
CHAPTER 6

Fuzzy Logic

Autonomous
Learning

Control
Intelligence

Machine
Learning

Fuzzy logic [30] is an alternative approach
to control system design. Fuzzy logic works
within the framework of set theory and is better
at dealing with ambiguities. For example, three
sets might be defined for a sensor: hard failure,
soft failure, and no failure. The three sets might
overlap, and at any given time, the sensor may
have a degree of membership in each set. In ef-
fect, you would be applying a degree of fuzzi-
ness. The degree of membership in each set can
be used to determine what action to take. An algorithmic approach would have to assign a num-
ber to the state of the sensor. This could be problematic and not necessarily represent the actual
state of the system.

When you go to a doctor with pain, the doctor will often try and get you to convert a sub-
jective concept, pain, into a number from 0 to 10. As pain is personal and your impression is
imprecise, you are giving a fuzzy concept or belief a hard number. As you may have experi-
enced, this is not always productive or useful.

Surveys do the same thing. For example, you will be asked to rate the service in a restaurant
from 0 to 5. You then rate a bunch of other things on the same scale. This allows the review
to come up with a number for your overall impression of the restaurant. Does the resulting 4.8
mean anything? Netflix abandoned the numerical ratings of movies you have seen for thumbs
up and down. It seems that they felt that a binary decision, really two sets, was a better data
point than a number.

NASA and the US Department of Defense like to use technology readiness levels (TRLs)
that go from 1 to 9 to determine where your work is in terms of readiness. Nine is a technology
already operating in a target system. One is just an idea. All the other levels are fuzzy for
anything moderately complicated. Even giving a technology a 9 is not informative. The M-16
rifle was deployed to Vietnam. It often jammed. In terms of TRL, it was 9, but a 9 doesn’t say
how well it is working. Again, the readiness of the rifle, when you read soldiers’ and Marines’
impressions, was best represented by fuzzy beliefs.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
M. Paluszek, S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-9846-6 6

157

 40413 -2689 a 40413
-2689 a

https://doi.org/10.1007/978-1-4842-9846-6_6
https://doi.org/10.1007/978-1-4842-9846-6_6
https://doi.org/10.1007/978-1-4842-9846-6_6
https://doi.org/10.1007/978-1-4842-9846-6_6
https://doi.org/10.1007/978-1-4842-9846-6_6
https://doi.org/10.1007/978-1-4842-9846-6_6
https://doi.org/10.1007/978-1-4842-9846-6_6

CHAPTER 6 FUZZY LOGIC

This chapter will show you how to build a simple fuzzy logic engine and implement a fuzzy
logic control system for windshield wipers. Unlike the other chapters, we will be working with
linguistic concepts, not hard numbers. Of course, when you set your wiper motor speed, you
need to pick a number (defuzzify your output), but all the intermediate steps employ fuzzy logic.
A second example shows control of an HVAC system in a home. Traditional thermostats must be
manually switched from heating to cooling, while modern heat pumps can switch automatically.
We will compare a traditional control option with two fuzzy examples.

6.1 Building Fuzzy Logic Systems
6.1.1 Problem

We want to have a tool to build a fuzzy logic controller.

6.1.2 Solution

Build a MATLAB function that takes parameter pairs that define everything needed for the
fuzzy controller. This will be stored in a data structure.

6.1.3 How It Works

To create a fuzzy system, you must create inputs, outputs, and rules. You can also choose meth-
ods for some parts of the fuzzy inference. The fuzzy inference engine has three steps:

1. Fuzzify the inputs

2. Fire rules

3. Defuzzify the outputs

The fuzzy system data is stored in a MATLAB data structure. This structure has the following
fields:

• input (:)

• output (:)

• rules (:)

• implication (@)

• aggregation (@)

• defuzzify (@)

The first three fields are arrays of struct arrays. There are separate structures for fuzzy sets and
rules, described as follows. The last three fields are function handles for the implementation of
these steps in the fuzzy process.

158

CHAPTER 6 FUZZY LOGIC

The fuzzy set structure, which is the same for inputs and outputs of the system, has the
following fields:

• name

• range (2) (two-element array with minimum and maximum values)

• comp {:} (cell array of label strings)

• type {:} (cell array of membership function handles)

• params {:} (cell array of parameter vectors)

The fuzzy rule struct has the following fields:

• input (:) (vector of input component numbers)

• output (:) (vector of outputs)

• operator {:} (cell array of operator function handles)

Defuzzification requires three steps: implication, aggregation, and the defuzzification of the
aggregate. These will be simply function handles. Implication applies the rule strength to the
output membership functions, and aggregation combines this data from all the rules for each
output across its range. The final defuzzification step produces a crisp value for each output.

This is a lot of data to organize. We do it with the function BuildFuzzySystem. The
following code snippet shows how it assigns data to the data structure using parameter pairs.
The ’id’ field increments the index used for either the input, output, or rule.

BuildFuzzySystem.m

53 d = struct;
54 j = 1;
55

56 for k = 1:2:length(varargin)
57 switch (lower(varargin{k}))
58 case 'id'
59 j = varargin{k+1};
60 case 'input comp'
61 d.input(j).comp = varargin{k+1};
62 case 'input type'
63 d.input(j).type = varargin{k+1};
64 case 'input name'
65 d.input(j).name = varargin{k+1};
66 case 'input params'
67 d.input(j).params = varargin{k+1};
68 case 'input range'
69 d.input(j).range = varargin{k+1};
70 case 'output comp'
71 d.output(j).comp = varargin{k+1};

159

CHAPTER 6 FUZZY LOGIC

This code continues with other cases. Since the fuzzy variables are by nature linguistic, a
section of code will map any string names of the fuzzy variables in the rule definitions into their
numerical indices using contains, which will save computation later.

BuildFuzzySystem.m

103 % match rules to sets if cell array
104 for k = 1:length(d.rules)
105 inputs = d.rules(k).input;
106 if iscell(inputs)
107 nIn = length(inputs);
108 input = zeros(1,nIn);
109 for j = 1:nIn
110 comp = d.input(j).comp;
111 val = find(contains(comp,inputs(j)));
112 if ˜isempty(val)
113 input(j) = val;
114 end
115 end
116 d.rules(k).input = input;
117 end
118 outputs = d.rules(k).output;
119 if iscell(outputs)
120 nOut = length(outputs);
121 output = zeros(1,nOut);
122 for j = 1:nOut
123 comp = d.output(j).comp;
124 val = find(contains(comp,outputs(j)));
125 if ˜isempty(val)
126 output(j) = val;
127 end
128 end
129 d.rules(k).output = output;
130 end
131 end % array of rules

The following is a snippet showing how to use BuildFuzzySystem, showing just the
creation of the first input for the SmartWipers example. This example will be described fully in
a later recipe.

>> SmartWipers = BuildFuzzySystem(...
'id',1,...
'input comp',{'Dry' 'Drizzle' 'Wet'},...
'input type', {@TrapezoidMF @TriangleMF @TrapezoidMF}

,...
'input params',{[0 0 10 50] [40 50] [50 90 101 101]},...
'input range',[0 100],...
'input name','Wetness')

SmartWipers =
struct with fields:

160

CHAPTER 6 FUZZY LOGIC

input: [1x1 struct]

>> SmartWipers.input(1)

ans =
struct with fields:

comp: {'Dry' 'Drizzle' 'Wet'}
type: {@TrapezoidMF @TriangleMF @TrapezoidMF}

params: {[0 0 10 50] [40 50] [50 90 101 101]}
range: [0 100]
name: 'Wetness'

Fuzzy sets in this context consist of a set of linguistic categories or components defining
a variable. For instance, if the variable is “age,” the components might be “young,” “middle
aged,” and “old.” Each fuzzy set has a range over which it is valid, for instance, a good range
for “age” might be 0 to 100. Each component has a membership function that describes the
degree to which a value in the set’s range belongs to each component. For instance, a person
who is 50 would rarely be described as “young,” but might be described as “middle aged” or
“old,” depending on the person asked.

To build a fuzzy set, you must divide the variable into components. The simplest are tri-
angles and trapezoids. The following membership functions are provided with this recipe: tri-
angular, trapezoidal, Gaussian, general bell, and sigmoidal. Membership functions are limited
in value to between zero and one. The membership functions are shown in Figure 6.1 and de-
scribed further as follows:

Triangle: The triangular membership function requires two parameters: the center of the trian-
gle and the half-width of the desired triangle base. Triangular membership functions are
limited to symmetric triangles.

Trapezoid: The trapezoid membership function requires four parameters: the leftmost point, the
start of the plateau, the end of the plateau, and the rightmost points.

Gaussian: A Gaussian membership function is a continuous function with two parameters: the
center of the bell and the width (standard deviation) of the bell. Gaussian membership
functions are symmetric.

Bell: A general bell function is also continuous and symmetric, but it has three parameters
to allow for a flattened top, making it similar to a smoothed trapezoid. It requires three
parameters: the center of the bell, the width of the bell at points y = 0.5, and the slope of
the function at points y = 0.5.

Sigmoid: Just as a bell function is similar to a smoothed trapezoid, a sigmoidal membership
function is similar to a smoothed step function. It takes two parameters: the point at which
y = 0.5 and the slope of the function. As the slope approaches infinity, the sigmoidal
function approaches the step function.

161

CHAPTER 6 FUZZY LOGIC

0 1 2 3 4 5 6 7 8 9 10

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p
Example of Triangle Membership Function

0 1 2 3 4 5 6 7 8 9 10

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Example of Gaussian Membership Function

Parameter values: [2 5]

0 1 2 3 4 5 6 7 8 9 10

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Example of General Bell Membership Function

Parameter values: [2 2 5]

0 1 2 3 4 5 6 7 8 9 10

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Example of Sigmoidal Membership Function

Parameter values: [1 6]

Parameter values: [-0.1 3]

0 1 2 3 4 5 6 7 8 9 10

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Example of Trapezoid Membership Function

Parameter values: [1 3 5 7]

Figure 6.1: Membership functions

Fuzzy rules are if-then statements. For example, an air conditioner rule might say IF the
room temperature IS high, THEN the blower level IS high. In this case, “room temperature”
is the input fuzzy set, “high” is its component for this rule, “blower level” is the output fuzzy
set, and “high” is its chosen component. Rules may combine inputs with either an AND or
an OR operator. The AND operator is the minimum of the membership values, while the OR
operator returns the maximum of the values. In our structure, the rules use numeric indices for
the components of each input and output for computational efficiency. An example is

>> d.rules(1)

ans =

struct with fields:

input: [1 1]
output: [1 3]

operator: @FuzzyAND

This structure for a fuzzy system is supported by a set of helper functions for the fuzzy
operations. This includes membership functions, with an MF suffix; operators, namely AND
and OR; implication functions with an IMP suffix; and defuzzification. The following list gives

162

CHAPTER 6 FUZZY LOGIC

all the support functions provided with this chapter. This is not an exhaustive list of algorithms,
and other commercial or open source tools may provide additional methods:

• Membership functions

– TriangleMF.m, GaussianMF.m, GeneralBellMF.m, SigmoidalMF.m,
TrapezoidMF.m

• Fuzzy operators, for rules

– FuzzyAND.m, FuzzyOR.m

• Implication

– ScaleIMP.m, ClipIMP.m

• Aggregation

– max

• Defuzzification

– CentroidDF.m

6.2 Implement Fuzzy Logic
6.2.1 Problem

We want to implement fuzzy logic.

6.2.2 Solution

Build a fuzzy inference engine. This will be a function that calls the steps in fuzzy inference
given a fuzzy system as defined in the previous recipe, using function handles to specify options
within the algorithm.

6.2.3 How It Works

Let’s repeat the three steps in fuzzy inference, adding the substeps within Defuzzify:

1. Fuzzify

2. Fire

3. Defuzzify

(a) Implication

(b) Aggregation

(c) Defuzzify the aggregate

163

CHAPTER 6 FUZZY LOGIC

The control flow is in the main function, called FuzzyInference. It just calls subfunctions
Fuzzify, Fire, and Defuzzify in order. It calls warndlg if the inputs are not sensible.

FuzzyInference.m

29 function [y,data] = FuzzyInference(x, system, verbosity)
39 if length(x) == length(system.input)
40 fuzzyX = Fuzzify(x, system.input);
41 strength = Fire(fuzzyX, system.rules);
42 y = Defuzzify(strength, system, x);
43 else
44 warndlg({'The length of x must be equal to the',...
45 'number of input sets in the system.'})
46 end

Since this function is written for educational purposes, we added an informational output
struct. This includes the extra step of fuzzifying the outputs after the crisp value is computed
from the rules. Therefore, we can examine both fuzzyX and fuzzyY as well as the strength of
the rules firing.

FuzzyInference.m

48 if (nargout>1)
49 data.x = x;
50 data.fuzzyX = fuzzyX;
51 data.strength = strength;
52 data.fuzzyY = Fuzzify(y, system.output);
53 data.y = y;
54 end

You will notice, in the body of functions, the use of feval to evaluate function handles as
the input. Earlier versions of this tool used strings for the function names with eval, but using
handles is now a much faster option than evaluating strings. You pass in the inputs after the
handle which can be any expression or variable. For example, for the function

function y = MyFun(x)
y = x;

You can evaluate it with a number or a variable or an expression, such as

>> feval(@MyFun,2)

ans =
2

>> feval(@MyFun,sin(2))

ans =
0.9093

164

CHAPTER 6 FUZZY LOGIC

TIP Use feval instead of eval whenever possible.

The Fuzzify subfunction code is shown as follows. It evaluates the degree of membership
of the inputs in each membership set.

FuzzyInference.m

56 function fuzzyX = Fuzzify(x, sets)
57 %% Fuzzify the inputs with the type function
58 % fuzzyX = Fuzzify(x, sets)
65 n = length(sets);
66 fuzzyX = cell(1,n);
67 for i = 1:n
68 nC = length(sets(i).comp);
69 range = sets(i).range(:);
70 if (range(1) <= x(i)) && (x(i) <= range(2))
71 for j = 1:nC
72 fuzzyX{i}(j) = feval(sets(i).type{j},x(i),sets(i).params{j});
73 end
74 else
75 fuzzyX{i}(1:nC) = zeros(1,nC);
76 end
77 end

The fuzzy rule logic is shown in the following code. The code applies “Fuzzy AND” or
“Fuzzy OR.” “Fuzzy AND” is the minimum of a set of membership values. “Fuzzy OR” is the
maximum of a set of membership values. Suppose we have a vector [1 0 1 0]. The maximum
value is 1 and the minimum is 0.

>> 1 && 0 && 1 && 0

ans =

logical
0

>> 1 || 0 || 1 || 0

ans =

logical
1

This corresponds to the fuzzy logic AND and OR.
The next code snippet shows the Fire subfunction in FuzzyInference. “Firing” a rule is

the process of applying the rule operators to the fuzzified inputs. This determines the numerical
strength of each rule using the specific membership values of the inputs.

165

CHAPTER 6 FUZZY LOGIC

FuzzyInference.m

81 function strength = Fire(FuzzyX, rules)
82 %% Fire a rule using the specified rules.operator function
83 % strength = Fire(FuzzyX, rules)
90 p = length(rules);
91 n = length(FuzzyX);
92

93 strength = zeros(1,p);
94

95 for i = 1:p
96 method = rules(i).operator;
97 dom = zeros(1,n);
98 for j = 1:n
99 comp = rules(i).input(j);
100 if comp ˜= 0
101 dom(j) = FuzzyX{j}(comp);
102 else
103 dom(j) = inf;
104 end
105 end
106 strength(i) = feval(method,dom(dom<=1));
107 end

Finally, we defuzzify the results. This function first uses the implication function to deter-
mine membership. It aggregates the output using the aggregate function which, in this case, is
max. The final step to computing the crisp values is computing the centroid of the aggregate.
For explanatory purposes, this function is annotated with a plot capability of the defuzzification
if “verbose” output is requested.

FuzzyInference.m

111 function [result,aggregate] = Defuzzify(strength, system, xIn)
112 %% Defuzzify the rule output
113 % result = Defuzzify(strength, system)
120 rules = system.rules;
121 output = system.output;
122

123 m = length(output);
124 p = length(rules);
125 impfun = system.implicate;
126 aggfun = system.aggregate;
127 defuzz = system.defuzzify;
128

129 nPts = 200;
130 result = zeros(1,m);
131

132 if verbose
133 figure('name','Fuzzy Inference')
134 subplot(m,1,1); hold on;
135 xstr = num2str(xIn);

166

CHAPTER 6 FUZZY LOGIC

136 title(sprintf('Fuzzy output for [%s]',xstr))
137 end
138

139 for i = 1:m
140 if verbose
141 subplot(m,1,i); hold on; grid on;
142 end
143 range = output(i).range(:);
144 xO = linspace(range(1),range(2),nPts);
145 mem = zeros(p,nPts);
146 % precompute membership for the output set
147 ls = [];
148 label = {};
149 nC = length(output(i).type);
150 ymf = zeros(nC,nPts);
151 for k = 1:nC
152 mfun = output(i).type{k};
153 params = output(i).params{k};
154 ymf(k,:) = feval(mfun,xO,params);
155 if verbose
156 plot(xO,ymf(k,:),'-.','linewidth',1);
157 end
158 end
159 % compute the membership for each fired rule
160 for j = 1:p
161 comp = rules(j).output(i);
162 if(comp ˜= 0) && strength(j)>0
163 mem(j,:) = feval(impfun, ymf(comp,:),strength(j));
164 if verbose
165 ls(end+1) = plot(xO,mem(j,:),'linewidth',1);
166 label{end+1} = [num2str(j) ' (' num2str(strength(j),3) ')'

];
167 end
168 else
169 mem(j,:) = zeros(size(xO));
170 end
171 end % rules
172 aggregate = feval(aggfun,mem);
173 result(i) = feval(defuzz,aggregate,xO);
174 if verbose
175 plot(xO,aggregate,'k--','linewidth',2);
176 yy = axis;
177 plot(result(i)*[1 1],yy(3:4),'r','linewidth',3)
178 text(result(i),yy(3) + 0.75*(yy(4)-yy(3)),sprintf(' %g',result

(i)))
179 xlabel(output(i).name)
180 if i == 1
181 ll = legend(ls,label,'location','best');
182 ll.Title.String = 'Rules';
183 end
184 end

167

CHAPTER 6 FUZZY LOGIC

185 end % outputs

The plots in Figure 6.2 show the total defuzzification process. First, the membership sets of
each variable are drawn in dash-dot lines in the background of the plot. Each rule designates a
fuzzy output. The implication function combines the strength of the rule with the membership
function of that fuzzy output. Clip implication takes the minimum at each point, so the strength
limits the membership value. Scale implication uses the product of the strength and the mem-
bership. Rules with nonzero strength are plotted as shown with the solid lines, and those rules
with nonzero firing strength are shown in the legend. Aggregation then combines the output
from each rule into a single vector of membership for the output across its range. The final step
is defuzzification of this array, in our case with centroiding via CentroidDF. The final crisp
value is designated by the thick red line and labeled with the crisp value.

0 1 2 3 4 5 6 7 8 9 10
Speed

0

0.2

0.4

0.6

0.8

1
Fuzzy output for [66.25416 182.8547]

 6.47322

5 (0.171)
6 (0.594)
8 (0.171)
9 (0.406)

Rules

0 2 4 6 8 10 12 14 16 18 20
Interval

0

0.2

0.4

0.6

0.8

1

 6.36503

Figure 6.2: Fuzzy rule plot for smart wipers

168

CHAPTER 6 FUZZY LOGIC

6.3 Window Wiper Fuzzy Controller
6.3.1 Problem

We want a control system to select window wiper speed and interval based on rainfall. This is
an implementation of the SmartWipers automatic windshield wiper control system from Cheok
[8]. The inputs to the control system are the rain wetness and intensity, and the outputs are the
wiper speed and interval.

6.3.2 Solution

Build a fuzzy logic control system using the tools we’ve developed. First, we will write a func-
tion to create the fuzzy system data structure, then a demo script to use it.

6.3.3 How It Works

To call a fuzzy system, use the function y = FuzzyInference(x, system).
The script SmartWipersDemo implements the rainfall demo. The demo loads the fuzzy

system from the function SmartWipersSystem, which uses BuildFuzzySystem from
Recipe 6.1. The following code performs the fuzzy inference on a full range of the two inputs.

SmartWipersDemo.m

21 % Generate regularly space arrays in the 2 inputs
22 n = 30; % Number of samples
23 x = linspace(SmartWipers.input(1).range(1),SmartWipers.input(1).range

(2),n);
24 y = linspace(SmartWipers.input(2).range(1),SmartWipers.input(2).range

(2),n);
25

26 % Perform fuzzy inference over the input range
27 z1 = zeros(n,n);
28 z2 = zeros(n,n);
29 for k = 1:n
30 for j = 1:n
31 temp = FuzzyInference([x(k),y(j)], SmartWipers);
32 z1(k,j) = temp(1);
33 z2(k,j) = temp(2);
34 end
35 end

First, the demo will plot the input and output fuzzy variables using FuzzyPlot. Fuzzy
inference is performed on each set of crisp inputs plotted. Figure 6.3 shows the inputs to
the fuzzy logic system. Figure 6.4 shows the outputs. The rule base is displayed using
PrintFuzzyRules and plotted using surf.

The inputs that are tested in the fuzzy logic system demo are given in Figure 6.5. This is
just the full range of each input.

169

CHAPTER 6 FUZZY LOGIC

0 10 20 30 40 50 60 70 80 90 100
Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p
Rain

Dry Drizzle Wet

0 50 100 150 200 250
Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Intensity

Light Medium Heavy

Figure 6.3: Rain wetness and intensity are the inputs for the smart wiper control system

0 1 2 3 4 5 6 7 8 9 10
Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Speed

Stop Slow Fast

0 2 4 6 8 10 12 14 16 18 20
Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p
Interval

Zero Short Long

Figure 6.4: Wiper speed and interval are the outputs for the smart wiper control system

The printed rules are shown as follows:

>> SmartWipersDemo

1. if Wetness is Dry FuzzyAND Intensity is Light then Speed is Stop
Interval is Long

2. if Wetness is Dry FuzzyAND Intensity is Medium then Speed is Slow
Interval is Long

3. if Wetness is Dry FuzzyAND Intensity is Heavy then Speed is Slow
Interval is Short

4. if Wetness is Drizzle FuzzyAND Intensity is Light then Speed is
Slow Interval is Long

5. if Wetness is Drizzle FuzzyAND Intensity is Medium then Speed is
Slow Interval is Short

170

CHAPTER 6 FUZZY LOGIC

0 5 10 15 20 25 30

Input

0

20

40

60

80

100

W
et

ne
ss

Wetness

0 5 10 15 20 25 30

Input

0

50

100

150

200

250

In
te

ns
ity

Intensity

Figure 6.5: Rain wetness and intensity input numbers

6. if Wetness is Drizzle FuzzyAND Intensity is Heavy then Speed is
Slow Interval is Zero

7. if Wetness is Wet FuzzyAND Intensity is Light then Speed is Slow
Interval is Short

8. if Wetness is Wet FuzzyAND Intensity is Medium then Speed is Fast
Interval is Short

9. if Wetness is Wet FuzzyAND Intensity is Heavy then Speed is Fast
Interval is Zero

Figure 6.6 gives surface plots to show how the outputs relate to the inputs via the rules. The
surface plots are generated by the following code. We add a colorbar to make the plot more
readable. The color is related to z value. We use view in the second plot to make it easier to
read the figure. You can use rotate3d on to allow you to rotate the figure with the mouse.

SmartWipersDemo.m

41 % Plot the outputs as surfaces
42 NewFigure('Wiper Speed from Fuzzy Logic');
43 surf(x,y,z1)
44 xlabel('Raindrop Wetness')
45 ylabel('Droplet Frequency')
46 zlabel('Wiper Speed')
47 colorbar
48

49 NewFigure('Wiper Interval from Fuzzy Logic');
50 surf(x,y,z2)
51 xlabel('Raindrop Wetness')
52 ylabel('Droplet Frequency')

171

CHAPTER 6 FUZZY LOGIC

2
250

3

4

5

200 100

6

W
ip

er
 S

pe
ed

7

150 80

8

Droplet Frequency

9

60

Raindrop Wetness

100

10

40
50 20

0 0
2

3

4

5

6

7

8

9

0
0

5

50 0

10

W
ip

er
 In

te
rv

al

100 20

15

Droplet Frequency

40

Raindrop Wetness

150

20

60
200 80

250 100
2

4

6

8

10

12

14

16

Figure 6.6: Wiper speed and interval vs. droplet frequency and wetness

53 zlabel('Wiper Interval')
54 view([142.5 30])
55 colorbar

TIP Use rotate3d on to rotate a figure with the mouse.

The SmartWipersTest script tests the fuzzy inference using random inputs generated over
the input range. This is done using the FuzzyRand function as follows.

FuzzyRand.m

1 %% FUZZYRAND Compute random inputs within range of the fuzzy input sets
2 %% Inputs
3 % system (.) Fuzzy system from BuildFuzzySystem
4 %% Outputs
5 % y (n) Random crisp values of the inputs
6

7 function y = FuzzyRand(system)
8

9 if nargin==0
10 system = SmartWipersSystem;
11 y = FuzzyRand(system)
12 return;
13 end
14

15 nIn = length(system.input);
16 y = ones(1,nIn);
17

18 for k = 1:nIn
19 range = system.input(k).range;
20 y(k) = range(1) + (range(2)-range(1))*rand(1);
21 end

172

CHAPTER 6 FUZZY LOGIC

The demo then prints out the crisp and fuzzy values of the inputs and outputs including
the strength of the rules. This can provide useful insight when you are developing a new fuzzy
system. In the random inputs captured as follows, the rain wetness is both drizzle and wet, the
intensity is evenly split between medium and heavy, and the output is a slow speed with a short
interval:

>> SmartWipersTest

Inputs

Wetness

Crisp: 64.4673
Range: 0 to 100

Set Value
___________ _______

{'Dry' } 0
{'Drizzle'} 0.63832
{'Wet' } 0.36168

Intensity

Crisp: 152.816
Range: 0 to 250

Set Value
__________ _______

{'Light' } 0
{'Medium'} 0.47184
{'Heavy' } 0.52816

Strength of rule firings:

Input Output Fire Strength
_______ _______ _____________

{[1 1]} {[1 3]} 0
{[1 2]} {[2 3]} 0
{[1 3]} {[2 2]} 0
{[2 1]} {[2 3]} 0
{[2 2]} {[2 2]} 0.47184
{[2 3]} {[2 1]} 0.52816
{[3 1]} {[2 2]} 0
{[3 2]} {[3 2]} 0.36168
{[3 3]} {[3 1]} 0.36168

Outputs

Speed

173

CHAPTER 6 FUZZY LOGIC

Crisp: 6.48238
Range: 0 to 10

Set Value
________ _____

{'Stop'} 0
{'Slow'} 1
{'Fast'} 0

Interval

Crisp: 8.14129
Range: 0 to 20

Set Value
_________ _____

{'Zero' } 0
{'Short'} 1
{'Long' } 0

6.4 Simple Discrete HVAC Fuzzy Controller
6.4.1 Problem

We want a control system to automatically switch between air conditioning and heating.

6.4.2 Solution

Build a fuzzy logic control system that can turn on the heating system and air conditioning
based on the air temperature.

6.4.3 How It Works

Most older heating, ventilation, and air conditioning systems require the user to pick “AC” and
“heat” modes. This doesn’t work very well when the temperature is varying a lot from day to
day such as during the fall or spring of a region, like New England in the United States, where
the temperature varies significantly over the year.

The first step is fuzzifying the input. In the simplest implementation of the control system,
there are two input variables: the measured internal temperature of the house and the target
or setpoint temperature. The fuzzy categories are shown in Figure 6.7. These are overlapping
trapezoids with the temperature in Celsius.

A simple fuzzy control matrix using these variables is shown in Table 6.1. This is the set
of rules for the fuzzy controller in HVACSimplestFuzzyController. The rules are com-
bined based on the degree of membership of the internal and target temperature in the different
categories.

The dynamical model we will use to simulate the house temperature as a result of the control
system is illustrated in Figure 6.8.

174

CHAPTER 6 FUZZY LOGIC

-15 -10 -5 0 5 10 15 20 25 30

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Temperature

Cold Cool Temperate Warm Hot

Figure 6.7: Temperature categories (C) for HVAC

Table 6.1: The set of rules for the fuzzy HVAC system. The current value is in the top row; the target is
in the first column

Cold Cool Temperate Warm Hot
Cold No change AC AC AC AC
Cool Heat No change AC AC AC
Temperate Heat Heat No change AC AC
Warm Heat Heat Heat No change AC
Hot Heat Heat Heat Heat No change

Figure 6.8: House model

The dynamical equations are

.mCp
dTi

dt
= kA(Te − Ti) + qh − qc (6.1)

175

CHAPTER 6 FUZZY LOGIC

m is the thermal mass of the air in the house. A is the surface area of the house. . Cp is the
specific heat of air. k is the average thermal conductivity of the walls. . qh is the heater flux, and
. qc is the air conditioning flux. Both are positive. The dynamic model is shown in the following
code.

HVACSim.m

109 function [dT,qL] = RHS(˜,tI,d)
110 %% Simulation right hand side (dynamics)
111 % Model the changing internal temperature of the house given the HVAC
112 % output and the external temperature.
113 %
114 % [dT,qL] = RHS(˜,tI,d)
115 %
116 % dT: change in internal temperature
117 % qL: heat load on the house from outside
118

119 qL = d.k*d.A*(d.tE-tI);
120 dT = (qL + d.qH - d.qC)/(d.cP*d.m);

The simulation has two sets of initial conditions at the top: one in which the AC mode will
be triggered, that is, a warm day, and one in which the heat will be triggered, a cold day.

HVACSim.m

24 % A/C example
25 %%{
26 tSet = 297; % Set point temperature (deg-K)
27 tI = tSet+3; % Initial internal temperature (deg-K)
28 delT = 10; % Celsius
29 tE = [ones(1,iS)*(tI + delT) ones(1,n-iS)*(tI - delT)];
30 %}
31

32 % Heat example
33 %%{
34 tSet = 294; % Set point temperature (deg-K)
35 tI = tSet-10; % Initial internal temperature (deg-K)
36 tE = [ones(1,iS)*(tI - 20) ones(1,n-iS)*(tI - 10)];
37 %}

A standard bang-bang controller has a deadband and hysteresis. The following code shows
the controller. The controller makes its decision to switch from heating to cooling based on
the previous heating/cooling command and the demand. Note that it continues heating/cooling
through 90% of the deadband. This prevents limit cycling.

HVACSim.m

124 function q = Controller(t,tSet,tDB,q,qMax)
125 %% Non-fuzzy Controller with hysteresis
126 % Typical crisp controller with a deadband and hysteresis

176

CHAPTER 6 FUZZY LOGIC

127 %
128 % q = Controller(t,tSet,tDB,q,qMax)
129

130 if(q < 0)
131 if(t < tSet - 0.9*tDB)
132 q = 0;
133 end
134 elseif(q > 0)
135 if(t > tSet + 0.9*tDB)
136 q = 0;
137 end
138 else
139 if(abs(t - tSet) > tDB)
140 if(t > tSet)
141 q = -qMax;
142 elseif (t < tSet)
143 q = qMax;
144 end
145 end
146 end

The performance is shown in Figure 6.9. In this case, the external temperature drops 15
degrees Celsius in the middle of the simulation, and the heating system switches from heating to
cooling. Hysteresis keeps the HVAC from shifting between heat and cool when the temperature
crosses the setpoint.

The fuzzy controller has two modes, initialize and update. The initialize mode creates the
fuzzy controller data structure. The following code shows the initialization through the first two
rules.

0.00

500.00

1,000.00

q h (W
)

Home

0.00

500.00

1,000.00

q c (W
)

0.00

200.00

400.00

q l (W
)

280.00

290.00

300.00

t e (K
)

0 10 20 30 40 50 60

Time (hours)

290

295

t i (K
)

Figure 6.9: Non-fuzzy hysteresis controller performance

177

CHAPTER 6 FUZZY LOGIC

HVACSimplestFuzzyController.m

9 function [q,cat] = HVACSimplestFuzzyController(mode,tI,tSet,d)
21 case 'initialize'
22 if nargin<2
23 qMax = 1000;
24 else
25 qMax = tI;
26 end
27

28 % External and set point temps
29 bT = [0 4 6 10]; % 4 vertices of each input trapezoid
30 oT = [10 15 20 25 30];
31 iP = cell(1,5);
32 for k = 1:5
33 iP{k} = bT + oT(k);
34 end
35

36 % Define an arbitrary output range, 0 to 6 for the mode
37 oP = {[0 0 1.5 2.5] [1.5 2 4 4.5] [3.5 4.5 6 6]};
38

39 d = BuildFuzzySystem(...
40 'id',1,...
41 'input comp',{'Cold' 'Cool' 'Temperate' 'Warm' 'Hot'} ,...
42 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF

@TrapezoidMF @TrapezoidMF} ,...
43 'input params',iP,...
44 'input range',[bT(1) + oT(1) + eps bT(4)+ oT(5) - eps],...
45 'input name','Temperature',...
46 'id',2,...
47 'input comp',{'Cold' 'Cool' 'Temperate' 'Warm' 'Hot'} ,...
48 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF

@TrapezoidMF @TrapezoidMF} ,...
49 'input params',iP,...
50 'input range',[bT(1) + oT(1) bT(4)+ oT(5)],...
51 'input name','Target',...
52 'id',1,...
53 'output comp',{'AC' 'None' 'Heat'},...
54 'output type',{@TrapezoidMF @TrapezoidMF @TrapezoidMF},...
55 'output params',oP,...
56 'output name','Setting',...
57 'output range',[0 6],...
58 'implicate',@ClipIMP,...
59 'aggregate',@max,...
60 'defuzzify',@CentroidDF,...
61 'id',1,...
62 'rule input',[1 1],...
63 'rule output',2,...
64 'rule operator',@FuzzyAND,...
65 'id',2,...
66 'rule input',[2 2],...
67 'rule output',2,...

178

CHAPTER 6 FUZZY LOGIC

0 1 2 3 4 5 6
Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Setting

AC None Heat

TrapezoidMF
TrapezoidMF
TrapezoidMF

Figure 6.10: Fuzzy controller output set (arbitrary mode setting)

68 'rule operator',@FuzzyAND,...

The logic uses fuzzy AND only.
The following script plots the inputs to the simple fuzzy HVAC controller, which are the

current temperature and the desired temperature, and the outputs. The output categories are
shown in Figure 6.10.

HVACFuzzyPlot.m

1 %% Plot the HVAC fuzzy controller
2

3 h = waitbar(0,'HVAC Demo: plotting the rule base');
4

5 dFuzzy = HVACSimplestFuzzyController('initialize');
6 n = 30; % Number of samples
7

8 x = linspace(dFuzzy.input(1).range(1),dFuzzy.input(1).range(2),n);
9 y = linspace(dFuzzy.input(2).range(1),dFuzzy.input(2).range(2),n+2);
10

11 z = zeros(n,n+2);
12 for k = 1:n
13 for j = 1:n+2
14 z(k,j) = FuzzyInference([x(k),y(j)], dFuzzy);
15 end
16 waitbar(k/n)
17 end
18 close(h);

179

CHAPTER 6 FUZZY LOGIC

Figure 6.11: Fuzzy controller inputs and outputs

19

20 NewFigure('State from Fuzzy Logic');
21 surf(x,y,z');
22 xlabel(dFuzzy.input(1).name)
23 ylabel(dFuzzy.input(2).name)
24 zlabel('State')
25 colorbar

The results of the rule base are shown in Figure 6.11.
The simulation run with the fuzzy controller is shown in Figure 6.12. This is achieved by

setting both useFuzzy and useSimple flags at the top of HVACSim to true. The simulation
is much slower than the one using hysteresis. Note the deadband issue with the output to the
HVAC; the temperature of the house is held constant in the face of the large external load . ql,
but the system is constantly switching on and off to do so.

6.5 Variable HVAC Fuzzy Controller
6.5.1 Problem

The discrete fuzzy controller has a deadband issue. Modern HVAC, such as heat pumps, may
have a variable setting, which will produce a smoother result.

180

CHAPTER 6 FUZZY LOGIC

0.00

500.00

1,000.00

q
h (

W
)

Home

0.00

500.00

1,000.00

q
c (

W
)

7,500.00

8,000.00

q
l (

W
)

280.00

290.00

300.00

t e (
K

)

0 10 20 30 40 50 60

Time (hours)

290

295

t i (
K

)

Figure 6.12: Fuzzy simulation results

6.5.2 Solution

In this version of the controller, we will have different inputs, rules, and outputs. The inputs
will be the external temperature and the delta temperature from the setpoint. There will be a
mode output and a value output which can be anywhere in the range, either negative from AC
or positive for heat. There are less rules: if the delta is large, set the system on high; if it’s
smaller, set the system on low; and if it’s close to the setpoint, keep the system off.

6.5.3 How It Works

As before, we build the system in an initialize section of the function. We then run the in-
ference and compute the control output in an update section. A demo function will run if the
function is called with no inputs, which plots the rule base. In this case, we used the string
values of the fuzzy inputs and outputs to define the rules, which will be converted to indices by
BuildFuzzySystem.

HVACFuzzyController.m

1 %% Fuzzy logic control system for HVAC
7 %% Form:
8 % d = HVACFuzzyController('initialize',qMax)
9 % [d,q] = HVACFuzzyController('update',tE,t,tSet,d)
10 %
25 function [q,cat] = HVACFuzzyController(mode,tE,tI,tSet,d)

181

CHAPTER 6 FUZZY LOGIC

26

27 if(nargin < 1)
28 Demo;
29 return
30 end
31

32 %% Initialize
33 % Create the system
34 switch mode
35 case 'initialize'
36 if nargin<2
37 qMax = 1000;
38 else
39 qMax = tE;
40 end
41 oP = {qMax*[0 0 0.2 0.2] qMax*[0.2 0.3 0.5 0.6] qMax*[0.5 0.7 1.01

1.01]};
42

43 d = BuildFuzzySystem(...
44 'id',1,...
45 'input comp',{'Cold' 'Temperate' 'Hot'} ,...
46 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF}

,...
47 'input params',{[-11 -11 50 70] [60 70 75 80] [70 80 111

111]},...
48 'input range',[-10 110],...
49 'input name','Ext Temp (F)',...
50 'id',2,...
51 'input comp',{'Chilly' 'OK' 'Warm'} ,...
52 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF}

,...
53 'input params',{[-21 -21 -8 0] [-5 -1 1 5] [0 8 21

21]},...
54 'input range',[-20 20],...
55 'input name','Delta-Temp (F)',...
56 'id',1,...
57 'output comp',{'AC' 'Off' 'Heat'},...
58 'output type',{@TrapezoidMF @TrapezoidMF @TrapezoidMF

},...
59 'output params',{[-1.1 -1.1 -0.5 0] [-0.5 0 0 0.5] [0 0.5

1.1 1.1]},...
60 'output name','Mode',...
61 'output range',[-1 1],...
62 'id',2,...
63 'output comp',{'Zero' 'Low' 'High'},...
64 'output type',{@TrapezoidMF @TrapezoidMF @TrapezoidMF

},...
65 'output params',oP,...
66 'output name','Output',...
67 'output range',[0 qMax],...
68 'id',1,... % Cold and Too cold, Heat/high

182

CHAPTER 6 FUZZY LOGIC

69 'rule input',{'Cold','Chilly'},...
70 'rule output',{'Heat','High'},...
71 'rule operator',@FuzzyAND,...
72 'id',2,... % temperate and too cold, Heat/low
73 'rule input',{'Temperate','Chilly'},...
74 'rule output',{'Heat','Low'},...
75 'rule operator',@FuzzyAND,...
76 'id',3,... % Hot and too cold, AC/off
77 'rule input',{'Hot','Chilly'},...
78 'rule output',{'Off','Zero'},...
79 'rule operator',@FuzzyAND,...
80 'id',4,... % Cold and OK, Heat/zero
81 'rule input',{'Cold','OK'},...
82 'rule output',{'Off','Zero'},...
83 'rule operator',@FuzzyAND,...
84 'id',5,... % temperate and OK, off/off
85 'rule input',{'Temperate','OK'},...
86 'rule output',{'Off','Zero'},...
87 'rule operator',@FuzzyAND,...
88 'id',6,... % Hot and OK, AC/off
89 'rule input',{'Hot','OK'},...
90 'rule output',{'Off','Zero'},...
91 'rule operator',@FuzzyAND,...
92 'id',7,... % Cold and too hot, Heat/off
93 'rule input',[1 3],...
94 'rule output',[2 1],...
95 'rule operator',@FuzzyAND,...
96 'id',8,... % temperate and too hot, AC/low
97 'rule input',[2 3],...
98 'rule output',[1 2],...
99 'rule operator',@FuzzyAND,...
100 'id',9,... % Hot and too hot, AC/high
101 'rule input',[3 3],...
102 'rule output',[1 3],...
103 'rule operator',@FuzzyAND,...
104 'implicate',@ScaleIMP,...
105 'aggregate','sum',...
106 'defuzzify',@CentroidDF);
107

108 cat = [];
109 case 'update'
110 kToC = 273;
111 delta = (tI - tSet)*9/5; % in K
112 tF = (tE-kToC)*9/5 + 32; % in F
113 % expect internal temperature to be within specified range
114 if tF>d.input(1).range(2)
115 tF = d.input(1).range(2) - eps;
116 elseif tF<d.input(1).range(1)
117 tF = d.input(1).range(1) + eps;
118 end
119 % limit delta temperature range

q = d;

183

CHAPTER 6 FUZZY LOGIC

120 if delta>d.input(2).range(2)
121 delta = d.input(2).range(2) - eps;
122 elseif tF<d.input(2).range(1)
123 delta = d.input(2).range(1) + eps;
124 end
125 [cat,data] = FuzzyInference([tF;delta], d);
126

127 mode = sign(cat(1));
128 if abs(cat(1))<0.01
129 mode = 0;
130 end
131 q = mode*cat(2);
132

133 end

In the update case, we check the inputs against the range and limit them if needed. This
helps avoid numerical issues after the conversion from Celsius to Kelvin and allows us to have
a smaller range for the delta variable without being concerned with large excursions in internal
temperature. The mode output is computed using the sign function on the mode variable. If the
mode value is very small, less than 0.01, we set the mode to 0. The final output setting requested
of the HVAC, the q, is the product of the two variables.

The plots which follow are produced by the demo. Figure 6.13 and Figure 6.14 show the
system in- puts and outputs. Since there are only two inputs, we can again produce surface plots
of the outputs in Figure 6.15, Figure 6.16, and Figure 6.17.

HVACFuzzyController.m

135 %% Demonstrate the controller
136 function Demo
137

138 d = HVACFuzzyController('initialize');
139

140 % Plot the fuzzy variables
141 FuzzyPlot(d.input(1));
142 FuzzyPlot(d.input(2));
143 FuzzyPlot(d.output(1));
144 FuzzyPlot(d.output(2));
145

146 PrintFuzzyRules(d)
147

148 % differentiate btwn internal and external temp
149 t = linspace(d.input(1).range(1)+1e-12,d.input(1).range(2)-1e-12,51);
150 t_K = 5/9*(t-32)+273; % convert input from C to K
151 tSet = 297; % example setpoint (K)
152 delta = linspace(d.input(2).range(1)+1e-12,d.input(2).range(2)-1e

-12,31);
153 q = zeros(length(delta),length(t_K));
154 mode = zeros(length(delta),length(t_K));
155 val = zeros(length(delta),length(t_K));
156 for k = 1:length(t)

184

CHAPTER 6 FUZZY LOGIC

157 for j = 1:length(delta)
158 [q(j,k),cat] = HVACFuzzyController('update',t_K(k),tSet+5/9*delta(j

),tSet,d);
159 mode(j,k) = cat(1);
160 val(j,k) = cat(2);
161 end
162 end
163

164 NewFigure('HVAC Output from Fuzzy Logic');
165 surf(t,delta,q)
166 xlabel('Outside Temperature (F)')
167 ylabel('Delta (F)')
168 zlabel('HVAC Output (W)')
169 colorbar
170 set(gca,'ydir','reverse')
171

172 NewFigure('HVAC Mode from Fuzzy Logic');
173 surf(t,delta,mode)
174 xlabel('Temperature (F)')
175 ylabel('Delta (F)')
176 zlabel('HVAC Mode')
177 colorbar
178 set(gca,'ydir','reverse')
179

180 NewFigure('HVAC Value from Fuzzy Logic');
181 surf(t,delta,val)
182 xlabel('Temperature (F)')
183 ylabel('Delta (F)')
184 zlabel('HVAC Value (W)')
185 colorbar
186 set(gca,'ydir','reverse')
187

188 tSet = 297;
189 tI = tSet+5;
190 Q = zeros(size(t));
191 for k = 1:length(t)
192 Q(k) = HVACFuzzyController('update',t_K(k),tSet+5,tSet,d);
193 end
194

195 PlotSet(t_K,Q,'x label','T_e (K)','y label','Q (W)','plot title','Fuzzy
HVAC');

196 y = get(gca,'ylim');
197 line(tSet*[1;1],y,'color','r')
198 line(tI*[1;1],y,'color','g')
199

200 tE = 280;
201 tSet = 294;
202 Q = zeros(size(delta));
203 for k = 1:length(delta)
204 Q(k) = HVACFuzzyController('update',tE,tSet+delta(k)*5/9,tSet,d);
205 end

185

CHAPTER 6 FUZZY LOGIC

0 20 40 60 80 100

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Ext Temp (F)

Cold Temperate Hot

TrapezoidMF
TrapezoidMF
TrapezoidMF

-20 -15 -10 -5 0 5 10 15 20

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Delta-Temp (F)

Chilly OK Warm

TrapezoidMF
TrapezoidMF
TrapezoidMF

Figure 6.13: The fuzzy inputs of the variable controller

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Mode

AC Off Heat

TrapezoidMF
TrapezoidMF
TrapezoidMF

0 100 200 300 400 500 600 700 800 900 1000

Crisp Value

0

0.2

0.4

0.6

0.8

1

1.2

D
eg

re
e

of
 M

em
be

rs
hi

p

Output

Zero Low High

TrapezoidMF
TrapezoidMF
TrapezoidMF

Figure 6.14: The fuzzy outputs of the variable controller

206 PlotSet(delta,Q,'x label','\Delta T (F)','y label','Q (W)',...
207 'figure title','Fuzzy HVAC','plot title',sprintf('Te = %g F',(tE-273)

*9/5+32));

Here is the rule base:

1. if Ext Temp (F) is Cold FuzzyAND Delta-Temp (F) is Chilly then Mode is Heat Output is High
2. if Ext Temp (F) is Temperate FuzzyAND Delta-Temp (F) is Chilly then Mode is Heat Output is Low
3. if Ext Temp (F) is Hot FuzzyAND Delta-Temp (F) is Chilly then Mode is Off Output is Zero
4. if Ext Temp (F) is Cold FuzzyAND Delta-Temp (F) is OK then Mode is Off Output is Zero
5. if Ext Temp (F) is Temperate FuzzyAND Delta-Temp (F) is OK then Mode is Off Output is Zero
6. if Ext Temp (F) is Hot FuzzyAND Delta-Temp (F) is OK then Mode is Off Output is Zero

186

CHAPTER 6 FUZZY LOGIC

Figure 6.15: The mode output of the variable controller following the reults

Figure 6.16: The HVAC output of the variable controller

7. if Ext Temp (F) is Cold FuzzyAND Delta-Temp (F) is Warm then Mode is Off Output is Zero

8. if Ext Temp (F) is Temperate FuzzyAND Delta-Temp (F) is Warm then Mode is AC Output is Low
9. if Ext Temp (F) is Hot FuzzyAND Delta-Temp (F) is Warm then Mode is AC Output is High

Finally, we try this version of the controller in the simulation. The plots in Figures 6.18 and
6.19 show results for both AC and heat. This updated fuzzy controller produces smooth results.
Compare this to Figure 6.9 for the non-fuzzy bang-bang controller which produced limit cycling
of the internal temperature.

Additional work for this system could include adding another input for the humidity. The
system would need to be matched with the capabilities of the actual HVAC system.

187

CHAPTER 6 FUZZY LOGIC

Figure 6.17: The resulting combined AC or heat setting

-1,000.00

-500.00

0.00

q
(W

)

Home - Fuzzy Controller

0.00

100.00

200.00

q
h (

W
)

0.00

500.00

1,000.00

q
c (

W
)

7,500.00

8,000.00

q
l (

W
)

60.00

80.00

100.00

T
e (

F
)

0 1 2 3 4 5 6 7 8

Time (hours)

75

80

T
i (

F
)

Figure 6.18: Simulation results for the variable controller for AC

188

CHAPTER 6 FUZZY LOGIC

500.00

1,000.00

q
(W

)

Home - Fuzzy Controller

500.00

1,000.00
q

h (
W

)

-1.00

0.00

1.00

q
c (

W
)

7,000.00
7,100.00
7,200.00

q
l (

W
)

20.00
25.00
30.00

T
e (

F
)

0 1 2 3 4 5 6 7 8

Time (hours)

50

60

70

T
i (

F
)

Figure 6.19: Simulation results for the variable controller for heat

6.6 Summary
This chapter demonstrated fuzzy logic. A windshield wiper demonstration gives an example of
how it is used. The smart wiper system automatically adjusts wiper speed and wiper interval.
A second system demonstrates a fuzzy HVAC system. Table 6.2 lists the functions and scripts
included in the companion code. Fuzzy helper functions are grouped in Table 6.3.

189

CHAPTER 6 FUZZY LOGIC

Table 6.2: Chapter code listing

File Description
BuildFuzzySystem Builds a fuzzy logic system (data structure) using

parameter pairs
SmartWipersSystem Creates and returns the smart wipers data structure
SmartWipersDemo Demonstrates a fuzzy logic control system for

windshield wipers
FuzzyPlot Plots a fuzzy set
FuzzyInference Performs fuzzy inference given a fuzzy system and

crisp data x
FuzzyRand Creates a random set of inputs from a fuzzy system
HVACSim Heating ventilation and air conditioning simulation
HVACSimplestFuzzyController Discrete output simplest rule controller
HVACFuzzyController Multi-input and output system fuzzy logic control

system for HVAC
HVACFuzzyPlot Plots the HVAC fuzzy controller rule base
PrintFuzzyRules Prints fuzzy rules in a system struct to the command

line

Table 6.3: Fuzzy helper function listing

CentroidDF Centroid defuzzification
GeneralBellMF General Bell membership function
GaussianMF Gaussian membership function
TriangleMF Triangle membership function
TrapezoidMF Trapezoid membership function
SigmoidalMF Displays a neural net with multiple layers
ClipIMP Clip implication function
ScaleIMP Scale implication function
FuzzyOR Fuzzy OR (maximum of membership values)
FuzzAND Fuzzy AND (minimum of membership values)

190

	6 Fuzzy Logic
	6.1 Building Fuzzy Logic Systems
	6.1.1 Problem
	6.1.2 Solution
	6.1.3 How It Works

	6.2 Implement Fuzzy Logic
	6.2.1 Problem
	6.2.2 Solution
	6.2.3 How It Works

	6.3 Window Wiper Fuzzy Controller
	6.3.1 Problem
	6.3.2 Solution
	6.3.3 How It Works

	6.4 Simple Discrete HVAC Fuzzy Controller
	6.4.1 Problem
	6.4.2 Solution
	6.4.3 How It Works

	6.5 Variable HVAC Fuzzy Controller
	6.5.1 Problem
	6.5.2 Solution
	6.5.3 How It Works

	6.6 Summary

