
67

CHAPTER 3

Tools for Data Science
Developers

“Data! Data Data! I can’t make bricks without clay!”

—Sir Arthur Conan Doyle

How do we manage data and models? What are the tools we can use to

make ourselves more efficient and agile in data science? In this chapter, we

will deep dive into the tools and technology that you will depend on daily

as an MLOps engineer.

AI tools can make you more productive. With the release of GPT3 in

June 2020, the large language model and “brains” behind the ChatGPT

app, and in March of 2023, GPT4, the first multimodal large language

model capable of understanding both text and images was released. Data

scientists will increasingly use AI tools to write code.

The growth is exponential, and although it cannot predict very far

into the future what specific tools will be available, it is certain that basic

tools like code version control systems, data version control, code editors,

and notebooks will continue to be used in some form or another in data

science, and what’s important is to have a solid foundation in the basics.

You will understand version control, data version control, and specific

python packages used at various stages of the spiral MLOps lifecycle. You

should be comfortable enough at the end of this chapter to complete the

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_3

https://doi.org/10.1007/978-1-4842-9642-4_3#DOI

68

titular MLOps toolkit lab work where you’ll build a cookie cutter MLOps

template you can apply to accelerate your projects and be able to install a

wide range of MLOps packages like MLFlow and Pandas to support various

stages of the MLOpS lifecycle.

�Data and Code Version Control Systems
Data science is a collaborative activity. When you are first learning data

science you might spend most of your time alone, exploring data sets you

choose and applying whatever models perform best on your data set.

In the real world you typically work on a team of data scientists, and

even if you are the sole individual contributor on your team, you still likely

report results to stakeholders, product managers, business analysts, and

others and are responsible for handling changes.

All of these changes in a business impact data science as they result in

changes in downstream feature engineering libraries and training scripts.

You then need a way to share code snippets and get feedback in order to

iterate on results and keep track of different versions of training scripts,

code, and notebooks. Are there any tools to manage this change in data,

code, and models? The answer is version control.

�What Is Version Control?
Version control is a software tool used to manage changes in source code.

The tool keeps track of changes you make to the source code and previous

versions and allows you to roll back to a previous version, prevent lost

work, and pinpoint where exactly in the code base a particular line was

changed. If you use it properly, you read the change log and understand

the entire history of your project. Git, a distributed version control

system (as opposed to centralized version control), is a standard for data

science teams.

Chapter 3 Tools for Data Science Developers

69

�What Is Git?
As we mentioned, Git is a standard tool for version control. Git works

basically by taking a snapshot of each file in your directory and storing this

information in an index. Git is also a distributed version control system

(as opposed to a central version control like TFS) which means it supports

collaboration among data scientists and developers. Each developer can

store the entire history of the project locally, and because Git only uses

deltas, when you are ready to commit changes, you can push them to the

remote Git server, effectively publishing your changes.

�Git Internals
Git uses commands. There are several Git commands you should be aware

of and some special terminology like “repos” which refers to a collection

of files that are source controlled. If you are unfamiliar with the concept

of repos, you could think of it like a kind of directory where your source

code lives.

In practice, when working on a data science project as in MLOps

role, you will probably use a source control tool like Sourcetree since

productivity is important, and also once you know the basics of the

commands, it gets very repetitive to type each time. Tools like Sourcetree

abstract these details away from you. You may be wondering why a

tool like Sourcetree could help data scientists when you can use the Git

command. As we will see in the next section, Git does provide low level

commands for interacting with Git repositories, but Sourcetree is a GUI

tool, and since typing the same command over and over again takes time,

using a GUI tool will make you a more productive developer.

Chapter 3 Tools for Data Science Developers

70

�Plumbing and Porcelain: Understanding
Git Terminology
Porcelain commands refer to high level Git commands that you will use

often as part of your workflow. Plumbing is what Git does behind the

scenes. An example of a porcelain command is the Git status to check for

changes in your working directory.

Ref: A ref is essentially a pointer to a commit. A pointer is how Git

represents branches internally.

Branch: A branch is similar to a ref in that it’s a pointer to a commit.

You can create a new branch using the command given in Listing 3-1.

Listing 3-1.  Git command to create a new branch

git branch <branch>

Head: Some documentation makes this seem really complicated

but it is not. In Git, there was a design choice that only one branch can

be checked out at a time, and this had to be stored in some reference or

pointer. (If you don’t know what a reference or a pointer is, read the Git

documentation1).

�How Git Stores Snapshots Internally
Git assigns a special name to this pointer called HEAD. There can only be

one HEAD at a time and it points to the current branch. This is the reason

why you might hear HEAD referred to as the “active” branch.

You might be wondering, how is this “pointer” physically stored on

a computer. Well, it turns out the pointer is not a memory address but a

file. This file stores the information that the HEAD is the current branch

1 The Git documentation covers topics including references and pointers:
https://git-scm.com/book/en/v2/Git-Internals-Git-References

Chapter 3 Tools for Data Science Developers

https://git-scm.com/book/en/v2/Git-Internals-Git-References

71

(remember the definition of a branch from earlier). There is a physical

location on the computer in the .git/HEAD directory where this file is

located and you can open it up in a text editor (such as Notepad++) and

read its contents for yourself to understand how Git stores information

internally.

Don’t worry if this seems complicated, as it will be much easier in the

lab work and begin to make sense when you use it and see the purpose of

Git for yourself.

�Sourcetree for the Data Scientist
We recommend using Sourcetree, a free open source GUI based tool. If you

are a professional software developer, you can try Kraken which has some

additional features but requires a license. There are two steps for using

Sourcetree:

You can download Sourcetree at sourcetreeapp.com. You need to agree

to terms and conditions and then download the app (Figure 3-1):

Figure 3-1.  Sourcetree GUI tool for interacting with Git repositories

Chapter 3 Tools for Data Science Developers

72

Step 1: Clone a remote repository. Figure 3-2 shows the GUI interface

for cloning a repository in Sourcetree.

Figure 3-2.  Cloning a Git repository using a GUI

Step 2: If you use a private repo, you’ll need to configure your ssh key.

Make sure to click SSH not HTTPS as shown in Figure 3-3.

Chapter 3 Tools for Data Science Developers

73

Figure 3-3.  Copying the SSH path to your GitHub repo

�Branching Strategy for Data Science Teams
If you are on a team of at least five developers, you may have to consider

a branching strategy. This matters less if you are on a small team or

alone because as a data scientist you may be OK to rely on a single main

branch, but with more than five developers, you may consider setting up a

second branch.

If you want to learn about more complex branching strategies beyond

feature branches, you can read about Git Flow. Usually different branching

strategies are chosen in consideration of a software release schedule in

collaboration with other teams depending on the size of your organization

among other factors. Figure 3-4 shows how to create a new branch from

the Sourcetree GUI.

Chapter 3 Tools for Data Science Developers

74

Figure 3-4.  Creating a new branch from the Sourcetree GUI

�Creating Pull Requests
Pull requests are a great tool for code reviews and should be adopted by

data science teams. Typically the main branch is a stable branch, and

prior to merging changes into main, you should have a peer review your

changes. Ideally, a data scientist on your team that is familiar with Git

would be designed as the release manager and would coordinate this with

the team, but the process can be done informally. Figure 3-5 shows how to

create a pull request.

Benefits of pull requests for data scientists include the following:

•	 Opportunity to review changes and learn new data

science techniques.

•	 Catch mistakes and bugs before they are committed to

main branch, increasing code quality metrics.

Chapter 3 Tools for Data Science Developers

75

Figure 3-5.  Creating a pull request

�Do I Need to Use Source Control?
You might wonder if all of this is necessary or do you even need source

control. But what are the consequences of not using it? You should use

source control for the following reasons

•	 You are part of a team of data scientists sharing code

and collaborating and need to coordinate changes

through a remote branch.

•	 You want to version your data so you can train models

on a previous version of data.

•	 You are a data scientist that does not want to lose

their work on their local system and wants something

more reliable than a Jupyter Notebook’s autosave

functionality.

•	 You need a way to save different snapshots of your data

or code.

•	 You want a log or paper trail of your work in case

something breaks (you can use the “Blame” feature to

pinpoint the author of a change).

Chapter 3 Tools for Data Science Developers

76

�Version Control for Data
We’ve talked about code version control, but as we’ve mentioned, MLOps

involves code, data, and models. While we use tools like Git for code

version control, data version control exists and can be applied to both data

and models (which are usually serialized in a binary format).

The standard package is called DVC (you can guess this stands for data

version control). DVC works on top of Git, and many of the commands

and terminology are similar. For example, the dvc init command is used to

initialize data version control in your repo. In the lab, you’ll work through

some basic dvc commands for data and model version control.

�Git and DVC Lab
In this lab (Figure 3-6), you will gain some hands-on experience with

both Git for interacting with Git repositories and DVC for versioning data.

Fortunately, many of the Git commands you will learn in the lab are very

similar to the DVC commands you will learn later. However, throughout

the lab, you should keep in mind the distinct purpose of each tool and

where you might want to use each in your own workflow.

Figure 3-6.  GIT and data version control (DVC) lab

Chapter 3 Tools for Data Science Developers

77

Before proceeding to the next section on code editors, complete the

version control lab titled: Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_

Git_and_Dvc

Step 1. Open Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_Git_and_Dvc.

ipynb and read the instructions.

Step 2. Copy paste the commands in the notebook into a terminal, and

get familiar with each command and what it does; you can use the -h flag

to see what each command does (e.g., git status -h).

Step 3. Sign up for a GitHub account by following instructions in the lab.

�Model Development and Training
So we’ve covered version control systems for both code and data but how

about the tools we use to edit our code and develop models? You may be

using a tool like Spyder or a Jupyter notebook to edit your code, and surely

like most developers, this is your favorite editor. I don’t want to change

your mind, but it’s worth knowing the range of code editors available in

data science and when and why you might want to consider using an

editor like VS Code over Spyder.

�Spyder
Spyder is a free and open scientific environment for data science. It was

first released in 2009 and is available cross-platform (Windows, Linux,

and MacOS) through Anaconda. It provides the following features and

several more:

•	 An editor includes both syntax highlighting and code

completion features as well as introspection.

•	 View and modify environment variables from UI.

•	 A Help pane able to render rich text documentation for

classes and functions.

Chapter 3 Tools for Data Science Developers

78

�Visual Studio Code
You can launch vs. code using the code command as shown in Figure 3-7.

Figure 3-7.  Shortcut for launching Visual Studio Code editor from a
terminal

I’d suggest customizing the layout but at least including the Activity Bar

as shown in Figure 3-8.

Figure 3-8.  The Activity Bar in Visual Studio Code editor

Chapter 3 Tools for Data Science Developers

79

Visual Studio Code is a source control editor from Microsoft based on

the electron framework and is available for MacOS, Windows, and Linux

distributions. The tool includes debugging, source control management,

syntax highlighting, and intelligent code completion and operates by using

extensions to add additional functionality. It is much more of a tool for

large software projects and includes many extensions that allow you to

interact with cloud infrastructure, databases, and services.

For example, there is an extension for Azure that allows accessing

resources in the cloud. If you need to format your code, you could install

one of several profile extensions or specific packages like black2 or

autopep83. You search for these extensions in the activity bar and can

access functionality in extensions using the keyboard shortcut CTRL +
SHIFT + P to access the palette. We recommend at minimum you install

the Microsoft Python extension or the Python Extension Package which

includes linters, intellisense, and more (we’ll need this when we create

environments and set up tests). Figure 3-9 shows some of the Python

extensions available in Visual Studio Code.

2 Black is a standard code formatter used across industries. The GitHub for black is
https://github.com/psf/black
3 autopep8 automatically formats Python code conforming to PEP8 and can be
found on GitHub at https://github.com/hhatto/autopep8

Chapter 3 Tools for Data Science Developers

https://github.com/psf/black
https://github.com/hhatto/autopep8

80

Figure 3-9.  Python extensions available in Visual Studio Code editor

�Cloud Notebooks and Google Colab
Cloud notebooks are a convenient way for data scientists to run code and

use Python libraries in the cloud without having to install software locally.

A cloud notebook such as Google Colab can be a good alternative to Visual

Studio Code editor for running experiments or prototyping code. You type

code into cells and can run cells in order. Figure 3-10 shows the MLOps

lifecycle toolkit lab in Google Colab.

Chapter 3 Tools for Data Science Developers

81

Figure 3-10.  The MLOps Lifecycle Toolkit Git and DVC Lab in
Google Colab

You can also change the theme of your notebook or connect to your

GitHub through the tools ➤ settings menu. Figure 3-11 shows how to

configure settings in Google Colab.

Figure 3-11.  Configuring notebook settings in Google Colab

Chapter 3 Tools for Data Science Developers

82

�Programming Paradigms and Craftsmanship
What is craftsmanship in software? It refers to all of the high level skills

you need for creating high quality data science code. Topics like naming

conventions, documentation, writing tests, and avoiding common code smells

all work toward writing higher quality code. Code that is high quality is often

described as being “clean” which means it’s more readable and maintainable,

and although it may still have a higher cognitive complexity overall than other

software, technical debt can be reduced by taking these topics to heart. Let’s

take a look at some of the elements of writing high quality data science code.

�Naming Conventions and Standards
in Data Science
If you don’t reduce tech debt in your project, you may find yourself

working overtime when something happens in production. Part of

minimizing tech debt and keeping the project readable is ensuring a

consistent naming convention is used for variable names, functions, class

names and files, modules, and packages.

Some guidelines for naming standards are as follows:

•	 Use descriptive names for variables and functions.

•	 Consider using verbs for function names describing

what your function does.

•	 Refer to the style guide of the language PEP8 for Python

(these include advice on indentation, white space, and

coding conventions).

•	 Use smaller line sizes for more readable code.

•	 Avoid long function names and functions with too

many parameters – break these out into smaller

functions that do one thing.

Chapter 3 Tools for Data Science Developers

83

�Code Smells in Data Science Code

Code smells are anti-patterns that indicate brittle code or technical debt

or places in the program that could be improved. An example in Python

would be using too many nested loops or hardcoding data instead of using

a variable.

You might hear the term “code smell” in programming especially if your

organization requires regular code reviews. During this review process, you

will look for code smells. It is good practice to remove code smells when you

find them as they will incur technical debt if you leave them (they may also

make it more painful for other people to maintain your code when you have

to hand it off to someone else or fix it yourself in the future).

A good practice is to always assume you yourself will have to maintain

the code in 6 months or even a year from now and to make sure your code

can be clearly understood even after you’ve forgotten the details of how

it works.

�Documentation for Data Science Teams

Most data science projects, like other software projects, are lacking in

documentation. Documentation for projects can come in a number of

different formats and doesn’t necessarily have to mean a formal technical

document; it depends on your team and the standards that have been

established (if they exist). However, if coding standards don’t exist, here are

some recommendations for creating awesome technical documentation:

•	 Use doc strings without hesitation.

•	 Create a central repository for documentation.

•	 Create an acceptance criterion in tickets if you’re using

a board like JIRA or Azure DevOps.

•	 Socialize changes and ensure team members know

how and where to add new documentation.

Chapter 3 Tools for Data Science Developers

84

You’ve seen a few doc strings in the lab from the previous chapter

already. We can use triple quotes underneath the function signature to

describe briefly what the function does.

These doc strings are valuable because they can describe the following

information:

•	 What your function does: If you find yourself trying

hard to describe what your function does or realize

it does more than one thing, you may want to break

it up; therefore, going through this exercise of having

doc strings for every function can improve quality of

your code.

•	 Description input, outputs, and data types: Since

languages like Python are dynamically typed, we can

run into trouble by being too flexible with our data

types. When you train a model on training data and

forget it can take on a certain value in production, it

could cause your program to crash. It’s good practice

to carefully consider the data types for any function

arguments and, if not using type annotations, at least

include the data type in the doc string.

Last but not least, make sure to update your documentation as

requirements change. This leads us to the next tool in the toolkit for future

proofing our code: TDD (test driven development).

�Test Driven Development for Data Scientists
In data science projects especially, requirements can be fuzzy or ill-defined or

missing all together in some cases. This can lead to surprises when there are

huge gaps between what the user of the model or software expect and what

you as the data scientist create and lead to longer release cycles or heavy re-

factoring down the line especially with feature engineering libraries.

Chapter 3 Tools for Data Science Developers

85

One way to future-proof your code is to include tests with each function

in your feature library. Of course this is time consuming, and on a real project,

you may not have the time but it is strongly recommended. It only takes an

hour or two to set up tests in Pytest or Hypothesis and create fixtures, and

if you’re using asserts already in your code, you can use these as the basis

for your tests, and it will save you time if you need to debug your code in

production. Figure 3-12 shows how to select a testing framework for TDD.

Figure 3-12.  Selecting a testing framework

You may get import errors shown in Figure 3-13.

Figure 3-13.  Import errors are common when setting up Pytest in
Visual Studio Code

Chapter 3 Tools for Data Science Developers

86

Once you fix the import errors, you can see tests by clicking the Testing

icon in the Activity Bar and clicking run. A test that passes will have a green

check mark to the left. You can run multiple tests at the same time. In the

MLOps toolkit lab, you can create your own unit tests and fixtures (a way

of passing data to tests) and play with this feature to incorporate testing

into your own data science projects. Figure 3-14 shows how to run tests in

Visual Studio Code.

Figure 3-14.  Running tests in Visual Studio Code

Chapter 3 Tools for Data Science Developers

87

�From Craftsmanship to Clean Code
There are many guidelines and principles for writing “clean code,” and

as you become better developers, you will come to recognize code when

it is clean. In data science, clean code is often an afterthought and often

only comes after translating an ad hoc analysis into something worthy for

production. However, here are several principles that a data scientist can

use to reduce technical debt and write cleaner, more readable code:

•	 Be consistent! Consistency is key especially when it

comes to naming variables.

•	 Use separate folders for feature engineering, data

engineering, models, training, and other parts of the

workflow.

•	 Use abstraction: Wrap low level code in a function.

•	 If your functions are too long, break them up; they

probably do more than one thing violating the SOLID

principle of single responsibility.

•	 Reduce the number of parameters you use in your

functions if possible (unless maybe if you’re doing

hyper-parameter tuning).

•	 Wrap lines and set a max line length in your editor.

�Model Packages and Deployment
Data science software consists of a number of independent modules that

work together to achieve a goal. For example, you have a training module,

a feature engineering module, maybe several packages you use for missing

values, or LightGBM for ranking and regression. All of these modules share

something in common: You can install them, deploy them, and import

them as individual deployable units called packages.

Chapter 3 Tools for Data Science Developers

88

�Choosing a Package Manager
Packages can consist of bundles of many modules, files, and functionality

that are maintained together and are usually broader in scope than a single

file, function, or module. In Python, you can use packages using a Conda

or Pip or other package manager, but it’s important to understand how to

create your own python packages.

Setting up Packages in VS Code, use the command palette—CTRL +

SHIFT + P keyboard shortcut (ensure to hold down CTRL, SHIFT, and P at

the same time)—and select Python Create Environment. This is part of the

Python extension package you installed earlier. Figures 3-15 through 3-18

show the detailed steps for configuring a Python environment in Visual

Studio Code including selecting a package manager.

Figure 3-15.  Creating a Python environment

Figure 3-16.  Choosing between Conda and Virtual environment.
Both are options in Visual Studio Code

Chapter 3 Tools for Data Science Developers

89

Figure 3-17.  Visual Studio Code creating a new environment

�Anaconda

What is Anaconda? Well, it’s not a snake. Anaconda instead is bigger than

any one tool and is an ecosystem unto itself. There’s a virtual environment

tool called Conda which is extremely popular on data science teams.

It provides several commands for package management including the

following:

•	 conda create

•	 conda install

•	 conda update

•	 conda remove

•	 conda info

•	 conda search

•	 conda config

•	 conda list

Figure 3-18.  Once the environment is activated, you can install
packages using your chosen package manager

Chapter 3 Tools for Data Science Developers

90

The command you’ll use most often to create an environment with

packages is given in Listing 3-2:

Listing 3-2.  Conda create command for creating a new Conda

environment

 conda create --prefix ./envs matplotlib=3.5 numpy=1.2

For MLOPs, we want to go a step further and take a look at some more

general package managers and their features.

Pipenv: Pipenv, which we’ll use in our MLOps toolkit lab, tries to

bring best in breed (bundler, composer, npm, yarn, and cargo) in package

management to Python. Pipenv also treats Windows as a first class citizen

which makes it ideal for some business environments. You don’t have to

worry about low level details of creating a virtualenv for your projects as

pipenv handles this for you and even auto-generates the Pipfile describing

package versions and Pipfile.lock which is used for deterministic builds.

Since reproducibility of experiments is an important aspect of MLOps,

deterministic builds are ideal especially for large projects where you have

to juggle multiple versions of packages.

An example installing the Pandas package would be given in Listing 3-3.

Listing 3-3.  pipenv command for creating a new Python environment

pipenv install pandas

You will then notice Pandas has been added to the Pipfile.

�Installing Python Packages Securely

Have you ever been working on a model and realized you need to install

xgboost or PyTorch or some other library? It worked before but this time

the computer beeps and dumps a massive error log on your screen. You

spend 3 hours debugging and searching on Stackoverflow for a solution

only to realize the recipe only works for Windows, not Mac!

Chapter 3 Tools for Data Science Developers

91

What should you do? Use Python environments. Python environments

can save you a headache by providing isolation between software

dependencies. We’ll show you how to set this up in the next chapter. Once

you set up a Python environment, you may notice you spend less time

installing and managing Python package dependencies which frees up

more time to work on data science tasks.

�Navigating Open Source Packages for Data Scientists

Open source software packages are released under a license (typically

permissive or copyleft like GPL) that allows its users to maintain control

over using and accessing the software as well as distributing, studying, and

changing. Many projects you use in data science are open source such as

Scikit-Learn, PyTorch, and TensorFlow and can be found on GitHub.

Technical consideration when using open source software packages in

data science are the following:

•	 PyPi and similar repositories can contain malware,

and so packages should be trusted or scanned first

(see Snyk4).

•	 Open source may be maintained by a community of

dedicated volunteers so patches and updates may be at

whim of the maintainer.

•	 Copyleft and other licensing may pose challenges for

building enterprise software since you need to release

the software under the same license (since software is

often distributed as binaries).

4 You can read more about the Snyk project at https://docs.snyk.io/
manage-issues/introduction-to-snyk-projects

Chapter 3 Tools for Data Science Developers

https://docs.snyk.io/manage-issues/introduction-to-snyk-projects
https://docs.snyk.io/manage-issues/introduction-to-snyk-projects

92

�Common Packages for MLOps
Finally, we have enough knowledge to cover the central topic of this

chapter which is packages specific to MLOps. Each of these packages

provides pieces of the MLOps lifecycle such as experimentation,

orchestration, training acceleration, feature engineering, or hyper-

parameter tuning. We can broadly separate these packages into two

camps: ModelOps and DataOps.

�DataOps Packages

DataOps is a collection of best practices, processes, and technologies

borrowed from Agile software engineering that are designed to improve

metrics like data quality, efficient data management, and continuous data

delivery for data science and more broadly analytics. We need DataOps

practices and experts when we’re in the data engineering part of the

MLOps lifecycle. Still, there are many concepts unique to MLOps such as

feature groups and model registries that typical data engineering solutions

do not have. In the following, we’ve compiled some of the tools you might

encounter when working in the first stages of the MLOps lifecycle: data

collection, data cleaning, feature engineering, and feature selection.

�Jupyter Notebook

Jupyter notebooks as mentioned are a useful alternative to a local code

editor like Visual Studio Code. You can use notebooks for prototyping

code and running experiments. However, for MLOps, a Python script is

preferable to a notebook for code for a number of reasons. For example,

when you source control a Jupyter notebook, it is actually a JSON file that

contains a combination of source code, text, and media output. This makes

it more difficult to read the raw file compared to a Python script where you

can read line by line.

Chapter 3 Tools for Data Science Developers

93

Python scripts are also a standard way to represent code outside of

data science, and you can use many different code editors from Visual

Studio Code to text-based source code editors like Sublime Text, but

beyond maintaining and readability, writing code as a script enables you

to create larger software projects because your code can be organized

into modules, packages. This structure is very important and enables you

to understand the way the project is organized, reuse code, set up tests,

and use automated tools like linters that make the software development

process more efficient. Therefore, I hope you will consider using Python

scripts with a code editor of your choice as opposed to Jupyter notebooks

for production code.

�JupyterLab Server

If you do insist on using Jupyter notebooks, there are a number of

environments available. One environment we already mentioned was

Google Colab, but if you want to run your notebook locally and have a

customizable environment that could also be deployed as a service, you

might consider JupyterLab.

JupyterLab server is a Python package that sits between JupyterLab

and Jupyter Server and provides RESTful APIs and utilities that can be used

with JupyterLab to automate a number of tasks for data science and so is

useful for MLOps. This also leads us to another widely used platform for

MLOps that also comes with a notebook-based environment.

�Databricks

Databricks was created by the founders of Apache Spark, an open source

software project for data engineering that allows training machine learning

models at scale by providing abstractions like the PySpark dataframe for

distributed data manipulation.

Chapter 3 Tools for Data Science Developers

94

Databricks provides notebooks, personas, SQL endpoints, feature

stores, and MLFlow within its PaaS offering which is also available in

multiple cloud vendors including Azure and AWS with their own flavor of

Databricks.

Besides MLFlow, a vital tool for an MLOps engineer to track model

metrics and training parameters as well as register models and compare

experiments, Databricks has a concept of a delta lakehouse where you can

store data in parquet format with a delta log that supports features like

time travel and partitioning.

We’ll mention this briefly, but it could have its own chapter since this is

a massive topic. Koalas is a drop-in solution although not 100% backward

compatible with Pandas (of course, there’s a lag between when a feature is

supported in Pandas and when it becomes generally available in Pandas

for Spark), but this is a great tool to add to your toolkit when you need to

scale your workflow. While doing development in PySpark, you don’t have

to re-write all of your code; you use following import at the top of your file

and use it like you would Pandas.

Dask: Dask is another drop-in solution for data wrangling similar to

Pandas except with better support for multiprocessing and large data sets.

The API is very similar to Pandas, but unlike Koalas or Pandas API for

Spark, it is not really a drop-in solution

Modin: While Dask is a library that supports distributed computation,

Modin supports scaling Pandas. It supports various backends including

ray and Dask. Again, it’s not 100% backward compatible and has a much

smaller community than Pandas, so use with caution on a real project.

�ModelOps Packages
ModelOps is defined by Gartner as “ focused primarily on the governance

and lifecycle management of a wide range of operationalized artificial

intelligence and decision models, including machine learning, knowledge

graphs, rules, optimization, linguistic, and agent-based models.” Managing

Chapter 3 Tools for Data Science Developers

95

models is difficult in part because there’s code and data and many different

types of models as we’ve seen from reinforcement learning to deep

learning to shallow models in scikit-learn and bespoke statistical models.

We list some of the most popular tools for ModelOps in the following

that you may encounter when you work in the later half of the MLOps

lifecycle which includes model training, hyper-parameter tuning, model

selection, model deployment, model management, and monitoring.

Ray5: Ray is a great tool for reinforcement learning; it is based on the

actor model of distributed computation, in computer science,6 and allows

you to use decorators to scale out functions which is convenient when you

don’t want to rewrite a lot of code.

KubeFlow7: KubeFlow is another open source machine learning tool

for end to end workflows. It is built on top of Kubernetes and provides

cloud-native interfaces for building pipelines and containerizing various

steps of the machine learning lifecycle from training to deployment.

Seldon8: Have you ever been asked to deploy your machine learning

models to production? First of all, what does that even mean? There are

many ways to deploy a model. You could put it in a model registry, and you

could containerize your model and deploy it to Ducker Hub or another

container registry, but for some use cases especially if an end user is going

to be interacting with your model on demand, you’ll be asked to expose

the model as an API.

Building an API is not a trivial task. You need to understand gRPC or

REST and at least be familiar with a framework like Flask if you’re using

Python. Fortunately, there are tools like Seldon that allow you to shortcut

5 The Ray framework documentation can be found at https://docs.ray.io/
en/latest/
6 Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed
Systems. https://apps.dtic.mil/sti/pdfs/ADA157917.pdf
7 The KubeFlow project documentation can be found at www.kubeflow.org/docs/
8 The Sledon project documentation can be found at https://docs.seldon.io/
projects/seldon-core/en/latest/index.html

Chapter 3 Tools for Data Science Developers

https://docs.ray.io/en/latest/
https://docs.ray.io/en/latest/
https://apps.dtic.mil/sti/pdfs/ADA157917.pdf
http://www.kubeflow.org/docs/
https://docs.seldon.io/projects/seldon-core/en/latest/index.html
https://docs.seldon.io/projects/seldon-core/en/latest/index.html

96

some of these steps and deploy models as gRPC or REST endpoints. Seldon

in particular offers two models for servers: reusable and nonreusable. The

definition of each is stated in the following.

•	 Reusable model servers: These are prepackaged model

servers. You can deploy a family of models that are

similar to each other, reusing the server. You can host

models in an S3 bucket or blob storage account.

•	 Nonreusable model servers: This option doesn’t require

a central model repository, but you need to build a

new image for each model as it’s meant to serve a

single model.

This leads us to the standard solution right now for registering your

model, MLFlow. You had to create your own model storage and versioning

system and way to log metrics and keep track of experiments. All of

these important model management tasks (ModelOps) are made easier

with MLFlow.

�Model Tracking and Monitoring
MLFlow9 is the standard when it comes to creating your own

experimentation framework. If you’ve ever developed loss plots and kept

track of model metrics and parameters during hyper-parameter tuning,

then you need to incorporate MLFlow into your project.

You can set up the MLFlow infrastructure as a stand-alone or part

of Databricks (the original developers). We’ll see this in action in later

chapters.

9 MLFlow project documentation can be found at https://mlflow.org/docs/
latest/index.html

Chapter 3 Tools for Data Science Developers

https://mlflow.org/docs/latest/index.html
https://mlflow.org/docs/latest/index.html

97

HyperOpt10: Hyperopt is a framework for Bayesian hyper-parameter

tuning, often done after the cross validation step but before training a

model on the entire data set. There are also many algorithms available

depending on the type of parameter search you need to do including the

following:

•	 Random search

•	 Tree of Parzen Estimators

•	 Annealing

•	 Tree

•	 Gaussian Process Tree

Horovod11: Horovod is a distributed deep learning framework for

TensorFlow, Keras, PyTorch, and Apache’s MXNet. When you need to

accelerate the time it takes to train a model, you have the choice between

GPU accelerated training and distributed training. Horovod is also

available on Databricks and can be a valuable tool for machine learning

at scale.

�Packages for Data Visualization and Reporting
If you’ve ever had to do a rapid EDA or exploratory data analysis, you

know how tedious it can be to have to write code for visualizations. Some

people like writing algorithms and don’t like visualization, whereas others

who are good at libraries like Matplotlib or Seaborn become the de facto

visualization experts on the team.

10 The Hyperopt project can be found on GitHub at https://github.com/
hyperopt/hyperopt
11 The Horovod project source code can be found at https://github.com/
horovod/horovod

Chapter 3 Tools for Data Science Developers

https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/horovod/horovod
https://github.com/horovod/horovod

98

From an MLOps perspective, visualizations can be an “odd one out”

in a code base and are difficult to deploy since creating interactive plots

and dashboards requires special knowledge and tools. You should at least

be familiar with a couple tools beyond Matplotlib for exploratory data

analysis including the following:

•	 Dash12: Python library for creating interactive

dashboards

•	 PowerBI: Visualization software from Microsoft. Useful

for data science since you can embed Python and

deploy to cloud

�Lab: Developing an MLOps Toolkit Accelerator
in CookieCutter
This lab is available on the Apress GitHub repository associated with

this book. You will see in Chapter 3 the mlops_toolkit folder. We will

use a package called cookiecutter to automate the process of setting up

tests, train, data, models, and other folders needed in future chapters.

Figure 3-19 shows the toolkit folders.

12 The Dash project can be found on GitHub at https://github.com/plotly/dash

Chapter 3 Tools for Data Science Developers

https://doi.org/10.1007/978-1-4842-9642-4_3
https://github.com/plotly/dash

99

Figure 3-19.  MLOps toolkit folder structure

You might be wondering what the point of having a template like this

is. The primary reason is it goes toward establishing standards and code

structure that borrows from experience across several industries. This pattern

is tried and proven, and although it is slightly opinionated on use of testing

framework and names of folders, you can easily customize it to your purposes.

We’ll do exactly this by installing several packages that can support

other stages of the MLOps lifecycle such as model training, validation,

hyper-parameter tuning, and model deployment. The steps for setting up

the lab are as follows:

Step 1. Clone the project locally and run the following command to

open vs code:

Chapter 3 Tools for Data Science Developers

100

Listing 3-4.  Shortcut for opening Visual Studio Code13

code .

Step 2. Start a new vs. code terminal session (here we’re using

PowerShell but you can also use Bash) and cd into the mlops_toolkit

directory. Figure 3-20 shows the root directory.

Figure 3-20.  Root directory for MLOps toolkit supplementary
material

Step 3. Clear the screen with the clear command and type as shown in

Listing 3-5.

Listing 3-5.  Installing Pandas package with a specific version

number using Pipenv

pipenv install pandas~=1.3

Step 4. Check the Pipfile containing the following lines.

Step 5. Repeat steps 2–3 for the following packages: numpy, pytest,

hypothesis, sckit-learn, pyspark, and mlflow. By default, the latest versions

will be installed, but we recommend using the ~ operator with a major.

minor version to allow security patches to come through. The output is

shown in Figure 3-21.

13 Tips and Tricks for Visual Studio Code https://code.visualstudio.com/docs/
getstarted/tips-and-tricks

Chapter 3 Tools for Data Science Developers

https://code.visualstudio.com/docs/getstarted/tips-and-tricks
https://code.visualstudio.com/docs/getstarted/tips-and-tricks

101

Figure 3-21.  The result of installing some Python packages
with pipenv

Step 6. CTRL + SHIFT + P to open the vs code command palette. Type

python and choose pytest in the dropdown and select/tests folder.

Step 7. Click the tests icon in the Activity Bar and run all tests by

clicking the “run” button.

Step 8. Run the following command with the custom name of your

project.

Step 9. Cd into the folder you created and customize it to your own

data science project. Here I used main_orchestrator.py for the file name.

Step 10. Python main_orchestrator.py should print a message to the

screen as shown in Figure 3-22.

Figure 3-22.  Running the main orchestrator should print a message
to your screen

Step 11. Go through the Git fundamentals lab again if necessary, and

add code and data version control by running two commands in a terminal

(works both in PowerShell and Bash) as given in Listing 3-6:

Chapter 3 Tools for Data Science Developers

102

Listing 3-6.  Initializing source and data version control commands

in a repo14

git init

dvc init

That’s it! Not so bad and we’ve already set up tests, our very own

custom monorepo, installed packages to support various stages of the

lifecycle, and know how to set up code version control and data version

control. In the next chapters, we’ll go through the gritty details of MLOps

infrastructure, model training, model inference, and model deployment,

developing our toolkit further.

�Summary
In this chapter, we gave an introduction to several tools for MLOps and data

science including version control both for source code and data. We also

talked about the differences between Jupyter notebooks and Python scripts

and why Python scripts are the preferred format for MLOps. We looked

at code editors like Visual Studio Code for working with Python scripts

and talked about some of the tools, packages, and frameworks you may

encounter in an MLOps workflow. Here is a summary of what we learned:

•	 Data and Code Version Control Systems

•	 Model Development and Training

•	 Model Packages and Deployment

•	 Model Tracking and Monitoring

In the next chapter, we will shift our attention to infrastructure and

look at how we can begin to use some of the tools discussed in this chapter

to build services to support the various stages of the MLOps lifecycle.

14 DVC User Guide: https://dvc.org/doc/user-guide

Chapter 3 Tools for Data Science Developers

https://dvc.org/doc/user-guide

	Chapter 3: Tools for Data Science Developers
	Data and Code Version Control Systems
	What Is Version Control?
	What Is Git?

	Git Internals
	Plumbing and Porcelain: Understanding Git Terminology
	How Git Stores Snapshots Internally
	Sourcetree for the Data Scientist
	Branching Strategy for Data Science Teams
	Creating Pull Requests
	Do I Need to Use Source Control?
	Version Control for Data
	Git and DVC Lab

	Model Development and Training
	Spyder
	Visual Studio Code
	Cloud Notebooks and Google Colab
	Programming Paradigms and Craftsmanship
	Naming Conventions and Standards in Data Science
	Code Smells in Data Science Code
	Documentation for Data Science Teams

	Test Driven Development for Data Scientists
	From Craftsmanship to Clean Code

	Model Packages and Deployment
	Choosing a Package Manager
	Anaconda
	Installing Python Packages Securely
	Navigating Open Source Packages for Data Scientists

	Common Packages for MLOps
	DataOps Packages
	Jupyter Notebook
	JupyterLab Server
	Databricks

	ModelOps Packages

	Model Tracking and Monitoring
	Packages for Data Visualization and Reporting
	Lab: Developing an MLOps Toolkit Accelerator in CookieCutter

	Summary

