
189

CHAPTER 7

Deploying Stochastic
Systems
If you’ve made it this far, you already have the skills to build a complete

end to end data science system. Data science of course is more than

machine learning and code which are really only tools, and to build end to

end systems, we need to understand people, processes, and technology,

so this chapter will take a step back and give you a bird’s-eye view of the

entire MLOps lifecycle, tying in what we’ve learned in previous chapters

to formally define each stage. Once we have the lifecycle defined, we’ll

be able to analyze it to understand how we can reduce technical debt

by considering the interactions between the various stages from data

collection and data engineering through to model development and

deployment. We’ll cover some philosophical debates between model-

centric vs. data-centric approaches to MLOps and look at how we can

move toward continuous delivery, the ultimate litmus test for how much

value your models are creating in production. We will also discuss how

the rise of generative AI may impact data science development in general,

build a CI/CD pipeline for our toolkit, and talk about how we can use

pre-build cloud services to deploy your models. Without further ado, let’s

explore the stages of the ML lifecycle again and introduce the spiral ML

lifecycle formally.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_7

https://doi.org/10.1007/978-1-4842-9642-4_7#DOI

190

�Introducing the Spiral MLOps Lifecycle
Although we hinted at the ML lifecycle throughout this book and

even talked about the “spiral” MLOps lifecycle in Chapter 1 (shown in

Figure 7-1), we lacked the context to really define the lifecycle completely

and to understand the big picture from a holistic point of view. Although

you might see the machine learning lifecycle or MLOps lifecycle (to

me the difference between the two is that MLOps takes into account

the business and IT environment the models live in), the reality is a lot

messier. It’s always been a pet peeve of mine that there’s infographics

used in data science that summarize complex ideas very concisely but

don’t map very well to real-world problems. Essentially these infographics

are communication tools but not structures that can be mathematically

defined or reasoned upon without a lot of imagination. Therefore, it’s my

goal to take the MLOps lifecycle infographic we saw in Chapter 1 to the

level where you can actually recognize it in a real project or even adapt it to

your own custom project since not all data science problems are the same

across industries (maybe this is a kind of meta transfer learning problem in

itself).

Chapter 7 Deploying Stochastic Systems

https://doi.org/10.1007/978-1-4842-9642-4_1
https://doi.org/10.1007/978-1-4842-9642-4_1

191

Figure 7-1.  The spiral MLOps lifecycle

So what is a lifecycle? In the context of biology, a lifecycle is a series of

changes in the life of an organism. It’s in itself a model for understanding

change and a way of identifying the phases that come to define the

organism over time.

Although MLOps is not a living organism, your IT environment is

in many ways like a living, breathing organism. When we throw models

and code into the mix, we legitimately have a kind of chaotic system,

that although may not be technically living changes over time and is best

understood by breaking it down into distinct phases.

The phases which include developing, deploying, and maintaining

models can further be segmented into more granular stages that go into

creating a useful machine learning model that solves a business problem.

Chapter 7 Deploying Stochastic Systems

192

�Problem Definition
We want to start with the problem definition and requirements for the

problem. This is the initial step of the lifecycle, where we define the

initial conditions and involve gathering of information in the form of

requirements. This is vitally important because if you can’t define the

problem or the requirements (a step often skipped in data science projects

and justified in hand-wavy ways), then this ambiguity can trickle down

into the user stories and individual developer tasks, creating chaos.

�Problem Validation
The next phase of the lifecycle is validating the model. Some people

confuse this with exploratory data analysis which is sometimes used as

justification for finding a problem, but the goal should be to understand

the problem better, what we’re looking at, and the types of data sources

available and validate whether or not we can solve the problem in the

first phase. Problem validation is different than exploratory analysis

though. Although this phase may be tedious, it saves a lot of time because

it’s relatively cheap to validate a problem but costly to implement a full

solution that ends up missing the mark in the end.

�Data Collection or Data Discovery
Once we have validated a problem, we can collect data. Collecting data

is expensive. Even if you don’t collect the data, there is still a lot of data

discovery that has to take place. You may leverage metadata if you have a

catalog built already, but if not, you may have to build the metadata catalog

yourself and discover the name, variable names, data types, and statistical

properties of the data.

Chapter 7 Deploying Stochastic Systems

193

�Data Validation
At this stage, a decision needs to be made whether there is enough value

in the discovered data sources or if you need to go back to the first stage to

refine your problem. This is another example of a feedback loop or what

we’re calling a “spiral” since the process may be continuous and hopefully

converge to a performance model at the end of the process.

�Data Engineering
After data collection and data validation, the next step is data engineering.

MLOps requires a solid data engineering foundation to support modeling

activities, and this is not trivial. If you’re the data engineering and MLOps

practitioner on the team, then you might struggle to build this foundation

before you’re able to make use of MLOps.

You will set up feature stores, build feature pipelines, decide on

a schedule for your pipeline (refresh rate), and ensure you’re using

production data sources. You have to decide which data sources are most

valuable to operationalize. If the data sources are normalized (3NF or

2NF), you may have to join them together into a centralized repository.

At this stage, you may have a data architecture in mind such as a Data

Warehouse or a Data Lake or Data Vault and build robust ELT pipelines.

The goal of this phase is to have feature stores that are accessible, secure,

and centralized and to ensure that there’s enough data to support model

training.

You may start feature engineering, building a library of features for

model training, to support a variety of problem types.

If you are truly dealing with a prediction problem, you may only keep

features with predictive value, but you may also have to deal with issues of

multicollinearity and interpretability.

Chapter 7 Deploying Stochastic Systems

194

�Model Training
Model development starts. You may start with a model baseline like simple

linear regression or logistic regression; the simpler the model, the better

the baseline. You might gradually increase the variance of the model.

The boundary between the previous phase, data engineering, and model

training will be blurred as you refine your model and require new features

be added to the feature store and deal with schema drift and the curse

of dimensionality. Eventually you’ll have to create a way to reduce the

number of features and may struggle to keep track of the entire library of

features as business demand grows.

Since the lifecycle is a continuous process, after several iterations,

the architecture of the model itself may change, and if enough data is

available, you might consider deep learning at some point. This stage may

start simple but also grow horizontally in terms of the number of models

you need to support and the number of problem types and performance

metrics that need to be tracked. As your MLOps process gets more

advanced, the model training phase will eventually require MLFlow or

similar experiment tracking software, hyper-parameter tuning frameworks

like HyperOpt, hardware accelerated or distributed training, and

eventually full training automation, registering your models in a model

registry and having some kind of versioning system.

�Diagnostic Plots and Model Retraining
Depending on the problem type, there are specific visual tools for

evaluating models called diagnostic plots. For example, if you have a

classification problem, you might consider plotting a decision surface

for your model to evaluate its strengths and weaknesses. For a linear

regression problem, you may be interested in plotting residuals vs. fitted

values or some other variation to decide if it’s a good or bad model.

Chapter 7 Deploying Stochastic Systems

195

Some of these plots may be used as diagnostic tools but not traditional

monitoring tools which may not be able to accommodate images, so

you could, for example, have a Jupyter notebook that’s source controlled

a part of the project and can generate these images on a schedule, for

example, once a week, or another option is to build a separate monitoring

dashboard using tools like Dash or PowerBI; the choice of reporting

software really depends on your project and how you’re comfortable

creating the visuals, but it probably needs to support Python and libraries

used like Pandas.

For model retraining, you can have more complex triggers such as if

the distribution of features changes or if model performance over time is

trending downward, but a simple solution to start is to retrain the model

monthly. Note that these are two different types of triggers and both are

needed to determine when to retrain the model since model performance

can degrade over time but also the distribution of features themselves

can change.

You should also consider how you write features to a table. For

example, you might want to add a timestamp column and append features

to a table so you have a complete history available for model retraining.

These types of technical decisions around how frequently data needs to

be updated, whether historical data needs to be maintained for model

retraining, and how to operationalize diagnostic plots and other visuals are

complex decisions that may require several team discussions.

�Model Inference
In this phase, you’ll select the best model, pulling the model from the

model registry for use in an inference pipeline. You may decide to go

through another round of cross-validation to evaluate the best model.

You will need to have an inference pipeline that compiles your features

and makes them available at prediction time. The runtime, model, and

features will all need to be available at the same time for the model to

Chapter 7 Deploying Stochastic Systems

196

make a prediction. Your inference pipeline may be as complicated as a

full application or microservice or as simple as an API endpoint or batch

inference pipeline depending on the requirements gathered during

requirements gathering.

One commonality between model training and model inference is

schema drift. Schema drift is also a factor in choosing a data architecture

that can adapt to the demands of data science workloads since features

that are used in both training and inference can change. The implication

is that we either need to have complex code flows, updates, and frequent

release cycles to accommodate changes in feature definition, or we need

to create our tables dynamically using metadata. Since data types of each

feature determine how the data is physically stored, changes in data type

can impact our ability to store historical data required for model training.

In the next section, I will talk about the various levels of schema drift.

�The Various Levels of Schema Drift in
Data Science
Schema drift is a different issue than data drift and is common to virtually

all data science projects of sufficient complexity since features fed into the

model may change. We have talked about schema drift before but post-

deployment features can still change. It’s interesting to note that there is no

one size fits all solution to the problem of schema drift and actually there

are various levels of schema drift. For example, you may have additive

changes where you are only adding features and you may be able to simply

set an option to allow the dataframe’s schema to merge with the target

table schema. You can implement this solution manually as well with a

DDL SQL command like ALTER TABLE to avoid loss of historical data that

may be required for model training.

Chapter 7 Deploying Stochastic Systems

197

However, what do you do when the order of columns changes, the data

types are incompatible, for example, string to a float (casting a string to a

float would lead to a loss of information), or there are other destructive

operations on the table schema that are fundamentally not compatible

with the target table? In this case, you may have to drop the table entirely.

Many databases have a CREATE OR REPLACE TABLE statement, but

you can implement this yourself by checking if the table exists and if

it does dropping it and then recreating it. You should be careful to use

atomic operations though if you’re deploying this code to a distributed

environment since race conditions and a source of strange errors in

production are possible.

Traditional ways of handling schema drift like slowly changing

dimensions don’t work well for data science since features can change

rapidly and the entire table structure may change this actually has

consequences for model training since you could risk wiping out historical

data required at a future point in time for training the model so running

an ALTER TABLE statement on specific columns may be the safest bet

along with regular backups of the data if possible. The schema itself, the

metadata that describes the data types and structure of the table, needs to

be stored as well with each version since of course this will change as well.

�The Need for a More Flexible Table in
Data Science
We talked about schema drift, and if you have actually worked as a data

scientist, you might have encountered the problem of features being

added or subtracted, names changing, data types changing regularly, and

having to constantly update your tables. Traditional wisdom in database

management assumes that the table structure is fixed which doesn’t work

well for data science.

Chapter 7 Deploying Stochastic Systems

198

While No-SQL databases and columnar storage address the problems

of having a more flexible API and how to store data for analytical queries,

you still need to handle schema drift. It’s interesting to note that traditional

SQL is based on relational algebra, and the equivalence with relational

calculus under certain conditions such as domain independence is known

as Codd’s theorem.

While relational algebra and relational calculus are equivalent,

relational calculus focuses on what to retrieve rather than how to retrieve

it and so is more flexible. In relational calculus, there is no description

of how to evaluate a query but instead a description (very similar to a

prompt) of what information needs to be retrieved.

Whether a new kind of database is needed for data science that can

better handle schema drift on a foundational level while maintaining

performance for analytical queries is an open question that remains to be

answered, but perhaps this technology could come from a fusion of large

language models and the decades of wisdom built into relational database

engineers (“optimizers”). In the next section, we will take all of the pieces

of the lifecycle we have learned so far and discuss model deployment in

general and ways to integrate all of the pieces of the puzzle into an existing

business ecosystem.

�Model Deployment
The model needs to be integrated into an existing business process. This

seems like a technical problem but largely depends on your organization

and industry. In the next section, we will look at how you can integrate

your model into your business process as part of a larger system involving

people, processes, and technology.

Chapter 7 Deploying Stochastic Systems

199

�Deploying Model as Public or Private API
In the previous chapter, we talked about inference pipelines and

microservices but for simple use cases where you only want to deploy a

model, so it can be consumed as a private or public API endpoint, and

there are many cloud services for doing this type of task; these types of

cloud offerings are often called model as a service or inference as a service.

Hugging Face, for example, provides inference endpoints to easily

deploy transformers, diffusers, or custom models to dedicated fully

managed infrastructure in the cloud. This offering is a platform as a service

where Hugging Face handles the security, load balancing, and other low

level details, and you can choose your cloud provider and region if you

have data compliance requirements. You can also choose public or private

endpoints (intra-region secured AWS or Azure PrivateLink to VPC) that are

not accessible over the Internet.

�Integrating Your Model into a Business System
For stakeholders, one strategy for hedging against the vicissitudes

of business is improving operational efficiency, reducing costs, and

identifying opportunities to improve decision-making processes through

models and innovate on insights found through data science. However,

integrating a model into an established business system is a challenging

problem and one that might be glossed over by data scientists and other

technical leaders. The challenge is magnified when the machine learning

system requires input from multiple departments and teams within those

departments that have conflicting goals.

One way you can start to bring a model into an established business

environment is by thinking incrementally and identifying opportunities

where machine learning could bring the most value. Start with the pain

points; are there repetitive tasks that could be automated? Are there tasks

that nobody wants to do and may be a quick win? A good example would

Chapter 7 Deploying Stochastic Systems

200

be cleaning data. Nobody enjoys data cleaning, but it’s a business necessity

and if that process is still done in spreadsheets, it may be a good candidate

for automation.

Once you’ve identified a task that could be automated, you can

investigate the data sources and look for ways the process could be

improved. At this stage, it’s critical to create a strategy and secure

stakeholder buy-in for the first few phases of your project. Once you’ve

proven you can bring value, adding multiple data sources, testing

algorithms, training models, adding monitoring, and alerting can naturally

add value and provide a segway into the next phases of the project.

�Developing a Deployment Strategy
There are several established frameworks for data science and data mining

that you might want to consider when building a business strategy and

executing against that strategy. Although this book is meant to cover the

technical aspects of the MLOps lifecycle, model deployment involves

people and processes, and having a set of tools for execution can serve as

a kind of checklist and mitigate risk of forgetting a step. Here are a couple

frameworks you might incorporate into your own model deployment

strategy.

CRISP-DM: The CRISP-DM (Cross-Industry Standard Process for Data

Mining) is a standard framework originally developed for data mining

but applies equally well to machine learning and data science. One of its

advantages is it applies across multiple industries (we will look at specific

case studies in a later chapter but it’s worthwhile to have a framework that

applies to multiple industries in mind). It has six phases which broadly

correspond to phases in the MLOps lifecycle including model deployment:

	 1.	 Business understanding

	 2.	 Data understanding

Chapter 7 Deploying Stochastic Systems

201

	 3.	 Data preparation

	 4.	 Modeling

	 5.	 Evaluation

	 6.	 Deployment

Each of these phases consists of tasks, and phases follow sequentially

with arrows between data preparation and modeling (unlike the spiral we

talked about earlier), but this gives a very structured approach to data science

and you can use it as a deployment checklist to make sure you’re not missing

steps. For nontechnical stakeholders, this may be a good way to communicate

the various phases in a linear way. In the next section, we will look at ways in

which these frameworks can be used to reduce technical debt.

�Reducing Technical Debt in your Lifecycle
Technical debt can appear in many forms and can come about in different

ways from working too fast to using suboptimal algorithms to forgetting

how code works and making changes without updating old code and

documentation. At the model deployment phase, it’s critical to have

standards in place to reduce technical debt across all stages of the lifecycle.

Here are some deployment checklists you can use to ensure you’re paying

down technical debt in a timely manner:

	 1.	 Implement quality checks and linters before

deployment. Friction between teams can often be

reduced by doing something as simple as installing

a code linter to ensure code is formatted in a

standard way, eliminating arguments over what

style is the best (since most data scientists have

their own style). This can be done, for instance,

on the main branch of the shared repository your

team uses.

Chapter 7 Deploying Stochastic Systems

202

	 2.	 Hold regular code reviews and designate someone

in charge of merging PRs (or you could implement

this in a round-robin style).

	 3.	 Periodically reassess model performance post-

deployment, and keep up to date with alerts and

errors that are generated once the model goes to

production.

	 4.	 Automate testing and monitoring as much as

possible.

By following some of the preceding strategies, you can minimize

technical debt post-deployment. At this point, you might be asking,

I’ve already deployed my model, I’ve set up monitoring and automated

testing, is it all hands-off from here? The answer is unfortunately, no.

Data changes, environments change, and this does not stop after you

deploy your model. Remember, the lifecycle is a continuous process. In

the following section, we will look at what this process and how you can

apply Agile principles in data science to make the process more efficient

for you and your team. One way that you can reduce technical debt is with

generative AI. In the next section, we will briefly look at how you can use

generative AI to reduce technical debt by automating code reviews.

�Generative AI for Code Reviews
and Development
Generative AI leverages large language models which use reinforcement

learning and the quadratic complexity of the transformer architecture at

scale to billions of parameters. It can automate common tasks in coding

and provide feedback through prompt-based development. With the rise

of tools like AutoGPT, even prompt engineering is slowly being replaced.

Chapter 7 Deploying Stochastic Systems

203

Will this be a good thing for data scientists? I think so, as it can automate

the boring stuff. Even for software developers, if you’re a creative builder,

you will be able to be more productive.

One way generative AI could improve the data scientist development

cycle is through automated code reviews, getting feedback on their

code before it is deployed. Some other ways but this list is by no means

exhaustive.

•	 Automated code reviews

•	 Optimizing code (focus on accuracy)

•	 Translating between SQL and Python or other

languages (removes translation bottlenecks)

•	 Generating tests for test-driven development

However, focus needs to be on validation. Output of generative models

cannot be trusted, and data scientists will play a vital role in ensuring

the validity, accuracy, and quality of model output when generative AI is

mis-used. We should also be mindful of the cost per token and the license

requirements before using this in your data science development cycle.

We’ll talk a lot more about these ethical issues in the next chapter, but

generative AI has potential to reduce technical debt and free up time for

doing data science.

�Adapting Agile for Data Scientists
You may have heard of Agile before especially if you have worked on

software projects in the last 20 years. Agile is a project management

methodology, and although some developers have a love-hate relationship

with Agile, some principles can be adapted to data science, and others fail

miserably.

Chapter 7 Deploying Stochastic Systems

204

One principle of Agile that can be adapted is the principle of regular

communication. Data science and software development share a common

thread in that it’s really all about communication. There’s even a term for

this called Conway’s law which states

Any organization that designs a system will produce a design whose

structure is a copy of the organization's communication structure

What does this mean? It means, if you fail to communicate effectively

with other data scientists, the structure of your project will reflect this

chaos and the system you end up creating will be a mess. Setting up a side

channel for communication, for example, via Microsoft Teams, can help to

dissipate this risk.

How about another conundrum often faced in real-world projects:

conflicting requirements. In data science, stakeholders can be incredibly

demanding, and requirements you gathered in the early phase of the lifecycle

will change and you will face conflicts. We can borrow from another principle

of Agile development to help in this scenario, namely, prioritizing tasks.

Another important principle of both agile and other methodologies like

Twelve-Factor App is the notion of clean code that can be run in separate

build, run and deploy stages and that can be easily adapted. While clean

code and code management is an important tenet of Agile, in data science,

it’s all about the data. By emphasizing proper data management, we can

ensure our models are accurate. For example, developing and prioritizing

a process to improve the consistency of our labeled data set could have a

massive impact on the accuracy of our models.

You may want to consider applying test-driven development to data

science especially in early-stage development. While testing data heavy

workflows is not easy, choosing a test framework, for example, Pytest or

Hypothesis, and developing data fixtures (preferably ones that use realistic

data from a database) can ensure models and code are performing as you

expect even after you’ve deployed your model. These tests from the early

development stage can easily be added to a CI/CD pipeline as well and

become part of the model deployment process.

Chapter 7 Deploying Stochastic Systems

205

One area where Agile fails miserably in data science is regular sprints.

Since the lifecycle has feedback into previous phases, for example,

retraining models due to data drift may require reengineering some of the

features or collecting more data. How do you anticipate these changes

and fit them into a regular sprint? This is a difficult question as urgent and

important tasks can get added to the board mid sprint and cause havoc on

data science teams. Understanding the difference between model-centric

and data-centric workflows may help to align teams and reduce some of

the pain points in trying to pigeonhole data science into regular sprints.

�Model-Centric vs. Data-Centric Workflows
When we talk about model deployment, there are two main approaches we

could take to the overall process: a model-centric approach and a data-

centric approach. What do I mean by model-centric and data-centric?

In order to illustrate this somewhat philosophical concept, let’s

suppose you are working on an NLP problem. You’re trying to classify

unstructured data collected from a free form response field on a survey

into categories that can help the support team quickly prioritize issues.

For example, the text “I have a problem with my Internet connection” may

be classified as “connectivity issue”. In fact you’ve done an exploratory

analysis of the data, and you know 90% of the training data falls into the

buckets of “connectivity issue,” “hardware issue,” and “authentication

issue,” corresponding to labels in your training set. However, there’s a lot

of training data, several gigabytes, and there’s some ambiguity. You also

had to label a lot of the data by hand, and you’re not sure if it’s completely

consistent, and 10% of the data may be classified into new buckets.

Your model accuracy is only 70%, and you decide to improve this

accuracy by changing the type of model and its architecture. Eventually

you decide to try transfer learning, fine-tuning the last layers of a large

language model on your specific data set, and this improves the accuracy

Chapter 7 Deploying Stochastic Systems

206

to 85%. Since you primarily focused on the model and how you could

improve the model, you’ve taken a model-centric approach to this

problem, but is there another way?

In fact you could have taken a data-centric approach to improving

model accuracy by focusing more on the data. You could have improved

the consistency of the labeled data or developed a process to label the

10% of the data that was unlabeled. This would have been a data-centric

approach.

In reality, you could mix the two and use semi-supervised learning,

developing a model or rule to label the remaining 10% of data and then

working to increase the consistency of the data, taking both a model- and

data-centric approach to improving model accuracy.

So which approach is better? There is some debate, and both

approaches can have their advantages and disadvantages, but when the

problem is well-understood, optimizing the model makes sense. When

the problem is less well-understood, there’s ambiguity or complexity

in the data or we’re working with a very large amount of data, and

then a data-centric approach may be the best option since the focus

would be on capturing the variability and complexity of the data to

move performance metrics in the right direction. Like most things in

engineering, there are guiding principles and rules of thumb but with

no clear-cut answer that applies universally in all cases. Regardless

of the approach you take for your specific problem, you will want

to automate the process of deployment as much as possible, and in

the next section, we’ll borrow from a DevOps concept of continuous

delivery and continuous deployment and see how it applies to

stochastic systems.

Chapter 7 Deploying Stochastic Systems

207

�Continuous Delivery for Stochastic Systems
In the previous three chapters, we discussed several types of pipelines. We

talked about ETL and ELT pipelines for refreshing our feature stores, we

talked about training pipelines and actually built an end to end training

pipeline, and we talked about inference pipelines that automated the

model prediction. How about model deployment? Is there a pipeline we

can create for this process? The answer is yes and it even has a name; these

types of pipelines are called CI/CD pipelines.

CI/CD (continuous integration and continuous deployment) are a type

of pipeline with several steps to guarantee that each time there’s a code,

model, or data change, that change gets tested and deployed to the right

environment.

You may have several types of environments including development,

testing, staging, and production consisting of databases, configuration,

code, and data that need to be deployed to these environments. The CI/CD

pipeline will consist of several steps:

	 1.	 Version control: The pipeline can be “triggered”

whenever there’s a commit to the main branch. This

could, for example, be a pull request after a code

review and cause the pipeline to start.

	 2.	 Automated tests: After starting, several tests will be

run. As a data scientist, you can define what tests

get run; for example, you may want to check if your

features have the statistical properties you expect

before deploying. These tests can include security

tests, data quality and code quality checks, as well as

formatting like linking.

Chapter 7 Deploying Stochastic Systems

208

	 3.	 Build step: After the tests have passed, the next

step of the pipeline will take the code, data, and

models and package them up into an environment

and runtime. This may be a docker container, for

example, which can be deployed.

	 4.	 Deployment: Once the changes are packaged

and containerized, the container is deployed to

the target environment. This environment could

be production, releasing your changes to a live

environment with end users (do you see why we

need tests first?)

�Introducing to Kubeflow for Data Scientists
Kubeflow is an open source tool for data scientists that makes it relatively

straightforward for both data scientists and MLOps engineers to build,

deploy, and manage workflows at scale. Kubeflow provides several

features for deploying models that are particularly useful for data scientists

like Jupyter notebook server (similar to the one we build ourselves) for

managing and deploying models and code.

Kubeflow is designed to work on top of Kubernetes, so it may be

overkill for your project. In the lab, you’ll be able to optionally remove

the Kubeflow step of the CI/CD pipeline if you only want to say host your

project on GitHub or push your code and models to a docker container

and host it on a docker registry. However, knowledge of Kubeflow is

worthwhile for data scientists because you may encounter it in the wild,

and knowing that a tool exists that abstracts away some of the details

required to work with Kubernetes is enough to get you started on the

right path.

Chapter 7 Deploying Stochastic Systems

209

For data scientists, you can use Kubeflow in several ways to do

machine learning at scale.

	 1.	 Kubeflow provides a Jupyter notebook server for

developing and test models. In combination with

MLFlow, this can be a powerful tool for setting up

experiments and hyper-parameter tuning

	 2.	 Scaling workflows: Data scientists can leverage

Kubeflow to do model training at scale. Kubeflow

can be used to provision resources like clusters

required for distributed training on GPUs or CPUs

and takes care of scheduling, orchestration, and

managing cluster resources.

	 3.	 Model deployment and serving: Data scientist can

use Kubeflow to deploy models to production and

serve production models to end users by deploying

them as Kubernetes services (remember, this is for

a full-blown application or inference API). You can

manage or fine-tune the Kubernetes deployment as

well add load balancers and other services so you

can scale up or scale down to match demand.

I’ve also said this several times before; but, for some projects using

Kubernetes, it is not necessary, and you may choose a batch oriented

workflow for the deployment step in which case you only need to build a

batch inference pipeline and use your model to make predictions in batch.

This is a completely valid way to deploy models. In the lab, we’ll look at

creating a CI/CD pipeline that you can modify to match your particular

deployment needs.

Chapter 7 Deploying Stochastic Systems

210

�Lab: Deploying Your Data Science Project
This is the final hands-on lab of the book, and you’re going to build your

own CI/CD pipeline. The goal of this lab is to have a CI/CD pipeline that is

part of the toolkit and that you can modify to deploy your own projects to

the cloud by adding steps as necessary. We’ll be using GitHub actions in

this lab. You can follow along with the following steps to understand how

the pipeline is constructed or look at the finished CI/CD pipeline located

in the .github folder of the final MLOps toolkit included with this chapter.

Before you proceed with the lab, you should know that YAML is

another data format for configuration files consisting of key value pairs that

can be arranged in a hierarchy. It’s a human-readable format (actually it’s a

superset of JSON) and is a widely used standard for defining infrastructure

as code, CI/CD pipelines, and a range of other configurations used

in MLOps.

	 1.	 Create a new GitHub repository for your data

science project (if you need help with this, refer to

the lab from Chapter 3 on setting up source control).

	 2.	 Create a .github/workflows folder in the project root.

In our case, this folder already exists.

	 3.	 Create a new YAML file in the .github/workflows

folder and name it, for example, cicd_model_

deployment.yml.

	 4.	 Edit the YAML file as needed for your specific

data science project. For example, you may need

to update the name of the Docker image and

the name of the container registry or remove the

step to deploy to Kubernetes if you are not using

Kubernetes with your project.

Chapter 7 Deploying Stochastic Systems

https://doi.org/10.1007/978-1-4842-9642-4_3

211

	 5.	 Commit the changes and push these changes to the

repository created in the first step.

	 6.	 Add two secrets to the repository settings:

REGISTRY_USERNAME and REGISTRY_

PASSWORD. These secrets should be kept

confidential and correspond to the username and

password for the container registry (e.g., Docker

Hub or Azure Container Registry) that you are using.

	 7.	 Try to push changes to the main branch of the

repository; the pipeline will automatically be

triggered.

This CI/CD pipeline performs the following steps:

•	 Checkout the code from the repository.

•	 Set up a Python environment with the specified version

of Python.

•	 Install pipenv and the project dependencies.

•	 Convert notebooks to Python scripts.

•	 Run Pytest to test the code.

•	 Build and push a Docker image with the latest changes.

•	 Deploy the Docker image to Kubeflow using kfctl.

You can modify this lab to fit your needs; you now have a full CI/

CD pipeline with automated tests and a way to deploy your models to

Kubeflow whenever a change is pushed to main. Remember, you should go

through a PR process to ensure code quality before pushing to main. We’ve

also included all of the notebooks from previous labs in the toolkit as a

complete package.

Chapter 7 Deploying Stochastic Systems

212

�Open Source vs. Closed Source in Data Science
Machine learning software can be open and closed, and if you’ve been

following industry trends, there is a battle between the two philosophies

as companies seek to establish a data moat; the open source community

continues to develop open source versions of tools, models, and software

packages.

Somewhere between the two are composed of both open and closed

components (maybe we could refer to this as “clopen” software). This is

further complicated by models that significantly transform the input like

generative AI. When deploying models that use open source components

you have to make a technical decision whether to open source or closed

source your software at the end of the day and which components you

choose and accompanying licensing impacts this decision. This adds even

more complexity to the problem of MLOps placing a premium on MLOps

practitioners to make ethical decisions when it comes to the decision

systems they are deploying, regardless of the underlying technology

behind the models. In the next chapter, we’ll look at some of these ethical

decisions and how they impact the MLOps role.

�Monolithic vs. Distributed Architectures
Architecture is about trade-offs, and although we’ve covered many rules

of thumb in this book like SOLID principles, distributed architectures

for more event driven and real-time workstreams vs. batch oriented

architectures that tend to be more monolithic, there is no one perfect

architecture for each project, and you need to understand the trade-offs

and the type of performance, security, data, and process requirements

to decide what is the best architecture. Once you are committed to an

architecture or platform, it can be difficult to change though, so you should

do this ground work up front and commit to one type of architecture and

platform.

Chapter 7 Deploying Stochastic Systems

213

�Choosing a Deployment Model
In data science, there are several types of deployment models that can be

used, and in some cases, you need to support multi-model deployment.

Choosing a deployment model that best suits your needs is key to a

smooth transition from development to deployment.

On-premises deployment: In this deployment mode, you utilize your

own servers or IT environment (physical hardware, e.g., your own GPU

enabled server running Jupyter labs). Although this gives you maximum

control over the hardware, you are responsible for patching, updates, any

upgrades, and regular maintenance as well as the inbound and outbound

network connectivity and security.

Public cloud deployment: This may be a cloud service provider like

Azure, for instance, with your own resource groups and cloud services

such as Databricks. Cloud deployment may also include public services

like releasing packages to PyPi or hosting packages on web servers or

even GitHub.

Mobile deployment: Creating machine learning for smartphones or

mobile devices is becoming more popular lately. Since these devices

have limited memory compared to servers, you need to choose between

hosting your models in the cloud and connecting to them from the device

or reducing the size of the model. There is ongoing research to reduce the

size of large language models and other models, for example, quantization1

(representing the model weights as fewer bits) and knowledge distillation

(“distilling a model2”) to achieve a smaller size.

1 Kohonen, T. (1998). Learning Vector Quantization. In Springer series in
information sciences (pp. 245–261). Springer Nature. https://doi.org/10.1007/
978-3-642-56927-2_6
2 Yuan, L., Tay, F. E. H., Li, G., Wang, T., & Feng, J. (2020). Revisiting Knowledge
Distillation via Label Smoothing Regularization. https://doi.org/10.1109/
cvpr42600.2020.00396

Chapter 7 Deploying Stochastic Systems

https://doi.org/10.1007/978-3-642-56927-2_6
https://doi.org/10.1007/978-3-642-56927-2_6
https://doi.org/10.1109/cvpr42600.2020.00396
https://doi.org/10.1109/cvpr42600.2020.00396

214

�Post-deployment
The post-deployment, although not technically a phase since it’s an

ongoing continuous process so it is not formerly part of the lifecycle, refers

to the stage where the trained model is deployed to production and being

used. Some of the considerations during this phase are communicating

with stakeholders, soliciting user feedback, regular maintenance, and

monitoring (e.g., of an API you rely on is deprecated and it must be

updated, or if you find a CVE or common vulnerability exposure that

impacts a PyPi package you’re using, you need to patch it).

Beyond security and stakeholder feedback, collecting user feedback

and monitoring how the users are interacting with your model can be

invaluable for future projects and be used to train the model and augment

existing data sources. Post-deployment monitoring ensures that all of the

models deployed to production continue to provide business value and are

used in an ethical way.

�Deploying More General Stochastic Systems
Can we use the principles in this book to deploy more general stochastic

systems such as Bayesian machine learning models? The answer is yes, but

we should discuss some of the caveats.

If you use a library like PyMC3 (we used this in the second chapter

to create a Bayesian logistic regression model), you can still save your

model, but you should choose a custom serialization framework to match

the model architecture, for example, ONNX, an open standard for neural

network architectures, but others include HDF5 and Python’s pickle (e.g.,

this works well with Bayesian models from PyMC3).

You may also need to consider the types of performance metrics you

want to track, for example, Bayesian information criterion for feature

selection or Bayesian credibility interval along with a prediction.

Chapter 7 Deploying Stochastic Systems

215

The other problem is you’ll need to carefully consider sampling

methods you use and may have to have hardware to ensure you have

sufficient entropy for random sampling. Some of the algorithms may not

scale well to large data sets or be intractable, so you may have a need to

use Monte Carlo methods as opposed to a “big data” solution that may be a

necessary approach for some algorithms.

There may be other stochastic algorithms that you may encounter

that need to productionize. For example, reinforcement learning could be

applied as part of a training pipeline to do hyper-parameter search or in

specific use cases in healthcare, finance, and energy to simulate physical

systems and make recommendations, dynamic planning, and natural

language processing.

If you use a reinforcement learning algorithm like Q-learning, you

will have to think about how to represent your environment and agents

and how to update a Q-table and choose a framework that can handle

interacting with the environment between learning steps, so you may

choose a framework like Ray RLlib framework that offers support for highly

distributed workflows.

Understanding the problem type may help you to identify the

frameworks available since you should not reinvent the wheel (e.g.,

reinforcement learning frameworks, deep learning frameworks,

frameworks for Bayesian inference). Other times, you may be able

to achieve similar results with another approach where a library of

framework exists (e.g., many problems can be reframed to use a different

methodology, like how you can solve the multiarmed bandit problem

using reinforcement learning or Bayesian sampling, and this is a kind of

equifinality prosperity of many stochastic systems).

Still, you may one day encounter a bespoke stochastic algorithm that has

never been used before in the wild, where no Python wrapper exists, and in

that case, you would have to build your own from scratch. In this scenario,

you would require knowledge of a low level language like C++, compilers,

hardware, distributed systems, and APIs like MPI, OpenMP, or CUDA.

Chapter 7 Deploying Stochastic Systems

216

�Summary
In this chapter, we looked at the spiral MLOps lifecycle and its different

phases. We took another look at reducing technical debt from a holistic

point of view after understanding each phase of the lifecycle. We discussed

the philosophy behind taking a model-centric vs. a data-centric view of

MLOps and why when working with big data, a data-centric view that

encapsulates variability and complexity in the data may be preferable.

We took a look at continuous delivery for stochastic systems and how we

could adapt principles in this chapter to deploying Bayesian systems or

more general types of stochastic systems along with some of the technical

challenges. Finally, you did a hands-on lab, designing a CI/CD pipeline for

the final toolkit that is a part of this book. Here is a summary of some of the

topics we covered.

•	 Introducing the Spiral MLOps Lifecycle

•	 Reducing Technical Debt in Your Lifecycle

•	 The Various Levels of Schema Drift in Data Science

•	 Model Deployment

•	 Continuous Delivery for Stochastic Systems

In the final two chapters, we will diverge from the technical and

hands-on components and instead take a deep dive into the ethical

considerations around using AI and machine learning responsibly. We’ll

focus on model fairness, bias reduction, and policy that can minimize

technical risk.

Chapter 7 Deploying Stochastic Systems

	Chapter 7: Deploying Stochastic Systems
	Introducing the Spiral MLOps Lifecycle
	Problem Definition
	Problem Validation
	Data Collection or Data Discovery
	Data Validation
	Data Engineering
	Model Training
	Diagnostic Plots and Model Retraining
	Model Inference

	The Various Levels of Schema Drift in Data Science
	The Need for a More Flexible Table in Data Science

	Model Deployment
	Deploying Model as Public or Private API
	Integrating Your Model into a Business System
	Developing a Deployment Strategy

	Reducing Technical Debt in your Lifecycle
	Generative AI for Code Reviews and Development
	Adapting Agile for Data Scientists
	Model-Centric vs. Data-Centric Workflows

	Continuous Delivery for Stochastic Systems
	Introducing to Kubeflow for Data Scientists
	Lab: Deploying Your Data Science Project
	Open Source vs. Closed Source in Data Science
	Monolithic vs. Distributed Architectures
	Choosing a Deployment Model
	Post-deployment
	Deploying More General Stochastic Systems

	Summary

