
CHAPTER 5

Adaptive Control

Autonomous
Learning

Control
Intelligence

Machine
Learning

Control systems need to react to the environ-
ment in a predictable and repeatable fashion.
Control systems take measurements and use
them to control the process. For example, a
ship measures its heading and changes its rud-
der angle to attain a desired heading.

Typically, control systems are designed and
implemented with all of the parameters hard-
coded into the software. This works very well
in most circumstances, particularly when the
system is well known during the design process. When the system is not well defined or is
expected to change significantly during operation, it may be necessary to implement learning
control. For example, the batteries in an electric car degrade over time. This leads to less range.
An autonomous driving system would need to learn that range was decreasing. This would be
done by comparing the distance traveled with the battery’s state of charge. More drastic, and
sudden, changes can alter a system. For example, in an aircraft, the air data system might fail
due to a sensor malfunction. If GPS were still operating, the plane would want to switch to
a GPS-only system. In a multi-input-multi-output control system, a branch may fail, due to a
failed actuator or sensor. The system might have to be modified to operate branches in that case.

Learning and adaptive control are often used interchangeably. In this chapter, you will learn
a variety of techniques for adaptive control for different systems. Each technique is applied to a
different system, but all are generally applicable to any control system.

Figure 5.1 provides a taxonomy of adaptive and learning control. The paths depend on the
nature of the dynamical system. The rightmost branch is tuning. This is something a designer
would do during testing, but it could also be done automatically as will be described in the
self-tuning Recipe 5.1. The next path is for systems that will vary with time. Our first example
of a system with time-varying parameters applies Model Reference Adaptive Control (MRAC)
for a spinning wheel. This is discussed in Section 5.2.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
M. Paluszek, S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-9846-6 5

127

 40413 -2689 a 40413
-2689 a

https://doi.org/10.1007/978-1-4842-9846-6_5
https://doi.org/10.1007/978-1-4842-9846-6_5
https://doi.org/10.1007/978-1-4842-9846-6_5
https://doi.org/10.1007/978-1-4842-9846-6_5
https://doi.org/10.1007/978-1-4842-9846-6_5
https://doi.org/10.1007/978-1-4842-9846-6_5
https://doi.org/10.1007/978-1-4842-9846-6_5

CHAPTER 5 ADAPTIVE CONTROL

Dynamic
System to be

Controlled

O ine
Control System

Design

O ine
Control System

Design

Constant
Control System

Parameters

Iterative
Tuning

Known
Values

Unknown
Values

Time-Varying
Parameters

Constant
Parameters

Known
Variations

Unknown
Variations

O ine
Control System

Design

O ine
Control System

Design

O ine
Control System

Design

Gain-Scheduled
Control System

Parameters

O ine
Control System

Design w/
Online Updates

Autonomous
Learning

Auto-Updated
Control System

Parameters

Figure 5.1: Taxonomy of adaptive or learning control

The next example is ship control. Your goal is to control the heading angle. The dynamics
of the ship are a function of the forward speed. While it isn’t learning from experience, it is
adapting based on information about its environment.

The last example is a spacecraft with variable inertia. This shows very simple parameter
estimation.

5.1 Self-Tuning: Tuning an Oscillator
We want to tune a damper so that we critically damp a spring system for which the spring
constantly changes. Our system will work by perturbing the undamped spring with a step and
measuring the frequency using a Fast Fourier Transform. We then compute the damping using
the frequency and add a damper to the simulation. We then measure the undamped natural
frequency again to see that it is the correct value. Finally, we set the damping ratio to 1 and
observe the response. The frequency is measured during operation, so this is an example of
online learning. The system is shown in Figure 5.2.

In Chapter 4, we introduced parameter identification in the context of Kalman Filters, which
is another way of finding the frequency. The approach here is to collect a large sample of data
and process it in batch to find the natural frequency. The equations for the system are

.ṙ = v (5.1)

mv̇ = −cv − kr (5.2)

128

CHAPTER 5 ADAPTIVE CONTROL

m

k

c

F

r

Figure 5.2: Spring-mass-damper system. The mass is on the right. The spring is on the top to the left
of the mass. The damper is below. F is the external force, m is the mass, k is the stiffness, and c is the
damping

c is the damping and k is the stiffness. The damping term causes the velocity to go to zero. The
stiffness term bounds the range of motion (unless the damping is negative). The dot above the
symbols means the first derivative with respect to time. That is

.ṙ =
dr

dt
(5.3)

The equations state that the change in position with respect to time is the velocity, and the mass
times the change in velocity with respect to time is equal to a force proportional to its velocity
and position. The second equation is Newton’s law:

.F = ma (5.4)

where F is force, m is mass, and a is acceleration.

TIP Weight is the mass times the acceleration of gravity.

.F = −cv − kr (5.5)

a = dv
dt

(5.6)

5.1.1 Problem

We want to identify the frequency of an oscillator and tune a control system to that frequency.

129

CHAPTER 5 ADAPTIVE CONTROL

5.1.2 Solution

The solution is to have the control system measure the frequency of the spring. We will use an
FFT to identify the frequency of the oscillation.

5.1.3 How It Works

The following script shows how an FFT identifies the oscillation frequency for a damped oscil-
lator.

The function is shown in the following code. We use the RHSOscillator dynamical model
for the system. We start with a small initial position to get it to oscillate. We also have a small
damping ratio so it will damp out. The resolution of the spectrum is dependent on the number
of samples:

.r =
2π

nT
(5.7)

where n is the number of samples and T is the sampling period. The maximum frequency is

.ω =
nr

2
(5.8)

The following shows the simulation loop and FFTEnergy call.

FFTSim.m

7 nSim = 2ˆ16; % Number of time steps
8 dT = 0.1; % Time step (sec)
9 dRHS = RHSOscillator; % Get the default data structure
10 dRHS.omega = 0.1; % Oscillator frequency
11 dRHS.zeta = 0.1; % Damping ratio
12 x = [1;0]; % Initial state [position;velocity]
13 y1Sigma = 0.001; % 1 sigma position measurement noise
14

15 %% Simulation
16 xPlot = zeros(3,nSim);
17

18 for k = 1:nSim
19 % Measurements
20 y = x(1) + y1Sigma*randn;
21 % Plot storage
22 xPlot(:,k) = [x;y];
23 % Propagate (numerically integrate) the state equations
24 x = RungeKutta(@RHSOscillator, 0, x, dT, dRHS);
25 end

130

CHAPTER 5 ADAPTIVE CONTROL

FFTEnergy is shown as follows.

FFTEnergy.m

21 function [e, w, wP] = FFTEnergy(y, tSamp, aPeak)
35 n = size(y, 2);
36

37 % If the input vector is odd drop one sample
38 if(2*floor(n/2) ˜= n)
39 n = n - 1;
40 y = y(1:n,:);
41 end
42

43 x = fft(y);
44 e = real(x.*conj(x))/n;
45

46 hN = n/2;
47 e = e(1,1:hN);
48 r = 2*pi/(n*tSamp);
49 w = r*(0:(hN-1));
50

51 if(nargout > 2)
52 k = e > aPeak*max(e) ;
53 wP = w(k);
54 end

The Fast Fourier Transform takes the sampled time sequence and computes the frequency spec-
trum. We compute the FFT using MATLAB’s fft function. We take the result and multiply
it by its conjugate to get the energy. The first half of the result has the frequency information.
aPeak is to indicate peaks for the output. It is just looking for values greater than a certain
threshold.

Figure 5.3 shows the damped oscillation. Figure 5.4 shows the spectrum. We find the peak
by searching for the maximum value. The noise in the signal is seen at the higher frequencies.
A noise-free simulation is shown in Figure 5.5.

The tuning approach is to

1. Excite the oscillator with a pulse

2. Run it for . 2n steps

3. Do an FFT

4. If there is only one peak, compute the damping gain

131

CHAPTER 5 ADAPTIVE CONTROL

Figure 5.3: Simulation of the damped oscillator. The damping ratio . ζ is 0.5, and the undamped natural
frequency . ω is 0.1 rad/s

Figure 5.4: The frequency spectrum. The peak is at the oscillation frequency of 0.1 rad/sec

132

CHAPTER 5 ADAPTIVE CONTROL

Figure 5.5: The frequency spectrum without noise. The peak of the spectrum is at 0.1 rad/s in agreement
with the simulation

The script TuningSim calls FFTEnergy.m with aPeak set to 0.7. The value for aPeak
is found by looking at a plot and picking a suitable number. The disturbances are Gaussian-
distributed accelerations, and there is noise in the measurement. Note that this simulation uses a
different right-hand-side function RHSOscillatorControl. The measurement with noise is
implemented as

TuningSim.m

33 % Measurements
34 y = x(1) + y1Sigma*randn;

The disturbances are implemented with a step perturbation, which ends at a given step, and
random noise:

TuningSim.m

39 dRHS.a = aJ + a1Sigma*randn;
40 if(k == kPulseStop)
41 aJ = 0;
42 end

133

CHAPTER 5 ADAPTIVE CONTROL

The tuning code using FFTEnergy is shown in the following snippet.

TuningSim.m

47 FFTEnergy(yFFT, dT);
48 [˜, ˜, wP] = FFTEnergy(yFFT, dT);
49 if(length(wP) == 1)
50 wOsc = wP;
51 fprintf(1,'\tEstimated oscillator frequency %12.4f rad/s\n',wP);
52 dRHS.c = 2*zeta*wOsc;
53 else
54 fprintf(1,'\tTuned\n');
55 end

The entire loop is run four times, with the first time undamped and the second, third, and fourth
times updating the tuned gain. The results in the command window are

>> TuningSim
1: Estimated oscillator frequency 0.0997 rad/s
2: Tuned
3: Tuned
4: Tuned

If the random noise is large enough, the loop may tune more than once. Running it a few times
or increasing the noise will show this behavior.

As you can see from the FFT plots in Figure 5.6, the spectra are “noisy” due to the sensor
noise and Gaussian disturbance. The criteria for determining that the system is underdamped
it is a distinctive peak. If the noise is large enough, we have to set lower thresholds to trigger
the tuning. The top-left FFT plot shows the 0.1 rad/s peak. After tuning, we damp the oscillator
sufficiently so that the peak is diminished. The time plot in Figure 5.6 (the bottom plot) shows
that, initially, the system is lightly damped. After tuning, it oscillates very little. There is a slight
transient every time the tuning is adjusted at 1.9, 3.6, and 5.5 seconds. The FFT plots (the top
right and middle two) show the data used in the tuning.

An important point is that we must stimulate the system to identify the peak. All system
identification, parameter estimation, and tuning algorithms have this requirement. An alternative
to a pulse (which has a broad frequency spectrum) would be to use a sinusoidal sweep. That
would excite any resonances and make it easier to identify the peak. However, care must be
taken when exciting a physical system at different frequencies to ensure it does not have an
unsafe or unstable response at natural frequencies.

134

CHAPTER 5 ADAPTIVE CONTROL

Figure 5.6: Tuning simulation results. The first four plots are the frequency spectra taken at the end of
each sampling interval; the last shows the results over time. Upper left, before tuning, the peak is seen

135

CHAPTER 5 ADAPTIVE CONTROL

Wheel

Base

Axis

Figure 5.7: Speed control of a rotor for the Model Reference Adaptive Control demo

5.2 Implement MRAC
Our next example is to control a rotor with an unknown load so that it behaves in a desired
manner. We will use Model Reference Adaptive Control (MRAC). The dynamical model of the
rotary joint is [3] and is shown in Figure 5.7.

.
dω

dt
= −aω + buc + ud (5.9)

where the damping a and/or input constants b are unknown. . ω is the angular rate. . uc is the input
voltage, and . ud is a disturbance angular acceleration. This is a first-order system that is modeled
by one first-order differential equation. We would like the system to behave like the reference
model:

.
dω

dt
= −amω + bmuc + ud (5.10)

5.2.1 Problem

We want to control a system to behave like a particular model. Our example is a simple rotor.

5.2.2 Solution

The solution is to implement a Model Reference Adaptive Control (MRAC) function.

5.2.3 How It Works

The idea is to have a dynamic model that defines the behavior of your system. You want your
system to have the same dynamics. This desired model is the reference, hence the name Model
Reference Adaptive Control (MRAC). We will use the MIT rule [3] to design the adaptation
system. The MIT rule was first developed at the MIT Instrumentation Laboratory (now Draper
Laboratory), which developed the NASA Apollo and Space Shuttle guidance and control sys-
tems.

136

CHAPTER 5 ADAPTIVE CONTROL

Consider a closed-loop system with one adjustable parameter, . θ. . θ is a parameter, not an
angle. The desired output is . ym. The error is

.e = y − ym (5.11)

Define a loss function (or cost) as

.J(θ) =
1

2
e2 (5.12)

The square removes the sign. If the error is zero, the cost is zero. We would like to minimize
.J(θ). To make J small, we change the parameters in the direction of the negative gradient of
J or

.
dθ

dt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
(5.13)

This is the MIT rule. If the system is changing slowly, then we can assume that . θ is constant as
the system adapts. . γ is the adaptation gain. Our dynamic model is

.
dω

dt
= aω + buc (5.14)

We would like it to be the model:

.
dωm

dt
= amωm + bmuc (5.15)

a and b are the actual unknown parameters. . am and . bm are the model parameters. We would
like a and b to be . am and . bm. Let the controller for our rotor be

.u = θ1uc − θ2ω (5.16)

The second term provides the damping. The controller has two adaptation parameters. If they
are chosen to be

.θ1 =
bm
b

(5.17)

θ2 = am − a
b

(5.18)

the input-output relations of the system and model are the same. This is called perfect model
following. This is not required. To apply the MIT rule, write the error as

.e = ω − ωm (5.19)

With the parameters . θ1 and . θ2, the system is

.
dω

dt
= −(a+ bθ2)ω + bθ1uc (5.20)

137

CHAPTER 5 ADAPTIVE CONTROL

where . γ is the adaptation gain. To continue with the implementation, we introduce the operator
.p = d

dt . We then write

.pω = −(a+ bθ2)ω + bθ1uc (5.21)

or

.ω =
bθ1

p+ a+ bθ2
uc (5.22)

We need to get the partial derivatives of the error with respect to . θ1 and . θ2. These are

.
∂e

∂θ1
=

b

p+ a+ bθ2
uc (5.23)

∂e
∂θ2

= − b2θ1

(p + a + bθ2)2
uc (5.24)

from the chain rule for differentiation. Noting that

.uc =
p+ a+ bθ2

bθ1
ω (5.25)

the second equation becomes

.
∂e

∂θ2
=

b

p+ a+ bθ2
y (5.26)

Since we don’t know a, let’s assume that we are pretty close to it. Then let

.p+ am ≈ p+ a+ bθ2 (5.27)

Our adaptation laws are now

.
dθ1
dt

= −γ

(
am

p+ am
uc

)
e (5.28)

dθ2
dt

= γ
(

am
p + am

ω
)
e (5.29)

Let

.x1 =
am

p+ am
uc (5.30)

x2 = am
p + am

ω (5.31)

138

CHAPTER 5 ADAPTIVE CONTROL

which are differential equations that must be integrated. The complete set is

.
dx1
dt

= −amx1 + amuc (5.32)

dx2
dt

= −amx2 + amω (5.33)

dθ1
dt

= −γx1e (5.34)

dθ2
dt

= γx2e (5.35)

Our only measurement would be . ω which would be measured with a tachometer. As noted
before, the controller is

.u = θ1uc − θ2ω (5.36)

e = ω − ωm (5.37)
dωm
dt

= −amωm + bmuc (5.38)

The MRAC is implemented in the function MRAC shown in its entirety in the following listing.
The controller has five differential equations that are propagated. The states are . [x1, x2, θ1,
θ2, ωm]. RungeKutta is used for the propagation, but a less computationally intensive lower-
order integrator, such as Euler, could be used instead. The function returns the default data
structure if no inputs and one output is specified. The default data structure has reasonable
values. That makes it easier for a user to implement the function. It only propagates one step.

MRAC.m

23 function d = MRAC(omega, d)
24

25 if(nargin < 1)
26 d = DataStructure;
27 return
28 end
29

30 d.x = RungeKutta(@RHS, 0, d.x, d.dT, d, omega);
31 d.u = d.x(3)*d.uC - d.x(4)*omega;
32

33 %% MRAC>DataStructure
34 function d = DataStructure
35 % Default data structure
36

37 d = struct('aM',2.0,'bM',2.0,'x',[0;0;0;0;0],'uC',0,'u',0,'gamma',1,'dT
',0.1);

39

40 %% MRAC>RHS
41 function xDot = RHS(˜, x, d, omega)
42 % RHS for MRAC

139

CHAPTER 5 ADAPTIVE CONTROL

43

44 e = omega - x(5);
45 xDot = [-d.aM*x(1) + d.aM*d.uC;...
46 -d.aM*x(2) + d.aM*omega;...
47 -d.gamma*x(1)*e;...
48 d.gamma*x(2)*e;...
49 -d.aM*x(5) + d.bM*d.uC];

Now that we have the MRAC controller done, we’ll write some supporting functions and then
test it all out in RotorSim.

5.3 Generating a Square Wave Input
5.3.1 Problem

We need to generate a square wave to stimulate the rotor in the previous recipe.

5.3.2 Solution

For simulation and testing our controller, we will generate a square wave with a function.

5.3.3 How It Works

SquareWave generates a square wave. The first few lines are our standard code for running a
demo or returning the data structure.

SquareWave.m

26 function [v,d] = SquareWave(t, d)
27

28 if(nargin < 1)
29 if(nargout == 0)
30 Demo;
31 else
32 v = DataStructure;
33 end
34 return
35 end
36

37 if(d.state == 0)
38 if(t - d.tSwitch >= d.tLow)
39 v = 1;
40 d.tSwitch = t;
41 d.state = 1;
42 else
43 v = 0;
44 end
45 else
46 if(t - d.tSwitch >= d.tHigh)
47 v = 0;
48 d.tSwitch = t;

140

CHAPTER 5 ADAPTIVE CONTROL

49 d.state = 0;
50 else
51 v = 1;
52 end
53 end

This function uses d.state to determine if it is in the high or low part of a square wave. The
width of the low part of the wave is set in d.tLow. The width of the high part of the square
wave is set in d.tHigh. It stores the time of the last switch in d.tSwitch.

A square wave is shown in Figure 5.8. There are many ways to specify a square wave. This
function produces a square wave with a minimum of zero and a maximum of one. You specify
the time at zero and the time at one to create the square wave.

We adjusted the y-axis limit and line width using the following code.

SquareWave.m

76 PlotSet(t,v,'x label', 't (sec)', 'y label', 'v', 'plot title','Square
Wave',...

77 'figure title', 'Square Wave');
78 set(gca,'ylim',[0 1.2])
79 h = get(gca,'children');
80 set(h,'linewidth',1);

0 10 20 30 40 50 60 70 80 90 100

t (sec)

0

0.2

0.4

0.6

0.8

1

1.2

v

Square Wave

Figure 5.8: Square wave

141

CHAPTER 5 ADAPTIVE CONTROL

TIP h = get(gca,’children’) gives you access to the line data structure in a plot
for the most recent axes.

5.4 Demonstrate MRAC for a Rotor
5.4.1 Problem

We want to create a recipe to control our rotor using MRAC.

5.4.2 Solution

The solution is to implement our Model Reference Adaptive Control (MRAC) function in a
MATLAB script from Recipe 5.2.

5.4.3 How It Works

MRAC is implemented in the script RotorSim. It calls MRAC to control the rotor. As in our
other scripts, we use PlotSet for our 2D plots. Notice that we use two new options. One
’plot set’ allows you to put more than one line on a subplot. The other ’legend’ adds
legends to each plot. The cell array argument to ’legend’ has a cell array for each plot. In this
case, we have two plots each with two lines, so the cell array is

{{'true', 'estimated'} ,{'Control' ,'Command'}}

Each plot legend is a cell entry within the overall cell array.
The rotor simulation script with MRAC is shown in the following listing. The square wave

functions generate the command to the system that . ω should track. RHSRotor, SquareWave,
and MRAC all return default data structures. MRAC and SquareWave are called once per
pass through the loop. The simulation right-hand-side, that is the dynamics of the rotor, in
RHSRotor, are then propagated using RungeKutta. Note that we pass to pointer for RHSRotor
to RungeKutta.

RotorSim.m

6 %% Initialize
7 nSim = 4000; % Number of time steps
8 dT = 0.1; % Time step (sec)
9 dRHS = RHSRotor; % Get the default data structure
10 dC = MRAC;
11 dS = SquareWave;
12 x = 0.1; % Initial state vector
13

14 %% Simulation
15 xPlot = zeros(4,nSim);
16 theta = zeros(2,nSim);
17 t = 0;
18 for k = 1:nSim

142

CHAPTER 5 ADAPTIVE CONTROL

19

20 % Plot storage
21 xPlot(:,k) = [x;dC.x(5);dC.u;dC.uC];
22 theta(:,k) = dC.x(3:4);
23 [uC, dS] = SquareWave(t, dS);
24 dC.uC = 2*(uC - 0.5);
25 dC = MRAC(x, dC);
26 dRHS.u = dC.u;
27

28 % Propagate (numerically integrate) the state equations
29 x = RungeKutta(@RHSRotor, t, x, dT, dRHS);
30 t = t + dT;
31 end

TIP Pass pointers @fun instead of strings ’fun’ to functions whenever possible.

RHSRotor is shown as follows.

RHSRotor.m

26 function xDot = RHSRotor(˜, x, d)
27

28 if(nargin < 1)
29 xDot = struct('a',1,'b',0.5,'u',0);
30 return
31 end
32

33 xDot = -d.a*x + d.b*d.u;

The dynamics are just one line of code. The remaining returns the default data structure.
The results are shown in Figure 5.9. We set the adaptation gain, . γ, to 1. . am and . bm are set

equal to 2. a is set equal to 1 and b to .
1
2 .

The first plot shows the rotor’s estimated and true angular rates on top and the control
demand and actual control sent to the wheel on the bottom. The desired control is a square wave
(generated by SquareWave). Notice the transient in the applied control at the transitions of the
square wave. The control amplitude is greater than the commanded control. Notice also that the
angular rate approaches the desired commanded square wave shape.

Figure 5.10 shows the convergence of the adaptive gains, . θ1 and . θ2. They have converged
by the end of the simulation.

MRAC learns the gains of the system by observing the response to the control excitation. It
requires excitation to converge. This is the nature of all learning systems. If there is insufficient
stimulation, it isn’t possible to observe the behavior of the system, so there is not enough in-
formation for learning. It is easy to find an excitation for a first-order system. For higher-order
systems or nonlinear systems, this can be more difficult.

143

CHAPTER 5 ADAPTIVE CONTROL

0 1 2 3 4 5 6 7

Time (min)

-1.5

-1

-0.5

0

0.5

1

1.5

 (
ra

d/
s)

Angular Rate

true
estimated

0 1 2 3 4 5 6 7

Time (min)

-10

-5

0

5

10

u

Control

Control
Command

Figure 5.9: MRAC control of a rotor

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.5

0

0.5

1

1.5

2

2.5
Controller Parameters

Figure 5.10: Gain convergence in the MRAC controller

144

CHAPTER 5 ADAPTIVE CONTROL

u

v

x

y

Figure 5.11: Ship heading control for gain scheduling control

5.5 Ship Steering: Implement Gain Scheduling for Steering
Control of a Ship

5.5.1 Problem

We want to steer a ship at all speeds. The problem is that the dynamics are speed dependent,
making this a nonlinear problem. The model is shown in Figure 5.11.

5.5.2 Solution

The solution is to use gain scheduling to set the gains based on speeds. The gain schedule is
learned by automatically computing gains from the dynamical equations of the ship. This is
similar to the self-tuning example except that we are seeking a set of gains for all speeds, not
just one. In addition, we assume that we know the model of the system.

5.5.3 How It Works

The dynamical equations for the heading of a ship are in state space form [3]:

.

⎡
⎣ v̇

ṙ

ψ̇

⎤
⎦ =

⎡
⎣

(
u
l

)
a11 ua12 0(

u
l2

)
a21

(
u
l

)
a22 0

0 1 0

⎤
⎦
⎡
⎣ v

r
ψ

⎤
⎦+

⎡
⎢⎢⎣

(
u2

l

)
b1(

u2

l2

)
b2

0

⎤
⎥⎥⎦ δ +

⎡
⎣ αv

αr

0

⎤
⎦ (5.39)

v is the transverse speed, u is the ship’s speed, l is the ship length, r is the turning rate, and . ψ
is the heading angle. . αv and . αr are disturbances. The ship is assumed to be moving at speed
u. This is achieved by the propeller that is not modeled. The control is rudder angle . δ. Notice
that if .u = 0, the ship cannot be steered. All of the coefficients in the state matrix are functions
of u, except for the heading angle. Our goal is to control the heading given the disturbance
acceleration in the first equation and the disturbance angular rate in the second.

The disturbances only affect the dynamics states, r, and v. The last state, . ψ, is a kinematic
state and does not have a disturbance.

145

CHAPTER 5 ADAPTIVE CONTROL

Table 5.1: Ship parameters [3]

Parameter Minesweeper Cargo Tanker
l 55 161 350
.a11 .−0.86 .−0.77 . −0.45
.a12 .−0.48 .−0.34 . −0.44
.a21 .−5.20 .−3.39 . −4.10
.a22 .−2.40 .−1.63 . −0.81
.b1 0.18 0.17 0.10
.b2 1.40 .−1.63 . −0.81

The ship model is shown in the following code, RHSShip. The second and third outputs
are for use in the controller. Notice that the differential equations are linear in the state and the
control. Both matrices are a function of the forward velocity. We are not trying to control the
forward velocity, it is an input to the system. The default parameters for the minesweeper are
given in Table 5.1. These are the same numbers that are in the default data structure.

RHSShip.m

32 function [xDot, a, b] = RHSShip(˜, x, d)
33

34 if(nargin < 1)
35 xDot = struct('l',100,'u',10,'a',[-0.86 -0.48;-5.2 -2.4],'b'

,[0.18;-1.4],'alpha',[0;0;0],'delta',0);
36 return
37 end
38

39 uOL = d.u/d.l;
40 uOLSq = d.u/d.lˆ2;
41 uSqOl = d.uˆ2/d.l;
42 a = [uOL*d.a(1,1) d.u*d.a(1,2) 0;...
43 uOLSq*d.a(2,1) uOL*d.a(2,2) 0;...
44 0 1 0];
45 b = [uSqOl*d.b(1);...
46 uOLˆ2*d.b(2);...
47 0];
48

49 xDot = a*x + b*d.delta + d.alpha;

In the ship simulation, ShipSim, we linearly increase the forward speed while commanding
a series of heading psi changes. The controller takes the state space model at each time step
and computes new gains which are used to steer the ship. The controller is a linear quadratic
regulator. We can use full-state feedback because the states are easily modeled. Such controllers
will work perfectly in this case but are a bit harder to implement when you need to estimate some
of the states or have unmodeled dynamics.

146

CHAPTER 5 ADAPTIVE CONTROL

ShipSim.m

23 for k = 1:nSim
24 % Plot storage
25 xPlot(:,k) = x;
26 dRHS.u = u(k);
27 % Control
28 % Get the state space matrices
29 [˜,a,b] = RHSShip(0, x, dRHS);
30 gain(k,:) = QCR(a, b, qC, rC);
31 dRHS.delta = -gain(k,:)*[x(1);x(2);x(3) - psi(k)]; % Rudder angle
32 delta(k) = dRHS.delta;
33 % Propagate (numerically integrate) the state equations
34 x = RungeKutta(@RHSShip, 0, x, dT, dRHS);
35 end

The quadratic regulator generator code is shown in the following listing. It generates the
gain from the matrix Riccati equation. A Riccati equation is an ordinary differential equation
that is quadratic in the unknown function. In steady state, this reduces to the algebraic Riccati
equation that is solved in this function.

QCR.m

29 function k = QCR(a, b, q, r)
30

31 [sinf,rr] = Riccati([a,-(b/r)*b';-q',-a']);
32

33 if(rr == 1)
34 disp('Repeated roots. Adjust q, r or n');
35 end
36

37 k = r\(b'*sinf);
38

39 function [sinf, rr] = Riccati(g)
40 %% Ricatti
41 % Solves the matrix Riccati equation in the form
42 %
43 % g = [a r]
44 % [q -a']
46

47 rg = size(g);
48

49 [w, e] = eig(g);
50

51 es = sort(diag(e));
52

53 % Look for repeated roots
54 j = 1:length(es)-1;
55

56 if (any(abs(es(j)-es(j+1))<eps*abs(es(j)+es(j+1))))
57 rr = 1;

147

CHAPTER 5 ADAPTIVE CONTROL

58 else
59 rr = 0;
60 end
61

62 % Sort the columns of w
63 ws = w(:,real(diag(e)) < 0);
64

65 sinf = real(ws(rg/2+1:rg,:)/ws(1:rg/2,:));

a is the state transition matrix, b is the input matrix, q is the state cost matrix, and r is the
control cost matrix. The bigger the elements of q, the more cost we place on deviations of
the states from zero. That leads to tight control at the expense of more control. The bigger
the elements of b the more cost we place on control. Bigger b means less control. Quadratic
regulators guarantee stability if all states are measured. They are a very handy controller to get
something working. The results are given in Figure 5.12. Note how the gains evolve.

The gain on the angular rate r is nearly constant. Notice that the . ψ range is very small!
Normally, you would zoom out the plot. The other two gains increase with speed. This is an
example of gain scheduling. The difference is that we autonomously compute the gains from
perfect measurements of the ship’s forward speed.

ShipSimDisturbance is a modified version of ShipSim that is a shorter duration, with
only one-course change, and with disturbances in both angular rate and lateral velocity. The
results are given in Figure 5.13.

5.6 Spacecraft Pointing
5.6.1 Problem

We want to control the orientation of a spacecraft with thrusters for control. We do not know
the inertia, which has a major impact on control.

5.6.2 Solution

The solution is to use a parameter estimator to estimate the inertia and feed it into the control
system.

5.6.3 How It Works

The spacecraft model is shown in Figure 5.14.
The dynamical equations are

.I = I0 +mfr
2
f (5.40)

Tc + Td = Iθ̈ + ṁfr
2
f θ̇ (5.41)

ṁf = − Tc
rue

(5.42)

148

CHAPTER 5 ADAPTIVE CONTROL

Figure 5.12: Ship steering simulation. The states are shown on the top with the forward velocity. The
gains and rudder angle are shown on the bottom. Notice the “pulses” in the rudder to make the maneu-
vers

149

CHAPTER 5 ADAPTIVE CONTROL

Figure 5.13: Ship steering simulation. The states are shown on the left with the rudder angle. The dis-
turbances are Gaussian white noise

Figure 5.14: Spacecraft model

where I is the total inertia, . I0 is the constant inertia for everything except the fuel mass, . Tc is the
thruster control torque, . Td is the disturbance torque, . mf is the total fuel mass, . rf is the distance
to the fuel tank center (moment arm), r is the vector to the thrusters, . ue is the thruster exhaust
velocity, and . θ is the angle of the spacecraft axis. Fuel consumption is balanced between the
two tanks, so the center of mass remains at (0,0). The second term in the second equation is the
inertia derivative term, which adds damping to the system.

150

CHAPTER 5 ADAPTIVE CONTROL

Our controller is a PD (proportional derivative) controller of the form

.Tc = Ia (5.43)

a = −K(θ + τ θ̇) (5.44)

K is the forward gain and . τ the rate constant. We design the controller for unit inertia and
then estimate the inertia so that our dynamic response is always the same. We will estimate the
inertia using a very simple algorithm:

.Ik = KIIk−1 − (1−KI)
Tck

θ̈k
(5.45)

. KI is less than or equal to one. We will do this only when the control torque is not zero and
the change in rate is not zero. This is a first difference approximation and should be good if we
don’t have a lot of noise. The following code snippet shows the simulation loop with the control
system. The dynamics are in RHSSpacecraft.m.

SpacecraftSim.m

15 %% Controller
16 kForward = 0.05;
17 tau = 10;
18 tCThresh = 0.00;
19 kI = 0.9; % Inertia filter gain
20

21 %% Simulation
22 xPlot = zeros(7,nSim);
23 inrEst = 1.01*(dRHS.i0 + dRHS.rFˆ2*x(3)) + 0.05*randn(1)*dRHS.i0;
24 dRHS.tC = 0;
25

26 for k = 1:nSim
27 % Control
28 dRHS.tC = -inrEst*kForward*(x(1) + tau*x(2));
29 % Collect plotting information
30 [xDot,inrTrue] = RHSSpacecraft(0,x,dRHS);
31 omegaDot = xDot(2); % from gyro
32 if(abs(dRHS.tC) > tCThresh)
33 inrEst = kI*inrEst + (1-kI)*dRHS.tC/omegaDot;
34 end
35 xPlot(:,k) = [x;inrEst;dRHS.tD;dRHS.tC;inrTrue];
36 % Propagate (numerically integrate) the state equations
37 x = RungeKutta(@RHSSpacecraft, 0, x, dT, dRHS);
38 end

We only estimate inertia when the control torque is above a threshold. This prevents us from
responding to noise. We also incorporate the inertia estimator in a simple low-pass filter. The
results are shown in Figure 5.15. The threshold means the algorithm only estimates inertia at
the very beginning of the simulation when it is reducing the attitude error.

151

CHAPTER 5 ADAPTIVE CONTROL

Figure 5.15: States and control outputs from the spacecraft simulation

Figure 5.16: Estimated and actual inertia from the spacecraft simulation

The dynamics function computes the true inertia from the fuel mass state and the dry mass
inertia. This allows the script to compare the estimate against the truth value in Figure 5.16.

This algorithm appears crude, but it is fundamentally all we can do in this situation given just
angular rate measurements. Note that the inertia estimate happens while the control is operating,
making this a nonlinear controller. More sophisticated filters or estimators could improve the
performance.

152

CHAPTER 5 ADAPTIVE CONTROL

5.7 Direct Adaptive Control
5.7.1 Problem

We want to control a system for which the plant is unknown. This is one in which the order and
parameters for the model are unknown.

5.7.2 Solution

The solution is to use direct adaptation based on Lyapunov control.

5.7.3 How It Works

Assume the dynamics equation is

.ẏ = ay + bu (5.46)

u is the control. If a is . < 0, the system will always converge. If we use feedback control of the
form .u = −ky, then

.ẏ = (a− bk)y + bud (5.47)

where . ud is an external disturbance. If .a−bk is positive, the system is unstable. If we don’t know
a or b, then we can’t guarantee stability with a fixed gain control. We could try and estimate
a and b and then design the controller in real time. A simple approach [18] is an adaptive
controller. Assume that .b > 0, then the gain is

.k̇ = y2 (5.48)

This is known as a universal regulator. To show this is stable, pick the Lyapunov function:

.V − y2

2
(5.49)

Its derivative is

.V̇ = (a− bk)y2 = (−bk)k̇ (5.50)

Integrating

.
y2

2
= ak − bk2

2
+ C (5.51)

Since .k̇ > 0, k can only increase. k has to be bounded because, otherwise, the right-hand
side could be negative, which is impossible because the left-hand side is always positive. The
following script implements the controller with .a > 0. Notice how the controller drives the
error to zero.

153

CHAPTER 5 ADAPTIVE CONTROL

DirectAdaptiveControl.m

1 %% Direct adaptive control demo
2 % Reference: ECE 517: Nonlinear and Adaptive Control Lecture Notes
3 % Daniel Liberzon November 3, 2021
4

5 n = 1000;
6 dT = 0.1;
7

8 % Plant
9 a = 0.1;
10 b = 1;
11 x = 0.1;
12

13 % Initial gain
14 gain = 0.1;
15

16 % Storage
17 xP = zeros(3,n);
18 for k = 1:n
19 gain = gain + dT*xˆ2;
20 u = -gain*x;
21 xP(:,k) = [x;u;gain];
22 x = RungeKutta(@RHS,0,x,dT,a,b,u);
23 end
24

25 yL = {'x','u','K'};
26

27 t = (0:n-1)*dT;
28

29 TimeHistory(t,xP,yL,'Direct Adaptive Control');
30

31 %% Right hand side
32 function xDot = RHS(˜,x,a,b,u)
33

34 xDot = a*x + b*u;
35

36 end

The results are shown in Figure 5.17. Note the rapid convergence. No knowledge of a or b
is required. a and b are never estimated.

154

CHAPTER 5 ADAPTIVE CONTROL

0.00

0.05

0.10

x

Direct Adaptive Control

-0.02

-0.01

-0.00

0.00
u

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

0.1

0.15

0.2

K

Figure 5.17: Direct adaptive control

Table 5.2: Chapter Code Listing

File Description
DirectAdaptiveControl Direct adaptive control simulations
FFTEnergy Generates FFT energy
FFTSim Demonstration of the Fast Fourier Transform
MRAC Implements Model Reference Adaptive Control
QCR Generates a full-state feedback controller
RHSOscillatorControl Right-hand side of a damped oscillator with a velocity gain
RHSRotor Right-hand side for a rotor
RHSShip Right-hand side for a ship steering model
RHSSpacecraft Right-hand side for a spacecraft model
RotorSim Simulation of Model Reference Adaptive Control
ShipSim Simulation of ship steering
ShipSimDisturbance Simulation of ship steering with disturbances
SpacecraftSim Spacecraft control with inertia estimation
SquareWave Generates a square wave
TuningSim Controller tuning demonstration
WrapPhase Keeps angles between . −π and . π

5.8 Summary
This chapter has demonstrated adaptive or learning control. You learned about model tuning,
model reference adaptive control, adaptive control, and gain scheduling. Table 5.2 lists the func-
tions and scripts included in the companion code.

155

	5 Adaptive Control
	5.1 Self-Tuning: Tuning an Oscillator
	5.1.1 Problem
	5.1.2 Solution
	5.1.3 How It Works

	5.2 Implement MRAC
	5.2.1 Problem
	5.2.2 Solution
	5.2.3 How It Works

	5.3 Generating a Square Wave Input
	5.3.1 Problem
	5.3.2 Solution
	5.3.3 How It Works

	5.4 Demonstrate MRAC for a Rotor
	5.4.1 Problem
	5.4.2 Solution
	5.4.3 How It Works

	5.5 Ship Steering: Implement Gain Scheduling for Steering Control of a Ship
	5.5.1 Problem
	5.5.2 Solution
	5.5.3 How It Works

	5.6 Spacecraft Pointing
	5.6.1 Problem
	5.6.2 Solution
	5.6.3 How It Works

	5.7 Direct Adaptive Control
	5.7.1 Problem
	5.7.2 Solution
	5.7.3 How It Works

	5.8 Summary

