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CHAPTER 3

Tools for Data Science 
Developers

“Data! Data Data! I can’t make bricks without clay!”

—Sir Arthur Conan Doyle

How do we manage data and models? What are the tools we can use to 

make ourselves more efficient and agile in data science? In this chapter, we 

will deep dive into the tools and technology that you will depend on daily 

as an MLOps engineer.

AI tools can make you more productive. With the release of GPT3 in 

June 2020, the large language model and “brains” behind the ChatGPT 

app, and in March of 2023, GPT4, the first multimodal large language 

model capable of understanding both text and images was released. Data 

scientists will increasingly use AI tools to write code.

The growth is exponential, and although it cannot predict very far 

into the future what specific tools will be available, it is certain that basic 

tools like code version control systems, data version control, code editors, 

and notebooks will continue to be used in some form or another in data 

science, and what’s important is to have a solid foundation in the basics.

You will understand version control, data version control, and specific 

python packages used at various stages of the spiral MLOps lifecycle. You 

should be comfortable enough at the end of this chapter to complete the 
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titular MLOps toolkit lab work where you’ll build a cookie cutter MLOps 

template you can apply to accelerate your projects and be able to install a 

wide range of MLOps packages like MLFlow and Pandas to support various 

stages of the MLOpS lifecycle.

�Data and Code Version Control Systems
Data science is a collaborative activity. When you are first learning data 

science you might spend most of your time alone, exploring data sets you 

choose and applying whatever models perform best on your data set.

In the real world you typically work on a team of data scientists, and 

even if you are the sole individual contributor on your team, you still likely 

report results to stakeholders, product managers, business analysts, and 

others and are responsible for handling changes.

All of these changes in a business impact data science as they result in 

changes in downstream feature engineering libraries and training scripts. 

You then need a way to share code snippets and get feedback in order to 

iterate on results and keep track of different versions of training scripts, 

code, and notebooks. Are there any tools to manage this change in data, 

code, and models? The answer is version control.

�What Is Version Control?
Version control is a software tool used to manage changes in source code. 

The tool keeps track of changes you make to the source code and previous 

versions and allows you to roll back to a previous version, prevent lost 

work, and pinpoint where exactly in the code base a particular line was 

changed. If you use it properly, you read the change log and understand 

the entire history of your project. Git, a distributed version control 

system (as opposed to centralized version control), is a standard for data 

science teams.
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�What Is Git?
As we mentioned, Git is a standard tool for version control. Git works 

basically by taking a snapshot of each file in your directory and storing this 

information in an index. Git is also a distributed version control system 

(as opposed to a central version control like TFS) which means it supports 

collaboration among data scientists and developers. Each developer can 

store the entire history of the project locally, and because Git only uses 

deltas, when you are ready to commit changes, you can push them to the 

remote Git server, effectively publishing your changes.

�Git Internals
Git uses commands. There are several Git commands you should be aware 

of and some special terminology like “repos” which refers to a collection 

of files that are source controlled. If you are unfamiliar with the concept 

of repos, you could think of it like a kind of directory where your source 

code lives.

In practice, when working on a data science project as in MLOps 

role, you will probably use a source control tool like Sourcetree since 

productivity is important, and also once you know the basics of the 

commands, it gets very repetitive to type each time. Tools like Sourcetree 

abstract these details away from you. You may be wondering why a 

tool like Sourcetree could help data scientists when you can use the Git 

command. As we will see in the next section, Git does provide low level 

commands for interacting with Git repositories, but Sourcetree is a GUI 

tool, and since typing the same command over and over again takes time, 

using a GUI tool will make you a more productive developer.
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�Plumbing and Porcelain: Understanding 
Git Terminology
Porcelain commands refer to high level Git commands that you will use 

often as part of your workflow. Plumbing is what Git does behind the 

scenes. An example of a porcelain command is the Git status to check for 

changes in your working directory.

Ref: A ref is essentially a pointer to a commit. A pointer is how Git 

represents branches internally.

Branch: A branch is similar to a ref in that it’s a pointer to a commit. 

You can create a new branch using the command given in Listing 3-1.

Listing 3-1.  Git command to create a new branch

git branch <branch>

Head: Some documentation makes this seem really complicated 

but it is not. In Git, there was a design choice that only one branch can 

be checked out at a time, and this had to be stored in some reference or 

pointer. (If you don’t know what a reference or a pointer is, read the Git 

documentation1).

�How Git Stores Snapshots Internally
Git assigns a special name to this pointer called HEAD. There can only be 

one HEAD at a time and it points to the current branch. This is the reason 

why you might hear HEAD referred to as the “active” branch.

You might be wondering, how is this “pointer” physically stored on 

a computer. Well, it turns out the pointer is not a memory address but a 

file. This file stores the information that the HEAD is the current branch 

1 The Git documentation covers topics including references and pointers: 
https://git-scm.com/book/en/v2/Git-Internals-Git-References

Chapter 3  Tools for Data Science Developers

https://git-scm.com/book/en/v2/Git-Internals-Git-References


71

(remember the definition of a branch from earlier). There is a physical 

location on the computer in the .git/HEAD directory where this file is 

located and you can open it up in a text editor (such as Notepad++) and 

read its contents for yourself to understand how Git stores information 

internally.

Don’t worry if this seems complicated, as it will be much easier in the 

lab work and begin to make sense when you use it and see the purpose of 

Git for yourself.

�Sourcetree for the Data Scientist
We recommend using Sourcetree, a free open source GUI based tool. If you 

are a professional software developer, you can try Kraken which has some 

additional features but requires a license. There are two steps for using 

Sourcetree:

You can download Sourcetree at sourcetreeapp.com. You need to agree 

to terms and conditions and then download the app (Figure 3-1):

Figure 3-1.  Sourcetree GUI tool for interacting with Git repositories
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Step 1: Clone a remote repository. Figure 3-2 shows the GUI interface 

for cloning a repository in Sourcetree.

Figure 3-2.  Cloning a Git repository using a GUI

Step 2: If you use a private repo, you’ll need to configure your ssh key. 

Make sure to click SSH not HTTPS as shown in Figure 3-3.
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Figure 3-3.  Copying the SSH path to your GitHub repo

�Branching Strategy for Data Science Teams
If you are on a team of at least five developers, you may have to consider 

a branching strategy. This matters less if you are on a small team or 

alone because as a data scientist you may be OK to rely on a single main 

branch, but with more than five developers, you may consider setting up a 

second branch.

If you want to learn about more complex branching strategies beyond 

feature branches, you can read about Git Flow. Usually different branching 

strategies are chosen in consideration of a software release schedule in 

collaboration with other teams depending on the size of your organization 

among other factors. Figure 3-4 shows how to create a new branch from 

the Sourcetree GUI.
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Figure 3-4.  Creating a new branch from the Sourcetree GUI

�Creating Pull Requests
Pull requests are a great tool for code reviews and should be adopted by 

data science teams. Typically the main branch is a stable branch, and 

prior to merging changes into main, you should have a peer review your 

changes. Ideally, a data scientist on your team that is familiar with Git 

would be designed as the release manager and would coordinate this with 

the team, but the process can be done informally. Figure 3-5 shows how to 

create a pull request.

Benefits of pull requests for data scientists include the following:

•	 Opportunity to review changes and learn new data 

science techniques.

•	 Catch mistakes and bugs before they are committed to 

main branch, increasing code quality metrics.
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Figure 3-5.  Creating a pull request

�Do I Need to Use Source Control?
You might wonder if all of this is necessary or do you even need source 

control. But what are the consequences of not using it? You should use 

source control for the following reasons

•	 You are part of a team of data scientists sharing code 

and collaborating and need to coordinate changes 

through a remote branch.

•	 You want to version your data so you can train models 

on a previous version of data.

•	 You are a data scientist that does not want to lose 

their work on their local system and wants something 

more reliable than a Jupyter Notebook’s autosave 

functionality.

•	 You need a way to save different snapshots of your data 

or code.

•	 You want a log or paper trail of your work in case 

something breaks (you can use the “Blame” feature to 

pinpoint the author of a change).
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�Version Control for Data
We’ve talked about code version control, but as we’ve mentioned, MLOps 

involves code, data, and models. While we use tools like Git for code 

version control, data version control exists and can be applied to both data 

and models (which are usually serialized in a binary format).

The standard package is called DVC (you can guess this stands for data 

version control). DVC works on top of Git, and many of the commands 

and terminology are similar. For example, the dvc init command is used to 

initialize data version control in your repo. In the lab, you’ll work through 

some basic dvc commands for data and model version control.

�Git and DVC Lab
In this lab (Figure 3-6), you will gain some hands-on experience with 

both Git for interacting with Git repositories and DVC for versioning data. 

Fortunately, many of the Git commands you will learn in the lab are very 

similar to the DVC commands you will learn later. However, throughout 

the lab, you should keep in mind the distinct purpose of each tool and 

where you might want to use each in your own workflow.

Figure 3-6.  GIT and data version control (DVC) lab
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Before proceeding to the next section on code editors, complete the 

version control lab titled: Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_

Git_and_Dvc

Step 1. Open Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_Git_and_Dvc.

ipynb and read the instructions.

Step 2. Copy paste the commands in the notebook into a terminal, and 

get familiar with each command and what it does; you can use the -h flag 

to see what each command does (e.g., git status -h).

Step 3. Sign up for a GitHub account by following instructions in the lab.

�Model Development and Training
So we’ve covered version control systems for both code and data but how 

about the tools we use to edit our code and develop models? You may be 

using a tool like Spyder or a Jupyter notebook to edit your code, and surely 

like most developers, this is your favorite editor. I don’t want to change 

your mind, but it’s worth knowing the range of code editors available in 

data science and when and why you might want to consider using an 

editor like VS Code over Spyder.

�Spyder
Spyder is a free and open scientific environment for data science. It was 

first released in 2009 and is available cross-platform (Windows, Linux, 

and MacOS) through Anaconda. It provides the following features and 

several more:

•	 An editor includes both syntax highlighting and code 

completion features as well as introspection.

•	 View and modify environment variables from UI.

•	 A Help pane able to render rich text documentation for 

classes and functions.
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�Visual Studio Code
You can launch vs. code using the code command as shown in Figure 3-7.

Figure 3-7.  Shortcut for launching Visual Studio Code editor from a 
terminal

I’d suggest customizing the layout but at least including the Activity Bar 

as shown in Figure 3-8.

Figure 3-8.  The Activity Bar in Visual Studio Code editor
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Visual Studio Code is a source control editor from Microsoft based on 

the electron framework and is available for MacOS, Windows, and Linux 

distributions. The tool includes debugging, source control management, 

syntax highlighting, and intelligent code completion and operates by using 

extensions to add additional functionality. It is much more of a tool for 

large software projects and includes many extensions that allow you to 

interact with cloud infrastructure, databases, and services.

For example, there is an extension for Azure that allows accessing 

resources in the cloud. If you need to format your code, you could install 

one of several profile extensions or specific packages like black2 or 

autopep83. You search for these extensions in the activity bar and can 

access functionality in extensions using the keyboard shortcut CTRL + 
SHIFT + P to access the palette. We recommend at minimum you install 

the Microsoft Python extension or the Python Extension Package which 

includes linters, intellisense, and more (we’ll need this when we create 

environments and set up tests). Figure 3-9 shows some of the Python 

extensions available in Visual Studio Code.

2 Black is a standard code formatter used across industries. The GitHub for black is 
https://github.com/psf/black
3 autopep8 automatically formats Python code conforming to PEP8 and can be 
found on GitHub at https://github.com/hhatto/autopep8
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Figure 3-9.  Python extensions available in Visual Studio Code editor

�Cloud Notebooks and Google Colab
Cloud notebooks are a convenient way for data scientists to run code and 

use Python libraries in the cloud without having to install software locally. 

A cloud notebook such as Google Colab can be a good alternative to Visual 

Studio Code editor for running experiments or prototyping code. You type 

code into cells and can run cells in order. Figure 3-10 shows the MLOps 

lifecycle toolkit lab in Google Colab.
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Figure 3-10.  The MLOps Lifecycle Toolkit Git and DVC Lab in 
Google Colab

You can also change the theme of your notebook or connect to your 

GitHub through the tools ➤ settings menu. Figure 3-11 shows how to 

configure settings in Google Colab.

Figure 3-11.  Configuring notebook settings in Google Colab
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�Programming Paradigms and Craftsmanship
What is craftsmanship in software? It refers to all of the high level skills 

you need for creating high quality data science code. Topics like naming 

conventions, documentation, writing tests, and avoiding common code smells 

all work toward writing higher quality code. Code that is high quality is often 

described as being “clean” which means it’s more readable and maintainable, 

and although it may still have a higher cognitive complexity overall than other 

software, technical debt can be reduced by taking these topics to heart. Let’s 

take a look at some of the elements of writing high quality data science code.

�Naming Conventions and Standards 
in Data Science
If you don’t reduce tech debt in your project, you may find yourself 

working overtime when something happens in production. Part of 

minimizing tech debt and keeping the project readable is ensuring a 

consistent naming convention is used for variable names, functions, class 

names and files, modules, and packages.

Some guidelines for naming standards are as follows:

•	 Use descriptive names for variables and functions.

•	 Consider using verbs for function names describing 

what your function does.

•	 Refer to the style guide of the language PEP8 for Python 

(these include advice on indentation, white space, and 

coding conventions).

•	 Use smaller line sizes for more readable code.

•	 Avoid long function names and functions with too 

many parameters – break these out into smaller 

functions that do one thing.
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�Code Smells in Data Science Code

Code smells are anti-patterns that indicate brittle code or technical debt 

or places in the program that could be improved. An example in Python 

would be using too many nested loops or hardcoding data instead of using 

a variable.

You might hear the term “code smell” in programming especially if your 

organization requires regular code reviews. During this review process, you 

will look for code smells. It is good practice to remove code smells when you 

find them as they will incur technical debt if you leave them (they may also 

make it more painful for other people to maintain your code when you have 

to hand it off to someone else or fix it yourself in the future).

A good practice is to always assume you yourself will have to maintain 

the code in 6 months or even a year from now and to make sure your code 

can be clearly understood even after you’ve forgotten the details of how 

it works.

�Documentation for Data Science Teams

Most data science projects, like other software projects, are lacking in 

documentation. Documentation for projects can come in a number of 

different formats and doesn’t necessarily have to mean a formal technical 

document; it depends on your team and the standards that have been 

established (if they exist). However, if coding standards don’t exist, here are 

some recommendations for creating awesome technical documentation:

•	 Use doc strings without hesitation.

•	 Create a central repository for documentation.

•	 Create an acceptance criterion in tickets if you’re using 

a board like JIRA or Azure DevOps.

•	 Socialize changes and ensure team members know 

how and where to add new documentation.
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You’ve seen a few doc strings in the lab from the previous chapter 

already. We can use triple quotes underneath the function signature to 

describe briefly what the function does.

These doc strings are valuable because they can describe the following 

information:

•	 What your function does: If you find yourself trying 

hard to describe what your function does or realize 

it does more than one thing, you may want to break 

it up; therefore, going through this exercise of having 

doc strings for every function can improve quality of 

your code.

•	 Description input, outputs, and data types: Since 

languages like Python are dynamically typed, we can 

run into trouble by being too flexible with our data 

types. When you train a model on training data and 

forget it can take on a certain value in production, it 

could cause your program to crash. It’s good practice 

to carefully consider the data types for any function 

arguments and, if not using type annotations, at least 

include the data type in the doc string.

Last but not least, make sure to update your documentation as 

requirements change. This leads us to the next tool in the toolkit for future 

proofing our code: TDD (test driven development).

�Test Driven Development for Data Scientists
In data science projects especially, requirements can be fuzzy or ill-defined or 

missing all together in some cases. This can lead to surprises when there are 

huge gaps between what the user of the model or software expect and what 

you as the data scientist create and lead to longer release cycles or heavy re-

factoring down the line especially with feature engineering libraries.
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One way to future-proof your code is to include tests with each function 

in your feature library. Of course this is time consuming, and on a real project, 

you may not have the time but it is strongly recommended. It only takes an 

hour or two to set up tests in Pytest or Hypothesis and create fixtures, and 

if you’re using asserts already in your code, you can use these as the basis 

for your tests, and it will save you time if you need to debug your code in 

production. Figure 3-12 shows how to select a testing framework for TDD.

Figure 3-12.  Selecting a testing framework

You may get import errors shown in Figure 3-13.

Figure 3-13.  Import errors are common when setting up Pytest in 
Visual Studio Code
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Once you fix the import errors, you can see tests by clicking the Testing 

icon in the Activity Bar and clicking run. A test that passes will have a green 

check mark to the left. You can run multiple tests at the same time. In the 

MLOps toolkit lab, you can create your own unit tests and fixtures (a way 

of passing data to tests) and play with this feature to incorporate testing 

into your own data science projects. Figure 3-14 shows how to run tests in 

Visual Studio Code.

Figure 3-14.  Running tests in Visual Studio Code
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�From Craftsmanship to Clean Code
There are many guidelines and principles for writing “clean code,” and 

as you become better developers, you will come to recognize code when 

it is clean. In data science, clean code is often an afterthought and often 

only comes after translating an ad hoc analysis into something worthy for 

production. However, here are several principles that a data scientist can 

use to reduce technical debt and write cleaner, more readable code:

•	 Be consistent! Consistency is key especially when it 

comes to naming variables.

•	 Use separate folders for feature engineering, data 

engineering, models, training, and other parts of the 

workflow.

•	 Use abstraction: Wrap low level code in a function.

•	 If your functions are too long, break them up; they 

probably do more than one thing violating the SOLID 

principle of single responsibility.

•	 Reduce the number of parameters you use in your 

functions if possible (unless maybe if you’re doing 

hyper-parameter tuning).

•	 Wrap lines and set a max line length in your editor.

�Model Packages and Deployment
Data science software consists of a number of independent modules that 

work together to achieve a goal. For example, you have a training module, 

a feature engineering module, maybe several packages you use for missing 

values, or LightGBM for ranking and regression. All of these modules share 

something in common: You can install them, deploy them, and import 

them as individual deployable units called packages.
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�Choosing a Package Manager
Packages can consist of bundles of many modules, files, and functionality 

that are maintained together and are usually broader in scope than a single 

file, function, or module. In Python, you can use packages using a Conda 

or Pip or other package manager, but it’s important to understand how to 

create your own python packages.

Setting up Packages in VS Code, use the command palette—CTRL + 

SHIFT + P keyboard shortcut (ensure to hold down CTRL, SHIFT, and P at 

the same time)—and select Python Create Environment. This is part of the 

Python extension package you installed earlier. Figures 3-15 through 3-18 

show the detailed steps for configuring a Python environment in Visual 

Studio Code including selecting a package manager.

Figure 3-15.  Creating a Python environment

Figure 3-16.  Choosing between Conda and Virtual environment. 
Both are options in Visual Studio Code
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Figure 3-17.  Visual Studio Code creating a new environment

�Anaconda

What is Anaconda? Well, it’s not a snake. Anaconda instead is bigger than 

any one tool and is an ecosystem unto itself. There’s a virtual environment 

tool called Conda which is extremely popular on data science teams. 

It provides several commands for package management including the 

following:

•	 conda create

•	 conda install

•	 conda update

•	 conda remove

•	 conda info

•	 conda search

•	 conda config

•	 conda list

Figure 3-18.  Once the environment is activated, you can install 
packages using your chosen package manager
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The command you’ll use most often to create an environment with 

packages is given in Listing 3-2:

Listing 3-2.  Conda create command for creating a new Conda 

environment

         conda create --prefix ./envs matplotlib=3.5 numpy=1.2

For MLOPs, we want to go a step further and take a look at some more 

general package managers and their features.

Pipenv: Pipenv, which we’ll use in our MLOps toolkit lab, tries to 

bring best in breed (bundler, composer, npm, yarn, and cargo) in package 

management to Python. Pipenv also treats Windows as a first class citizen 

which makes it ideal for some business environments. You don’t have to 

worry about low level details of creating a virtualenv for your projects as 

pipenv handles this for you and even auto-generates the Pipfile describing 

package versions and Pipfile.lock which is used for deterministic builds. 

Since reproducibility of experiments is an important aspect of MLOps, 

deterministic builds are ideal especially for large projects where you have 

to juggle multiple versions of packages.

An example installing the Pandas package would be given in Listing 3-3.

Listing 3-3.  pipenv command for creating a new Python environment

pipenv install pandas

You will then notice Pandas has been added to the Pipfile.

�Installing Python Packages Securely

Have you ever been working on a model and realized you need to install 

xgboost or PyTorch or some other library? It worked before but this time 

the computer beeps and dumps a massive error log on your screen. You 

spend 3 hours debugging and searching on Stackoverflow for a solution 

only to realize the recipe only works for Windows, not Mac!
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What should you do? Use Python environments. Python environments 

can save you a headache by providing isolation between software 

dependencies. We’ll show you how to set this up in the next chapter. Once 

you set up a Python environment, you may notice you spend less time 

installing and managing Python package dependencies which frees up 

more time to work on data science tasks.

�Navigating Open Source Packages for Data Scientists

Open source software packages are released under a license (typically 

permissive or copyleft like GPL) that allows its users to maintain control 

over using and accessing the software as well as distributing, studying, and 

changing. Many projects you use in data science are open source such as 

Scikit-Learn, PyTorch, and TensorFlow and can be found on GitHub.

Technical consideration when using open source software packages in 

data science are the following:

•	 PyPi and similar repositories can contain malware, 

and so packages should be trusted or scanned first 

(see Snyk4).

•	 Open source may be maintained by a community of 

dedicated volunteers so patches and updates may be at 

whim of the maintainer.

•	 Copyleft and other licensing may pose challenges for 

building enterprise software since you need to release 

the software under the same license (since software is 

often distributed as binaries).

4 You can read more about the Snyk project at https://docs.snyk.io/
manage-issues/introduction-to-snyk-projects
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�Common Packages for MLOps
Finally, we have enough knowledge to cover the central topic of this 

chapter which is packages specific to MLOps. Each of these packages 

provides pieces of the MLOps lifecycle such as experimentation, 

orchestration, training acceleration, feature engineering, or hyper-

parameter tuning. We can broadly separate these packages into two 

camps: ModelOps and DataOps.

�DataOps Packages

DataOps is a collection of best practices, processes, and technologies 

borrowed from Agile software engineering that are designed to improve 

metrics like data quality, efficient data management, and continuous data 

delivery for data science and more broadly analytics. We need DataOps 

practices and experts when we’re in the data engineering part of the 

MLOps lifecycle. Still, there are many concepts unique to MLOps such as 

feature groups and model registries that typical data engineering solutions 

do not have. In the following, we’ve compiled some of the tools you might 

encounter when working in the first stages of the MLOps lifecycle: data 

collection, data cleaning, feature engineering, and feature selection.

�Jupyter Notebook

Jupyter notebooks as mentioned are a useful alternative to a local code 

editor like Visual Studio Code. You can use notebooks for prototyping 

code and running experiments. However, for MLOps, a Python script is 

preferable to a notebook for code for a number of reasons. For example, 

when you source control a Jupyter notebook, it is actually a JSON file that 

contains a combination of source code, text, and media output. This makes 

it more difficult to read the raw file compared to a Python script where you 

can read line by line.
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Python scripts are also a standard way to represent code outside of 

data science, and you can use many different code editors from Visual 

Studio Code to text-based source code editors like Sublime Text, but 

beyond maintaining and readability, writing code as a script enables you 

to create larger software projects because your code can be organized 

into modules, packages. This structure is very important and enables you 

to understand the way the project is organized, reuse code, set up tests, 

and use automated tools like linters that make the software development 

process more efficient. Therefore, I hope you will consider using Python 

scripts with a code editor of your choice as opposed to Jupyter notebooks 

for production code.

�JupyterLab Server

If you do insist on using Jupyter notebooks, there are a number of 

environments available. One environment we already mentioned was 

Google Colab, but if you want to run your notebook locally and have a 

customizable environment that could also be deployed as a service, you 

might consider JupyterLab.

JupyterLab server is a Python package that sits between JupyterLab 

and Jupyter Server and provides RESTful APIs and utilities that can be used 

with JupyterLab to automate a number of tasks for data science and so is 

useful for MLOps. This also leads us to another widely used platform for 

MLOps that also comes with a notebook-based environment.

�Databricks

Databricks was created by the founders of Apache Spark, an open source 

software project for data engineering that allows training machine learning 

models at scale by providing abstractions like the PySpark dataframe for 

distributed data manipulation.
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Databricks provides notebooks, personas, SQL endpoints, feature 

stores, and MLFlow within its PaaS offering which is also available in 

multiple cloud vendors including Azure and AWS with their own flavor of 

Databricks.

Besides MLFlow, a vital tool for an MLOps engineer to track model 

metrics and training parameters as well as register models and compare 

experiments, Databricks has a concept of a delta lakehouse where you can 

store data in parquet format with a delta log that supports features like 

time travel and partitioning.

We’ll mention this briefly, but it could have its own chapter since this is 

a massive topic. Koalas is a drop-in solution although not 100% backward 

compatible with Pandas (of course, there’s a lag between when a feature is 

supported in Pandas and when it becomes generally available in Pandas 

for Spark), but this is a great tool to add to your toolkit when you need to 

scale your workflow. While doing development in PySpark, you don’t have 

to re-write all of your code; you use following import at the top of your file 

and use it like you would Pandas.

Dask: Dask is another drop-in solution for data wrangling similar to 

Pandas except with better support for multiprocessing and large data sets. 

The API is very similar to Pandas, but unlike Koalas or Pandas API for 

Spark, it is not really a drop-in solution

Modin: While Dask is a library that supports distributed computation, 

Modin supports scaling Pandas. It supports various backends including 

ray and Dask. Again, it’s not 100% backward compatible and has a much 

smaller community than Pandas, so use with caution on a real project.

�ModelOps Packages
ModelOps is defined by Gartner as “ focused primarily on the governance 

and lifecycle management of a wide range of operationalized artificial 

intelligence and decision models, including machine learning, knowledge 

graphs, rules, optimization, linguistic, and agent-based models.” Managing 
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models is difficult in part because there’s code and data and many different 

types of models as we’ve seen from reinforcement learning to deep 

learning to shallow models in scikit-learn and bespoke statistical models.

We list some of the most popular tools for ModelOps in the following 

that you may encounter when you work in the later half of the MLOps 

lifecycle which includes model training, hyper-parameter tuning, model 

selection, model deployment, model management, and monitoring.

Ray5: Ray is a great tool for reinforcement learning; it is based on the 

actor model of distributed computation, in computer science,6 and allows 

you to use decorators to scale out functions which is convenient when you 

don’t want to rewrite a lot of code.

KubeFlow7: KubeFlow is another open source machine learning tool 

for end to end workflows. It is built on top of Kubernetes and provides 

cloud-native interfaces for building pipelines and containerizing various 

steps of the machine learning lifecycle from training to deployment.

Seldon8: Have you ever been asked to deploy your machine learning 

models to production? First of all, what does that even mean? There are 

many ways to deploy a model. You could put it in a model registry, and you 

could containerize your model and deploy it to Ducker Hub or another 

container registry, but for some use cases especially if an end user is going 

to be interacting with your model on demand, you’ll be asked to expose 

the model as an API.

Building an API is not a trivial task. You need to understand gRPC or 

REST and at least be familiar with a framework like Flask if you’re using 

Python. Fortunately, there are tools like Seldon that allow you to shortcut 

5 The Ray framework documentation can be found at https://docs.ray.io/
en/latest/
6 Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed 
Systems. https://apps.dtic.mil/sti/pdfs/ADA157917.pdf
7 The KubeFlow project documentation can be found at www.kubeflow.org/docs/
8 The Sledon project documentation can be found at https://docs.seldon.io/
projects/seldon-core/en/latest/index.html
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some of these steps and deploy models as gRPC or REST endpoints. Seldon 

in particular offers two models for servers: reusable and nonreusable. The 

definition of each is stated in the following.

•	 Reusable model servers: These are prepackaged model 

servers. You can deploy a family of models that are 

similar to each other, reusing the server. You can host 

models in an S3 bucket or blob storage account.

•	 Nonreusable model servers: This option doesn’t require 

a central model repository, but you need to build a 

new image for each model as it’s meant to serve a 

single model.

This leads us to the standard solution right now for registering your 

model, MLFlow. You had to create your own model storage and versioning 

system and way to log metrics and keep track of experiments. All of 

these important model management tasks (ModelOps) are made easier 

with MLFlow.

�Model Tracking and Monitoring
MLFlow9 is the standard when it comes to creating your own 

experimentation framework. If you’ve ever developed loss plots and kept 

track of model metrics and parameters during hyper-parameter tuning, 

then you need to incorporate MLFlow into your project.

You can set up the MLFlow infrastructure as a stand-alone or part 

of Databricks (the original developers). We’ll see this in action in later 

chapters.

9 MLFlow project documentation can be found at https://mlflow.org/docs/
latest/index.html
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HyperOpt10: Hyperopt is a framework for Bayesian hyper-parameter 

tuning, often done after the cross validation step but before training a 

model on the entire data set. There are also many algorithms available 

depending on the type of parameter search you need to do including the 

following:

•	 Random search

•	 Tree of Parzen Estimators

•	 Annealing

•	 Tree

•	 Gaussian Process Tree

Horovod11: Horovod is a distributed deep learning framework for 

TensorFlow, Keras, PyTorch, and Apache’s MXNet. When you need to 

accelerate the time it takes to train a model, you have the choice between 

GPU accelerated training and distributed training. Horovod is also 

available on Databricks and can be a valuable tool for machine learning 

at scale.

�Packages for Data Visualization and Reporting
If you’ve ever had to do a rapid EDA or exploratory data analysis, you 

know how tedious it can be to have to write code for visualizations. Some 

people like writing algorithms and don’t like visualization, whereas others 

who are good at libraries like Matplotlib or Seaborn become the de facto 

visualization experts on the team.

10 The Hyperopt project can be found on GitHub at https://github.com/
hyperopt/hyperopt
11 The Horovod project source code can be found at https://github.com/
horovod/horovod
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From an MLOps perspective, visualizations can be an “odd one out” 

in a code base and are difficult to deploy since creating interactive plots 

and dashboards requires special knowledge and tools. You should at least 

be familiar with a couple tools beyond Matplotlib for exploratory data 

analysis including the following:

•	 Dash12: Python library for creating interactive 

dashboards

•	 PowerBI: Visualization software from Microsoft. Useful 

for data science since you can embed Python and 

deploy to cloud

�Lab: Developing an MLOps Toolkit Accelerator 
in CookieCutter
This lab is available on the Apress GitHub repository associated with 

this book. You will see in Chapter 3 the mlops_toolkit folder. We will 

use a package called cookiecutter to automate the process of setting up 

tests, train, data, models, and other folders needed in future chapters. 

Figure 3-19 shows the toolkit folders.

12 The Dash project can be found on GitHub at https://github.com/plotly/dash
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Figure 3-19.  MLOps toolkit folder structure

You might be wondering what the point of having a template like this 

is. The primary reason is it goes toward establishing standards and code 

structure that borrows from experience across several industries. This pattern 

is tried and proven, and although it is slightly opinionated on use of testing 

framework and names of folders, you can easily customize it to your purposes.

We’ll do exactly this by installing several packages that can support 

other stages of the MLOps lifecycle such as model training, validation, 

hyper-parameter tuning, and model deployment. The steps for setting up 

the lab are as follows:

Step 1. Clone the project locally and run the following command to 

open vs code:
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Listing 3-4.  Shortcut for opening Visual Studio Code13

code .

Step 2. Start a new vs. code terminal session (here we’re using 

PowerShell but you can also use Bash) and cd into the mlops_toolkit 

directory. Figure 3-20 shows the root directory.

Figure 3-20.  Root directory for MLOps toolkit supplementary 
material

Step 3. Clear the screen with the clear command and type as shown in 

Listing 3-5.

Listing 3-5.  Installing Pandas package with a specific version 

number using Pipenv

pipenv install pandas~=1.3

Step 4. Check the Pipfile containing the following lines.

Step 5. Repeat steps 2–3 for the following packages: numpy, pytest, 

hypothesis, sckit-learn, pyspark, and mlflow. By default, the latest versions 

will be installed, but we recommend using the ~ operator with a major.

minor version to allow security patches to come through. The output is 

shown in Figure 3-21.

13 Tips and Tricks for Visual Studio Code https://code.visualstudio.com/docs/
getstarted/tips-and-tricks
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Figure 3-21.  The result of installing some Python packages 
with pipenv

Step 6. CTRL + SHIFT + P to open the vs code command palette. Type 

python and choose pytest in the dropdown and select/tests folder.

Step 7. Click the tests icon in the Activity Bar and run all tests by 

clicking the “run” button.

Step 8. Run the following command with the custom name of your 

project.

Step 9. Cd into the folder you created and customize it to your own 

data science project. Here I used main_orchestrator.py for the file name.

Step 10. Python main_orchestrator.py should print a message to the 

screen as shown in Figure 3-22.

Figure 3-22.  Running the main orchestrator should print a message 
to your screen

Step 11. Go through the Git fundamentals lab again if necessary, and 

add code and data version control by running two commands in a terminal 

(works both in PowerShell and Bash) as given in Listing 3-6:
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Listing 3-6.  Initializing source and data version control commands 

in a repo14

git init

dvc init

That’s it! Not so bad and we’ve already set up tests, our very own 

custom monorepo, installed packages to support various stages of the 

lifecycle, and know how to set up code version control and data version 

control. In the next chapters, we’ll go through the gritty details of MLOps 

infrastructure, model training, model inference, and model deployment, 

developing our toolkit further.

�Summary
In this chapter, we gave an introduction to several tools for MLOps and data 

science including version control both for source code and data. We also 

talked about the differences between Jupyter notebooks and Python scripts 

and why Python scripts are the preferred format for MLOps. We looked 

at code editors like Visual Studio Code for working with Python scripts 

and talked about some of the tools, packages, and frameworks you may 

encounter in an MLOps workflow. Here is a summary of what we learned:

•	 Data and Code Version Control Systems

•	 Model Development and Training

•	 Model Packages and Deployment

•	 Model Tracking and Monitoring

In the next chapter, we will shift our attention to infrastructure and 

look at how we can begin to use some of the tools discussed in this chapter 

to build services to support the various stages of the MLOps lifecycle.

14 DVC User Guide: https://dvc.org/doc/user-guide
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