
A Beginner’s Guide
to SSD Firmware

Designing, Optimizing, and
Maintaining SSD Firmware
—
Gopi Kuppan Thirumalai

A Beginner’s Guide to
SSD Firmware

Designing, Optimizing,
and Maintaining SSD Firmware

Gopi Kuppan Thirumalai

A Beginner’s Guide to SSD Firmware: Designing, Optimizing, and

Maintaining SSD Firmware

ISBN-13 (pbk): 978-1-4842-9887-9		 ISBN-13 (electronic): 978-1-4842-9888-6
https://doi.org/10.1007/978-1-4842-9888-6

Copyright © 2023 by Gopi Kuppan Thirumalai

This work is subject to copyright. All rights are reserved by the publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Editorial Assistant: Jessica Vakili
Copy Editor: April Rondeau

Cover designed by eStudioCalamar

Cover image by Michael Dziedzic on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (github.com/apress). For more detailed information, please visit
https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

Gopi Kuppan Thirumalai
San Jose, CA, USA

https://doi.org/10.1007/978-1-4842-9888-6

To my mother, Vijaya T, and my father,
Thirumalai J

v

Table of Contents

About the Author��xiii

About the Technical Reviewer���xv

Chapter 1: �Introduction to SSD Firmware��1

What Is SSD?���1

Summary���5

Chapter 2: �Understanding the Role of Firmware in SSDs����������������������7

What Is Firmware?���7

Summary���10

Chapter 3: �The History and Evolution of SSD Firmware�����������������������11

History��11

Summary���13

Chapter 4: �Basics of Flash Memory���15

Memory Types��15

NOR Flash Memory���16

NAND Flash Memory��17

Similarities���19

Differences���19

A Flash Memory Cell��19

NAND Memory Organization��23

Addressing��24

vi

Erase��25

Write��25

Read���27

Program/Erase Cycle (P/E Cycle)���28

Summary���30

Chapter 5: �3D Vertical NAND��31

Evolution of 3D Vertical NAND Technology���31

Unlocking New Possibilities with Vertical NAND Architecture������������������������������33

Advantages of 3D Vertical NAND��35

Applications of 3D Vertical NAND���36

Understanding 3D Vertical NAND Architecture���37

Layers and Pages���37

Charge Trapping Technology���38

Bit Line and Word Line Architecture���40

Control and Decoding Circuits��40

Memory Cell Size and Density in 3D Vertical NAND Flash Memory
Technology���40

Understanding NAND Cell Types Supported: SLC, MLC, and TLC (QLC)����������������41

SLC���41

MLC��42

TLC���43

Read and Write Operations in 3D Vertical NAND��43

Erasing MLC 3D vertical NAND block���47

Endurance and Data Retention Capabilities���49

Speed and Efficiency Compared to 2D Planar NAND���49

Advancements in Storage Capacity with 3D Vertical NAND���������������������������������50

Summary���50

Table of Contents

vii

Chapter 6: �Basic Understanding of NAND Flash Interface�������������������51

Basic NAND IO Interfacing Pin Details��52

NAND Flash Interface Basics���54

Open NAND Flash Interface (ONFI)���55

Toggle Mode Interface���55

Command Cycles for NAND Flash Operations��56

Addressing���57

Column Address��58

Row Address���58

Addressing Functions���58

Address Cycle Order���58

Handling Unused Bits���59

NAND Flash Commands���62

RESET Operation���62

READ ID Operation��63

READ STATUS Operation���64

READ STATUS Response��64

ERASE Operation��66

PROGRAM Operations��68

READ Operation��70

RANDOM DATA READ Operation���72

Typical NAND Packet Structure��73

PAGE READ CACHE MODE Operation��74

PROGRAM PAGE CACHE Operation���75

Advanced Command Sets��78

Address Input Restrictions for Multi-Plane Operations��79

Table of Contents

viii

Multi-plane Read��81

MULTI- PLANE RANDOM CACHE READ Operation���82

Multi Plane Program Operation��85

Multi Plane Cache Program Operation���88

Multi Block Erase Operation���90

Summary���92

Chapter 7: �Common SSD Firmware Features���������������������������������������93

Significance of Garbage Collection in SSDs���95

Types of Garbage Collection Strategies���95

Full Garbage Collection���95

Partial Garbage Collection��95

Dynamic Garbage Collection��96

Error-Triggered Garbage Collection��96

Garbage Collection Read Process���97

Retrieving Valid Data during Compaction���98

Handling Incomplete or Interrupted Reads��98

Address Translation during Compaction Reads��99

Writing Data during Compaction��100

Address Mapping and Updating���101

Managing Block Erasure and Wear-Leveling���101

Handling Unexpected Power-Off Conditions in Garbage Collection�������������������102

Ensuring Data Consistency during Power Loss��102

Write Journaling and Recovery Mechanisms���103

Managing Incomplete Compaction Operations���104

Performance Considerations in Garbage Collection���104

Impact of Compaction on SSD Performance��105

Write Amplification and Its Effects���106

Table of Contents

ix

Strategies to Minimize Performance Degradation��107

Balancing Garbage Collection and Host Write Operations���������������������������������108

Understanding the Workload Characteristics���108

Garbage Collection Prioritization��108

Dynamic Resource Allocation���109

Over-Provisioning���109

Adaptive Garbage Collection��110

Drawbacks of Garbage Collection and Minimizing Their Impact������������������������110

Write Amplification���110

Performance Degradation��111

Increased Power Consumption���111

Impact on Endurance��111

Other Concerns��112

Data Retention��112

Read Disturb���113

Program Disturbance��115

Write Amplification���116

Over-provisioning���117

Encryption��118

Summary���118

Chapter 8: �SSD Firmware Design Considerations������������������������������119

Design Considerations���119

Unexpected Shutdown���121

Power-Loss Protection���122

Power-Loss Design Considerations��123

Best Practices for Optimizing and Maintaining SSD Firmware��������������������125

Summary���127

Table of Contents

x

Chapter 9: �Flash Translation Layer (FTL)���129

Mapping Table��130

Size of the Mapping Table��131

Storing the Mapping Table in RAM���132

Partial Loading of the Mapping Table���132

Storage of Non-Loaded Mapping Entries���132

Write/Update Operations and the Mapping Table���133

Dirty Cache Buffer in RAM��133

Mapping Table Management and Optimization��134

Bad Block Management���142

Factory Bad Block Assessment��142

Bad Block Flash Address��143

Recording Bad Block Flash Address���143

Initial Bad Block Handling Flow��143

Used Bad Block Assessment��146

Bad Block Skipping Strategy��149

Bad Block Replacement Strategy���149

Summary���150

Chapter 10: �User Data Flow���151

Write Path��151

Read Path���152

Summary���153

Chapter 11: �Throttling���155

Thermal Throttling��155

Temperature Monitoring���155

Throttling Mechanism���155

Temperature Recovery���156

Table of Contents

xi

Design Consideration���156

Power Throttling���158

Power Monitoring���158

Throttling Mechanism���159

Power Recovery��159

Combined Throttling���159

Synergistic Operation���159

Priority Management��159

Dynamic Performance Adjustments���160

Workload Awareness��160

Logging and Reporting���160

Event Logging���160

Health Monitoring���160

Summary���161

Chapter 12: �Exception Handling��163

Read Errors��163

Handling���164

Program Errors���165

Handling���165

Program Abort��166

Handling���166

Erase Errors���167

Handling���167

Summary���168

Table of Contents

xii

Chapter 13: �Performance���169

Access Patterns and Test Workloads���170

Workloads��171

Host Interface���179

Summary���180

Chapter 14: �Debugging��181

Summary���186

Chapter 15: Future Developments and Innovations in SSD
Firmware���187

Summary���189

Chapter 16: �Closing���191

�Bibliography��193

�Index��195

Table of Contents

xiii

About the Author

Gopi Kuppan Thirumalai is a highly experienced embedded design

engineer with a proven track record of success in the industry. He has over

15 years of experience in a variety of domains, including wireless networks,

software, automotive, and storage. He is an expert in client and data-

center SSD design and implementation and has a history of leading and

mentoring teams to achieve their goals. He is also an outdoor enthusiast

and enjoys hiking, fitness, reading books, and cooking.

xv

About the Technical Reviewer

Kenneth Fukizi is a software engineer, architect, and consultant with

experience internationally in coding on different platforms. Prior to

dedicated software development, he worked as a lecturer and was then

head of IT at different organizations. He has domain experience working

with technology for companies mainly in the financial sector. When he’s

not working, he likes reading up on emerging technologies and strives to

be an active member of the software community.

Kenneth currently leads a community of African developers through a

startup company called AfrikanCoder.

1

CHAPTER 1

Introduction to
SSD Firmware
Welcome to the world of SSD firmware! This chapter marks the beginning

of your journey into the intricate world of solid-state drive (SSD) firmware.

In this chapter, I will lay the foundation by exploring the fundamental

concepts and essential aspects of SSD firmware. My goal is to provide

you with a clear understanding of what SSDs are, the role of firmware in

optimizing their performance, and the key differences that set SSDs apart

from traditional hard-disk drives (HDDs).

�What Is SSD?
A solid-state drive (SSD) is a type of storage device that uses flash memory

to store data. Compared to traditional hard drives, which use spinning

disks to store data, SSDs are much faster, more reliable, and more energy

efficient. However, to take full advantage of the capabilities of an SSD,

it is necessary to use specialized software known as SSD firmware. SSD

firmware is the embedded software that controls the functions and

features of an SSD. It is responsible for managing the storage, retrieval,

and protection of data on the drive. SSD firmware is typically stored on the

drive’s non-volatile memory and is executed by the drive’s controller when

the drive is powered on. It plays a critical role in ensuring the reliable and

efficient operation of an SSD.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_1

https://doi.org/10.1007/978-1-4842-9888-6_1

2

The first SSD, introduced in the late 1970s, used simple firmware

that was primarily responsible for interfacing with the host system and

translating its commands into actions on the drive. At the beginning,

SSDs were introduced for use in early IBM supercomputers, but they were

not often used due to their high cost. Over time, as SSD technology has

evolved, the firmware has become increasingly complex, adding features

such as wear leveling, garbage collection, and encryption. In addition, the

capabilities of SSD firmware have improved over time to support larger

SSDs, with current firmware able to support drives with capacities of up to

100 TB or more.

Today, SSD firmware is a crucial component of modern storage systems,

providing numerous benefits over traditional hard disk drives (HDDs),

such as faster access to data, higher reliability, and lower power

consumption. It also enables advanced features such as data protection,

power management, and error correction, which are essential for

maintaining the integrity and performance of the drive.

Figure 1-1.  Comparison of HDD and SSD

Chapter 1 Introduction to SSD Firmware

3

In addition to supporting larger SSDs, modern SSD firmware is also

designed to improve the performance of the drive. For example, SSD

firmware can optimize the process of reading and writing data to the drive,

and it can also improve the reliability of the drive by using techniques such

as error-correcting code (ECC) and wear leveling.

There are several different types of SSD that are commonly used,

including data-center SSDs, client SSDs, external SSDs, and enterprise

SSDs. Each of these types of SSD has its own unique set of requirements,

and the firmware that is used with these drives is specifically designed to

meet those requirements.

One important consideration when designing SSD firmware is the type

of memory that is used in the drive. The most common types of memory

used in SSDs are single-level cell (SLC), multi-level cell (MLC), triple-level

cell (TLC), and quadruple-level cell (QLC). Each of these types of memory

has its own unique characteristics, and the firmware that is used with the

drive must be optimized to take advantage of those characteristics. SLC

memory is generally considered to be the most reliable and robust type of

memory, but it is also the most expensive. MLC, TLC, and QLC memory

are generally less expensive than other types, but they are also less reliable

and have lower endurance, meaning they can’t withstand as much wear

and tear (less P/E cycle (program/erase Cycle) compared to SLC). In

addition, the firmware design and implementation for MLC, TLC, and

QLC memory can be more complex compared to other types of memory.

This means that the firmware used to control and manage the memory

may be more intricate and require more effort to design and implement. In

general, MLC, TLC, and QLC memory are less durable and more complex

to work with compared to other types of memory, but they can be a cost-

effective option for certain applications.

Another important consideration when designing SSD firmware is the

type of host interface that is supported. The host interface is the interface

that connects the SSD to the rest of the system, and different interfaces have

different performance characteristics. The most common types of host

Chapter 1 Introduction to SSD Firmware

4

interface for SSDs are SATA, USB, NVMe, and SAS (Serial-Attached Small

Computer System Interface (SCSI). SATA is the most common and widely

supported interface, but it has relatively low performance compared to other

interfaces. NVMe is a newer interface that is designed specifically for high-

performance storage devices, and it can provide much higher performance

than SATA. USB is a universal interface that is commonly used for external

storage devices, but it has lower performance than other interfaces. SAS is

a high-performance interface that is commonly used in enterprise storage

systems, but it is not as widely supported as SATA or NVMe.

Figure 1-2.  SSD block diagram

This book is a basic resource that covers the fundamental principles

and technical aspects of SSD firmware and is designed to provide a basic

understanding of the key concepts and technologies used in SSD firmware.

The guide is divided into several chapters, each of which covers a different

aspect of SSD firmware. The first few chapters provide an overview of SSD

firmware, including the key features and benefits of SSDs and the ways in

which they differ from traditional hard-disk drives (HDDs). These chapters

help with understanding the role of the SSD firmware in managing the

read and write operations of the drive and also dive into the history and

evolution of SSD firmware.

The further chapters delve into the inner workings of SSD firmware,

exploring fundamental NAND operations, various techniques for error

correction, and strategies for endurance management. They also cover

Chapter 1 Introduction to SSD Firmware

5

common SSD firmware features, design considerations, and the all-

important flash translation layer. The chapters then examine the flow

of user data and exception handling in an SSD, as well as performance

optimization and debugging support. Finally, the book concludes

with a look to the future, examining the cutting-edge technologies and

innovations that are shaping the future of SSD firmware.

This book may provide a valuable resource for anyone interested

in understanding the technical details of SSD firmware basics and how

firmware impacts the performance and reliability of solid-state drives.

Whether you are a firmware engineer, a computer science student, or

simply someone interested in learning more about SSDs, this book is sure

to provide you with a basic information and insights.

�Summary
In this chapter, we covered the basics of SSD firmware. You have learned

that SSD firmware is the software that controls the operation of an

SSD. You have also learned that SSD firmware is responsible for tasks

such as managing the wear leveling of the NAND flash memory, garbage

collection, and error correction.

You have also learned about the different types of SSD that are

commonly used, including data center SSDs, client SSDs, external SSDs,

and enterprise SSDs. We have discussed the different types of memory that

are used in SSDs, such as SLC, MLC, TLC, and QLC. We have also looked

at the different types of host interfaces that are supported by SSDs, such

as SATA, USB, NVMe, and SAS. This chapter set the stage for a deeper dive

into the intricate workings of SSD firmware, promising insights into NAND

operations, error correction techniques, performance optimization, and

future innovations.

Chapter 1 Introduction to SSD Firmware

7

CHAPTER 2

Understanding the
Role of Firmware
in SSDs
Picture the hardware of a solid-state drive (SSD) as the engine of a

car, and the firmware as the driver who controls and optimizes its

performance. In the SSD world, firmware takes center stage, fine-tuning

every interaction between the physical components and the digital world.

This chapter embarks on a journey to unveil the firmware’s pivotal role

in SSDs, breaking down its intricate responsibilities and how it makes

things happen.

�What Is Firmware?
For SSDs to work properly and help us with tasks, they rely on both

hardware and firmware. The hardware consists of the physical

components of the device, such as the processor, memory, and storage.

The firmware, meanwhile, is the software that runs on the device and

controls the hardware. It is responsible for ensuring that the device

performs its designated tasks and functions properly.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_2

https://doi.org/10.1007/978-1-4842-9888-6_2

8

The primary role of SSD firmware is to manage the storage, retrieval,

and protection of data on the drive. Firmware is typically embedded into

the hardware during the manufacturing process and is not intended to be

modified by the user.

In SSDs, firmware plays a crucial role in the performance and

functionality of the drive. It controls the various hardware components of

the drive, such as the memory chips and interface controller, and manages

the data stored on the SSD. Additionally, SSD firmware provides many

advanced features that are essential for maintaining the performance and

reliability of the drive. For example, it can include wear-leveling algorithms

that distribute data evenly across the drive to prevent excessive wear on

any one area of the drive, garbage-collection algorithms that reclaim

unused space on the drive to improve performance, and algorithms to

reduce write amplification. (Write amplification is a process that increases

the amount of data written to the drive beyond the amount of data that the

user writes.)

SSD firmware can also include encryption capabilities to protect data

on the drive, as well as power-management functions to help conserve

energy and extend the lifespan of the drive. These features are essential

for modern SSDs, which are often used in high-performance computing

environments and require the highest levels of data protection and

reliability.

Additionally, SSD firmware is responsible for managing the internal

data structures of the drive, such as the journaling data that is used to keep

track of changes to the data on the drive. This allows the drive to recover

from any errors or power failures that may occur.

Another important function of SSD firmware is to manage thermal

throttling, which is the process by which the drive reduces its performance

in order to prevent overheating. This can help to protect the drive from

damage and extend its lifespan.

Chapter 2 Understanding the Role of Firmware in SSDs

9

When we use our devices, they often run multiple programs at the

same time. Over time, this can lead to a decrease in system performance

and slower operation. One solution to this problem is to replace the

hardware with new parts. However, this can be expensive and time-

consuming. A more cost-effective and simpler solution is to update the

firmware that the system runs on. Firmware updates can fix bugs, improve

performance, and add new features to the device, all without the need to

replace any hardware.

Firmware updates for SSDs can be installed by the user and are

typically available for download from the manufacturer’s website. It is

important to keep the firmware of an SSD up to date to get the most out of

the drive and to ensure its proper functioning.

Updating the firmware on an SSD can bring several benefits, including

improved performance, increased stability, and access to new features. For

example, a firmware update may optimize the performance of the drive by

improving instruction times, out-of-order execution, branch prediction,

and speculative execution time. It may also fix bugs that have developed

over time and prevent the need for expensive repairs or bug fixes in

the future.

In addition to these benefits, updating the firmware on an SSD can

help to prevent the drive from becoming obsolete. By adopting the

additional functionalities and capabilities that come with the firmware

update, users can ensure that their SSD remains compatible with newer

technologies and is able to keep up with changing needs.

Finally, SSD firmware is responsible for managing the mapping of

logical block addresses to physical block addresses on the drive. This is

necessary because the data on the drive is typically organized into blocks,

and the firmware must manage the mapping of these blocks to the actual

physical locations on the drive where the data is stored. This is an essential

part of the drive’s overall performance and reliability.

Chapter 2 Understanding the Role of Firmware in SSDs

10

�Summary
This chapter pulled back the curtain on the unsung hero of SSDs:

firmware. Think of it as the conductor of an orchestra, ensuring each

instrument (component) plays in harmony to create a beautiful symphony

(performance). Firmware’s primary job is to manage data storage,

retrieval, and safeguarding. It makes sure no single spot on the drive wears

out prematurely and reclaims space that’s not being used. It even handles

tricky maneuvers like reducing the amount of data written, thus extending

the drive’s lifespan. Firmware is also the brain behind encryption and

energy-saving tricks, crucial in today’s demanding computing world.

The chapter also highlighted firmware updates, like giving your car a

software upgrade. These updates fine-tune the drive’s performance, fix

bugs, and even add new features without needing to swap parts. They’re

your SSD’s way of staying sharp and relevant, much like updating your

phone’s software. Lastly, firmware’s task of mapping logical data to

physical locations was emphasized—the GPS of your SSD, ensuring data

arrives at its destination smoothly. This chapter has shown that firmware is

the true wizard behind the scenes of SSD engineering.

Chapter 2 Understanding the Role of Firmware in SSDs

11

CHAPTER 3

The History and
Evolution of SSD
Firmware
In this chapter, we delve into the historical evolution of solid-state

drive (SSD) firmware, tracing its journey from its rudimentary origins

to its present-day complexities. Our exploration begins with the early

days of SSD technology, when firmware was a modest tool focused on

basic interfacing tasks. As time progressed, firmware transitioned into

a powerhouse of advanced functionalities. Our analysis concludes by

examining the contemporary challenges and innovative solutions that

underscore the realm of SSD firmware engineering.

�History
The history of SSD firmware can be traced back to the early days of SSD

technology, when the first SSDs were introduced in the late 1970s. At that

time, SSD firmware was a relatively simple piece of software that was

primarily responsible for interfacing with the host system and translating

its commands into actions on the drive.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_3

https://doi.org/10.1007/978-1-4842-9888-6_3

12

Early SSD firmware was focused on ensuring data integrity and

reliability. This was important because early SSDs were prone to data

loss due to the instability of its memory. To address this issue, early SSD

firmware included basic features such as error-correction algorithms.

These algorithms were used to detect and correct errors in the data stored

on the drive, improving the reliability and integrity of the data.

Over the next several decades, as SSD technology continued to

evolve, the firmware also evolved to include more advanced features and

capabilities. For example, early SSDs lacked the wear-leveling algorithms

that are now commonly found in modern drives, which distribute data

evenly across the drive to prevent excessive wear on any one area of

the drive.

Similarly, early SSDs did not have the garbage-collection algorithms

that are now standard in modern drives, which reclaim unused space on

the drive to improve performance. These and other advanced features

were gradually added to SSD firmware as the technology matured and the

demands on SSDs increased.

Today, SSD firmware is a crucial component of modern storage systems,

providing numerous benefits over traditional hard-disk drives (HDDs),

such as faster access to data, higher reliability, and lower power

consumption. It also enables several advanced features, such as data

protection, power management, and error correction, which are essential

for maintaining the integrity and performance of the drive.

One of the main challenges in achieving high performance with SSDs

is their tendency to become bogged down by random input/output (IO)

operations (IO operations are tasks that involve reading or writing data

from or to the SSD, such as when you save a file or load a program), which

occurs when the drive receives a large number of small, random read and

write requests. To address this issue, SSD firmware began to incorporate

stream concepts, which involve grouping together related IO requests and

Chapter 3 The History and Evolution of SSD Firmware

13

processing them as a single, larger request. This can significantly improve

the performance of the drive by reducing the number of small IO requests

and allowing the drive to operate more efficiently.

Another important aspect of SSD firmware is IO determinism,

which refers to the ability of the drive to consistently deliver predictable

performance. In the early days of SSDs, the performance of the drive

could vary greatly depending on the workload, leading to unpredictable

and inconsistent results. Modern SSD firmware includes features such as

host cache, which uses system memory to store frequently accessed data,

allowing the drive to deliver more consistent and predictable performance.

In summary, the history of SSD firmware reflects the evolution of

SSD technology itself. Starting with simple firmware that was primarily

responsible for interfacing with the host system, it has gradually evolved to

include a wide range of advanced capabilities that are critical for modern

storage systems.

�Summary
This chapter has discussed the history and evolution of SSD firmware. We

have seen how firmware has evolved from a simple piece of software to a

complex and sophisticated piece of technology. We have also seen how

firmware has helped to improve the performance, reliability, and efficiency

of SSDs.

The chapter has also discussed some of the challenges that SSD

firmware faces today. One of the main challenges is the need to improve

the performance of SSDs under random IO conditions. Another challenge

is the need to improve the IO determinism of SSDs.

Despite these challenges, SSD firmware continues to evolve and

improve. As SSD technology continues to develop, we can expect to see

even more advanced features and capabilities in the future.

Chapter 3 The History and Evolution of SSD Firmware

15

CHAPTER 4

Basics of Flash
Memory
In this chapter, we will discuss different memory types and delve into

the world of flash memory, exploring its different types and focusing on

two primary types: NAND and NOR flash memory. We will discuss the

architecture of NAND flash memory and its fundamental operations,

including reading, writing, and erasing data. Understanding these basic

operations is crucial to grasp how NAND flash memory functions and how

it is utilized in solid-state drive (SSD) firmware. By the end of this chapter,

you will have gained valuable insights into the basics of flash memory,

enabling you to comprehend its architecture and the fundamental

operations it supports.

�Memory Types
Flash memory is a type of non-volatile memory that is used in a variety of

electronic devices, including SSDs. Non-volatile memory can retain data

even when the power is turned off, making it ideal for storing important

information.

There are several different types of flash memory available, including

NOR and NAND, as you can see in Figure 4-1.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_4

https://doi.org/10.1007/978-1-4842-9888-6_4

16

Figure 4-1.  Memory types

�NOR Flash Memory
NOR flash memory is capable of random access, meaning that data can be

read or written to any location on the memory chip. It is commonly used

in devices that require fast access to small amounts of data. It is possible

to read/write one byte of data at a time. Erase operation is in sector wise.

NOR flash memory is less dense, meaning it consumes more physical area

and costs more than NAND flash memory.

�Characteristics of NOR Flash Memory

The following are characteristics of NOR flash memory:

•	 Cost per bit is high.

•	 Code execution is easy.

•	 Capacity is low.

•	 Write speed is slower.

•	 Read speed is faster.

•	 Power consumption on standby is low.

Chapter 4 Basics of Flash Memory

17

�NOR Memory Architecture

Take a look at the NOR memory architecture in Figure 4-2.

Figure 4-2.  NOR memory architecture
Source: Wikipedia

NOR memory is a type of flash memory that uses NOR gates to store

data. The gates are arranged in a grid, with each gate storing a single bit

of data. The grid is divided into words, with each word containing a fixed

number of bits.

To read data from NOR memory, the controller sends a read command

to the memory. The memory then transfers the data from the selected

word to the controller.

To write data to NOR memory, the controller sends a write

command to the memory. The memory then writes the new data to the

selected word.

�NAND Flash Memory
NAND flash memory, however, is a type of flash memory that is optimized

for high-capacity storage and fast data transfer. It is commonly used in

SSDs and other storage devices, such as USB drives and memory cards.

NAND memory is made up of tiny transistors that are arranged in a

Chapter 4 Basics of Flash Memory

18

grid and can be used to store data in the form of bits (0s and 1s). It is

fast and efficient, making it ideal for use in SSDs, and it is also relatively

inexpensive and widely available.

�NAND Memory Architecture

Take a look at the NAND memory architecture in Figure 4-3.

Figure 4-3.  NAND memory architecture
Source: Wikipedia

NAND memory is a type of flash memory that uses floating-gate

transistors to store data. The transistors are arranged in a grid, with each

transistor storing a single bit of data. The grid is divided into pages, with

each page containing a fixed number of bits.

To read data from NAND memory, the controller sends a read

command to the memory. The memory then transfers the data from the

selected page to the controller.

To write data to NAND memory, the controller sends a write

command to the memory. The memory then erases the selected page and

writes the new data to the page.

Chapter 4 Basics of Flash Memory

19

�Similarities
NAND and NOR memory are both types of flash memory. They both use

transistors to store data, and they both have a grid-like structure.

�Differences
The main difference between NAND and NOR memory is the way that

they store data. NAND memory uses floating-gate transistors, while NOR

memory uses NOR gates. This difference in the way that they store data

affects the performance and the features of the two types of memory.

NAND memory is generally faster than NOR memory, but it is also

more expensive. NAND memory is also more durable than NOR memory.

NOR memory is slower than NAND memory, but it is also less

expensive. NOR memory is also easier to program than NAND memory.

�A Flash Memory Cell

Figure 4-4.  A flash memory cell

Chapter 4 Basics of Flash Memory

20

Flash memory, which is used in SSDs, combines the characteristics

of ROM (read-only memory) and RAM (random access memory). It can

retain information even when there is no power, like ROM, and it can be

repeatedly erased and rewritten, like RAM. This is made possible through

the use of a special type of transistor in flash memory.

Let’s break down how it works in a simplified manner, as follows:

	 1.	 Typical Transistors: In typical memory transistors,

there are three connections: source, drain, and gate.

The source is where electricity enters, the drain is

where it exits, and the gate controls the flow. When

the gate is closed, no current can flow, turning the

transistor off and storing a zero (0). When the gate is

open, power flows through, activating the transistor

and storing a one (1).

	 2.	 Limitations of Typical Transistors: However, a

typical transistor cannot remember its state when

the power is switched off. When power is turned

back on, it’s difficult to determine whether the

transistor was on or off before the power was

removed.

	 3.	 Flash Memory Transistors: Flash memory

transistors have an additional connection called a

floating gate. This floating gate is placed on top of

the main gate. When the gate is open, electricity

seeps through the first gate and remains trapped

between the first and second gates, even when the

power is off. Refer to Figure 4-5.

	 4.	 Retaining Information: The floating gate in flash

memory allows it to remember its state even

when the power is off. If you try to push current

Chapter 4 Basics of Flash Memory

21

through the transistor, the stored energy prevents

it, representing a zero. Clearing the stored energy

allows the current to flow, representing a one.

This way, the flash transistor retains information

regardless of whether the power is on or off.

Figure 4-5.  Floating gate NMOS transistor

Figure 4-6.  Programming floating gate NMOS transistor

Chapter 4 Basics of Flash Memory

22

Figure 4-7.  Erasing floating gate NMOS transistor

Figure 4-8.  Reading floating gate NMOS transistor

Chapter 4 Basics of Flash Memory

23

Table 4-1.  Cell Node Voltages Required in Different

Memory Operations

Operation Gate Drain Source Bulk

Read 4.5 SA 0 0

Program 8.0 5.0 0 0

Erase -8.0 Float 8.0 8.0

�NAND Memory Organization
•	 The package is the memory chip, which contains one

or more dies.

•	 The die is the smallest unit that can independently

execute commands and report status.

•	 Each die contains one or more planes. Identical,

concurrent operations can take place on each plane,

although with some restrictions.

•	 Each plane contains a number of blocks, which are the

smallest unit that can be erased. Remember that, as it’s

really important.

•	 Each block contains a number of pages, which are the

smallest unit that can be programmed.

Chapter 4 Basics of Flash Memory

24

�Addressing
It is NAND memory addressing. How physical nand can be addressed or

accessed by Firmware.

Figure 4-9.  The organizational structure of a NAND flash device
Source: Micron Technology Inc.

Figure 4-10.  NAND flash die layout
Source: AnandTech

Chapter 4 Basics of Flash Memory

25

�Erase
In a flash memory device, the erase operation is responsible for changing

the state of a cell from "0" to "1" by removing electrons from the floating

gate. It is important to note that a single cell cannot be directly changed

from "1" to "0"; instead, the erase operation must be performed on a

block-by-block basis. This means that before new data can be written to a

block (through the programming process), the block must first be erased

to ensure that it is empty. It is worth noting that the erase operation

typically has a longer latency than the read and program operations,

meaning it can take longer to complete. For example, the read, program,

and erase latencies for a Micron 8 GB flash chip are 25 μs, 220 μs, and 1500

μs, respectively. As a result, the erase operation can be a performance

bottleneck in NAND flash memories, and various firmware algorithms

have been developed to minimize the impact of the long erase latency on

overall performance.

Figure 4-11.  Erase level Vth distribution

�Write
The program operation is performed on a page level. This means that

the operation targets a specific page of memory on the drive. When the

controller of the SSD requests a program operation on the NAND device,

it specifies the chip select (CE) and provides the row address of the page

Chapter 4 Basics of Flash Memory

26

to be targeted. The controller then transfers the data to be programmed

to the NAND device and sends a final program command to complete the

operation.

It is important to note that a page on an SSD cannot be written more

than once without first performing an erase operation. This is because an

erase operation is required to clear the page of any existing data before

new data can be written to it. As a result, every time a program operation

is performed on a page, it must be preceded by an erase operation. This

ensures that the page is ready to accept new data and that the program

operation is successful.

It is also important to say that pages need to be written in consecutive

order within the block; page number 0 is to be written first followed

by page 1. Writing out of sequence is not allowed, as violating this rule

aggravates the bit error rate. A single block does not need to be written all

at once. That is, a block can be written with pages from 0 to 11, and later on

with pages from 12 to 32, for example. Generally, pages need to be written

as a whole at once, though some memories support so-called partial page

programming, which allows a subpage of 512 bytes + correlated spare area

to be written.

The data to be written will be provided by the host or result from

firmware internal data management. Firmware first transfers the data

from cache to the NAND internal cache register. Once the data transfer

is completed the programming should start; i.e., writing to actual

NAND cells.

Chapter 4 Basics of Flash Memory

27

E P

of cells

Vth Upper Limit2 Level Cell

0V
Erase cell becomes Programmed

Figure 4-12.  Program level Vth distribution

�Read

Figure 4-13.  Read sensing graph

Chapter 4 Basics of Flash Memory

28

From the perspective of the NAND chips themselves, the read operation

involves activating the appropriate word line to select the desired page of

cells, and then reading the data stored in those cells by sensing the voltage

levels on the bit lines. The NAND chips are organized into blocks, which

are further divided into pages. Each page stores a fixed amount of data,

typically 4 KB to 16 KB (or more), depending on the specific NAND device.

To read a specific page, the controller must first locate the block

that contains the page and then activate the appropriate word line

to select the page within that block. The read operation is typically

performed by the SSD’s controller, which uses firmware to manage the

communication with the NAND chips and handle the necessary data

transfer and error correction. The firmware is responsible for optimizing

the read performance by minimizing the number of accesses required and

maximizing the data transfer rate.

�Program/Erase Cycle (P/E Cycle)
The program/erase (P/E) cycle is a fundamental aspect of NAND flash

memory, which is commonly used in SSDs. NAND flash memory works

by storing data in cells that are grouped into blocks. Each cell can store a

single bit of data, and a group of cells is needed to store a larger amount of

data. To write new data to a cell, the cell must first be erased, which is done

by applying a high voltage to the cell. As we already explained, this process

is known as the erase cycle.

Table 4-2.  NAND Basic Operations Timings

-

Chapter 4 Basics of Flash Memory

29

Once the cell has been erased, new data can be written to it using a

process called programming, which involves applying a lower voltage to

the cell. The process of writing new data to a cell by first erasing it and then

programming it with new data is known as the P/E cycle. The P/E cycle is

a key factor in the endurance of NAND flash memory, as the erase cycle

can cause wear on the cells over time. As a result, NAND flash memory

has a limited number of P/E cycles that it can withstand before it begins to

degrade. This is known as the endurance of the memory.

To extend the endurance of NAND flash memory, it is important to

minimize the number of P/E cycles that the memory undergoes. One

way to do this is to use the TRIM command, which allows the operating

system to inform the SSD which data blocks are no longer in use and can

be erased. This can reduce the number of P/E cycles by eliminating the

need to move invalid data during the garbage-collection process, which

is an internal SSD housekeeping operation that manages and maintains

available storage space.

The number of bits that can be stored in each cell of a NAND flash

memory drive can also affect the maximum number of program/erase (P/E)

cycles that the drive can support. Table 4-3 provides an overview of the

different types of NAND cells based on the number of bits they can store.

Table 4-3.  PEC Cycle Based on NAND Cell Type

-

Chapter 4 Basics of Flash Memory

30

As the number of bits per cell increases, the number of supported P/E

cycles tends to decrease. Single-level cell (SLC) NAND, which can store one

bit per cell, generally has the highest endurance, while quad-level cell (QLC)

NAND, which can store four bits per cell, has the lowest endurance. It is

important to consider the endurance of an SSD when selecting a drive, as

a drive with a lower endurance may not be suitable for use in cases that

involve a high number of P/E cycles.

�Summary
This chapter has discussed the basics of flash memory, including its

different types, architecture, and fundamental operations. We have seen

how NAND flash memory works and how it is used in SSDs. We have

also seen the different types of operations that can be performed on

NAND flash memory, such as erase, program, and read. We have also

discussed the P/E cycle, which is a key factor in the endurance of NAND

flash memory.

Chapter 4 Basics of Flash Memory

31

CHAPTER 5

3D Vertical NAND
Now, welcome to the exciting world of 3D vertical NAND! In this chapter,

we will cover a cutting-edge technology that has revolutionized the way we

store data. 3D vertical NAND is a remarkable advancement in NAND flash

memory, allowing us to stack memory cells vertically to increase storage

capacity and performance significantly.

You might be wondering how this technology works and what makes it

so special. We will walk through the basics of 3D vertical NAND, explaining

its unique architecture and how it overcomes the limitations of traditional

2D planar NAND. You’ll discover the advantages and benefits of this

innovative technology, along with its real-world applications and the

impact it has on various industries.

By the end of this chapter, you will have a clear understanding of how

3D vertical NAND works and how it has transformed data storage, making

it a technology crucial to modern electronic devices. So, let’s dive in and

explore the fascinating world of 3D vertical NAND!

�Evolution of 3D Vertical NAND Technology
The rapid growth in data traffic globally is pushing the boundaries of

NAND flash memory technology. The industry-standard 2D planar NAND

technology has inherent limitations when it comes to expanding storage

capacity without compromising performance and reliability. This has

created a need for innovative solutions to meet the increasing demands for

data storage.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_5

https://doi.org/10.1007/978-1-4842-9888-6_5

32

To address these challenges, the industry has introduced a

groundbreaking approach known as 3D vertical NAND (V-NAND) flash

memory technology. This innovation has revolutionized the design and

architecture of NAND flash memory by stacking memory cells vertically

in a three-dimensional structure, as opposed to the traditional two-

dimensional planar arrangement. This vertical stacking allows for the

creation of multiple layers of memory cells, resulting in significantly higher

memory capacities (Figure 5-1).

By adopting a 3D V-NAND structure, the industry has overcome

the limitations associated with capacity expansion in 2D planar NAND

technology. This vertical stacking not only enables higher storage densities

but also eliminates performance and reliability issues caused by capacity

constraints. With more memory cells packed into each chip, the industry

has achieved remarkable advancements in storage capacity while

maintaining or even enhancing performance and reliability characteristics.

The vertical stacking of memory cells in 3D V-NAND technology offers

several advantages. First, it allows for increased memory capacity within a

smaller physical footprint, which is particularly beneficial in applications

where space is a constraint. Additionally, the three-dimensional structure

enables better control of electrical properties, resulting in improved

performance and endurance.

This innovation in flash memory technology has had a significant

impact on the storage industry, enabling the development of high-capacity

solid-state drives (SSDs) that can handle the ever-growing volumes of data.

The adoption of 3D V-NAND technology has facilitated advancements in

areas such as cloud computing, data centers, mobile devices, and other

storage-intensive applications.

Chapter 5 3D Vertical NAND

33

Figure 5-1.  2D vs. 3D NAND comparison block diagram

�Unlocking New Possibilities with Vertical
NAND Architecture
Figure 5-2 compares the storage density of 2D planar NAND and 3D

V-NAND flash memory. As shown, 3D V-NAND can achieve up to 10x

greater storage density than 2D planar NAND. This is because 3D V-NAND

stacks memory cells vertically on top of each other, while 2D planar NAND

stacks memory cells horizontally on a silicon wafer.

The higher storage density of 3D V-NAND allows for larger capacity

NAND chips to be produced. This has made it possible to create NAND

flash memory devices such as solid-state drives (SSDs) and USB flash

drives with capacities of several terabytes.

Chapter 5 3D Vertical NAND

34

Figure 5-2.  Bird's-eye view of the V-NAND structure

In the pursuit of fitting more memory cells into a smaller space,

the limitations of 2D planar NAND flash memory become evident. The

shrinking size makes it challenging for light to penetrate the mask and

transfer the desired pattern onto the photoresist, ultimately hindering the

patterning process. This inherent limitation restricts the widespread use of

2D planar NAND flash memory in today’s demanding memory landscape.

However, 3D V-NAND overcomes these patterning limitations by

adopting a vertical architecture. Unlike the close proximity of cells in 2D

planar NAND, 3D V-NAND creates a wider gap between each cell, enabling

efficient patterning. While the cell-to-cell spacing in traditional planar

NAND typically ranges from 15 to 16 nanometers (nm), 3D V-NAND offers

an impressive 30nm to 40nm of space between cells, revolutionizing

NAND flash technology.

This vertical architecture has opened new doors for memory

advancement, allowing for higher capacities and enhanced performance.

By overcoming the constraints of patterning, 3D V-NAND flash memory

has become a game-changer in the industry, meeting the demands of

today’s memory-intensive applications.

Chapter 5 3D Vertical NAND

35

2D NAND 3D NAND

Figure 5-3.  2D planar NAND vs. 3D Vertical NAND

�Advantages of 3D Vertical NAND
3D vertical NAND has several advantages over traditional planar NAND, as

follows:

	 a.	 Higher Storage Capacities: The vertical stacking

of memory cells enables significant increases in

storage capacities. With more layers of cells, 3D

V-NAND offers the potential for greater memory

densities, allowing for storage devices with larger

capacities.

	 b.	 Improved Performance: 3D V-NAND can deliver

enhanced read and write speeds compared to 2D

planar NAND. The vertical structure reduces the

distance that signals need to travel, resulting in

faster data access and transfer rates.

Chapter 5 3D Vertical NAND

36

	 c.	 Enhanced Endurance: Vertical NAND architecture

improves the endurance of the memory cells. The

increased space between cells reduces interference,

leading to improved reliability and longevity.

	 d.	 Energy Efficiency: 3D V-NAND technology offers

improved energy efficiency, allowing for longer

battery life in portable devices and reduced power

consumption in data centers.

�Applications of 3D Vertical NAND
The advantages offered by 3D vertical NAND make it well suited for

various applications, including the following:

	 a.	 Solid-State Drives (SSDs): SSDs equipped with

3D V-NAND deliver high-speed data storage and

retrieval, making them ideal for use in laptops,

desktops, and enterprise storage solutions. The

increased storage capacity enables SSDs to meet the

demands of modern data-intensive applications.

	 b.	 Mobile Devices: Smartphones, tablets, and other

portable devices benefit from the compact size

and high storage capacities of 3D V-NAND. These

devices require reliable and fast storage solutions

to handle multimedia content, applications, and

operating systems.

	 c.	 Data Centers and Cloud Computing: The scalability

and performance of 3D V-NAND make it a valuable

technology for data centers and cloud computing

environments. The increased storage densities and

improved reliability contribute to efficient data

management and faster processing speeds.

Chapter 5 3D Vertical NAND

37

�Understanding 3D Vertical
NAND Architecture

Figure 5-4.  3D vertical NAND layered architecture

The unique architecture of 3D vertical NAND involves intricate vertical

cell stacking and layering, which enables higher storage density and better

performance. A block consists of vertically stacked layers of NAND flash

cells, each consisting of grid of cells connected by Wordlines (WLs) and

Bit Lines (BLs).

The vertical cell stacking approach ensures that more memory cells

can be packed in a smaller space. This is achieved by placing multiple

layers of memory cells on top of each other, making the most efficient use

of available silicon area.

Each memory cell in 3D vertical NAND still consists of a transistor and

a floating gate, just like in traditional NAND flash memory. However, the

arrangement of these components is optimized for vertical stacking.

�Layers and Pages
A 3D vertical NAND chip is composed of multiple layers, and each layer

is divided into pages. Within a layer, pages are accessed individually for

read and write operations. The vertical stacking of pages allows for greater

memory capacity without increasing the chip’s physical size.

Chapter 5 3D Vertical NAND

38

�Charge Trapping Technology
In 3D vertical NAND, memory cells use a charge trapping technology,

unlike the floating-gate technology found in traditional NAND. Charge

trapping stores charge in a non-conductive layer, preventing data loss due

to electron leakage, which was a challenge in floating-gate technology.

This enhanced data retention capability contributes to the reliability and

longevity of 3D vertical NAND.

The 3D vertical NAND cell (also known as a V-NAND cell) is a type of

NAND flash memory cell that is stacked vertically on top of other NAND

flash memory cells. This allows for significantly greater storage density

than traditional 2D planar NAND cells, which are stacked horizontally on a

silicon wafer.

As shown in Figure 5-5, the 3D vertical NAND cell consists of three

main components:

The charge storage film: This layer is made of a

material that can trap electrons. The number of

electrons trapped in this layer determines the state of

the cell (0 or 1).

The control gate: This gate is used to control the flow

of electrons into and out of the charge trap layer.

The channel layer: This layer is made of a

semiconducting material that allows electrons to

flow through it.

Chapter 5 3D Vertical NAND

39

3D Vertical NAND Cell

Control
·Gate

The written electron

Cell
current

Nitride film
(Charge storage
film)

Insulator

Information stored in nitride film (Charge
Trap: insulator)

Insulator

Cell current (Ic)

Figure 5-5.  3D NAND cell

To store a bit of data in a 3D vertical NAND cell, a voltage is applied to

the control gate. This causes electrons to flow into or out of the charge trap

layer, depending on the desired state of the cell. Once the desired state has

been achieved, the voltage is removed and the electrons are trapped in the

charge trap layer.

The 3D vertical NAND cell is a highly efficient way to store data. It

offers significantly greater storage density than traditional 2D planar

NAND cells, while also being more energy-efficient. This makes it the ideal

choice for a wide range of applications, including solid-state drives (SSDs),

USB flash drives, and mobile devices.

Chapter 5 3D Vertical NAND

40

�Bit Line and Word Line Architecture
The bit lines and word lines form the essential structure of 3D vertical

NAND. Bit lines run vertically through all layers, connecting the memory

cells within a column. Word lines, however, run horizontally, connecting

the memory cells across a row in each layer.

�Control and Decoding Circuits
Control and decoding circuits are responsible for managing the flow of

data in 3D vertical NAND. These circuits decode address inputs, control

the selection of memory cells during read and write operations, and

handle other essential functionalities.

�Memory Cell Size and Density in 3D Vertical
NAND Flash Memory Technology
3D vertical NAND (V-NAND) flash memory technology is a type of non-

volatile memory that stacks memory cells vertically to increase storage

density and capacity. One of the factors that affects the density and capacity

of V-NAND chips is the size of the memory cells. As technology advances,

manufacturers can reduce the size of the memory cells to fit more of them

in a given area, resulting in higher density and larger capacity NAND

chips. However, shrinking the cell size also poses some challenges, such as

increased interference and reduced reliability. To overcome these challenges,

V-NAND technology uses techniques such as charge trap flash (CTF)

and tunnel field-effect transistor (TFET) to improve the performance and

endurance of the memory cells. Moreover, V-NAND technology can also use

different levels of charge to store multiple bits per cell, such as quad-level cell

(QLC) or even higher, to further increase the storage capacity of NAND chips.

Chapter 5 3D Vertical NAND

41

�Understanding NAND Cell Types Supported:
SLC, MLC, and TLC (QLC)
There are different types of memory cells, including SLC (single-level cell),

MLC (multi-level cell), and TLC (triple-level cell). Each cell type comes

with its own characteristics, influencing how data is stored, accessed, and

managed. We’ll discuss the principles of reading, writing, and erasing data

from 3D vertical NAND flash.

�SLC
3D vertical NAND SLC Vth distribution refers to the distribution of

threshold voltages (Vth) of the memory cells in a 3D vertical NAND SLC

flash memory device. Vth is a critical parameter that determines the

performance and reliability of a NAND flash memory device. A narrow

Vth distribution is desirable, as it indicates that all of the memory cells

have similar Vth values. This makes it easier to read and write data to the

memory cells, and it also reduces the risk of errors.

Single Level Cell (SLC)

VTH

1 0

Figure 5-6.  3D vertical NAND SLC Vth distribution

•	 2 States (1 Erase + 1 Program) = 1 bit of information

per cell

Chapter 5 3D Vertical NAND

42

�MLC
3D vertical NAND MLC Vth distribution refers to the distribution of

threshold voltages (Vth) of the memory cells in a 3D vertical NAND MLC

flash memory device. MLC NAND flash memory devices can store more

than one bit (2-4) of data per memory cell, which requires a wider Vth

range than SLC NAND flash memory devices. However, a narrow Vth

distribution is still desirable for MLC NAND flash memory devices, as it

improves performance and reliability.

Multi Level Cell (MLC)

VTH

1
1

0
1

0
0

1
0

Upper Page Data

Lower Page Data

Figure 5-7.  3D vertical NAND MLC Vth distribution

•	 4 States (1 Erase + 3 Program)

= 2 bits of information per cell

= 2x capacity of SLC!

Chapter 5 3D Vertical NAND

43

�TLC

Triple Level Cell (TLC)

VTH

1
1
1

0
1
1

0
0
1

1
0
1

Upper Page Data
Middle Page Data
Lower Page Data

1
1
0

0
0
0

0
1
0

1
1
0

Figure 5-8.  3D vertical NAND TLC Vth distribution

8 States (1 Erase + 7 Program)

= 3 bits of information per cell

= 1.5x capacity of MLC

= 3.0x capacity of SLC

�Read and Write Operations in 3D
Vertical NAND
3D vertical NAND exhibits remarkable read and write operations owing to

its unique vertical architecture. During a read operation, the control gate

voltage is adjusted, allowing the flow of current through the memory cell.

The resulting current state is then sensed to determine the stored data.

The vertical stacking of memory cells enables faster read operations by

reducing the distance the current needs to travel, resulting in reduced read

latency.

Chapter 5 3D Vertical NAND

44

Write operations in 3D vertical NAND involve programming the

memory cell to store data. The voltage applied to the control gate elevates

the electron energy in the floating gate, causing the charge to be trapped,

representing either a 0 or 1. The vertical architecture enhances write

performance by reducing the parasitic capacitance between memory cells,

enabling faster and more efficient write operations.

VTH
E

VTH

VTARG

VTH

VTARG

(a) Erased State

(b) First
programming
pulse

(b) Nth
programming
pulses

Figure 5-9.  3D vertical NAND SLC incremental programming pulse

Chapter 5 3D Vertical NAND

45

Apply Programming pulse

START

Verify most cells have VTH

higher than VTARG

END

PASS

FAIL

tPROG ~1500us

Figure 5-10.  3D vertical NAND SLC incremental programming pulse
flow chart

Chapter 5 3D Vertical NAND

46

VTH
E

VTH

VLPONLY

VTH

(a) Erased State

(b) Program
Lower Page x1 x0

11 01 00 01

LP = 1 LP = 0

UP = 1 UP = 0 UP = 0 UP = 1

(c) Program
Upper Page

Figure 5-11.  3D vertical NAND MLC program sequence

•	 Data is programmed to the device one page at a time.

•	 The cells are either left in the erased state or

programmed to an intermediate state, depending on

the lower page data.

•	 An intermediate read determines the previously

programmed lower page data, and the cell distribution

for the WL is “finalized” using the upper page data.

Figure 5-12.  Reading data from 3D vertical NAND MLC

Chapter 5 3D Vertical NAND

47

•	 Lower page can be read using a single read

voltage (VB).

•	 Upper page can be read using a pair of read

voltages (VA,VC).

•	 A page read (from NAND cell to NAND cache) typically

takes up to 100us.

Erasing MLC 3D vertical NAND block
Erasing an MLC 3D vertical NAND block is the process of resetting all of

the memory cells in the block to the same state. This is done by applying a

high voltage to the block. The high voltage causes electrons to flow out of

the charge trap layers in the memory cells, erasing the data.

Erasing MLC 3D vertical NAND blocks is more complex than erasing

SLC NAND blocks because of the wider Vth range of MLC memory cells.

To ensure that all of the memory cells in an MLC block are properly erased,

the erase voltage must be carefully controlled.

There are a number of different methods for erasing MLC 3D vertical

NAND blocks. One common method is to use a partial erase scheme. In

a partial erase scheme, the erase voltage is gradually increased until all

of the memory cells in the block are erased. This method is more energy-

efficient than erasing the block at a single high voltage, but it takes longer.

Another method for erasing MLC 3D vertical NAND blocks is to use a

full erase scheme. In a full erase scheme, the erase voltage is set to a high

value for a fixed period of time. This method is faster than a partial erase

scheme, but it consumes more energy.

The best method for erasing MLC 3D vertical NAND blocks depends

on the specific application. For example, applications that require high

performance may be willing to sacrifice some energy efficiency in order to

achieve faster erase times.

Chapter 5 3D Vertical NAND

48

Figure 5-13.  Erasing MLC 3D vertical NAND block

Figure 5-14.  Flow Diagram for 3D vertical NAND block erase MLC

Chapter 5 3D Vertical NAND

49

�Endurance and Data Retention Capabilities
Endurance and data retention are crucial aspects of NAND flash memory.

3D vertical NAND excels in both areas due to its improved memory

cell design and materials. The vertical structure reduces crosstalk and

interference between memory cells, leading to improved data-retention

capabilities. As a result, data stored in 3D vertical NAND remains intact for

longer periods, even under challenging conditions.

Additionally, the vertical stacking design contributes to enhanced

endurance by reducing wear on individual memory cells. This translates to

a higher number of program-erase cycles before memory cell degradation,

making 3D vertical NAND a reliable choice for data-intensive applications

that require frequent read and write operations.

�Speed and Efficiency Compared to 2D
Planar NAND
Compared to traditional 2D planar NAND, 3D vertical NAND offers

notable speed and efficiency advantages. The vertical stacking of memory

cells results in shorter electrical pathways, reducing data access times and

improving overall system performance.

With faster read and write operations, 3D vertical NAND outperforms

2D planar NAND in data access speed, making it an excellent choice for

applications requiring real-time data processing. Moreover, the improved

efficiency of 3D vertical NAND contributes to lower power consumption,

leading to energy savings and prolonged battery life in portable devices.

Chapter 5 3D Vertical NAND

50

�Advancements in Storage Capacity with 3D
Vertical NAND
One of the most significant achievements of 3D vertical NAND is the

substantial advancement in storage capacity. The vertical cell stacking

allows for a more efficient use of space, enabling the integration of

multiple memory-cell layers within the same footprint.

As a result, 3D vertical NAND-based data storage solutions can achieve

much higher capacities compared to traditional 2D planar NAND devices.

This breakthrough has enabled the development of solid-state drives (SSDs)

and memory modules with unprecedented storage capabilities, catering to

the ever-growing demands of data-intensive applications.

�Summary
With this very brief chapter on 3D Vertical NAND, we have covered the

basics only. As you delve into this exciting field of advanced memory

technology, you will gain a deeper understanding of how 3D vertical

NAND is revolutionizing data storage and setting the stage for future

innovations in the semiconductor industry. As engineers and developers,

your expertise in harnessing the capabilities of 3D vertical NAND will be

instrumental in creating next-generation storage solutions that cater to the

evolving needs of our data-driven world. Embrace the power of 3D vertical

NAND and unlock the endless possibilities it holds for shaping the future

of storage technology from here.

Chapter 5 3D Vertical NAND

51

CHAPTER 6

Basic Understanding
of NAND Flash
Interface
In this chapter, we will examine the fundamental aspects of NAND flash

memory and explore how it can be effectively utilized in embedded

systems and be made into a product. We will delve into the essential

aspects of NAND flash communication, including the commands

it supports, data transfer procedures, commands, response packet

information, and much more. By understanding the key features of NAND

flash, engineers can leverage its power, density, and cost advantages to

create efficient and reliable subsystems for various applications, including

solid-state drives (SSDs), mobile phones, flash memory cards, USB flash

drives, and audio/video players.

NAND flash supports a set of specific commands that facilitate

various operations, such as read, write, erase, and status checking. We

will thoroughly examine each command, its purpose, and the relevant

response packet information. A clear understanding of these commands

is crucial for effectively managing data access and storage in NAND

flash memory.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_6

https://doi.org/10.1007/978-1-4842-9888-6_6

52

�Basic NAND IO Interfacing Pin Details

Table 6-1.  NAND IO Interfacing Pin Details

PIN Description

CE# Chip enable

CE# serves as the chip enable signal for the NAND flash device. When CE# is not

asserted (held high), the NAND flash remains in standby mode and does not respond

to any control signals. Activating CE# allows the device to operate and respond to

commands.

WE# Write enable

WE# is responsible for clocking data, address, or commands into the NAND flash

device. When WE# is low, data, addresses, or commands are written to the device,

and the relevant information is latched into the internal registers.

RE# Read enable

RE# is used to enable the output data buffers of the NAND flash device. When RE# is

low, data from the device's internal memory cells is available on the data bus for read

operations.

CLE Command latch enable

CLE is a control signal used to latch commands and addresses into the NAND flash

device. When CLE is set to a high state, commands are latched into the command

register on the rising edge of the WE# signal.

ALE Address latch enable

When ALE is high, addresses are latched into the NAND flash address register on the

rising edge of the WE# signal.

I/O[7:0] Data bus (I/O[15:0} for x16 parts)

The data bus pins (DQ pins) are used for bidirectional data transfer between the

NAND flash device and the host system. During write operations, the host inputs

command, address, and data to the NAND flash through these pins. During read

operations, the device outputs data to the host using the same pins.

(continued)

Chapter 6 Basic Understanding of NAND Flash Interface

53

Table 6-1.  (continued)

PIN Description

WP# Write protect

WP# is a write protect signal that can be used to block any program and erase

operations on the flash array. When WP# is active low, write operations are prevented,

providing a hardware-based write protection mechanism.

R/B# Ready/busy

The R/B# signal indicates the status of the NAND flash device. If the device is busy

with an erase, program, or read operation, the R/B# signal is asserted low. It is an

open drain signal and requires a pull-up resistor to ensure proper signal levels

Figure 6-1.  Basic CPU NAND interconnect

Chapter 6 Basic Understanding of NAND Flash Interface

54

�NAND Flash Interface Basics
The NAND flash memory interface is an essential aspect of hardware

design when integrating NAND into a system. In a NAND flash memory

interface, data is transferred into or out of the NAND flash register in

8- or 16-bit chunks at a time. During a program operation, the data to be

programmed is loaded into the data register on the rising edge of the write

enable (WE#) signal. To enable random access to data or movement within

the register, special commands are used, such as RANDOM DATA INPUT and

READ FOR INTERNAL DATA MOVE.

When it comes to outputting data from the data register, the read

enable (RE#) signal is employed. Activating RE# allows the current data to

be output, and the register then increments to the next location, enabling

sequential data retrieval.

For seamless integration with other memory types, NAND flash utilizes

the chip enable (CE#) and read enable (RE#) signals in combination. When

CE# or RE# are not asserted LOW, the output buffers are set to a tri-state

mode, allowing NAND flash to share the data bus with other memory

types, like NOR Flash, SRAM, or DRAM. This characteristic is known as

“chip enable don’t care.”

NAND flash operations are initiated by issuing a command cycle,

where the command is placed on I/O[7:0], CE# is set LOW, and command

latch enable (CLE) is set HIGH. A WE# clock is then used to clock the

commands, addresses, and data into the NAND flash device on the rising

edge of WE#. It's essential to understand this command-driven approach

to efficiently manage data access and system control.

Most commands require a series of address cycles followed by

a second command cycle. However, it’s important to note that new

commands should not be issued while the NAND flash device is busy

with ongoing operations. The RESET and READ STATUS commands are

exceptions to this rule and can be issued even when the device is busy.

Chapter 6 Basic Understanding of NAND Flash Interface

55

The NAND flash memory interface involves the communication

protocol used to read, write, and erase data from the NAND device. The

most common NAND flash interfaces used in consumer electronics and

computing devices are the Open NAND Flash Interface (ONFI) and Toggle

Mode Interface.

�Open NAND Flash Interface (ONFI)
ONFI is an industry-standard interface for NAND flash memory that

allows for faster data transfer rates and improved compatibility between

NAND devices and NAND controllers. It defines a set of commands and

timing requirements that facilitate communication between the controller

and the NAND flash memory. ONFI supports both asynchronous and

synchronous data transfer modes.

In asynchronous mode, the data transfer is initiated by the controller,

and the NAND flash memory responds accordingly. In synchronous mode,

the data transfer is synchronized to the system clock, allowing for higher

data transfer rates.

�Toggle Mode Interface
Toggle Mode Interface is another high-speed interface commonly used

in NAND flash memory. It provides faster data transfer rates compared to

traditional interfaces. Toggle Mode Interface employs a bidirectional data

bus and a separate command/address bus to enable faster read and write

operations.

Toggle Mode Interface has two versions, namely, Toggle Mode 1.0 and

Toggle Mode 2.0. Toggle Mode 2.0 offers higher data transfer rates and

improved performance compared to Toggle Mode 1.0.

Chapter 6 Basic Understanding of NAND Flash Interface

56

Toggle 2.0 is a high-performance flash memory interface that supports

data read and write operations using bidirectional. It implements double

data rate (DDR) without a clock, and is compatible with the functions

and commands supported by conventional flash memory (i.e., SDR flash

memory). Toggle 2.0 flash memory provides high data transfer rates

based on the high-speed Toggle DDR interface and saves power by using

separated DQ voltage.

Toggle DDR 2.0 flash memory supports an interface speed of up to

200 MHz (400 Mbps), which is more than ten times faster than the data

transfer rate offered by SDR flash memory (40 Mbps). Toggle DDR flash

memory transfers data at high speed using data strobe (DQS), which

behaves as a clock. However, DQS is only used when data is transferred so

as to optimize power consumption.

Toggle DDR flash memory is the most appropriate choice for

applications that require high-capacity and high-performance

flash memory.

�Command Cycles for NAND
Flash Operations
The NAND flash memory employs a set of basic command sequences

for its operation. The addresses are multiplexed into eight I/Os, and all

commands, addresses, and data are written through DQ [7:0] pins by

bringing WE (write enable) low while CE (chip enable) is low. The data is

latched on the rising edge of WE.

To facilitate the multiplexing of commands and addresses, NAND

flash utilizes command latch enable (CLE) and address latch enable (ALE)

signals. CLE is used to multiplex command data via the DQ[7:0] pins, while

ALE is employed to multiplex address data via the same pins.

Chapter 6 Basic Understanding of NAND Flash Interface

57

Commands that apply to a specific page or block typically have a

second command, while commands that apply to a target have only a first

command. These basic command sets enable efficient control and access

to specific operations within the NAND flash memory, ensuring reliable

and fast data transfers.

Figure 6-2.  Command cycles for NAND flash operations

�Addressing
In NAND flash memory, addressing involves two types: the column

address and the row address. Understanding how these addresses work is

essential to grasp how data is accessed and organized within the memory.

Chapter 6 Basic Understanding of NAND Flash Interface

58

�Column Address
The column address is used to access specific bytes within a page of the

NAND flash memory. Think of it as the “byte offset” into the page, allowing

the system to pinpoint the exact location of data within a page. Notably, for

a DDR interface (double data rate), the least significant bit of the column

address is always set to zero. This ensures that an even number of bytes is

always transferred, promoting efficient data handling.

�Row Address
The row address serves a broader purpose. It is used to address entire

pages and blocks within the NAND flash memory. By utilizing the row

address, the system can access specific pages or blocks as needed. When

both the column and the row addresses are required, the column address

is always issued first, followed by the row addresses in separate 8-bit

address cycles.

�Addressing Functions
Some operations only require row addresses, such as block erase. In such

cases, the column addresses are not issued, streamlining the process for

specific functions.

�Address Cycle Order
When issuing both column and row addresses, the first address cycle

always contains the least significant address bits, while the last address

cycle contains the most significant address bits. This logical order ensures

that the system can accurately interpret the address information.

Chapter 6 Basic Understanding of NAND Flash Interface

59

�Handling Unused Bits
In the most significant cycles of both the column and the row addresses, some

bits may not be utilized for specific memory configurations. To maintain

consistency, any unused bits in these cycles must be cleared to zero.

In addition to understanding the column and row addresses, there are

certain constraints that the host must adhere to when accessing NAND

flash memory to ensure proper and safe operation.

�Address Limitations

A crucial consideration is that a firmware must not attempt to access an

address of a page or block beyond the maximum page address or block

address supported by the NAND flash memory. Accessing addresses

beyond these limits can result in unintended behavior—data corruption.

�Valid Address Range

Before performing any erase, read, or write operations, the host must verify

that the target address falls within the valid address range of the NAND

flash memory. The valid address range is determined by the maximum

page and block addresses supported by the memory device.

�Address Validation

The firmware in the SSD controller or the host system should include

proper address validation mechanisms to ensure that any incoming

address requests are within the valid range. If an invalid address is

detected, the system should handle it gracefully, either by rejecting the

request or by raising appropriate error flags.

Chapter 6 Basic Understanding of NAND Flash Interface

60

By adhering to the address limitations, the firmware can prevent

unintended consequences and ensure the stability and reliability of data

operations on the NAND flash memory. Proper validation and error-

handling mechanisms play a crucial role in safeguarding the integrity of

data and the long-term health of the memory device.

BLOCK ADDRESS PAGE ADDRESS

Row Address Format

Bit 0Bit n

Figure 6-3.  NAND row address format

Table 6-2.  2Gb SLC NAND Flash Addressing Scheme

Cycle I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0

First CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0

Second LOW LOW LOW LOW CA11 CA10 CA9 CA8

Third BA7 BA6 PA5 PA4 PA3 PA2 PA1 PA0

Fourth BA15 BA14 BA13 BA12 BA11 BA10 BA9 BA8

Fifth LOW LOW LOW LOW LOW LOW LOW BA16

Notes: Block address concatenated with page address = actual page address.

CAx = Column Address

PAx = Page Address

BAx = Block Address

The page address and the block address, collectively, constitute the row address (and number of bits

depends on the NAND die size)

The most significant address byte is the fifth cycle; the least significant address byte is the first cycle.

Chapter 6 Basic Understanding of NAND Flash Interface

61

The addressing scheme for a 2Gb NAND flash device is represented

in Table 6-2. When accessing specific data within the page, the first and

second address cycles (or bytes) indicate the column address, defining the

starting byte. For example, if the last column location is 2112, its address

would be 08h in the second byte and 3Fh in the first byte. The page address

within the block is determined by PA[5:0], while BA[16:6] identifies the

block address.

In most PROGRAM and READ operations, the full 5-byte address is

required to access data accurately. However, for operations that involve

random data access within the page, only the first and second bytes (or

cycles) are necessary. Meanwhile, when performing the BLOCK ERASE

operation, only the three most significant bytes (third, fourth, and fifth) are

utilized to select the block.

Table 6-3.  Command Cycles and Address Cycles

Command Command

Cycle 1

Number of

Address

Cycles

Data

Cycles

Required 1

Command

Cycle2

Valid

During

Busy

READ PAGE 00h 5 No 30h No

READ PAGE CACHE

SEQUENTIAL

31h – No – No

READ PAGE CACHE

SEQUENTIAL LAST

3Fh – No – No

READ for INTERNAL DATA

MOVE

00h 5 No 35h No

RANDOM D ATA READ 05h 2 No E0h

READ ID 90h 1 No – No

READ STATUS 70h – No – Yes

(continued)

Chapter 6 Basic Understanding of NAND Flash Interface

62

Command Command

Cycle 1

Number of

Address

Cycles

Data

Cycles

Required 1

Command

Cycle2

Valid

During

Busy

PROGRAM PAGE 80h 5 Yes 10h No

PROGRAM PAGE CACHE 80h 5 Yes 15h No

PROGRAM for INTERNAL

DATA MOVE

85h 5 Optional 10h No

RANDOM DATA INPUT 85h 2 Yes – No

ERASE BLOCK 60h 3 No D0h No

RESET FFh – No – Yes

Table 6-3.  (continued)

�NAND Flash Commands
When any NAND flash command is issued, CE# and ALE must be LOW,

CLE must be asserted, and write clocks (WE#) must be provided. When

any NAND flash address is issued, CE# and CLE must be LOW, ALE must

be asserted, and write clocks (WE#) must be provided. While the device is

busy, only two commands can be issued: RESET and READ STATUS.

�RESET Operation
The simplest NAND flash command is the RESET (FFh) command. The

RESET command does not require an address or subsequent cycle(s).

Simply assert CLE and issue a write clock with FFh on the data bus, and

a RESET operation is performed. This RESET command must be issued

immediately following power-up and prior to issuing any other command.

Chapter 6 Basic Understanding of NAND Flash Interface

63

RESET is one of two commands that can be issued while the NAND

flash device is busy. If the device is busy processing a previous command,

issuing a RESET command aborts the previous operation. If the previous

operation was an ERASE or PROGRAM command, issuing a RESET command

aborts the command prematurely, and the desired operation does not

complete. ERASE and PROGRAM can be time-consuming operations; issuing

the RESET command makes it possible to abort either and reissue the

command at a later time.

Figure 6-4.  RESET command timing diagram

�READ ID Operation
The READ ID (90h) command requires one dummy address cycle (00h),

but it does not require a second command cycle. After the command

and dummy addresses are issued, the ID data can be read out by keeping

CLE and ALE LOW and toggling the RE# signal for each byte of ID. READ ID

response depends on the manufacturer specifications, which typically

include Manufacturer ID, Device ID, Cell Type, page size, etc.

Chapter 6 Basic Understanding of NAND Flash Interface

64

Figure 6-5.  READ ID timing diagram

�READ STATUS Operation
READ STATUS (70h) is the second command that can be issued while the

NAND flash device is busy. This command does not require an address

or second command cycle. The status of the NAND flash device can be

monitored by issuing the RE# clock signal following the READ STATUS

command. If the READ STATUS command is used to monitor the ready

state of the device, the command should be issued only one time, and the

status can be re-read by reissuing the RE# clock. Alternatively, the RE#

signal can be kept LOW, waiting to receive the appropriate status bit before

proceeding. READ STATUS also reports the status of the write-protect signal,

and the pass/fail status of previous PROGRAM or ERASE operations. It is

mandatory that the pass status be attained on PROGRAM or ERASE operations

to ensure proper data integrity.

�READ STATUS Response

Chapter 6 Basic Understanding of NAND Flash Interface

65

Ta
bl

e
6-

4.
 R

E
A

D
 S

TA
T

U
S

R
es

po
n

se
 T

ab
le

SR
 B

it
PR

OG
RA

M
 P

AG
E

PR
OG

RA
M

 P
AG

E

CA
CH

E
M

OD
E

PA
GE

 R
EA

D
PA

GE
 R

EA
D

CA
CH

E
M

OD
E

BL
OC

K
ER

AS
E

De
fin

iti
on

0
Pa

ss
/fa

il
Pa

ss
/fa

il
(N

)
–

–
Pa

ss
/fa

il
0

=
 S

uc
ce

ss
fu

l P
RO

GR
AM

/E
RA

SE
 1

=
 E

rr
or

 in
 P

RO
GR

AM
/E

RA
SE

1
–

Pa
ss

/fa
il

(N
-1

)
–

–
–

0
=

 S
uc

ce
ss

fu
l P

RO
GR

AM
/E

RA
SE

 1

=
 E

rr
or

 in
 P

RO
GR

AM
/E

RA
SE

2
–

–
–

–
–

0

3
–

–
–

–
–

0

4
–

–
–

–
–

0

5
Re

ad
y/

bu
sy

Re
ad

y/
bu

sy
1

Re
ad

y/
bu

sy
Re

ad
y/

bu
sy

1
Re

ad
y/

bu
sy

0=
Bu

sy
 1

=
Re

ad
y

6
Re

ad
y/

bu
sy

Re
ad

y/
bu

sy
Re

ad
y/

bu
sy

ca
ch

e2

Re
ad

y/
bu

sy
Re

ad
y/

bu
sy

ca
ch

e2
0=

Bu
sy

 1
=

Re
ad

y

7
W

rit
e

pr
ot

ec
t

W
rit

e
pr

ot
ec

t
W

rit
e

pr
ot

ec
t

W
rit

e
pr

ot
ec

t
W

rit
e

pr
ot

ec
t

0
=

 P
ro

te
ct

ed
1

=
 N

ot
 p

ro
te

ct
ed

[1
5:

8]
–

–
–

–
–

0

No
te

s:
 1

. S
ta

tu
s

re
gi

st
er

 b
it

5
is

 0
 d

ur
in

g
th

e
ac

tu
al

 p
ro

gr
am

m
in

g
op

er
at

io
n.

 If
 c

ac
he

 m
od

e
is

 u
se

d,
 th

is
 b

it
w

ill
 b

e
1

w
he

n
al

l i
nt

er
na

l o
pe

ra
tio

ns
 a

re

co
m

pl
et

e.

2.
 S

ta
tu

s
re

gi
st

er
 b

it
6

is
 1

 w
he

n
th

e
ca

ch
e

is
 re

ad
y

to
 a

cc
ep

t n
ew

 d
at

a.
 R

/B

fo
llo

w
s

bi
t 6

.

Chapter 6 Basic Understanding of NAND Flash Interface

66

Figure 6-6.  READ STATUS timings application example

Note  If the Ready/Busy pin signals of multiple devices are common
wired as shown in Figure 6-6, the READ STATUS function can be
used to determine the status of each individually selected device.

�ERASE Operation
The BLOCK ERASE (60h) operation erases an entire block. To issue a

BLOCK ERASE operation, use the WE# signal to clock in the ERASE (60h)

command with CLE asserted. Next, clock in three address cycles, keeping

Chapter 6 Basic Understanding of NAND Flash Interface

67

ALE asserted for each byte of address. (These three address cycles are the

most significant address cycles and include the block address and the

page address.) The page address portion (the six low-order bits of the third

address cycle) is ignored, and only the block address portion of the three

most significant bytes is used. After the address is inputted completely,

issue the second command (command cycle 2) of D0h, which is clocked in

with WE# while CLE is being asserted. This confirms the ERASE operation,

and the device goes busy for approximately 5us. When the device

completes this operation, it is ready for another command. The READ

STATUS command can be issued at any time, even when the device is busy

during the ERASE operation. The microprocessor or controller can monitor

the device via the READ STATUS command.

Figure 6-7.  Timing diagram for ERASE BLOCK operation

Chapter 6 Basic Understanding of NAND Flash Interface

68

Figure 6-8.  Flow diagram for ERASE BLOCK operation

�PROGRAM Operations
PROGRAM operations can only program bits to 0 and assume that the user

started with a previously erased block. If the user does not want to program

a bit (or group of bits), the bits can be kept in the erased state by setting

that particular bit/group to 1. When the PROGRAM PAGE (80h) command

is received, the input register is reset (internally) to all 1s. This supports

Chapter 6 Basic Understanding of NAND Flash Interface

69

inputting only bytes of data that are to be programmed with 0 bits. The

PROGRAM operation starts with the 80h command (with CLE asserted). Next,

de-assert CLE and assert ALE to input the full five address cycles. After the

command and address are inputted, data is inputted to the register. When

all the data has been inputted, the 10h command is issued to confirm the

previous command and start the programming operation. It is mandatory

that the user read the status and check for successful operation. If the

operation is not successful, the block should be logged as a bad block and

not be used in the future. All data should be moved to a good block.

Figure 6-9.  Timing diagram for program operation

Chapter 6 Basic Understanding of NAND Flash Interface

70

Figure 6-10.  Flow diagram for PROGRAM operation

�READ Operation
A READ operation starts with the 00h command, followed by five address

cycles, then the 30h command to confirm the command sequence. After

the READ transfer time (tR) has elapsed, the data is loaded into the register

and ready for outputting. Asserting RE# enables the NAND flash device

to output the first byte of data corresponding to the column address

specified. Subsequent RE# transitions output data from successive column

locations. When the RE# signal is HIGH (not asserted), the IO lines are

tri-stated. Reading past the end of the device results in invalid data.

Chapter 6 Basic Understanding of NAND Flash Interface

71

Figure 6-11.  Timing diagram for READ with random data out
operation

Data Register

Cache Register

NAND Flash
Memory Array

1

1

Page - P

Page P

Page P

Figure 6-12.  NAND flash array internal working during read
operation

Chapter 6 Basic Understanding of NAND Flash Interface

72

�RANDOM DATA READ Operation
The user can directly access random data by issuing the 05h command,

two address cycles, and an E0h confirmation cycle. When the page has

been read from the array, this command provides rapid access to the data.

Data Register

Cache Register

NAND Flash
Memory Array

1

Page - P

Page P

Page P
Page P to RAM

Figure 6-13.  NAND flash array internal working during RANDOM
READ DATA out

Figure 6-14.  Flow diagram for READ operation with RANDOM
DATA out operation

Chapter 6 Basic Understanding of NAND Flash Interface

73

�Typical NAND Packet Structure

Figure 6-15.  NAND flash internal packet structure

NAND flash memory utilizes a structured data format known as the NAND

PACKET, which comprises both the data area and the spare area. The spare

area can be employed to store essential firmware-related information

and an error-correcting code (ECC) used for error-correction purposes.

In this structure, for example, the data area consists of 512 bytes, and it is

accompanied by a 16-byte spare area, creating a total of 528 bytes for the

combined areas.

To ensure data integrity, ECC is a critical component in NAND flash.

The example NAND flash memory we are considering here includes a

64-byte spare area for each page, with 16 bytes per 512-byte sector.

Within this spare area, the ECC can be stored along with other software

information, like wear-leveling or logical-to-physical block-mapping

details. ECC can be implemented either in hardware or software, with

hardware-based implementation offering better performance.

During a programming operation, the ECC unit calculates the ECC

based on the data stored in the sector, and the code is then written to the

corresponding spare area. When reading out the data, the ECC is also

retrieved, and the reverse operation is applied to verify the correctness

of the data. The ECC algorithm is capable of correcting data errors, and

Chapter 6 Basic Understanding of NAND Flash Interface

74

the level of correction depends on the strength of the algorithm used.

This inclusion of ECC, whether in hardware or software, ensures a robust

solution at the system level.

For error correction, different ECCs are available, each offering varying

levels of correction capability. Simple Hamming codes are the easiest

to implement in hardware, but they can only correct single-bit errors.

Reed-Solomon codes, however, provide more robust error-correction

capabilities and are commonly used in many NAND flash controllers in

the market. Additionally, BCH codes are gaining popularity due to their

improved efficiency over Reed-Solomon codes.

�PAGE READ CACHE MODE Operation
As we have seen before, the NAND flash device actually has two registers:

a data register and a cache register. The attributes of these two registers

play an important role in the various NAND flash caching modes. The

PAGE READ CACHE MODE command enables the user to pipeline the next

sequential access from the array while outputting the previously accessed

data. This double-buffered technique makes it possible to hide the READ

transfer time (tR). Data is initially transferred from the NAND flash array

to the data register. If the cache register is available (not busy), the data is

quickly moved from the data register to the cache register. After the data

has been transferred to the cache register, the data register is available

and can start to load the next sequential page from the NAND flash array.

Using the PAGE READ CACHE MODE command delivers a performance

improvement over a traditional PAGE READ command on an 8-bit input/

output (IO) device. PAGE READ CACHE MODE can be especially useful during

system boot-up, when large amounts of data are typically read from the

NAND flash device and start-up time is critical.

Chapter 6 Basic Understanding of NAND Flash Interface

75

Data Register

Cache Register

NAND Flash
Memory Array

1

1

Page - A

Page A

NAND Flash
Memory Array

2

2

Page - B

Page A
Page A

3

Figure 6-16.  NAND flash array internal working during cache read
operation

Figure 6-17.  NAND page read and NAND page cache read timing
diagram comparison

�PROGRAM PAGE CACHE Operation
PROGRAM PAGE CACHE MODE provides a performance improvement over

normal PROGRAM PAGE operations. PROGRAM PAGE CACHE MODE is a

double-buffered technique that enables the controller to input data

Chapter 6 Basic Understanding of NAND Flash Interface

76

directly to the cache register and uses the data register as a holding area

to supply data for programming the array. This frees the cache register so

that the next sequential page operation can be loaded in parallel. In many

applications, the programming time (tPROG) can be completely hidden.

As with the PAGE READ CACHE MODE command, the data register is used to

maintain the data throughput during the entire programming cycle. This

frees the cache register to receive the next page of data from the controller.

Figure 6-18.  NAND flash array internal working during cache
program operation

Chapter 6 Basic Understanding of NAND Flash Interface

77

Figure 6-19.  NAND page program and NAND page cache program
timing diagram comparison

Chapter 6 Basic Understanding of NAND Flash Interface

78

�Advanced Command Sets

Table 6-5.  NAND Advanced Command Sets

Command Command Cycle

Set- 1

Number of

Address

Cycles Set-1

Command

Cycle Set-2

Number of

Address

Cycles Set-2

MULTI PLANE READ 00h – 32h 5 00h – 30h 5

READ PAGE CACHE SEQUENTIAL 00h – 32h – 00h – 31h 5

RANDOM DATA READ OUTPUT 05h 5 E0h -

MULTI PLANE PROGRAM PAGE 80h – 11h 5 80h – 10h 5

MULTI PLANE PROGRAM PAGE

CACHE

80h – 11h 5 80h – 1Ah 5

ERASE BLOCK 60h 3 D0h -

As NAND flash technology continues to evolve, manufacturers have

introduced extended command sets to enhance the performance and

efficiency of these memory devices. These extended commands provide

additional capabilities beyond the standard commands traditionally used

with NAND flash. Understanding and utilizing these extended commands

can greatly improve the overall performance and reliability of the

storage device.

Extended NAND commands enable more efficient data transfer and

management, making them particularly valuable in scenarios where speed

and responsiveness are crucial, which is necessary even in an SD card.

These commands allow simultaneous reading or writing from multiple

planes within the NAND flash, significantly improving data access rates.

Chapter 6 Basic Understanding of NAND Flash Interface

79

By leveraging these capabilities, developers can optimize read and write

operations, making their device more responsive and efficient.

One of the key features of extended NAND commands is their ability

to support multi-plane operations. With multi-plane reads, multiple

data planes can be accessed simultaneously, reducing latency and

boosting read performance. Similarly, multi-plane writes allow data to be

programmed into multiple planes concurrently, speeding up the writing

process and enhancing overall write efficiency.

Another advantage of extended NAND commands is their support for

cache operations. Multi-plane cache reads and writes (double-buffered

technique) makes it possible to hide the read transfer tREAD /program

time: tPROG, further improving system performance. This double-buffered

technique makes it possible to hide the READ transfer time (tR). Data is initially

transferred from the NAND flash array to the data register for both the planes

simultaneously. If the cache register is available (not busy), the data is quickly

moved from the data register to the cache register in both planes.

�Address Input Restrictions
for Multi-Plane Operations
Multi-plane capability can significantly enhance data transfer rates and

improve overall system performance. However, when utilizing multi-

plane operations, there are specific address input restrictions that must be

followed to enable this functionality correctly, as follows:

•	 Sequential Addressing: When performing multi-

plane operations, the NAND flash memory requires

sequential addressing of pages within each plane.

This means that the pages accessed in a multi-plane

operation should be in consecutive order within their

Chapter 6 Basic Understanding of NAND Flash Interface

80

respective planes. Sequential addressing ensures

efficient data retrieval and programming, as the NAND

flash device can optimize the internal read and write

operations for consecutive page access instances.

•	 Identical Page Select Command: For each plane

involved in a multi-plane operation, the Page Select

command must be identical. This command specifies

the page address within the block and helps the NAND

flash device identify the specific pages that need to be

accessed in the multi-plane operation. By using the

same Page Select command for all planes, the NAND

flash memory can effectively synchronize the read or

write operations across different planes.

•	 Address Set Commands: The address input for

multi-plane operations requires a specific sequence

of address set commands. These commands are

responsible for loading the address information into

the NAND flash memory before the multi-plane read or

write operation can be initiated. The first and second

sets of commands must be used to set the page address

and block address, respectively. Careful adherence

to this sequence ensures that the NAND flash device

correctly interprets the addresses and performs the

intended multi-plane operation.

•	 Boundary Limitations: Multi-plane operations must

be confined within a block of each plane. Crossing the

boundaries of different planes during a multi-plane

operation is not supported. Thus, all the pages involved

in a multi-plane operation should belong to the same

Chapter 6 Basic Understanding of NAND Flash Interface

81

block within their respective planes. This limitation

ensures that the multi-plane operations are effectively

contained within the boundaries of each block,

avoiding any data conflicts or data corruption that

might occur when operating across block boundaries.

�Multi-plane Read
The Multi-Plane Read operation is an extension of the standard Page

Read operation. It allows reading data from multiple pages simultaneously,

which enhances read performance. After issuing the command cycle

set-1 commands, the device quickly returns to the ready state, and data

from the selected pages are transferred to cache registers. The multi-plane

addresses are set through specific commands. Once the data is loaded

into the cache registers, it can be read out using the MULTI PLANE RANDOM

DATA OUTPUT command. The Page Select command should be the same

between planes in the repeatable sequence. This enables efficient and

rapid access to data from multiple pages within the NAND flash memory.

Chapter 6 Basic Understanding of NAND Flash Interface

82

Figure 6-20.  Flow diagram for multi-plane read with random data
out operation

�MULTI- PLANE RANDOM CACHE READ
Operation
The Multi Plane Random Cache Read function allows reading data

from multiple pages into the cache registers ahead of the command 31h.

This operation is beneficial as it allows for faster access to data since the

selected pages are loaded into the page register while the host reads data

Chapter 6 Basic Understanding of NAND Flash Interface

83

from the cache register. This process enables a quick return to the ready

state (R/B HIGH) unless the previous data is still being loaded. The multi-

plane addresses are set through specific commands, and the activated

planes for the first Multi Plane Random Cache Read are retained for

subsequent address sequences until the Multi Plane Random Cache

operation is completed with command 3Fh. It's important to use identical

Page Select commands between planes within the repeatable sequence.

This mechanism optimizes data retrieval and improves overall read

performance from multiple pages within the NAND flash memory.

Figure 6-21.  Flow diagram for multi-plane cache read with random
data out operation

Chapter 6 Basic Understanding of NAND Flash Interface

84

Figure 6-21.  (continued)

Chapter 6 Basic Understanding of NAND Flash Interface

85

�Multi Plane Program Operation
The Multi Plane Full Sequence Program function expands the effective

programmable page size by using multiple pages. The host can load

data for another page using command 11h as the second command.

After issuing the 11h command, the R/B signal returns HIGH (ready

Figure 6-21.  (continued)

Chapter 6 Basic Understanding of NAND Flash Interface

86

state) in a short period since it is not an actual programming operation.

When loading data for the last page, the command 80h is used before

loading data, and command 1Ah/10h is issued after data loading as the

second command. After the command 10h, all the data loaded into

each page starts to be programmed simultaneously into the flash array.

It’s important to ensure that the multi-plane addresses are correctly set

through the first and second sets of commands. This feature enables an

efficient and streamlined process for programming data across multiple

pages, effectively extending the programmable page size in the NAND

flash memory.

Chapter 6 Basic Understanding of NAND Flash Interface

87

Figure 6-22.  Flow diagram for multi-plane program operation

Chapter 6 Basic Understanding of NAND Flash Interface

88

�Multi Plane Cache Program Operation
The Multi Plane Cache Full Sequence Program is an enhanced

version of the Cache Full Sequence Program. In this operation, multiple

pages are loaded for programming, and then command 15h is issued.

After that command, R/B returns HIGH once the transfer of data from the

cache register to the page register is completed. The internal program

operation begins after R/B returns, while other pages can still be loaded

by the host. At the final page loading for the entire Multi Plane Cache

Program, command 10h is needed to complete the operation, and R/B

stays busy for a specific period known as tPROG. It's essential to note that

the Multi Plane Cache Program should only be done within a block of

each plane and should not extend beyond the boundary of the plane.

The activated planes for the first Multi Plane Cache Full Sequence

Program will be used in the next address sequence until the entire Multi

Plane Cache Full Sequence Program is completed by command 10h.

This feature allows efficient and coordinated programming of multiple

pages in the NAND flash memory, enhancing the overall performance and

functionality of the device.

Chapter 6 Basic Understanding of NAND Flash Interface

89

Figure 6-23.  Flow diagram for multi-plane cache program operation

Chapter 6 Basic Understanding of NAND Flash Interface

90

�Multi Block Erase Operation
Multi Block Erase provides the option to erase multiple blocks, with

each block belonging to a different plane, all at the same time. However,

it’s essential to note that the same plane address should not be set twice

within a set of address settings for the Multi Block Erase operation.

This restriction ensures that blocks from each plane are only erased once

and prevents any unintended or duplicate erasures, thereby maintaining

data integrity and preventing data loss. By utilizing Multi Block

Erase, developers can efficiently manage and erase multiple blocks,

optimizing the overall performance and management of the NAND flash

memory device.

Chapter 6 Basic Understanding of NAND Flash Interface

91

Figure 6-24.  Flow diagram for multi-plane block erase operation

Chapter 6 Basic Understanding of NAND Flash Interface

92

�Summary
In conclusion, this chapter provided a brief overview of the fundamental

concepts and principles behind interfacing with NAND flash memory.

We began by introducing hardware-interfacing aspects, and also explored

the pin configurations, signal descriptions, and timing diagrams essential

for proper communication between the NAND flash memory and the

CPU/processor. We explored the multi-plane operation, a powerful

feature of 3D vertical NAND that allows simultaneous access to multiple

pages in different planes. Understanding the address input restrictions

and command sequences for multi-plane operations is essential for

maximizing the benefits of this technology.

Moreover, we looked into the NAND flash interface standards, such

as ONFI (Open NAND Flash Interface) specification and Toggle Mode

DDR NAND interface. Standardization plays a crucial role in ensuring

compatibility, interoperability, and ease of integration in various

applications.

A robust understanding of NAND flash memory interfacing is vital

for engineers and developers working on embedded systems, solid-state

drives, and various other applications. By grasping the concepts covered

in this chapter, they can design efficient, optimized, and reliable NAND

flash-based solutions that cater to a wide range of industries and meet the

diverse needs of modern computing and data storage.

Chapter 6 Basic Understanding of NAND Flash Interface

93

CHAPTER 7

Common SSD
Firmware Features
In this chapter, we will discuss the common solid-state drive (SSD)

firmware features. We will start by discussing the mapping table, which

is used to store the mapping between logical block addresses (LBAs)

and physical block addresses (PBAs). We will then discuss bad block

management, which is used to identify and manage bad blocks on the

drive. We will also discuss wear leveling, which is used to distribute writes

evenly across the drive to extend its lifespan. Garbage collection is another

important feature that is used to reclaim unused space on the drive. We

will also discuss data retention, error handling, power-loss protection, and

unexpected shutdown support.

Wear leveling is a technique used by SSD firmware to distribute writes

across the drive in an efficient manner, with the goal of extending the

lifespan of the drive. Because an SSD has a limited number of program/

erase cycles before the memory cells begin to degrade, it is important to

ensure that the cells are written to an equal number of times. Wear-leveling

algorithms in SSD firmware select the best blocks (lower P/E cycle count)

to erase and to distribute writes to in a way that maximizes the number of

available blocks for writing.

Static wear leveling helps to prevent the problem of non-uniform

usage of blocks in a block pool by identifying the cold data on the drive

and relocating it to a block with a high program/erase count. In some

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_7

https://doi.org/10.1007/978-1-4842-9888-6_7

94

cases, a block may hold “cold” data that is not overwritten by the host for

a long time, causing that block to not be freed for erasure and reuse. This

can lead to uneven distribution of program/erase (P/E) cycles among the

blocks, with some blocks reaching their end of life sooner than others.

The wear-leveling scheme identifies such “cold” blocks and moves their

data to a “hot” block, allowing the cold block to be erased and used again.

This helps to distribute P/E cycles evenly among all blocks in the pool,

prolonging the overall lifespan of the block pool.

Garbage collection is a related process that is used to reclaim space

on an SSD that has been marked as no longer in use. This can involve

consolidating data from multiple blocks into a single block and then

erasing the original blocks.

The main objective of garbage collection is to free up available blocks

in a system by moving valid data from a source block with less-valid data

to a new block. This allows the space in the source block to be reclaimed

and used again. One approach to choosing which block to free up is for the

firmware to maintain a count of the valid data in each block and select the

block with the least amount of valid data for garbage collection.

However, the writes involved in compaction, which is the process of

moving valid data from the source block to a new block, are not initiated

by the host. This results in a phenomenon known as write amplification,

where the SSD is written more than the amount of data originally received

from the host. Write amplification increases the number of program/

erase (P/E) cycles on the SSD, which can impact the host write speed and

shorten the lifespan of the SSD. Therefore, it is important to minimize the

need for compaction operations and only perform them when necessary.

In addition to freeing up space in the source block, another objective of

garbage collection is to move data from a block that is experiencing errors

to a healthy block. This helps to avoid data loss due to errors in the NAND

flash memory, which can occur over time as the number of P/E cycles

increases. By moving the data from a bad block to a good block, you ensure

the data can still be accessed by the host without error.

Chapter 7 Common SSD Firmware Features

95

�Significance of Garbage Collection in SSDs
Fragmentation occurs as a result of data updates and deletions, leading to

scattered data blocks across the NAND flash memory. Garbage collection

helps consolidate these blocks, reducing the need for scattered reads

and writes and improving performance. This is because when the data

is compacted together, they are more likely to be located in contiguous

memory blocks. This makes it easier for the flash controller to access the

data, which can lead to improved performance.

�Types of Garbage Collection Strategies
�Full Garbage Collection
Full garbage collection, also known as complete garbage collection,

involves the relocation and consolidation of all valid data blocks within the

NAND flash memory. Its objective is to eliminate fragmentation entirely by

moving data blocks to contiguous regions. This type of garbage collection

is typically performed during idle or low-activity periods when the SSD has

sufficient available resources to carry out the extensive relocation process.

Full garbage collection offers the advantage of achieving optimal

storage utilization and minimizing write amplification. By consolidating

data blocks, it reduces the need for scattered read and write operations,

resulting in improved overall performance. However, full garbage

collection can be time consuming and resource intensive, making it less

suitable for an application/workload with frequent write operations.

�Partial Garbage Collection
Partial garbage collection involves the relocation and consolidation of only a

subset of valid data blocks within the NAND flash memory. Unlike full garbage

collection, partial garbage collection targets specific areas or segments of the

SSD that exhibit higher fragmentation or higher invalid block density.

Chapter 7 Common SSD Firmware Features

96

Partial garbage collection strikes a balance between the benefits of full

garbage collection and the resources required to perform the operation.

It helps reduce write amplification and improves performance in specific

areas prone to fragmentation. By selectively addressing regions with

higher fragmentation, partial garbage collection provides a more efficient

approach for optimizing storage utilization and enhancing overall SSD

performance.

�Dynamic Garbage Collection
Dynamic garbage collection combines elements of both full and partial

garbage collection strategies. It dynamically determines the level of

garbage collection required based on real-time workload and system

conditions. The decision to perform either full or partial garbage collection

is made by the SSD firmware based on factors such as the level of

fragmentation, the available resources, and the workload intensity.

Dynamic garbage collection offers the flexibility to adapt garbage-

collection operations to the specific needs of the SSD. It optimizes

performance by selectively targeting heavily fragmented areas while

minimizing the impact on overall system resources. By dynamically

adjusting the garbage-collection approach, SSDs can strike a balance

between performance optimization and resource utilization, ensuring

efficient data management in varying workload scenarios.

�Error-Triggered Garbage Collection
Error-triggered garbage collection is a specialized type of garbage

collection that is initiated in response to program errors, read errors, or

erase errors encountered during SSD operation. These errors can include

issues such as uncorrectable bit errors, unresponsive blocks, program

Chapter 7 Common SSD Firmware Features

97

failure, or failed erase operations. When such errors occur, the SSD

firmware triggers a dedicated garbage-collection process to relocate data

from the problematic blocks, mark the blocks as invalid, and reclaim them

for future use.

Error-triggered garbage collection aims to mitigate the impact of errors

on SSD performance and data integrity. By promptly identifying and

handling faulty blocks, it helps to maintain the overall health and reliability

of the SSD. This type of garbage collection ensures that erroneous blocks

are not used for data storage, minimizing the chances of data corruption

or loss.

Engineers need to carefully consider the types of garbage-collection

strategies based on the specific SSD characteristics, workload patterns, and

performance requirements of their systems. The choice of full, partial, or

dynamic garbage collection can have a significant impact on the efficiency,

performance, and longevity of the SSD. Understanding these strategies

empowers engineers to design and implement effective garbage-

collection algorithms tailored to the unique needs of their applications

and environments.

�Garbage Collection Read Process
The garbage collection read process is a critical step within the garbage-

collection mechanism of an SSD. During garbage collection, valid data is

relocated and consolidated to optimize storage efficiency. In this chapter,

we will explore the garbage collection read process in detail, focusing on

retrieving valid data, handling incomplete or interrupted reads, and the

role of address translation during compaction reads.

Chapter 7 Common SSD Firmware Features

98

�Retrieving Valid Data during Compaction
During the garbage-collection process, the SSD firmware needs to retrieve

valid data from the blocks that are being compacted. This involves reading

the contents of the valid data blocks that will be relocated. The firmware

accesses the NAND flash memory to retrieve the stored data, which can

include file contents, application data, or any other user data.

To retrieve the valid data, the firmware utilizes the mapping table,

which contains the mapping between logical block addresses (LBAs) and

their corresponding physical block addresses (PBAs). The mapping table

allows the firmware to accurately locate the physical location of the data

within the NAND flash memory. By referencing the mapping table, the

firmware can identify the specific valid data blocks that need to be read

during the compaction process.

Once the garbage collection is completed, the firmware must ensure

that the valid data is still accessible. This is done by maintaining a mapping

of the old and new locations of data. When a read request is received, the

firmware first checks the mapping to see if the data has been compacted. If

it has, the firmware then reads the data from the new location.

�Handling Incomplete or Interrupted Reads
It is possible for a read request to be interrupted before it is completed. This

can happen if the SSD is powered off or if the firmware encounters an error.

When this happens, the firmware must resume the read request from the

point at which it was interrupted to restart the relocation process gracefully.

To ensure data integrity and maintain the consistency of the compaction

process, the SSD firmware employs error-handling and error-correction

mechanisms. These mechanisms involve implementing error-detection

codes, such as cyclic redundancy checks (CRC), and error-correction codes,

such as Reed-Solomon codes.

Chapter 7 Common SSD Firmware Features

99

If an incomplete or interrupted read occurs, the firmware can use the

error-detection and -correction codes to identify and rectify any potential

errors in the read data. By applying these error-correction techniques,

the firmware can recover the missing or corrupted data and ensure the

successful completion of the compaction process.

�Address Translation during
Compaction Reads
Address translation plays a crucial role during the compaction read

process. The firmware utilizes the address translation mechanisms to

convert the logical block addresses (LBAs) into their corresponding

physical block addresses (PBAs) when retrieving valid data.

The address translation process involves accessing the mapping table,

which stores the LBAs and their corresponding PBAs. By looking up the

mapping table, the firmware can obtain the accurate physical location

of the data within the NAND flash memory. This translation allows the

firmware to read the correct data blocks during the compaction process

and maintain the integrity of the data.

The mapping table is a key aspect of SSD operations and is essential

for efficient data retrieval and management. The firmware’s ability to

accurately translate LBAs into PBAs ensures that valid data is correctly

accessed during the compaction read process.

Once the garbage collection is completed, the mapping table must be

updated to reflect the new location of data. This is done by the firmware

during the compaction process. When a read request is received, the

firmware first checks the mapping table to see if the address has been

updated. If it has, the firmware then uses the new address to read the data.

By understanding the intricacies of the compaction read process,

designers and engineers can develop effective garbage-collection

algorithms and optimize the performance of SSDs. Considerations such

Chapter 7 Common SSD Firmware Features

100

as data retrieval, error handling, and address translation contribute to the

overall reliability and efficiency of the compaction read process in SSD

firmware.

Here are some additional details about the compaction read process:

•	 The compaction read process is a complex operation

that requires careful coordination between the

firmware and the hardware.

•	 The firmware should maintain a mapping of the old

and new locations of data.

•	 The firmware must handle incomplete or interrupted

reads gracefully.

•	 The firmware must update the mapping table to reflect

the new location of data.

�Writing Data during Compaction
During the garbage-collection process, when valid data blocks are

relocated and consolidated the SSD firmware must write the data to the

new blocks and free up the source blocks. This process ensures that the

data remains accessible and retrievable after compaction.

The firmware retrieves the valid data from the source blocks and writes

it to the target blocks. The actual data transfer occurs by programming

the NAND flash memory cells with the valid data from source blocks. The

firmware ensures that the data is accurately written to the target blocks,

preserving the integrity of the information.

Chapter 7 Common SSD Firmware Features

101

�Address Mapping and Updating
Address mapping and updating play a crucial role in the compaction

write process. As the valid data is moved to new blocks, the firmware

must update the corresponding address mappings in the mapping table.

This update ensures that the logical block addresses (LBAs) are correctly

associated with the new physical block addresses (PBAs).

The firmware modifies the mapping table entries to reflect the new

mappings between LBAs and PBAs. By updating the mapping table, the

firmware maintains an accurate translation between LBAs requested by

the host system and the physical location of the data within the NAND

flash memory.

�Managing Block Erasure and Wear-Leveling
As part of the compaction write process, the SSD firmware must manage

block erasure and consider wear leveling while allocating new blocks.

When data is relocated to new blocks, the source blocks become invalid

and are eligible for erasure to reclaim them for future use.

The firmware schedules the erasure of the invalidated blocks, typically

during idle periods or when there is sufficient available time for the

operation. By erasing these blocks, the firmware ensures that they are

ready to be used for new data storage, optimizing the efficiency of the

NAND flash memory.

Additionally, wear-leveling mechanisms come into play during the

compaction write process; i.e., when a new target block is chosen. The

firmware evenly distributes write operations across the blocks, preventing

specific blocks from experiencing excessive wear. This approach extends

the overall lifespan and reliability of the SSD by maintaining balanced

usage of the NAND flash memory.

Chapter 7 Common SSD Firmware Features

102

Effective management of block erasure and wear leveling is crucial for

maintaining the performance and longevity of an SSD. Properly handling

these aspects during the compaction write process ensures efficient data

relocation, optimal storage utilization, and prolonged SSD lifespan.

By understanding the intricacies of the compaction write process,

designers and engineers can develop robust garbage-collection algorithms

and optimize the performance of SSDs. The accurate writing of data,

address mapping and updating, and effective block erasure and wear-

leveling management contribute to the overall reliability and efficiency of

the compaction write process in SSD firmware.

�Handling Unexpected Power-Off Conditions
in Garbage Collection
Handling unexpected power-off conditions is a critical aspect of the

garbage-collection mechanism in an SSD. Power-loss events can occur

unexpectedly and pose a risk to data consistency and system stability.

A design should be considered for handling unexpected power-off

conditions in garbage collection, including ensuring data consistency

during power loss, write journaling and recovery mechanisms, and

managing incomplete compaction operations.

�Ensuring Data Consistency during Power Loss
During the garbage-collection process, an unexpected power loss can

interrupt ongoing compaction operations (either read from source blocks

or while writing to destination block, or while updating the mapping

table), potentially leading to data inconsistencies. It is crucial to ensure

data consistency, even in the face of power failures.

To do so, the SSD firmware employs various mechanisms, including

transactional updates and atomic operations. These mechanisms ensure

Chapter 7 Common SSD Firmware Features

103

that compaction operations are performed in a consistent and atomic

manner. Atomic operations ensure that either all or none of the updates

related to compaction are applied, preventing partial or inconsistent

modifications.

Furthermore, the firmware may employ techniques such as write

buffering or power-loss protection capacitors. Write buffering temporarily

stores data in volatile memory before it is permanently written to the

NAND flash memory. Power-loss protection capacitors provide enough

energy to complete ongoing write operations and safely flush buffered data

in the event of a sudden power loss.

By implementing these techniques, the firmware minimizes the

risk of data corruption or loss during unexpected power-off conditions,

maintaining data consistency in the face of power failures.

�Write Journaling and Recovery Mechanisms
Write journaling is a common technique used to handle unexpected

power-off conditions in garbage collection. It involves keeping a log or

journal of write operations during the compaction process. The write

journal captures the modifications made to the mapping table and

data blocks.

In the event of an unexpected power loss, the firmware can consult

the write journal upon system restart. By replaying the recorded write

operations, the firmware can recover the system to a consistent state and

ensure the integrity of the compaction process.

Recovery mechanisms are employed to resume or recover incomplete

compaction operations after a power loss. These mechanisms involve

identifying the point of interruption and resuming or reperforming the

necessary compaction steps from that point onward. The recovery process

ensures that the SSD can continue the garbage collection process without

compromising data integrity or system stability.

Chapter 7 Common SSD Firmware Features

104

�Managing Incomplete Compaction Operations
In the event of a power loss or system interruption during compaction, the

SSD firmware must handle incomplete operations to maintain the integrity

of the garbage-collection process.

The firmware employs techniques such as rollback or forward recovery

to manage incomplete compaction operations. Rollback involves undoing

or reverting the partially completed operations to return the system to

a consistent state. Forward recovery, meanwhile, involves resuming or

completing the remaining operations from the point of interruption.

During recovery, the firmware may perform additional checks, such

as verifying the integrity of the data or looking for any inconsistencies

caused by the interruption. These checks help ensure that the recovered

compaction process does not introduce data errors or inconsistencies.

By effectively managing incomplete compaction operations, the

firmware minimizes the impact of power-loss events and ensures that the

garbage-collection process can be resumed or recovered without data

corruption or loss.

Proper handling of unexpected power-off conditions in garbage

collection is crucial for maintaining data consistency, system stability,

and the overall reliability of an SSD. Ensuring data consistency during

power loss, implementing write journaling and recovery mechanisms, and

managing incomplete compaction operations contribute to the robustness

and effectiveness of the garbage-collection process.

�Performance Considerations
in Garbage Collection
Performance must be considered when designing and implementing

garbage-collection algorithms in SSD firmware. In this section, we will

explore the various performance considerations associated with garbage

Chapter 7 Common SSD Firmware Features

105

collection. We will discuss the impact of compaction on SSD performance,

the concept of write amplification, and strategies to minimize performance

degradation.

�Impact of Compaction on SSD Performance
The compaction process in garbage collection can have an impact on the

performance of an SSD. As valid data is relocated and consolidated, the

following factors come into play:

•	 Read Performance: During compaction, the firmware

needs to read valid data from the source blocks and

write it to the target blocks. The time required for these

read operations can impact overall read performance.

If the compaction process involves a significant amount

of data movement, it can lead to increased read

latencies.

•	 Write Performance: The write performance of an SSD

can be affected during compaction due to the extensive

write operations involved. Writing valid data to new

blocks and updating the mapping table can increase

the write workload on the NAND flash memory,

potentially resulting in longer write latencies.

•	 Overhead: Garbage collection introduces additional

overhead in terms of CPU utilization and memory

resources. The firmware needs to manage various data

structures, perform address translation, and handle

error correction, all of which require computational

resources.

Chapter 7 Common SSD Firmware Features

106

•	 To minimize the impact of compaction on SSD

performance, firmware designers must optimize

garbage-collection algorithms, utilize efficient data

management techniques, and leverage SSD-specific

optimizations.

�Write Amplification and Its Effects
Write amplification is a critical factor that affects SSD performance and

longevity. It refers to the ratio between the amount of data written by the

host system and the actual amount of data programmed into the NAND

flash memory.

During the compaction process, write amplification can occur due to

several factors, including the following:

•	 Data Relocation: When valid data is moved from

source blocks to target blocks, additional data

movement and rewriting may be required. This can

result in a higher amount of data being written to the

NAND flash memory than what was initially written by

the host system.

•	 Mapping Table Updates: Updating the mapping

table with new address mappings during compaction

requires additional write operations to NAND,

contributing to write amplification.

Higher write amplification leads to increased wear on the NAND

flash memory and reduced overall SSD lifespan. It also impacts write

performance and can result in decreased write endurance.

Chapter 7 Common SSD Firmware Features

107

�Strategies to Minimize Performance Degradation
To mitigate the performance degradation caused by compaction and write

amplification, the following strategies can be employed:

•	 Efficient Data Placement: Optimizing data placement

during compaction can minimize the need for

scattered read and write operations. By consolidating

data and placing it sequentially, read and write

performance can be improved.

•	 Dynamic Compaction: Implementing dynamic

compaction techniques allows the firmware to adjust

the compaction process based on workload patterns.

By intelligently managing the compaction workload,

the firmware can optimize performance and resource

utilization.

•	 Advanced Garbage-Collection Algorithms: Designing

and implementing advanced garbage-collection

algorithms can help minimize the frequency and

impact of compaction operations. These algorithms

intelligently identify and prioritize the most fragmented

or invalid blocks for compaction, reducing unnecessary

data movement.

•	 Write Optimization Techniques: Leveraging write

optimization techniques, such as write combining or

coalescing, can reduce the number of write operations

required during compaction, minimizing write

amplification and improving write performance.

Chapter 7 Common SSD Firmware Features

108

By incorporating these strategies, firmware designers can mitigate the

performance degradation caused by compaction and write amplification,

resulting in improved overall SSD performance, longevity, and user

experience.

�Balancing Garbage Collection and Host
Write Operations
Balancing the workload between garbage collection and host write

operations is crucial for maintaining optimal performance and efficiency

in SSDs. In this section, we will explore various strategies and techniques

to achieve a balance between garbage collection and host write operations,

ensuring smooth operation and maximizing the lifespan of the SSD.

�Understanding the Workload Characteristics
To effectively balance garbage collection and host write operations, it

is essential to understand the workload characteristics of the system.

Analyzing the workload patterns, such as write intensity, read-to-write ratio,

and data access patterns, provides insight into the optimal distribution of

resources between garbage collection and host write operations.

By monitoring and analyzing the workload, firmware designers can

make informed decisions on when and how frequently to trigger garbage-

collection processes, considering the workload’s impact on performance,

wear leveling, and overall system stability.

�Garbage Collection Prioritization
Garbage collection can be prioritized to ensure a balanced workload.

It involves determining the order and scheduling of garbage-collection

processes based on various factors, such as block fragmentation, block

erasure count, or data invalidation rate.

Chapter 7 Common SSD Firmware Features

109

Critical factors to consider in prioritizing garbage collection include

avoiding excessive write amplification, minimizing data migration, and

preventing fragmentation. By prioritizing garbage collection based on

these factors, firmware designers can prevent performance degradation

and optimize the utilization of resources.

�Dynamic Resource Allocation
Dynamic resource allocation is a technique that involves dynamically

adjusting the allocation of system resources, such as CPU cycles, memory,

and IO bandwidth, between garbage collection and host write operations.

This technique allows the firmware to adaptively allocate resources based

on the current system workload and requirements.

During periods of high host write activity, resources can be allocated

to prioritize host write operations, ensuring that application-level

performance is not compromised. Conversely, during periods of lower

write activity, more resources can be dedicated to garbage collection to

minimize the impact of garbage-collection processes on the system’s

performance.

�Over-Provisioning
Over-provisioning is the practice of reserving a portion of the NAND flash

memory capacity for garbage-collection and wear-leveling purposes.

By allocating a reserved space, typically a percentage of the total SSD

capacity, firmware designers can ensure sufficient free blocks are available

for garbage collection without impacting the available storage capacity for

host write operations.

Over-provisioning helps to mitigate write amplification, reduce

data migration frequency, and extend the lifespan of the SSD. Firmware

designers can adjust the amount of over-provisioning based on the specific

requirements and characteristics of the system.

Chapter 7 Common SSD Firmware Features

110

�Adaptive Garbage Collection
Adaptive garbage collection techniques utilize algorithms that dynamically

adjust the garbage-collection process based on real-time workload

conditions. These algorithms monitor factors such as write patterns, free

block availability, and wear leveling to determine the most suitable time

and intensity for garbage collection.

By adapting garbage collection operations to the workload, firmware

designers can ensure an optimal balance between garbage collection and

host write operations. This approach helps prevent excessive performance

degradation and ensures efficient resource utilization.

�Drawbacks of Garbage Collection
and Minimizing Their Impact
Garbage collection presents certain drawbacks that can impact the overall

efficiency and lifespan of the SSD. Following are some of the drawbacks of

garbage collection and strategies to minimize their impact.

�Write Amplification
One of the primary drawbacks of garbage collection is write amplification,

which refers to the increased number of write operations performed by

the SSD compared to the writes initiated by the host system. Garbage

collection involves moving valid data from source blocks to target blocks,

which can result in additional writes due to data migrations, metadata

updates, and address mapping modifications.

Chapter 7 Common SSD Firmware Features

111

�Performance Degradation
Garbage collection can lead to performance degradation, primarily due

to increased read and write latencies caused by data movements and

additional operations. The extensive read and write operations involved

in garbage collection can consume CPU cycles, memory resources, and IO

bandwidth, affecting the overall performance of the SSD.

�Increased Power Consumption
Garbage collection can result in increased power consumption due to

additional read, write, and erase operations. These operations consume

energy and contribute to the overall power consumption of the SSD.

�Impact on Endurance
Garbage collection can contribute to the wear-out of NAND flash memory

cells. Each program-erase cycle affects the lifespan of the memory,

and garbage-collection operations involve numerous write and erase

operations.

Firmware designers can employ the following strategies to mitigate the

drawbacks of garbage collection:

•	 Optimizing the garbage-collection algorithm to

minimize the time and resources required for data

movements.

•	 Utilizing adaptive garbage-collection algorithms that

dynamically adjust the intensity and timing of garbage

collection based on workload patterns.

•	 Employing techniques like parallelization to distribute

the computational load across multiple cores or

processing units.

Chapter 7 Common SSD Firmware Features

112

By minimizing the performance impact of garbage collection, the SSD

can maintain optimal responsiveness and throughput. The following are

ways to do so:

•	 Utilize advanced wear-leveling techniques to

evenly distribute write operations across the NAND

flash memory.

•	 Employ write optimization strategies such as write

combining or coalescing to reduce the number of write

operations during garbage collection.

By minimizing write amplification, the impact on the SSD’s

performance, endurance, and lifespan can be significantly reduced.

�Other Concerns
�Data Retention
Data retention is another important concept in SSD firmware design.

Because an SSD has no moving parts, it is less susceptible to physical

damage than is a traditional hard disk drive (HDD). However, SSDs can

still lose data for a variety of reasons, including the failure of memory chips

or the corruption of data. “Data retention” also refers to the amount of

time that data stored on an SSD can be retained and remain readable after

the power has been turned off. This is an important consideration when

choosing an SSD, as data retention is a key factor in the reliability and

long-term performance of the drive.

There are a few different factors that can affect data retention in an

SSD, including the type of memory technology used, the design and

quality of the drive, and the ambient temperature and humidity conditions

in which the drive is stored.

Chapter 7 Common SSD Firmware Features

113

In general, SSDs tend to have longer data retention periods than

traditional hard drives, as they do not have moving parts and are less

susceptible to physical wear and tear. However, it is important to note

that all SSDs will eventually lose their stored data, and the data retention

period will vary depending on the specific drive and its usage conditions.

Periodic read is a data retention mechanism used in some SSD

firmware to periodically read and verify the data stored on the drive.

This process helps to identify and correct any errors that may have

occurred during the writing or reading of data, and can improve the

overall reliability and data retention of the drive. Periodic reads are

typically performed automatically by the drive without the need for user

intervention. These mechanisms are usually used in conjunction with

other data retention techniques, such as wear-leveling algorithms and

error-correcting codes, in order to ensure the maximum possible data

retention period for the drive.

�Read Disturb
When reading data from NAND flash memory, a phenomenon called read
disturb can occur, causing neighboring cells in the same memory block

to unintentionally change over time. This happens when a cell is read

repeatedly without any intervening erase operations. Although the read

cell itself may not fail, one of the nearby cells may experience a change

during a subsequent read.

To prevent the read disturb issue, the flash controller keeps track of

the total number of reads to a specific block since the last erase. Once

this count exceeds a predetermined limit, the affected block’s data is

copied to a new block, then the affected block is erased and added back

to the available block pool. After the erase process, the original block is

essentially restored to its initial condition.

Chapter 7 Common SSD Firmware Features

114

If the flash controller fails to intervene in a timely manner, a read

disturb error may occur. In such cases, if the errors are too numerous to

correct using an error-correcting code, data loss could potentially happen.

To ensure data integrity and prevent read disturb–related errors, the

flash controller actively manages the number of reads to each block,

copying and erasing blocks as necessary. This intervention helps maintain

the reliability and long-term performance of the NAND flash memory.

Figure 7-1.  Read disturb probability based on P/E cycle

Chapter 7 Common SSD Firmware Features

115

E P

Va

Vth E P

Va

Vth

(a) No read disturb (b) After read disturb

Figure 7-2.  Vth distributions before and after read disturb

�Program Disturbance
Program disturbance is a phenomenon that can occur when an SSD is

being written to, in which the process of writing to one page can cause

the data on nearby pages to become corrupted. This can be a particular

problem in multi-level cell (MLC) SSDs, which store multiple bits of data

per memory cell, which can potentially affect the integrity of the data

stored on the drive.

To minimize the effects of program disturbance, SSD firmware

includes algorithms that perform a read-and-verify operation immediately

after writing the physical page data to the drive. This operation involves

reading back the data that was just written to the drive and comparing it

to the original data to ensure that it was written correctly (ECC check).

Depending on the specific scheme implemented in the firmware, this

read-and-verify operation may be performed immediately after writing the

data, or it may be performed after a delayed interval.

Overall, the use of algorithms to minimize the effects of program

disturbance and recover from silent read failure is an important part of the

firmware in SSDs and helps to ensure the reliability and data retention of

the drive.

Chapter 7 Common SSD Firmware Features

116

E

Va

Vth

Vt of erased cell

After disturb
Before disturb

E

Va

Vth

Vt of erased cell

After disturb
Before disturb

E

Va

Vth

Vt of erased cell

After disturb
Before disturb

Figure 7-3.  Program disturb

�Write Amplification
Write amplification is another important concept in SSD firmware design.

Because an SSD cannot overwrite data directly, each write operation

requires a block to be erased first. This can result in a situation where the

amount of data written to the drive is greater than the amount of data

actually being stored, a phenomenon known as write amplification. SSD

firmware includes algorithms to minimize write amplification, such as by

using compression and deduplication to reduce the amount of data that

needs to be written to the drive.

Factors that can affect the write amplification factor (WAF) include

garbage-collection processes, which involve moving data around within

the SSD to make space for new data, and the frequent storage of firmware

management data in the NAND memory of the SSD, which can lead to

additional data writes. A higher WAF indicates more data is being written

to the SSD than was originally written by the host, leading to reduced

performance and a shortened lifespan for the SSD. Meanwhile, a lower

WAF indicates more-efficient data writing, resulting in better performance

and a longer lifespan for the SSD.

The write amplification factor (WAF) is calculated by dividing the

amount of data written to the SSD by the amount of data written by the host

(see Figure 7-4). A WAF of 1 indicates that there is no write amplification,

Chapter 7 Common SSD Firmware Features

117

meaning that the amount of data written to the SSD is equal to the amount

of data written by the host. A WAF greater than 1 indicates that the SSD has

written more data to the disk than was written by the host, resulting in write

amplification. For example, if an SSD writes 8 GB of data to the disk and the

host writes 2 GB of data, the WAF would be 4, indicating significant write

amplification. But if the SSD writes 5 GB of data and the host writes 5 GB of

data, the WAF would be 1, indicating no write amplification.

Figure 7-4.  Write amplification factor

�Over-provisioning
Over-provisioning is the practice of allocating more memory to an

SSD than is actually needed for user data. This can provide a number of

benefits, including improved performance and increased endurance.

SSD firmware can take advantage of over-provisioning by using the extra

memory for wear leveling and garbage collection, which can help extend

the lifespan of the drive.

It is the difference between the physical capacity of the flash memory

and the logical capacity presented through the operating system (OS) as

available for the user. During the garbage-collection, wear-leveling, and

bad block–mapping operations on the SSD, the additional space from over-

provisioning helps lower the write amplification when the controller writes

to the flash memory. Over-provisioning is represented as a percentage

ratio of extra capacity to user-available capacity, as seen in Figure 7-5.

Figure 7-5.  Over-provisioning calculation

Chapter 7 Common SSD Firmware Features

118

�Encryption
Self-encrypting drives (SEDs) are a type of SSD that uses hardware-based

encryption to secure data at rest. One of the main benefits of SEDs is that

they provide a secure and efficient way to protect data from unauthorized

access. SEDs use hardware-based encryption to encrypt data as it is

written to the drive, and they decrypt it as it is read. This means that the

data is always encrypted while it is stored on the drive, and it cannot be

accessed without the correct password or key.

There are several technologies and standards used to implement

SEDs in SSD firmware. The most common of these is the Advanced

Encryption Standard (AES). One of the challenges of implementing SEDs

in SSD firmware is that they can have a negative impact on performance.

Encrypting and decrypting data are tasks that require additional

processing resources, which can slow down the drive and reduce its overall

performance. To mitigate this impact, SSD manufacturers can optimize

their firmware to minimize the overhead of encryption and decryption, or

use hardware acceleration to offload these tasks onto dedicated hardware.

�Summary
In summary, SSD firmware is a complex and critical component of an SSD,

responsible for managing the various processes involved in storing and

retrieving data, ensuring data integrity, and optimizing the performance

of the drive. By understanding concepts such as wear leveling, garbage

collection, data retention, program disturbance, error handling, write

amplification, and over-provisioning, we can better appreciate the

engineering that goes into creating reliable and high-performance storage

devices.

Chapter 7 Common SSD Firmware Features

119

CHAPTER 8

SSD Firmware Design
Considerations
In this chapter, we will discuss the design considerations for solid-state

drive (SSD) firmware. We will start by discussing the different types of SSDs

and their requirements. We will then discuss the different components of

SSD firmware and how they interact with each other. We will also discuss

the different challenges that need to be addressed in the design of SSD

firmware.

�Design Considerations

	 1.	 SSD host interface: SATA, NVME, SAS, USB, etc.

	 2.	 Cache (RAM) memory availability:

•	 To transfer data to/from host/SSD

•	 Mapping table

	 3.	 Number of processors and their internal memory

availability

	 4.	 Number of NAND channel supports

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_8

https://doi.org/10.1007/978-1-4842-9888-6_8

120

	 5.	 Type of NAND used, characteristics, and limitations:

SLC, MLC

•	 Limited number of program/erase cycles (SLC:

100,000, TLC: 3,000, QLC: 1,000)

•	 Erase block-wise, write page-wise; erase

before write.

	 6.	 Performance requirements

	 7.	 Benchmark requirements

At a high level, an SSD operates by using a series of memory chips to

store data. These memory chips are organized into pages and blocks, with

each page typically able to store around 16 kilobytes (KB) of data and each

block consisting of multiple pages. In order to write data to an SSD, the

firmware must first erase the designated block. This is necessary because

NAND flash memory cells can only be written to if they are in the erased

state. After the erase operation is complete, write the pages within the

block in a sequential order. Recall that this serves as a basic foundation on

which we can build.

Once a page has been written to, it cannot be overwritten directly.

Instead, the firmware must first erase the block that the page is a part of,

which will also erase all of the other pages in the block. Rather than erasing

and rewriting the same block, a new erased block should be chosen with a

similar P/E (program/erase) cycle. This process is known as wear leveling

and is used to ensure that all of the blocks in a die have been written to an

equal number of times, thus extending the lifespan of the SSD.

One of the key components of SSD firmware is the mapping table,

which is used to keep track of the location of data on the drive. The

mapping table maps logical block addresses (LBAs) to physical block

addresses (PBAs), which represent the location of data on the drive. When

data is written to the drive, the SSD firmware uses the mapping table to

determine the location where the data should be stored.

Chapter 8 SSD Firmware Design Considerations

121

When data is read from an SSD, the firmware uses the mapping table to

determine the physical block where the data is stored. The firmware then

retrieves the data from the physical block and sends it back to the host device.

One of the key challenges in designing SSD firmware is ensuring that

it is able to efficiently manage the various processes involved in storing

and retrieving data. This includes optimizing the wear-leveling algorithm

to minimize the number of times that blocks have to be erased, as well as

managing the mapping table to ensure that data can be retrieved quickly.

Another important aspect of SSD firmware is ensuring data integrity.

Because an SSD has no moving parts, it is less susceptible to physical

damage than a traditional hard-disk drive (HDD). However, SSDs can still

fail due to a variety of factors, including the failure of memory chips or the

corruption of data. To protect against data loss, SSD firmware typically

includes error-correcting code (ECC) and other mechanisms to detect and

correct errors.

�Unexpected Shutdown
An unexpected shutdown in an SSD occurs when the power to the device is

unexpectedly interrupted while the device is in operation. This can happen

due to power outages, surges, spikes, sags, or brownouts, as well as by

manually removing the SSD from the system while it is powered on. What

happens to data in transit to the SSD when there is an unexpected power

interruption is an item overlooked by many industrial Original Equipment

Manufacturer (OEM) host system designers. Limiting the system’s exposure

to data loss should be high on the list of design priorities.

This power loss will not cause issues during an idle or read operation,

but if a write operation is occurring, there is the potential for some data

loss or worse. Power loss during a write is also known as Write Abort. The

main consequences of an unexpected shutdown during a write operation

are file-system corruptions and internal device data corruption.

Chapter 8 SSD Firmware Design Considerations

122

File-system corruptions occur when the operating system is unable

to update the file-system records before the power is lost. Most operating

systems will perform a file-system repair operation on the next power-up.

Or it can typically be repaired by running a command or utility on the next

power-up.

Internal device data corruption is more severe, as it can result in the

entire flash drive’s becoming unusable due to the corruption of the SSD’s

internal metadata, requiring a low-level format, which results in the

loss of all data on the drive. To minimize the risk of data loss due to an

unexpected shutdown, system designers should, in the design process,

prioritize recovering the system effectively after such events.

One option is to take frequent recovery points and implement

algorithms to find and restore data up until the restore point. Additionally,

a special algorithm can be implemented to find the last page that was

successfully written in a block. This can help protect against power

interruptions and reduce the risk of data loss without the use of capacitors,

which are often used to provide a temporary power source during

unexpected shutdowns. By implementing these measures in the SSD

firmware, designers can effectively address the issue of unexpected power

loss and ensure the integrity of data in transit to the solid-state drive.

�Power-Loss Protection
To effectively handle unexpected shutdowns and protect against data loss,

designers have several options. One approach is to use power-

loss protection capacitors in the hardware design of the SSD firmware.

These capacitors provide a temporary power source in the event of an

unexpected power loss, allowing the firmware to complete any in-progress

writes and save any buffered data to the NAND.

In enterprise computing, data-loss protection is considered to be much

more critical than it is in client computing. During an unexpected power

loss, the SSD firmware can detect the power loss using hardware support

Chapter 8 SSD Firmware Design Considerations

123

and take steps to ensure all the unsaved data in the SSD is saved to maintain

the integrity of data. This may include completing any in-progress writes

to lower or upper pages (TLC), dumping buffered writes from non-volatile

memory into the NAND (using SLC for faster write speed), or using hold-up

circuitry to preserve enough time and energy to save the Flash Translation

Layer (FTL) mapping table and other un-flushed data to the NAND.

�Power-Loss Design Considerations
The power-loss protection mechanism in SSD firmware is a vital aspect of

ensuring data integrity and preserving content metadata during unexpected

power failures. While the volatile RAM translation table facilitates fast data

access and updates during normal SSD operation, it is susceptible to data loss

in the event of power loss. To address this challenge, the firmware adopts a

proactive approach by utilizing persistent data structures stored in the non-

volatile NAND flash array. These data structures contain essential content

metadata and enable the reconstruction of the translation table during the

next drive initialization. The firmware employs error protection mechanisms

such as error-correcting codes (ECC) to safeguard the stored metadata from

potential corruption. During the power-loss handling process, the firmware

detects power loss, stores content metadata in the NAND flash array either

alongside user data or in a separate block, and subsequently reconstructs

the volatile RAM translation table on SSD initialization. This comprehensive

power-loss protection mechanism ensures data reliability, minimizes data

loss risks, and contributes to the robustness and efficiency of SSDs.

Individual modules need to maintain persistent data for simplicity

and efficient operation. To ensure data integrity and recoverability, this

persistent data is periodically saved from volatile RAM to the non-volatile

NAND flash at restore points. Each module is responsible for updating its

respective data structures, allocated in designated sections in RAM. Restore

points can be created after the first boot, following an unexpected shutdown,

when the persistent data buffer is full, or in response to program errors.

Chapter 8 SSD Firmware Design Considerations

124

During restoration after an unexpected shutdown, minimizing the read

time for persistent data from NAND is crucial to achieve faster boot times.

Hence, efficient data-retrieval mechanisms should be employed. Regardless

of whether the shutdown was safe or unsafe, during every subsequent

boot, all restore-point data structures should be restored to their previous

state, ensuring the system’s consistent operation. To safeguard against data

corruption, these data blocks should be protected by robust error-protection

mechanisms, such as error-correcting codes (ECCs).

In extreme scenarios, if error correction fails, the device should still

be able to boot, albeit in a read-only (RO) mode, ensuring that the data

remains intact and is not subjected to further risks. The combination of

efficient restore points, error protection, and robust recovery mechanisms

ensures the reliability and resilience of the system in handling unexpected

events and contributes to an overall improved user experience.

Figure 8-1.  System restore point for unexpected shutdown handling

Chapter 8 SSD Firmware Design Considerations

125

Figure 8-2.  Unexpected shutdown during user data write

The design considerations of SSD firmware are a complex process that

involves optimizing various algorithms and data structures in order to

maximize the performance and reliability of the drive.

�Best Practices for Optimizing and Maintaining
SSD Firmware
Next we will examine some key concepts for optimizing and maintaining

SSD firmware, including reducing DRAM (dynamic random access

memory, volatile memory) access, minimizing the code in the critical path

of read and write operations, and managing firmware state snapshots. As

fellow programmers, it is important that you understand the best practices

for optimizing and maintaining SSD firmware. SSDs are becoming

Chapter 8 SSD Firmware Design Considerations

126

increasingly popular, and their firmware is complex. SSD firmware can

have a significant impact on performance, reliability, and security. By

following best practices, programmers can develop firmware that is more

efficient, reliable, secure, and user-friendly.

One of the key considerations for optimizing SSD firmware is reducing

the number of accesses to the DRAM on the drive. DRAM is a type of

memory that is used by the SSD to store data temporarily, but accessing

it can be slow and consume a significant amount of power. By reducing

the number of accesses to the DRAM, it is possible to improve the

performance of the SSD and reduce its power consumption.

One way to reduce DRAM access is to include less code in the critical

path of read and write operations. The critical path is the sequence of

operations that are performed when data is being read from or written to

the drive. By reducing the amount of code in the critical path, it is possible

to speed up these operations and reduce the amount of time that the drive

spends accessing the DRAM.

Another approach to reducing DRAM access is to schedule read

operations for data maintenance tasks, such as garbage collection and

wear leveling. By performing these tasks during times when the drive

is not being heavily used, it is possible to reduce their impact on the

performance of the drive and minimize the number of accesses to

the DRAM.

In addition to reducing DRAM access, it is also important to manage

the firmware state snapshot data (management data). The firmware state

snapshot is a copy of the firmware that is stored on the drive and is used

to restore the firmware in the event of a failure. By managing this data

carefully—i.e., keeping the management data as small as possible and

writing only when necessary and when firmware is idle—it is possible to

reduce the amount of space that is used by the firmware state snapshot,

which can help to improve the overall performance and reliability of

the drive.

Chapter 8 SSD Firmware Design Considerations

127

�Summary
In conclusion, optimizing and maintaining SSD firmware requires a careful

balance of performance, power consumption, and reliability. By focusing

on reducing DRAM access, minimizing the code in the critical path of read

and write operations, and managing the firmware state snapshot data, it

is possible to create SSD firmware that is optimized for performance and

reliability.

Chapter 8 SSD Firmware Design Considerations

129

CHAPTER 9

Flash Translation
Layer (FTL)
The flash translation layer (FTL) is a key component of the firmware in a

NAND-based solid-state drive (SSD). It is responsible for managing the

interaction between the host computer and the underlying NAND chips,

and it plays a crucial role in the performance and reliability of the SSD.

The FTL is implemented as a layer of software that sits between the

host computer and the NAND chips, and it serves several key functions:

mapping table, bad block management, wear leveling, and garbage

collection. These algorithms and data structures are designed to optimize

the performance and reliability of the SSD, and they are constantly

updated and refined as the SSD is used.

Figure 9-1.  FTL block diagram

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_9

https://doi.org/10.1007/978-1-4842-9888-6_9

130

�Mapping Table
The FTL is responsible for mapping logical block addresses (LBAs) used

by the host to the physical pages and blocks on the NAND chips (physical

block address; PBA). This allows the host to access data on the SSD using

logical addresses, rather than having to know the specific physical location

of each block on the NAND chips. The data structure can simply be an

array, where the index is LBA and its value is PBA. This address translation

is necessary to ensure that data is correctly mapped to the physical

locations within the NAND flash memory. The FTL (flash translation layer)

acts as an intermediary to perform this translation.

This mapping table is stored in the RAM of the SSD for speed of access

and is persisted in flash memory in case of power failure. When the SSD

powers up, the table is read from the persisted version and reconstructed

into the RAM. The simple approach is to use page-level mapping to map

any logical page from the host to a physical page. This mapping policy

offers a lot of flexibility, but the major drawback is that the mapping table

requires a lot of RAM, which can significantly increase the manufacturing

costs. A solution to that would store only the part of the table required to

service the read request from the host in RAM. The disadvantage of this

approach would be needing to read from NAND (on demand) if the host

Table 9-1.  Basic

Mapping Table

Chapter 9 Flash Translation Layer (FTL)

131

read does not have a mapping table in RAM. This will have an impact on

random read performance.

A logical-to-physical block address table (mapping table) is an essential

component of SSD firmware. It is used to translate logical block addresses

(LBAs) used by the host system to physical block addresses (PBAs) on

the SSD. The mapping table is necessary because the physical blocks on

an SSD may wear out or become faulty over time, and the firmware must

be able to remap logical blocks to new physical blocks to maintain the

integrity of the data.

�Size of the Mapping Table
The size of the mapping table depends on the capacity of the SSD and the

addressing scheme used. In larger-capacity SSDs, the mapping table can

be substantial due to the increased number of LBAs and corresponding

PBAs. For example, a mapping table for a multi-terabyte SSD can contain

millions of entries.

Size of SSD: 128 GB

Number of clusters: Assuming each cluster is 4 KB (4 kilobytes), let’s

calculate the number of clusters:

134,217,728 KB (SSD size) / 4 KB (cluster size) = 33,554,432 clusters

Assuming each mapping table entry requires 4 bytes to store the

corresponding PBA (physical block address), we can calculate the total

RAM size required for the mapping table as follows:

Total RAM size required for mapping table = Number of clusters *

Number of bytes required to store the PBA

Total RAM size required = 33,554,432 clusters * 4 bytes =

134,217,728 bytes

Therefore, for an SSD with a size of 128 GB and a cluster size of 4 KB,

the mapping table would require approximately 134,217,728 bytes or 134

megabytes of RAM to store the mapping entries.

Chapter 9 Flash Translation Layer (FTL)

132

�Storing the Mapping Table in RAM
Ideally, it would be advantageous to store the entire mapping table in

random access memory (RAM) for fast access. However, due to the

limitations of RAM capacity in most SSD designs (due to cost), it is often

impractical or impossible to load the complete mapping table into

memory. Instead, SSD firmware employs strategies to optimize the storage

of the mapping table. For example, a mapping table for a multi-terabyte

SSD can contain millions or even billions of entries.

�Partial Loading of the Mapping Table
To overcome RAM limitations, the mapping table is typically loaded

partially into RAM, focusing on the frequently accessed portions. The FTL

prioritizes loading the mapping entries required for active LBAs, ensuring

efficient and quick access to frequently accessed data. This partial loading

strategy allows the SSD to maintain acceptable performance while

conserving valuable RAM resources.

�Storage of Non-Loaded Mapping Entries
The mapping entries that are not loaded into RAM reside in the NAND

flash memory. These entries are accessed on an as-needed basis. When

an LBA that is not in the loaded portion of the mapping table needs to be

accessed, the FTL utilizes algorithms to locate the corresponding mapping

entry in the NAND flash memory. This retrieval process may introduce

some additional latency due to the need to access the slower NAND

storage.

Chapter 9 Flash Translation Layer (FTL)

133

�Write/Update Operations
and the Mapping Table
During write/update operations, the mapping table undergoes

modifications to accommodate new LBAs and PBAs that result from data

writes, garbage collection, and wear leveling. To optimize the write/update

process, SSD firmware employs various techniques, including maintaining

a dirty cache buffer of the mapping table in RAM.

�Dirty Cache Buffer in RAM
A common approach is to utilize a portion of RAM as a cache buffer

for the mapping table. This buffer temporarily holds the mapping table

entries, which are modified before they are flushed back to the NAND flash

memory. The dirty cache buffer allows for efficient and quick updates

without constantly writing to the NAND, which can be time-consuming.

�Write/Update Process with Dirty Cache Buffer

When a write/update operation occurs, the SSD firmware first checks

the dirty cache buffer in RAM. If the mapping table entry for the specific

LBA already exists in the dirty cache buffer, it is updated directly in RAM,

avoiding unnecessary writes to the NAND flash memory. This approach

reduces latency and improves overall performance.

�Flush to NAND

To ensure data durability and to prevent loss in the event of a power

failure or system crash, the contents of the dirty cache buffer need to

be periodically flushed back to the NAND flash memory. This flushing

process involves writing the modified mapping table entries from the dirty

Chapter 9 Flash Translation Layer (FTL)

134

cache buffer to their corresponding locations in the NAND. The frequency

of flushing can vary based on factors such as the size of the dirty cache

buffer and the SSD firmware’s internal policies.

�Mapping Table Management
and Optimization
As the SSD operates, the mapping table undergoes continuous updates to

accommodate new LBAs and PBAs resulting from write operations, garbage

collection, and wear leveling. Efficient management of the mapping table

involves carefully balancing the usage of RAM resources, the frequency

of flush operations, and the optimization of write/update processes. SSD

firmware employs various techniques, like buffering, compression, and

intelligent mapping algorithms, to optimize mapping-table management,

reduce write amplification, and improve overall SSD performance.

Figure 9-2.  Multi-level mapping table

Chapter 9 Flash Translation Layer (FTL)

135

The following is a step-by-step guide on how the mapping table

is created, accessed, and updated in the erase, read, and write path

of an SSD:

Initialization: When the SSD is first initialized, the

firmware creates a blank mapping table. This table

consists of a series of entries, each of which maps

a logical block address to a physical block address.

Initially, all of these entries are set to a default value,

indicating that the logical block has not yet been

mapped to a physical block.

Write: When the host system writes data to the SSD,

it sends a write command to the SSD along with

the LBA and the data to be written. The firmware

receives this command and determines which

physical block to write to. Then, it sends the data to

be written to that block and updates the mapping

table accordingly.

FTL performs a process called block allocation,

which involves selecting a suitable physical block

to store the data and updating the mapping table

Table 9-2.  Mapping Table: Init

Chapter 9 Flash Translation Layer (FTL)

136

to reflect the new mapping. This process takes into

account factors such as wear leveling, bad block

management, and optimizing data placement to

enhance performance and longevity.

Read: When the host system reads data from the SSD,

it sends a read command to the SSD along with the

LBA of the data to be read. The firmware receives this

command and looks up the corresponding entry in

the mapping table. If the entry is set to the default

value, the firmware returns an error to the host system

indicating that the requested data is not present

on the SSD (unmapped data). If the entry is set to a

physical block, the firmware reads the data from that

physical block and returns it to the host system.

Figure 9-3.  Mapping table update during write path

Table 9-3.  Mapping Table

after Write

Chapter 9 Flash Translation Layer (FTL)

137

Table 9-4.  Mapping Table

While Read

Garbage Collection: As physical blocks on the

SSD wear out or become faulty, during garbage

collection the firmware may need to update the

mapping table to remap logical blocks to new

physical blocks. Figure 9-4 shows an example of how

a physical block is written, unmapped, and moved

to a new physical block and the mapping table being

updated in parallel.

Chapter 9 Flash Translation Layer (FTL)

138

Figure 9-4.  Garbage collection for two SSD storage blocks—Block
A and Block B—as they progress through the data update mapping
table process

Physical Erase/Sanitize/Format: When the SSD

firmware receives an erase command, it selects

the physical block specified in the command and

erases it by setting all the bits in the block to 1. This

allows the block to be overwritten with new data.

Chapter 9 Flash Translation Layer (FTL)

139

The firmware also updates the corresponding entry

in the mapping table to reflect the fact that the

logical block address is now mapped to an erased

physical block.

Trim: When the SSD firmware receives a trim

command, it marks the specified logical block

address as no longer in use. This may involve

updating the corresponding entries in the mapping

table to set them to the default value, indicating

that the logical blocks are not currently mapped to

any physical blocks. The trim operation does not

actually erase the physical blocks associated with

the logical blocks; rather, it simply informs the SSD

that these blocks are no longer needed and should

be erased at a later time.

This can improve the performance of writing data to

SSDs and help extend the lifespan of the SSD. TRIM is

available for SSDs that support the Serial ATA (SATA)

interface, while the UNMAP command serves a similar

purpose for Small Computer System Interface (SCSI)

Table 9-5.  Mapping

Table after Physical

Erase/Sanitize

Chapter 9 Flash Translation Layer (FTL)

140

SSDs, and the DEALLOCATE operation performs a

similar function in the nonvolatile memory express

(NVMe) command set for Peripheral Component

Interconnect Express SSDs.

The TRIM command works by enabling the operating

system to proactively notify the SSD which data

pages in a particular block can be erased. This

allows the SSD's controller to manage the available

storage space more efficiently for data. TRIM

eliminates any unnecessary copying of discarded

or invalid data pages during the garbage-collection

process, which is an internal SSD housekeeping

operation that manages and maintains available

storage space by moving valid data pages to

another block on the SSD so that the original block

containing invalid data pages can be erased. By

reducing the number of data pages that need to be

moved during garbage collection, TRIM can reduce

the number of program/erase cycles (P/E cycles) to

the NAND flash media and extend the endurance of

the SSD.

Using TRIM can provide benefits in terms of

performance and drive longevity. It can speed up

the write performance of the drive by avoiding

unnecessary copying of invalid data and extend

the lifespan of the drive by reducing the number of

erase cycles.

Chapter 9 Flash Translation Layer (FTL)

141

Figure 9-5.  Trim execution flow from host

Table 9-6.  Mapping Table

after Trim

Chapter 9 Flash Translation Layer (FTL)

142

Bad Block Management
Bad blocks on an SSD can be a major problem, as they can prevent the

device from functioning properly and may result in data loss. To address

this issue, the firmware on an SSD includes a feature called bad block

management, which is responsible for identifying and remapping bad

blocks on the NAND chips, which are blocks that can no longer be reliably

written to or read from due to physical defects or damage.

There are three types of bad blocks that the firmware

may encounter:

	1.	 Factory-marked bad blocks: Bad blocks (or initial

bad blocks), that is, blocks that do not meet the

manufacturer’s standards or have been tested by the

manufacturer and fail to meet the manufacturer’s

published standards, and have been identified as

bad blocks by the manufacturer when they leave the

factory.

	2.	 Used bad blocks: Those that have become

defective due to wear and tear during use, or that

have reached the end of their lifespan.

	3.	 False bad blocks: Those that are misjudged by

the controller due to abnormal power failures or

other issues.

�Factory Bad Block Assessment
When a specific physical block in the NAND flash memory is detected

as defective (bad block), the firmware must perform two fundamental

activities: record the flash address of the bad block and update the bad

block bitmap table.

Chapter 9 Flash Translation Layer (FTL)

143

�Bad Block Flash Address
A bad block flash address contains essential information about the

physical block that is considered defective. The exact format/content of

this address depends on the NAND flash manufacturer. The firmware

needs this information to translate the flash address information into

meaningful data and to manage logical block mappings accurately.

�Recording Bad Block Flash Address
The firmware must promptly record the flash address of the detected bad

block. This information will be crucial in managing and avoiding future

access to the defective block during normal read and write operations. The

firmware should include protective measures to prevent any write or erase

commands from targeting these identified defective blocks. Attempting to

perform erase or program operations on such defective blocks will yield

unpredictable and indeterminate results.

�Initial Bad Block Handling Flow
When an SSD is powered up and mounted for the first time, the firmware

performs the initial bad block handling to identify and manage any

factory-marked defective physical blocks in the NAND flash memory.

The goal is to ensure that these bad blocks are appropriately marked and

avoided during subsequent read and write operations to maintain data

integrity and optimize SSD performance.

�Step 1: Power-Up and Mounting

The SSD is powered up, and the firmware initializes the device.

During the mounting process, the firmware initializes the bad block

management mechanism, including the bad block bitmap table.

Chapter 9 Flash Translation Layer (FTL)

144

�Step 2: Reading the NAND Flash

As part of the initialization process, the firmware reads each block in the

NAND flash memory. The firmware checks for any errors or anomalies

during the read operation.

�Step 3: Identifying Bad Blocks

If a read operation encounters a defective physical block (bad block), the

firmware identifies it as a bad block and records the flash address of the

bad block in a bad block bitmap.

�Step 4: Updating Bad Block Bitmap

After identifying a bad block, the firmware updates the corresponding

entry in the bitmap table, indicating that the block is defective.

�Step 5: Skipping Bad Blocks

During subsequent read and write operations, the firmware checks the

bad block bitmap table. When accessing data, the firmware will skip any

blocks marked as bad in the bitmap table, effectively avoiding the defective

physical blocks.

�Step 6: Error Handling (Optional)

If the bad block causes any data corruption or errors during the read

operation, the firmware may implement error correction techniques or

take appropriate measures to ensure data integrity.

Chapter 9 Flash Translation Layer (FTL)

145

Figure 9-6.  Initial bad block scan flow

Chapter 9 Flash Translation Layer (FTL)

146

�Used Bad Block Assessment
Used bad blocks are those that have become defective due to wear and

tear or that have reached the end of their lifespan. The firmware on an

SSD is responsible for identifying used bad blocks and managing them to

maintain the reliability and performance of the device. During program or

erase actions, if the status register of the operation fails, the SSD controller

will list this block as a bad block. Examples are as follows:

•	 An error occurred while executing the erase command.

•	 An error occurred while executing the write command.

•	 When the read command is executed, an error occurs;

when the read command is executed, if the number of

bit errors exceeds the error-correction capability of the

ECC, the block will be judged as a bad block.

To keep track of bad blocks, SSDs have a feature called a bad block

able (BBT), which is typically stored in a separate area of the NAND

memory. The BBT is read after each power-up to make it more efficient,

and it may also be backed up to protect against damage to the NAND

memory. The number of copies of the BBT that are backed up may vary

depending on the specific design strategy, with some SSDs backing up

with as many as eight copies. Figures 9-7 and 9-8 show basic (not the only

way) handling for used bad blocks.

Chapter 9 Flash Translation Layer (FTL)

147

Figure 9-7.  Handling bad block during erase operation

Chapter 9 Flash Translation Layer (FTL)

148

Figure 9-8.  Handling bad block during NAND program operation

There are generally two approaches to managing bad blocks: the bad

block skip strategy and the bad block replacement strategy. The bad block skip

strategy involves simply skipping over any bad blocks and not using them,

while the bad block replacement strategy involves replacing bad blocks with

good ones. Both approaches have their own benefits and drawbacks, and the

choice of which to use may depend on the specific requirements of the SSD.

Chapter 9 Flash Translation Layer (FTL)

149

�Bad Block Skipping Strategy

	 1.	 For the initial bad block, the bad block skip will

skip the corresponding bad block through BBT and

directly store the data in the next good block.

	 2.	 For the new bad block, update the bad block to the

BBT, transfer the valid data in the bad block to the

next good block, and skip this bad block every time

you do the corresponding read, program, or erase in

the future.

�Bad Block Replacement Strategy
In general, the OP (over provision)-area free block is used to replace the

new block during use. Take garbage collection as an example. When the

garbage-collection mechanism is running, the valid page data in the block

that needs to be reclaimed is first moved to the free block, and then the

erase operation is performed on the block. It is assumed that the erase

status register is fed back at this time. When the erase fails, the bad block

management mechanism will update the block address to the new bad

block list, and at the same time write the valid data pages in the bad block

to the free block in the OP area. It will update the bad block management

table, and next time when writing data, it will skip the bad block and go

directly to the next available block.

The OP size varies from manufacturer to manufacturer; there are different

application scenarios, different reliability requirements, and different OP

sizes. There is a trade-off between OP and stability. The larger the OP, the

larger the available space for garbage collection in the process of continuous

writing, the more stable the performance, and the smoother the performance

curve. Conversely, the smaller the OP, the worse the performance stability, the

larger the available space for users, and the lower the cost.

Chapter 9 Flash Translation Layer (FTL)

150

Generally speaking, OP can be set to 5 percent to 50 percent. An OP

of 7 percent is a common ratio. Unlike the 2 percent fixed block suggested

by the manufacturer, 7 percent is not a fixed block for OP. Instead, it is

dynamically distributed among all blocks, which is more conducive to the

wear-leveling strategy.

�Summary
In summary, the FTL is a critical component of the firmware in a NAND-

based SSD, and it plays a vital role in managing the interaction between

the host and the NAND chips. It is responsible for ensuring that data is

stored and retrieved efficiently, and it helps to maintain the performance

and reliability of the SSD over time.

Chapter 9 Flash Translation Layer (FTL)

151

CHAPTER 10

User Data Flow
In this chapter, we will discuss the user data flow in solid-state drive (SSD)

firmware. We will start by discussing the write path, which is the process of

writing data from the host to the NAND flash memory. We will then discuss

the read path, which is the process of reading data from the NAND flash

memory and transferring it back to the host.

�Write Path
In SSD firmware, the write path refers to the process of writing data

from the host to the NAND flash memory. When the host sends a write

request command, the device allocates a cache buffer to receive the data.

The data is then transferred from the host to the device cache, where it

is transformed and prepared for writing to the NAND memory by the

firmware translation layer (FTL). This process includes adding error-

correcting codes (ECCs) to the data to ensure its integrity.

Once the data has been prepared for writing, the FTL programs it

into the NAND memory. When the program is completed successfully,

it updates the mapping table with the physical block address (PBA) for

the corresponding logical block addresses (LBAs) that were successfully

written. The goal of this process is to achieve the maximum write

performance by ensuring that the NAND throughput is utilized to its full

potential.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_10

https://doi.org/10.1007/978-1-4842-9888-6_10

152

To achieve this goal, the FTL arranges and performs independent

tasks on the write path in parallel on different threads or CPUs, and

sequences the NAND programming while preparing the next set of NAND

programming. It also arranges the data for programming in a way that

is most optimal for NAND operations, such as by using multi-plane and

multi-die techniques to maximize channel and die capacity.

Figure 10-1.  Host write data path

�Read Path
The read path refers to the process of reading data from the NAND flash

memory and transferring back to the host. This is a critical path in the

system, as the host expects the device to read data with low latency.

The read process begins when the host issues a read command, which

is processed by the FTL. The FTL translates the logical block address (LBA)

of the requested data into a physical block address (PBA), and then sends

a NAND read command to the PBA. The FTL monitors the progress of the

read command and transfers the data from the NAND cache buffer to a

read buffer inside the flash controller.

Chapter 10 User Data Flow

153

If the data is found to be error-free, it is transferred from the read buffer

to the SSD cache. From there, it is transferred to the host. If the data needs

to be corrected and is within the correction capability of the SSD firmware,

it is corrected before being transferred to the host.

Figure 10-2.  Host data read path

Overall, the write and read paths in SSD firmware are complex

processes that involve a series of steps to ensure the efficient and reliable

reading of data to and from the NAND memory. By optimizing these

processes and carefully managing the data transfer, SSD manufacturers

can improve the performance and reliability of their drives.

�Summary
This chapter has discussed the user data flow in SSD firmware. We have

seen how the write and read paths are two critical processes that ensure

the efficient and reliable transfer of data between the host and the SSD. We

have also seen how the SSD firmware can optimize these processes to

improve the performance and reliability of the drive.

Chapter 10 User Data Flow

155

CHAPTER 11

Throttling
Throttling is a crucial feature in solid-state drive (SSD) firmware design.

It aims to manage and regulate the drive’s temperature and power

consumption to ensure optimal performance, reliability, and data

integrity. Excessive heat and power usage can lead to performance

degradation and potential hardware damage. The SSD firmware

incorporates intelligent throttling mechanisms to mitigate these risks and

maintain efficient operation under varying workloads and environmental

conditions.

�Thermal Throttling
�Temperature Monitoring
The firmware continuously monitors the SSD’s temperature using

onboard temperature sensors. When the temperature reaches predefined

thresholds, the thermal throttling mechanism is triggered.

�Throttling Mechanism
Upon detecting high temperatures, the firmware enacts thermal throttling,

which reduces the SSD’s operating frequency and performance to prevent

overheating. This proactive approach prevents thermal-induced errors

and prolongs the drive’s lifespan.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_11

https://doi.org/10.1007/978-1-4842-9888-6_11

156

�Temperature Recovery
As the temperature decreases, the firmware gradually restores the SSD’s

operating frequency to normal levels. This adaptive approach ensures that

the SSD efficiently manages temperature fluctuations while maximizing

performance.

�Design Consideration
Thermal throttling in SSD firmware involves the use of periodic credits

to manage NAND access requests based on the temperature of the drive.

The throttling module periodically monitors the temperature sensor using

system support and determines the current throttling state. Based on this

state, the module provides appropriate credit values to the flash controller

module. These credits are consumed by the flash controller module while

scheduling NAND access.

When the supplied credits are exhausted, the firmware must initiate

a slowdown of all NAND operations to reduce the temperature. This is

achieved by entering an idle mode where all ongoing operations are

stalled, and the hardware remains in an idle state for the remaining period

of the throttling cycle. During this time, the CPUs and hardware are in a

sleep mode; they wake up at the start of the next thermal throttling cycle.

This proactive approach prevents the drive from overheating, ensuring

reliable performance and data integrity, even under challenging thermal

conditions.

Chapter 11 Throttling

157

Figure 11-1.  Thermal throttling sequence diagram

Chapter 11 Throttling

158

Figure 11-2.  Thermal throttling flow diagram

�Power Throttling
�Power Monitoring
The firmware continuously monitors the SSD’s power consumption. If the

power consumption exceeds predefined thresholds, the power throttling

mechanism is activated.

Chapter 11 Throttling

159

�Throttling Mechanism
Upon reaching critical power levels, the firmware initiates power

throttling, limiting the drive’s power consumption. By doing so, the SSD

avoids overloading power supplies and prevents potential data corruption

or hardware damage.

�Power Recovery
Once power consumption stabilizes within safe limits, the firmware

gradually restores the SSD’s power usage to normal levels. This adaptive

approach ensures that the SSD operates efficiently under varying power

conditions.

�Combined Throttling
�Synergistic Operation
Thermal and power throttling mechanisms can work in tandem. If the

SSD encounters both high temperatures and excessive power usage

simultaneously, the firmware optimizes the throttling strategy to address

both issues effectively.

�Priority Management
In cases where thermal and power constraints conflict, the firmware

intelligently prioritizes the most critical aspect to ensure the SSD’s

continued operation with minimal risk.

Chapter 11 Throttling

160

�Dynamic Performance Adjustments
�Workload Awareness
The firmware dynamically adjusts throttling based on the SSD’s

workload. For demanding tasks, the drive may temporarily tolerate

higher temperatures or more power consumption to maintain optimal

performance. During low-intensity tasks, throttling may be more

aggressive to conserve energy and reduce heat generation.

�Logging and Reporting
�Event Logging
The firmware maintains a log of thermal and power throttling events,

providing visibility into the drive’s operational conditions and any

corrective actions taken.

�Health Monitoring
The firmware also tracks and reports the drive’s health status, which

includes both thermal- and power-related metrics, to facilitate system

monitoring and preventive maintenance.

Throttling is a crucial mechanism used to regulate NAND flash access

and prevent potential overheating, power consumption, and performance

issues. Understanding the principles and implementation of throttling is

vital for engineers and developers working on solid-state drives and other

NAND flash-based systems.

Chapter 11 Throttling

161

We began by exploring the different types of throttling, including

thermal throttling and power throttling. Thermal throttling helps control

NAND flash temperature by adjusting access rates based on temperature

measurements. Meanwhile, power throttling efficiently manages power

consumption during NAND flash operations to prevent excessive

power draw.

�Summary
In conclusion, understanding the intricacies of throttling in NAND flash

is vital for optimizing the performance, reliability, and longevity of NAND

flash-based systems. Engineers and developers must be well versed

in implementing effective throttling strategies to ensure the smooth

operation of devices and prevent potential damage or data loss due to

excessive temperatures or power consumption.

Chapter 11 Throttling

163

CHAPTER 12

Exception Handling
In this chapter, we will discuss exception handling in solid-state drive (SSD)

firmware. We will start by discussing the different types of errors that can

occur in SSDs, such as read errors, program errors, and erase errors. We will

then discuss how to handle these types of errors and how to mitigate them

in SSD firmware.

Exception handling is an important aspect of SSD firmware

development. SSDs are complex systems that are prone to various types

of errors, including read errors, program errors, and erase errors. In this

chapter, we will discuss how to handle these types of errors and how to

mitigate them in SSD firmware.

�Read Errors
Read errors occur when the SSD is unable to read data from the NAND

flash memory cells. This can be caused by a variety of factors, such as

defects in the NAND cells, interference from external sources, faulty

hardware, or temperature variations during read operations. For example,

broadening of VTH distributions due to noise can lead to read errors.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_12

https://doi.org/10.1007/978-1-4842-9888-6_12

164

Figure 12-1.  Read error due to Vth distribution shift

�Handling
SSDs can fix NAND read errors by using special codes and techniques.

These codes can help to identify and correct errors that occur when

reading data from NAND memory. Other methods, such as retrying the

read or adjusting the read voltage, may also be used to fix errors.

Another common approach to handling read errors in enterprise-level

SSDs is to use a redundant array of independent disks (RAID) technology.

RAID is a technique that involves grouping multiple SSDs together to form

a single logical storage unit. The data on the SSDs is striped across the

drives, which allows the SSDs to work together to improve performance

and reliability. In the event of a read error on one of the SSDs, the data can

be reconstructed from the other SSDs in the RAID group.

In addition to error-correcting code (ECC), wear-leveling algorithms,

and RAID technology, there are a couple of other approaches to handling

read errors in enterprise-level SSDs that are worth mentioning, as follows:

Reed-Solomon error correction: Reed-Solomon error correction is a

technique that is similar to ECC, but it is more powerful and can correct

a larger number of errors. It works by adding extra parity bits to the data,

which can be used to detect and correct errors that occur when the data is

read back from the SSD.

Chapter 12 Exception Handling

165

Low-density parity-check (LDPC) codes: LDPC codes are another

type of error-correcting code that can be used to detect and correct

errors in data stored on an SSD. LDPC codes are particularly effective

at correcting errors that are caused by noise or interference in the data

transmission process.

�Program Errors
Program errors occur when the SSD is unable to write data to the NAND

cells. This can be caused by a variety of factors, such as defects in the

NAND cells, interference from external sources, faulty hardware, or P/E

cycle reached.

Figure 12-2.  Program error on MLC NAND flash

�Handling
To handle program errors, SSD firmware should include algorithms that can

detect and recover from these errors. For example, the firmware may attempt

to rewrite the data to a different location in the NAND memory, or it may use

error-correcting codes to ensure that the data being written is accurate.

Chapter 12 Exception Handling

166

One approach is to continue writing until the end of the block is

reached, and then move on to a new block while marking the old block as

bad. Another option is to immediately stop writing the data and move to a

new block, while also marking the old block as bad. These strategies allow

the SSD firmware to minimize the impact of program errors and maintain

the integrity of the data being written.

�Program Abort
This scenario results from an unexpected power cycle while the

NAND programming is in progress. Due to power loss, the NAND

cells are left in the wrong/incomplete voltage distribution state and

cannot be reprogrammed. Reading data from these cells may give

uncorrectable error.

�Handling
To handle program abort, the firmware needs to keep track of the status

of each block and page. This is typically done through the use of a block

management table (BMT) and a page management table (PMT). The BMT

keeps track of the status of each block, including whether it is good or bad,

and the PMT keeps track of the status of each page within a block.

When the firmware detects a program abort, it will first scan the BMT

and PMT to determine the last successfully programmed page. It will then

try to recover as much data as possible from the partially programmed

page and move it to a new block. The old block will be closed and marked

for garbage collection.

Chapter 12 Exception Handling

167

In addition to recovering data from a partially programmed page,

the firmware may also need to recover data from other blocks that were

affected by the power loss. This can be done by scanning the BMT and

PMT to identify any blocks that were being erased or programmed at the

time of the power loss. The data from these blocks can then be recovered

and moved to new blocks as well. The firmware also updates the mapping

table to reflect the new location of the recovered data.

Overall, handling program abort is an important aspect of SSD

firmware design. By keeping track of the status of each block and page, the

firmware can recover as much data as possible and ensure that the SSD

continues to operate correctly after an unexpected power loss.

�Erase Errors
Erase errors occur when the SSD is unable to erase data from the NAND

cells. This can be caused by a variety of factors, such as defects in the

NAND cells, interference from external sources, or faulty hardware.

�Handling
To handle erase errors, SSD firmware should include algorithms that

can detect and recover from these errors. For example, the firmware may

attempt to erase the data from a different location in the NAND memory

and mark the old block as bad.

To mitigate these types of errors, SSD firmware should be designed

with robust error-handling and recovery algorithms. Additionally, SSD

manufacturers can use high-quality NAND cells and carefully test their

products to reduce the likelihood of errors’ occurring. Finally, SSD

firmware should be regularly updated to fix any known issues and improve

error-handling and recovery capabilities.

Chapter 12 Exception Handling

168

�Summary
This chapter has discussed exception handling in SSD firmware. We have

seen how SSDs are prone to various types of errors, and how these errors

can be handled by the firmware. We have also seen how the firmware can

be designed to mitigate the likelihood of errors’ occurring.

Chapter 12 Exception Handling

169

CHAPTER 13

Performance
In this chapter, we will discuss the performance of solid-state drives (SSDs).

We will start by defining some of the key performance metrics, such as

input/output operations per second (IOPS), throughput, and latency.

We will then discuss the factors that can impact the performance of an

SSD, such as the memory type, memory architecture, memory controller,

and firmware. Finally, we will discuss some of the strategies that can be

used to boost the performance of an SSD through firmware design and

implementation.

SSD performance tests and benchmarking test SSD performance

under a variety of workloads. SSD firmware engineers who want to monitor

their drive can use benchmarks to observe read and write rates and other

performance metrics under different conditions. Those read and write

speeds can then be marketed to potential customers who are searching

for persistent storage devices that provide quick access to data. An ideal

benchmark test gives customers an accurate picture of how quickly they’ll

be able to access that data using the SSD.

The key performance criteria for an SSD include the following:

Transfer Speed: This refers to the speed at which

data can be transferred to or from the SSD. This

can be measured in terms of read and write speeds,

which are typically expressed in megabytes per

second (MB/s) or gigabytes per second (GB/s).

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_13

https://doi.org/10.1007/978-1-4842-9888-6_13

170

IOPS (input/output operations per second): This

refers to the number of read and write operations

that the SSD can perform in a given second. This

is often used to measure the performance of an

SSD under heavy workloads. The higher the IOPS,

the better.

Throughput: An SSD’s data transfer speed,

measured in bytes per second. The higher the

throughput, the better, although throughput is

affected by elements such as block size and whether

the reads and writes are random or sequential.

Latency: Shows how long it takes to process an

I/O operation. This process translates to SSD

response time and is measured in microseconds or

milliseconds. The lower the latency, the better.

Endurance: This refers to the number of write and

erase cycles that an SSD can withstand before it

begins to experience performance degradation. This

metric is mostly used in marketing, like terabytes

written (TBW).

Power Consumption: This refers to the amount

of power that the SSD consumes while it is in use.

This can be important for devices that rely on

battery power.

�Access Patterns and Test Workloads
An access pattern is the type of storage and retrieval operation going to

and from a storage device. Access patterns are described in three main

components, as follows:

Chapter 13 Performance

171

•	 Random/Sequential: The random or sequential nature

of the data address requests

•	 Block Size: The data transfer lengths

•	 Read/Write Ratio: The mix of read and write operations

Any particular workload or test stimulus is approximated by some

combination of access patterns. That is, an access pattern is one

component of a synthesized equivalent input/output (IO) workload. For

example, “RND 4KiB 65:35 R/W” describes an access pattern consisting of

a sequence of IO commands, each one 4 KiB long (block size), to random

locations on the storage device, in the proportion of 65 percent reads to 35

percent writes.

�Workloads
A workload is a set of access patterns observed over a given period of time,

such as ten minutes of random 4 KiB 100 percent writes. Key performance

metrics, including IOPS, throughput (TP), and latency (LAT), can be

described in terms of these access patterns. These metrics can be used

to evaluate the performance of a storage device, such as an SSD, under

different workloads. Some commonly accepted workloads are random

8KiB 65:35 RW and sequential 128KiB 90:10 RW

Figure 13-1 shows some of the key performance criteria being

compared across different SSD manufactures by tech reviewers to help

choose an SSD for a specific goal.

Chapter 13 Performance

172

Figure 13-1.  Burst 1 MB sequential read (QD 1)
Source: Image courtesy [AnandTech] as of Mar-09-2021,
https://www.anandtech.com/show/16504/the-samsung-ssd-980-5
00gb-1tb-review/3

This figure of sequential read performance uses short bursts of 1

MB, issued as 128 KB operations with no queuing. The burst sequential

read performance of the Samsung 980 PRO is marginally faster than its

predecessors, but the extra PCIE Gen4 bandwidth does not matter with a

queue depth of just one.

Chapter 13 Performance

https://www.anandtech.com/show/16504/the-samsung-ssd-980-500gb-1tb-review/3
https://www.anandtech.com/show/16504/the-samsung-ssd-980-500gb-1tb-review/3

173

Figure 13-2.  Burst 1 MB sequential write (QD 1)
Source: Image courtesy [AnandTech]

Typically, the evaluation of sequential write burst performance

closely mirrors the procedure used for assessing sequential read burst

performance. In this evaluation, each burst entails the writing of 1 MB

through 128 KB operations, administered at a queue depth of 1 (QD1). This

culminates in the composition of 1 GB of data being written onto a drive

housing 16 GB of data.

Chapter 13 Performance

174

Historically, the burst sequential write speed metrics for high-end

Non-Volatile Memory Express (NVMe) drives have exhibited limited

diversity, with a narrow range of scores spanning a wide array of drivers.

The advent of PCIe Gen4 drives disrupts this pattern, ushering in tangible

enhancements to this QD1 performance aspect. In this test scenario, once

again, the victor emerges as the Samsung 980 PRO 1 TB. However, other

contenders are making commendable strides, gradually closing the gap.

Figure 13-3.  Burst 4 KB random read (QD1)
Source: Image courtesy [AnandTech]

Chapter 13 Performance

175

The assessment of random read performance entails brief and isolated

operations carried out one at a time, without any queuing. To ensure a

duty cycle of 20 percent, the drives are provided sufficient idle intervals

between bursts, rendering thermal throttling implausible. In each burst,

a cumulative total of 32 MB of 4 KB random reads is executed, spanning a

16 GB segment of the disk. The aggregate data read amounts to 1 GB.

While Samsung’s 128L TLC, as featured in the 980 PRO, demonstrates

improved burst random read latency compared to the earlier TLC

iteration, it still lags behind certain competitors; similarly, their 64L MLC,

found in the 970 series, follows suit.

In contrast to the 970 EVO Plus, the 980 PRO exhibits modest

enhancements in random read performance across the spectrum.

However, these differences are marginal. Notably, the PCIe 3 SK hynix

Gold P31 capitalizes on similar advantages at higher queue depths and

aligns with the QD32 random read throughput of the 980 PRO.

Chapter 13 Performance

176

Figure 13-4.  Burst 4 KB random write (QD 1)
Source: Image courtesy [AnandTech]

The sequential write burst performance test is similar to the sequential

read burst performance test. In each burst, 1 MB of data is written as

128 KB operations issued at QD 1. The total test length is 1 GB, and the

data is written to a drive containing 16 GB of data.

Chapter 13 Performance

177

The burst sequential write speed scores for high-end NVMe drives

have been fairly narrow, with a small range of scores for a variety of drives.

PCIe Gen4 drives break this trend and deliver real improvements in QD 1

performance. The clear winner in this test is the Samsung 980 PRO 1 TB,

but other drives are catching up quickly.

The random write burst performance test is similar to the random

read burst test. However, each burst is only 4 MB, and the total test length

is 128 MB. The 4 KB random write operations are distributed over a 16 GB

span of the drive, and the operations are issued one at a time with no

queuing.

The burst random write performance of the Samsung 980 PRO is an

improvement over its predecessors. However, Samsung’s SLC write cache

latency is still significantly slower than that of many of their competitors.

PCIe Gen4 support does not seem to be a factor for the 980 PRO at QD

1, and the two capacities of the 980 PRO seem to disagree as to whether

the other differences between our old and new testbeds help or hurt.

Meanwhile, the Phison-based Seagate FireCuda 510 does seem to benefit

significantly from our Gen4 test setup, where it takes a clear lead.

There are several hardware and firmware design factors that can

impact the performance of an SSD. Some of these include the following:

Memory Type: Different types of memory, such

as NAND flash and 3D XPoint, Hybrid DRAM flash

storage, Flash DIMMS, have different performance

characteristics.

Memory Architecture: The way in which the

memory is organized and accessed can impact

performance. For example, using multiple

memory channels, having support for multi-plane

operations, having die interleave, etc. can increase

transfer speeds.

Chapter 13 Performance

178

Memory Controller: The memory controller is

responsible for managing access to the memory and

can impact performance.

Firmware: The firmware on an SSD controls how

the device operates and can impact performance.

For example, the firmware may implement wear-

leveling and garbage-collection algorithms to

optimize performance.

Let’s look at some more specific strategies that are commonly used in

the industry to do well on performance criteria and boost the performance

of an SSD through firmware design and implementation, as follows:

Writing to SLC (single-level cell) Blocks Initially:
SLC blocks are a type of memory that can store a

single bit per cell and are generally faster and more

reliable than multi-level cell (MLC) or triple-level

cell (TLC) blocks. By writing data to SLC blocks

initially, it is possible to improve the performance of

the SSD, particularly in terms of write speeds.

Reducing DRAM Access: Many SSDs use DRAM

(dynamic random-access memory) as a buffer to store

data temporarily before it is written to the NAND flash

memory. Accessing the DRAM a lot can make the

firmware slower if it is in a critical read or write path,

so minimizing the number of times data is transferred

between the two can improve performance.

Writing in Parallel: Some SSDs have multiple

memory channels, dies (individual memory

chips), or planes. By writing data to these different

components in parallel, it is possible to improve the

overall write speed of the SSD.

Chapter 13 Performance

179

Die Interleaving: Die interleaving is a technique in

which data is written to multiple dies in a round-

robin fashion, rather than writing all the data to

a single die. This can improve performance by

allowing the SSD to access more dies concurrently,

which can increase the effective memory

bandwidth. To further increase performance,

controllers can take advantage of interleaving.

Each NAND flash chip can have multiple dies in it;

this is particularly so for high-density parts. 2/4/8

die packs are common. The ability to interleave is

dependent on flash/controller/firmware support.

Data Placement: Smart placement of data across

the chips of an SSD is critical not only to provide

load balancing, but also to affect wear leveling and

performance boosting.

�Host Interface
NVMe is the fastest interface for SSDs because NVMe uses the PCIe bus

instead of the slower SATA interface bus. PCIe 4 can use 32 lanes to transfer

data, compared to the four lanes used for SATA SSDs. NVMe SSDs were

designed to reduce flash latencies and SSD response time.

Fiber channel is still the highest-performing protocol, but

Serial-Attached SCSI (SAS) isn’t far behind. Most SSD products built

around iSCSI and SATA won't produce 1 million IOPS results unless they

have other caching features to assist performance.

Chapter 13 Performance

180

These are just a few examples of the strategies that can be used to boost

the performance of an SSD through firmware design and implementation.

It is important to carefully consider the specific performance requirements

of the intended use case and select the appropriate strategies to meet those

requirements. Testing and benchmarking the SSD can help to identify

areas for improvement and guide the optimization process.

�Summary
This chapter has discussed the performance of SSDs. We have seen

how the performance of an SSD can be affected by a variety of factors,

and how these factors can be optimized through firmware design and

implementation. We have also seen how the performance of an SSD can be

measured using a variety of benchmarks.

Chapter 13 Performance

181

CHAPTER 14

Debugging
In this chapter, we will discuss the debugging of firmware for complex

solid-state drives (SSDs). We will start by discussing some of the challenges

of debugging firmware, such as the complexity of the firmware code and

the difficulty of reproducing the problem. We will then discuss some of the

techniques that can be used to debug firmware, such as using a debugger,

adding trace output and logging, using simulation or emulation tools,

using hardware probes, and using software tools. Finally, we will discuss

how to recover a bricked SSD.

Debugging firmware for complex SSDs can be a challenging task, but

there are several approaches and techniques that you can use to help

identify and resolve issues. Here are some tips and methods that you may

find helpful.

Use a debugger. A debugger is a software tool that allows you to

execute code one line at a time, set breakpoints, and inspect variables. This

can be a very useful tool for understanding how the firmware is executing

and identifying where problems may be occurring. To use a debugger,

you will need to connect it to the SSD and configure it to work with the

firmware. Once the debugger is set up, you can use it to step through the

code and inspect variables to understand what is happening at different

points in the execution.

Use logging and trace output. Adding trace output and logging to your

firmware can provide valuable information about what is happening at

different points in the code. This can help you to identify where problems

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_14

https://doi.org/10.1007/978-1-4842-9888-6_14

182

may be occurring and to understand how the firmware is interacting with

other components. To add trace output and logging to your firmware,

you will need to add calls to the relevant functions at different points

in the code. You can then use a tool to capture the output and view it to

understand what is happening.

Use simulation/emulation. In some cases, it may be useful to utilize

simulation or emulation tools to test and debug the firmware. These tools

allow you to run the firmware in a simulated environment, which can help

to identify problems that may not be apparent when running the firmware

on hardware. To use simulation or emulation tools, you will need to set up

the simulated environment and configure it to work with the firmware. You

can then use the tools to run the firmware and analyze the results.

Use hardware probes. Hardware probes, such as JTAG or logic

analyzers (NAND, SATA, NVMe), can provide detailed information about

the hardware and can be used to trace the execution of the firmware. To

use a hardware probe, you will need to connect it to the SSD and configure

it to work with the firmware. You can then use the probe to monitor the

hardware and trace the execution of the firmware.

Use software tools. There are many software tools available that

can help with debugging firmware. For example, there are tools that

can analyze memory usage, monitor system performance, and identify

potential problems with the firmware without actually testing in hardware.

To use these tools, you will need to install them on your development

system and configure them to work with the firmware. You can then use

the tools to analyze the firmware and identify potential issues like Coverity,

Valgrind, etc.

Collect crash dump. Collecting a crash dump when firmware fails or

an exception occurs can be a useful way to understand what went wrong

and to help identify the cause of the issue. Here are some steps you can

follow to collect a crash dump:

Chapter 14 Debugging

183

•	 Set up crash dump collection. Depending on the

firmware and the development environment, there may

be different ways to set up crash dump collection. Some

firmware may have built-in crash dump collection

capabilities, while others may require the use of a

separate tool. In either case, you will need to set up the

crash dump collection feature and configure it to work

with your firmware.

•	 Run the firmware. Once crash dump collection is set

up, you can run the firmware as you normally would.

If the firmware fails or an exception occurs, the crash

dump collection feature should capture the relevant

information and generate a crash dump file that is

stored in SSD and retrieved on an as-needed basis.

•	 Collect the crash dump. If the firmware fails or an

exception occurs, the crash dump collection feature

should generate a crash dump file. You can use a tool to

access and retrieve the crash dump file from the SSD or

other storage location.

•	 Analyze the crash dump. Once you have collected

the crash dump, you can use a tool to analyze it and

understand what went wrong. Depending on the

firmware and the development environment, there may

be different tools available for analyzing crash dumps.

Some common tools include debugger tools and crash

dump analysis tools.

Chapter 14 Debugging

184

Recovering bricked SSD. If an SSD becomes “bricked,” it means that

it is no longer functioning properly and is unable to boot or perform any

operations. There are several potential causes of a bricked SSD, including

hardware failures, firmware issues, or problems with the boot process.

Here are some steps you can follow to try to recover a bricked SSD:

•	 Check for hardware issues. Before attempting to

recover a bricked SSD, you should first check for any

hardware issues that may be causing the problem. This

may involve checking for physical damage to the SSD,

verifying that all connections are secure, and running

diagnostic tests to check for hardware failures.

•	 Attempt to boot from an alternate boot device. In

some cases, it may be possible to boot the SSD from

an alternate boot device, such as a USB drive or

network boot device. This can be helpful if the problem

is related to the SSD’s boot process or if the SSD’s

firmware has become corrupted.

•	 Attempt to reflash the firmware. If the problem is

related to the SSD’s firmware, you may be able to

recover the SSD by reflashing the firmware. To do this,

you will need to connect the SSD to a development

system and use a firmware update tool to flash the

firmware onto the SSD, or force the firmware into

factory mode to update the firmware from factory

mode. Reflashing the firmware can be a useful way to

recover a bricked SSD if the problem is related to the

firmware. Here are some more detailed steps you can

follow to reflash the firmware on a bricked SSD:

Chapter 14 Debugging

185

•	 Prepare the development system. To reflash

the firmware on a bricked SSD, you will need a

development system that is set up to communicate

with the SSD. This may involve installing drivers

and other software tools, setting up the hardware

connections, and configuring the development

system to work with the SSD.

•	 Download the firmware. You will need to obtain a

copy of the firmware that you want to flash onto the

SSD. Make sure to download the correct firmware

for your SSD and to verify the integrity of the

firmware file.

•	 Connect the SSD to the development system.
Once the development system is prepared, you

will need to connect the SSD to the development

system. This may involve using a USB or SATA

connection, depending on the SSD and the

development system.

•	 Put the SSD into boot mode. To reflash the

firmware, you will need to put the SSD into

boot mode. This may involve pressing a specific

button or combination of buttons on the SSD, or

it may involve issuing a specific command via the

development system. Check the manufacturer’s

documentation for specific instructions on how to

put the SSD into boot mode.

Chapter 14 Debugging

186

•	 Run the firmware update tool. Once the SSD is

in boot mode and connected to the development

system, you can use a firmware update tool to flash

the firmware onto the SSD. Follow the instructions

provided by the firmware update tool.

•	 Reboot the SSD. Once the firmware update is

complete, you should reboot the SSD to ensure

that the new firmware is properly installed. If the

firmware update was successful, the SSD should

boot up normally.

•	 Use a hardware probe. If the SSD is not responding to

normal commands, you may be able to use a hardware

probe, such as a JTAG or logic analyzer, to access the

SSD at the CPU level. This can be helpful if the problem

is related to the SSD’s firmware or if the SSD’s CPU is

not responding to normal commands.

�Summary
This chapter has discussed the debugging of firmware for complex SSDs.

We have seen the challenges of debugging firmware and the techniques

that can be used to do so. We have also seen how to recover a bricked SSD.

Chapter 14 Debugging

187

CHAPTER 15

Future Developments
and Innovations
in SSD Firmware
In this chapter, we will discuss the future developments and innovations in

solid-state drive (SSD) firmware. As the technology behind SSDs continues

to evolve, there are a number of exciting developments and innovations in

SSD firmware that are worth exploring. We will start by discussing some

of the challenges that SSD firmware developers are facing, such as the

increasing complexity of SSDs and the need to support new technologies.

We will then discuss some of the promising developments and innovations

in SSD firmware, such as host cache mechanisms, QLC support, and

expanded hardware support.

On the hardware side, there have been a number of innovations that

have contributed to the improved performance and reliability of SSDs.

These innovations include the development of new types of NAND flash

memory, such as 3D NAND and quad-level cell (QLC) NAND, as well as

the use of novel materials and structures, such as conductive bridging

random access memory (CBRAM) and phase-change memory (PCM).

On the firmware side, there have been a number of innovations in

SSD firmware that have contributed to the improved performance and

reliability of SSDs. These innovations include the use of host cache

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_15

https://doi.org/10.1007/978-1-4842-9888-6_15

188

mechanisms, IO determinism, and streaming concepts, as well as more

advanced error correction techniques, such as Reed-Solomon error

correction and low-density parity-check (LDPC) codes.

One area of innovation in SSD firmware is the use of host cache

mechanisms. These allow the SSD to use the memory of the host system

as a cache to improve the performance of read and write operations. This

can significantly improve the performance of the SSD, particularly for

workloads that involve a high number of small, random read and write

operations.

Another area of innovation in SSD firmware is the concept of IO

determinism and streaming concepts. IO determinism refers to the ability

of the SSD to consistently deliver a predictable level of performance, even

under heavy workloads. This is important because it allows users to better

understand the performance characteristics of their SSDs and plan their

workloads accordingly.

Streaming concepts involve the use of algorithms that optimize the

way that data is written to and read from the SSD in order to improve the

performance of sequential read and write operations. This is particularly

useful for workloads that involve the transfer of large amounts of data,

such as video streaming and data backup.

Startup companies are also working on a number of innovative ideas

in the field of SSD technology. For example, some startups are focusing on

developing new types of memory technology, such as resistive random-

access memory (RRAM) and magneto random-access memory (MRAM),

which have the potential to improve the performance and reliability of

SSDs. Other startups are working on developing new software solutions,

such as intelligent data tiering and data deduplication, which can help to

improve the efficiency and cost-effectiveness of SSD storage.

Finally, the Flash Memory Summit (https://www.

flashmemorysummit.com/), an annual conference that brings together

industry experts and researchers in the field of flash memory, is a forum

Chapter 15 Future Developments and Innovations in SSD Firmware

https://www.flashmemorysummit.com/
https://www.flashmemorysummit.com/

189

for discussing and sharing innovative ideas in SSD technology. At the

Flash Memory Summit, attendees have the opportunity to hear about the

latest research and developments in the field, as well as to participate in

discussions.

�Summary
In summary, there are a number of exciting developments and innovations

in SSD firmware that are worth exploring. From host cache mechanisms

and QLC support, to expanded hardware support and improved interface

protocols, these developments are helping to improve the performance

and reliability of SSDs and make them an even more compelling option for

storage.

Chapter 15 Future Developments and Innovations in SSD Firmware

191

CHAPTER 16

Closing
In this beginner’s guide to solid-state drive (SSD) firmware, we have

explored the key concepts and techniques that are essential for designing,

optimizing, and maintaining SSD firmware. We have looked at the role of

firmware in the functioning of SSDs and the importance of keeping the

firmware up to date to ensure optimal performance and security. We have

also discussed some of the advanced features that are included in modern

SSD firmware, such as wear-leveling algorithms, garbage-collection

algorithms, error prevention and correction methods, and algorithms to

reduce write amplification.

As fellow engineers and professionals, it is important to understand the

best practices for designing, optimizing, and maintaining SSD firmware.

By understanding the role of firmware in the functioning of SSDs and the

various features that are included in modern firmware, we can ensure

that our SSDs are performing at their best and are secure against potential

threats.

In addition to the concepts and techniques that we have covered in this

guide, there are many other tools and resources available to help optimize

and maintain SSD firmware. These include hardware probes, such as JTAG

and logic analyzers, that can be used to access and troubleshoot SSDs

at the CPU level, as well as software tools and utilities that can help us

manage and optimize firmware updates and other maintenance tasks.

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6_16

https://doi.org/10.1007/978-1-4842-9888-6_16

192

We hope that this beginner’s guide to SSD firmware has been a helpful

resource and has provided a basic foundation for understanding the key

concepts and techniques that are essential for designing, optimizing, and

maintaining SSD firmware. While we have covered basic concepts in this

guide, there is much more to learn about every topic. If you are looking

to dive deeper into the various aspects of SSD firmware, we recommend

keeping an eye out for our next version of this guide, which will go into

more detail on each of the topics that we have covered here.

We wish you, the reader, luck in your endeavors to design, optimize,

and maintain SSD firmware, and we hope that this guide has been a

helpful resource in your journey. Whether you are just starting out in the

field of SSD firmware or you are an experienced professional, we hope that

you have found something of value in this guide. Thank you for reading,

and we hope that you will continue to explore and learn more about this

fascinating and important topic.

If you wish to make any comments concerning this book you can do so

via gopikt@outlook.com.

My LinkedIn profile: https://www.linkedin.com/in/gopi-thirumalai/.

Chapter 16 Closing

mailto:gopikt@outlook.com
https://www.linkedin.com/in/gopi-thirumalai/

193

�Bibliography

	 1.	 LEILEI SONG, KESHAB K. PARHI, ICHIRO

KURODA, AND TAKAO NISHITANI. “Hardware/

Software Codesign of Finite Field Datapath for Low-

Energy Reed–Solomon Codecs.” IEEE Transactions

on Very Large-Scale Integration (VLSI) Systems, vol.

8, no. 2 (April 2000): 160.

	 2.	 JIM COOKE, MICRON TECHNOLOGY, INC. Flash

Memory Technology Direction. WinHEC, 2007.

	 3.	 DAVE HUGHES. “Designing Fail-safe Storage

Systems for Embedded Applications.” Embedded

Control Europe, September 2009: 6–7.

	 4.	 MICRON TECHNOLOGY, INC. Wear-leveling

Techniques in NAND Flash Devices. Micron

Technology, Inc., October 2008.

	 5.	 “Open NAND Flash Interface Specification, Revision

2.2,” October 7, 2009, www.onfi.org.

	 6.	 MICRON TECHNOLOGY, INC. “NAND Flash Design

and Use Considerations,” August 2008.

	 7.	 THOMAS COUGHLIN. Digital Storage in Consumer

Electronics. Burlington, MA: Elsevier, Inc., 2008.

ISBN-13: 978-0-7506-8465-1

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6

http://www.onfi.org
https://doi.org/10.1007/978-1-4842-9888-6

194

	 8.	 CHRIS RAMSEYER, “Understanding the Different

Types of Host Cache,” Tom’s Hardware, June

21, 2018.

	 9.	 CHRIS RAMSEYER, “QLC NAND: The Next Step

in Memory and Storage,” Tom’s Hardware, May

23, 2018.

	 10.	 TIM SCHIESSER, “Samsung Announces World’s

First 4-bit Consumer SSDs,” TechSpot, March

1, 2018.

	 11.	 BRIAN BEELER, “NVMe: The Next Generation of

Solid-State Storage,” StorageReview, January 8, 2014.

	 12.	 SEAN WEBSTER, “An Introduction to SSD

Firmware,” AnandTech, October 2, 2013.

	 13.	 CHRIS RAMSEYER, “SSD Firmware: The

Importance of Keeping It Up to Date,” Tom’s

Hardware, September 28, 2013.

	 14.	 https://www.symmetryelectronics.com/blog/

the-development-and-history-of-solid-

state-drives/

	 15.	 https://history-computer.com/ssd-explained-

everything-you-need-to-know/

BIBLIOGRAPHY

https://www.symmetryelectronics.com/blog/the-development-and-history-of-solid-state-drives/
https://www.symmetryelectronics.com/blog/the-development-and-history-of-solid-state-drives/
https://www.symmetryelectronics.com/blog/the-development-and-history-of-solid-state-drives/
https://history-computer.com/ssd-explained-everything-you-need-to-know/
https://history-computer.com/ssd-explained-everything-you-need-to-know/

195

Index

A
Access pattern

block size, 171
random/sequential, 171
read/write ratio, 171

Adaptive garbage collection
techniques, 110

Address latch enable (ALE), 52, 56,
62, 67, 69

Address translation, 97, 99–100,
105, 130

Address validation mechanisms, 59
Advanced Encryption

Standard (AES), 118

B
Bad block able (BBT), 146, 149
Bad blocks, 69, 94, 142–149
Bit lines (BLs), 28, 37, 40
Block allocation, 135
BLOCK ERASE operation, 61, 66–68
Block management table (BMT),

149, 166, 167
Bricked SSD

boot device, 184
boot mode, 185

development system, 185
download firmware, 185
hardware issues, 184
hardware probe, 186
reboot, 186
recovering, 184
reflash firmware, 184
update tool, 186

Burst random write
performance, 177

Burst sequential write speed,
174, 177

C
Charge trapping technology, 38, 39
Chip select (CE), 25
Cloud Computing, 32, 36
Combined throttling

priority management, 159
synergistic operation, 159

Command latch enable (CLE), 52,
54, 56, 62, 63, 66, 67, 69

Compaction process, 98,
99, 103–107

Compaction read process, 99, 100
Complete garbage collection, 95

© Gopi Kuppan Thirumalai 2023
G. Kuppan Thirumalai, A Beginner’s Guide to SSD Firmware,
https://doi.org/10.1007/978-1-4842-9888-6

https://doi.org/10.1007/978-1-4842-9888-6

196

Conductive bridging random
access memory
(CBRAM), 187

Control circuits, 40
Correction methods, 191
Crash dump

analyze, 183
collect, 183
run firmware, 183
set up, 183

Cyclic redundancy
checks (CRC), 98

D
Data Centers, 32, 36
Data corruption, 81, 97, 103, 121,

122, 124, 144, 159
Data deduplication, 188
Data-loss protection, 122
Data retention, 38, 49, 112–113,

115, 118
Data-retrieval mechanisms, 124
Data strobe (DQS), 56
Data tiering, 188
Debugging firmware, 181

collect crash dump, 182
hardware probes, 182
logging/trace output, 181
simulation/emulation, 182
software tools, 182
use debugger, 181

Decoding circuits, 40
Die interleaving, 179

Double data rate (DDR), 56, 58
Dynamic garbage collection, 96, 97
Dynamic random-access memory

(DRAM), 54, 125–127, 177, 178
Dynamic resource allocation, 109

E
Endurance, 3, 4, 29, 30, 32, 36, 40,

49, 111–112, 117, 140, 170
Erase errors, 96, 163, 167
Error-correcting codes (ECC), 3, 73,

74, 113–115, 121, 123, 124,
146, 151, 164, 165

Error-correction techniques, 99
Error prevention, 191
Error-triggered garbage

collection, 96, 97
Event logging, 160
Exception handling, 163–168

F
Factory-marked bad blocks, 142

data corruption/errors, 144
flash address, 143
identify, 144
initial bad block handling, 143
mounting, 143
reading NAND flash, 144
record the flash address, 143
scan flow, 145
skip, 144
update bitmap, 144

INDEX

197

False bad blocks, 142
Fiber channel, 179
File-system corruptions, 121, 122
Firmware translation

layer (FTL), 151
Flash memory

cell, 19
erase, 25
P/E cycle, 28, 29
read, 27
types, 15
write, 25

Flash Memory Summit, 189
Flash memory transistors, 20
Flash translation layer (FTL), 129

block diagram, 129
mapping table, 130, 131

non-loaded, 132
partial loading, 132
RAM, 132
size, 131

Fragmentation, 95, 96, 108, 109
Full garbage collection, 95, 96

G
Garbage collection, 93–95

address translation, 99, 100
balancing

adaptive garbage collection
techniques, 110

dynamic resource
allocation, 109

over-provisioning, 109

prioritizing, 108
workload characteristics, 108

data, 100
drawbacks

endurance, 111, 112
increased power

consumption, 111
performance

degradation, 111
write amplification, 110

dynamic, 96, 97
full, 95
incomplete compaction

operations, 104
incomplete/interrupted

read, 99
manage block erasure, 101, 102
partial, 95
performance, 104
performance degradation

advanced garbage-collection
algorithms, 107

dynamic compaction, 107
efficient data placement, 107
write optimization, 107

read process, 97
recovery mechanisms, 103
SSD performance

overhead, 105
read, 105
write, 105

unexpected power loss, 102, 103
unexpected power-off

conditions, 102

INDEX

198

valid data, 98
write amplification

data relocation, 106
mapping table, 106

write journaling, 103
Garbage-collection algorithms, 8,

12, 99, 102, 104, 106, 111,
178, 191

H
Handle erase errors, 167
Hard-disk drives (HDDs), 1, 2, 4,

12, 112, 121
Hardware probes, 181, 182,

186, 191
Health monitoring, 160–161

I, J, K
Incomplete compaction

operations, 102–104
Internal device data corruption,

121, 122
IO determinism, 13, 188

L
Logical block addresses (LBAs), 93,

98, 99, 101, 120, 130,
151, 152

Low-density parity-check (LDPC)
codes, 165, 188

M
Magneto resistive random-access

memory (MRAM), 188
Mapping table, 98–103, 105, 120,

121, 130–139, 141, 151, 167
Mapping-table management, 134

bad blocks, 142
garbage collection, 137, 138
initialization, 135
multi-level, 134
physical erase/sanitize,

138, 139
read, 136, 137
trim, 139–141
write, 135, 136

Mobile Devices, 32, 36, 39
Multi Block Erase operation,

90, 91
Multi-die technique, 152
Multi-level cell (MLC), 3, 41,

115, 178
Multi Plane Cache Full Sequence

Program, 88, 89
Multi-plane capability, 79
Multi Plane Full Sequence Program

function, 85–87
Multi Plane Random Cache Read

function, 82
Multi Plane Random Data Output

command, 81
Multi-Plane Read operation,

81–83
Multi-plane technique, 152

Garbage collection (cont.)

INDEX

199

N
NAND flash

address cycle, 61
addressing

column address, 58
cycle order, 58
functions, 58
row address, 58

advanced command sets, 78
chip enable, 54
command cycle, 54, 56, 57, 61
commands, 62

BLOCK ERASE
operation, 66–68

ERASE command, 63
PROGRAM command, 63
READ ID command, 63, 64
READ STATUS

command, 64–66
RESET command, 62, 63

CPU interconnect, 53
extended commands

advantage, 79
features, 79
input restrictions, 79, 81

interface, 54, 55
internal working, 75
IO pin details, 52
packet structure, 73
page read/page cache, 75
read enable, 54
row address, 60

2Gb addressing scheme, 60, 61
unused bits

address limitations, 59
address validation, 59
valid address range, 59

NAND flash memory
architecture, 18
read data, 18
transistors, 18
write data, 18

NAND operations, 4, 5, 152, 156
NAND programming, 152, 166
NAND vs. NOR memory, 19
NMOS transistor

erasing floating gate, 22
floating gate, programming, 21
reading floating gate, 22

Non-volatile memory, 1, 15, 123
Non-volatile memory

express (NVMe), 179
NOR flash memory

architecture, 17
characteristics, 16
read data, 17
write data, 17

O
OEM host system, 121
Open NAND Flash Interface

(ONFI), 55, 92
Over-provisioning, 109, 117, 118

INDEX

200

P
Page management table (PMT),

166, 167
PAGE READ CACHE MODE

command, 74, 76, 77
Page Select command, 80, 81, 83
Partial garbage collection, 95–96
Partial page programming, 26
Performance

data placement, 179
die interleaving, 179
DRAM, 178
firmware, 178
memory architecture, 177
memory controller, 178
memory type, 177
MLC, 178
SLC, 178
TLC, 178
writing in parallel, 178

Periodic read, 113
Physical block addresses (PBAs),

93, 98, 99, 101, 120, 130,
151, 152

Power loss, 102–104, 121, 122
Power-loss protection capacitors,

103, 122
Power-loss protection

mechanism, 123
Power throttling

mechanism, 159
monitoring, 158
recovery, 159

Program disturbance,
115, 116, 118

Program/erase (P/E) cycles,
28, 29, 94

Program errors, 96, 123, 163,
165, 166

PROGRAM operations, 68–70

Q
Quad-level cell (QLC), 30, 40, 187
Quadruple-level cell (QLC), 3

R
Random access memory (RAM),

20, 132
RANDOM DATA READ

operation, 72
Random read performance,

131, 175
Random write burst performance

test, 177
Read disturb, 113–115
Read errors, 96, 163, 164
READ ID command, 63
Read-only memory (ROM), 20
Read-only (RO) mode, 124
READ operation, 61, 70–72
Read path, 151–153
READ STATUS command,

54, 64–67
Recovery mechanisms,

102–104, 124

INDEX

201

Redundant array of independent
disks (RAID)
technology, 164

Reed-Solomon codes, 74, 98
Reed-Solomon error correction,

164, 188
RESET command, 62, 63
Resistive random-access

memory (RRAM), 188

S
Self-encrypting drives (SEDs), 118
Sequential read burst performance,

173, 176
Sequential read performance, 172
Sequential write burst performance

test, 176
Single-level cell (SLC), 3, 5, 30,

41–43, 120, 123, 177, 178
Software tools, 181, 182, 185, 191
Solid-state drive (SSD), 36

block diagram, 4
definition, 1
firmware (see SSD firmware)
hardware, 7
vs. HDD, 2
history, 2
host interface, 3
memory, 3
types, 3

SSD firmware, 1
advanced features, 8
challenges, 121

encryption capabilities, 8
function, 8
history, 11, 12
IO determinism, 13
issue, 12
mapping table, 120
primary role, 8
responsibility, 8, 9
unexpected shutdown, 121
updates, 9

SSD performance
endurance, 170
IOPS, 170
latency, 170
power consumption, 170
throughput, 170
transfer speed, 169

Standardization, 92
Startup companies, 188
Static wear leveling, 93
Streaming concepts, 188

T
Temperature sensors, 155, 156
Thermal throttling

design consideration, 156
flow diagram, 158
mechanism, 155
sequence diagram, 157
temperature recovery, 156

3D vertical NAND (V-NAND) flash
memory technology

advancements, 32

INDEX

202

advantages, 32, 35
applications, 36
bit lines, 40
charge trapping

technology, 38, 39
control/decoding, 40
data retention, 49
endurance, 49
layers/pages, 37
limitations, 32
MLC, 42, 46
patterning limitations, 34
read and write operations, 43
SLC, 41, 44–46, 48
speed and efficiency, 49
storage capacity, 50
TLC, 43
vs. 2D, 33, 35
word lines, 40

Throttling, 155–161
Toggle DDR 2.0 flash memory, 56
Toggle Mode 2.0, 55
Toggle Mode Interface, 55
tPROG, 76, 79, 88
Trace output, 181, 182
Transistors, 18–22, 37
TRIM command, 29, 140
Triple-level cell (TLC), 3, 41, 178
2D planar NAND flash memory, 34
2D planar NAND technology, 31, 32
Typical transistors, 20

U
Unexpected shutdown

system restore, 124
user data write, 125

Used bad blocks, 142
erase operation, 147
NAND program

operation, 148
replacement strategy, 149, 150
SSD controller, 146
strategy, 149

V
Volatile memory, 103, 125

W, X, Y, Z
Write path, 135, 136, 151–152, 178
Wear leveling, 93
Wear-leveling algorithms, 12, 93,

113, 121, 164, 191
Word lines, 40
Workload awareness, 160
Write amplification, 8, 106, 116
Write amplification factor (WAF),

116, 117
Write journaling, 103, 104
Write/update operations

cache buffer, 133
dirty cache buffer, 133
flush to NAND, 133

3D vertical NAND (V-NAND) flash
memory technology (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to SSD Firmware
	What Is SSD?
	Summary

	Chapter 2: Understanding the Role of Firmware in SSDs
	What Is Firmware?
	Summary

	Chapter 3: The History and Evolution of SSD Firmware
	History
	Summary

	Chapter 4: Basics of Flash Memory
	Memory Types
	NOR Flash Memory
	Characteristics of NOR Flash Memory
	NOR Memory Architecture

	NAND Flash Memory
	NAND Memory Architecture

	Similarities
	Differences

	A Flash Memory Cell
	NAND Memory Organization
	Addressing

	Erase
	Write
	Read
	Program/Erase Cycle (P/E Cycle)
	Summary

	Chapter 5: 3D Vertical NAND
	Evolution of 3D Vertical NAND Technology
	Unlocking New Possibilities with Vertical NAND Architecture
	Advantages of 3D Vertical NAND
	Applications of 3D Vertical NAND
	Understanding 3D Vertical NAND Architecture
	Layers and Pages
	Charge Trapping Technology
	Bit Line and Word Line Architecture
	Control and Decoding Circuits
	Memory Cell Size and Density in 3D Vertical NAND Flash Memory Technology

	Understanding NAND Cell Types Supported: SLC, MLC, and TLC (QLC)
	SLC
	MLC

	TLC
	Read and Write Operations in 3D Vertical NAND
	Erasing MLC 3D vertical NAND block
	Endurance and Data Retention Capabilities
	Speed and Efficiency Compared to 2D Planar NAND
	Advancements in Storage Capacity with 3D Vertical NAND
	Summary

	Chapter 6: Basic Understanding of NAND Flash Interface
	Basic NAND IO Interfacing Pin Details
	NAND Flash Interface Basics
	Open NAND Flash Interface (ONFI)
	Toggle Mode Interface
	Command Cycles for NAND Flash Operations
	Addressing
	Column Address
	Row Address
	Addressing Functions
	Address Cycle Order
	Handling Unused Bits
	Address Limitations
	Valid Address Range
	Address Validation

	NAND Flash Commands
	RESET Operation
	READ ID Operation
	READ STATUS Operation

	READ STATUS Response
	ERASE Operation

	PROGRAM Operations
	READ Operation
	RANDOM DATA READ Operation
	Typical NAND Packet Structure
	PAGE READ CACHE MODE Operation
	PROGRAM PAGE CACHE Operation
	Advanced Command Sets
	Address Input Restrictions for Multi-Plane Operations
	Multi-plane Read
	MULTI- PLANE RANDOM CACHE READ Operation
	Multi Plane Program Operation
	Multi Plane Cache Program Operation
	Multi Block Erase Operation
	Summary

	Chapter 7: Common SSD Firmware Features
	Significance of Garbage Collection in SSDs
	Types of Garbage Collection Strategies
	Full Garbage Collection
	Partial Garbage Collection
	Dynamic Garbage Collection
	Error-Triggered Garbage Collection
	Garbage Collection Read Process

	Retrieving Valid Data during Compaction
	Handling Incomplete or Interrupted Reads
	Address Translation during Compaction Reads
	Writing Data during Compaction
	Address Mapping and Updating
	Managing Block Erasure and Wear-Leveling
	Handling Unexpected Power-Off Conditions in Garbage Collection
	Ensuring Data Consistency during Power Loss
	Write Journaling and Recovery Mechanisms
	Managing Incomplete Compaction Operations

	Performance Considerations in Garbage Collection
	Impact of Compaction on SSD Performance
	Write Amplification and Its Effects
	Strategies to Minimize Performance Degradation

	Balancing Garbage Collection and Host Write Operations
	Understanding the Workload Characteristics
	Garbage Collection Prioritization
	Dynamic Resource Allocation
	Over-Provisioning
	Adaptive Garbage Collection

	Drawbacks of Garbage Collection and Minimizing Their Impact
	Write Amplification
	Performance Degradation
	Increased Power Consumption
	Impact on Endurance

	Other Concerns
	Data Retention
	Read Disturb
	Program Disturbance
	Write Amplification
	Over-provisioning
	Encryption

	Summary

	Chapter 8: SSD Firmware Design Considerations
	Design Considerations
	Unexpected Shutdown
	Power-Loss Protection
	Power-Loss Design Considerations
	Best Practices for Optimizing and Maintaining SSD Firmware

	Summary

	Chapter 9: Flash Translation Layer (FTL)
	Mapping Table
	Size of the Mapping Table
	Storing the Mapping Table in RAM
	Partial Loading of the Mapping Table
	Storage of Non-Loaded Mapping Entries

	Write/Update Operations and the Mapping Table
	Dirty Cache Buffer in RAM
	Write/Update Process with Dirty Cache Buffer
	Flush to NAND

	Mapping Table Management and Optimization
	Bad Block Management
	Factory Bad Block Assessment
	Bad Block Flash Address
	Recording Bad Block Flash Address
	Initial Bad Block Handling Flow
	Step 1: Power-Up and Mounting
	Step 2: Reading the NAND Flash
	Step 3: Identifying Bad Blocks
	Step 4: Updating Bad Block Bitmap
	Step 5: Skipping Bad Blocks
	Step 6: Error Handling (Optional)

	Used Bad Block Assessment
	Bad Block Skipping Strategy
	Bad Block Replacement Strategy

	Summary

	Chapter 10: User Data Flow
	Write Path
	Read Path
	Summary

	Chapter 11: Throttling
	Thermal Throttling
	Temperature Monitoring
	Throttling Mechanism
	Temperature Recovery
	Design Consideration

	Power Throttling
	Power Monitoring
	Throttling Mechanism
	Power Recovery

	Combined Throttling
	Synergistic Operation
	Priority Management

	Dynamic Performance Adjustments
	Workload Awareness

	Logging and Reporting
	Event Logging
	Health Monitoring

	Summary

	Chapter 12: Exception Handling
	Read Errors
	Handling

	Program Errors
	Handling
	Program Abort
	Handling

	Erase Errors
	Handling

	Summary

	Chapter 13: Performance
	Access Patterns and Test Workloads
	Workloads
	Host Interface
	Summary

	Chapter 14: Debugging
	Summary

	Chapter 15: Future Developments and Innovations in SSD Firmware
	Summary

	Chapter 16: Closing
	Bibliography
	Index

