cycle reached. 

Figure 12-2.  Program error on MLC NAND flash

�Handling
To handle program errors, SSD firmware should include algorithms that can 

detect and recover from these errors. For example, the firmware may attempt 

to rewrite the data to a different location in the NAND memory, or it may use 

error-correcting codes to ensure that the data being written is accurate.
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One approach is to continue writing until the end of the block is 

reached, and then move on to a new block while marking the old block as 

bad. Another option is to immediately stop writing the data and move to a 

new block, while also marking the old block as bad. These strategies allow 

the SSD firmware to minimize the impact of program errors and maintain 

the integrity of the data being written.

�Program Abort
This scenario results from an unexpected power cycle while the 

NAND programming is in progress. Due to power loss, the NAND 

cells are left in the wrong/incomplete voltage distribution state and 

cannot be reprogrammed. Reading data from these cells may give 

uncorrectable error.

�Handling
To handle program abort, the firmware needs to keep track of the status 

of each block and page. This is typically done through the use of a block 

management table (BMT) and a page management table (PMT). The BMT 

keeps track of the status of each block, including whether it is good or bad, 

and the PMT keeps track of the status of each page within a block.

When the firmware detects a program abort, it will first scan the BMT 

and PMT to determine the last successfully programmed page. It will then 

try to recover as much data as possible from the partially programmed 

page and move it to a new block. The old block will be closed and marked 

for garbage collection.
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In addition to recovering data from a partially programmed page, 

the firmware may also need to recover data from other blocks that were 

affected by the power loss. This can be done by scanning the BMT and 

PMT to identify any blocks that were being erased or programmed at the 

time of the power loss. The data from these blocks can then be recovered 

and moved to new blocks as well. The firmware also updates the mapping 

table to reflect the new location of the recovered data.

Overall, handling program abort is an important aspect of SSD 

firmware design. By keeping track of the status of each block and page, the 

firmware can recover as much data as possible and ensure that the SSD 

continues to operate correctly after an unexpected power loss.

�Erase Errors
Erase errors occur when the SSD is unable to erase data from the NAND 

cells. This can be caused by a variety of factors, such as defects in the 

NAND cells, interference from external sources, or faulty hardware.

�Handling
To handle erase errors, SSD firmware should include algorithms that 

can detect and recover from these errors. For example, the firmware may 

attempt to erase the data from a different location in the NAND memory 

and mark the old block as bad.

To mitigate these types of errors, SSD firmware should be designed 

with robust error-handling and recovery algorithms. Additionally, SSD 

manufacturers can use high-quality NAND cells and carefully test their 

products to reduce the likelihood of errors’ occurring. Finally, SSD 

firmware should be regularly updated to fix any known issues and improve 

error-handling and recovery capabilities.
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�Summary
This chapter has discussed exception handling in SSD firmware. We have 

seen how SSDs are prone to various types of errors, and how these errors 

can be handled by the firmware. We have also seen how the firmware can 

be designed to mitigate the likelihood of errors’ occurring.
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CHAPTER 13

Performance
In this chapter, we will discuss the performance of solid-state drives (SSDs).  

We will start by defining some of the key performance metrics, such as 

input/output operations per second (IOPS), throughput, and latency. 

We will then discuss the factors that can impact the performance of an 

SSD, such as the memory type, memory architecture, memory controller, 

and firmware. Finally, we will discuss some of the strategies that can be 

used to boost the performance of an SSD through firmware design and 

implementation.

SSD performance tests and benchmarking test SSD performance 

under a variety of workloads. SSD firmware engineers who want to monitor 

their drive can use benchmarks to observe read and write rates and other 

performance metrics under different conditions. Those read and write 

speeds can then be marketed to potential customers who are searching 

for persistent storage devices that provide quick access to data. An ideal 

benchmark test gives customers an accurate picture of how quickly they’ll 

be able to access that data using the SSD.

The key performance criteria for an SSD include the following:

Transfer Speed: This refers to the speed at which 

data can be transferred to or from the SSD. This 

can be measured in terms of read and write speeds, 

which are typically expressed in megabytes per 

second (MB/s) or gigabytes per second (GB/s).
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IOPS (input/output operations per second): This 

refers to the number of read and write operations 

that the SSD can perform in a given second. This 

is often used to measure the performance of an 

SSD under heavy workloads. The higher the IOPS, 

the better.

Throughput: An SSD’s data transfer speed, 

measured in bytes per second. The higher the 

throughput, the better, although throughput is 

affected by elements such as block size and whether 

the reads and writes are random or sequential.

Latency: Shows how long it takes to process an 

I/O operation. This process translates to SSD 

response time and is measured in microseconds or 

milliseconds. The lower the latency, the better.

Endurance: This refers to the number of write and 

erase cycles that an SSD can withstand before it 

begins to experience performance degradation. This 

metric is mostly used in marketing, like terabytes 

written (TBW).

Power Consumption: This refers to the amount 

of power that the SSD consumes while it is in use. 

This can be important for devices that rely on 

battery power.

�Access Patterns and Test Workloads
An access pattern is the type of storage and retrieval operation going to 

and from a storage device. Access patterns are described in three main 

components, as follows:
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•	 Random/Sequential: The random or sequential nature 

of the data address requests

•	 Block Size: The data transfer lengths

•	 Read/Write Ratio: The mix of read and write operations

Any particular workload or test stimulus is approximated by some 

combination of access patterns. That is, an access pattern is one 

component of a synthesized equivalent input/output (IO) workload. For 

example, “RND 4KiB 65:35 R/W” describes an access pattern consisting of 

a sequence of IO commands, each one 4 KiB long (block size), to random 

locations on the storage device, in the proportion of 65 percent reads to 35 

percent writes.

�Workloads
A workload is a set of access patterns observed over a given period of time, 

such as ten minutes of random 4 KiB 100 percent writes. Key performance 

metrics, including IOPS, throughput (TP), and latency (LAT), can be 

described in terms of these access patterns. These metrics can be used 

to evaluate the performance of a storage device, such as an SSD, under 

different workloads. Some commonly accepted workloads are random 

8KiB 65:35 RW and sequential 128KiB 90:10 RW

Figure 13-1 shows some of the key performance criteria being 

compared across different SSD manufactures by tech reviewers to help 

choose an SSD for a specific goal.
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Figure 13-1.  Burst 1 MB sequential read (QD 1) 
Source: Image courtesy [AnandTech] as of Mar-09-2021,  
https://www.anandtech.com/show/16504/the-samsung-ssd-980-5
00gb-1tb-review/3

This figure of sequential read performance uses short bursts of 1 

MB, issued as 128 KB operations with no queuing. The burst sequential 

read performance of the Samsung 980 PRO is marginally faster than its 

predecessors, but the extra PCIE Gen4 bandwidth does not matter with a 

queue depth of just one.
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Figure 13-2.  Burst 1 MB sequential write (QD 1) 
Source: Image courtesy [AnandTech]

Typically, the evaluation of sequential write burst performance 

closely mirrors the procedure used for assessing sequential read burst 

performance. In this evaluation, each burst entails the writing of 1 MB 

through 128 KB operations, administered at a queue depth of 1 (QD1). This 

culminates in the composition of 1 GB of data being written onto a drive 

housing 16 GB of data.
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Historically, the burst sequential write speed metrics for high-end 

Non-Volatile Memory Express (NVMe) drives have exhibited limited 

diversity, with a narrow range of scores spanning a wide array of drivers. 

The advent of PCIe Gen4 drives disrupts this pattern, ushering in tangible 

enhancements to this QD1 performance aspect. In this test scenario, once 

again, the victor emerges as the Samsung 980 PRO 1 TB. However, other 

contenders are making commendable strides, gradually closing the gap.

Figure 13-3.  Burst 4 KB random read (QD1) 
Source: Image courtesy [AnandTech]
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The assessment of random read performance entails brief and isolated 

operations carried out one at a time, without any queuing. To ensure a 

duty cycle of 20 percent, the drives are provided sufficient idle intervals 

between bursts, rendering thermal throttling implausible. In each burst, 

a cumulative total of 32 MB of 4 KB random reads is executed, spanning a 

16 GB segment of the disk. The aggregate data read amounts to 1 GB.

While Samsung’s 128L TLC, as featured in the 980 PRO, demonstrates 

improved burst random read latency compared to the earlier TLC 

iteration, it still lags behind certain competitors; similarly, their 64L MLC, 

found in the 970 series, follows suit.

In contrast to the 970 EVO Plus, the 980 PRO exhibits modest 

enhancements in random read performance across the spectrum. 

However, these differences are marginal. Notably, the PCIe 3 SK hynix 

Gold P31 capitalizes on similar advantages at higher queue depths and 

aligns with the QD32 random read throughput of the 980 PRO.
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Figure 13-4.  Burst 4 KB random write (QD 1) 
Source: Image courtesy [AnandTech]

The sequential write burst performance test is similar to the sequential 

read burst performance test. In each burst, 1 MB of data is written as 

128 KB operations issued at QD 1. The total test length is 1 GB, and the 

data is written to a drive containing 16 GB of data.
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The burst sequential write speed scores for high-end NVMe drives 

have been fairly narrow, with a small range of scores for a variety of drives. 

PCIe Gen4 drives break this trend and deliver real improvements in QD 1 

performance. The clear winner in this test is the Samsung 980 PRO 1 TB, 

but other drives are catching up quickly.

The random write burst performance test is similar to the random 

read burst test. However, each burst is only 4 MB, and the total test length 

is 128 MB. The 4 KB random write operations are distributed over a 16 GB 

span of the drive, and the operations are issued one at a time with no 

queuing.

The burst random write performance of the Samsung 980 PRO is an 

improvement over its predecessors. However, Samsung’s SLC write cache 

latency is still significantly slower than that of many of their competitors. 

PCIe Gen4 support does not seem to be a factor for the 980 PRO at QD 

1, and the two capacities of the 980 PRO seem to disagree as to whether 

the other differences between our old and new testbeds help or hurt. 

Meanwhile, the Phison-based Seagate FireCuda 510 does seem to benefit 

significantly from our Gen4 test setup, where it takes a clear lead.

There are several hardware and firmware design factors that can 

impact the performance of an SSD. Some of these include the following:

Memory Type: Different types of memory, such 

as NAND flash and 3D XPoint, Hybrid DRAM flash 

storage, Flash DIMMS, have different performance 

characteristics.

Memory Architecture: The way in which the 

memory is organized and accessed can impact 

performance. For example, using multiple 

memory channels, having support for multi-plane 

operations, having die interleave, etc. can increase 

transfer speeds.
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Memory Controller: The memory controller is 

responsible for managing access to the memory and 

can impact performance.

Firmware: The firmware on an SSD controls how 

the device operates and can impact performance. 

For example, the firmware may implement wear- 

leveling and garbage-collection algorithms to 

optimize performance.

Let’s look at some more specific strategies that are commonly used in 

the industry to do well on performance criteria and boost the performance 

of an SSD through firmware design and implementation, as follows:

Writing to SLC (single-level cell) Blocks Initially: 
SLC blocks are a type of memory that can store a 

single bit per cell and are generally faster and more 

reliable than multi-level cell (MLC) or triple-level 

cell (TLC) blocks. By writing data to SLC blocks 

initially, it is possible to improve the performance of 

the SSD, particularly in terms of write speeds.

Reducing DRAM Access: Many SSDs use DRAM 

(dynamic random-access memory) as a buffer to store 

data temporarily before it is written to the NAND flash 

memory. Accessing the DRAM a lot can make the 

firmware slower if it is in a critical read or write path, 

so minimizing the number of times data is transferred 

between the two can improve performance.

Writing in Parallel: Some SSDs have multiple 

memory channels, dies (individual memory 

chips), or planes. By writing data to these different 

components in parallel, it is possible to improve the 

overall write speed of the SSD.
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Die Interleaving: Die interleaving is a technique in 

which data is written to multiple dies in a round- 

robin fashion, rather than writing all the data to 

a single die. This can improve performance by 

allowing the SSD to access more dies concurrently, 

which can increase the effective memory 

bandwidth. To further increase performance, 

controllers can take advantage of interleaving. 

Each NAND flash chip can have multiple dies in it; 

this is particularly so for high-density parts. 2/4/8 

die packs are common. The ability to interleave is 

dependent on flash/controller/firmware support.

Data Placement: Smart placement of data across 

the chips of an SSD is critical not only to provide 

load balancing, but also to affect wear leveling and 

performance boosting.

�Host Interface
NVMe is the fastest interface for SSDs because NVMe uses the PCIe bus 

instead of the slower SATA interface bus. PCIe 4 can use 32 lanes to transfer 

data, compared to the four lanes used for SATA SSDs. NVMe SSDs were 

designed to reduce flash latencies and SSD response time.

Fiber channel is still the highest-performing protocol, but  

Serial-Attached SCSI (SAS) isn’t far behind. Most SSD products built 

around iSCSI and SATA won't produce 1 million IOPS results unless they 

have other caching features to assist performance.
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These are just a few examples of the strategies that can be used to boost 

the performance of an SSD through firmware design and implementation. 

It is important to carefully consider the specific performance requirements 

of the intended use case and select the appropriate strategies to meet those 

requirements. Testing and benchmarking the SSD can help to identify 

areas for improvement and guide the optimization process.

�Summary
This chapter has discussed the performance of SSDs. We have seen 

how the performance of an SSD can be affected by a variety of factors, 

and how these factors can be optimized through firmware design and 

implementation. We have also seen how the performance of an SSD can be 

measured using a variety of benchmarks.
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CHAPTER 14

Debugging
In this chapter, we will discuss the debugging of firmware for complex 

solid-state drives (SSDs). We will start by discussing some of the challenges 

of debugging firmware, such as the complexity of the firmware code and 

the difficulty of reproducing the problem. We will then discuss some of the 

techniques that can be used to debug firmware, such as using a debugger, 

adding trace output and logging, using simulation or emulation tools, 

using hardware probes, and using software tools. Finally, we will discuss 

how to recover a bricked SSD.

Debugging firmware for complex SSDs can be a challenging task, but 

there are several approaches and techniques that you can use to help 

identify and resolve issues. Here are some tips and methods that you may 

find helpful.

Use a debugger. A debugger is a software tool that allows you to 

execute code one line at a time, set breakpoints, and inspect variables. This 

can be a very useful tool for understanding how the firmware is executing 

and identifying where problems may be occurring. To use a debugger, 

you will need to connect it to the SSD and configure it to work with the 

firmware. Once the debugger is set up, you can use it to step through the 

code and inspect variables to understand what is happening at different 

points in the execution.

Use logging and trace output. Adding trace output and logging to your 

firmware can provide valuable information about what is happening at 

different points in the code. This can help you to identify where problems 
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may be occurring and to understand how the firmware is interacting with 

other components. To add trace output and logging to your firmware, 

you will need to add calls to the relevant functions at different points 

in the code. You can then use a tool to capture the output and view it to 

understand what is happening.

Use simulation/emulation. In some cases, it may be useful to utilize 

simulation or emulation tools to test and debug the firmware. These tools 

allow you to run the firmware in a simulated environment, which can help 

to identify problems that may not be apparent when running the firmware 

on hardware. To use simulation or emulation tools, you will need to set up 

the simulated environment and configure it to work with the firmware. You 

can then use the tools to run the firmware and analyze the results.

Use hardware probes. Hardware probes, such as JTAG or logic 

analyzers (NAND, SATA, NVMe), can provide detailed information about 

the hardware and can be used to trace the execution of the firmware. To 

use a hardware probe, you will need to connect it to the SSD and configure 

it to work with the firmware. You can then use the probe to monitor the 

hardware and trace the execution of the firmware.

Use software tools. There are many software tools available that 

can help with debugging firmware. For example, there are tools that 

can analyze memory usage, monitor system performance, and identify 

potential problems with the firmware without actually testing in hardware. 

To use these tools, you will need to install them on your development 

system and configure them to work with the firmware. You can then use 

the tools to analyze the firmware and identify potential issues like Coverity, 

Valgrind, etc.

Collect crash dump. Collecting a crash dump when firmware fails or 

an exception occurs can be a useful way to understand what went wrong 

and to help identify the cause of the issue. Here are some steps you can 

follow to collect a crash dump:
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•	 Set up crash dump collection. Depending on the 

firmware and the development environment, there may 

be different ways to set up crash dump collection. Some 

firmware may have built-in crash dump collection 

capabilities, while others may require the use of a 

separate tool. In either case, you will need to set up the 

crash dump collection feature and configure it to work 

with your firmware.

•	 Run the firmware. Once crash dump collection is set 

up, you can run the firmware as you normally would. 

If the firmware fails or an exception occurs, the crash 

dump collection feature should capture the relevant 

information and generate a crash dump file that is 

stored in SSD and retrieved on an as-needed basis.

•	 Collect the crash dump. If the firmware fails or an 

exception occurs, the crash dump collection feature 

should generate a crash dump file. You can use a tool to 

access and retrieve the crash dump file from the SSD or 

other storage location.

•	 Analyze the crash dump. Once you have collected 

the crash dump, you can use a tool to analyze it and 

understand what went wrong. Depending on the 

firmware and the development environment, there may 

be different tools available for analyzing crash dumps. 

Some common tools include debugger tools and crash 

dump analysis tools.
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Recovering bricked SSD. If an SSD becomes “bricked,” it means that 

it is no longer functioning properly and is unable to boot or perform any 

operations. There are several potential causes of a bricked SSD, including 

hardware failures, firmware issues, or problems with the boot process. 

Here are some steps you can follow to try to recover a bricked SSD:

•	 Check for hardware issues. Before attempting to 

recover a bricked SSD, you should first check for any 

hardware issues that may be causing the problem. This 

may involve checking for physical damage to the SSD, 

verifying that all connections are secure, and running 

diagnostic tests to check for hardware failures.

•	 Attempt to boot from an alternate boot device. In 

some cases, it may be possible to boot the SSD from 

an alternate boot device, such as a USB drive or 

network boot device. This can be helpful if the problem 

is related to the SSD’s boot process or if the SSD’s 

firmware has become corrupted.

•	 Attempt to reflash the firmware. If the problem is 

related to the SSD’s firmware, you may be able to 

recover the SSD by reflashing the firmware. To do this, 

you will need to connect the SSD to a development 

system and use a firmware update tool to flash the 

firmware onto the SSD, or force the firmware into 

factory mode to update the firmware from factory 

mode. Reflashing the firmware can be a useful way to 

recover a bricked SSD if the problem is related to the 

firmware. Here are some more detailed steps you can 

follow to reflash the firmware on a bricked SSD:
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•	 Prepare the development system. To reflash 

the firmware on a bricked SSD, you will need a 

development system that is set up to communicate 

with the SSD. This may involve installing drivers 

and other software tools, setting up the hardware 

connections, and configuring the development 

system to work with the SSD.

•	 Download the firmware. You will need to obtain a 

copy of the firmware that you want to flash onto the 

SSD. Make sure to download the correct firmware 

for your SSD and to verify the integrity of the 

firmware file.

•	 Connect the SSD to the development system. 
Once the development system is prepared, you 

will need to connect the SSD to the development 

system. This may involve using a USB or SATA 

connection, depending on the SSD and the 

development system.

•	 Put the SSD into boot mode. To reflash the 

firmware, you will need to put the SSD into 

boot mode. This may involve pressing a specific 

button or combination of buttons on the SSD, or 

it may involve issuing a specific command via the 

development system. Check the manufacturer’s 

documentation for specific instructions on how to 

put the SSD into boot mode.
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•	 Run the firmware update tool. Once the SSD is 

in boot mode and connected to the development 

system, you can use a firmware update tool to flash 

the firmware onto the SSD. Follow the instructions 

provided by the firmware update tool.

•	 Reboot the SSD. Once the firmware update is 

complete, you should reboot the SSD to ensure 

that the new firmware is properly installed. If the 

firmware update was successful, the SSD should 

boot up normally.

•	 Use a hardware probe. If the SSD is not responding to 

normal commands, you may be able to use a hardware 

probe, such as a JTAG or logic analyzer, to access the 

SSD at the CPU level. This can be helpful if the problem 

is related to the SSD’s firmware or if the SSD’s CPU is 

not responding to normal commands.

�Summary
This chapter has discussed the debugging of firmware for complex SSDs. 

We have seen the challenges of debugging firmware and the techniques 

that can be used to do so. We have also seen how to recover a bricked SSD.
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CHAPTER 15

Future Developments 
and Innovations 
in SSD Firmware
In this chapter, we will discuss the future developments and innovations in 

solid-state drive (SSD) firmware. As the technology behind SSDs continues 

to evolve, there are a number of exciting developments and innovations in 

SSD firmware that are worth exploring. We will start by discussing some 

of the challenges that SSD firmware developers are facing, such as the 

increasing complexity of SSDs and the need to support new technologies. 

We will then discuss some of the promising developments and innovations 

in SSD firmware, such as host cache mechanisms, QLC support, and 

expanded hardware support.

On the hardware side, there have been a number of innovations that 

have contributed to the improved performance and reliability of SSDs. 

These innovations include the development of new types of NAND flash 

memory, such as 3D NAND and quad-level cell (QLC) NAND, as well as 

the use of novel materials and structures, such as conductive bridging 

random access memory (CBRAM) and phase-change memory (PCM).

On the firmware side, there have been a number of innovations in 

SSD firmware that have contributed to the improved performance and 

reliability of SSDs. These innovations include the use of host cache 
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mechanisms, IO determinism, and streaming concepts, as well as more 

advanced error correction techniques, such as Reed-Solomon error 

correction and low-density parity-check (LDPC) codes.

One area of innovation in SSD firmware is the use of host cache 

mechanisms. These allow the SSD to use the memory of the host system 

as a cache to improve the performance of read and write operations. This 

can significantly improve the performance of the SSD, particularly for 

workloads that involve a high number of small, random read and write 

operations.

Another area of innovation in SSD firmware is the concept of IO 

determinism and streaming concepts. IO determinism refers to the ability 

of the SSD to consistently deliver a predictable level of performance, even 

under heavy workloads. This is important because it allows users to better 

understand the performance characteristics of their SSDs and plan their 

workloads accordingly.

Streaming concepts involve the use of algorithms that optimize the 

way that data is written to and read from the SSD in order to improve the 

performance of sequential read and write operations. This is particularly 

useful for workloads that involve the transfer of large amounts of data, 

such as video streaming and data backup.

Startup companies are also working on a number of innovative ideas 

in the field of SSD technology. For example, some startups are focusing on 

developing new types of memory technology, such as resistive random- 

access memory (RRAM) and magneto random-access memory (MRAM), 

which have the potential to improve the performance and reliability of 

SSDs. Other startups are working on developing new software solutions, 

such as intelligent data tiering and data deduplication, which can help to 

improve the efficiency and cost-effectiveness of SSD storage.

Finally, the Flash Memory Summit (https://www.

flashmemorysummit.com/), an annual conference that brings together 

industry experts and researchers in the field of flash memory, is a forum 
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for discussing and sharing innovative ideas in SSD technology. At the 

Flash Memory Summit, attendees have the opportunity to hear about the 

latest research and developments in the field, as well as to participate in 

discussions.

�Summary
In summary, there are a number of exciting developments and innovations 

in SSD firmware that are worth exploring. From host cache mechanisms 

and QLC support, to expanded hardware support and improved interface 

protocols, these developments are helping to improve the performance 

and reliability of SSDs and make them an even more compelling option for 

storage.
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CHAPTER 16

Closing
In this beginner’s guide to solid-state drive (SSD) firmware, we have 

explored the key concepts and techniques that are essential for designing, 

optimizing, and maintaining SSD firmware. We have looked at the role of 

firmware in the functioning of SSDs and the importance of keeping the 

firmware up to date to ensure optimal performance and security. We have 

also discussed some of the advanced features that are included in modern 

SSD firmware, such as wear-leveling algorithms, garbage-collection 

algorithms, error prevention and correction methods, and algorithms to 

reduce write amplification.

As fellow engineers and professionals, it is important to understand the 

best practices for designing, optimizing, and maintaining SSD firmware. 

By understanding the role of firmware in the functioning of SSDs and the 

various features that are included in modern firmware, we can ensure 

that our SSDs are performing at their best and are secure against potential 

threats.

In addition to the concepts and techniques that we have covered in this 

guide, there are many other tools and resources available to help optimize 

and maintain SSD firmware. These include hardware probes, such as JTAG 

and logic analyzers, that can be used to access and troubleshoot SSDs 

at the CPU level, as well as software tools and utilities that can help us 

manage and optimize firmware updates and other maintenance tasks.
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We hope that this beginner’s guide to SSD firmware has been a helpful 

resource and has provided a basic foundation for understanding the key 

concepts and techniques that are essential for designing, optimizing, and 

maintaining SSD firmware. While we have covered basic concepts in this 

guide, there is much more to learn about every topic. If you are looking 

to dive deeper into the various aspects of SSD firmware, we recommend 

keeping an eye out for our next version of this guide, which will go into 

more detail on each of the topics that we have covered here.

We wish you, the reader, luck in your endeavors to design, optimize, 

and maintain SSD firmware, and we hope that this guide has been a 

helpful resource in your journey. Whether you are just starting out in the 

field of SSD firmware or you are an experienced professional, we hope that 

you have found something of value in this guide. Thank you for reading, 

and we hope that you will continue to explore and learn more about this 

fascinating and important topic.

If you wish to make any comments concerning this book you can do so 

via gopikt@outlook.com.

My LinkedIn profile: https://www.linkedin.com/in/gopi-thirumalai/.

Chapter 16  Closing
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