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CHAPTER 6

Building Inference 
Pipelines
If you’ve made it this far, you’ve already created MLOps infrastructure, 

build a feature store, designed and built an end to end training pipeline 

complete with MLFlow experiment tracking for reproducibility and model 

storage in the MLFlow model registry, and tried monitoring and logging. It 

might seem like you’re almost done; however, we’re still missing a critical 

piece of the MLOps puzzle: Once you’ve trained your model, what do you 

do with it?

This is such a critical piece of the MLOps lifecycle that it’s surprising 

so many data scientists leave the design and construction of the inference 

pipeline to the last minute or bury it away as a backlog item. The reality 

is, the inference pipeline is one of the most important parts of any 

stochastic system because it’s where you will actually use your model to 

make a prediction. The success or failure of your model depends on how 

well stakeholders are able to use your model and action upon it to make 

business decisions; when they need it and without an understanding of this 

stage of the lifecycle, your project is doomed to failure. Not only that, but it’s 

the inference pipeline where you will store the model output to incorporate 

feedback loops and add monitoring and data drift detection, so you can 

understand the output of your model and be able to analyze its results.

A lot can go wrong as well, and if you aren’t aware of how to measure 

data drift and production-training skew, then your model may fail when it 

hits production data.
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In this chapter, we will look at how we can reduce the negative 

consequences of production-training skew and monitor the output of 

our model to detect changes in problem definition or changes in the 

underlying distribution of features. We will also take a detailed look at 

performance considerations for real-time and batch inference pipelines 

and design an inference API capable of supporting multi-model 

deployments and pulling models from a central model repository similar 

to an architecture described in Figure 6-1.

Figure 6-1.  Inference pipeline supporting multi-model deployment
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�Reducing Production-Training Skew
Your model was trained on data that was carefully collected and curated 

for your specific problem. At this stage, you likely have a good idea of the 

distribution of features that go into your model, and you’ve translated 

certain assumptions about your model into the training pipeline, dealing 

with issues like imbalanced data and missing values.

But what happens when your model hits production and needs to 

make a prediction on unseen data? How can we guarantee that the new 

data follows the same distribution as the training data? How can we 

guarantee the integrity of the model output so that stakeholders can trust 

the output enough to action on the insights the model provides? This is 

where the concept of production-training skew comes into our vocabulary 

and starts to impact the technical decisions we make around model 

deployment.

Production-training skew can be formally defined as a difference in 

model performance during production and training phases. Performance 

here can mean the accuracy of the model itself (e.g., the unseen data has a 

different probability distribution than expected or can be caused by failing 

to handle certain edge cases in our training pipeline that crop up when we 

go to production).

It’s worth noting that sometimes issues happen in production that 

are not anticipated even if we have a really good understanding of the 

assumptions of our data and models. For example, we might expect certain 

features to be available at inference time because they were available at 

training time, but some features might need to be computed on the fly and 

the data just may not be available.

In general, it is best practice to ensure your inference pipeline has 

safeguards in place to check our assumptions prior to using the model, 

and if features are not available, or if certain statistical assumptions are not 

met, we can have a kill switch in the inference to prevent the model from 

making an erroneous prediction.
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This highlights an important difference between stochastic systems 

and traditional software systems because the consequences of actioning 

on a bad model output may be disastrous. As I’ve mentioned, stakeholders 

may lose trust in your model, or the model may be used as part of a 

decision process that impacts real people in a negative way. Therefore, it’s 

not enough to fail gracefully or ensure our model always has an output; 

as an MLOps practitioner, you need to put model safety first and foremost 

and ensure that if critical assumptions are not met, then what went wrong 

gets logged and the inference pipeline fails.

Let’s take a look at how we can set up monitoring and alerting to 

ensure the safety and integrity of our model.

�Monitoring Infrastructure Used in 
Inference Pipelines
Although we have a firm grasp of infrastructure, we need to take a brief 

moment to talk about the type of infrastructure you will need to set up 

for monitoring your inference pipelines. There are various cloud-based 

monitoring services in all of the major cloud platforms such as Amazon 

CloudWatch, Azure Monitor, or Google Cloud Monitoring. These tools 

provide monitoring and alerting capabilities that can be integrated 

with data pipelines. Your organization may have their own monitoring 

infrastructure set up already in which case you should consider leveraging 

this instead of creating new services.

There are also specific monitoring tools for data pipelines and ELT 

frameworks; for example, AWS Glue and Airflow both have built-in 

monitoring, and you can use this to build your own custom data drift 

detection solution by creating a separate pipeline and setting up hooks 

that can talk to other infrastructure.
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The difference between the data specific monitoring tools and the 

more general cloud monitoring tools is the more general cloud monitoring 

tools also can monitor resource utilization and you can use this to get a 

sense of where performance bottlenecks exist in your code. You may have 

to read the documentation for these cloud services and learn the SDK 

(software development kit), so you integrate these tools with your own 

code base. Whether you choose a stand-alone cloud monitoring service 

or leverage an existing one or one built-in with your ELT framework will 

depend on your project and the specific problem you’re trying to solve.

Okay, so once you have made the technical decision on what type 

of monitoring service you want to use for your data drift and model drift 

detection, then we can talk about how you can implement monitoring 

in your inference pipeline and some of the challenges that you might 

encounter.

�Monitoring Data and Model Drift
Monitoring is an essential part of nearly every IT operational system. It 

also happens to be one of the ways we can make data-driven decisions 

about our production models. Monitoring is a way of collecting data 

(strictly speaking, this is logging) and the capability of observing data over 

a period of time, for example, to check if certain conditions are met that 

are actionable. The action is usually called an alert.

It’s important to realize that when working with monitoring systems, 

this data is collected in the form of logs, but the logs need not be 

centralized and are typically streamed via standard output and standard 

error and then consolidated using some logging service. Services include 

cloud services like Data Dog or Azure Monitoring or open source solutions 

like Ganglia, ElasticSearch.
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In the context of machine learning and stochastic systems, monitoring 

means monitoring the model specifically for data drift and model drift 

and ensures the reliability and integrity of our model. We define these 

related terms.

Data drift: Data drift is related to the statistical properties and the 

probability distribution that underlies the features that go into training 

the model. When the underlying distributions of features shift in terms 

of mean, variance, skewness, or other statistical properties we can track, 

then it may invalidate assumptions we have made in the training pipeline 

and render model output invalid. A way to continuously monitor these 

statistical properties needs to be implemented.

How do you measure the difference between the distribution of 

features 6 months ago and at the present time? There are several ways 

to approach this, and one way is to measure the “distance” between two 

probability distributions such as with KL divergence or Mahalanobis 

distance. The important detail here is that we need to first measure a 

baseline and we compute this distance against the baseline, usually by 

defining a threshold value. If the divergence between our observed and 

baseline exceeds this threshold, then we can choose to send out an alert 

(e.g., an email to relevant stakeholders). It’s important we actually send out 

an alert and build out the code to do this, for example, if your team uses 

Slack, you may consider building a slack bot to alert your data drift has 

occurred since important decisions need to be made on whether to retrain 

the model and understand the root cause of the shift.

Another approach to data drift is hypothesis testing. We can set the 

null hypothesis to the features that have not changed or come from a well-

known distribution like the normal distribution if your data is normally 

distributed. One commonly employed hypothesis test is the Kolmogorov-

Smirnov test where the null hypothesis is that the data comes from the 

normal distribution.
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Once we have confirmed that data drift has occurred, we have to 

make a technical decision: Should we retrain our model? This is the first 

kind of feedback we can introduce into the training pipeline and is more 

sophisticated than the alternative which is periodically retraining on a set 

schedule (which may be a waste of resources if data drift has not occurred 

or is within the SLA threshold).

Model drift: Model drift is a slightly different concept than data drift 

and can indicate that the business problem has changed. It’s important to 

define the business problem and the definitions of features as part of the 

feature engineering step so that you can validate if model drift has actually 

occurred once detected.

Detecting possible model drift is fairly straightforward but verifying 

it is not. In order to detect model drift, we only need to monitor the 

predicted values (or more generally, the output of the model) and 

compare them to the expected values over time. For example, if we have 

a multi-class classification problem, we might record the total number of 

predictions made for each class and the breakdown of our predictions by 

each class, counting the number of predictions made for each class. We 

could visualize this as a simple histogram where the bins are the classes in 

our model, and if we find this histogram changes too dramatically from the 

baseline (using since threshold we define for the specific problem), then 

we have data drift and suspected model drift (performance of our model 

may have degraded over time).

We may also keep track of accuracy and other performance metrics 

and keep track of the performance of our model over time and a baseline 

and confidence intervals if possible.

Once we have found that either the model output has changed or the 

model performance metrics are degrading, then we need to investigate if 

model drift is actually concept drift, meaning the business problem has 

shifted in some way. This may lead us not only to retrain the model but 

possibly to have to add new features, revise features, or even change the 

model and its assumptions entirely to match the new business problem.
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In order to keep track of the model output, we need a reliable way to 

make predictions with our model (if the mechanism isn’t reliable or at 

least as reliable as the model output, then we won’t be able to tell when we 

model drift has occurred). Creating the API for inference is not only about 

user experience but also ensuring the accuracy and reliability of the model 

output. In the next section, we’ll go over some of the considerations that go 

into designing a reliable inference API.

�Designing Inference APIs
Okay so let’s say we have the most reliable inference API, we trust the 

data and the output of our model, and our stakeholders and users trust 

the output. The next focus needs to be on performance. We’ve noted 

previously there are technical trade-offs between accuracy and model 

performance, and while we should always consider performance early, 

it’s important not to sacrifice accuracy or fairness of the model for 

performance. On the other hand, if we don’t consider scalability and 

optimize our inference pipeline for performance, then the output may 

be rendered completely invalid by the time the prediction is made (e.g., 

delivering the prediction the next day if there is a hard requirement on 

the latency of the system). Due to this performance-accuracy, trade-off in 

some sense performance is a two-sided problem in machine learning.

In the next section, we’ll take a detailed look at what we mean by 

performance in the context of inference pipelines in terms of both 

scalability and latency but also accuracy and validity and some of the 

important performance metrics we should be tracking in our monitoring 

solution. We’ll also discuss the important problem of alignment in data 

science and how it plays a role in deciding what performance metrics 

to track.
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�Comparing Models and Performance 
for Several Models
In Chapter 5, we looked at model training and talked about the model 

tuning step. On a real-world problem, you may have many different types 

of models that you need to compare. You may have to dynamically select 

the best model, and we need a way to compare models for a problem type 

to choose the best model we should use for model inference.

One approach is once our models are tuned, we evaluate their 

performance using k-fold cross-validation and by selecting the model 

that has the best performance, for example, accuracy of F-1 score. This 

“outer validation loop” may use cross-validation but is done after hyper-

parameter tuning since we need to compare models once they are already 

tuned; it would make little sense to make a decision on what is the best 

model if we haven’t even gone through the effort of fine-tuning the model.

Since we’ll typically be working to solve one problem type like 

classification or regression or anomaly detection, there are common 

performance metrics we can use to decide objectively what the best 

model should be, and there needs to be code that can handle this 

part of the process. Let’s take a detailed look at some of these metrics 

and performance considerations used for comparing models across 

problem types.

�Performance Considerations
Model performance can refer to the accuracy and validity of our model or 

scalability, throughput and latency. In terms of accuracy and validity, there 

are many metrics, and it’s important to choose the metrics that are aligned 

with the goals of the project and the business problem we want to solve.
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Here are some examples; in this table, we try to break them down by 

type of problem to emphasize that we need to consider the alignment of 

the model with the goal. We call Table 6-1 the alignment table for data 

science.

Table 6-1.  Alignment table for data science

Problem type Metrics

Classification Accuracy

Classification Precision/recall

Classification F1 score

Regression RMSE/MAE

Recommendation Precision at k

Recommendation Recall at k

Clustering Davies-Bouldin Index

Clustering Silhouette distance

Anomaly detection Area under curve (AUC)

All problem types listed Cyclomatic complexity

Of course this is not an exhaustive list since we can’t possibly list every 

problem type you may encounter. I hope it provides a good starting point 

for designing your inference pipeline. In the next section, we’ll take a deep 

dive into the other side of performance: scalability and latency.

�Scalability
How can your machine learning system handle increasing amounts of 

data? Typically, data collection, one of the first phases of the MLOps 

lifecycle, grows over time. Without further information, we don’t know 
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at what rate this data collection process grows, but even if we assume 

logarithmic growth, over time, we need to scale with the increasing 

data volume.

You might have heard the word scalability before in the context of 

machine learning, the ability of your system to adapt to changes in data 

volume. Actually, scalability goes in both directions; in fact, cloud services 

are often described as being “elastic,” when you don’t use them they 

should scale down and during peak periods of activity, they scale up.

What does it mean to scale up and down? We usually speak of 

horizontal scalability and vertical scalability.

Vertical scalability: Vertical scalability means we add additional 

memory, CPU, and GPUs or in the case of cloud services increase these 

physical resources on the virtual machine or compute we are running. 

By vertically scaling, we’re adding more horsepower to a single worker 

machine, not adding new machines. This gets expensive after a while 

since as your memory or compute needs grow, at some point it is no 

longer feasible to upgrade the machine, and this is why for data science, 

we consider horizontally scaling workflows rather than vertically so we 

can leverage several inexpensive worker machines (often commodity 

hardware) to reach our compute and memory needs.

Horizontal scalability: Horizontal scalability means we add additional 

worker machines and consider the total compute (number of cores) 

or total memory of the entire cluster together. Usually, this comes with 

hidden complexity such as how we can network the machines together 

and shard the data across workers. Algorithms like map reduce are used to 

process big data sets across workers.

We mentioned in the previous chapter that we could use this 

horizontal scaling pattern for distributed training, but what about 

inference? When it comes to inference, we usually consider two types of 

patterns: batch mode inference and real-time inference.
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Both of these patterns require different architectures and 

infrastructure but which one you choose depends on your particular use 

case (remember, we should always try and align technical decisions with 

our use case). Here is the definition of both batch inference and real-time 

inference.

Batch inference: Batch inference means we break our feature set into 

batches and use our model to run predictions on each batch. This type of 

pattern can be scaled out horizontally and also has the advantage of not 

requiring an API, load balancer, caching, API throttling, and other kinds 

of considerations that come with designing an API. If you only need to 

populate a table for a dashboard, for example, you might consider using 

batch inference. However, this pattern might be ill-suited for use cases 

requiring real-time or near real-time inference or on demand predictions.

Real-time inference: If your requirement is to have sub-second latency 

in your inference pipeline and event driven prediction or allowing the end 

user to make on demand predictions, then you may want to move away 

from batch mode and consider building an API. Your API can still be scaled 

horizontally using a load balancer, but you will need to set up additional 

infrastructure and an online feature store. If your requirement is sub-

second latency, you may also need to use GPUs to make the prediction (or 

distributed pipelines). This is a complicated topic, and so in the next lab 

we’ll discuss some of the components that go into building an inference 

API, and then you’ll use MLFlow to register a model in production, pull 

it from the model registry, and explore how you might expose the model 

using an gRPC or RESTful API.

�What Is a RESTful API?
A RESTful API is an interface between containers (or even remote servers) 

used to facilitate communication over the Internet (the communication 

protocol is called the HTTP protocol). RESTful APIs are created in 

frameworks like Flask to exchange data.
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When an API endpoint is called either programmatically via a POST 

request (we can also do this manually using tools like Postman) or in the 

web browser (e.g., through a GET request), data (usually in the form of 

JSON) is serialized (converted to bytes) and sent across the Internet in a 

process called marshaling. The bytes are then converted back into artifacts 

like a model using a load function that is called deserialization. All of this 

happens transparently when you use a framework like Flask, and you can 

define endpoints (e.g., localhost:80/predict) which can be called either by 

other APIs or by applications that want to use your API (you could do this 

using Python’s request library; you just need to specify the endpoint, the 

data, and if it’s a POST or GET request you need to make).

APIs are one of the many ways to build inference pipelines that the 

user can interact with and are particularly suited as mentioned before for 

on demand use cases (you can just call the endpoint when you need it) or 

when you need a sophisticated application that uses your model (these 

applications are often built as microservices).

Although building a full API is beyond the scope of this book, it is 

worth being aware of a few technologies that are used in building large 

scale applications often called microservices.

�What Is a Microservice?
A microservice architecture is an architectural pattern for software 

development that organizes applications (e.g., APIs) into collections 

of independent (in software development parlance, this is often called 

loosely coupled) components called services. We’ve already seen examples 

of services when we used docker-compose to build our Jupyter lab service 

and MLFlow service, but you can also build your own services. In practice, 

these services are self-contained API endpoints written in a framework like 

Flask. Since the services are loosely coupled, they will need to talk to each 

other by sending data in the form of messages. These messages are usually 
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sent by calling an API. Since the services are loosely coupled docker 

containers, they can be scaled horizontally by adding more containers and 

distributing the load over several containers using a component called a 

load balancer. Figure 6-2 shows a typical REST API endpoint for prediction 

in Flask. The function predict exposes a route called /predict and expects 

features to be passed in as JSON strings in the body of a POST request 

(a standard way HTTP endpoints accept data). The model is loaded or 

deserialized and then used to make a prediction on the input data. The 

prediction is then returned as a json string, called a response.

Figure 6-2.  Flask API prediction endpoint
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If you want to learn more about Flask, it’s recommended you read 

the Flask documentation or several books available on microservice 

architecture in Flask. For most data scientists, building a microservice 

would be overkill, require teams of developers, and if attempted yourself 

would open up your project to security vulnerabilities and problems with 

scalability. Remember, you need to have additional components like 

load balancers and container orchestration frameworks like Kubernetes 

(docker-compose was the container orchestration tool we learned, but 

Kubernetes requires specific expertise to use effectively).

However, the pattern in Figure 6-2 is called a scoring script, and if you 

choose a cloud service that supports model inference, it will likely have 

support for creating your own inference scoring scripts which allow you 

to wrap the prediction logic in a function and expose a REST endpoint. 

Examples of cloud services that support these scoring or inference scripts 

include Databricks, AWS SageMaker, and Azure Machine Learning Service 

and MLFlow. In the lab, we’ll look at how to build your own inference API 

and some of the details involved in registering a model, loading a model, 

and exposing an API endpoint in enough detail that you will have the 

hands-on skill to work with many different cloud services.

�Lab: Building an Inference API
In the hands-on lab, you will take the code we wrote for training and adapt 

it for model inference. First, let’s look at some of the components of an 

inference API. You’re encouraged to do the supplementary reading before 

continuing to the hands-on Jupyter notebook for this chapter (I’ve already 

included them when you start the Jupyter lab for convenience, but you 

should try to import them yourself.).

Step 1. Run docker-compose up to start MLFlow and Jupyter lab 

services.
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Step 2. Open your Chapter 6 lab notebook called Chapter_6_model_

inference_lab.

Step 3. Run all cells to register the model and increment the model 

version number.

Step 4. Pull the registered model from MLFlow model registry. An 

example is given in Figure 6-3.

Step 5. Use the model to make a prediction.

Step 6. Open the deployment notebook (called Chapter_6_model_

inference_api_lab) to see how MLFlow serve can be used to expose your 

model as an inference API.

Keeping Model Training and Inference Pipelines in Sync

In Chapter 1, we talked about how technical debt could build up in a 

data science project. In fact, data science projects have been described as 

the high interest credit card of technical debt. One subtle way projects can 

accumulate technical debt at the inference stage of the lifecycle is by not 

keeping the training and inference pipelines in sync.

Figure 6-3.  Pulling a model from MLFlow registry for use in an 
inference pipeline

Chapter 6  Building Inference Pipelines

https://doi.org/10.1007/978-1-4842-9642-4_6
https://doi.org/10.1007/978-1-4842-9642-4_1


183

The same features the model was trained on are required at time 

of prediction. So there we must generate those features somehow. It’s 

convenient to think we could reuse the exact same code, but sometimes 

not all features will be available at prediction time and additional pipelines 

are necessary. A great example is a feature like customer tenure, very 

common in finance which technically changes every instant. This should 

be recomputed at inference time before being fed into the model especially 

if there’s a large lag between when the features get refreshed and when 

the model is applied. Keeping training and inference pipelines in sync via 

shared libraries and the feature store pattern can shave off technical debt. 

While the problem of keeping pipelines in sync is a software engineering 

problem, some problems cannot be solved with software engineering since 

the root cause of the problem is a lack of data. One such example is the so-

called “cold-start” problem.

�The Cold-Start Problem
The cold-start problem is something we see in recommender systems 

but more generally when we’re working with transactional data, for 

example, customer or product data in retail, finance, or insurance. The 

cold-start problem is a scenario where we don’t have all of the history for 

a customer or we want to make predictions about something completely 

new. Since we may not have any information about a customer or product, 

our model won’t be able to make a prediction without some adjustment. 

Collaborative filtering, an approach in machine learning to filter on 

“similar” customers or products where we do have information available, 

can be used to solve the cold-start problem and make predictions on 

completely new data points1.

1 In situations where there is no data, collaborative filtering may need to be 
supplemented with approaches such as content-based filtering.
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Although we’ve covered quite a few things that could go wrong in 

our inference pipeline, we can’t anticipate every possibility, and while 

continuous monitoring plays a crucial role in making our inference 

pipelines more robust, sometimes things go wrong, code gets handed off 

to other teams, and we need to dig deeper into the system for technical 

specifics. This is where documentation can be a lifesaver.

�Documentation for Inference Pipelines
If you’re a data scientist, you probably have copious amounts of 

documentation for features and statistical properties of those features, but 

one area where documentation may be lacking is around the assumptions 

that go into building an inference pipeline.

For example, do you have a naming convention for models in 

production? How about model versioning? Can you explain the process 

for updating a model or what to do if your inference pipeline breaks 

in production and your model isn’t able to generate a prediction? All 

of these steps should be documented somewhere, usually in the form 

of a run book. It is also critical to have internal documentation such 

as a wiki that gets updated regularly. This documentation can be used 

for onboarding and hands-offs and to improve the quality of code 

and can save you when something inevitable breaks in production. 

Since documentation tends to only be used when things go wrong 

and stakeholders usually don’t like reading large volumes of technical 

documentation, we also need a way of reporting performance metrics to 

stakeholders.
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�Reporting for Inference Pipelines
Reporting is another critical component of machine learning and in 

particular building the inference and training pipeline. With respect to the 

inference pipeline and model output, reporting is particularly important 

because the model output needs to be translated into business language 

using familiar terms that the stakeholders understand.

Since the ultimate purpose of the model was to solve a business 

problem, reporting could arguably be the most important piece of the 

puzzle as far as determining the value of your model.

Reporting can contribute to understanding the model, how the users 

are interacting with the model, and understanding areas of improvement 

and should be seen as a communication tool.

Reporting can take many forms from simple automated emails 

(remember we discussed one form of this for use in data drift and model 

drift monitoring) but also more sophisticated solutions like dashboards. 

Dashboards themselves should be viewed as operational systems that 

provide accurate data to an end user, bringing together multiple disparate 

data systems. Such systems may include the model output, feature store, 

user interaction with the model output (feedback loops), as well as other 

transactional or analytic database systems used by the business.

The type of dashboard you build depends on the business problem 

and how end users will ultimately interact with your models, but one 

dashboard that can add immediate value and prevent your model from 

ending up in the model graveyard is an explainability dashboard.

The ability to explain your model results with stakeholders is a crucial 

part of any data scientists’ day to day role and information about model 

training, and what features are important when making a prediction (such 

as Shap value or lime) can serve as an invaluable communication tool. 

Some common use cases for reporting in MLOps include the following:

•	 Reporting on performance metrics

•	 Reporting on model explainability
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•	 Reporting on model fairness for model bias reduction

•	 Reporting on feature importance

•	 Reporting on how the model output translates into key 

business KPIs 

Reporting on how your model translates into key business KPIs is a 

critical exercise that should be taken into account from the beginning of 

the project before you even build the model, but keeping in mind that you 

need to translate this into a deliverable in the form of a dashboard at the 

end of the project can contribute to project planning help data scientists 

work backward from the dashboard through to the types of data and code 

needed to support the dashboard so a critical path for the project can be 

well-defined. Since data science projects have a tendency to suffer from 

lack of requirements or ambiguity, having a concrete deliverable in mind 

can reduce ambiguity and help to prioritize what is important in the 

project throughout the entire MLOps lifecycle.

�Summary
We’ve come a long way in this chapter. We discussed how to build 

inference pipeline code examples along the way, and we actually built 

an inference pipeline with MLFlow and Sklearn in our hands-on lab. You 

should have a thorough understanding of the challenges that exist at this 

stage of the lifecycle from model monitoring, data drift, and model drift 

detection, aligning our problem to performance metrics and figuring out 

how to keep track of all of these performance metrics in a sane way. We 

discussed how to choose the best model when we have several different 

types of models. We gave some examples of performance metrics you 
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may encounter in the real world for various problem types like anomaly 

detection, regression, and classification. We also discussed the importance 

of reporting, documentation, and keeping our training and inference 

pipelines in sync. Some of the core topics you should now have expertise 

include the following:

•	 Reducing Production-Training Skew

•	 Monitoring Data and Model Drift

•	 Designing Inference APIs

•	 Performance Considerations

In the next chapter, we’ll look at the final stage of the MLOps lifecycle 

and formally define the lifecycle, taking a step back from the technical and 

developing a more holistic approach to MLOps.
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