
103

CHAPTER 4

Infrastructure
for MLOps
This chapter is about infrastructure. You might think of buildings and

roads when you hear the word infrastructure, but in MLOps, infrastructure

refers to the most fundamental services we need to build more complex

systems like training, inference, and model deployment pipelines. For

example, we need a way to create data stores that can store features for

model training and servers with compute and memory resources for

hosting training pipelines. In the next section, we will look at a way we

can simplify the process of creating infrastructure by using containers

to package up software that can easily be maintained, deployed, and

reproduced.

 Containerization for Data Scientists
Containers have had a profound impact on the way data scientists code; in

particular, it makes it possible to quickly and easily spin up infrastructure

or run code inside a container that has all of the software, runtimes, tools,

and packages you need to do data science bundled inside.

Why is this a big deal? As you’ve probably experienced in the previous

chapter where we used Python environments to isolate packages and

dependencies, a lot of problems with configuring and managing multiple

packages become manageable with containerization. With simple

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_4

https://doi.org/10.1007/978-1-4842-9642-4_4#DOI

104

environments like Conda, you could manage multiple versions and with

package managers like Pipenv, you had access to a Pipfile which contained

all of the configuration you needed to manage your environment.

Now imagine you need more than just Python; you might have

different runtime requirements. For example, maybe parts of your data

science workflow require R packages and so you need the R runtime.

Maybe you also have to manage multiple binaries from CRAN and have

your code “talk” to a database which itself has dependencies like a JVM

(Java virtual machine) or specific configuration that needs to be set.

Unless you have a strong background in IT, managing all of these

configurations, runtimes, toolchains, compilers, and other supporting

software becomes tedious and takes away from time you can spend on

data science.

There’s another problem: portability. Imagine you have a package that

requires Mac but you’re on Windows. Do you install an entire OS just to

run that software? Containers solve this problem by allowing you to build

once and run anywhere. They also make it pull new containers and swap

out components of your machine learning system with ease. Let’s take a

deep dive into one of the most popular container technologies: Docker.

 Introduction to Docker
Docker is a platform as a service that uses OS-level virtualization to

encapsulate software as packages called containers. The software that

hosts the containers is called the Docker Engine and is available for a

number of platforms including Linux, Windows, and MacOS with both

free and paid licensing. Figure 4-1 shows how containers run on top of the

Docker Engine using OS-level virtualization.

Chapter 4 InfrastruCture for MLops

105

Figure 4-1. How containers run using OS-level virtualization

 Anatomy of the Docker File
Okay, so we know what Docker is but how do we use it? Let’s say you want

to create our own Jupyter based data science lab. You’ve probably installed

Jupyter before, but could you write down a recipe that is reproducible? You

might start by noting what operating system (OS) you’re using, installing

dependencies like Python and pip, and then using pip to install Jupyter

lab. If you’ve read the Jupyter lab documentations, then you probably also

know you need to expose some default ports so you can launch and access

your notebook from a web browser. If you wanted to do a deep learning

workflow using GPU, you might consider installing NVIDIA drivers as well.

This is a lot of work but we can write it as a series of steps:

• From your host OS, install specific software packages.

• Install drivers and low level package managers.

Chapter 4 InfrastruCture for MLops

106

• Install Python and Python package managers.

• Use package managers to install Python packages.

• Run Jupyter lab.

• Expose ports so we can access Notebooks in our web

browser.

In Docker, we can encode these steps as a sequence of instructions or

commands in a text file called a Docker File. Each instruction or command

gets executed in the Docker environment in the order it’s read starting

from the first instruction. The first instruction usually looks something like

the following:

FROM nvidia/cuda:12.0.1-base-ubuntu20.04

This creates what is known in Docker as a layer containing the Ubuntu

OS with NVIDA’s cuda drivers in case we need GPU support (if you only

have a CPU on your laptop, you can still build this docker container).

Other layers get installed on top of this layer. In our example of

installing a deep learning library, we would need to install Cuda and

Nvidia drivers to have GPU accelerated training (covered in the next

section). Fortunately, in Ubuntu, these are available in the form of Ubuntu

packages. Next, we might want to create a dedicated working dir for all of

our notebooks. Docker comes with a WORKDIR instruction. We’ll call our

directory /lab/

WORKDIR /lab/

We need to install data science specific Python packages for our

lab environment and most important the Jupyter lab packages. We can

combine this step into a single command with the RUN instruction.

RUN pip install \

 numpy \

 pandas \

Chapter 4 InfrastruCture for MLops

107

 tensorflow \

 torch \

 Jupyterlab

Finally we’ll need to launch our Jupyter server and expose port 8080

so we can access our notebook in a browser. It’s good practice to change

the default port, but ensure it’s not one that is reserved by the operating

system. These steps can be accomplished using the CMD and EXPOSE

instructions:

CMD ["jupyter", "lab", "--ip=0.0.0.0", "--port=8080",

"--allow- root", "--no-browser"]

EXPOSE 8080

In the next section, we will apply this theoretical knowledge of Docker

by packaging all of these steps into a Docker file in the next lab and build

the image. Once we build the image (a binary file) we can then run the

image, creating a container. This distinction between an image and

container might be confusing if it’s the first time you’ve encountered the

terms, but you should understand the difference before proceeding to the

lab. We summarize the difference in the following since it is very important

for understanding containers.

Docker file: A docker file is a blueprint for a Docker image; it contains

a series of instructions in plain text describing how a docker image should

be built. You need to first build the docker file.

Docker image: A docker image is a binary file that can be stored in

the cloud or on disk. It is a lightweight, self-contained (hence the name

container), executable piece of software that includes everything needed

to run an application including the application code, application runtime,

interpreters, compilers, system tools, package managers, and libraries.

Docker container: A docker container is a live piece of software; it’s

a runtime instance of a Docker image created when you run the image

through the Docker run command.

Chapter 4 InfrastruCture for MLops

108

Now that we’ve clarified the difference between a Docker image and a

Docker container, we’re ready to start building some containers. In this lab,

you’ll go through the previous steps in detail to create your own data science

lab environment, an important addition to any MLOps engineer’s toolkit.

 Lab 1: Building a Docker Data Science Lab
for MLOps
Step 1. We first need to install the Docker engine. Proceed to Install Docker

Desktop on Windows and select your platform. We’ll be using Windows 10.

Download the Docker Desktop Installer for Windows. We recommend the

latest version but we’ll use 4.17.1.

Step 2. Right-click the Docker Desktop Installer run as admin. Ensure

to check the install WSL and Desktop shortcut options in the first menu,

and click next. Figure 4-2 shows Docker Desktop for Windows.

Figure 4-2. Docker Desktop for Windows

Chapter 4 InfrastruCture for MLops

https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/

109

Step 3. Launch Docker Desktop from the Desktop icon and accept the

service level agreement. Figure 4-3 shows the Docker license agreement.

Figure 4-3. Docker license agreement

Step 4. Use the Git clone command to clone the repo provided along

with the supplementary resources. Start a new terminal session in vs code

and cd into Chapter 4 Labs where you will find a file called Dockerfile (this

is where you’ll find the sequence of plain text instructions or recipe for

building your data science lab environment).

Step 5. Run docker build -t data_science_lab . inside the directory

with Dockerfile. The period at the end is important; it’s called the Docker

context.

Step 6. Build your image. Assign it the name jupyter_lab with the

 -t option and run the container. You can also pass in a token (we used

mlops_toolkit) which will be your password for authenticating with Jupyter

notebook.

Chapter 4 InfrastruCture for MLops

https://doi.org/10.1007/978-1-4842-9642-4_4

110

docker build -t jupyter_lab .

docker run --rm -it -p 8080:8080 -e JUPYTER_TOKEN=mlops_toolkit

jupyter_lab

Did you notice anything? You should see the following splash screen.

Figure 4-4 shows a general view of what you can expect to see, but note

that your splash screen may look slightly different especially if you are not

using Powershell.

Figure 4-4. Splash screen for Jupyter Lab

Note the pytorch and tensorflow wheels are around 620 and 586
MB, respectively, at the time of writing, so these are pretty large.
sometimes this can be a problem if disk space is limited. although
we won’t cover it in this lab, optimizing the size of a Docker image
is an interesting problem and an area of specialization within MLops
especially when working with deep learning frameworks.

Step 7. Navigate to localhost:8080/lab in a browser (note we exposed

port 8080 in the Dockerfile; this is where the number comes from). Enter

your token (“mlops_toolkit”) and you should be redirected to the lab

environment pictured in Figure 4-5.

Chapter 4 InfrastruCture for MLops

111

Figure 4-5. The Jupyter lab environment

Finally, click Python Kernel in your Lab environment to launch a

Jupyter notebook. We’ll use this environment in subsequent labs if you

need a Jupyter notebook environment. Optionally you can also use Google

Colab (Figure 4-6).

Figure 4-6. Examples of cells in a Jupyter notebook

You can now run notebooks inside docker and you have a reproducible

data science lab environment you can use and share. We’ll talk about how

you can deploy this environment to the cloud in future chapters enabling

you to have a shared lab environment and collaborate on projects. This is

an amazing first step toward mastering data science infrastructure, and

Chapter 4 InfrastruCture for MLops

112

we can now talk about particular kinds of data infrastructure used by data

scientists. In the next section, we’ll look at the feature store pattern, a

pattern for data infrastructure used for supporting robust, scalable feature

engineering pipelines.

 The Feature Store Pattern
Going back to the MLOps lifecycle, after data collection and basic data

cleansing, our goal is to build features from this data. In the real world,

you’ll frequently deal with 100s of features. It is not uncommon to have

data science projects where 100, 200, or even 1000 or more features are

constructed. These features eventually will be fed into a feature selection

algorithm, for example, when we have a prediction problem using a

supervised data, we can reduce these hundreds of features to a reasonable

number in many ways, for example, using Lasso or a bagging algorithms

like random forest to rank features by importance for our particular

problem, filtering out the ones that have little predictive value.

The feature selection process, unlike most other parts of the machine

learning lifecycle, may not be automated. One reason for this is feature

selection is dependent on what you’re trying to model, and there may be

specific features like demographic data and PII that need to be excluded

even if those features have predictive value.

Although feature selection can reduce the number of features used

in a model, we still need to maintain the complete gambit of features for

future problems. Additionally, model accuracy deteriorates over time, the

business definitions can change, and you may have to periodically rerun

feature selection as you add new data sources.

So how do we store all of these features: manage different versions

of features to support feature selection, hyper-parameter tuning, model

retraining, and future modeling tasks that might make use of these

hundreds of features at different points in the lifecycle? This is where the

concept of a feature store comes into play.

Chapter 4 InfrastruCture for MLops

113

Feature store: A feature store is a design pattern in MLOps that is used

to centralize the storage, processing, and access to features. Features in

a feature store are organized into logical groups called feature groups,

ensuring the features are reusable and experiments are reproducible.

 Implementing Feature Stores: Online vs. Offline
Feature Stores
A feature store and feature groups may be implemented using a variety of

data infrastructure. A model is trained on features which typically involve

joining multiple normalized, disparate data sources together. These joins

are expensive and, sometimes since data is not well-defined, may involve

semi-joints, range joins, or window analytic functions in the mix. These

queries, which are executed on remote data store infrastructure, need to

support both low latency queries at prediction time and high throughput

queries on years of historical data at training time.

To make matters more complex, features may not be available at

prediction time or may need to be computed on the fly, possibly using the

same code as in the training pipeline. How do we keep these two processes

in sync and have data infrastructure support both online and offline

workflows requiring low latency and high throughput?

This is a hard problem in MLOps but understanding the types of data

infrastructure used to implement a feature store. Let’s look at some of this

data infrastructure we can use for implementing feature stores.

 Lab: Exploring Data Infrastructure with Feast
Feast is an open source project (Apache License 2.0 free for commercial

use) that can be used to quickly set up a feature store. Feast supports both

model training and online inference and allows you to decouple data from

Chapter 4 InfrastruCture for MLops

114

ML infrastructure, ensuring you can move from model training to model

serving without rewriting code. Feast also supports both online and offline

feature stores.

You can also build your own feature store using docker and installing

the underlying database services yourself. At the end of this lab, there is

also an exercise so you aren’t just following instructions, but first run the

following commands:

Step 1. Open code and start a new terminal session in PowerShell or

Bash. Install Feast:

pipenv install feast

pipenv shell

Step 2. Run the following command to initialize the Feast project. We

will call our feature store pystore:

feast init pystore

cd pystore/feature_repo

Step 3. Look at the files created:

data/ are parquet files used for training pipeline.

example_repo.py contains demo feature definitions.

feature_store.yaml contains data source configuration.

test_workflow.py showcases how to run all key Feast commands,

including defining, retrieving, and pushing features.

Step 4. You can run this with python test_workflow.py. Note on

Windows we had to convert our paths to raw strings to get this to work

(see the code for Chapter 4). Figure 4-7 shows the result of running the

test script.

Chapter 4 InfrastruCture for MLops

115

Figure 4-7. Running the test script locally

Step 5. Run Feast apply (inside pystore directory); this will register

entities with Feast. Figure 4-8 shows the result of running this command.

Figure 4-8. Running Feast apply command

Note, you should see two components with temperature and pressure

measurements generated in your final feature store pictured in the

following. That’s it! You’ve created your first feature store for an IoT data

set. Figure 4-9 shows the expected output.

Figure 4-9. Expected output for pressure and temperature readings

Chapter 4 InfrastruCture for MLops

116

Now as promised, here is an exercise you can do to get a feel for a real

MLOps workflow.

 Exercise
Being able to iterate and make changes to feature definitions is a part of

MLOps since features rarely stay static. In a production environment, these

types of anomalies should be caught automatically.

Exercise 1. Modify the notebook and rerun the lab to fix the pressure

and temperature features so that they’re in a more reasonable range for

pressure (measured in Kilopascals) and temperature (measured on the

Kelvin scale).

Hint You may need to do some research on what the right range
looks like and figure out where in the code you should make
the change.

 Dive into Parquet Format
You also may have noticed the format we are storing our data. We used

the parquet extension as opposed to the more common csv which you’re

probably already familiar with. So what is the difference between a parquet

and a csv and why might we prefer to store files in parquet format at all?

The difference is in the size and efficiency of the format. While parquet

is highly efficient at data compression (it is a binary file) meaning the file

sizes are much smaller, unlike csv, parquet format encodes the data and

schema for fast storage and retrieval. You might also use Parquet format

with libraries like Apache Arrow which can make reading a large csv file

several times faster. There is also a difference in how the data is stored.

Chapter 4 InfrastruCture for MLops

117

In parquet format, data is stored in a columnar format, whereas csv is

row oriented. For data science code, columnar data store is preferred

since only a small subset of columns are used for filtering, grouping, or

aggregating the data.

Although knowledge of every possible data format isn’t required, you

should be aware as an MLOps engineer that you can optimize your code

for speed and efficiency simply by changing the format to one that better

matches your workflow. In the next section, we’ll take a look at another

way to optimize for speed: hardware accelerated training.

We just took a deep dive into containers and data infrastructure, but

if you’re a pure data scientist without a background in IT, then you might

be wondering do I really need to know how to work with low level data

infrastructure and become an expert in containers to do MLOps for my

own projects?

The answer depends on the use case, but in general, there are cloud

services available for each stage of the MLOPs lifecycle. For example, you

can use Databricks if you want an end-to-end machine learning platform

and add components as needed by integrating with other cloud services,

for example, PowerBI, if you need a reporting solution, Azure DevOps if

you need to build CI/CD pipelines to deploy your code, and maybe even

an external data storage like AWS or Azure data lake to store your models,

artifacts, and training data sets. You technically should know about

parquet, but in this example, you could use Delta table format which in

uses Parquet under the hood for storing data but also gives you a delta

log and APIs for working with this format, so the low level details are

abstracted for you, leaving more time for data science. In the next section,

we’ll take a deeper dive into some of the cloud services available while

trying to remain agnostic about specific platforms like AWS, Azure, and

Google Cloud.

Chapter 4 InfrastruCture for MLops

118

 Hardware Accelerated Training
Many times in data science, we are dealing with big data sets. Training sets

can total gigabytes, terabytes, and with the rise of IoT data even petabytes

of data. In addition to big data, many workflows, especially ones requiring

deep learning like transfer learning, can be extremely intensive and require

GPU accelerated training.

Training or even fine-tuning a large language model like BERT on

commodity hardware using only a CPU can take days. Even if you’re not

training a large language model from scratch, some model architectures

like recurrent neural networks take a long time to train. How do we

accelerate this training? We have two options: distributed training and

GPU accelerated training. First, let’s discuss some of the major cloud

service providers before jumping into distributed training.

 Cloud Service Providers
There are several major cloud service providers. The big 3 are Azure, Amazon

Web Services, and Google Cloud. Each of the three has machine learning

service offerings and provides compute, networking, and data storage

services. For example, Amazon Web Services has s3 buckets and Azure

has blob storage. For end-to-end machine learning, Amazon Web Services

offer SageMaker, while Azure has Azure Machine Learning service. There

are other services for end-to-end machine learning as well and distributed

training like Databricks which is offered in all three of the cloud service

providers. There are differences between the different services, for example,

Databricks integrates with MLFlow, whereas SageMaker has its own Model

registry, but there is a difference in the platform: not the cloud service

provider. You can also deploy your own containers in all three cloud service

providers. For example, if you want to deploy your own Airflow instance to

Kubernetes, all three offer their own version of Kubernetes with differences

in cost for compute, storage, and tooling. In the next section, we’ll take a look

at distributed computing in some of these cloud service providers.

Chapter 4 InfrastruCture for MLops

119

 Distributed Training
All of the code we’ve run so far has been executed on a single machine.

If you’re using a laptop or workstation, you can interact with the physical

hardware, but if you’re running inside a cloud environment like Google

Cloud, Azure, AWS (Amazon Web Services), Google Colab, or Databricks,

the hardware infrastructure on the backend may not be so obvious and may

actually be hidden from you. For example, in Databricks, you can configure a

cluster, a collection of worker nodes and driver nodes which are themselves

individual virtual machines complete with their own CPU or GPU for compute

and a certain configurable amount of working memory and disk space.

The advantage of using multiple VMs when training is straightforward:

More VMs mean more CPU or GPUs available which means model training

can be accelerated. If you’ve ever written Pandas code that attempted to

read in a large csv file and experienced out of memory errors, then you’ve

probably already thought about increasing the memory available through

out of core (spilling to disk) like Dask, but another option is to run your

code on a distributed environment like Databricks.

You can take a look at the supplementary code provided with this

chapter for an example of configuring Horovod for distributed training.

You can make a free account on Databricks community edition to try

out Databricks, but we recommend you use an Azure cloud subscription

for full functionality. The steps to get a Databricks account (which you can

later convert to a full featured account) are as follows:

 1. In a browser, navigate to https://community.

cloud.databricks.com/login.html.

 2. Click sign up and create a free account. Figure 4-10

shows how to register a Databricks account.

Chapter 4 InfrastruCture for MLops

https://community.cloud.databricks.com/login.html
https://community.cloud.databricks.com/login.html

120

Figure 4-10. Registering a Databricks account

Click continue and make sure to select community

edition at the bottom; otherwise, choose a cloud

provider (AWS, Azure, or Google Cloud as shown in

Figure 4-11):

Chapter 4 InfrastruCture for MLops

121

Figure 4-11. Choosing a cloud provider

 3. In the workspace, create a job cluster. Databricks

distinguishes between two types of clusters: all

purpose (interactive) and job clusters.

 4. Click the cluster creation and edit page; select

the Enable autoscaling checkbox in the Autopilot

Options box (Figure 4-12).

Chapter 4 InfrastruCture for MLops

122

Figure 4-12. Enable autoscaling is an option for elastic workflows

Note this step is similar for all-purpose clusters except you will
want to include a terminate clause after 120 minutes (or a timeout
that fits your use case) to force the cluster to terminate after a period
of inactivity. forgetting this step can be costly since like many cloud
services you are charged for what you use, and this detail is an
important consideration when choosing to use cloud services. the
timeout option is shown in figure 4-13.

Figure 4-13. Enabling timeout after 2 hours of cluster inactivity

To attach a cluster to a notebook in Databricks, follow these steps:

 1. Create a new notebook in your workspace.

 2. Click the “Connect” button in the top-right corner of

the notebook (Figure 4-14).

Chapter 4 InfrastruCture for MLops

123

Figure 4-14. Connect button to attach a notebook to a cluster

Select the cluster you just created in the previous step.

Once the cluster is attached, you are able to run your code on the cluster,

taking advantage of the many workers available for distributed workflows. You

can configure the number of workers in your cluster and enable autoscaling

for larger workflows. The notebook will connect to the cluster automatically.

You can also detach the cluster from the notebook by clicking the “Detach”

button in the top-right corner of the notebook. You can optionally copy paste

code provided in the next section if you want to try this out.

 Optional Lab: PaaS Feature Stores in the Cloud
Using Databricks
You may have noticed when using Feast there were a lot of steps and you

had to dive deep into the gritty details of data engineering infrastructure

and even understand different types of data formats like parquet vs. csv.

Chapter 4 InfrastruCture for MLops

124

If you’re a data scientist who wants some of those details abstracted

from you, you may consider a Platform as a Service for building your

feature store.

Databricks provides a machine learning workspace where feature

stores are available without having to configure infrastructure. These

feature stores use delta tables in the backend which rely on the open

source Parquet format, a column oriented format for big data. Delta tables

also come with a delta log that can keep track of transactions on the data,

bringing atomicity, consistency, isolation, and durability to machine

learning workflows (so-called ACID properties). You can build a feature

store by creating a cluster with the ML runtime1 (12.1 is the latest at the

time of writing).

The feature store client allows you to interact with the feature store,

register data frames as feature tables, and create training sets consisting of

labeled data and training data for use in training pipelines. Databricks also

has online feature stores for low latency inference pipelines.

 Scaling Pandas Code with a Single Line

If you use Pandas regularly for data wrangling tasks, you may have

encountered memory errors. Typically dataframes blow up in memory

up at least 2x and sometimes more compared to their size on disk which

means if you have a very large csv file, reading that csv file may trigger

some out of memory errors if your workflow relies on Pandas. Fortunately,

the Pandas on Spark library (formerly Koalas) allows you to write Pandas

code to create Spark dataframes and register them in the feature store

without having to learn the Spark API. You can import this library in

Databricks with the following line (called a drop-in solution).

from pyspark import pandas as ps

1 Databricks ML runtime documentation can be found at https://docs.
databricks.com/runtime/mlruntime.html

Chapter 4 InfrastruCture for MLops

https://docs.databricks.com/runtime/mlruntime.html
https://docs.databricks.com/runtime/mlruntime.html

125

We’ve provided an option notebook lab for you called Chapter 4 Lab:

Scaling Pandas Workflows provided with this chapter. You can import your

notebook into your Databricks workspace and execute the code to get

hands-on experience with scaling Pandas code.

Since Databricks requires a cloud subscription, you don’t need to

complete this lab to understand the rest of the material in this chapter

or the rest of the book; however, many organizations use Databricks for

MLOps, and knowledge of PySpark, the Pandas on Spark library, clusters,

and notebooks may be valuable in an MLOps role. You can import a

notebook by clicking Workspace or a user folder and selecting Import as

pictured (Figure 4-15):

Figure 4-15. Importing a notebook in your workspace

 GPU Accelerated Training

GPU accelerated training means using a GPU to help reduce the runtime

in training deep learning algorithms. While CPUs are latency optimized,

GPUs are bandwidth optimized. Since deep learning involves tensor

operations and matrix multiplications which can be implemented on a

GPU, these operations can be sped up by using a framework that is GPU

aware both because of the data parallelism and the higher bandwidth

afforded by a GPU.

Chapter 4 InfrastruCture for MLops

126

One exciting change to the TensorFlow package is that since version

2.1, TensorFlow and TensorFlow-gpu have merged. If you require a

version of the TensorFlow package with version <= 2.1, then you can

install TensorFlow-gpu as per the following otherwise you may substitute

TensorFlow-gpu with TensorFlow.

In your Jupyter lab environment, you can make your notebook GPU

aware by using TensorFlow’s TensorFlow-gpu package (other deep

learning frameworks such as PyTorch require code changes). The steps for

configuring GPU awareness in TensorFlow are listed in the following:

 1. Uninstall your old TensorFlow.

 2. Edit your Dockerfile and add the TensorFlow package

to the RUN pip install command (note if for backward

compatibility, you require TensorFlow < 2.1, and

then use the older TensorFlow-gpu package instead).

Figure 4-16 shows the informational message.

Figure 4-16. Deprecated packages can cause problems in workflows

 3. Run the docker image with GPU support using

docker run.

 4. Finally in a Jupyter notebook in your lab

environment, you can check install using

import tensorflow as tf tf.config.list_physical_

devices('GPU').

Chapter 4 InfrastruCture for MLops

127

You should now be able to run GPU accelerated code in TensorFlow

without additional code changes. In the following chapter, we’ll look at

a detailed example of GPU accelerated training using the MNIST data

set and the GPU enabled lab environment we just built (optionally, you

can use Google Colab if you don’t have a physical GPU device). Okay,

so we have talked about using hardware to accelerate training, but what

about processing large amounts of data? In the next section, we will look

at how we can coordinate the processing of massive amounts of data

using multiple processors in parallel. These types of databases are called

massively parallel analytic databases or MPP.

 Databases for Data Science
The distinction between an analytical system and a transactional system

is an important one in data science. Transactional systems, also called

“online” or operational systems, are designed to handle a large number of

very small transactions (e.g., update one row in a table based on a primary

key). These types of systems may support business processes like point of

sales systems or other operationally critical parts of the business where

speed and precision are nonnegotiable.

In contrast, analytical systems are designed to support offline

workloads, large volumes of data, and queries over the entire historical

data set. These analytical systems are usually implemented as a MPP

(massively parallel processing) database. The types of queries that these

databases can handle include large CTEs (common table expressions),

window analytical functions, and range joins for point in time data sets.

Snowflake is one such choice of MPP database. An example of a complex

query that uses common table expressions and window analytic functions

is given in Listing 4-1.

Chapter 4 InfrastruCture for MLops

128

Listing 4-1. A Common table expression with a window analytic

function

-- Use a common table expression to deduplicate data

WITH cte AS (

 SELECT id, component, date, value, ROW_NUMBER() OVER

(PARTITION BY id, component ORDER BY date DESC) AS rn

 FROM sensor_data

)

SELECT id, component, date, value

FROM cte

WHERE rn = 1;

In this example, we first create a mock sensor data table “sensor_ data”

with four columns: id, component, date, and value. We then insert some

sample data into this table.

Next, we define a common table expression (CTE) and give it a name.

This code is available as part of Chapter 4 (see example_deduplicate_data.

sql). You can optionally run it by creating a cloud service account on

Snowflake. Similar to the Databricks community edition, you can get a free

trial using the self-service form on the Snowflake website; however, this

is optional and the query will likely run with some modification on most

MPP database that supports ANSI SQL since window analytic functions

are a part of the standard since 2003. Let’s break this query apart into its

component pieces to understand how to write a query:

The SELECT statement is used to select all four columns from the

sensor_data table, and we use ROW_NUMBER() window analytic function

to assign a unique row number for each row. The PARTITION BY clause

ensures that each row number gets reset for each combination of id and

component.

Finally, the other SELECT statement selects four columns from our

CTE but filters only on rows where the row number is equal to 1. This has

the effect of de-duplicating our sensor_data table. You may find queries

Chapter 4 InfrastruCture for MLops

129

like this or even more complex CTEs in typical data science workflows

which, for example, in this case may be used to de-duplicate a data set

prior to running a train-test-split algorithm, avoiding data leakage. Of

course, this is only a simple example.

Snowflake (a type of MPP database) SQL supports a wide range of

window analytic and statistical functions for data science tasks such as

ranking rows within a partition, calculating running totals, and finding the

percentiles of a set of values.

Here are some examples of the types of functions that are commonly

used in feature engineering.

• Ranking functions: ROW_NUMBER(), RANK(),

DENSE_RANK()

• Aggregate functions: SUM(), AVG(), MIN(),

MAX(), COUNT()

• Lead and lag functions: LEAD(), LAG()

• Percentile functions: PERCENT_RANK(), PERCENTILE_

CONT(), PERCENTILE_DISC()

• Cumulative distribution functions: CUME_DIST()

• Window frame functions: ROWS BETWEEN,

RANGE BETWEEN

• Date and time functions: DATE_TRUNC(), DATE_

PART(), DATEDIFF()

• String functions: CONCAT(), SUBSTRING(), REGEXP_

REPLACE()

In the next section, we will briefly detail patterns for enterprise grade

database projects so we can get familiar with common architectural

patterns.

Chapter 4 InfrastruCture for MLops

130

 Patterns for Enterprise Grade Projects
Data lake: A data lake is centralized repository, typically separated into

bronze, silver, and gold layers (called the medallion architecture2). The

central repository allows you to store both structured and unstructured

data, contrasting with a traditional relational database. If you use a cloud

storage account like blob storage or s3 buckets, the bronze, silver, and

gold layers can map to containers or buckets where you can administer

permissions and assign users or service principals access to each container

or bucket. The bronze layer is the ingestion layer and should be as close to

the raw data sources as possible (you can, e.g., organize raw data sources

in folders, but it is important to have a consistent naming convention

across the data lake). The silver layer is most important for data science

and contains cleaned and conformed data that is still close enough to the

source that it can be used for predictive modeling and other data science

activities. The gold layer is used for enterprise grade reporting and should

contain business-level aggregates.

Data warehouses: Data warehouses are an older pattern and are a

centralized repository of data. Data can be integrated from a variety of

sources and is loaded using ELT or ETL patterns. The data warehouse can

contain dimensional data (slowly changing dimensions) and other tables.

This architectural pattern is not well-suited for data science workflows

which require flexibility and have to handle schema drift but can be used

as a valuable data source for many projects.

Data mesh: A data mesh is a decentralized approach to building data

stores that uses self-service design and borrows from domain-oriented

design and software development practices. Each domain is responsible

for their own data sources, requiring a shift in responsibility, while the data

platform team provides a domain-agnostic data platform.

2 www.databricks.com/glossary/medallion-architecture

Chapter 4 InfrastruCture for MLops

http://www.databricks.com/glossary/medallion-architecture

131

Databases are not only used for feature stores (to organize features

for model training) but also for model versioning and artifact storage; in

fact, MLFlow also uses a database. Databases are also used for logging and

monitoring. This is an important fact that is often overlooked in MLOps.

In the next section, we will look at No-SQL databases and how we leverage

meta-data in our data science workflows to adapt to change.

 No-SQL Databases and Metastores
Relational databases can represent structured data in tables with

relationships (foreign keys) between tables. However, not all data can

be forced into this pattern. Some data, especially web data (JSON and

XML), are semi-structured having nested hierarchies, and text-based data

common in NLP problems are unstructured. There is also binary data

(common when you have to deal with encrypted columns), and having

to store, process, and define the relationships between structured, semi-

structured, and unstructured data can be cumbersome and inefficient in

a relationship database creating technical complexity. This complexity is

compounded by schema evolution common to data science workflows.

Hence, there is a need for an efficient way to represent, store, and process

semi-structured and unstructured data while meeting nonfunctional

requirements like availability, consistency, and other criteria important

to the data model. In this section, we will introduce both No-SQL and

relational databases that you can use to build data models and meet

nonfunctional requirements without having to pigeonhole your solution

into a relational database.

• Cassandra: Cassandra is a No-SQL distributed database

that supports high availability and scalability which

makes it ideal as an online feature store.

Chapter 4 InfrastruCture for MLops

132

• Hive: Hive is a distributed, fault-tolerant data warehouse

system for data analytics at scale. Essentially a data

warehouse is a central store of data that you can run

queries against. Behind the scenes, these SQL queries

are converted into MapReduce jobs, so Hive is an

abstraction over MapReduce and is not itself a database.

• Hive metastore: Hive metastore is a component you

can add to your feature store. It contains names about

features such as names of features, data types (called

a “schema”). It is also a commonly used component

in cloud services like Databricks delta tables, so even

if you aren’t building your own feature store directly,

you should have some knowledge of this important

piece of data infrastructure.

 Relational Databases
• Postgresql: Postgres is a relational database system that

can support gigabytes, terabytes, and even petabytes of

data. We can also configure PostGres to work with Hive

metastore. In Feast (in version greater than 0.21.0),

Postgres is supported as a registry, online and offline

feature store.

 Introduction to Container Orchestration
We learned about Docker and even created a Dockerfile which was a series

of instructions used to build an image. The image, a binary containing

layers of software, could be run like a lightweight virtual machine on our

host operating system. But what if we have to run multiple services, each

with their own Docker images? For example, we might have a service that

Chapter 4 InfrastruCture for MLops

133

hosts a Jupyter notebook where we type in our Python code, but we might

want to have another service for storing data in a database and have our

notebook interact with this database.

One subtlety you will encounter is networking. How can we get these

two services to “talk” to each other and create the network infrastructure to

support this communication between services?

Also since containers are ephemeral in nature, how do we spin these

services up when we need them and spin them down when they’re no

longer needed while persisting the data we need? This is what container

orchestration deals with, and the standard tool for orchestrating containers

is Docker Compose.

We’ll be using Docker Compose in the next chapter to set up MLFlow

and get it to “talk” to our Jupyter lab which we will need to set up

experiment tracking for our training pipeline. You can look at the docker-

compose.yml file included with this chapter (but don’t run any commands

just yet). Figure 4-17 shows an example YML file.

Figure 4-17. A Docker Compose YML file

Chapter 4 InfrastruCture for MLops

134

 Commands for Managing Services
in Docker Compose
Container orchestration is a large topic, and as we mentioned, you will be

using it in the next chapter to set up MLFlow and build a training pipeline.

We’ll cover MLFlow in depth, but Docker Compose has commands for

managing the entire lifecycle of services and applications.

Here are some important commands useful for managing services:

• Start services: docker-compose up

• Stop services: docker-compose down

• Start a specific service: docker-compose up

<service name>

• Check the version of Docker Compose: docker-

compose- v

• Build all services: docker-compose up --build

While Docker Compose simplifies the process of creating services, you

still need to define multi-container applications in a single file. Imagine a

scenario where you have infrastructure that spans across different cloud

providers or is multitenant in nature. This kind of multitenancy contrasts

with multi instance architectures and having a tool that can completely

describe infrastructure as code can help with the complexity in these

environments.

• Infrastructure as Code

Infrastructure as code (IaC) is a DevOps

methodology for defining and deploying

infrastructure as if it were source code. We have

already seen an example of this when we spun up

our data science lab environment by defining the

Chapter 4 InfrastruCture for MLops

135

image, binaries, and runtime needed inside the

Dockerfile. Since the Dockerfile itself is a series

of instructions that can be source controlled and

treated like any other source code, we can use it to

generate the exact same environment every time

we build the image and run the container from the

image. The ability to have the same environment

each time is called reproducibility and is an essential

component for data science because experiments

need to be reproducible.

It’s worth mentioning that there are specific tools and specialties

within DevOps for managing infrastructure as code. One tool that is widely

used in industry is Terraform. Terraform is an open source infrastructure-

as- code tool for provisioning and managing cloud infrastructure such

as Databricks. It works with multiple cloud providers and allows MLOps

professionals to codify infrastructure in source code that describes the

desired end state of the system. An example configuration file is given

in the following, but these files can get very complex, and you can use

Terraform and similar tools to configure and manage notebooks, clusters,

and jobs within Databricks. Figure 4-18 shows a very simple example of

infrastructure as code in Terraform.

Figure 4-18. Infrastructure can be described as code

Chapter 4 InfrastruCture for MLops

136

 Making Technical Decisions
We’ve come a long way in this chapter from introducing Docker, applying

what we learned to create our own data science lab environment complete

with Jupyter notebook, and getting our hands dirty with Feast, creating our

own feature store from an IoT data set.

We’ve also talked about the philosophy of having infrastructure as code

and why it’s important for the reproducibility of data science experiments.

The final piece of the puzzle is how we can use our knowledge of

infrastructure to make better technical decisions. Here are a few key points

you should consider when making decisions around infrastructure in your

own projects:

• Solve problems using a divide-and-conquer strategy,

breaking services and parts of applications into

functional components.

• Ask yourself if there is a cloud service or a docker

container you might want to use for each functional

component in your system.

• Understand the performance requirements for your

workload. Do you need a lot of memory? Or do you

need dedicated CPUs and GPUs for model training?

Understanding the hardware requirements for different

models can help you decide.

• Run code profilers on your code to identify bottlenecks

in a data-driven way. A great profiler that comes with

Python is cProfiler. It’s often not enough to “guess”;

you should strive to make data-driven decisions by

performance testing your code.

Chapter 4 InfrastruCture for MLops

137

• Strive to make your experiments reproducible, and

deploying by using Docker and adopting a mentality of

infrastructure as code can help to manage changes and

different versions of infrastructure.

• Decide between PaaS (Platform as a Service) and

Infrastructure as a Service. Sometimes, spinning

up your own dedicated server and worrying about

upgrades, updates, and security batches can be

overkilled when a good PaaS meets infrastructure

requirements.

 Summary
In this chapter, we’ve learned the fundamentals of infrastructure for

MLOps. We’ve covered sufficient prerequisites for understanding

containerization, cloud services, hardware accelerated training, and

container orchestration and how we can use our knowledge to become

better technical decision-makers on data science projects. At this point,

you should understand what a container is and how to build containers

and be able to define what container orchestration means and why it

is useful for MLOps. Although this chapter covered a lot of ground and

you’re not expected to know everything about containerization, we

hope this chapter has peaked your curiosity as we start to build on these

fundamentals and apply what we learned to some real data science

problems in the coming chapters. Here is a summary of the topics we’ve

covered:

• Containerization for Data Scientists

• Hardware Accelerated Training

• Feature Store Pattern and Feast

Chapter 4 InfrastruCture for MLops

138

• GPU Accelerated Training

• MPP Databases for Data Science

• Introduction to Container Orchestration

• Cloud Services and Infrastructure as Code

• Making Technical Decisions

Chapter 4 InfrastruCture for MLops

	Chapter 4: Infrastructure for MLOps
	Containerization for Data Scientists
	Introduction to Docker
	Anatomy of the Docker File
	Lab 1: Building a Docker Data Science Lab for MLOps

	The Feature Store Pattern
	Implementing Feature Stores: Online vs. Offline Feature Stores
	Lab: Exploring Data Infrastructure with Feast
	Exercise
	Dive into Parquet Format

	Hardware Accelerated Training
	Cloud Service Providers
	Distributed Training
	Optional Lab: PaaS Feature Stores in the Cloud Using Databricks
	Scaling Pandas Code with a Single Line
	GPU Accelerated Training

	Databases for Data Science
	Patterns for Enterprise Grade Projects
	No-SQL Databases and Metastores
	Relational Databases

	Introduction to Container Orchestration
	Commands for Managing Services in Docker Compose
	Making Technical Decisions

	Summary

