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Control systems need to react to the environ-
ment in a predictable and repeatable fashion. 
Control systems take measurements and use 
them to control the process. For example, a 
ship measures its heading and changes its rud-
der angle to attain a desired heading. 

Typically, control systems are designed and 
implemented with all of the parameters hard-
coded into the software. This works very well 
in most circumstances, particularly when the 
system is well known during the design process. When the system is not well defined or is 
expected to change significantly during operation, it may be necessary to implement learning 
control. For example, the batteries in an electric car degrade over time. This leads to less range. 
An autonomous driving system would need to learn that range was decreasing. This would be 
done by comparing the distance traveled with the battery’s state of charge. More drastic, and 
sudden, changes can alter a system. For example, in an aircraft, the air data system might fail 
due to a sensor malfunction. If GPS were still operating, the plane would want to switch to 
a GPS-only system. In a multi-input-multi-output control system, a branch may fail, due to a 
failed actuator or sensor. The system might have to be modified to operate branches in that case. 

Learning and adaptive control are often used interchangeably. In this chapter, you will learn 
a variety of techniques for adaptive control for different systems. Each technique is applied to a 
different system, but all are generally applicable to any control system. 

Figure 5.1 provides a taxonomy of adaptive and learning control. The paths depend on the 
nature of the dynamical system. The rightmost branch is tuning. This is something a designer 
would do during testing, but it could also be done automatically as will be described in the 
self-tuning Recipe 5.1. The next path is for systems that will vary with time. Our first example 
of a system with time-varying parameters applies Model Reference Adaptive Control (MRAC) 
for a spinning wheel. This is discussed in Section 5.2. 
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Figure 5.1: Taxonomy of adaptive or learning control 

The next example is ship control. Your goal is to control the heading angle. The dynamics 
of the ship are a function of the forward speed. While it isn’t learning from experience, it is 
adapting based on information about its environment. 

The last example is a spacecraft with variable inertia. This shows very simple parameter 
estimation. 

5.1 Self-Tuning: Tuning an Oscillator 
We want to tune a damper so that we critically damp a spring system for which the spring 
constantly changes. Our system will work by perturbing the undamped spring with a step and 
measuring the frequency using a Fast Fourier Transform. We then compute the damping using 
the frequency and add a damper to the simulation. We then measure the undamped natural 
frequency again to see that it is the correct value. Finally, we set the damping ratio to 1 and 
observe the response. The frequency is measured during operation, so this is an example of 
online learning. The system is shown in Figure 5.2. 

In Chapter 4, we introduced parameter identification in the context of Kalman Filters, which 
is another way of finding the frequency. The approach here is to collect a large sample of data 
and process it in batch to find the natural frequency. The equations for the system are 

.ṙ = v (5.1) 

mv̇ = −cv − kr (5.2)
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Figure 5.2: Spring-mass-damper system. The mass is on the right. The spring is on the top to the left 
of the mass. The damper is below. F is the external force, m is the mass, k is the stiffness, and c is the 
damping 

c is the damping and k is the stiffness. The damping term causes the velocity to go to zero. The 
stiffness term bounds the range of motion (unless the damping is negative). The dot above the 
symbols means the first derivative with respect to time. That is 

.ṙ =
dr

dt
(5.3) 

The equations state that the change in position with respect to time is the velocity, and the mass 
times the change in velocity with respect to time is equal to a force proportional to its velocity 
and position. The second equation is Newton’s law: 

.F = ma (5.4) 

where F is force, m is mass, and a is acceleration. 

TIP Weight is the mass times the acceleration of gravity. 

.F = −cv − kr (5.5) 

a = dv 
dt 

(5.6) 

5.1.1 Problem 

We want to identify the frequency of an oscillator and tune a control system to that frequency.
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5.1.2 Solution 

The solution is to have the control system measure the frequency of the spring. We will use an 
FFT to identify the frequency of the oscillation. 

5.1.3 How It Works 

The following script shows how an FFT identifies the oscillation frequency for a damped oscil-
lator. 

The function is shown in the following code. We use the RHSOscillator dynamical model 
for the system. We start with a small initial position to get it to oscillate. We also have a small 
damping ratio so it will damp out. The resolution of the spectrum is dependent on the number 
of samples: 

.r =
2π

nT
(5.7) 

where n is the number of samples and T is the sampling period. The maximum frequency is 

.ω =
nr

2
(5.8) 

The following shows the simulation loop and FFTEnergy call. 

FFTSim.m 

7 nSim = 2ˆ16; % Number of time steps 
8 dT = 0.1; % Time step (sec) 
9 dRHS = RHSOscillator; % Get the default data structure 
10 dRHS.omega = 0.1; % Oscillator frequency 
11 dRHS.zeta = 0.1; % Damping ratio 
12 x = [1;0]; % Initial state [position;velocity] 
13 y1Sigma = 0.001; % 1 sigma position measurement noise 
14 

15 %% Simulation 
16 xPlot = zeros(3,nSim); 
17 

18 for k = 1:nSim 
19 % Measurements 
20 y = x(1) + y1Sigma*randn; 
21 % Plot storage 
22 xPlot(:,k) = [x;y]; 
23 % Propagate (numerically integrate) the state equations 
24 x = RungeKutta( @RHSOscillator, 0, x, dT, dRHS ); 
25 end
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FFTEnergy is shown as follows. 

FFTEnergy.m 

21 function [e, w, wP] = FFTEnergy( y, tSamp, aPeak ) 
35 n =  size( y, 2 );  
36 

37 % If the input vector is odd drop one sample 
38 if( 2*floor(n/2) ˜= n ) 
39 n = n - 1;  
40 y = y(1:n,:); 
41 end 
42 

43 x =  fft(y); 
44 e =  real(x.*conj(x))/n; 
45 

46 hN = n/2; 
47 e = e(1,1:hN); 
48 r =  2*pi/(n*tSamp); 
49 w =  r*(0:(hN-1)); 
50 

51 if( nargout > 2 )  
52 k = e > aPeak*max(e) ; 
53 wP = w(k); 
54 end 

The Fast Fourier Transform takes the sampled time sequence and computes the frequency spec-
trum. We compute the FFT using MATLAB’s fft function. We take the result and multiply 
it by its conjugate to get the energy. The first half of the result has the frequency information. 
aPeak is to indicate peaks for the output. It is just looking for values greater than a certain 
threshold. 

Figure 5.3 shows the damped oscillation. Figure 5.4 shows the spectrum. We find the peak 
by searching for the maximum value. The noise in the signal is seen at the higher frequencies. 
A noise-free simulation is shown in Figure 5.5. 

The tuning approach is to 

1. Excite the oscillator with a pulse 

2. Run it for . 2n steps 

3. Do an FFT 

4. If there is only one peak, compute the damping gain
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Figure 5.3: Simulation of the damped oscillator. The damping ratio . ζ is 0.5, and the undamped natural 
frequency . ω is 0.1 rad/s 

Figure 5.4: The frequency spectrum. The peak is at the oscillation frequency of 0.1 rad/sec
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Figure 5.5: The frequency spectrum without noise. The peak of the spectrum is at 0.1 rad/s in agreement 
with the simulation 

The script TuningSim calls FFTEnergy.m with aPeak set to 0.7. The value for aPeak 
is found by looking at a plot and picking a suitable number. The disturbances are Gaussian-
distributed accelerations, and there is noise in the measurement. Note that this simulation uses a 
different right-hand-side function RHSOscillatorControl. The measurement with noise is 
implemented as 

TuningSim.m 

33 % Measurements 
34 y = x(1) + y1Sigma*randn; 

The disturbances are implemented with a step perturbation, which ends at a given step, and 
random noise: 

TuningSim.m 

39 dRHS.a = aJ + a1Sigma*randn; 
40 if( k == kPulseStop ) 
41 aJ = 0; 
42 end
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The tuning code using FFTEnergy is shown in the following snippet. 

TuningSim.m 

47 FFTEnergy( yFFT, dT ); 
48 [ ˜, ˜, wP] = FFTEnergy( yFFT, dT ); 
49 if( length(wP) == 1 ) 
50 wOsc = wP; 
51 fprintf(1,'\tEstimated oscillator frequency %12.4f rad/s\n',wP); 
52 dRHS.c = 2*zeta*wOsc; 
53 else 
54 fprintf(1,'\tTuned\n'); 
55 end 

The entire loop is run four times, with the first time undamped and the second, third, and fourth 
times updating the tuned gain. The results in the command window are 

>> TuningSim 
1: Estimated oscillator frequency 0.0997 rad/s 
2: Tuned 
3: Tuned 
4: Tuned 

If the random noise is large enough, the loop may tune more than once. Running it a few times 
or increasing the noise will show this behavior. 

As you can see from the FFT plots in Figure 5.6, the spectra are “noisy” due to the sensor 
noise and Gaussian disturbance. The criteria for determining that the system is underdamped 
it is a distinctive peak. If the noise is large enough, we have to set lower thresholds to trigger 
the tuning. The top-left FFT plot shows the 0.1 rad/s peak. After tuning, we damp the oscillator 
sufficiently so that the peak is diminished. The time plot in Figure 5.6 (the bottom plot) shows 
that, initially, the system is lightly damped. After tuning, it oscillates very little. There is a slight 
transient every time the tuning is adjusted at 1.9, 3.6, and 5.5 seconds. The FFT plots (the top 
right and middle two) show the data used in the tuning. 

An important point is that we must stimulate the system to identify the peak. All system 
identification, parameter estimation, and tuning algorithms have this requirement. An alternative 
to a pulse (which has a broad frequency spectrum) would be to use a sinusoidal sweep. That 
would excite any resonances and make it easier to identify the peak. However, care must be 
taken when exciting a physical system at different frequencies to ensure it does not have an 
unsafe or unstable response at natural frequencies.
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Figure 5.6: Tuning simulation results. The first four plots are the frequency spectra taken at the end of 
each sampling interval; the last shows the results over time. Upper left, before tuning, the peak is seen
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Figure 5.7: Speed control of a rotor for the Model Reference Adaptive Control demo 

5.2 Implement MRAC 
Our next example is to control a rotor with an unknown load so that it behaves in a desired 
manner. We will use Model Reference Adaptive Control (MRAC). The dynamical model of the 
rotary joint is [3] and is shown in Figure 5.7. 

.
dω

dt
= −aω + buc + ud (5.9) 

where the damping a and/or input constants b are unknown. . ω is the angular rate. . uc is the input 
voltage, and . ud is a disturbance angular acceleration. This is a first-order system that is modeled 
by one first-order differential equation. We would like the system to behave like the reference 
model: 

.
dω

dt
= −amω + bmuc + ud (5.10) 

5.2.1 Problem 

We want to control a system to behave like a particular model. Our example is a simple rotor. 

5.2.2 Solution 

The solution is to implement a Model Reference Adaptive Control (MRAC) function. 

5.2.3 How It Works 

The idea is to have a dynamic model that defines the behavior of your system. You want your 
system to have the same dynamics. This desired model is the reference, hence the name Model 
Reference Adaptive Control (MRAC). We will use the MIT rule [3] to design the adaptation 
system. The MIT rule was first developed at the MIT Instrumentation Laboratory (now Draper 
Laboratory), which developed the NASA Apollo and Space Shuttle guidance and control sys-
tems.
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Consider a closed-loop system with one adjustable parameter, . θ. . θ is a parameter, not an 
angle. The desired output is . ym. The error is 

.e = y − ym (5.11) 

Define a loss function (or cost) as 

.J(θ) =
1

2
e2 (5.12) 

The square removes the sign. If the error is zero, the cost is zero. We would like to minimize 
.J(θ). To make  J small, we change the parameters in the direction of the negative gradient of 
J or 

.
dθ

dt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
(5.13) 

This is the MIT rule. If the system is changing slowly, then we can assume that . θ is constant as 
the system adapts. . γ is the adaptation gain. Our dynamic model is 

.
dω

dt
= aω + buc (5.14) 

We would like it to be the model: 

.
dωm

dt
= amωm + bmuc (5.15) 

a and b are the actual unknown parameters. . am and . bm are the model parameters. We would 
like a and b to be . am and . bm. Let the controller for our rotor be 

.u = θ1uc − θ2ω (5.16) 

The second term provides the damping. The controller has two adaptation parameters. If they 
are chosen to be 

.θ1 =
bm
b

(5.17) 

θ2 = am − a 
b 

(5.18) 

the input-output relations of the system and model are the same. This is called perfect model 
following. This is not required. To apply the MIT rule, write the error as 

.e = ω − ωm (5.19) 

With the parameters . θ1 and . θ2, the system is 

.
dω

dt
= −(a+ bθ2)ω + bθ1uc (5.20)
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where . γ is the adaptation gain. To continue with the implementation, we introduce the operator 
.p = d

dt . We then write 

.pω = −(a+ bθ2)ω + bθ1uc (5.21) 

or 

.ω =
bθ1

p+ a+ bθ2
uc (5.22) 

We need to get the partial derivatives of the error with respect to . θ1 and . θ2. These  are  

.
∂e

∂θ1
=

b

p+ a+ bθ2
uc (5.23) 

∂e 
∂θ2 

= − b2θ1 

(p + a + bθ2)2
uc (5.24) 

from the chain rule for differentiation. Noting that 

.uc =
p+ a+ bθ2

bθ1
ω (5.25) 

the second equation becomes 

.
∂e

∂θ2
=

b

p+ a+ bθ2
y (5.26) 

Since we don’t know a, let’s assume that we are pretty close to it. Then let 

.p+ am ≈ p+ a+ bθ2 (5.27) 

Our adaptation laws are now 

.
dθ1
dt

= −γ

(
am

p+ am
uc

)
e (5.28) 

dθ2 
dt 

= γ 
( 

am 
p + am 

ω 
) 
e (5.29) 

Let 

.x1 =
am

p+ am
uc (5.30) 

x2 = am 
p + am 

ω (5.31)
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which are differential equations that must be integrated. The complete set is 

.
dx1
dt

= −amx1 + amuc (5.32) 

dx2 
dt 

= −amx2 + amω (5.33) 

dθ1 
dt 

= −γx1e (5.34) 

dθ2 
dt 

= γx2e (5.35) 

Our only measurement would be . ω which would be measured with a tachometer. As noted 
before, the controller is 

.u = θ1uc − θ2ω (5.36) 

e = ω − ωm (5.37) 
dωm 
dt 

= −amωm + bmuc (5.38) 

The MRAC is implemented in the function MRAC shown in its entirety in the following listing. 
The controller has five differential equations that are propagated. The states are . [x1, x2, θ1,
θ2, ωm]. RungeKutta is used for the propagation, but a less computationally intensive lower-
order integrator, such as Euler, could be used instead. The function returns the default data 
structure if no inputs and one output is specified. The default data structure has reasonable 
values. That makes it easier for a user to implement the function. It only propagates one step. 

MRAC.m 

23 function d = MRAC( omega, d ) 
24 

25 if( nargin < 1 )  
26 d = DataStructure; 
27 return 
28 end 
29 

30 d.x = RungeKutta( @RHS, 0, d.x, d.dT, d, omega ); 
31 d.u = d.x(3)*d.uC - d.x(4)*omega; 
32 

33 %% MRAC>DataStructure 
34 function d = DataStructure 
35 % Default data structure 
36 

37 d =  struct('aM',2.0,'bM',2.0,'x',[0;0;0;0;0],'uC',0,'u',0,'gamma',1,'dT 
',0.1); 

39 

40 %% MRAC>RHS 
41 function xDot = RHS( ˜, x, d, omega ) 
42 % RHS for MRAC
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43 

44 e = omega - x(5); 
45 xDot = [-d.aM*x(1) + d.aM*d.uC;... 
46 -d.aM*x(2) + d.aM*omega;... 
47 -d.gamma*x(1)*e;... 
48 d.gamma*x(2)*e;... 
49 -d.aM*x(5) + d.bM*d.uC]; 

Now that we have the MRAC controller done, we’ll write some supporting functions and then 
test it all out in RotorSim. 

5.3 Generating a Square Wave Input 
5.3.1 Problem 

We need to generate a square wave to stimulate the rotor in the previous recipe. 

5.3.2 Solution 

For simulation and testing our controller, we will generate a square wave with a function. 

5.3.3 How It Works 

SquareWave generates a square wave. The first few lines are our standard code for running a 
demo or returning the data structure. 

SquareWave.m 

26 function [v,d] = SquareWave( t, d ) 
27 

28 if( nargin < 1 )  
29 if( nargout == 0 ) 
30 Demo; 
31 else 
32 v = DataStructure; 
33 end 
34 return 
35 end 
36 

37 if( d.state == 0 ) 
38 if( t - d.tSwitch >= d.tLow ) 
39 v =  1;  
40 d.tSwitch = t; 
41 d.state = 1; 
42 else 
43 v =  0;  
44 end 
45 else 
46 if( t - d.tSwitch >= d.tHigh ) 
47 v =  0;  
48 d.tSwitch = t;
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49 d.state = 0; 
50 else 
51 v =  1;  
52 end 
53 end 

This function uses d.state to determine if it is in the high or low part of a square wave. The 
width of the low part of the wave is set in d.tLow. The width of the high part of the square 
wave is set in d.tHigh. It stores the time of the last switch in d.tSwitch. 

A square wave is shown in Figure 5.8. There are many ways to specify a square wave. This 
function produces a square wave with a minimum of zero and a maximum of one. You specify 
the time at zero and the time at one to create the square wave. 

We adjusted the y-axis limit and line width using the following code. 

SquareWave.m 

76 PlotSet(t,v,'x label', 't (sec)', 'y label', 'v', 'plot title','Square 
Wave',... 

77 'figure title', 'Square Wave'); 
78 set(gca,'ylim',[0 1.2]) 
79 h =  get(gca,'children'); 
80 set(h,'linewidth',1); 

0  10 20 30 40 50 60 70 80 90  100  

t (sec) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

v 

Square Wave 

Figure 5.8: Square wave 
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TIP h = get(gca,’children’) gives you access to the line data structure in a plot 
for the most recent axes. 

5.4 Demonstrate MRAC for a Rotor 
5.4.1 Problem 

We want to create a recipe to control our rotor using MRAC. 

5.4.2 Solution 

The solution is to implement our Model Reference Adaptive Control (MRAC) function in a 
MATLAB script from Recipe 5.2. 

5.4.3 How It Works 

MRAC is implemented in the script RotorSim. It calls MRAC to control the rotor. As in our 
other scripts, we use PlotSet for our 2D plots. Notice that we use two new options. One 
’plot set’ allows you to put more than one line on a subplot. The other ’legend’ adds 
legends to each plot. The cell array argument to ’legend’ has a cell array for each plot. In this 
case, we have two plots each with two lines, so the cell array is 

{{'true', 'estimated'} ,{'Control' ,'Command'}} 

Each plot legend is a cell entry within the overall cell array. 
The rotor simulation script with MRAC is shown in the following listing. The square wave 

functions generate the command to the system that . ω should track. RHSRotor, SquareWave, 
and MRAC all return default data structures. MRAC and SquareWave are called once per 
pass through the loop. The simulation right-hand-side, that is the dynamics of the rotor, in 
RHSRotor, are then propagated using RungeKutta. Note that we pass to pointer for RHSRotor 
to RungeKutta. 

RotorSim.m 

6 %% Initialize 
7 nSim = 4000; % Number of time steps 
8 dT = 0.1; % Time step (sec) 
9 dRHS = RHSRotor; % Get the default data structure 
10 dC = MRAC; 
11 dS = SquareWave; 
12 x = 0.1; % Initial state vector 
13 

14 %% Simulation 
15 xPlot = zeros(4,nSim); 
16 theta = zeros(2,nSim); 
17 t =  0;  
18 for k = 1:nSim
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19 

20 % Plot storage 
21 xPlot(:,k) = [x;dC.x(5);dC.u;dC.uC]; 
22 theta(:,k) = dC.x(3:4); 
23 [uC, dS] = SquareWave( t, dS ); 
24 dC.uC = 2*(uC - 0.5); 
25 dC = MRAC( x, dC ); 
26 dRHS.u = dC.u; 
27 

28 % Propagate (numerically integrate) the state equations 
29 x = RungeKutta( @RHSRotor, t, x, dT, dRHS ); 
30 t = t + dT; 
31 end 

TIP Pass pointers @fun instead of strings ’fun’ to functions whenever possible. 

RHSRotor is shown as follows. 

RHSRotor.m 

26 function xDot = RHSRotor( ˜, x, d ) 
27 

28 if( nargin < 1 )  
29 xDot = struct('a',1,'b',0.5,'u',0); 
30 return 
31 end 
32 

33 xDot = -d.a*x + d.b*d.u; 

The dynamics are just one line of code. The remaining returns the default data structure. 
The results are shown in Figure 5.9. We set the adaptation gain, . γ, to 1.  . am and . bm are set 

equal to 2. a is set equal to 1 and b to . 
1
2 . 

The first plot shows the rotor’s estimated and true angular rates on top and the control 
demand and actual control sent to the wheel on the bottom. The desired control is a square wave 
(generated by SquareWave). Notice the transient in the applied control at the transitions of the 
square wave. The control amplitude is greater than the commanded control. Notice also that the 
angular rate approaches the desired commanded square wave shape. 

Figure 5.10 shows the convergence of the adaptive gains, . θ1 and . θ2. They have converged  
by the end of the simulation. 

MRAC learns the gains of the system by observing the response to the control excitation. It 
requires excitation to converge. This is the nature of all learning systems. If there is insufficient 
stimulation, it isn’t possible to observe the behavior of the system, so there is not enough in-
formation for learning. It is easy to find an excitation for a first-order system. For higher-order 
systems or nonlinear systems, this can be more difficult.
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Figure 5.9: MRAC control of a rotor 
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Figure 5.10: Gain convergence in the MRAC controller
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Figure 5.11: Ship heading control for gain scheduling control 

5.5 Ship Steering: Implement Gain Scheduling for Steering 
Control of a Ship  

5.5.1 Problem 

We want to steer a ship at all speeds. The problem is that the dynamics are speed dependent, 
making this a nonlinear problem. The model is shown in Figure 5.11. 

5.5.2 Solution 

The solution is to use gain scheduling to set the gains based on speeds. The gain schedule is 
learned by automatically computing gains from the dynamical equations of the ship. This is 
similar to the self-tuning example except that we are seeking a set of gains for all speeds, not 
just one. In addition, we assume that we know the model of the system. 

5.5.3 How It Works 

The dynamical equations for the heading of a ship are in state space form [3]: 

.

⎡
⎣ v̇

ṙ

ψ̇

⎤
⎦ =

⎡
⎣

(
u
l

)
a11 ua12 0(

u
l2

)
a21

(
u
l

)
a22 0

0 1 0

⎤
⎦
⎡
⎣ v

r
ψ

⎤
⎦+

⎡
⎢⎢⎣

(
u2

l

)
b1(

u2

l2

)
b2

0

⎤
⎥⎥⎦ δ +

⎡
⎣ αv

αr

0

⎤
⎦ (5.39) 

v is the transverse speed, u is the ship’s speed, l is the ship length, r is the turning rate, and . ψ
is the heading angle. . αv and . αr are disturbances. The ship is assumed to be moving at speed 
u. This is achieved by the propeller that is not modeled. The control is rudder angle . δ. Notice 
that if .u = 0, the ship cannot be steered. All of the coefficients in the state matrix are functions 
of u, except for the heading angle. Our goal is to control the heading given the disturbance 
acceleration in the first equation and the disturbance angular rate in the second. 

The disturbances only affect the dynamics states, r, and  v. The last state, . ψ, is a kinematic 
state and does not have a disturbance.
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Table 5.1: Ship parameters [3] 

Parameter Minesweeper Cargo Tanker 
l 55 161 350 
.a11 .−0.86 .−0.77 . −0.45
.a12 .−0.48 .−0.34 . −0.44
.a21 .−5.20 .−3.39 . −4.10
.a22 .−2.40 .−1.63 . −0.81
.b1 0.18 0.17 0.10 
.b2 1.40 .−1.63 . −0.81

The ship model is shown in the following code, RHSShip. The second and third outputs 
are for use in the controller. Notice that the differential equations are linear in the state and the 
control. Both matrices are a function of the forward velocity. We are not trying to control the 
forward velocity, it is an input to the system. The default parameters for the minesweeper are 
given in Table  5.1. These are the same numbers that are in the default data structure. 

RHSShip.m 

32 function [xDot, a, b] = RHSShip( ˜, x, d ) 
33 

34 if( nargin < 1 )  
35 xDot = struct('l',100,'u',10,'a',[-0.86 -0.48;-5.2 -2.4],'b' 

,[0.18;-1.4],'alpha',[0;0;0],'delta',0); 
36 return 
37 end 
38 

39 uOL = d.u/d.l; 
40 uOLSq = d.u/d.lˆ2; 
41 uSqOl = d.uˆ2/d.l; 
42 a = [ uOL*d.a(1,1) d.u*d.a(1,2) 0;... 
43 uOLSq*d.a(2,1) uOL*d.a(2,2) 0;... 
44 0 1 0]; 
45 b = [uSqOl*d.b(1);... 
46 uOLˆ2*d.b(2);... 
47 0]; 
48 

49 xDot = a*x + b*d.delta + d.alpha; 

In the ship simulation, ShipSim, we linearly increase the forward speed while commanding 
a series of heading psi changes. The controller takes the state space model at each time step 
and computes new gains which are used to steer the ship. The controller is a linear quadratic 
regulator. We can use full-state feedback because the states are easily modeled. Such controllers 
will work perfectly in this case but are a bit harder to implement when you need to estimate some 
of the states or have unmodeled dynamics.
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ShipSim.m 

23 for k = 1:nSim 
24 % Plot storage 
25 xPlot(:,k) = x; 
26 dRHS.u = u(k); 
27 % Control 
28 % Get the state space matrices 
29 [˜,a,b] = RHSShip( 0, x, dRHS ); 
30 gain(k,:) = QCR( a, b, qC, rC ); 
31 dRHS.delta = -gain(k,:)*[x(1);x(2);x(3) - psi(k)]; % Rudder angle 
32 delta(k) = dRHS.delta; 
33 % Propagate (numerically integrate) the state equations 
34 x = RungeKutta( @RHSShip, 0, x, dT, dRHS ); 
35 end 

The quadratic regulator generator code is shown in the following listing. It generates the 
gain from the matrix Riccati equation. A Riccati equation is an ordinary differential equation 
that is quadratic in the unknown function. In steady state, this reduces to the algebraic Riccati 
equation that is solved in this function. 

QCR.m 

29 function k = QCR( a, b, q, r )  
30 

31 [sinf,rr] = Riccati( [a,-(b/r)*b';-q',-a'] ); 
32 

33 if( rr == 1 )  
34 disp('Repeated roots. Adjust q, r or n'); 
35 end 
36 

37 k = r\(b'*sinf); 
38 

39 function [sinf, rr] = Riccati( g ) 
40 %% Ricatti 
41 % Solves the matrix Riccati equation in the form 
42 % 
43 % g  =  [a r  ]  
44 % [q -a'] 
46 

47 rg = size(g); 
48 

49 [w, e] = eig(g); 
50 

51 es = sort(diag(e)); 
52 

53 % Look for repeated roots 
54 j = 1:length(es)-1; 
55 

56 if ( any(abs(es(j)-es(j+1))<eps*abs(es(j)+es(j+1))) ) 
57 rr = 1;
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58 else 
59 rr = 0; 
60 end 
61 

62 % Sort the columns of w 
63 ws = w(:,real(diag(e)) < 0); 
64 

65 sinf = real(ws(rg/2+1:rg,:)/ws(1:rg/2,:)); 

a is the state transition matrix, b is the input matrix, q is the state cost matrix, and r is the 
control cost matrix. The bigger the elements of q, the more cost we place on deviations of 
the states from zero. That leads to tight control at the expense of more control. The bigger 
the elements of b the more cost we place on control. Bigger b means less control. Quadratic 
regulators guarantee stability if all states are measured. They are a very handy controller to get 
something working. The results are given in Figure 5.12. Note how the gains evolve. 

The gain on the angular rate r is nearly constant. Notice that the . ψ range is very small! 
Normally, you would zoom out the plot. The other two gains increase with speed. This is an 
example of gain scheduling. The difference is that we autonomously compute the gains from 
perfect measurements of the ship’s forward speed. 

ShipSimDisturbance is a modified version of ShipSim that is a shorter duration, with 
only one-course change, and with disturbances in both angular rate and lateral velocity. The 
results are given in Figure 5.13. 

5.6 Spacecraft Pointing 
5.6.1 Problem 

We want to control the orientation of a spacecraft with thrusters for control. We do not know 
the inertia, which has a major impact on control. 

5.6.2 Solution 

The solution is to use a parameter estimator to estimate the inertia and feed it into the control 
system. 

5.6.3 How It Works 

The spacecraft model is shown in Figure 5.14. 
The dynamical equations are 

.I = I0 +mfr
2
f (5.40) 

Tc + Td = Iθ̈ + ṁfr
2 
f θ̇ (5.41) 

ṁf = − Tc 
rue 

(5.42)
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Figure 5.12: Ship steering simulation. The states are shown on the top with the forward velocity. The 
gains and rudder angle are shown on the bottom. Notice the “pulses” in the rudder to make the maneu-
vers
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Figure 5.13: Ship steering simulation. The states are shown on the left with the rudder angle. The dis-
turbances are Gaussian white noise 

Figure 5.14: Spacecraft model 

where I is the total inertia, . I0 is the constant inertia for everything except the fuel mass, . Tc is the 
thruster control torque, . Td is the disturbance torque, . mf is the total fuel mass, . rf is the distance 
to the fuel tank center (moment arm), r is the vector to the thrusters, . ue is the thruster exhaust 
velocity, and . θ is the angle of the spacecraft axis. Fuel consumption is balanced between the 
two tanks, so the center of mass remains at (0,0). The second term in the second equation is the 
inertia derivative term, which adds damping to the system.
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Our controller is a PD (proportional derivative) controller of the form 

.Tc = Ia (5.43) 

a = −K(θ + τ θ̇) (5.44) 

K is the forward gain and . τ the rate constant. We design the controller for unit inertia and 
then estimate the inertia so that our dynamic response is always the same. We will estimate the 
inertia using a very simple algorithm: 

.Ik = KIIk−1 − (1−KI)
Tck

θ̈k
(5.45) 

. KI is less than or equal to one. We will do this only when the control torque is not zero and 
the change in rate is not zero. This is a first difference approximation and should be good if we 
don’t have a lot of noise. The following code snippet shows the simulation loop with the control 
system. The dynamics are in RHSSpacecraft.m. 

SpacecraftSim.m 

15 %% Controller 
16 kForward = 0.05; 
17 tau = 10; 
18 tCThresh = 0.00; 
19 kI = 0.9; % Inertia filter gain 
20 

21 %% Simulation 
22 xPlot = zeros(7,nSim); 
23 inrEst = 1.01*(dRHS.i0 + dRHS.rFˆ2*x(3)) + 0.05*randn(1)*dRHS.i0; 
24 dRHS.tC = 0; 
25 

26 for k = 1:nSim 
27 % Control 
28 dRHS.tC = -inrEst*kForward*(x(1) + tau*x(2)); 
29 % Collect plotting information 
30 [xDot,inrTrue] = RHSSpacecraft(0,x,dRHS); 
31 omegaDot = xDot(2); % from gyro 
32 if( abs(dRHS.tC) > tCThresh ) 
33 inrEst = kI*inrEst + (1-kI)*dRHS.tC/omegaDot; 
34 end 
35 xPlot(:,k) = [x;inrEst;dRHS.tD;dRHS.tC;inrTrue]; 
36 % Propagate (numerically integrate) the state equations 
37 x = RungeKutta( @RHSSpacecraft, 0, x, dT, dRHS ); 
38 end 

We only estimate inertia when the control torque is above a threshold. This prevents us from 
responding to noise. We also incorporate the inertia estimator in a simple low-pass filter. The 
results are shown in Figure 5.15. The threshold means the algorithm only estimates inertia at 
the very beginning of the simulation when it is reducing the attitude error.
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Figure 5.15: States and control outputs from the spacecraft simulation 

Figure 5.16: Estimated and actual inertia from the spacecraft simulation 

The dynamics function computes the true inertia from the fuel mass state and the dry mass 
inertia. This allows the script to compare the estimate against the truth value in Figure 5.16. 

This algorithm appears crude, but it is fundamentally all we can do in this situation given just 
angular rate measurements. Note that the inertia estimate happens while the control is operating, 
making this a nonlinear controller. More sophisticated filters or estimators could improve the 
performance.
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5.7 Direct Adaptive Control 
5.7.1 Problem 

We want to control a system for which the plant is unknown. This is one in which the order and 
parameters for the model are unknown. 

5.7.2 Solution 

The solution is to use direct adaptation based on Lyapunov control. 

5.7.3 How It Works 

Assume the dynamics equation is 

.ẏ = ay + bu (5.46) 

u is the control. If a is . < 0, the system will always converge. If we use feedback control of the 
form .u = −ky, then  

.ẏ = (a− bk)y + bud (5.47) 

where . ud is an external disturbance. If .a−bk is positive, the system is unstable. If we don’t know 
a or b, then we can’t guarantee stability with a fixed gain control. We could try and estimate 
a and b and then design the controller in real time. A simple approach [18] is an adaptive 
controller. Assume that .b > 0, then the gain is 

.k̇ = y2 (5.48) 

This is known as a universal regulator. To show this is stable, pick the Lyapunov function: 

.V − y2

2
(5.49) 

Its derivative is 

.V̇ = (a− bk)y2 = (−bk)k̇ (5.50) 

Integrating 

.
y2

2
= ak − bk2

2
+ C (5.51) 

Since .k̇ > 0, k can only increase. k has to be bounded because, otherwise, the right-hand 
side could be negative, which is impossible because the left-hand side is always positive. The 
following script implements the controller with .a > 0. Notice how the controller drives the 
error to zero.
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DirectAdaptiveControl.m 

1 %% Direct adaptive control demo 
2 % Reference: ECE 517: Nonlinear and Adaptive Control Lecture Notes 
3 % Daniel Liberzon November 3, 2021 
4 

5 n = 1000; 
6 dT = 0.1; 
7 

8 % Plant 
9 a = 0.1; 
10 b =  1;  
11 x = 0.1; 
12 

13 % Initial gain 
14 gain = 0.1; 
15 

16 % Storage 
17 xP = zeros(3,n); 
18 for k = 1:n 
19 gain = gain + dT*xˆ2; 
20 u = -gain*x; 
21 xP(:,k) = [x;u;gain]; 
22 x = RungeKutta(@RHS,0,x,dT,a,b,u); 
23 end 
24 

25 yL = {'x','u','K'}; 
26 

27 t = (0:n-1)*dT; 
28 

29 TimeHistory(t,xP,yL,'Direct Adaptive Control'); 
30 

31 %% Right hand side 
32 function xDot = RHS(˜,x,a,b,u) 
33 

34 xDot = a*x + b*u; 
35 

36 end 

The results are shown in Figure 5.17. Note the rapid convergence. No knowledge of a or b 
is required. a and b are never estimated.
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Figure 5.17: Direct adaptive control 

Table 5.2: Chapter Code Listing 

File Description 
DirectAdaptiveControl Direct adaptive control simulations 
FFTEnergy Generates FFT energy 
FFTSim Demonstration of the Fast Fourier Transform 
MRAC Implements Model Reference Adaptive Control 
QCR Generates a full-state feedback controller 
RHSOscillatorControl Right-hand side of a damped oscillator with a velocity gain 
RHSRotor Right-hand side for a rotor 
RHSShip Right-hand side for a ship steering model 
RHSSpacecraft Right-hand side for a spacecraft model 
RotorSim Simulation of Model Reference Adaptive Control 
ShipSim Simulation of ship steering 
ShipSimDisturbance Simulation of ship steering with disturbances 
SpacecraftSim Spacecraft control with inertia estimation 
SquareWave Generates a square wave 
TuningSim Controller tuning demonstration 
WrapPhase Keeps angles between . −π and . π

5.8 Summary 
This chapter has demonstrated adaptive or learning control. You learned about model tuning, 
model reference adaptive control, adaptive control, and gain scheduling. Table 5.2 lists the func-
tions and scripts included in the companion code.
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