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CHAPTER 5

Building Training 
Pipelines
In this chapter, you will build your own toolkit for model training. We will 

start by discussing the training and how it relates to the other stages of the 

MLOps lifecycle including the previous stage feature engineering. We’ll 

consider several different problems that make this part of the lifecycle 

challenging such as identifying runtime bottlenecks, managing features 

and schema drift, setting up infrastructure for reproducible experiment 

tracking, and how to store and version the model once it’s trained. We’ll 

also look at logging metrics, parameters, and other artifacts and discuss 

how we can keep the model, code, and data in sync. Now, let’s start by 

talking at defining the general problem of building training pipelines.

 Pipelines for Model Training
Building pipelines are a critical part of the MLOps lifecycle and arguably 

the most essential part of the development and deployment of machine 

learning systems since training the model is the process that allows you to 

determine what combination of weights, biases, and other parameters best 

fit your training data. If model training is done correctly, meaning we’ve 

correctly minimized a cost function that maps to our business problem, 
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then our end result of this process will be a model capable of generalizing 

beyond our training set, to unseen data, making predictions that can be 

actioned upon by decision-makers.

In this chapter, we will take a step back looking at model training 

instead as a process. We’ll learn how to represent this process in a natural 

way as a machine learning pipeline. We’ll also consider what can go wrong 

in this critical step of the MLOps lifecycle including what happens when 

we can’t train our model in a reasonable amount of time, what happens 

when our model doesn’t generalize, and how we can bring transparency 

and reproducibility into the training process by setting up experiment 

tracking. We’ll also consider a part of model training that is often 

overlooked: model explainability and bias elimination. Let’s look at some 

high level steps you might encounter in a training pipeline.

 ELT and Loading Training Data
Model training typically occurs after you’ve already collected your data 

and, preferably, you have a feature engineering pipeline in place to 

refresh the data. This is a complicated step. We looked at some of the data 

infrastructure you can use for building feature stores in the last chapter 

such as relational databases, massively parallel databases, and Feast and 

Databricks, but if you’ve ever had to build an ETL (extract, transform, 

and load) or ELT (extract, load, and transform) pipeline, you know that 

it involves setting up connection strings to databases and writing SQL 

queries to read data, transform it, and load it into a target database. You 

need to set up tables, handle schema drift, and decide what tools to use for 

scheduling your pipeline. This is a large topic within data engineering, and 

we can’t possibly cover every detail of this process, but we can provide you 

with knowledge of a few tools for building feature engineering pipelines:
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 Tools for Building ELT Pipelines
Data science projects need a solid foundation of data engineering in order 

to support the feature engineering process. Challenges exist around the 

part of the MLOps lifecycle between when data is collected and when that 

data is cleansed, transformed, and stored for downstream model training 

tasks. The steps that go into this are commonly called ELT or ETL (extract, 

transform, load), and there are data specialists that focus on this area 

alone. ELT is the preferred choice for data science teams since we want to 

first extract and then load the data in a database. Once the data is loaded, 

the data science team is free to transform the data as they wish without 

having to specify the transformation beforehand. With the ETL pattern, 

you need to transform the data on the fly before it is loaded which can 

become difficult. In the ELT pattern, the data science team can select the 

features that they want with data already loaded in the database and run 

experiments on raw data or iterate toward the feature engineering required 

for building the models. We also want to separate our extract, transform, 

and load steps, and we need a tool that is capable of passing data between 

steps and comes with monitoring, scheduling, logging, and ability to create 

parameterized pipelines. More specifically for data science, we also want 

to support both Python and SQL in our pipeline. Let’s take a look at a few 

of these tools for ELT in data science.

Airflow v2: Airflow (version 2) provides an abstraction called a DAG 

(directed acyclic graph) where you can build pipelines in Python, specify 

dependencies between steps (e.g., read data, transform data, and load data), 

have steps run in parallel (this is why we use a DAG to represent the pipeline 

as opposed to a more linear data structure), and provide a convenient web 

interface for monitoring and scheduling pipeline runs. You will want to use 

at least version 2 of Airflow since version 1 requires you pass data between 

steps using xargs. You can build full end-to-end training pipelines in Airflow 

locally, but when it comes time to deploy your models in production 

(we’ll talk about this in depth in a coming chapter), you might want to 
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set up Airflow as a cloud service. There are a couple options available for 

production Airflow workflows in the cloud such as Astronomer or Google 

Cloud Composer (based on Google Kubernetes Engine).

The other much more difficult option is to deploy your own Airflow 

instance to Kubernetes. This option is not recommended for the data 

scientist that wants to manage their own end-to-end lifecycle because 

setting up your own Airflow instance in production on Kubernetes does 

require knowledge of infrastructure and there are many cloud services 

available that provide high availability and reliability, so if you are 

managing the entire lifecycle end to end, it’s recommended you choose a 

cloud platform like Astrologer provides Airflow as a service, so you don’t 

have to deal with the low level details required to configure Airflow.

 Azure Data Factory and AWS Glue

If you’ve worked on ETL or ELT pipelines in the cloud before, you’ve 

probably heard of AWS Glue or Azure Data Factory depending on your 

choice of cloud provider. Both of these options can be used especially 

in combination with PySpark since Azure Data Factory has an “activity” 

(pipeline step) for running notebook Databricks, and AWS Glue can also 

run PySpark for extract, transform, and load steps. One thing to consider 

when choosing an ELT tool is which dialect of Python is supported since 

for data science, you will likely be writing your extract, load, and transform 

steps in a combination of Python and SQL. Although this isn’t a hard 

requirement, if the rest of your workflow is written in Python such as the data 

wrangling or feature engineering steps, you would need to figure out how 

to operationalize this code as part of your pipeline, and if you choose a low 

code or visual ELT tool that doesn’t support Python, you will have to have the 

additional step of translating your entire workflow which may not be possible 

especially if you have complicated statistical functions. This also leads to 

the second consideration for choosing an ELT tool for feature engineering 

pipelines: Does the tool support statistical functions required by your 

workflow? If the tool supports Python scripts, then the answer is probably 

Chapter 5  Building training pipelines



143

yes, but you should still consider what kind of packages can be installed. 

The same applies if your data science workflow is in another language other 

than Python, for example, Julia or R, and you need to consider how much 

community support there is for your language, and using a language that 

isn’t widely used may restrict the options you have for building your pipeline.

Another option for ELT is choosing a tool that supports the entire 

machine learning lifecycle end to end such as Databricks. The advantage 

of having a single platform is reduced effort and fewer integrations 

compared to a component-based system, but you still need to consider 

many questions such as how you’re going to organize your feature 

engineering pipeline, what does the folder structure look like? Where will 

the ELT scripts live? How can I add Git integration and set up jobs to run 

these scripts to refresh and update data required for the model?

The last piece of advice for this section is to have as much explicit 

logging and error handling as possible baked into your pipeline. Although 

as data scientists, we might be more focused on accuracy of our scripts, 

when you go to deploy your pipeline to production and it breaks, you will 

wish you had more information in the logs and spent more time handling 

errors in a graceful way. Adding some basic retry logic, try-except blocks, 

and basic logging can go a long way to making your feature engineering 

pipelines robust and reliable.

 Using Production Data in Training Pipeline

It goes without saying that you need production data in your training 

pipeline. It makes very little sense to train a model if the data is not accurate 

and up to date. This may pose some challenges for teams that have strict 

security protocols. You may need to communicate your need for production 

data and the business need for requiring daily or real-time refreshes of this 

data. For most workflows, daily frequency should be adequate, but know 

that if you require low latency data refreshes, it may require additional 

infrastructure and code changes to support this. You may have to consider 

using an event driven architecture rather than a batch ELT pipeline.
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 Preprocessing the Data
Okay so you have your ELT pipeline, and you’ve decided how you’re going 

to refresh the data and the frequency of updates and have chosen your 

feature store where your features will live. Your pipeline runs daily. You 

have code to read this data into a dataframe, maybe a Pandas dataframe or 

a PySpark dataframe if you’re working on a structured data set, or maybe 

you use some other libraries like Spacy for processing text based data in an 

unstructured format.

The point is, whether the data is structured or unstructured, the 

shape, volume, quality of the data, and type of machine learning problem 

determine how it will be processed. There are many variables here so your 

preprocessing steps may be different.

What matters is how you are going to translate your assumptions 

about your model into code. Your data may have many missing values, 

and your model might require a value so you will have a preprocessing 

step to handle missing values. You may be solving a classification problem 

and found your data set is imbalanced, so you may have another step that 

resamples your data to handle this. Other steps might include scaling 

the data and getting the data in a shape the model expects. Take a look at 

Listing 5-1 for an example.

Listing 5-1. A code snippet showing preprocessing steps

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

X = df.drop('label', axis=1)

y = df['label'']
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# train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.3)

scaler = StandardScaler()

# fit transform on X_train

X_train = scaler.fit_transform(X_train)

# transform X_test

scaler.transform(X_test

So how do we handle all of these preprocessing steps? It’s really 

important to keep them all in sync, and this is why you need to use a 

pipeline. Although your ELT pipeline should be deployed using something 

like Airflow, for the complex sequence of transforms, most machine 

learning frameworks have a concept of a pipeline you can leverage for the 

transformations. For example, in sklearn, you can import pipeline from 

sklearn;pipeline as shown in Listing 5-2.

Listing 5-2. Importing sklearn’s pipeline class

from sklearn.pipeine import Pipeline

 Handling Missing Values
Missing values in data can have many root causes. It is important to assess 

the reason why data is missing before building your training pipeline. 

Why? The reason is simple: Missing values mean you do not have all of the 

information available for prediction, but it could also indicate a problem 

with the data generating process itself, human error, or inaccurate data.

Missing at random (MAR) is a term used in data analysis and statistics 

to indicate that the missing data can be predicted from other observed 

values in the data set. While not completely random, data that is missing at 

random or MAR can be handled using techniques like multiple imputation 
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and other model based approaches to predict the missing value, so it’s 

important to understand if the data qualifies as MAR or not. An example 

in finance would be a stock market forecast. Let’s suppose you are tasked 

to build an LSTM model to forecast the price of a stock. You notice data 

is missing. Upon further investigation, you realize the missing data is 

correlated with another variable that indicates the stock market was closed 

or it was a holiday. Knowing these two indicator variables can be used to 

predict if the value was missing, so we say the price of the stock is missing 

at random. We might consider multiple imputation as a technique in our 

preprocessing steps to replace this missing value, or maybe it makes more 

sense to drop these values entirely from our model if the loss of data won’t 

impact the accuracy of our forecast too much.

In addition to MAR, there is also MCAR (missing completely at 

random) and MNAR (missing not at random). With MCAR we assume that 

the missing data is unrelated (both to covariate and response variables). 

Both MCAR and MAR are ignorable; however, MNAR is not ignorable 

meaning the pattern of missing values is related to other variables in 

the data set. An example of MNAR would be an insurance survey where 

respondents fail to report their health status when they have a health 

status that might impact the insurance premium.

 Knowing When to Scale Your Training Data
Scaling is applied when we have different units and scales in our training 

data and we want to make unbiased comparisons. Since some machine 

learning models are sensitive to scale, knowing when to include scaling in 

your training pipeline is important. Some guidelines for knowing when to 

scale your training data are as follows:

 1. Do variables have different units, for example, 

kilograms and miles?
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 2. Are you using regularization techniques such as 

Ridge or Lasso? You should scale your data so that 

the regularization penalty is applied fairly, or you 

may have a situation where variables with larger 

ranges are penalized more than variables with 

smaller ranges.

 3. Are you using a clustering algorithm that is distance 

based? Euclidean distance is highly sensitive to outliers 

and scale, so scaling your training data is necessary to 

avoid some variables dominating the computation

A general rule of thumb is to apply scaling to the numerical variables 

in your data since from an MLOPs perspective, even if the model does not 

require it, you can improve the numerical stability and efficiency. Now that 

we’ve covered some of the preprocessing steps you might encounter in a 

training pipeline, let’s talk about a problem you will face when features 

change: schema drift.

 Understanding Schema Drift
Let us suppose you are a data scientist at a large financial institution. 

You are creating a model to predict customer churn but need to consider 

demographic and macroeconomic data. You recently were asked to add 

another variable to you model: the pricing and subscription type for each 

level of customer. You have five variables to add, one for each subscription 

type; however, you will have to adjust your entire training pipeline to 

accommodate them. This situation is called schema drift.

There are many ways to deal with schema drift, but as a general rule, 

you should build your training pipeline in a way that is flexible enough 

to accommodate future changes in variables since they will inevitably 

happen. This might be as simple as altering a table to add a new column 

or as complex as dynamically generating SQL including variable names 
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and data types, creating the table on the fly as part of the training pipeline. 

How you deal with schema drift is up to you, and some frameworks like 

Databricks provide options such as the “mergeSchema” option when 

writing to delta tables, so if you are using an end-to-end machine learning 

platform or feature store, you should consult the documentation to check if 

there is anything related to schema drift before building out a mechanism 

yourself.

 Feature Selection: To Automate or Not 
to Automate?
Feature selection is important from an MLOps perspective because it 

can dramatically reduce the size of your training data. If you are working 

on a prediction problem, you may want to discard variables that are not 

correlated with your target variable

An interesting question is how much of this process needs to be 

automated? Should your training pipeline automatically add drop 

variables as needed? This is likely very unsafe and could lead to disastrous 

consequences, for example, if someone adds a field by accident that 

contains PII (personally identifiable information), demographic data that 

violates regulatory constraints on the model or introduces data leakage 

into your model. In general, your training pipeline should be able to 

handle adding and removing features (schema drift), and you should 

monitor features for data and model drift, but having a human as part of 

the feature selection process, understanding the business implication of 

the features that go into your model is a safer bet than taking a completely 

hands-off approach.
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 Building the Model
Once we have preprocessed the data, the next step is to build the machine 

learning model. In our case, we will be using scikit-learn’s logistic 

regression model. We can define the model and fit it to the training data, as 

shown in Listing 5-3:

Listing 5-3. Fitting a model in Sklearn

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

model.fit(X_train, y_train)

 Evaluating the Model
Once we have built the model, the next step is to evaluate the model. We 

will use scikit-learn’s accuracy_score function to calculate the accuracy of 

our model on the test data, as shown in Listing 5-4.

Listing 5-4. Evaluating the model

from sklearn.metrics import accuracy_score

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print('Accuracy:', accuracy)

It’s important here that model evaluation can be a complex process 

that happens both during hyper-parameter tuning and after tuning when 

comparing the performance of tuned models. The former is commonly 

called the “inner validation loop” and is used on a subset of training data 

before being retested on another subset. The purpose of this procedure is 

to find the best hyper-parameters for the model. Once our model is tuned, 
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we can compare tuned models, and this is called the “outer validation 

loop” where you may choose the best model. Optionally you may choose 

tore-train the best model on the combined train and test sets in hope of 

getting better generalization. In the lab, you will build a training pipeline 

and see how some of this process works in practice.

 Automated Reporting
Recall when we defined the MLOps maturity model, we said the 

differentiator between the first and second phase was an automated 

training pipeline as well as automated reporting. While we will cover 

performance metrics and monitoring in the next chapter, it is imperative 

to have infrastructure set up for reporting during the training phase; 

otherwise, the model can be trained, and we need to make decisions on 

model performance. While many MLOps professionals consider reporting 

to be important, reporting on model performance, model drift, and feature 

drift or tying in the model output from the training phase with business 

KPIs is a difficult process. At minimum your team should have a dashboard 

so you can discuss the results of trained models with stakeholders. 

Examples include Power BI which can be deployed to a cloud service or 

rolling your own such as Dash in Python and hosting it on a web server in 

the cloud.

 Batch Processing and Feature Stores
When training a model, you need to decide if you want to store all of 

the data in memory or process the data in a batch, updating the weights 

of the model for each batch. Although gradient descent is widely used, 

theoretically there are alternative methods for optimization, for example, 

Newton’s method. However, one practical advantage of gradient descent 

based algorithms is it allows you to train the model in a distributed 
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fashion, breaking up the training set into batches. You should be aware 

if there are batch versions of your algorithm available. Gradient descent 

usually refers to batch gradient descent which trains on the entire data set 

in one go, but there are two modes for batch training you can code yourself 

when using gradient descent as an optimization algorithm, and they’re 

available in most deep learning frameworks: mini-batch and stochastic 

gradient descent.

 Mini-Batch Gradient Descent:
Mini-batch gradient descent is a tweak to the regular gradient descent 

algorithm that allows you to train your model on batches of data. The 

size of these batches of data can be tuned to fit in memory but is usually 

a power of 2 such as 64 or 512 to align with computer memory. Since the 

gradients are calculated over the entire mini-batch, the model weights get 

updated for each batch. This kind of divide and conquer strategy has many 

performance advantages, the most obvious one is the ability to run your 

computations on a smaller subset of data rather than than the entire data 

set in one shot. This translates into reduced memory footprint and faster 

computations. The trade-off you should be aware of is, unlike the regular 

batch gradient descent on the full training data, with mini-batch gradient 

descent, you are only approximating the true gradient. For most cases, this 

is acceptable, and for larger scale machine learning projects, training on 

the entire data set for several thousand epochs may not be feasible.

 Stochastic Gradient Descent
Stochastic gradient descent is another variation of the classical gradient 

descent algorithm, this time using a randomly selected sample point 

to compute the gradients. The gradient of the loss function is used to 

update the model weights for each randomly selected sample point. The 

advantage, like mini-batch gradient descent, is less memory usage and 
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possibly faster convergence. However, since the points are randomly 

selected from the training data, we are still only approximating the true 

gradient, and this approximation can be particularly noisy. Therefore, 

stochastic gradient descent sometimes combines with mini-batch gradient 

descent, so the noise term gets averaged out over many samples, leading to 

a smoother approximation of the true gradient.

Implementing stochastic gradient descent in a deep learning 

framework like PyTorch is as simple as importing the SGD optimizer.1

 Online Learning and Personalization
The definition of an online learning method is a scenario where you 

don’t want to train on the entire data set but still have a need to update 

the weights of the model as new data flows in. This is intuitive if we 

understand Bayes’ rule which provides one such mechanism for updating 

a probability distribution, but when it comes to classical machine learning, 

we need to use gradient descent.

Linear classifiers (SVM, logistic regression, linear regression, and so 

on) with SGD training may come with a function that can have online or 

mini-batch mode supporting delta data or both online and batch mode 

supporting both delta data and a full data set.

Linear estimators in Sklearn, for example, implement regularized 

linear models with stochastic gradient descent learning. In this case, the 

gradient of the loss is estimated for each data point that the weights are 

updated by computing the partial derivative (take a look at Chapter 2 for 

an example of working with partial derivatives and loss functions in code). 

An optimization that is used with stochastic gradient descent is decreasing 

the learning rate (impacting the model’s ability to update its weights in 

response to new data) as well as scaling the training data with zero mean 

1 PyTorch SGD optimizer documentation https://pytorch.org/docs/stable/
generated/torch.optim.SGD.html
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and unit variance (we talked a bit about this earlier in the chapter). This 

method is called feature scaling and can improve the time it takes for the 

algorithm to converge (sometimes at the cost of changing the output as 

with an SVM).

While online learning through methodologies like the partial fit 

function can be used to reduce training time, you might ask first if it is 

necessary since you need to build mechanisms for incremental data load, 

support partial fit, fine-tune the last layer of the model, and freeze the rest 

or some other methodology for updating the weights on a small subset of 

data. This can complicate the training process, so unless there is a good 

reason for doing it, you might be better to consider hardware accelerated 

training or distributed training on a full data set. However, there are still 

great reasons to consider online learning other than performance, one 

being the ability to fine-tune a model and personalize the prediction and 

in such cases. In the next section, we’ll take a look at another important 

aspect of model training: model explainability.

 Shap Values and Explainability at Training Time
Machine learning algorithms are often viewed as “black boxes” that accept 

labels and input data and give some output. As we know from Chapter 2, 

most algorithms are not “black boxes”; they’re built up from mathematical 

abstractions, and although these abstractions can be powerful, they’re also 

low bias machines, ultimately trading interpretability for a higher variance 

(see bias-variance trade-off). Neural networks, especially deep neural 

networks consisting of several layers of neurons stacked, are an example 

with both high variance and low explainability.

Fortunately, solving the problem of model explainability has come a 

long way, and some of the most widely used tools are LIME and SHAP.

LIME: LIME is an acronym for local interpretable model-agnostic 

explanations. The goal of LIME is to show how each variable is used in the 

prediction. In order to achieve this, LIME perturbed each observation and 
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fits a local model to these perturbations. The model’s coefficients are then 

used to assign a weighting to the feature importance of each variable. This 

weighting can then be interpreted as how much each variable contributed 

to the prediction, allowing the data scientist to explain the model. LIME is 

typically more performant than SHAP.

SHAP: Shapley Additive Explanations or SHAP relies on the concept 

of a Shapley value, a mathematical construct that uniquely satisfies 

some theoretical properties (from cooperative game theory) of an ideal 

model-agnostic explainability algorithm. The Shapley values can be 

interpreted as how much each feature contributed to the prediction. An 

interesting consequence of using Shapley values, which are available for 

each observation, is you can use it for model fairness as well, for example, 

to estimate the demographic parity of features in your model. SHAP 

aims to approximate the model globally and gives more accurate and 

consistent results, whereas LIME, which approximates the model locally, is 

much faster.

 Feedback Loops: Augmenting Training Pipelines 
with User Data
One way to evaluate the maturity of an MLOps solution is by asking if it 

can incorporate output of the model back into the model training process, 

creating a simple kind of feedback loop. Feedback loops are ubiquitous 

throughout engineering.

 Hyper-parameter Tuning
The final section we need to cover is hyper-parameter tuning and how it 

relates to the entire training pipeline. We know that models have hyper- 

parameters which are exactly that extra parameters like depth of a tree, 

number of leaves for tree based models, regularization parameters, and 
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many other parameters that can do a variety of things from preventing 

model-overfitting to changing the architecture or efficiency of the model.

If you look at a boosting model like gradient boosting machines, 

you may have many hyper-parameters, and knowing details about how 

the algorithm works, for example, does it grow leaf-wise or level-wise, 

is essential to using the model correctly and tuning it to your business 

problem.

How do we search through a search space? We face a problem of 

combinatorial explosion if we try to do a brute force approach. We might 

try random search which reduces the search space, but then we might 

randomly miss important parameters and not have the best model at 

the end. A common approach is to use Bayesian optimization for hyper- 

parameter search. With the Bayesian approach, the best combination of 

hyper-parameters is learned as the model is trained, and we can update 

our decisions on which parameters to search as the process progresses, 

leading to a much better chance of finding the best model.

How do we implement Bayesian hyper-parameter search? One library 

that you will likely run into is HyperOpt. One important point is that you 

can set up MLFlow’s experiment tracking inside the Hyperopt objective 

function. This powerful combination of MLFlow and Hyperopt can be 

an invaluable piece of your workflow. If you run the lab, you can see this 

pattern implemented and integrate it into your own MLOps toolkit. In 

the next chapter, we’ll build on top of this foundation and look at how we 

can leverage MLFlow for finding the “best model” to make predictions on 

unseen data and use this model and data as part of an inference pipeline, 

but first let’s take a look at how hardware can help to accelerate the model 

training process.

So what can go wrong in the model training process? One problem 

is that of all the steps in the MLOps lifecycle, model training can take 

the most time to complete. In fact, it may never complete if we are only 

running on a CPU. Hardware acceleration, which as we discussed, refers 
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to the process of using GPUs (or TPUs) to speed up the training process 

for machine learning models, reducing the runtime by parallelizing 

matrix and tensor operations in an efficient way. Fortunately, there is a 

straightforward way to know when you might need to consider hardware 

accelerated training; you only need to ask yourself two questions:

• How long does it take to train my model?

• Is this training time reasonable given the business 

requirements?

If the answer to the second question is no, you will need to use 

hardware accelerated training. For example, if your model takes 3 days to 

train on your laptop, this is probably not acceptable, but in some cases, 

it may be less obvious, and you will need to consider other variables like 

if you can run the training pipeline automatically outside of business 

hours; maybe a few hours of training time is acceptable to you. You might 

also consider how fast the data is growing and if you will need to share 

resources with additional models in the future. In this case, although a few 

hours of training time might technically be feasible in the short term, long 

term you will need to consider solutions like hardware accelerated training 

to speed up the process, so you can accommodate the scale that you need 

in terms of volume of data or number of models.

Model architecture is also a critical variable to consider since, for 

example, deep learning models are often very expensive to train, requiring 

hours or days to fine-tune the models. Long short term models (LSTMs), 

large language models, and many generative models like generative 

adversarial networks are best trained on a GPU, whereas if your problem 

only requires decision trees or linear regression models, you may have 

more leeway in what hardware you use.
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 Hardware Accelerated Training Lab
Open the Hardware Accelerated Training Jupyter notebook in your MLOPs 

toolkit Jupyter notebook lab environment (named  Chapter_5_gpu_

accelerated_training_lab) or, optionally, in Google Colab if you do not have 

access to a GPU on your laptop.

In the example we’ve set up, you’ll be using a slightly different deep 

learning framework than we’ve seen so far. You’ll use this framework, 

TensorFlow, to train a simple neural network on the MNIST data set. As 

part of the training pipeline, you’ll need to preprocess the data, define the 

model architecture, compile the model, and set up the models’ optimizer 

and loss function.

The most important part of this lab is the line of code that sets the GPU 

explicitly, using GPU using the with tf.device(“/GPU:0”) context manager. 

This tells TensorFlow to use the first available GPU either on your laptop or 

in Google Colab to accelerate the training process.

 Experimentation Tracking
Experiment Tracking software is a broad class of software used to collect, 

store, organize, analyze, and compare results of experiments across 

different metrics, models, and parameters.

Experiment tracking allows researchers and practitioners to better 

understand the cause and effect relationships that contribute to 

experimental outcomes, compare experiments to determine common 

factors that influence results, make complex decisions on how to improve 

models and metrics to improve experiment results, and also reproduce 

these results during model training.

Remember, model training is a process that involves data and code. 

We need a way to keep track of the different versions of code and models 

and what hyper-parameters, source code, and data went into this training 

process. If we don’t log this information somewhere, we risk losing it, 
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and this means we’re not able to reproduce the results of the experiment, 

keep track of which experiments were actually successful or even worse, 

and answer even the most basic questions around why an experiment 

went wrong.

One tool that is arguably the gold standard when it comes to 

experiment tracking in machine learning is MLFlow. MLFlow allows you to 

store models; increment model version numbers, log metrics, parameters, 

source code, and other artifacts; and use these artifacts at a later stage such 

as in a model serving pipeline.

MLFlow is itself designed for end-to-end machine learning and can be 

used in several stages of the MLOps lifecycle from training to deployment. 

It can even be used in a research context when there is a need to quickly 

iterate on results ad hoc and keep track of experiments across different 

frameworks, significantly speeding up your research.

 MLFlow Architecture and Components
Experiment tracking: This component is used for logging metrics, 

parameters, and artifacts under a single experiment. The tracking 

component comes with a Tracking API which you can use in your training 

pipeline to log these metrics, parameters, and artifacts during the training 

process. In practice, experiment tracking can be set up in the hyper- 

parameter tuning step and used in combination with other frameworks 

like HyperOpt.

Projects: The MLFlow projects component is less of a traditional 

software component and more of a format for packaging data science 

code, data, and configuration. You might use projects to increase the 

reproducibility of your experiments by keeping data, code, and config in 

sync and deploying code to the cloud.
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Model registry: The model registry component enables data scientists 

to store models with a version number. Each time the training pipeline 

runs, you can increment this version number and subsequently use the 

model API to pull a specific version number from the registry for use in a 

downstream model serving or deployment pipeline.

Model serving: The MLFlow model serving component allows you 

to expose your trained models as a RESTFul API for real-time inference 

or batch inference modes. You can also deploy models to a number 

of different environments including Docker and Kubernetes. We will 

cover model deployment in a subsequent chapter, but this is a vast topic 

that requires the deployment of not just the model itself but additional 

monitoring, authentication, and infrastructure to support the way in which 

the model is used by the end user.

Now that we’ve covered the basic components of MLFlow, how do 

we begin to use it and set up our own experiment tracking framework? 

Although we’ve worked with services in our MLOps toolkit like Feast and 

Jupyter labs, standing up these services as stand-alone Docker images and 

Python packages, MLFlow is a complex service with multiple components. 

For example, the model registry may need to support models that can get 

quite large and require either an external artifact store. We’ll be using an 

s3 bucket for this. Technically, since we want to keep everything running 

locally, we’ll be using another service called MinIO which emulates an s3 

bucket for us where we will store our models.

Fortunately, since the docker-compose file is built for you in the last 

chapter, you only need to run. Go to Chapter 5 folder and run docker- 

compose up (Do you remember what this command does?). Listing 5-5 

shows how to build all services from scratch.

Listing 5-5. Running docker-compose up with –build option

docker-compose up -d --build
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You should notice this command spun up several services for you 

including MinIO (our cloud storage emulator for model storage), our 

MLFlow server (we use a relational database called MySQL for experiment 

tracking), and MLFlow web server where we’ll be able to view our 

experiments and models once they’re registered. You’ll also notice our 

Jupyter lab notebook exists as a service and can talk to MLFlow through 

the docker-compose network backbone.

Okay, that’s a lot of technical details, but how do we actually start using 

these services? If you look at the docker-compose file, you’ll notice we 

exposed several ports. MLFlow web server is running on port 5000, our MinIO 

cloud storage service runs at port 9000, and our Jupyter lab server runs on 

port 8080 like before. If you open a browser and enter localhost:8080, you’ll 

be able to access your Jupyter lab. This is where we’ll run all of our code in this 

chapter. Table 5-1 summarizes these services and where you can access them.

Table 5-1. Table of service endpoints used in this chapter

Service Endpoint Description Credentials

MlFlow web 

service

localhost:5000 View all experiments and  

registered models

none

Cloud storage 

service

localhost:9000 You need to access this once to  

create an s3 bucket called “mlflow”

MiniO

MiniO123

Jupyter lab localhost:8080 Where we’ll be building our training 

pipeline

none

You should open a browser and navigate to each of these services.

Now that we have built and evaluated our machine learning model, the 

final step is to track our experiments using MLFlow.

Next, we need to import the mlflow package on PyPi and set the name 

of our experiment (we’ve already installed Mlflow for you as part of the 

Jupyter lab service but it is available as a stand-alone Python package).
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When you set an experiment, all runs are grouped under this 

experiment name (each time you run your notebook, you are executing 

code and this is what is referred to as a run). You might want to establish a 

naming convention for experiments. For example, if you use a notebook, 

you could use some combination of notebook name, model types, and other 

parameters that define your experiment. An example code in Listing 5-6  

shows similar code to what you’ll find in the lab.

Listing 5-6. Creating an experiment in MLFlow using mlflow package

import mlflow

# Start an MLFlow experiment

mlflow.set_experiment('logistic-regression-mlflow')

# Log the parameters and metrics

with mlflow.start_run():

    mlflow.log_param('model', 'LogisticRegression')

    mlflow.log_param('test_size', 0.3)

    mlflow.log_metric('train_loss', train_loss)

    # Log the model as an artifact

    mlflow.sklearn.log_model(logistic_model, 'logistic_model')

What is this code doing? First, we start an MLFlow experiment by 

calling the set_experiment function and passing in the name of our 

experiment. MLFlow also comes in different flavors. For example, we can 

use the MLFlow lightgbm flavor to log a lightgbm model or sklearn flavor 

to log a sklearn model like logistic regression (we’ll build on our logistic 

regression example from previous chapters).

Knowing which flavor of model API we’re using is important when we 

deserialize the model (a fancy way of saying, loading the model back from 

the model registry) as we want the predict_proba and predict methods to 

be available. However, it can be challenging to handle different types of 

models in a general way.
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You now have enough background knowledge to start the lab where 

you will build an end-to-end training pipeline and log model to MLFlow.

 MLFlow Lab: Building a Training Pipeline 
with MLFlow
If you haven’t done this already, now is time to run docker-compose up in 

the Chapter 5 folder and confirm all services are started by navigating to 

the service endpoints in Figure 5-1.

Step 1. Navigate to MinIO cloud storage service located at 

localhost:9000 and enter the credentials provided in Figure 5-1.

Figure 5-1. MinIO Cloud Storage bucket

Step 2. You need to create an s3 bucket where we’ll store all of 

our models. Create a bucket called mlflow. If you’re unfamiliar with 

cloud storage, you can think of this as an external drive, which we’ll be 

referencing in our code. Figure 5-2 shows what the create bucket page 

looks like in MinIO.
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Figure 5-2. Creating a bucket called mlflow in MinIO

Step 3. Navigate to Jupyter lab service located at localhost:8080 in a 

browser, and import the notebook for Chapter_5_model_training_mlflow_

lab. Read through all of the code first before running.

Step 4. Run all cells in the notebook, and navigate to the MLFlow web 

service located at localhost:5000. Confirm that you can see your experiment, 

runs, models, metrics, and parameters logged in the experiment tracking 

server. Figure 5-3 shows where MLFlow logs experiments.

Figure 5-3. MLFlow experiment component
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That is it! You’ve built an end-to-end training pipeline that trains a 

model and logs it to MLFlow, and you’re able to search for the best run. 

Figure 5-4 shows the MLFlow model component.

Figure 5-4. MLFlow model registry component

Notice the last cell uses HyperOpt’s hyper-parameter tuning 

framework to fine-tune the model. The important detail is how we define 

our search space and then set MLFlow’s experiment tracking inside the 

hyperopt objective function.

 Summary
In this chapter, we learned about training pipelines, discussing how 

model training fits into the MLOps lifecycle, after we have made technical 

decisions around ELT and feature stores and we looked at some of the 

high level steps you might encounter as part of the transformation and 

data preprocessing steps. We looked at why we need to build a pipeline 
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and how we can make our pipelines more reliable and robust. We also 

discussed many of the technical aspects around setting up experiment 

tracking and hyper-parameter tuning. Here is a list of what you’ve learned 

up to this point.

• Tools for Building ELT Pipelines

• Preprocessing Data

• Hardware Accelerated Training

• Experimentation Tracking Using MLFlow

• Feature Stores and Batch Processing

• Shap Values and Explainability at Training Time

• Hyper-parameter Search

• Online Learning

• Setting Up an End-to-End Training Pipeline 

Using MLFlow

In the next chapter, we will build one some of the core ideas we learned 

to deploy models and build inference pipelines.
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