
CHAPTER 1 

An Overview of Machine Learning 

1.1 Introduction 
Machine Learning is a field in computer science where data is used to predict, or respond to, 
future data. It is closely related to the fields of pattern recognition, computational statistics, and 
artificial intelligence. The data may be historical or updated in real time. Machine learning is 
important in areas like facial recognition, spam filtering, content generation, and other areas 
where it is not feasible, or even possible, to write algorithms to perform a task. 

For example, early attempts at filtering junk emails had the user write rules to determine 
what was junk or spam. Your success depended on your ability to correctly identify the attributes 
of the message that would categorize an email as junk, such as a sender address or words in the 
subject, and the time you were willing to spend to tweak your rules. This was only moderately 
successful as junk mail generators had little difficulty anticipating people’s handmade rules. 
Modern systems use machine learning techniques with much greater success. Most of us are 
now familiar with the concept of simply marking a given message as “junk” or “not junk” and 
take for granted that the email system can quickly learn which features of these emails identify 
them as junk and prevent them from appearing in our inbox. This could now be any combination 
of IP or email addresses and words and phrases in the subject or body of the email, with a variety 
of matching criteria. Note how the machine learning in this example is data driven, autonomous, 
and continuously updating itself as you receive emails and flag them. However, even today, these 
systems are not completely successful since they do not yet understand the “meaning” of the 
text that they are processing. 

Content generation is an evolving area. By training engines over massive data sets, the 
engines can generate content such as music scores, computer code, and news articles. This has 
the potential to revolutionize many areas that have been exclusively handled by people. 

In a more general sense, what does machine learning mean? Machine learning can mean 
using machines (computers and software) to gain meaning from data. It can also mean giving 
machines the ability to learn from their environment. Machines have been used to assist humans 
for thousands of years. Consider a simple lever, which can be fashioned using a rock and a length 
of wood, or an inclined plane. Both of these machines perform useful work and assist people, 
but neither can learn. Both are limited by how they are built. Once built, they cannot adapt to 
changing needs without human interaction. 

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024 
M. Paluszek, S. Thomas, MATLAB Machine Learning Recipes, 
https://doi.org/10.1007/978-1-4842-9846-6 1

1


 40413 -2689 a 40413
-2689 a
 
https://doi.org/10.1007/978-1-4842-9846-6_1
https://doi.org/10.1007/978-1-4842-9846-6_1
https://doi.org/10.1007/978-1-4842-9846-6_1
https://doi.org/10.1007/978-1-4842-9846-6_1
https://doi.org/10.1007/978-1-4842-9846-6_1
https://doi.org/10.1007/978-1-4842-9846-6_1
https://doi.org/10.1007/978-1-4842-9846-6_1


CHAPTER 1 OVERVIEW

Machine learning involves using data to create a model that can be used to solve a problem. 
The model can be explicit, in which case the machine learning algorithm adjusts the model’s 
parameters, or the data can form the model. The data can be collected once and used to train a 
machine learning algorithm, which can then be applied. For example, ChatGPT scrapes textual 
data from the Internet to allow it to generate text based on queries. An adaptive control system 
measures inputs and command responses to those inputs to update parameters for the control 
algorithm. 

In the context of the software we will be writing in this book, machine learning refers to 
the process by which an algorithm converts the input data into parameters it can use when 
interpreting future data. Many of the processes used to mechanize this learning derive from 
optimization techniques and, in turn, are related to the classic field of automatic control. In 
the remainder of this chapter, we will introduce the nomenclature and taxonomy of machine 
learning systems. 

1.2 Elements of Machine Learning 
This section introduces key nomenclature for the field of machine learning. 

1.2.1 Data 

All learning methods are data driven. Sets of data are used to train the system. These sets may 
be collected and edited by humans or gathered autonomously by other software tools. Control 
systems may collect data from sensors as the systems operate and use that data to identify pa-
rameters or train the system. Content generation systems scour the Internet for information. The 
data sets may be very large, and it is the explosion of data storage infrastructure and available 
databases that is largely driving the growth in machine learning software today. It is still true that 
a machine learning tool is only as good as the data used to create it, and the selection of training 
data is practically a field in itself. Selection of data for many systems is highly automated. 

NOTE When collecting data for training, one must be careful to ensure that the time 
variation of the system is understood. If the structure of a system changes with time, it may be 
necessary to discard old data before training the system. In automatic control, this is sometimes 
called a forgetting factor in an estimator. 

1.2.2 Models 

Models are often used in learning systems. A model provides a mathematical framework for 
learning. A model is human-derived and based on human observations and experiences. For 
example, a model of a car, seen from above, might be that it is rectangular with dimensions that 
fit within a standard parking spot. Models are usually thought of as human-derived and provide 
a framework for machine learning. However, some forms of machine learning develop their 
models without a human-derived structure.
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CHAPTER 1 OVERVIEW

1.2.3 Training 

A system which maps an input to an output needs training to do this in a useful way. Just as 
people need to be trained to perform tasks, machine learning systems need to be trained. Train-
ing is accomplished by giving the system an input and the corresponding output and modifying 
the structure (models or data) in the learning machine so that mapping is learned. In some ways, 
this is like curve fitting or regression. If we have enough training pairs, then the system should 
be able to produce correct outputs when new inputs are introduced. For example, if we give 
a face recognition system thousands of cat images and tell it that those are cats, we hope that 
when it is given new cat images it will also recognize them as cats. Problems can arise when you 
don’t give it enough training sets, or the training data is not sufficiently diverse, for instance, 
identifying a long-haired cat or hairless cat when the training data is only of short-haired cats. 
A diversity of training data is required for a functioning algorithm. 

Supervised Learning 
Supervised learning means that specific training sets of data are applied to the system. The 
learning is supervised in that the “training sets” are human-derived. It does not necessarily 
mean that humans are actively validating the results. The process of classifying the systems’ 
outputs for a given set of inputs is called “labeling.” That is, you explicitly say which results are 
correct or which outputs are expected for each set of inputs. 

The process of generating training sets can be time-consuming. Great care must be taken 
to ensure that the training sets will provide sufficient training so that when real-world data is 
collected, the system will produce correct results. They must cover the full range of expected 
inputs and desired outputs. The training is followed by test sets to validate the results. If the 
results aren’t good, then the test sets are cycled into the training sets, and the process is repeated. 

A human example would be a ballet dancer trained exclusively in classical ballet technique. 
If they were then asked to dance a modern dance, the results might not be as good as required 
because the dancer did not have the appropriate training sets; their training sets were not suffi-
ciently diverse. 

Unsupervised Learning 
Unsupervised learning does not utilize training sets. It is often used to discover patterns in data 
for which there is no “right” answer. For example, if you used unsupervised learning to train 
a face identification system, the system might cluster the data in sets, some of which might be 
faces. Clustering algorithms are generally examples of unsupervised learning. The advantage 
of unsupervised learning is that you can learn things about the data that you might not know in 
advance. It is a way of finding hidden structures in data.
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Semi-supervised Learning 
With this approach, some of the data are in the form of labeled training sets, and other data are 
not [12]. Typically, only a small amount of the input data is labeled, while most are not, as the 
labeling may be an intensive process requiring a skilled human. The small set of labeled data is 
leveraged to interpret the unlabeled data. 

Online Learning 
The system is continually updated with new data [12]. This is called “online” because many of 
the learning systems use data collected while the system is operating. It could also be called 
recursive learning. It can be beneficial to periodically “batch” process data used up to a given 
time and then return to the online learning mode. The spam filtering systems collect data from 
emails and update their spam filter. Generative deep learning systems like ChatGPT use massive 
online learning. 

1.3 The Learning Machine 
Figure 1.1 shows the concept of a learning machine. The machine absorbs information from 
the environment and adapts. The inputs may be separated into those that produce an immediate 
response and those that lead to learning. In some cases, they are completely separate. For ex-
ample, in an aircraft, a measurement of altitude is not usually used directly for control. Instead, 
it is used to help select parameters for the actual control laws. The data required for learning 
and regular operation may be the same, but in some cases, separate measurements or data will 
be needed for learning to take place. Measurements do not necessarily mean data collected by 
a sensor such as radar or a camera. It could be data collected by polls, stock market prices, data 
in accounting ledgers, or any other means. Machine learning is then the process by which the 
measurements are transformed into parameters for future operation. 

Machine 

Learning 

Environment 

Measurements (Immediate Use) 

Actions 

Parameters Actions 

Measurements (Learning) 

Figure 1.1: A learning machine that senses the environment and stores data in memory 
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Note that the machine produces output in the form of actions. A copy of the actions may 
be passed to the learning system so that it can separate the effects of the machine’s actions 
from those of the environment. This is akin to a feedforward control system, which can result 
in improved performance. 

A few examples will clarify the diagram. We will discuss a medical example, a security 
system, and spacecraft maneuvering. 

A doctor might want to diagnose diseases more quickly. They would collect data on tests 
on patients and then collate the results. Patient data might include age, height, weight, historical 
data like blood pressure readings and medications prescribed, and exhibited symptoms. The 
machine learning algorithm would detect patterns so that when new tests were performed on a 
patient, the machine learning algorithm would be able to suggest diagnoses or additional tests to 
narrow down the possibilities. As the machine learning algorithm was used, it would, hopefully, 
get better with each success or failure. Of course, the definition of success or failure is fuzzy. In 
this case, the environment would be the patients themselves. The machine would use the data 
to generate actions, which would be new diagnoses. This system could be built in two ways. 
In the supervised learning process, test data and known correct diagnoses are used to train the 
machine. In an unsupervised learning process, the data would be used to generate patterns that 
might not have been known before, and these could lead to diagnosing conditions that would 
normally not be associated with those symptoms. 

A security system might be put into place to identify faces. The measurements are camera 
images of people. The system would be trained with a wide range of face images taken from 
multiple angles. The system would then be tested with these known persons and its success rate 
validated. Those that are in the database memory should be readily identified, and those that are 
not should be flagged as unknown. If the success rate was not acceptable, more training might 
be needed, or the algorithm itself might need to be tuned. This type of face recognition is now 
common, used in Mac OS X’s “Faces” feature in Photos, face identification on the new iPhone 
X, and Facebook when “tagging” friends in photos. 

For precision maneuvering of a spacecraft, the inertia of the spacecraft needs to be known. 
If the spacecraft has an inertial measurement unit that can measure angular rates, the inertia 
matrix can be identified. This is where machine learning is tricky. The torque applied to the 
spacecraft, whether by thrusters or momentum exchange devices, is only known to a certain 
degree of accuracy. Thus, the system identification must sort out, if it can, the torque scaling 
factor from the inertia. The inertia can only be identified if torques are applied. This leads to 
the issue of stimulation. A learning system cannot learn if the system to be studied does not 
have known inputs, and those inputs must be sufficiently diverse to stimulate the system so that 
the learning can be accomplished. Training a face recognition system with one picture will not 
work.
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1.4 Taxonomy of Machine Learning 
In this book, we take a larger view of machine learning than is normal. Machine learning as de-
scribed earlier is the collecting of data, finding patterns, and doing useful things based on those 
patterns. We expand machine learning to include adaptive and learning control. These fields 
started independently but now are adapting technology and methods from machine learning. 

Figure 1.2 shows how we organize the technology of machine learning into a consistent 
taxonomy. You will notice that we created a title that encompasses three branches of learning; 
we call the whole subject area “Autonomous Learning.” That means learning without human 
intervention during the learning process. This book is not solely about “traditional” machine 
learning. Other, more specialized books focus on any one of the machine learning topics. Op-
timization is part of the taxonomy because the results of optimization can be discoveries, such 
as a new type of spacecraft or aircraft trajectory. Optimization is also often a part of learning 
systems. 

State 
Estimation 

Adaptive 
Control 

System 

Pattern 
Recognition 

Data Mining 

Inductive 
Learning 

Expert 
Systems 

Optimization 
Optimal 
Control 

Fuzzy Logic 

Autonomous 
Learning 

Control Machine Learning 

Figure 1.2: Taxonomy of machine learning. The dotted lines show connections between branches 
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There are three categories under Autonomous Learning. The first is Control. Feedback con-
trol is used to compensate for uncertainty in a system or to make a system behave differently 
than it would normally behave. If there was no uncertainty, you wouldn’t need feedback. For 
example, if you are a quarterback throwing a football at a running player, assume for a moment 
that you know everything about the upcoming play. You know exactly where the player should 
be at a given time, so you can close your eyes, count, and just throw the ball to that spot. As-
suming the player has good hands, you would have a 100% reception rate! More realistically, 
you watch the player, estimate the player’s speed, and throw the ball. You are applying feedback 
to the problem. As stated, this is not a learning system. However, if now you practice the same 
play repeatedly, look at your success rate, and modify the mechanics and timing of your throw 
using that information, you would have an adaptive control system, the second box from the top 
of the control list. Learning in control takes place in adaptive control systems and also in the 
general area of system identification. 

System identification is learning about a system. By system, we mean the data that rep-
resents anything and the relationships between elements of that data. For example, a particle 
moving in a straight line is a system defined by its mass, the force on that mass, its velocity, 
and its position. The position is related to the velocity times time, and the velocity is related and 
determined by the acceleration, which is the force divided by the mass. 

Optimal control may not involve any learning. For example, what is known as full-state 
feedback produces an optimal control signal but does not involve learning. In full-state feed-
back, the combination of model and data tells us everything we need to know about the system. 
However, in more complex systems, we can’t measure all the states and don’t know the param-
eters perfectly, so some form of learning is needed to produce “optimal” or the best possible re-
sults. In a learning system, optimal control would need to be redefined as the system learns. For 
example, an optimal space trajectory assumes thruster characteristics. As a mission progresses, 
the thruster performance may change, requiring recomputation of the “optimal” trajectory. 

System identification is the process of identifying the characteristics of a system. A sys-
tem can, to a first approximation, be defined by a set of dynamical states and parameters. For 
example, in a linear time-invariant system, the dynamical equation is 

.ẋ = Ax+Bu (1.1) 

where A and B are matrices of parameters, u is an input vector, and x is the state vector. System 
identification would find A and B. In a real system, A and B are not necessarily time invariant, 
and most systems are only linear to a first approximation. 

The second category is what many people consider true Machine Learning. This is mak-
ing use of data to produce behavior that solves problems. Much of its background comes from 
statistics and optimization. The learning process may be done once in a batch process or con-
tinually in a recursive process. For example, in a stock buying package, a developer might have 
processed stock data for several years, say before 2008, and used that to decide which stocks 
to buy. That software might not have worked well during the financial crash. A recursive pro-
gram would continuously incorporate new data. Pattern recognition and data mining fall into 
this category. Pattern recognition is looking for patterns in images. For example, the early AI
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Blocks World software could identify a block in its field of view. It could find one block in a 
pile of blocks. Data mining is taking large amounts of data and looking for patterns, for ex-
ample, taking stock market data and identifying companies that have strong growth potential. 
Classification techniques and fuzzy logic are also in this category. 

The third category of autonomous learning is artificial intelligence. Our diagram includes 
the two techniques of inductive learning and expert systems. Machine learning traces some of its 
origins to artificial intelligence. Artificial intelligence is an area of study whose goal is to make 
machines reason. While many would say the goal is “think like people,” this is not necessarily 
the case. There may be ways of reasoning that are not similar to human reasoning but are just 
as valid. In the classic Turing test, Turing proposes that the computer only needs to imitate a 
human in its output to be a “thinking machine,” regardless of how those outputs are generated. 
Systems like ChatGPT appear to easily pass the Turing test. This leads to a need to redefine 
intelligence. If ChatGPT can produce a decent sonata, is it as “intelligent” as a composer? In 
any case, intelligence generally involves learning, so learning is inherent in many Artificial 
intelligence technologies such as inductive learning and expert systems. 

The recipe chapters of this book are grouped according to this taxonomy. The first chapters 
cover state estimation using the Kalman Filter and adaptive control. Fuzzy logic is then intro-
duced, which is a control methodology that uses classification. Additional machine learning 
recipes follow with chapters on data classification with binary trees, neural nets including deep 
learning, and multiple hypothesis testing. We have a chapter on aircraft control that incorporates 
neural nets, showing the synergy between the different technologies. Finally, we conclude with 
a chapter on an artificial intelligence technique, case-based expert systems. 

1.5 Control 
Feedback control algorithms inherently learn about the environment through measurements 
used for control. These chapters show how control algorithms can be extended to effectively 
design themselves using measurements. The measurements may be the same as used for con-
trol, but the adaptation, or learning, happens more slowly than the control response time. An 
important aspect of control design is stability. A stable controller will produce bounded outputs 
for bounded inputs. It will also produce smooth, predictable behavior of the system that is con-
trolled. An unstable controller will typically experience growing oscillations in the quantities 
(such as speed or position) that are controlled. In these chapters, we explore both the perfor-
mance of learning control and the stability of such controllers. We often break control into two 
parts, control and estimation. The latter may be done independently of feedback control.
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1.5.1 Kalman Filters 

Chapter 4 shows how Kalman Filters allow you to learn about dynamical systems for which we 
already have a model. This chapter provides an example of a variable gain Kalman Filter for a 
spring system. That is a system with a mass connected to its base via a spring and a damper. 
This is a linear system. We write the system in discrete time. This provides an introduction to 
Kalman Filtering. We show how Kalman Filters can be derived from Bayesian statistics. This 
ties it into many machine learning algorithms. Originally, the Kalman Filter, developed by R. 
E. Kalman, R. S. Bucy, and R. Battin, was not derived in this fashion. Kalman Filters typically 
learn about the state of a system, and their learning rate is fixed by a priori assumptions about 
the system noise. 

The second recipe adds a nonlinear measurement. A linear measurement is a measurement 
proportional to the state (in this case, position) it measures. Our nonlinear measurement will be 
the angle of a tracking device that points at the mass from a distance from the line of movement. 
One way is to use an Unscented Kalman Filter (UKF) for state estimation. The UKF lets us use 
a nonlinear measurement model easily. 

The last part of the chapter describes the Unscented Kalman Filter configured for parameter 
estimation. This system learns the model, albeit one that has an existing mathematical model. 
As such, it is an example of model-based learning. In this example, the filter estimates the 
oscillation frequency of the spring-mass system. It will demonstrate how the system needs to 
be stimulated to identify the parameters. 

1.5.2 Adaptive Control 

Adaptive control is a branch of control systems in which the gains of the control system change 
based on measurements of the system. A gain is a number that multiplies a measurement from 
a sensor to produce a control action such as driving a motor or other actuator. In a non-learning 
control system, the gains are computed before operation and remain fixed. This works very 
well most of the time since we can usually pick gains so that the control system is tolerant of 
parameter changes in the system. Our gain “margins” tell us how tolerant we are to uncertainties 
in the system. If we are tolerant to big changes in parameters, we say that our system is robust. 

Adaptive control systems change the gain based on measurements during operation. This 
can help a control system perform even better. The better we know a system’s model, the tighter 
we can control the system. This is much like driving a new car. At first, you have to be cautious 
driving a new car because you don’t know how sensitive the steering is to turn the wheel or how 
fast it accelerates when you depress the gas pedal. As you learn about the car, you can maneuver 
it with more confidence. If you didn’t learn about the car, you would need to drive every car in 
the same fashion. 

Chapter 5 starts with a simple example of adding damping to a spring using a control system. 
Our goal is to get a specific damping time constant. For this, we need to know the spring con-
stant. Our learning system uses a Fast Fourier Transform (FFT) to measure the spring constant. 
We’ll compare it to a system that does know the spring constant. This is an example of tuning a 
control system. The second example is model reference adaptive control of a first-order system.
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This system automatically adapts so that the system behaves like the desired model. This is a 
very powerful method and applies to many situations. Another example is ship steering control. 
Ships use adaptive control because it is more efficient than conventional control. This example 
demonstrates how the control system adapts and how it performs better than its nonadaptive 
equivalent. This is an example of gain scheduling. We then give a spacecraft example. 

The next example is longitudinal control of an aircraft, extensive enough that it is given its 
own chapter. We can control the pitch angle using the elevators. We have five nonlinear equa-
tions for the pitch rotational dynamics, velocity in the x direction, velocity in the z direction, and 
change in altitude. The system adapts to changes in velocity and altitude. Both change the drag 
and lift forces and the moments on the aircraft and also change the response to the elevators. 
We use a neural net as the learning element of our control system. This is a practical problem 
applicable to all types of aircraft ranging from drones to high-performance commercial aircraft. 

1.6 Autonomous Learning Methods 
This section introduces you to popular machine learning techniques. Some will be used in the 
examples in this book. Others are available in MATLAB products and open source products. 

1.6.1 Regression 

Regression is a way of fitting data to a model. A model can be a curve in multiple dimensions. 
The regression process fits the data to the curve producing a model that can be used to predict 
future data. Some methods, such as linear regression or least squares, are parametric in that 
the number of parameters to be fit is known. An example of linear regression is shown in the 
following listing and in Figure 1.3. This model was created by starting with the line . y = x
and adding noise to y. The line was recreated using a least squares fit via MATLAB’s pinv 
pseudo-inverse function. 

The first part of the script generates the data. 

LinearRegression.m 

6 x =  linspace(0,1,500)'; 
7 n =  length(x); 
8 

9 % Model a polynomial, y = ax2 + mx + b 
10 a = 1.0; % quadratic - make nonzero for larger errors 
11 m = 1.0; % slope 
12 b = 1.0; % intercept 
13 sigma = 0.1; % standard deviation of the noise 
14 y0 = a*x.ˆ2 + m*x + b;  
15 y = y0 + sigma*randn(n,1);
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Figure 1.3: Learning with linear regression when . a = 0  

The actual regression code is just three lines. 

LinearRegression.m 

18 a =  [x  ones(n,1)]; 
19 c =  pinv(a)*y; 
20 yR = c(1)*x + c(2); % the fitted line 

The last part plots the results using standard MATLAB plotting functions. We use grid on 
rather than grid. The latter toggles the grid mode and is usually OK, but sometimes MATLAB 
gets confused. grid on is more reliable. 

LinearRegression.m 

23 h =  figure('Name','Linear Regression'); 
24 plot(x,y); hold on; 
25 plot(x,yR,'linewidth',2); 
26 grid on 
27 xlabel('x'); 
28 ylabel('y'); 
29 title(h.Name); 
30 legend('Data','Fit') 
31 

32 figure('Name','Regression Error') 
33 plot(x,yR-y0); 
34 grid on 
35 xlabel('x');
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36 ylabel('\Delta y'); 
37 title('Error between Model and Regression') 

This code uses pinv. We can solve the problem: 

.Ax = b (1.2) 

by taking the inverse of A if the length of x and b are the same: 

.x = A−1b (1.3) 

This works because A is a square matrix but only works if A is not singular. That is, it has a 
valid inverse. If the length of x and b is the same, we can still find an approximation to x where 
x = pinv(A)b. For example, in the first case, A is 2 by 2. In the second case, it is 3 by 2, meaning 
there are three elements of x and two of b. 

>> inv(rand(2,2)) 

ans = 

1.4518 -0.2018
-1.4398 1.2950 

>> pinv(rand(2,3)) 

ans = 

1.5520 -1.3459
-0.6390 1.0277 
0.2053 0.5899 

The system computes the parameters, slope, and y intercept, from the data using an algo-
rithm. The more data, the better the fit. As it happens, our model 

.y = mx+ b (1.4) 

is correct. However, if it were wrong, the fit would be poor. This is an issue with model-based 
learning. The quality of the results is highly dependent on the model. If you are sure of your 
model, then it should be used. If not, other methods, such as unsupervised learning, may produce 
better results. For example, if we add the quadratic term . x2, we get the fit in Figure 1.4. Notice 
how the fit is not as good as we might like. 

In these examples, we start with a pattern that we assume fits the data. This is our model. We 
fit the data into the model. In the first case, we assume that our system is linear. In the second, 
we assume it is quadratic. If our model is good, the data will fit well. If we chose the wrong 
model, then the fit will be poor. If that is the case, we will need to try a different model. For 
example, our system could be 

.y = cos(x) (1.5) 

with the span of x over several cycles. Neither a linear nor a quadratic fit would be good in this 
case. Limitations in this approach have led to other techniques, including neural networks.
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Figure 1.4: Learning with linear regression for a quadratic model with . a = 1.0

1.6.2 Decision Trees 

A decision tree is a tree-like graph used to make decisions. It has three kinds of nodes: 

1. Decision nodes 

2. Chance nodes 

3. End nodes 

You follow the path from the beginning to the end node. Decision trees are easy to understand 
and interpret. The decision process is entirely transparent although very large decision trees 
may be hard to follow visually. The difficulty is finding an optimal decision tree for a set of 
training data. 

Two types of decision trees are classification trees which produce categorical outputs and 
regression trees which produce numeric outputs. An example of a classification tree is shown 
in Figure 1.5. This helps an employee decide where to go for lunch. This tree only has decision 
nodes. 

This might be used by management to predict where they could find an employee at 
lunchtime. The decisions are Hungry, Busy, and Have a Credit Card. From that, the tree could 
be synthesized. However, if there were other factors in the decision of employees, for example, 
it is someone’s birthday, which would result in the employee going to a restaurant, then the tree 
would not be accurate. 

Chapter 10 uses a decision tree to classify data. Classifying data is one of the most widely 
used areas of machine learning. In this example, we assume that two data points are sufficient
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Figure 1.5: A classification tree 

to classify a sample and determine to which group it belongs. We have a training set of known 
data points with membership in one of three groups. We then use a decision tree to classify the 
data. We’ll introduce a graphical display to make understanding the process easier. 

With any learning algorithm, it is important to know why the algorithm made its decision. 
Graphics can help you explore large data sets when columns of numbers aren’t helpful. 

1.6.3 Neural Networks 

Introduction 
A neural net is a network of neurons designed to emulate the neurons in a human brain. Each 
“neuron” has a mathematical model for determining its output from its input; for example, if the 
output is a step function with a value of 0 or 1, the neuron can be said to be “firing” if the input 
stimulus results in a 1 output. Networks are then formed with multiple layers of interconnected 
neurons. Neural networks perform pattern recognition. The network must be trained using sam-
ple data, but no a priori model is required. However, usually, the structure of the neural network 
is specified by giving the number of layers, neurons per layer, and activation functions for each 
neuron. Networks can be trained to estimate the output of nonlinear processes, and the network 
then becomes the model. 

Figure 1.6 displays a simple neural network that flows from left to right, with two input 
nodes and one output node. There is one “hidden” layer of neurons in the middle. Each node

14



CHAPTER 1 OVERVIEW

Figure 1.6: A neural net with one intermediate layer between the inputs on the left and the output on the 
right. The intermediate layer is also known as a hidden layer 

has a set of numeric weights that are tuned during training. This network has two inputs and 
one output, possibly indicative of a network that solves a categorization problem. Training such 
a network is called deep learning. 

A “deep” neural network is a neural network with multiple intermediate layers between the 
input and output. 

This book presents neural nets in several chapters. Chapter 7 introduces a neural network 
as part of an adaptive control system. This ties together learning, via neural networks, and 
control. Chapter 8 provides an introduction to the fundamentals of neural networks focusing 
on the neuron and how it can be trained. Chapter 9 provides an introduction to neural networks 
using multilayer feedforward (MLFF) neural networks to classify digits. In this type of network, 
each neuron depends only on the inputs it receives from the previous layer. The example uses 
a neural network to classify digits. We will start with a set of six digits and create a training 
set by adding noise to the digit images. We then see how well our learning network performs 
at identifying a single digit and then add more nodes and outputs to identify multiple digits 
with one network. Classifying digits is one of the oldest uses of machine learning. The US 
Post Office introduced zip code reading years before Machine Learning started hitting the front 
pages of all the newspapers! Earlier digit readers required block letters written in well-defined 
spots on a form. Reading digits off any envelope is an example of learning in an unstructured 
environment. 

Chapter 11 presents deep learning with distinctive layers. Several different types of elements 
are in the deep learning chain. This is applied to face recognition. Face recognition is available 
in almost every photo application. Many social media sites, such as Facebook and Google Plus, 
also use face recognition. Cameras have built-in face recognition, though not identification, to 
help with focusing when taking portraits. Our goal is to get the algorithm to match faces, not 
classify them.
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The last chapter in the machine learning group employs deep learning to do spacecraft 
attitude determination. 

Generative Deep Learning 
Generative machine learning (ML) models are a class of models that allow you to create new 
data by modeling the data-generating distribution. For example, a generative model trained on 
images of human faces would learn what features constitute a realistic human face and how to 
combine them to generate novel human face images. For a fun demonstration of the power of 
ML-based human face generation, check out [34]. 

This is in contrast to a discriminative model that learns an association between a set of labels 
and the training inputs. Staying with our face example, a discriminative model might predict the 
age of a person given an image of their face. In this case, the input is the image of the face, and 
the label is the numerical age. Labels can also be used in generative models. 

Generative models are used in a wide variety of applications from drug design to language 
models for better chatbots and autocomplete features. Generative models are also used in data 
augmentation to train better discriminative models, especially in situations where training data 
is difficult or expensive to obtain. Finally, generative models are widely used by artists and 
composers to inspire or augment their work. 

ChatGPT is an example. It can produce all sorts of interesting material based on questions 
that it is asked. A MATLAB interface to ChatGPT is presented in Chapter 2. 

Reinforcement Learning 
Reinforcement learning is a machine learning approach in which an intelligent agent learns to 
take actions to maximize a reward. We will apply this to the design of a Titan landing control 
system. Reinforcement learning is a tool to approximate solutions that could have been obtained 
by dynamic programming, but whose exact solutions are computationally intractable [4]. 

1.6.4 Support Vector Machines (SVMs) 

Support vector machines (SVMs) are supervised learning models with associated learning al-
gorithms that analyze data used for classification and regression analysis. An SVM training 
algorithm builds a model that assigns examples into categories. The goal of SVM is to produce 
a model, based on the training data that predict the target values. 

In SVMs, nonlinear mapping of input data in a higher dimensional feature space is done with 
kernel functions. In this feature space, a separation hyperplane is generated that is the solution 
to the classification problem. The kernel functions can be polynomials, sigmoidal functions, 
and radial basis functions. Only a subset of the training data is needed; these are known as the 
support vectors [9]. The training is done by solving a quadratic program which can be done 
with many numerical software.
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1.7 Artificial Intelligence 
1.7.1 What Is Artificial Intelligence? 

The original test of artificial intelligence is the Turing test [13]. The idea is that if you have a 
conversation with a machine and you can’t tell it is a machine, then it should be considered in-
telligent. By this definition, many robocalling systems might be considered intelligent. Another 
example is chess programs, which can beat all but the best players, but a chess program can’t do 
anything but play chess. Is a chess program intelligent? What we have now are machines that 
can do things pretty well in a particular context. 

As Machine Learning is an offshoot of artificial intelligence, all the Machine Learning ex-
amples could also be considered as artificial intelligence. 

1.7.2 Intelligent Cars 

Our “artificial intelligence” example is a blending of Bayesian estimation and controls. It still 
reflects a machine doing what we would consider intelligent behavior. This, of course, gets back 
to the question of defining intelligence. 

Autonomous driving is an area of great interest to automobile manufacturers and the general 
public. Autonomous cars are driving the streets today but are not yet ready for general use by 
the public. There are many technologies involved in autonomous driving. These include 

1. Machine vision: Turning camera data into information useful for the autonomous control 
system 

2. Sensing: Using many technologies including vision, radar, and sound to sense the envi-
ronment around the car 

3. Control: Using algorithms to make the car go where it is supposed to go as determined 
by the navigation system 

4. Machine learning: Using massive data from test cars to create databases of responses to 
situations 

5. GPS navigation: Blending GPS measurements with sensing and vision to figure out where 
to go 

6. Communications/ad hoc networks: Talking with other cars to help determine where they 
are and what they are doing 

All of the areas overlap. Communications and ad hoc networks are used with GPS naviga-
tion to determine both absolute location (what street and address correspond to your location) 
and relative navigation (where you are concerning other cars). In this context, the Turing test 
would be a success if you couldn’t tell if a car was driven by a person or a computer. Now, since 
many drivers are bad, one could argue that a computer that drove well would fail the Turing 
test! This gets back to the question of what is intelligence.
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This example explores the problem of a car being passed by multiple cars and needing to 
compute tracks for each one. We are addressing just the control and collision avoidance prob-
lem. A single-sensor version of Track-Oriented Multiple Hypothesis Testing is demonstrated for 
a single car on a two-lane road. The example includes MATLAB graphics that make it easier 
to understand the thinking of the algorithm. The demo assumes that the optical or radar prepro-
cessing has been done and that each target is measured by a single “blip” in two dimensions. 
An automobile simulation is included. It involves cars passing the car that is doing the tracking. 
The passing cars use a passing control system that is in itself a form of machine intelligence. 

Our autonomous driving recipes use an Unscented Kalman Filter for the estimation of the 
state. This is the underlying algorithm that propagates the state (i.e., advances the state in time 
in a simulation) and adds measurements to the state. A Kalman Filter, or other estimator, is the 
core of many target tracking systems. 

The recipes will also introduce graphics aids to help you understand the tracking decision 
process. When you implement a learning system, you want to make sure it is working the way 
you think it should or understand why it is working the way it does. 

1.7.3 Expert Systems 

An expert system is a system that uses a knowledge base to reason and present the user with 
results and an explanation of how it arrived at that result. Expert systems are also known as 
knowledge-based systems. The process of building an expert system is called knowledge en-
gineering. This involves a knowledge engineer, someone who knows how to build the expert 
system, interviewing experts for the knowledge needed to build the system. Some systems can 
induce rules from data speeding the data acquisition process. 

An advantage of expert systems, over human experts, is that knowledge from multiple ex-
perts can be incorporated into the database. Another advantage is that the system can explain the 
process in detail so that the user knows exactly how the result was generated. Even an expert in 
a domain can forget to check certain things. An expert system will always methodically check 
its full database. It is also not affected by fatigue or emotions. 

Knowledge acquisition is a major bottleneck in building expert systems. Another issue is 
that the system cannot extrapolate beyond what is programmed into the database. Care must 
be taken with using an expert system because it will generate definitive answers for problems 
where there is uncertainty. The explanation facility is important because someone with domain 
knowledge can judge the results from the explanation. 

In cases where uncertainty needs to be considered, a probabilistic expert system is recom-
mended. A Bayesian network can be used as an expert system. A Bayesian network is also 
known as a belief network. It is a probabilistic graphical model that represents a set of random 
variables and their dependencies. In the simplest cases, a Bayesian network can be constructed 
by an expert. In more complex cases, it needs to be generated from data from Machine Learning. 
Chapter 15 delves into expert systems. 

In Chapter 15, we explore a simple case-based reasoning system. An alternative would be a 
rule-based system.
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1.8 Summary 
All of the technologies in this chapter are in current use today. Any one of them can form the 
basis for a useful product. Many systems, such as autonomous cars, use several. We hope that 
our broad view of the field of machine learning and our unique taxonomy, which shows the 
relationships of machine learning and artificial intelligence to the classical fields of control and 
optimization, are useful to you. In the remainder of the book, we will show you how to build 
software that implements these technologies. This can form the basis of your own more robust 
production software or help you to use the many fine commercial products more effectively. 
Table 1.1 lists the scripts included in the companion code. 

Table 1.1: Chapter Code Listing 

File Description 
LinearRegression A script that demonstrates linear regression and curve fitting
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