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CHAPTER 7

Deploying Stochastic 
Systems
If you’ve made it this far, you already have the skills to build a complete 

end to end data science system. Data science of course is more than 

machine learning and code which are really only tools, and to build end to 

end systems, we need to understand people, processes, and technology, 

so this chapter will take a step back and give you a bird’s-eye view of the 

entire MLOps lifecycle, tying in what we’ve learned in previous chapters 

to formally define each stage. Once we have the lifecycle defined, we’ll 

be able to analyze it to understand how we can reduce technical debt 

by considering the interactions between the various stages from data 

collection and data engineering through to model development and 

deployment. We’ll cover some philosophical debates between model- 

centric vs. data-centric approaches to MLOps and look at how we can 

move toward continuous delivery, the ultimate litmus test for how much 

value your models are creating in production. We will also discuss how 

the rise of generative AI may impact data science development in general, 

build a CI/CD pipeline for our toolkit, and talk about how we can use 

pre-build cloud services to deploy your models. Without further ado, let’s 

explore the stages of the ML lifecycle again and introduce the spiral ML 

lifecycle formally.
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 Introducing the Spiral MLOps Lifecycle
Although we hinted at the ML lifecycle throughout this book and 

even talked about the “spiral” MLOps lifecycle in Chapter 1 (shown in 

Figure 7-1), we lacked the context to really define the lifecycle completely 

and to understand the big picture from a holistic point of view. Although 

you might see the machine learning lifecycle or MLOps lifecycle (to 

me the difference between the two is that MLOps takes into account 

the business and IT environment the models live in), the reality is a lot 

messier. It’s always been a pet peeve of mine that there’s infographics 

used in data science that summarize complex ideas very concisely but 

don’t map very well to real-world problems. Essentially these infographics 

are communication tools but not structures that can be mathematically 

defined or reasoned upon without a lot of imagination. Therefore, it’s my 

goal to take the MLOps lifecycle infographic we saw in Chapter 1 to the 

level where you can actually recognize it in a real project or even adapt it to 

your own custom project since not all data science problems are the same 

across industries (maybe this is a kind of meta transfer learning problem in 

itself).
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Figure 7-1. The spiral MLOps lifecycle

So what is a lifecycle? In the context of biology, a lifecycle is a series of 

changes in the life of an organism. It’s in itself a model for understanding 

change and a way of identifying the phases that come to define the 

organism over time.

Although MLOps is not a living organism, your IT environment is 

in many ways like a living, breathing organism. When we throw models 

and code into the mix, we legitimately have a kind of chaotic system, 

that although may not be technically living changes over time and is best 

understood by breaking it down into distinct phases.

The phases which include developing, deploying, and maintaining 

models can further be segmented into more granular stages that go into 

creating a useful machine learning model that solves a business problem.
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 Problem Definition
We want to start with the problem definition and requirements for the 

problem. This is the initial step of the lifecycle, where we define the 

initial conditions and involve gathering of information in the form of 

requirements. This is vitally important because if you can’t define the 

problem or the requirements (a step often skipped in data science projects 

and justified in hand-wavy ways), then this ambiguity can trickle down 

into the user stories and individual developer tasks, creating chaos.

 Problem Validation
The next phase of the lifecycle is validating the model. Some people 

confuse this with exploratory data analysis which is sometimes used as 

justification for finding a problem, but the goal should be to understand 

the problem better, what we’re looking at, and the types of data sources 

available and validate whether or not we can solve the problem in the 

first phase. Problem validation is different than exploratory analysis 

though. Although this phase may be tedious, it saves a lot of time because 

it’s relatively cheap to validate a problem but costly to implement a full 

solution that ends up missing the mark in the end.

 Data Collection or Data Discovery
Once we have validated a problem, we can collect data. Collecting data 

is expensive. Even if you don’t collect the data, there is still a lot of data 

discovery that has to take place. You may leverage metadata if you have a 

catalog built already, but if not, you may have to build the metadata catalog 

yourself and discover the name, variable names, data types, and statistical 

properties of the data.
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 Data Validation
At this stage, a decision needs to be made whether there is enough value 

in the discovered data sources or if you need to go back to the first stage to 

refine your problem. This is another example of a feedback loop or what 

we’re calling a “spiral” since the process may be continuous and hopefully 

converge to a performance model at the end of the process.

 Data Engineering
After data collection and data validation, the next step is data engineering. 

MLOps requires a solid data engineering foundation to support modeling 

activities, and this is not trivial. If you’re the data engineering and MLOps 

practitioner on the team, then you might struggle to build this foundation 

before you’re able to make use of MLOps.

You will set up feature stores, build feature pipelines, decide on 

a schedule for your pipeline (refresh rate), and ensure you’re using 

production data sources. You have to decide which data sources are most 

valuable to operationalize. If the data sources are normalized (3NF or 

2NF), you may have to join them together into a centralized repository.

At this stage, you may have a data architecture in mind such as a Data 

Warehouse or a Data Lake or Data Vault and build robust ELT pipelines. 

The goal of this phase is to have feature stores that are accessible, secure, 

and centralized and to ensure that there’s enough data to support model 

training.

You may start feature engineering, building a library of features for 

model training, to support a variety of problem types.

If you are truly dealing with a prediction problem, you may only keep 

features with predictive value, but you may also have to deal with issues of 

multicollinearity and interpretability.
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 Model Training
Model development starts. You may start with a model baseline like simple 

linear regression or logistic regression; the simpler the model, the better 

the baseline. You might gradually increase the variance of the model. 

The boundary between the previous phase, data engineering, and model 

training will be blurred as you refine your model and require new features 

be added to the feature store and deal with schema drift and the curse 

of dimensionality. Eventually you’ll have to create a way to reduce the 

number of features and may struggle to keep track of the entire library of 

features as business demand grows.

Since the lifecycle is a continuous process, after several iterations, 

the architecture of the model itself may change, and if enough data is 

available, you might consider deep learning at some point. This stage may 

start simple but also grow horizontally in terms of the number of models 

you need to support and the number of problem types and performance 

metrics that need to be tracked. As your MLOps process gets more 

advanced, the model training phase will eventually require MLFlow or 

similar experiment tracking software, hyper-parameter tuning frameworks 

like HyperOpt, hardware accelerated or distributed training, and 

eventually full training automation, registering your models in a model 

registry and having some kind of versioning system.

 Diagnostic Plots and Model Retraining
Depending on the problem type, there are specific visual tools for 

evaluating models called diagnostic plots. For example, if you have a 

classification problem, you might consider plotting a decision surface 

for your model to evaluate its strengths and weaknesses. For a linear 

regression problem, you may be interested in plotting residuals vs. fitted 

values or some other variation to decide if it’s a good or bad model.
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Some of these plots may be used as diagnostic tools but not traditional 

monitoring tools which may not be able to accommodate images, so 

you could, for example, have a Jupyter notebook that’s source controlled 

a part of the project and can generate these images on a schedule, for 

example, once a week, or another option is to build a separate monitoring 

dashboard using tools like Dash or PowerBI; the choice of reporting 

software really depends on your project and how you’re comfortable 

creating the visuals, but it probably needs to support Python and libraries 

used like Pandas.

For model retraining, you can have more complex triggers such as if 

the distribution of features changes or if model performance over time is 

trending downward, but a simple solution to start is to retrain the model 

monthly. Note that these are two different types of triggers and both are 

needed to determine when to retrain the model since model performance 

can degrade over time but also the distribution of features themselves 

can change.

You should also consider how you write features to a table. For 

example, you might want to add a timestamp column and append features 

to a table so you have a complete history available for model retraining. 

These types of technical decisions around how frequently data needs to 

be updated, whether historical data needs to be maintained for model 

retraining, and how to operationalize diagnostic plots and other visuals are 

complex decisions that may require several team discussions.

 Model Inference
In this phase, you’ll select the best model, pulling the model from the 

model registry for use in an inference pipeline. You may decide to go 

through another round of cross-validation to evaluate the best model. 

You will need to have an inference pipeline that compiles your features 

and makes them available at prediction time. The runtime, model, and 

features will all need to be available at the same time for the model to 
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make a prediction. Your inference pipeline may be as complicated as a 

full application or microservice or as simple as an API endpoint or batch 

inference pipeline depending on the requirements gathered during 

requirements gathering.

One commonality between model training and model inference is 

schema drift. Schema drift is also a factor in choosing a data architecture 

that can adapt to the demands of data science workloads since features 

that are used in both training and inference can change. The implication 

is that we either need to have complex code flows, updates, and frequent 

release cycles to accommodate changes in feature definition, or we need 

to create our tables dynamically using metadata. Since data types of each 

feature determine how the data is physically stored, changes in data type 

can impact our ability to store historical data required for model training. 

In the next section, I will talk about the various levels of schema drift.

 The Various Levels of Schema Drift in 
Data Science
Schema drift is a different issue than data drift and is common to virtually 

all data science projects of sufficient complexity since features fed into the 

model may change. We have talked about schema drift before but post- 

deployment features can still change. It’s interesting to note that there is no 

one size fits all solution to the problem of schema drift and actually there 

are various levels of schema drift. For example, you may have additive 

changes where you are only adding features and you may be able to simply 

set an option to allow the dataframe’s schema to merge with the target 

table schema. You can implement this solution manually as well with a 

DDL SQL command like ALTER TABLE to avoid loss of historical data that 

may be required for model training.

Chapter 7  Deploying StoChaStiC SyStemS



197

However, what do you do when the order of columns changes, the data 

types are incompatible, for example, string to a float (casting a string to a 

float would lead to a loss of information), or there are other destructive 

operations on the table schema that are fundamentally not compatible 

with the target table? In this case, you may have to drop the table entirely. 

Many databases have a CREATE OR REPLACE TABLE statement, but 

you can implement this yourself by checking if the table exists and if 

it does dropping it and then recreating it. You should be careful to use 

atomic operations though if you’re deploying this code to a distributed 

environment since race conditions and a source of strange errors in 

production are possible.

Traditional ways of handling schema drift like slowly changing 

dimensions don’t work well for data science since features can change 

rapidly and the entire table structure may change this actually has 

consequences for model training since you could risk wiping out historical 

data required at a future point in time for training the model so running 

an ALTER TABLE statement on specific columns may be the safest bet 

along with regular backups of the data if possible. The schema itself, the 

metadata that describes the data types and structure of the table, needs to 

be stored as well with each version since of course this will change as well.

 The Need for a More Flexible Table in 
Data Science
We talked about schema drift, and if you have actually worked as a data 

scientist, you might have encountered the problem of features being 

added or subtracted, names changing, data types changing regularly, and 

having to constantly update your tables. Traditional wisdom in database 

management assumes that the table structure is fixed which doesn’t work 

well for data science.
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While No-SQL databases and columnar storage address the problems 

of having a more flexible API and how to store data for analytical queries, 

you still need to handle schema drift. It’s interesting to note that traditional 

SQL is based on relational algebra, and the equivalence with relational 

calculus under certain conditions such as domain independence is known 

as Codd’s theorem.

While relational algebra and relational calculus are equivalent, 

relational calculus focuses on what to retrieve rather than how to retrieve 

it and so is more flexible. In relational calculus, there is no description 

of how to evaluate a query but instead a description (very similar to a 

prompt) of what information needs to be retrieved.

Whether a new kind of database is needed for data science that can 

better handle schema drift on a foundational level while maintaining 

performance for analytical queries is an open question that remains to be 

answered, but perhaps this technology could come from a fusion of large 

language models and the decades of wisdom built into relational database 

engineers (“optimizers”). In the next section, we will take all of the pieces 

of the lifecycle we have learned so far and discuss model deployment in 

general and ways to integrate all of the pieces of the puzzle into an existing 

business ecosystem.

 Model Deployment
The model needs to be integrated into an existing business process. This 

seems like a technical problem but largely depends on your organization 

and industry. In the next section, we will look at how you can integrate 

your model into your business process as part of a larger system involving 

people, processes, and technology.
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 Deploying Model as Public or Private API
In the previous chapter, we talked about inference pipelines and 

microservices but for simple use cases where you only want to deploy a 

model, so it can be consumed as a private or public API endpoint, and 

there are many cloud services for doing this type of task; these types of 

cloud offerings are often called model as a service or inference as a service.

Hugging Face, for example, provides inference endpoints to easily 

deploy transformers, diffusers, or custom models to dedicated fully 

managed infrastructure in the cloud. This offering is a platform as a service 

where Hugging Face handles the security, load balancing, and other low 

level details, and you can choose your cloud provider and region if you 

have data compliance requirements. You can also choose public or private 

endpoints (intra-region secured AWS or Azure PrivateLink to VPC) that are 

not accessible over the Internet.

 Integrating Your Model into a Business System
For stakeholders, one strategy for hedging against the vicissitudes 

of business is improving operational efficiency, reducing costs, and 

identifying opportunities to improve decision-making processes through 

models and innovate on insights found through data science. However, 

integrating a model into an established business system is a challenging 

problem and one that might be glossed over by data scientists and other 

technical leaders. The challenge is magnified when the machine learning 

system requires input from multiple departments and teams within those 

departments that have conflicting goals.

One way you can start to bring a model into an established business 

environment is by thinking incrementally and identifying opportunities 

where machine learning could bring the most value. Start with the pain 

points; are there repetitive tasks that could be automated? Are there tasks 

that nobody wants to do and may be a quick win? A good example would 
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be cleaning data. Nobody enjoys data cleaning, but it’s a business necessity 

and if that process is still done in spreadsheets, it may be a good candidate 

for automation.

Once you’ve identified a task that could be automated, you can 

investigate the data sources and look for ways the process could be 

improved. At this stage, it’s critical to create a strategy and secure 

stakeholder buy-in for the first few phases of your project. Once you’ve 

proven you can bring value, adding multiple data sources, testing 

algorithms, training models, adding monitoring, and alerting can naturally 

add value and provide a segway into the next phases of the project.

 Developing a Deployment Strategy
There are several established frameworks for data science and data mining 

that you might want to consider when building a business strategy and 

executing against that strategy. Although this book is meant to cover the 

technical aspects of the MLOps lifecycle, model deployment involves 

people and processes, and having a set of tools for execution can serve as 

a kind of checklist and mitigate risk of forgetting a step. Here are a couple 

frameworks you might incorporate into your own model deployment 

strategy.

CRISP-DM: The CRISP-DM (Cross-Industry Standard Process for Data 

Mining) is a standard framework originally developed for data mining 

but applies equally well to machine learning and data science. One of its 

advantages is it applies across multiple industries (we will look at specific 

case studies in a later chapter but it’s worthwhile to have a framework that 

applies to multiple industries in mind). It has six phases which broadly 

correspond to phases in the MLOps lifecycle including model deployment:

 1. Business understanding

 2. Data understanding
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 3. Data preparation

 4. Modeling

 5. Evaluation

 6. Deployment

Each of these phases consists of tasks, and phases follow sequentially 

with arrows between data preparation and modeling (unlike the spiral we 

talked about earlier), but this gives a very structured approach to data science 

and you can use it as a deployment checklist to make sure you’re not missing 

steps. For nontechnical stakeholders, this may be a good way to communicate 

the various phases in a linear way. In the next section, we will look at ways in 

which these frameworks can be used to reduce technical debt.

 Reducing Technical Debt in your Lifecycle
Technical debt can appear in many forms and can come about in different 

ways from working too fast to using suboptimal algorithms to forgetting 

how code works and making changes without updating old code and 

documentation. At the model deployment phase, it’s critical to have 

standards in place to reduce technical debt across all stages of the lifecycle. 

Here are some deployment checklists you can use to ensure you’re paying 

down technical debt in a timely manner:

 1. Implement quality checks and linters before 

deployment. Friction between teams can often be 

reduced by doing something as simple as installing 

a code linter to ensure code is formatted in a 

standard way, eliminating arguments over what 

style is the best (since most data scientists have 

their own style). This can be done, for instance, 

on the main branch of the shared repository your 

team uses.
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 2. Hold regular code reviews and designate someone 

in charge of merging PRs (or you could implement 

this in a round-robin style).

 3. Periodically reassess model performance post-

deployment, and keep up to date with alerts and 

errors that are generated once the model goes to 

production.

 4. Automate testing and monitoring as much as 

possible.

By following some of the preceding strategies, you can minimize 

technical debt post-deployment. At this point, you might be asking, 

I’ve already deployed my model, I’ve set up monitoring and automated 

testing, is it all hands-off from here? The answer is unfortunately, no. 

Data changes, environments change, and this does not stop after you 

deploy your model. Remember, the lifecycle is a continuous process. In 

the following section, we will look at what this process and how you can 

apply Agile principles in data science to make the process more efficient 

for you and your team. One way that you can reduce technical debt is with 

generative AI. In the next section, we will briefly look at how you can use 

generative AI to reduce technical debt by automating code reviews.

 Generative AI for Code Reviews 
and Development
Generative AI leverages large language models which use reinforcement 

learning and the quadratic complexity of the transformer architecture at 

scale to billions of parameters. It can automate common tasks in coding 

and provide feedback through prompt-based development. With the rise 

of tools like AutoGPT, even prompt engineering is slowly being replaced. 
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Will this be a good thing for data scientists? I think so, as it can automate 

the boring stuff. Even for software developers, if you’re a creative builder, 

you will be able to be more productive.

One way generative AI could improve the data scientist development 

cycle is through automated code reviews, getting feedback on their 

code before it is deployed. Some other ways but this list is by no means 

exhaustive.

• Automated code reviews

• Optimizing code (focus on accuracy)

• Translating between SQL and Python or other 

languages (removes translation bottlenecks)

• Generating tests for test-driven development

However, focus needs to be on validation. Output of generative models 

cannot be trusted, and data scientists will play a vital role in ensuring 

the validity, accuracy, and quality of model output when generative AI is 

mis-used. We should also be mindful of the cost per token and the license 

requirements before using this in your data science development cycle. 

We’ll talk a lot more about these ethical issues in the next chapter, but 

generative AI has potential to reduce technical debt and free up time for 

doing data science.

 Adapting Agile for Data Scientists
You may have heard of Agile before especially if you have worked on 

software projects in the last 20 years. Agile is a project management 

methodology, and although some developers have a love-hate relationship 

with Agile, some principles can be adapted to data science, and others fail 

miserably.
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One principle of Agile that can be adapted is the principle of regular 

communication. Data science and software development share a common 

thread in that it’s really all about communication. There’s even a term for 

this called Conway’s law which states

Any organization that designs a system will produce a design whose 

structure is a copy of the organization's communication structure

What does this mean? It means, if you fail to communicate effectively 

with other data scientists, the structure of your project will reflect this 

chaos and the system you end up creating will be a mess. Setting up a side 

channel for communication, for example, via Microsoft Teams, can help to 

dissipate this risk.

How about another conundrum often faced in real-world projects: 

conflicting requirements. In data science, stakeholders can be incredibly 

demanding, and requirements you gathered in the early phase of the lifecycle 

will change and you will face conflicts. We can borrow from another principle 

of Agile development to help in this scenario, namely, prioritizing tasks.

Another important principle of both agile and other methodologies like  

Twelve-Factor App is the notion of clean code that can be run in separate 

build, run and deploy stages and that can be easily adapted. While clean 

code and code management is an important tenet of Agile, in data science, 

it’s all about the data. By emphasizing proper data management, we can 

ensure our models are accurate. For example, developing and prioritizing 

a process to improve the consistency of our labeled data set could have a 

massive impact on the accuracy of our models.

You may want to consider applying test-driven development to data 

science especially in early-stage development. While testing data heavy 

workflows is not easy, choosing a test framework, for example, Pytest or 

Hypothesis, and developing data fixtures (preferably ones that use realistic 

data from a database) can ensure models and code are performing as you 

expect even after you’ve deployed your model. These tests from the early 

development stage can easily be added to a CI/CD pipeline as well and 

become part of the model deployment process.
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One area where Agile fails miserably in data science is regular sprints. 

Since the lifecycle has feedback into previous phases, for example, 

retraining models due to data drift may require reengineering some of the 

features or collecting more data. How do you anticipate these changes 

and fit them into a regular sprint? This is a difficult question as urgent and 

important tasks can get added to the board mid sprint and cause havoc on 

data science teams. Understanding the difference between model-centric 

and data-centric workflows may help to align teams and reduce some of 

the pain points in trying to pigeonhole data science into regular sprints.

 Model-Centric vs. Data-Centric Workflows
When we talk about model deployment, there are two main approaches we 

could take to the overall process: a model-centric approach and a data- 

centric approach. What do I mean by model-centric and data-centric?

In order to illustrate this somewhat philosophical concept, let’s 

suppose you are working on an NLP problem. You’re trying to classify 

unstructured data collected from a free form response field on a survey 

into categories that can help the support team quickly prioritize issues. 

For example, the text “I have a problem with my Internet connection” may 

be classified as “connectivity issue”. In fact you’ve done an exploratory 

analysis of the data, and you know 90% of the training data falls into the 

buckets of “connectivity issue,” “hardware issue,” and “authentication 

issue,” corresponding to labels in your training set. However, there’s a lot 

of training data, several gigabytes, and there’s some ambiguity. You also 

had to label a lot of the data by hand, and you’re not sure if it’s completely 

consistent, and 10% of the data may be classified into new buckets.

Your model accuracy is only 70%, and you decide to improve this 

accuracy by changing the type of model and its architecture. Eventually 

you decide to try transfer learning, fine-tuning the last layers of a large 

language model on your specific data set, and this improves the accuracy 
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to 85%. Since you primarily focused on the model and how you could 

improve the model, you’ve taken a model-centric approach to this 

problem, but is there another way?

In fact you could have taken a data-centric approach to improving 

model accuracy by focusing more on the data. You could have improved 

the consistency of the labeled data or developed a process to label the 

10% of the data that was unlabeled. This would have been a data-centric 

approach.

In reality, you could mix the two and use semi-supervised learning, 

developing a model or rule to label the remaining 10% of data and then 

working to increase the consistency of the data, taking both a model- and 

data-centric approach to improving model accuracy.

So which approach is better? There is some debate, and both 

approaches can have their advantages and disadvantages, but when the 

problem is well-understood, optimizing the model makes sense. When 

the problem is less well-understood, there’s ambiguity or complexity 

in the data or we’re working with a very large amount of data, and 

then a data-centric approach may be the best option since the focus 

would be on capturing the variability and complexity of the data to 

move performance metrics in the right direction. Like most things in 

engineering, there are guiding principles and rules of thumb but with 

no clear-cut answer that applies universally in all cases. Regardless 

of the approach you take for your specific problem, you will want 

to automate the process of deployment as much as possible, and in 

the next section, we’ll borrow from a DevOps concept of continuous 

delivery and continuous deployment and see how it applies to 

stochastic systems.
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 Continuous Delivery for Stochastic Systems
In the previous three chapters, we discussed several types of pipelines. We 

talked about ETL and ELT pipelines for refreshing our feature stores, we 

talked about training pipelines and actually built an end to end training 

pipeline, and we talked about inference pipelines that automated the 

model prediction. How about model deployment? Is there a pipeline we 

can create for this process? The answer is yes and it even has a name; these 

types of pipelines are called CI/CD pipelines.

CI/CD (continuous integration and continuous deployment) are a type 

of pipeline with several steps to guarantee that each time there’s a code, 

model, or data change, that change gets tested and deployed to the right 

environment.

You may have several types of environments including development, 

testing, staging, and production consisting of databases, configuration, 

code, and data that need to be deployed to these environments. The CI/CD 

pipeline will consist of several steps:

 1. Version control: The pipeline can be “triggered” 

whenever there’s a commit to the main branch. This 

could, for example, be a pull request after a code 

review and cause the pipeline to start.

 2. Automated tests: After starting, several tests will be 

run. As a data scientist, you can define what tests 

get run; for example, you may want to check if your 

features have the statistical properties you expect 

before deploying. These tests can include security 

tests, data quality and code quality checks, as well as 

formatting like linking.
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 3. Build step: After the tests have passed, the next 

step of the pipeline will take the code, data, and 

models and package them up into an environment 

and runtime. This may be a docker container, for 

example, which can be deployed.

 4. Deployment: Once the changes are packaged 

and containerized, the container is deployed to 

the target environment. This environment could 

be production, releasing your changes to a live 

environment with end users (do you see why we 

need tests first?)

 Introducing to Kubeflow for Data Scientists
Kubeflow is an open source tool for data scientists that makes it relatively 

straightforward for both data scientists and MLOps engineers to build, 

deploy, and manage workflows at scale. Kubeflow provides several 

features for deploying models that are particularly useful for data scientists 

like Jupyter notebook server (similar to the one we build ourselves) for 

managing and deploying models and code.

Kubeflow is designed to work on top of Kubernetes, so it may be 

overkill for your project. In the lab, you’ll be able to optionally remove 

the Kubeflow step of the CI/CD pipeline if you only want to say host your 

project on GitHub or push your code and models to a docker container 

and host it on a docker registry. However, knowledge of Kubeflow is 

worthwhile for data scientists because you may encounter it in the wild, 

and knowing that a tool exists that abstracts away some of the details 

required to work with Kubernetes is enough to get you started on the 

right path.

Chapter 7  Deploying StoChaStiC SyStemS



209

For data scientists, you can use Kubeflow in several ways to do 

machine learning at scale.

 1. Kubeflow provides a Jupyter notebook server for 

developing and test models. In combination with 

MLFlow, this can be a powerful tool for setting up 

experiments and hyper-parameter tuning

 2. Scaling workflows: Data scientists can leverage 

Kubeflow to do model training at scale. Kubeflow 

can be used to provision resources like clusters 

required for distributed training on GPUs or CPUs 

and takes care of scheduling, orchestration, and 

managing cluster resources.

 3. Model deployment and serving: Data scientist can 

use Kubeflow to deploy models to production and 

serve production models to end users by deploying 

them as Kubernetes services (remember, this is for 

a full- blown application or inference API). You can 

manage or fine-tune the Kubernetes deployment as 

well add load balancers and other services so you 

can scale up or scale down to match demand.

I’ve also said this several times before; but, for some projects using 

Kubernetes, it is not necessary, and you may choose a batch oriented 

workflow for the deployment step in which case you only need to build a 

batch inference pipeline and use your model to make predictions in batch. 

This is a completely valid way to deploy models. In the lab, we’ll look at 

creating a CI/CD pipeline that you can modify to match your particular 

deployment needs.
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 Lab: Deploying Your Data Science Project
This is the final hands-on lab of the book, and you’re going to build your 

own CI/CD pipeline. The goal of this lab is to have a CI/CD pipeline that is 

part of the toolkit and that you can modify to deploy your own projects to 

the cloud by adding steps as necessary. We’ll be using GitHub actions in 

this lab. You can follow along with the following steps to understand how 

the pipeline is constructed or look at the finished CI/CD pipeline located 

in the .github folder of the final MLOps toolkit included with this chapter.

Before you proceed with the lab, you should know that YAML is 

another data format for configuration files consisting of key value pairs that 

can be arranged in a hierarchy. It’s a human-readable format (actually it’s a 

superset of JSON) and is a widely used standard for defining infrastructure 

as code, CI/CD pipelines, and a range of other configurations used 

in MLOps.

 1. Create a new GitHub repository for your data 

science project (if you need help with this, refer to 

the lab from Chapter 3 on setting up source control).

 2. Create a .github/workflows folder in the project root. 

In our case, this folder already exists.

 3. Create a new YAML file in the .github/workflows 

folder and name it, for example, cicd_model_

deployment.yml.

 4. Edit the YAML file as needed for your specific 

data science project. For example, you may need 

to update the name of the Docker image and 

the name of the container registry or remove the 

step to deploy to Kubernetes if you are not using 

Kubernetes with your project.
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 5. Commit the changes and push these changes to the 

repository created in the first step.

 6. Add two secrets to the repository settings: 

REGISTRY_USERNAME and REGISTRY_

PASSWORD. These secrets should be kept 

confidential and correspond to the username and 

password for the container registry (e.g., Docker 

Hub or Azure Container Registry) that you are using.

 7. Try to push changes to the main branch of the 

repository; the pipeline will automatically be 

triggered.

This CI/CD pipeline performs the following steps:

• Checkout the code from the repository.

• Set up a Python environment with the specified version 

of Python.

• Install pipenv and the project dependencies.

• Convert notebooks to Python scripts.

• Run Pytest to test the code.

• Build and push a Docker image with the latest changes.

• Deploy the Docker image to Kubeflow using kfctl.

You can modify this lab to fit your needs; you now have a full CI/

CD pipeline with automated tests and a way to deploy your models to 

Kubeflow whenever a change is pushed to main. Remember, you should go 

through a PR process to ensure code quality before pushing to main. We’ve 

also included all of the notebooks from previous labs in the toolkit as a 

complete package.
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 Open Source vs. Closed Source in Data Science
Machine learning software can be open and closed, and if you’ve been 

following industry trends, there is a battle between the two philosophies 

as companies seek to establish a data moat; the open source community 

continues to develop open source versions of tools, models, and software 

packages.

Somewhere between the two are composed of both open and closed 

components (maybe we could refer to this as “clopen” software). This is 

further complicated by models that significantly transform the input like 

generative AI. When deploying models that use open source components 

you have to make a technical decision whether to open source or closed 

source your software at the end of the day and which components you 

choose and accompanying licensing impacts this decision. This adds even 

more complexity to the problem of MLOps placing a premium on MLOps 

practitioners to make ethical decisions when it comes to the decision 

systems they are deploying, regardless of the underlying technology 

behind the models. In the next chapter, we’ll look at some of these ethical 

decisions and how they impact the MLOps role.

 Monolithic vs. Distributed Architectures
Architecture is about trade-offs, and although we’ve covered many rules 

of thumb in this book like SOLID principles, distributed architectures 

for more event driven and real-time workstreams vs. batch oriented 

architectures that tend to be more monolithic, there is no one perfect 

architecture for each project, and you need to understand the trade-offs 

and the type of performance, security, data, and process requirements 

to decide what is the best architecture. Once you are committed to an 

architecture or platform, it can be difficult to change though, so you should 

do this ground work up front and commit to one type of architecture and 

platform.
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 Choosing a Deployment Model
In data science, there are several types of deployment models that can be 

used, and in some cases, you need to support multi-model deployment. 

Choosing a deployment model that best suits your needs is key to a 

smooth transition from development to deployment.

On-premises deployment: In this deployment mode, you utilize your 

own servers or IT environment (physical hardware, e.g., your own GPU 

enabled server running Jupyter labs). Although this gives you maximum 

control over the hardware, you are responsible for patching, updates, any 

upgrades, and regular maintenance as well as the inbound and outbound 

network connectivity and security.

Public cloud deployment: This may be a cloud service provider like 

Azure, for instance, with your own resource groups and cloud services 

such as Databricks. Cloud deployment may also include public services 

like releasing packages to PyPi or hosting packages on web servers or 

even GitHub.

Mobile deployment: Creating machine learning for smartphones or 

mobile devices is becoming more popular lately. Since these devices 

have limited memory compared to servers, you need to choose between 

hosting your models in the cloud and connecting to them from the device 

or reducing the size of the model. There is ongoing research to reduce the 

size of large language models and other models, for example, quantization1 

(representing the model weights as fewer bits) and knowledge distillation 

(“distilling a model2”) to achieve a smaller size.

1 Kohonen, T. (1998). Learning Vector Quantization. In Springer series in 
information sciences (pp. 245–261). Springer Nature. https://doi.org/10.1007/ 
978-3-642-56927-2_6
2 Yuan, L., Tay, F. E. H., Li, G., Wang, T., & Feng, J. (2020). Revisiting Knowledge 
Distillation via Label Smoothing Regularization. https://doi.org/10.1109/
cvpr42600.2020.00396
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 Post-deployment
The post-deployment, although not technically a phase since it’s an 

ongoing continuous process so it is not formerly part of the lifecycle, refers 

to the stage where the trained model is deployed to production and being 

used. Some of the considerations during this phase are communicating 

with stakeholders, soliciting user feedback, regular maintenance, and 

monitoring (e.g., of an API you rely on is deprecated and it must be 

updated, or if you find a CVE or common vulnerability exposure that 

impacts a PyPi package you’re using, you need to patch it).

Beyond security and stakeholder feedback, collecting user feedback 

and monitoring how the users are interacting with your model can be 

invaluable for future projects and be used to train the model and augment 

existing data sources. Post-deployment monitoring ensures that all of the 

models deployed to production continue to provide business value and are 

used in an ethical way.

 Deploying More General Stochastic Systems
Can we use the principles in this book to deploy more general stochastic 

systems such as Bayesian machine learning models? The answer is yes, but 

we should discuss some of the caveats.

If you use a library like PyMC3 (we used this in the second chapter 

to create a Bayesian logistic regression model), you can still save your 

model, but you should choose a custom serialization framework to match 

the model architecture, for example, ONNX, an open standard for neural 

network architectures, but others include HDF5 and Python’s pickle (e.g., 

this works well with Bayesian models from PyMC3).

You may also need to consider the types of performance metrics you 

want to track, for example, Bayesian information criterion for feature 

selection or Bayesian credibility interval along with a prediction.
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The other problem is you’ll need to carefully consider sampling 

methods you use and may have to have hardware to ensure you have 

sufficient entropy for random sampling. Some of the algorithms may not 

scale well to large data sets or be intractable, so you may have a need to 

use Monte Carlo methods as opposed to a “big data” solution that may be a 

necessary approach for some algorithms.

There may be other stochastic algorithms that you may encounter 

that need to productionize. For example, reinforcement learning could be 

applied as part of a training pipeline to do hyper-parameter search or in 

specific use cases in healthcare, finance, and energy to simulate physical 

systems and make recommendations, dynamic planning, and natural 

language processing.

If you use a reinforcement learning algorithm like Q-learning, you 

will have to think about how to represent your environment and agents 

and how to update a Q-table and choose a framework that can handle 

interacting with the environment between learning steps, so you may 

choose a framework like Ray RLlib framework that offers support for highly 

distributed workflows.

Understanding the problem type may help you to identify the 

frameworks available since you should not reinvent the wheel (e.g., 

reinforcement learning frameworks, deep learning frameworks, 

frameworks for Bayesian inference). Other times, you may be able 

to achieve similar results with another approach where a library of 

framework exists (e.g., many problems can be reframed to use a different 

methodology, like how you can solve the multiarmed bandit problem 

using reinforcement learning or Bayesian sampling, and this is a kind of 

equifinality prosperity of many stochastic systems).

Still, you may one day encounter a bespoke stochastic algorithm that has 

never been used before in the wild, where no Python wrapper exists, and in 

that case, you would have to build your own from scratch. In this scenario, 

you would require knowledge of a low level language like C++, compilers, 

hardware, distributed systems, and APIs like MPI, OpenMP, or CUDA.
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 Summary
In this chapter, we looked at the spiral MLOps lifecycle and its different 

phases. We took another look at reducing technical debt from a holistic 

point of view after understanding each phase of the lifecycle. We discussed 

the philosophy behind taking a model-centric vs. a data-centric view of 

MLOps and why when working with big data, a data-centric view that 

encapsulates variability and complexity in the data may be preferable. 

We took a look at continuous delivery for stochastic systems and how we 

could adapt principles in this chapter to deploying Bayesian systems or 

more general types of stochastic systems along with some of the technical 

challenges. Finally, you did a hands-on lab, designing a CI/CD pipeline for 

the final toolkit that is a part of this book. Here is a summary of some of the 

topics we covered.

• Introducing the Spiral MLOps Lifecycle

• Reducing Technical Debt in Your Lifecycle

• The Various Levels of Schema Drift in Data Science

• Model Deployment

• Continuous Delivery for Stochastic Systems

In the final two chapters, we will diverge from the technical and 

hands-on components and instead take a deep dive into the ethical 

considerations around using AI and machine learning responsibly. We’ll 

focus on model fairness, bias reduction, and policy that can minimize 

technical risk.
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