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Fuzzy logic [30] is an alternative approach 
to control system design. Fuzzy logic works 
within the framework of set theory and is better 
at dealing with ambiguities. For example, three 
sets might be defined for a sensor: hard failure, 
soft failure, and no failure. The three sets might 
overlap, and at any given time, the sensor may 
have a degree of membership in each set. In ef-
fect, you would be applying a degree of fuzzi-
ness. The degree of membership in each set can 
be used to determine what action to take. An algorithmic approach would have to assign a num-
ber to the state of the sensor. This could be problematic and not necessarily represent the actual 
state of the system. 

When you go to a doctor with pain, the doctor will often try and get you to convert a sub-
jective concept, pain, into a number from 0 to 10. As pain is personal and your impression is 
imprecise, you are giving a fuzzy concept or belief a hard number. As you may have experi-
enced, this is not always productive or useful. 

Surveys do the same thing. For example, you will be asked to rate the service in a restaurant 
from 0 to 5. You then rate a bunch of other things on the same scale. This allows the review 
to come up with a number for your overall impression of the restaurant. Does the resulting 4.8 
mean anything? Netflix abandoned the numerical ratings of movies you have seen for thumbs 
up and down. It seems that they felt that a binary decision, really two sets, was a better data 
point than a number. 

NASA and the US Department of Defense like to use technology readiness levels (TRLs) 
that go from 1 to 9 to determine where your work is in terms of readiness. Nine is a technology 
already operating in a target system. One is just an idea. All the other levels are fuzzy for 
anything moderately complicated. Even giving a technology a 9 is not informative. The M-16 
rifle was deployed to Vietnam. It often jammed. In terms of TRL, it was 9, but a 9 doesn’t say 
how well it is working. Again, the readiness of the rifle, when you read soldiers’ and Marines’ 
impressions, was best represented by fuzzy beliefs. 
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CHAPTER 6 FUZZY LOGIC

This chapter will show you how to build a simple fuzzy logic engine and implement a fuzzy 
logic control system for windshield wipers. Unlike the other chapters, we will be working with 
linguistic concepts, not hard numbers. Of course, when you set your wiper motor speed, you 
need to pick a number (defuzzify your output), but all the intermediate steps employ fuzzy logic. 
A second example shows control of an HVAC system in a home. Traditional thermostats must be 
manually switched from heating to cooling, while modern heat pumps can switch automatically. 
We will compare a traditional control option with two fuzzy examples. 

6.1 Building Fuzzy Logic Systems 
6.1.1 Problem 

We want to have a tool to build a fuzzy logic controller. 

6.1.2 Solution 

Build a MATLAB function that takes parameter pairs that define everything needed for the 
fuzzy controller. This will be stored in a data structure. 

6.1.3 How It Works 

To create a fuzzy system, you must create inputs, outputs, and rules. You can also choose meth-
ods for some parts of the fuzzy inference. The fuzzy inference engine has three steps: 

1. Fuzzify the inputs 

2. Fire rules 

3. Defuzzify the outputs 

The fuzzy system data is stored in a MATLAB data structure. This structure has the following 
fields: 

• input (:) 

• output (:) 

• rules  (:)  

• implication (@) 

• aggregation (@) 

• defuzzify (@) 

The first three fields are arrays of struct arrays. There are separate structures for fuzzy sets and 
rules, described as follows. The last three fields are function handles for the implementation of 
these steps in the fuzzy process.
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CHAPTER 6 FUZZY LOGIC

The fuzzy set structure, which is the same for inputs and outputs of the system, has the 
following fields: 

• name  

• range (2) (two-element array with minimum and maximum values) 

• comp  {:} (cell array of label strings) 

• type {:} (cell array of membership function handles) 

• params {:} (cell array of parameter vectors) 

The fuzzy rule struct has the following fields: 

• input (:) (vector of input component numbers) 

• output (:) (vector of outputs) 

• operator {:} (cell array of operator function handles) 

Defuzzification requires three steps: implication, aggregation, and the defuzzification of the 
aggregate. These will be simply function handles. Implication applies the rule strength to the 
output membership functions, and aggregation combines this data from all the rules for each 
output across its range. The final defuzzification step produces a crisp value for each output. 

This is a lot of data to organize. We do it with the function BuildFuzzySystem. The  
following code snippet shows how it assigns data to the data structure using parameter pairs. 
The ’id’ field increments the index used for either the input, output, or rule. 

BuildFuzzySystem.m 

53 d =  struct; 
54 j = 1;  
55 

56 for k = 1:2:length(varargin) 
57 switch (lower(varargin{k})) 
58 case 'id' 
59 j = varargin{k+1}; 
60 case 'input comp' 
61 d.input(j).comp = varargin{k+1}; 
62 case 'input type' 
63 d.input(j).type = varargin{k+1}; 
64 case 'input name' 
65 d.input(j).name = varargin{k+1}; 
66 case 'input params' 
67 d.input(j).params = varargin{k+1}; 
68 case 'input range' 
69 d.input(j).range = varargin{k+1}; 
70 case 'output comp' 
71 d.output(j).comp = varargin{k+1};
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CHAPTER 6 FUZZY LOGIC

This code continues with other cases. Since the fuzzy variables are by nature linguistic, a 
section of code will map any string names of the fuzzy variables in the rule definitions into their 
numerical indices using contains, which will save computation later. 

BuildFuzzySystem.m 

103 % match rules to sets if cell array 
104 for k = 1:length(d.rules) 
105 inputs = d.rules(k).input; 
106 if iscell(inputs) 
107 nIn = length(inputs); 
108 input = zeros(1,nIn); 
109 for j = 1:nIn 
110 comp = d.input(j).comp; 
111 val = find(contains(comp,inputs(j))); 
112 if ˜isempty(val) 
113 input(j) = val; 
114 end 
115 end 
116 d.rules(k).input = input; 
117 end 
118 outputs = d.rules(k).output; 
119 if iscell(outputs) 
120 nOut = length(outputs); 
121 output = zeros(1,nOut); 
122 for j = 1:nOut 
123 comp = d.output(j).comp; 
124 val = find(contains(comp,outputs(j))); 
125 if ˜isempty(val) 
126 output(j) = val; 
127 end 
128 end 
129 d.rules(k).output = output; 
130 end 
131 end % array of rules 

The following is a snippet showing how to use BuildFuzzySystem, showing just the 
creation of the first input for the SmartWipers example. This example will be described fully in 
a later recipe. 

>> SmartWipers = BuildFuzzySystem(... 
'id',1,... 
'input comp',{'Dry' 'Drizzle' 'Wet'},... 
'input type', {@TrapezoidMF @TriangleMF @TrapezoidMF} 

,... 
'input params',{[0 0 10 50] [40 50] [50 90 101 101]},... 
'input range',[0 100],... 
'input name','Wetness') 

SmartWipers = 
struct with fields:
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input: [1x1 struct] 

>> SmartWipers.input(1) 

ans = 
struct with fields: 

comp: {'Dry' 'Drizzle' 'Wet'} 
type: {@TrapezoidMF @TriangleMF @TrapezoidMF} 

params: {[0 0 10 50] [40 50] [50 90 101 101]} 
range: [0 100] 
name: 'Wetness' 

Fuzzy sets in this context consist of a set of linguistic categories or components defining 
a variable. For instance, if the variable is “age,” the components might be “young,” “middle 
aged,” and “old.” Each fuzzy set has a range over which it is valid, for instance, a good range 
for “age” might be 0 to 100. Each component has a membership function that describes the 
degree to which a value in the set’s range belongs to each component. For instance, a person 
who is 50 would rarely be described as “young,” but might be described as “middle aged” or 
“old,” depending on the person asked. 

To build a fuzzy set, you must divide the variable into components. The simplest are tri-
angles and trapezoids. The following membership functions are provided with this recipe: tri-
angular, trapezoidal, Gaussian, general bell, and sigmoidal. Membership functions are limited 
in value to between zero and one. The membership functions are shown in Figure 6.1 and de-
scribed further as follows: 

Triangle: The triangular membership function requires two parameters: the center of the trian-
gle and the half-width of the desired triangle base. Triangular membership functions are 
limited to symmetric triangles. 

Trapezoid: The trapezoid membership function requires four parameters: the leftmost point, the 
start of the plateau, the end of the plateau, and the rightmost points. 

Gaussian: A Gaussian membership function is a continuous function with two parameters: the 
center of the bell and the width (standard deviation) of the bell. Gaussian membership 
functions are symmetric. 

Bell: A general bell function is also continuous and symmetric, but it has three parameters 
to allow for a flattened top, making it similar to a smoothed trapezoid. It requires three 
parameters: the center of the bell, the width of the bell at points y = 0.5, and the slope of 
the function at points y = 0.5. 

Sigmoid: Just as a bell function is similar to a smoothed trapezoid, a sigmoidal membership 
function is similar to a smoothed step function. It takes two parameters: the point at which 
y = 0.5 and the slope of the function. As the slope approaches infinity, the sigmoidal 
function approaches the step function.
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Example of Gaussian Membership Function 

Parameter values: [2 5] 
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Example of General Bell Membership Function 

Parameter values: [2 2 5] 
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Example of Sigmoidal Membership Function 

Parameter values: [1 6] 

Parameter values: [-0.1 3] 
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Example of Trapezoid Membership Function 

Parameter values: [1 3 5 7] 

Figure 6.1: Membership functions 

Fuzzy rules are if-then statements. For example, an air conditioner rule might say IF the 
room temperature IS high, THEN the blower level IS high. In this case, “room temperature” 
is the input fuzzy set, “high” is its component for this rule, “blower level” is the output fuzzy 
set, and “high” is its chosen component. Rules may combine inputs with either an AND or 
an OR operator. The AND operator is the minimum of the membership values, while the OR 
operator returns the maximum of the values. In our structure, the rules use numeric indices for 
the components of each input and output for computational efficiency. An example is 

>> d.rules(1) 

ans = 

struct with fields: 

input: [1 1] 
output: [1 3] 

operator: @FuzzyAND 

This structure for a fuzzy system is supported by a set of helper functions for the fuzzy 
operations. This includes membership functions, with an MF suffix; operators, namely AND 
and OR; implication functions with an IMP suffix; and defuzzification. The following list gives
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all the support functions provided with this chapter. This is not an exhaustive list of algorithms, 
and other commercial or open source tools may provide additional methods: 

• Membership functions 

– TriangleMF.m, GaussianMF.m, GeneralBellMF.m, SigmoidalMF.m, 
TrapezoidMF.m 

• Fuzzy operators, for rules 

– FuzzyAND.m, FuzzyOR.m 

• Implication 

– ScaleIMP.m, ClipIMP.m 

• Aggregation 

– max 

• Defuzzification 

– CentroidDF.m 

6.2 Implement Fuzzy Logic 
6.2.1 Problem 

We want to implement fuzzy logic. 

6.2.2 Solution 

Build a fuzzy inference engine. This will be a function that calls the steps in fuzzy inference 
given a fuzzy system as defined in the previous recipe, using function handles to specify options 
within the algorithm. 

6.2.3 How It Works 

Let’s repeat the three steps in fuzzy inference, adding the substeps within Defuzzify: 

1. Fuzzify 

2. Fire 

3. Defuzzify 

(a) Implication 

(b) Aggregation 

(c) Defuzzify the aggregate
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The control flow is in the main function, called FuzzyInference. It just calls subfunctions 
Fuzzify, Fire, and  Defuzzify in order. It calls warndlg if the inputs are not sensible. 

FuzzyInference.m 

29 function [y,data] = FuzzyInference( x, system, verbosity ) 
39 if length(x) == length( system.input ) 
40 fuzzyX = Fuzzify( x, system.input ); 
41 strength = Fire( fuzzyX, system.rules ); 
42 y = Defuzzify( strength, system, x ); 
43 else 
44 warndlg({'The length of x must be equal to the',... 
45 'number of input sets in the system.'}) 
46 end 

Since this function is written for educational purposes, we added an informational output 
struct. This includes the extra step of fuzzifying the outputs after the crisp value is computed 
from the rules. Therefore, we can examine both fuzzyX and fuzzyY as well as the strength of 
the rules firing. 

FuzzyInference.m 

48 if (nargout>1) 
49 data.x = x; 
50 data.fuzzyX = fuzzyX; 
51 data.strength = strength; 
52 data.fuzzyY = Fuzzify( y, system.output ); 
53 data.y = y; 
54 end 

You will notice, in the body of functions, the use of feval to evaluate function handles as 
the input. Earlier versions of this tool used strings for the function names with eval, but using 
handles is now a much faster option than evaluating strings. You pass in the inputs after the 
handle which can be any expression or variable. For example, for the function 

function y = MyFun(x) 
y = x;  

You can evaluate it with a number or a variable or an expression, such as 

>> feval(@MyFun,2) 

ans = 
2 

>> feval(@MyFun,sin(2)) 

ans = 
0.9093
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TIP Use feval instead of eval whenever possible. 

The Fuzzify subfunction code is shown as follows. It evaluates the degree of membership 
of the inputs in each membership set. 

FuzzyInference.m 

56 function fuzzyX = Fuzzify( x, sets ) 
57 %% Fuzzify the inputs with the type function 
58 % fuzzyX = Fuzzify( x, sets ) 
65 n =  length(sets); 
66 fuzzyX = cell(1,n); 
67 for i = 1:n 
68 nC = length(sets(i).comp); 
69 range = sets(i).range(:); 
70 if (range(1) <= x(i)) && (x(i) <= range(2)) 
71 for j = 1:nC 
72 fuzzyX{i}(j) = feval(sets(i).type{j},x(i),sets(i).params{j}); 
73 end 
74 else 
75 fuzzyX{i}(1:nC) = zeros(1,nC); 
76 end 
77 end 

The fuzzy rule logic is shown in the following code. The code applies “Fuzzy AND” or 
“Fuzzy OR.” “Fuzzy AND” is the minimum of a set of membership values. “Fuzzy OR” is the 
maximum of a set of membership values. Suppose we have a vector [1 0 1 0]. The maximum 
value is 1 and the minimum is 0. 

>>  1 && 0 &&  1 && 0  

ans = 

logical 
0 

>>  1 || 0 ||  1 || 0  

ans = 

logical 
1 

This corresponds to the fuzzy logic AND and OR. 
The next code snippet shows the Fire subfunction in FuzzyInference. “Firing” a rule is  

the process of applying the rule operators to the fuzzified inputs. This determines the numerical 
strength of each rule using the specific membership values of the inputs.
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FuzzyInference.m 

81 function strength = Fire( FuzzyX, rules ) 
82 %% Fire a rule using the specified rules.operator function 
83 % strength = Fire( FuzzyX, rules ) 
90 p =  length( rules ); 
91 n =  length( FuzzyX ); 
92 

93 strength = zeros(1,p); 
94 

95 for i = 1:p 
96 method = rules(i).operator; 
97 dom = zeros(1,n); 
98 for j = 1:n  
99 comp = rules(i).input(j); 
100 if comp ˜= 0 
101 dom(j) = FuzzyX{j}(comp); 
102 else 
103 dom(j) = inf; 
104 end 
105 end 
106 strength(i) = feval(method,dom(dom<=1)); 
107 end 

Finally, we defuzzify the results. This function first uses the implication function to deter-
mine membership. It aggregates the output using the aggregate function which, in this case, is 
max. The final step to computing the crisp values is computing the centroid of the aggregate. 
For explanatory purposes, this function is annotated with a plot capability of the defuzzification 
if “verbose” output is requested. 

FuzzyInference.m 

111 function [result,aggregate] = Defuzzify( strength, system, xIn ) 
112 %% Defuzzify the rule output 
113 % result = Defuzzify( strength, system ) 
120 rules = system.rules; 
121 output = system.output; 
122 

123 m =  length( output ); 
124 p =  length( rules ); 
125 impfun = system.implicate; 
126 aggfun = system.aggregate; 
127 defuzz = system.defuzzify; 
128 

129 nPts = 200; 
130 result = zeros(1,m); 
131 

132 if verbose 
133 figure('name','Fuzzy Inference') 
134 subplot(m,1,1); hold on; 
135 xstr = num2str(xIn);
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136 title(sprintf('Fuzzy output for [%s]',xstr)) 
137 end 
138 

139 for i = 1:m 
140 if verbose 
141 subplot(m,1,i); hold on; grid on; 
142 end 
143 range = output(i).range(:); 
144 xO = linspace( range(1),range(2),nPts ); 
145 mem = zeros(p,nPts); 
146 % precompute membership for the output set 
147 ls = []; 
148 label = {}; 
149 nC = length(output(i).type); 
150 ymf = zeros(nC,nPts); 
151 for k = 1:nC 
152 mfun = output(i).type{k}; 
153 params = output(i).params{k}; 
154 ymf(k,:) = feval(mfun,xO,params); 
155 if verbose 
156 plot(xO,ymf(k,:),'-.','linewidth',1); 
157 end 
158 end 
159 % compute the membership for each fired rule 
160 for j = 1:p  
161 comp = rules(j).output(i); 
162 if( comp ˜= 0 ) && strength(j)>0 
163 mem(j,:) = feval(impfun, ymf(comp,:),strength(j)); 
164 if verbose 
165 ls(end+1) = plot(xO,mem(j,:),'linewidth',1); 
166 label{end+1} = [num2str(j) ' ('  num2str(strength(j),3) ')' 

]; 
167 end 
168 else 
169 mem(j,:) = zeros(size(xO)); 
170 end 
171 end % rules 
172 aggregate = feval(aggfun,mem); 
173 result(i) = feval(defuzz,aggregate,xO); 
174 if verbose 
175 plot(xO,aggregate,'k--','linewidth',2); 
176 yy = axis; 
177 plot(result(i)*[1 1],yy(3:4),'r','linewidth',3) 
178 text(result(i),yy(3) + 0.75*(yy(4)-yy(3)),sprintf(' %g',result 

(i))) 
179 xlabel(output(i).name) 
180 if i == 1  
181 ll = legend(ls,label,'location','best'); 
182 ll.Title.String = 'Rules'; 
183 end 
184 end
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185 end % outputs 

The plots in Figure 6.2 show the total defuzzification process. First, the membership sets of 
each variable are drawn in dash-dot lines in the background of the plot. Each rule designates a 
fuzzy output. The implication function combines the strength of the rule with the membership 
function of that fuzzy output. Clip implication takes the minimum at each point, so the strength 
limits the membership value. Scale implication uses the product of the strength and the mem-
bership. Rules with nonzero strength are plotted as shown with the solid lines, and those rules 
with nonzero firing strength are shown in the legend. Aggregation then combines the output 
from each rule into a single vector of membership for the output across its range. The final step 
is defuzzification of this array, in our case with centroiding via CentroidDF. The final crisp 
value is designated by the thick red line and labeled with the crisp value. 
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Figure 6.2: Fuzzy rule plot for smart wipers
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6.3 Window Wiper Fuzzy Controller 
6.3.1 Problem 

We want a control system to select window wiper speed and interval based on rainfall. This is 
an implementation of the SmartWipers automatic windshield wiper control system from Cheok 
[8]. The inputs to the control system are the rain wetness and intensity, and the outputs are the 
wiper speed and interval. 

6.3.2 Solution 

Build a fuzzy logic control system using the tools we’ve developed. First, we will write a func-
tion to create the fuzzy system data structure, then a demo script to use it. 

6.3.3 How It Works 

To call a fuzzy system, use the function y = FuzzyInference( x, system ). 
The script SmartWipersDemo implements the rainfall demo. The demo loads the fuzzy 

system from the function SmartWipersSystem, which uses BuildFuzzySystem from 
Recipe 6.1. The following code performs the fuzzy inference on a full range of the two inputs. 

SmartWipersDemo.m 

21 % Generate regularly space arrays in the 2 inputs 
22 n = 30; % Number of samples 
23 x =  linspace(SmartWipers.input(1).range(1),SmartWipers.input(1).range 

(2),n); 
24 y =  linspace(SmartWipers.input(2).range(1),SmartWipers.input(2).range 

(2),n); 
25 

26 % Perform fuzzy inference over the input range 
27 z1 = zeros(n,n); 
28 z2 = zeros(n,n); 
29 for k = 1:n 
30 for j = 1:n  
31 temp = FuzzyInference([x(k),y(j)], SmartWipers); 
32 z1(k,j) = temp(1); 
33 z2(k,j) = temp(2); 
34 end 
35 end 

First, the demo will plot the input and output fuzzy variables using FuzzyPlot. Fuzzy 
inference is performed on each set of crisp inputs plotted. Figure 6.3 shows the inputs to 
the fuzzy logic system. Figure 6.4 shows the outputs. The rule base is displayed using 
PrintFuzzyRules and plotted using surf. 

The inputs that are tested in the fuzzy logic system demo are given in Figure 6.5. This is  
just the full range of each input.
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Figure 6.3: Rain wetness and intensity are the inputs for the smart wiper control system 
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Figure 6.4: Wiper speed and interval are the outputs for the smart wiper control system 

The printed rules are shown as follows: 

>> SmartWipersDemo 

1. if Wetness is Dry FuzzyAND Intensity is Light then Speed is Stop 
Interval is Long 

2. if Wetness is Dry FuzzyAND Intensity is Medium then Speed is Slow 
Interval is Long 

3. if Wetness is Dry FuzzyAND Intensity is Heavy then Speed is Slow 
Interval is Short 

4. if Wetness is Drizzle FuzzyAND Intensity is Light then Speed is 
Slow Interval is Long 

5. if Wetness is Drizzle FuzzyAND Intensity is Medium then Speed is 
Slow Interval is Short
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Figure 6.5: Rain wetness and intensity input numbers 

6. if Wetness is Drizzle FuzzyAND Intensity is Heavy then Speed is 
Slow Interval is Zero 

7. if Wetness is Wet FuzzyAND Intensity is Light then Speed is Slow 
Interval is Short 

8. if Wetness is Wet FuzzyAND Intensity is Medium then Speed is Fast 
Interval is Short 

9. if Wetness is Wet FuzzyAND Intensity is Heavy then Speed is Fast 
Interval is Zero 

Figure 6.6 gives surface plots to show how the outputs relate to the inputs via the rules. The 
surface plots are generated by the following code. We add a colorbar to make the plot more 
readable. The color is related to z value. We use view in the second plot to make it easier to 
read the figure. You can use rotate3d on to allow you to rotate the figure with the mouse. 

SmartWipersDemo.m 

41 % Plot the outputs as surfaces 
42 NewFigure('Wiper Speed from Fuzzy Logic'); 
43 surf(x,y,z1) 
44 xlabel('Raindrop Wetness') 
45 ylabel('Droplet Frequency') 
46 zlabel('Wiper Speed') 
47 colorbar 
48 

49 NewFigure('Wiper Interval from Fuzzy Logic'); 
50 surf(x,y,z2) 
51 xlabel('Raindrop Wetness') 
52 ylabel('Droplet Frequency')
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Figure 6.6: Wiper speed and interval vs. droplet frequency and wetness 

53 zlabel('Wiper Interval') 
54 view([142.5 30]) 
55 colorbar 

TIP Use rotate3d on to rotate a figure with the mouse. 

The SmartWipersTest script tests the fuzzy inference using random inputs generated over 
the input range. This is done using the FuzzyRand function as follows. 

FuzzyRand.m 

1 %% FUZZYRAND Compute random inputs within range of the fuzzy input sets 
2 %% Inputs 
3 % system (.) Fuzzy system from BuildFuzzySystem 
4 %% Outputs 
5 % y (n) Random crisp values of the inputs 
6 

7 function y = FuzzyRand(system) 
8 

9 if nargin==0 
10 system = SmartWipersSystem; 
11 y = FuzzyRand(system) 
12 return; 
13 end 
14 

15 nIn = length(system.input); 
16 y =  ones(1,nIn); 
17 

18 for k = 1:nIn 
19 range = system.input(k).range; 
20 y(k) = range(1) + (range(2)-range(1))*rand(1); 
21 end
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The demo then prints out the crisp and fuzzy values of the inputs and outputs including 
the strength of the rules. This can provide useful insight when you are developing a new fuzzy 
system. In the random inputs captured as follows, the rain wetness is both drizzle and wet, the 
intensity is evenly split between medium and heavy, and the output is a slow speed with a short 
interval: 

>> SmartWipersTest
------
Inputs
------
Wetness
----
Crisp: 64.4673 
Range: 0 to 100 

Set Value 
___________ _______ 

{'Dry' } 0 
{'Drizzle'} 0.63832 
{'Wet' } 0.36168 

Intensity
----
Crisp: 152.816 
Range: 0 to 250 

Set Value 
__________ _______ 

{'Light' } 0 
{'Medium'} 0.47184 
{'Heavy' } 0.52816 

Strength of rule firings:
----

Input Output Fire Strength 
_______ _______ _____________ 

{[1 1]} {[1 3]} 0 
{[1 2]} {[2 3]} 0 
{[1 3]} {[2 2]} 0 
{[2 1]} {[2 3]} 0 
{[2 2]} {[2 2]} 0.47184 
{[2 3]} {[2 1]} 0.52816 
{[3 1]} {[2 2]} 0 
{[3 2]} {[3 2]} 0.36168 
{[3 3]} {[3 1]} 0.36168

-------
Outputs
-------
Speed
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----
Crisp: 6.48238 
Range: 0 to 10 

Set Value 
________ _____ 

{'Stop'} 0 
{'Slow'} 1 
{'Fast'} 0 

Interval
----
Crisp: 8.14129 
Range: 0 to 20 

Set Value 
_________ _____ 

{'Zero' } 0 
{'Short'} 1 
{'Long' } 0 

6.4 Simple Discrete HVAC Fuzzy Controller 
6.4.1 Problem 

We want a control system to automatically switch between air conditioning and heating. 

6.4.2 Solution 

Build a fuzzy logic control system that can turn on the heating system and air conditioning 
based on the air temperature. 

6.4.3 How It Works 

Most older heating, ventilation, and air conditioning systems require the user to pick “AC” and 
“heat” modes. This doesn’t work very well when the temperature is varying a lot from day to 
day such as during the fall or spring of a region, like New England in the United States, where 
the temperature varies significantly over the year. 

The first step is fuzzifying the input. In the simplest implementation of the control system, 
there are two input variables: the measured internal temperature of the house and the target 
or setpoint temperature. The fuzzy categories are shown in Figure 6.7. These are overlapping 
trapezoids with the temperature in Celsius. 

A simple fuzzy control matrix using these variables is shown in Table 6.1. This is the set 
of rules for the fuzzy controller in HVACSimplestFuzzyController. The rules are com-
bined based on the degree of membership of the internal and target temperature in the different 
categories. 

The dynamical model we will use to simulate the house temperature as a result of the control 
system is illustrated in Figure 6.8.
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Figure 6.7: Temperature categories (C) for HVAC 

Table 6.1: The set of rules for the fuzzy HVAC system. The current value is in the top row; the target is 
in the first column 

Cold Cool Temperate Warm Hot 
Cold No change AC AC AC AC 
Cool Heat No change AC AC AC 
Temperate Heat Heat No change AC AC 
Warm Heat Heat Heat No change AC 
Hot Heat Heat Heat Heat No change 

Figure 6.8: House model 

The dynamical equations are 

.mCp
dTi

dt
= kA(Te − Ti) + qh − qc (6.1)
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m is the thermal mass of the air in the house. A is the surface area of the house. . Cp is the 
specific heat of air. k is the average thermal conductivity of the walls. . qh is the heater flux, and 
. qc is the air conditioning flux. Both are positive. The dynamic model is shown in the following 
code. 

HVACSim.m 

109 function [dT,qL] = RHS(˜,tI,d) 
110 %% Simulation right hand side (dynamics) 
111 % Model the changing internal temperature of the house given the HVAC 
112 % output and the external temperature. 
113 % 
114 % [dT,qL] = RHS(˜,tI,d) 
115 % 
116 % dT: change in internal temperature 
117 % qL: heat load on the house from outside 
118 

119 qL = d.k*d.A*(d.tE-tI); 
120 dT = (qL + d.qH - d.qC)/(d.cP*d.m); 

The simulation has two sets of initial conditions at the top: one in which the AC mode will 
be triggered, that is, a warm day, and one in which the heat will be triggered, a cold day. 

HVACSim.m 

24 % A/C example 
25 %%{ 
26 tSet = 297; % Set point temperature (deg-K) 
27 tI = tSet+3; % Initial internal temperature (deg-K) 
28 delT = 10; % Celsius 
29 tE = [ones(1,iS)*(tI + delT) ones(1,n-iS)*(tI - delT) ]; 
30 %} 
31 

32 % Heat example 
33 %%{ 
34 tSet = 294; % Set point temperature (deg-K) 
35 tI = tSet-10; % Initial internal temperature (deg-K) 
36 tE = [ones(1,iS)*(tI - 20) ones(1,n-iS)*(tI - 10) ]; 
37 %} 

A standard bang-bang controller has a deadband and hysteresis. The following code shows 
the controller. The controller makes its decision to switch from heating to cooling based on 
the previous heating/cooling command and the demand. Note that it continues heating/cooling 
through 90% of the deadband. This prevents limit cycling. 

HVACSim.m 

124 function q = Controller(t,tSet,tDB,q,qMax) 
125 %% Non-fuzzy Controller with hysteresis 
126 % Typical crisp controller with a deadband and hysteresis
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127 % 
128 % q = Controller(t,tSet,tDB,q,qMax) 
129 

130 if( q < 0 )  
131 if( t < tSet - 0.9*tDB) 
132 q = 0;  
133 end 
134 elseif( q > 0 )  
135 if( t > tSet + 0.9*tDB) 
136 q = 0;  
137 end 
138 else 
139 if( abs(t - tSet) > tDB ) 
140 if( t > tSet) 
141 q = -qMax; 
142 elseif ( t < tSet ) 
143 q = qMax; 
144 end 
145 end 
146 end 

The performance is shown in Figure 6.9. In this case, the external temperature drops 15 
degrees Celsius in the middle of the simulation, and the heating system switches from heating to 
cooling. Hysteresis keeps the HVAC from shifting between heat and cool when the temperature 
crosses the setpoint. 

The fuzzy controller has two modes, initialize and update. The initialize mode creates the 
fuzzy controller data structure. The following code shows the initialization through the first two 
rules. 
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Figure 6.9: Non-fuzzy hysteresis controller performance
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HVACSimplestFuzzyController.m 

9 function [q,cat] = HVACSimplestFuzzyController(mode,tI,tSet,d) 
21 case 'initialize' 
22 if nargin<2 
23 qMax = 1000; 
24 else 
25 qMax = tI; 
26 end 
27 

28 % External and set point temps 
29 bT = [0 4 6 10]; % 4 vertices of each input trapezoid 
30 oT = [10 15 20 25 30]; 
31 iP = cell(1,5); 
32 for k = 1:5 
33 iP{k} = bT + oT(k); 
34 end 
35 

36 % Define an arbitrary output range, 0 to 6 for the mode 
37 oP = {[0 0 1.5 2.5] [1.5 2 4 4.5] [3.5 4.5 6 6]}; 
38 

39 d = BuildFuzzySystem(... 
40 'id',1,... 
41 'input comp',{'Cold' 'Cool' 'Temperate' 'Warm' 'Hot'} ,... 
42 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF 

@TrapezoidMF @TrapezoidMF} ,... 
43 'input params',iP,... 
44 'input range',[bT(1) + oT(1) + eps bT(4)+ oT(5) - eps],... 
45 'input name','Temperature',... 
46 'id',2,... 
47 'input comp',{'Cold' 'Cool' 'Temperate' 'Warm' 'Hot'} ,... 
48 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF 

@TrapezoidMF @TrapezoidMF} ,... 
49 'input params',iP,... 
50 'input range',[bT(1) + oT(1) bT(4)+ oT(5)],... 
51 'input name','Target',... 
52 'id',1,... 
53 'output comp',{'AC' 'None' 'Heat'},... 
54 'output type',{@TrapezoidMF @TrapezoidMF @TrapezoidMF},... 
55 'output params',oP,... 
56 'output name','Setting',... 
57 'output range',[0 6],... 
58 'implicate',@ClipIMP,... 
59 'aggregate',@max,... 
60 'defuzzify',@CentroidDF,... 
61 'id',1,... 
62 'rule input',[1 1],... 
63 'rule output',2,... 
64 'rule operator',@FuzzyAND,... 
65 'id',2,... 
66 'rule input',[2 2],... 
67 'rule output',2,...
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Figure 6.10: Fuzzy controller output set (arbitrary mode setting) 

68 'rule operator',@FuzzyAND,... 

The logic uses fuzzy AND only. 
The following script plots the inputs to the simple fuzzy HVAC controller, which are the 

current temperature and the desired temperature, and the outputs. The output categories are 
shown in Figure  6.10. 

HVACFuzzyPlot.m 

1 %% Plot the HVAC fuzzy controller 
2 

3 h =  waitbar(0,'HVAC Demo: plotting the rule base'); 
4 

5 dFuzzy = HVACSimplestFuzzyController('initialize'); 
6 n = 30; % Number of samples 
7 

8 x =  linspace(dFuzzy.input(1).range(1),dFuzzy.input(1).range(2),n); 
9 y =  linspace(dFuzzy.input(2).range(1),dFuzzy.input(2).range(2),n+2); 
10 

11 z =  zeros(n,n+2); 
12 for k = 1:n 
13 for j = 1:n+2 
14 z(k,j) = FuzzyInference([x(k),y(j)], dFuzzy); 
15 end 
16 waitbar(k/n) 
17 end 
18 close(h);
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Figure 6.11: Fuzzy controller inputs and outputs 

19 

20 NewFigure('State from Fuzzy Logic'); 
21 surf(x,y,z'); 
22 xlabel(dFuzzy.input(1).name) 
23 ylabel(dFuzzy.input(2).name) 
24 zlabel('State') 
25 colorbar 

The results of  the rule base are shown in Figure  6.11. 
The simulation run with the fuzzy controller is shown in Figure 6.12. This is achieved by  

setting both useFuzzy and useSimple flags at the top of HVACSim to true. The simulation 
is much slower than the one using hysteresis. Note the deadband issue with the output to the 
HVAC; the temperature of the house is held constant in the face of the large external load . ql, 
but the system is constantly switching on and off to do so. 

6.5 Variable HVAC Fuzzy Controller 
6.5.1 Problem 

The discrete fuzzy controller has a deadband issue. Modern HVAC, such as heat pumps, may 
have a variable setting, which will produce a smoother result.
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Figure 6.12: Fuzzy simulation results 

6.5.2 Solution 

In this version of the controller, we will have different inputs, rules, and outputs. The inputs 
will be the external temperature and the delta temperature from the setpoint. There will be a 
mode output and a value output which can be anywhere in the range, either negative from AC 
or positive for heat. There are less rules: if the delta is large, set the system on high; if it’s 
smaller, set the system on low; and if it’s close to the setpoint, keep the system off. 

6.5.3 How It Works 

As before, we build the system in an initialize section of the function. We then run the in-
ference and compute the control output in an update section. A demo function will run if the 
function is called with no inputs, which plots the rule base. In this case, we used the string 
values of the fuzzy inputs and outputs to define the rules, which will be converted to indices by 
BuildFuzzySystem. 

HVACFuzzyController.m 

1 %% Fuzzy logic control system for HVAC 
7 %% Form: 
8 % d = HVACFuzzyController('initialize',qMax) 
9 % [d,q] = HVACFuzzyController('update',tE,t,tSet,d) 
10 % 
25 function [q,cat] = HVACFuzzyController(mode,tE,tI,tSet,d)

181



CHAPTER 6 FUZZY LOGIC

26 

27 if( nargin < 1)  
28 Demo; 
29 return 
30 end 
31 

32 %% Initialize 
33 % Create the system 
34 switch mode 
35 case 'initialize' 
36 if nargin<2 
37 qMax = 1000; 
38 else 
39 qMax = tE; 
40 end 
41 oP = {qMax*[0 0 0.2 0.2] qMax*[0.2 0.3 0.5 0.6] qMax*[0.5 0.7 1.01 

1.01]}; 
42 

43 d = BuildFuzzySystem(... 
44 'id',1,... 
45 'input comp',{'Cold' 'Temperate' 'Hot'} ,... 
46 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF} 

,... 
47 'input params',{[-11 -11 50 70] [60 70 75 80] [70 80 111 

111]},... 
48 'input range',[-10 110],... 
49 'input name','Ext Temp (F)',... 
50 'id',2,... 
51 'input comp',{'Chilly' 'OK' 'Warm'} ,... 
52 'input type', {@TrapezoidMF @TrapezoidMF @TrapezoidMF} 

,... 
53 'input params',{[-21 -21 -8 0] [-5 -1 1 5] [0 8 21 

21]},... 
54 'input range',[-20 20],... 
55 'input name','Delta-Temp (F)',... 
56 'id',1,... 
57 'output comp',{'AC' 'Off' 'Heat'},... 
58 'output type',{@TrapezoidMF @TrapezoidMF @TrapezoidMF 

},... 
59 'output params',{[-1.1 -1.1 -0.5 0] [-0.5 0 0 0.5] [0 0.5 

1.1 1.1]},... 
60 'output name','Mode',... 
61 'output range',[-1 1],... 
62 'id',2,... 
63 'output comp',{'Zero' 'Low' 'High'},... 
64 'output type',{@TrapezoidMF @TrapezoidMF @TrapezoidMF 

},... 
65 'output params',oP,... 
66 'output name','Output',... 
67 'output range',[0 qMax],... 
68 'id',1,... % Cold and Too cold, Heat/high
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69 'rule input',{'Cold','Chilly'},... 
70 'rule output',{'Heat','High'},... 
71 'rule operator',@FuzzyAND,... 
72 'id',2,... % temperate and too cold, Heat/low 
73 'rule input',{'Temperate','Chilly'},... 
74 'rule output',{'Heat','Low'},... 
75 'rule operator',@FuzzyAND,... 
76 'id',3,... % Hot and too cold, AC/off 
77 'rule input',{'Hot','Chilly'},... 
78 'rule output',{'Off','Zero'},... 
79 'rule operator',@FuzzyAND,... 
80 'id',4,... % Cold and OK, Heat/zero 
81 'rule input',{'Cold','OK'},... 
82 'rule output',{'Off','Zero'},... 
83 'rule operator',@FuzzyAND,... 
84 'id',5,... % temperate and OK, off/off 
85 'rule input',{'Temperate','OK'},... 
86 'rule output',{'Off','Zero'},... 
87 'rule operator',@FuzzyAND,... 
88 'id',6,... % Hot and OK, AC/off 
89 'rule input',{'Hot','OK'},... 
90 'rule output',{'Off','Zero'},... 
91 'rule operator',@FuzzyAND,... 
92 'id',7,... % Cold and too hot, Heat/off 
93 'rule input',[1 3],... 
94 'rule output',[2 1],... 
95 'rule operator',@FuzzyAND,... 
96 'id',8,... % temperate and too hot, AC/low 
97 'rule input',[2 3],... 
98 'rule output',[1 2],... 
99 'rule operator',@FuzzyAND,... 
100 'id',9,... % Hot and too hot, AC/high 
101 'rule input',[3 3],... 
102 'rule output',[1 3],... 
103 'rule operator',@FuzzyAND,... 
104 'implicate',@ScaleIMP,... 
105 'aggregate','sum',... 
106 'defuzzify',@CentroidDF); 
107 

108 cat = []; 
109 case 'update' 
110 kToC = 273; 
111 delta = (tI - tSet)*9/5; % in K  
112 tF = (tE-kToC)*9/5 + 32; % in F  
113 % expect internal temperature to be within specified range 
114 if tF>d.input(1).range(2) 
115 tF = d.input(1).range(2) - eps; 
116 elseif tF<d.input(1).range(1) 
117 tF = d.input(1).range(1) + eps; 
118 end 
119 % limit delta temperature range

q = d;  
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120 if delta>d.input(2).range(2) 
121 delta = d.input(2).range(2) - eps; 
122 elseif tF<d.input(2).range(1) 
123 delta = d.input(2).range(1) + eps; 
124 end 
125 [cat,data] = FuzzyInference([tF;delta], d); 
126 

127 mode = sign(cat(1)); 
128 if abs(cat(1))<0.01 
129 mode = 0; 
130 end 
131 q = mode*cat(2); 
132 

133 end 

In the update case, we check the inputs against the range and limit them if needed. This 
helps avoid numerical issues after the conversion from Celsius to Kelvin and allows us to have 
a smaller range for the delta variable without being concerned with large excursions in internal 
temperature. The mode output is computed using the sign function on the mode variable. If the 
mode value is very small, less than 0.01, we set the mode to 0. The final output setting requested 
of the HVAC, the q, is the product of the two variables. 

The plots which follow are produced by the demo. Figure 6.13 and Figure 6.14 show the 
system in- puts and outputs. Since there are only two inputs, we can again produce surface plots 
of the outputs in Figure 6.15, Figure 6.16, and Figure 6.17. 

HVACFuzzyController.m 

135 %% Demonstrate the controller 
136 function Demo 
137 

138 d = HVACFuzzyController('initialize'); 
139 

140 % Plot the fuzzy variables 
141 FuzzyPlot( d.input(1) ); 
142 FuzzyPlot( d.input(2) ); 
143 FuzzyPlot( d.output(1) ); 
144 FuzzyPlot( d.output(2) ); 
145 

146 PrintFuzzyRules( d ) 
147 

148 % differentiate btwn internal and external temp 
149 t =  linspace(d.input(1).range(1)+1e-12,d.input(1).range(2)-1e-12,51); 
150 t_K = 5/9*(t-32)+273; % convert input from C to K 
151 tSet = 297; % example setpoint (K) 
152 delta = linspace(d.input(2).range(1)+1e-12,d.input(2).range(2)-1e

-12,31); 
153 q =  zeros(length(delta),length(t_K)); 
154 mode = zeros(length(delta),length(t_K)); 
155 val = zeros(length(delta),length(t_K)); 
156 for k = 1:length(t)
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157 for j = 1:length(delta) 
158 [q(j,k),cat] = HVACFuzzyController('update',t_K(k),tSet+5/9*delta(j 

),tSet,d); 
159 mode(j,k) = cat(1); 
160 val(j,k) = cat(2); 
161 end 
162 end 
163 

164 NewFigure('HVAC Output from Fuzzy Logic'); 
165 surf(t,delta,q) 
166 xlabel('Outside Temperature (F)') 
167 ylabel('Delta (F)') 
168 zlabel('HVAC Output (W)') 
169 colorbar 
170 set(gca,'ydir','reverse') 
171 

172 NewFigure('HVAC Mode from Fuzzy Logic'); 
173 surf(t,delta,mode) 
174 xlabel('Temperature (F)') 
175 ylabel('Delta (F)') 
176 zlabel('HVAC Mode') 
177 colorbar 
178 set(gca,'ydir','reverse') 
179 

180 NewFigure('HVAC Value from Fuzzy Logic'); 
181 surf(t,delta,val) 
182 xlabel('Temperature (F)') 
183 ylabel('Delta (F)') 
184 zlabel('HVAC Value (W)') 
185 colorbar 
186 set(gca,'ydir','reverse') 
187 

188 tSet = 297; 
189 tI = tSet+5; 
190 Q =  zeros(size(t)); 
191 for k = 1:length(t) 
192 Q(k) = HVACFuzzyController('update',t_K(k),tSet+5,tSet,d); 
193 end 
194 

195 PlotSet(t_K,Q,'x label','T_e (K)','y label','Q (W)','plot title','Fuzzy 
HVAC'); 

196 y =  get(gca,'ylim'); 
197 line(tSet*[1;1],y,'color','r') 
198 line(tI*[1;1],y,'color','g') 
199 

200 tE = 280; 
201 tSet = 294; 
202 Q =  zeros(size(delta)); 
203 for k = 1:length(delta) 
204 Q(k) = HVACFuzzyController('update',tE,tSet+delta(k)*5/9,tSet,d); 
205 end
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Figure 6.13: The fuzzy inputs of the variable controller
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Figure 6.14: The fuzzy outputs of the variable controller 

206 PlotSet(delta,Q,'x label','\Delta T (F)','y label','Q (W)',... 
207 'figure title','Fuzzy HVAC','plot title',sprintf('Te = %g F',(tE-273) 

*9/5+32)); 

Here is the rule base: 

1. if Ext Temp (F) is Cold FuzzyAND Delta-Temp (F) is Chilly then Mode is Heat Output is High 
2. if Ext Temp (F) is Temperate FuzzyAND Delta-Temp (F) is Chilly then Mode is Heat Output is Low 
3. if Ext Temp (F) is Hot FuzzyAND Delta-Temp (F) is Chilly then Mode is Off Output is Zero 
4. if Ext Temp (F) is Cold FuzzyAND Delta-Temp (F) is OK then Mode is Off Output is Zero 
5. if Ext Temp (F) is Temperate FuzzyAND Delta-Temp (F) is OK then Mode is Off Output is Zero 
6. if Ext Temp (F) is Hot FuzzyAND Delta-Temp (F) is OK then Mode is Off Output is Zero
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Figure 6.15: The mode output of the variable controller following the reults 

Figure 6.16: The HVAC output of the variable controller 

7. if Ext Temp (F) is Cold FuzzyAND Delta-Temp (F) is Warm then Mode is Off Output is Zero 

8. if Ext Temp (F) is Temperate FuzzyAND Delta-Temp (F) is Warm then Mode is AC Output is Low 
9. if Ext Temp (F) is Hot FuzzyAND Delta-Temp (F) is Warm then Mode is AC Output is High 

Finally, we try this version of the controller in the simulation. The plots in Figures 6.18 and 
6.19 show results for both AC and heat. This updated fuzzy controller produces smooth results. 
Compare this to Figure 6.9 for the non-fuzzy bang-bang controller which produced limit cycling 
of the internal temperature. 

Additional work for this system could include adding another input for the humidity. The 
system would need to be matched with the capabilities of the actual HVAC system.
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Figure 6.17: The resulting combined AC or heat setting
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Figure 6.18: Simulation results for the variable controller for AC
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Figure 6.19: Simulation results for the variable controller for heat 

6.6 Summary 
This chapter demonstrated fuzzy logic. A windshield wiper demonstration gives an example of 
how it is used. The smart wiper system automatically adjusts wiper speed and wiper interval. 
A second system demonstrates a fuzzy HVAC system. Table 6.2 lists the functions and scripts 
included in the companion code. Fuzzy helper functions are grouped in Table 6.3.
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Table 6.2: Chapter code listing 

File Description 
BuildFuzzySystem Builds a fuzzy logic system (data structure) using 

parameter pairs 
SmartWipersSystem Creates and returns the smart wipers data structure 
SmartWipersDemo Demonstrates a fuzzy logic control system for 

windshield wipers 
FuzzyPlot Plots a fuzzy set 
FuzzyInference Performs fuzzy inference given a fuzzy system and 

crisp data x 
FuzzyRand Creates a random set of inputs from a fuzzy system 
HVACSim Heating ventilation and air conditioning simulation 
HVACSimplestFuzzyController Discrete output simplest rule controller 
HVACFuzzyController Multi-input and output system fuzzy logic control 

system for HVAC 
HVACFuzzyPlot Plots the HVAC fuzzy controller rule base 
PrintFuzzyRules Prints fuzzy rules in a system struct to the command 

line 

Table 6.3: Fuzzy helper function listing 

CentroidDF Centroid defuzzification 
GeneralBellMF General Bell membership function 
GaussianMF Gaussian membership function 
TriangleMF Triangle membership function 
TrapezoidMF Trapezoid membership function 
SigmoidalMF Displays a neural net with multiple layers 
ClipIMP Clip implication function 
ScaleIMP Scale implication function 
FuzzyOR Fuzzy OR (maximum of membership values) 
FuzzAND Fuzzy AND (minimum of membership values)
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