
167

CHAPTER 6

Building Inference
Pipelines
If you’ve made it this far, you’ve already created MLOps infrastructure,

build a feature store, designed and built an end to end training pipeline

complete with MLFlow experiment tracking for reproducibility and model

storage in the MLFlow model registry, and tried monitoring and logging. It

might seem like you’re almost done; however, we’re still missing a critical

piece of the MLOps puzzle: Once you’ve trained your model, what do you

do with it?

This is such a critical piece of the MLOps lifecycle that it’s surprising

so many data scientists leave the design and construction of the inference

pipeline to the last minute or bury it away as a backlog item. The reality

is, the inference pipeline is one of the most important parts of any

stochastic system because it’s where you will actually use your model to

make a prediction. The success or failure of your model depends on how

well stakeholders are able to use your model and action upon it to make

business decisions; when they need it and without an understanding of this

stage of the lifecycle, your project is doomed to failure. Not only that, but it’s

the inference pipeline where you will store the model output to incorporate

feedback loops and add monitoring and data drift detection, so you can

understand the output of your model and be able to analyze its results.

A lot can go wrong as well, and if you aren’t aware of how to measure

data drift and production-training skew, then your model may fail when it

hits production data.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_6

https://doi.org/10.1007/978-1-4842-9642-4_6#DOI

168

In this chapter, we will look at how we can reduce the negative

consequences of production-training skew and monitor the output of

our model to detect changes in problem definition or changes in the

underlying distribution of features. We will also take a detailed look at

performance considerations for real-time and batch inference pipelines

and design an inference API capable of supporting multi-model

deployments and pulling models from a central model repository similar

to an architecture described in Figure 6-1.

Figure 6-1.  Inference pipeline supporting multi-model deployment

Chapter 6 Building Inference Pipelines

169

�Reducing Production-Training Skew
Your model was trained on data that was carefully collected and curated

for your specific problem. At this stage, you likely have a good idea of the

distribution of features that go into your model, and you’ve translated

certain assumptions about your model into the training pipeline, dealing

with issues like imbalanced data and missing values.

But what happens when your model hits production and needs to

make a prediction on unseen data? How can we guarantee that the new

data follows the same distribution as the training data? How can we

guarantee the integrity of the model output so that stakeholders can trust

the output enough to action on the insights the model provides? This is

where the concept of production-training skew comes into our vocabulary

and starts to impact the technical decisions we make around model

deployment.

Production-training skew can be formally defined as a difference in

model performance during production and training phases. Performance

here can mean the accuracy of the model itself (e.g., the unseen data has a

different probability distribution than expected or can be caused by failing

to handle certain edge cases in our training pipeline that crop up when we

go to production).

It’s worth noting that sometimes issues happen in production that

are not anticipated even if we have a really good understanding of the

assumptions of our data and models. For example, we might expect certain

features to be available at inference time because they were available at

training time, but some features might need to be computed on the fly and

the data just may not be available.

In general, it is best practice to ensure your inference pipeline has

safeguards in place to check our assumptions prior to using the model,

and if features are not available, or if certain statistical assumptions are not

met, we can have a kill switch in the inference to prevent the model from

making an erroneous prediction.

Chapter 6 Building Inference Pipelines

170

This highlights an important difference between stochastic systems

and traditional software systems because the consequences of actioning

on a bad model output may be disastrous. As I’ve mentioned, stakeholders

may lose trust in your model, or the model may be used as part of a

decision process that impacts real people in a negative way. Therefore, it’s

not enough to fail gracefully or ensure our model always has an output;

as an MLOps practitioner, you need to put model safety first and foremost

and ensure that if critical assumptions are not met, then what went wrong

gets logged and the inference pipeline fails.

Let’s take a look at how we can set up monitoring and alerting to

ensure the safety and integrity of our model.

�Monitoring Infrastructure Used in
Inference Pipelines
Although we have a firm grasp of infrastructure, we need to take a brief

moment to talk about the type of infrastructure you will need to set up

for monitoring your inference pipelines. There are various cloud-based

monitoring services in all of the major cloud platforms such as Amazon

CloudWatch, Azure Monitor, or Google Cloud Monitoring. These tools

provide monitoring and alerting capabilities that can be integrated

with data pipelines. Your organization may have their own monitoring

infrastructure set up already in which case you should consider leveraging

this instead of creating new services.

There are also specific monitoring tools for data pipelines and ELT

frameworks; for example, AWS Glue and Airflow both have built-in

monitoring, and you can use this to build your own custom data drift

detection solution by creating a separate pipeline and setting up hooks

that can talk to other infrastructure.

Chapter 6 Building Inference Pipelines

171

The difference between the data specific monitoring tools and the

more general cloud monitoring tools is the more general cloud monitoring

tools also can monitor resource utilization and you can use this to get a

sense of where performance bottlenecks exist in your code. You may have

to read the documentation for these cloud services and learn the SDK

(software development kit), so you integrate these tools with your own

code base. Whether you choose a stand-alone cloud monitoring service

or leverage an existing one or one built-in with your ELT framework will

depend on your project and the specific problem you’re trying to solve.

Okay, so once you have made the technical decision on what type

of monitoring service you want to use for your data drift and model drift

detection, then we can talk about how you can implement monitoring

in your inference pipeline and some of the challenges that you might

encounter.

�Monitoring Data and Model Drift
Monitoring is an essential part of nearly every IT operational system. It

also happens to be one of the ways we can make data-driven decisions

about our production models. Monitoring is a way of collecting data

(strictly speaking, this is logging) and the capability of observing data over

a period of time, for example, to check if certain conditions are met that

are actionable. The action is usually called an alert.

It’s important to realize that when working with monitoring systems,

this data is collected in the form of logs, but the logs need not be

centralized and are typically streamed via standard output and standard

error and then consolidated using some logging service. Services include

cloud services like Data Dog or Azure Monitoring or open source solutions

like Ganglia, ElasticSearch.

Chapter 6 Building Inference Pipelines

172

In the context of machine learning and stochastic systems, monitoring

means monitoring the model specifically for data drift and model drift

and ensures the reliability and integrity of our model. We define these

related terms.

Data drift: Data drift is related to the statistical properties and the

probability distribution that underlies the features that go into training

the model. When the underlying distributions of features shift in terms

of mean, variance, skewness, or other statistical properties we can track,

then it may invalidate assumptions we have made in the training pipeline

and render model output invalid. A way to continuously monitor these

statistical properties needs to be implemented.

How do you measure the difference between the distribution of

features 6 months ago and at the present time? There are several ways

to approach this, and one way is to measure the “distance” between two

probability distributions such as with KL divergence or Mahalanobis

distance. The important detail here is that we need to first measure a

baseline and we compute this distance against the baseline, usually by

defining a threshold value. If the divergence between our observed and

baseline exceeds this threshold, then we can choose to send out an alert

(e.g., an email to relevant stakeholders). It’s important we actually send out

an alert and build out the code to do this, for example, if your team uses

Slack, you may consider building a slack bot to alert your data drift has

occurred since important decisions need to be made on whether to retrain

the model and understand the root cause of the shift.

Another approach to data drift is hypothesis testing. We can set the

null hypothesis to the features that have not changed or come from a well-

known distribution like the normal distribution if your data is normally

distributed. One commonly employed hypothesis test is the Kolmogorov-

Smirnov test where the null hypothesis is that the data comes from the

normal distribution.

Chapter 6 Building Inference Pipelines

173

Once we have confirmed that data drift has occurred, we have to

make a technical decision: Should we retrain our model? This is the first

kind of feedback we can introduce into the training pipeline and is more

sophisticated than the alternative which is periodically retraining on a set

schedule (which may be a waste of resources if data drift has not occurred

or is within the SLA threshold).

Model drift: Model drift is a slightly different concept than data drift

and can indicate that the business problem has changed. It’s important to

define the business problem and the definitions of features as part of the

feature engineering step so that you can validate if model drift has actually

occurred once detected.

Detecting possible model drift is fairly straightforward but verifying

it is not. In order to detect model drift, we only need to monitor the

predicted values (or more generally, the output of the model) and

compare them to the expected values over time. For example, if we have

a multi-class classification problem, we might record the total number of

predictions made for each class and the breakdown of our predictions by

each class, counting the number of predictions made for each class. We

could visualize this as a simple histogram where the bins are the classes in

our model, and if we find this histogram changes too dramatically from the

baseline (using since threshold we define for the specific problem), then

we have data drift and suspected model drift (performance of our model

may have degraded over time).

We may also keep track of accuracy and other performance metrics

and keep track of the performance of our model over time and a baseline

and confidence intervals if possible.

Once we have found that either the model output has changed or the

model performance metrics are degrading, then we need to investigate if

model drift is actually concept drift, meaning the business problem has

shifted in some way. This may lead us not only to retrain the model but

possibly to have to add new features, revise features, or even change the

model and its assumptions entirely to match the new business problem.

Chapter 6 Building Inference Pipelines

174

In order to keep track of the model output, we need a reliable way to

make predictions with our model (if the mechanism isn’t reliable or at

least as reliable as the model output, then we won’t be able to tell when we

model drift has occurred). Creating the API for inference is not only about

user experience but also ensuring the accuracy and reliability of the model

output. In the next section, we’ll go over some of the considerations that go

into designing a reliable inference API.

�Designing Inference APIs
Okay so let’s say we have the most reliable inference API, we trust the

data and the output of our model, and our stakeholders and users trust

the output. The next focus needs to be on performance. We’ve noted

previously there are technical trade-offs between accuracy and model

performance, and while we should always consider performance early,

it’s important not to sacrifice accuracy or fairness of the model for

performance. On the other hand, if we don’t consider scalability and

optimize our inference pipeline for performance, then the output may

be rendered completely invalid by the time the prediction is made (e.g.,

delivering the prediction the next day if there is a hard requirement on

the latency of the system). Due to this performance-accuracy, trade-off in

some sense performance is a two-sided problem in machine learning.

In the next section, we’ll take a detailed look at what we mean by

performance in the context of inference pipelines in terms of both

scalability and latency but also accuracy and validity and some of the

important performance metrics we should be tracking in our monitoring

solution. We’ll also discuss the important problem of alignment in data

science and how it plays a role in deciding what performance metrics

to track.

Chapter 6 Building Inference Pipelines

175

�Comparing Models and Performance
for Several Models
In Chapter 5, we looked at model training and talked about the model

tuning step. On a real-world problem, you may have many different types

of models that you need to compare. You may have to dynamically select

the best model, and we need a way to compare models for a problem type

to choose the best model we should use for model inference.

One approach is once our models are tuned, we evaluate their

performance using k-fold cross-validation and by selecting the model

that has the best performance, for example, accuracy of F-1 score. This

“outer validation loop” may use cross-validation but is done after hyper-

parameter tuning since we need to compare models once they are already

tuned; it would make little sense to make a decision on what is the best

model if we haven’t even gone through the effort of fine-tuning the model.

Since we’ll typically be working to solve one problem type like

classification or regression or anomaly detection, there are common

performance metrics we can use to decide objectively what the best

model should be, and there needs to be code that can handle this

part of the process. Let’s take a detailed look at some of these metrics

and performance considerations used for comparing models across

problem types.

�Performance Considerations
Model performance can refer to the accuracy and validity of our model or

scalability, throughput and latency. In terms of accuracy and validity, there

are many metrics, and it’s important to choose the metrics that are aligned

with the goals of the project and the business problem we want to solve.

Chapter 6 Building Inference Pipelines

https://doi.org/10.1007/978-1-4842-9642-4_5

176

Here are some examples; in this table, we try to break them down by

type of problem to emphasize that we need to consider the alignment of

the model with the goal. We call Table 6-1 the alignment table for data

science.

Table 6-1.  Alignment table for data science

Problem type Metrics

Classification Accuracy

Classification Precision/recall

Classification F1 score

Regression RMSE/MAE

Recommendation Precision at k

Recommendation Recall at k

Clustering Davies-Bouldin Index

Clustering Silhouette distance

Anomaly detection Area under curve (AUC)

All problem types listed Cyclomatic complexity

Of course this is not an exhaustive list since we can’t possibly list every

problem type you may encounter. I hope it provides a good starting point

for designing your inference pipeline. In the next section, we’ll take a deep

dive into the other side of performance: scalability and latency.

�Scalability
How can your machine learning system handle increasing amounts of

data? Typically, data collection, one of the first phases of the MLOps

lifecycle, grows over time. Without further information, we don’t know

Chapter 6 Building Inference Pipelines

177

at what rate this data collection process grows, but even if we assume

logarithmic growth, over time, we need to scale with the increasing

data volume.

You might have heard the word scalability before in the context of

machine learning, the ability of your system to adapt to changes in data

volume. Actually, scalability goes in both directions; in fact, cloud services

are often described as being “elastic,” when you don’t use them they

should scale down and during peak periods of activity, they scale up.

What does it mean to scale up and down? We usually speak of

horizontal scalability and vertical scalability.

Vertical scalability: Vertical scalability means we add additional

memory, CPU, and GPUs or in the case of cloud services increase these

physical resources on the virtual machine or compute we are running.

By vertically scaling, we’re adding more horsepower to a single worker

machine, not adding new machines. This gets expensive after a while

since as your memory or compute needs grow, at some point it is no

longer feasible to upgrade the machine, and this is why for data science,

we consider horizontally scaling workflows rather than vertically so we

can leverage several inexpensive worker machines (often commodity

hardware) to reach our compute and memory needs.

Horizontal scalability: Horizontal scalability means we add additional

worker machines and consider the total compute (number of cores)

or total memory of the entire cluster together. Usually, this comes with

hidden complexity such as how we can network the machines together

and shard the data across workers. Algorithms like map reduce are used to

process big data sets across workers.

We mentioned in the previous chapter that we could use this

horizontal scaling pattern for distributed training, but what about

inference? When it comes to inference, we usually consider two types of

patterns: batch mode inference and real-time inference.

Chapter 6 Building Inference Pipelines

178

Both of these patterns require different architectures and

infrastructure but which one you choose depends on your particular use

case (remember, we should always try and align technical decisions with

our use case). Here is the definition of both batch inference and real-time

inference.

Batch inference: Batch inference means we break our feature set into

batches and use our model to run predictions on each batch. This type of

pattern can be scaled out horizontally and also has the advantage of not

requiring an API, load balancer, caching, API throttling, and other kinds

of considerations that come with designing an API. If you only need to

populate a table for a dashboard, for example, you might consider using

batch inference. However, this pattern might be ill-suited for use cases

requiring real-time or near real-time inference or on demand predictions.

Real-time inference: If your requirement is to have sub-second latency

in your inference pipeline and event driven prediction or allowing the end

user to make on demand predictions, then you may want to move away

from batch mode and consider building an API. Your API can still be scaled

horizontally using a load balancer, but you will need to set up additional

infrastructure and an online feature store. If your requirement is sub-

second latency, you may also need to use GPUs to make the prediction (or

distributed pipelines). This is a complicated topic, and so in the next lab

we’ll discuss some of the components that go into building an inference

API, and then you’ll use MLFlow to register a model in production, pull

it from the model registry, and explore how you might expose the model

using an gRPC or RESTful API.

�What Is a RESTful API?
A RESTful API is an interface between containers (or even remote servers)

used to facilitate communication over the Internet (the communication

protocol is called the HTTP protocol). RESTful APIs are created in

frameworks like Flask to exchange data.

Chapter 6 Building Inference Pipelines

179

When an API endpoint is called either programmatically via a POST

request (we can also do this manually using tools like Postman) or in the

web browser (e.g., through a GET request), data (usually in the form of

JSON) is serialized (converted to bytes) and sent across the Internet in a

process called marshaling. The bytes are then converted back into artifacts

like a model using a load function that is called deserialization. All of this

happens transparently when you use a framework like Flask, and you can

define endpoints (e.g., localhost:80/predict) which can be called either by

other APIs or by applications that want to use your API (you could do this

using Python’s request library; you just need to specify the endpoint, the

data, and if it’s a POST or GET request you need to make).

APIs are one of the many ways to build inference pipelines that the

user can interact with and are particularly suited as mentioned before for

on demand use cases (you can just call the endpoint when you need it) or

when you need a sophisticated application that uses your model (these

applications are often built as microservices).

Although building a full API is beyond the scope of this book, it is

worth being aware of a few technologies that are used in building large

scale applications often called microservices.

�What Is a Microservice?
A microservice architecture is an architectural pattern for software

development that organizes applications (e.g., APIs) into collections

of independent (in software development parlance, this is often called

loosely coupled) components called services. We’ve already seen examples

of services when we used docker-compose to build our Jupyter lab service

and MLFlow service, but you can also build your own services. In practice,

these services are self-contained API endpoints written in a framework like

Flask. Since the services are loosely coupled, they will need to talk to each

other by sending data in the form of messages. These messages are usually

Chapter 6 Building Inference Pipelines

180

sent by calling an API. Since the services are loosely coupled docker

containers, they can be scaled horizontally by adding more containers and

distributing the load over several containers using a component called a

load balancer. Figure 6-2 shows a typical REST API endpoint for prediction

in Flask. The function predict exposes a route called /predict and expects

features to be passed in as JSON strings in the body of a POST request

(a standard way HTTP endpoints accept data). The model is loaded or

deserialized and then used to make a prediction on the input data. The

prediction is then returned as a json string, called a response.

Figure 6-2.  Flask API prediction endpoint

Chapter 6 Building Inference Pipelines

181

If you want to learn more about Flask, it’s recommended you read

the Flask documentation or several books available on microservice

architecture in Flask. For most data scientists, building a microservice

would be overkill, require teams of developers, and if attempted yourself

would open up your project to security vulnerabilities and problems with

scalability. Remember, you need to have additional components like

load balancers and container orchestration frameworks like Kubernetes

(docker-compose was the container orchestration tool we learned, but

Kubernetes requires specific expertise to use effectively).

However, the pattern in Figure 6-2 is called a scoring script, and if you

choose a cloud service that supports model inference, it will likely have

support for creating your own inference scoring scripts which allow you

to wrap the prediction logic in a function and expose a REST endpoint.

Examples of cloud services that support these scoring or inference scripts

include Databricks, AWS SageMaker, and Azure Machine Learning Service

and MLFlow. In the lab, we’ll look at how to build your own inference API

and some of the details involved in registering a model, loading a model,

and exposing an API endpoint in enough detail that you will have the

hands-on skill to work with many different cloud services.

�Lab: Building an Inference API
In the hands-on lab, you will take the code we wrote for training and adapt

it for model inference. First, let’s look at some of the components of an

inference API. You’re encouraged to do the supplementary reading before

continuing to the hands-on Jupyter notebook for this chapter (I’ve already

included them when you start the Jupyter lab for convenience, but you

should try to import them yourself.).

Step 1. Run docker-compose up to start MLFlow and Jupyter lab

services.

Chapter 6 Building Inference Pipelines

182

Step 2. Open your Chapter 6 lab notebook called Chapter_6_model_

inference_lab.

Step 3. Run all cells to register the model and increment the model

version number.

Step 4. Pull the registered model from MLFlow model registry. An

example is given in Figure 6-3.

Step 5. Use the model to make a prediction.

Step 6. Open the deployment notebook (called Chapter_6_model_

inference_api_lab) to see how MLFlow serve can be used to expose your

model as an inference API.

Keeping Model Training and Inference Pipelines in Sync

In Chapter 1, we talked about how technical debt could build up in a

data science project. In fact, data science projects have been described as

the high interest credit card of technical debt. One subtle way projects can

accumulate technical debt at the inference stage of the lifecycle is by not

keeping the training and inference pipelines in sync.

Figure 6-3.  Pulling a model from MLFlow registry for use in an
inference pipeline

Chapter 6 Building Inference Pipelines

https://doi.org/10.1007/978-1-4842-9642-4_6
https://doi.org/10.1007/978-1-4842-9642-4_1

183

The same features the model was trained on are required at time

of prediction. So there we must generate those features somehow. It’s

convenient to think we could reuse the exact same code, but sometimes

not all features will be available at prediction time and additional pipelines

are necessary. A great example is a feature like customer tenure, very

common in finance which technically changes every instant. This should

be recomputed at inference time before being fed into the model especially

if there’s a large lag between when the features get refreshed and when

the model is applied. Keeping training and inference pipelines in sync via

shared libraries and the feature store pattern can shave off technical debt.

While the problem of keeping pipelines in sync is a software engineering

problem, some problems cannot be solved with software engineering since

the root cause of the problem is a lack of data. One such example is the so-

called “cold-start” problem.

�The Cold-Start Problem
The cold-start problem is something we see in recommender systems

but more generally when we’re working with transactional data, for

example, customer or product data in retail, finance, or insurance. The

cold-start problem is a scenario where we don’t have all of the history for

a customer or we want to make predictions about something completely

new. Since we may not have any information about a customer or product,

our model won’t be able to make a prediction without some adjustment.

Collaborative filtering, an approach in machine learning to filter on

“similar” customers or products where we do have information available,

can be used to solve the cold-start problem and make predictions on

completely new data points1.

1 In situations where there is no data, collaborative filtering may need to be
supplemented with approaches such as content-based filtering.

Chapter 6 Building Inference Pipelines

184

Although we’ve covered quite a few things that could go wrong in

our inference pipeline, we can’t anticipate every possibility, and while

continuous monitoring plays a crucial role in making our inference

pipelines more robust, sometimes things go wrong, code gets handed off

to other teams, and we need to dig deeper into the system for technical

specifics. This is where documentation can be a lifesaver.

�Documentation for Inference Pipelines
If you’re a data scientist, you probably have copious amounts of

documentation for features and statistical properties of those features, but

one area where documentation may be lacking is around the assumptions

that go into building an inference pipeline.

For example, do you have a naming convention for models in

production? How about model versioning? Can you explain the process

for updating a model or what to do if your inference pipeline breaks

in production and your model isn’t able to generate a prediction? All

of these steps should be documented somewhere, usually in the form

of a run book. It is also critical to have internal documentation such

as a wiki that gets updated regularly. This documentation can be used

for onboarding and hands-offs and to improve the quality of code

and can save you when something inevitable breaks in production.

Since documentation tends to only be used when things go wrong

and stakeholders usually don’t like reading large volumes of technical

documentation, we also need a way of reporting performance metrics to

stakeholders.

Chapter 6 Building Inference Pipelines

185

�Reporting for Inference Pipelines
Reporting is another critical component of machine learning and in

particular building the inference and training pipeline. With respect to the

inference pipeline and model output, reporting is particularly important

because the model output needs to be translated into business language

using familiar terms that the stakeholders understand.

Since the ultimate purpose of the model was to solve a business

problem, reporting could arguably be the most important piece of the

puzzle as far as determining the value of your model.

Reporting can contribute to understanding the model, how the users

are interacting with the model, and understanding areas of improvement

and should be seen as a communication tool.

Reporting can take many forms from simple automated emails

(remember we discussed one form of this for use in data drift and model

drift monitoring) but also more sophisticated solutions like dashboards.

Dashboards themselves should be viewed as operational systems that

provide accurate data to an end user, bringing together multiple disparate

data systems. Such systems may include the model output, feature store,

user interaction with the model output (feedback loops), as well as other

transactional or analytic database systems used by the business.

The type of dashboard you build depends on the business problem

and how end users will ultimately interact with your models, but one

dashboard that can add immediate value and prevent your model from

ending up in the model graveyard is an explainability dashboard.

The ability to explain your model results with stakeholders is a crucial

part of any data scientists’ day to day role and information about model

training, and what features are important when making a prediction (such

as Shap value or lime) can serve as an invaluable communication tool.

Some common use cases for reporting in MLOps include the following:

•	 Reporting on performance metrics

•	 Reporting on model explainability

Chapter 6 Building Inference Pipelines

186

•	 Reporting on model fairness for model bias reduction

•	 Reporting on feature importance

•	 Reporting on how the model output translates into key

business KPIs

Reporting on how your model translates into key business KPIs is a

critical exercise that should be taken into account from the beginning of

the project before you even build the model, but keeping in mind that you

need to translate this into a deliverable in the form of a dashboard at the

end of the project can contribute to project planning help data scientists

work backward from the dashboard through to the types of data and code

needed to support the dashboard so a critical path for the project can be

well-defined. Since data science projects have a tendency to suffer from

lack of requirements or ambiguity, having a concrete deliverable in mind

can reduce ambiguity and help to prioritize what is important in the

project throughout the entire MLOps lifecycle.

�Summary
We’ve come a long way in this chapter. We discussed how to build

inference pipeline code examples along the way, and we actually built

an inference pipeline with MLFlow and Sklearn in our hands-on lab. You

should have a thorough understanding of the challenges that exist at this

stage of the lifecycle from model monitoring, data drift, and model drift

detection, aligning our problem to performance metrics and figuring out

how to keep track of all of these performance metrics in a sane way. We

discussed how to choose the best model when we have several different

types of models. We gave some examples of performance metrics you

Chapter 6 Building Inference Pipelines

187

may encounter in the real world for various problem types like anomaly

detection, regression, and classification. We also discussed the importance

of reporting, documentation, and keeping our training and inference

pipelines in sync. Some of the core topics you should now have expertise

include the following:

•	 Reducing Production-Training Skew

•	 Monitoring Data and Model Drift

•	 Designing Inference APIs

•	 Performance Considerations

In the next chapter, we’ll look at the final stage of the MLOps lifecycle

and formally define the lifecycle, taking a step back from the technical and

developing a more holistic approach to MLOps.

Chapter 6 Building Inference Pipelines

	Chapter 6: Building Inference Pipelines
	Reducing Production-Training Skew
	Monitoring Infrastructure Used in Inference Pipelines
	Monitoring Data and Model Drift

	Designing Inference APIs
	Comparing Models and Performance for Several Models
	Performance Considerations

	Scalability
	What Is a RESTful API?
	What Is a Microservice?
	Lab: Building an Inference API
	The Cold-Start Problem
	Documentation for Inference Pipelines
	Reporting for Inference Pipelines
	Summary

