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CHAPTER 2

Foundations for 
MLOps Systems

“All models are wrong, but some are useful.”

—George Box

In this chapter, we will discuss foundations for MLOps systems by breaking 

down the topic into fundamental building blocks that you will apply in 

future chapters. While we will discuss programming nondeterministic 

systems, data structures and algorithmic thinking for data science, and 

how to translate thoughts into executable code, the goal is not to give 

a fully comprehensive introduction to these areas in a single chapter 

but instead provide further resources to point you in the right direction 

and answer an important question: Why do you need to understand 

mathematics to develop and deploy MLOps systems?

This book would be remiss without laying out the core mathematical 

and computational foundations that MLOps engineers need to understand 

to build end to end systems. It is the responsibility of the MLOps engineer 

to understand each component of the system even if it appears like a 

“black box.”

Toward this end, we will create a logistic regression model (both 

classical and Bayesian) from scratch piece by piece to estimate the 

parameters of the hypothesis using stochastic gradient descent to illustrate 
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how models built up from simple mathematical abstractions can have 

robust practical uses across various industries. First, let’s define what we 

mean by model by taking a look at some statistical terminology.

�Mathematical Thinking
Mathematics is the foundation of data science and AI. Large language 

models like ChatGPT are transforming our lives. Some of the first large 

language models such as BERT (an encoder) are based on either an 

encoder or decoder transformer architecture. While the attention layers 

that are part of this model are different both in form and in use cases, they 

are still governed by mathematics.

In this section, we lay out the rigorous foundations for MLOps, diving 

into the mathematics behind some of the models we use.

�Linear Algebra
Linear algebra is the study of linear transformations like rotation. A 

transformation is a way of describing linear combinations of vectors. 

We can arrange these vectors in a matrix form, and in fact you can prove 

every linear transformation can be represented in this way (with respect 

to a certain basis of vectors). You’ll find linear algebra used throughout 

applied mathematics since many natural phenomena can be modeled 

or approximated by linear transformations. The McCulloch-Pitts neuron 

or perceptron combines a weight vector with a feature vector using an 

operator called the dot product. When combined with a step activation 

or “threshold” function, you can build linear classifiers to solve binary 

classification problems.

Though matrices are two-dimensional, we can generalize the idea 

of a matrix to higher dimensions to create tensors. Since many machine 

learning algorithms can be written in terms of tensor operations. In 
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fact tensors themselves can be described as multilinear maps1. You can 

imagine how important linear algebra is to understanding neural networks 

and other machine learning algorithms. Another important reason for 

studying linear algebra is it is often the first exposure to writing proofs, 

developing mathematical arguments and mathematical rigor.

�Probability Distributions
By model we really mean a probability distribution. The probability 

distribution will be parameterized so that we can estimate it using real-

world data either through algorithms like gradient descent or Bayes’ rule 

(this may be difficult under some circumstances as we’ll discuss). We’re 

usually interested in two types of probability distributions: joint probability 

distributions and conditional distributions.

Join probability distribution: Given two random variables X and Y, if X 

and Y are defined on the space probability space, then we call the probability 

distribution formed by considering all possible outcomes of X and Y 

simultaneously the joint probability distribution. This probability distribution 

written as P(X, Y) encodes the marginal distributions P(X) and P(Y) as well 

as the conditional probability distributions. This is an important concept 

as many of the models we’ll be looking at will be attempting to compute or 

sample from a joint probability distribution to make some prediction.

Conditional probability distribution: Conditional probability is the 

probability of an event, Y occurring given an event X has already occurred. 

We write this conditional probability as P(Y | X) often read as “probability 

of Y given X.” Let’s look at a few examples of models we might use as data 

scientists in various industries to understand how these abstractions are 

built up from mathematical concepts.

1 An introduction to linear algebra can be found in Hoffman, K. A. (1961). Linear 
Algebra.
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�Understanding Generative and Discriminative  
Models
A generative model is synonymous with a joint probability distribution 

P(X, Y) (however, this is not strictly true since, e.g., GANs belong to the 

class of generative models) since for a classification problem it will assume 

some functional form of P(Y) and P(X | Y) in terms of some parameters 

and estimated from the training data. This is then used to compute P(Y | X) 

using Bayes’ rule. These types of models have some interesting properties, 

for instance, you can sample from them and generate new data. Data 

augmentation is a growing area especially within the healthcare and 

pharmaceutical industry where data from clinical trials is costly or not 

available.

The simplest examples of a generative model include Gaussian 

distributions, the Bernoulli model, and Naive Bayes models (also the 

simplest kind of Bayesian network).

In contrast, a discriminative model such as logistic regression 

makes a functional assumption about the form of P(Y | X) in terms 

of some parameters W and b and estimates the parameters directly 

from the training data. Then we pick the most likely class label based 

on these estimates. We’ll see how to compute parameters W and b in 

the lab: algorithmic thinking for data science2 where we’ll actually use 

stochastic gradient descent and build a logistic regression model from the 

ground up.

2 For a full introduction to algorithmic thinking and computer programming, 
the reader is directed to Abelson, H. and Sussman, G. J. (1996). Structure and 
Interpretation of Computer Programs, second edition. MIT Press.
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�Bayesian Thinking
We chose logistic regression as an example in this chapter for another 

reason: Logistic regression is a good example of a probabilistic model. 

When you train it, it automatically gives you an estimate of the probability 

of success for new data points. However, classical logistic regression is a 

frequentist model. The classical logistic regression model does not tell us if 

we can rely on the results, if we have enough data for training, or anything 

about the certainty in the parameters.

To illustrate this point, let’s suppose we train a logistic regression 

model to predict who should receive a loan. If our training data is 

imbalanced, consisting of 1000 people and 900 of which are examples 

of people we should not lend to, our model is going to overfit toward a 

lower probability of loan approval, and if we ask what is the probability of 

a new applicant getting a loan, the model may return a low probability. A 

Bayesian version of logistic regression would solve this problem. In the lab, 

you will solve this problem of imbalance data by using a Bayesian logistic 

regression model and generating a trace plot to explore the parameters 

and ensure that the parameters are well calibrated to the data. Figure 2-1 

shows a trace plot generated from this lab.

Figure 2-1.  A trace plot showing the history of parameters in a 
Bayesian model
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Of course, we need to understand yet another mathematical primitive: 

Bayes’ rule. Unlike in frequentist statistics, where we have parameters and 

point estimates, in Bayesian statistics, we have probability distributions 

as we defined earlier. In fact, every unknown in our model is a probability 

distribution called a prior that encodes our current knowledge about that 

parameter (in the lab, we have three parameters we want to estimate, with 

priors chosen from normal distributions).

Bayes’ rule updates beliefs about the parameters by computing a 

posterior probability distribution.

•	 The prior distribution can be interpreted as the current 

knowledge we have on each parameter (it may only be 

a best guess).

•	 The likelihood function is the probability of observing 

a data set given certain parameters θ of our model.

•	 The evidence is the probability of the observed data 

itself over all possible models and is very difficult to 

compute, often requiring multivariate integrals in three 

or more dimensions. Fortunately, for many problems, 

this is only a constant of proportionality that can be 

discarded3.

We speak of “turning the Bayesian crank” when the posterior of one 

problem (what we are interested in estimating) becomes the prior for 

future estimates. This is the power of Bayesian statistics and the key to 

generative models. Listing 2-1 shows the different parts of Bayes’ rule.

3 Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. In Springer  
texts in statistics. Springer International Publishing. https://doi.org/10.1007/ 
978-0-387-92407-6.
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Listing 2-1.  Bayes’ rule
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Bayes rule was actually discovered by Thomas Bayes, an English 

Presbyterian minister and statistician in the eighteenth century, but the 

work LII. An Essay Towards Solving a Problem in the Doctrine of Chances 

wasn’t published until after Bayes’ death and to this day is often a graduate 

level course not taught in undergraduate statistics programs.

So how can we develop some intuition around Bayes’ rule? Let’s start 

by asking a question:

What is the probability of a coin coming up heads? Take a few minutes 

to think about it before you answer; it’s a bit of a trick question.

Okay …I’ve asked this question to a few people and most would say it 

depends. It depends if the coin is fair or not. Ok so assuming it’s a fair coin, 

the usual answer is the chance of coming up heads is 50% or 0.5 if we’re 

using probability.

Now let’s switch this question up; let’s suppose that the coin has 

already been flipped but you cannot see the result. What is the probability? 

Go ahead and ask your colleagues or friends this question, and you might 

be surprised by the range of answers you’ll receive.

A frequentist position is that the coin has already been flipped, and 

so it is either heads or tails. The chance is either 0% heads if the coin 

landed tails or it is 100% if it landed heads. However, there’s something 

unsatisfactory about this perspective; it does not take into consideration 

the uncertainty in the model.

A Bayesian approach would be to quantify that uncertainty and say, it’s 

still 50% chance of heads and 50% chance of tails; it depends on what we know 

at the moment. If we observe the coin has landed heads, then we can update 

our hypothesis. This allows us to adapt to change and accommodate new 

information (remember, MLOps is all about being able to adapt to change). In 

the next section, we will look at some specific examples of Bayesian models.
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�Gaussian Mixture Models
K-means, one of the oldest clustering methods, behaves poorly when 

clusters are of different sizes, shapes, and densities. While K-means requires 

knowing the number of clusters as a parameter before going ahead with 

clustering, it is closely related to nonparametric Bayesian modeling in 

contrast to the Gaussian mixture model (GMM) shown in Figure 2-2.

Figure 2-2.  Clustering using a Bayesian Gaussian mixture model

A Gaussian mixture model is a probabilistic model that makes the 

assumption that the data generating process is a mixture of finite Gaussian 

distributions (one of most important probability distributions for modeling 

natural phenomena and so widely used in science, engineering, and 

medicine). It is a parametric model where the parameters of the Gaussian 

components are unknown. We can think of GMMs as a finite weighted 

sum of Gaussian component densities. Listing 2-2 shows an equation that 

governs the GMM.
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Listing 2-2.  An equation that describes the Gaussian mixture model
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However, these parameters are computationally expensive and do not 

scale well since they are computed often through maximal likelihood and 

EM (expectation-maximization) algorithms and are modeled as latent 

variables. Despite scalability problems, GMMs are used in many industries 

in particular healthcare, to model more meaningful patient groupings, 

diagnostics, and rehabilitation and to support other healthcare activities.

�General Additive Models
With generalized additive models (GAMs), you don’t have to trade off 

accuracy for interpretability. These are a very powerful extension to linear 

regression and are very flexible with their ability to incorporate nonlinear 

features in your data (imagine having to do this by hand if all we had was a 

linear regression model?)

If random forests are data driven and neural networks are model 

driven, the GAMs are somewhere in the middle, but compared to neural 

nets, SVMs, or even logistic regression, GAMs tend to have relatively 

low misclassification rates which make them great for mission critical 

applications where interpretability and misclassification rate are utmost 

importance such as in healthcare and financial applications.

If you’ve never used a GAM before, you can look at splines to start. 

Splines are smooth functions used to model nonlinear relationships 

and allow you to control the degree of smoothness through a smoothing 

parameter. Figure 2-3 shows some of the trade-offs between these 

different models.
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Figure 2-3.  Trade-offs between explainability and model accuracy

�Kernel Methods
The best known example of kernel methods, the support vector machine 

(SVM), allows us to use the “kernel trick” and work well on text based 

data which is naturally high dimensional. This means that we can embed 

features in a higher, possibly infinite, dimensional space without ever 

having to explicitly compute the embedding.

Kernel methods are particularly important in geostatistics applications 

such as kriging (Gaussian process regression) especially in the oil and 

gas industry. The main use case of kriging is to estimate the value of a 

variable over a continuous spatial field. For example, you may have sensor 

readings such as temperature and pressure in an oil and gas reservoir, but 

you may not know the sensor readings at every position in the reservoir. 

Kriging provides an inexpensive way to estimate the unknown sensor 

readings based on the readings that we do know. Kriging uses a covariance 

matrix and a kernel function to model the spatial relationships and 

spatial dependencies of data points throughout the reservoir by encoding 

similarity between features.
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Where did these models come from? Fundamentally, these algorithms 

are based on logic and mathematical properties and primitives such as 

probability distributions. If we know about the Gaussian distribution, it’s 

not a far stretch to understand how to build a Gaussian mixture model. If 

we know about covariance matrices, we can understand kernel methods 

and maybe Gaussian processes, and if we understand linear systems, we 

can build on top of this abstraction to understand GAMs.

I want to illustrate this point further, by building a model from 

fundamental principles. Logistic regression is particularly interesting to 

use for this as most people are familiar with it, but it is not a toy model; 

you can use logistic regression to solve many real-world problems 

across various industries since it is fairly robust. We can also use logistic 

functions to build many more complex models. For instance, the classical 

version of logistic regression is used to model binary classification (e.g., 

predicting likelihood of success or failure), but by combining multiple 

logistic regression models into strategies like one-vs.-all or one-vs.-

one, we can solve more complex multi-class classification problems 

with a single response variable via softmax, a generalization of logistic 

regression. Logistic functions can also be used to create neural networks: 

It’s no coincidence that in a neural network, the activation function is 

often a logistic sigmoid (pictured in the following). In this chapter’s lab 

on algorithmic thinking, you’re going to walk through some of these 

mathematical tools and build a logistic regression model from scratch. 

Figure 2-4 shows an example of a logistic sigmoid curve.
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Figure 2-4.  A logistic sigmoid curve

The parameter mu takes on the probability value ½ which makes 

intuitive sense.

�Higher Dimensional Spaces
I want to cover one more mathematical tool for the toolkit because in data 

science, unlike pure statistics, we deal with big data but also because it is 

fascinating to be able to develop intuition on higher dimensional spaces by 

learning to think geometrically.

You’ve probably heard of the “curse of dimensionality.” Things behave 

strangely in high dimensions, for example, if we could measure the volume 

of a unit sphere as we embed it into higher dimensional space, that volume 

would actually shrink as the dimension increases! That is incredibly 

counterintuitive. Figure 2-5 shows an artistic rendition of a shrinking 

sphere in higher dimensional space (since we can only visualize in three 

dimensions).
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Figure 2-5.  A shrinking sphere illustrating the unintuitive nature of 
higher dimensions

In data science in the real world, we have at minimum hundreds 

of features. It is not uncommon to have 1000 or more features, and 

so naturally we need a way to try to reduce the number of features. 

Mathematically speaking, this means we want a way to embed our data 

that lives in a high dimensional space to a lower dimensional space while 

preserving information.

Going back to our favorite example, logistic regression, we 

can illustrate another important mathematical tool to handle high 

dimensionality, regularization.

Regularization is extremely important when applying logistic 

regression because without it, the asymptotic nature of the logistic curve 

at +infinity and -infinity (remember the sigmoid?) would translate into 

zero loss in high dimensions. Consequently, we need strategies to dampen 
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the model complexity. The most common way is L2 regularization which 

means we’ll give a higher penalty to model parameters that are nonzero. 

We can also use an L1 norm (a different way of measuring distance in high 

dimensional spaces). The penalty is defined as minus the square of the 

L2 norm multiplied by a positive complexity parameter lambda. Lambda 

controls the amount of shrinkage toward zero.

Models that use L1 regularization are called Lasso regression, and 

models that use L2 are called Ridge regression. If you would like to gain 

a deeper understanding of the types of norms that can exist and higher 

dimensional spaces, in the next section, you will have the opportunity to 

learn more about mathematical statistics in a hands-on lab.

�Lab: Mathematical Statistics
Before proceeding to the next section, you can complete the optional lab 

on mathematical statistics. This will give you hands-on experience with 

probability distributions by looking at an important and fundamental tool 

in mathematical statistics: characteristic functions.

You’ll program a characteristic function from scratch. Characteristic 

functions have many interesting properties including completely 

characterizing a probability distribution and are even used in the most 

basic proofs of the central limit theorem. The steps are as follows:

Step 1. Open the notebook MLOps_Lifecycle_Toolkit_Mathematical_

Statistics_Lab.ipynb (available at github.com/apress/mlops-lifecycle-

toolkit).

Step 2. Import the math, randon, and numpy packages by running cell #2.

Step 3. Create a function for computing the characteristic function of a 

random normal with unit standard deviation by running cell #3.

Step 4. Run the remaining cells, to set up a coin toss experiment and 

recover the probability of a fair coin from the characteristic function. Was 

the coin fair?
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Although this lab is optional because it requires some advanced math, 

it’s recommended since it covers some deep mathematical territory from 

probability distributions, Fourier transforms, complex numbers, and more.

�Programming Nondeterministic Systems
In order to build real-world systems, we need to understand the types 

of data structures (arrays, lists, tensors, dataframes) and programming 

primitives (variables, loops, control flow, functions) that you’ll likely 

encounter to know what the programming is doing and to be able to read 

other data scientists code.

Knowledge of data structures, algorithms, and packages can be applied 

regardless of language. If you use a package, even an R package, you 

should read the source code and understand what it’s doing. The danger 

of not understanding what the statistical black box means the result of 

an analysis that uses your code could come out inaccurate or, worse, 

introduce non-determinism into your program.

Sources of non-determinism in ML systems

•	 Noisy data sets

•	 Poor random initialization of model parameters

•	 Black box stochastic operations

•	 Random shuffling, splits, or data augmentation
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�Programming and Computational Concepts
Let’s look at some basic programming concepts.

�Loops
Loops are a mechanism to repeat a block of code. Why use loops? One 

reason is you may have a block of code you want to repeat and, without a 

loop, you would have to copy paste the code, creating redundant code that 

is hard to read and reason about.

Another reason we use loops is for traversing a data structure such 

as a list or dataframe. A list or array has many items and a dataframe has 

many rows, in a well-defined order, and it is a natural way to process each 

element one by one; whether that element be a row or a list depends on 

the data structure.

Loops can be complex, and there’s a programming adage that goes you 

should never modify a variable in a loop.

One reason loops are important in data science is twofold:

	 1)	 Many tensor operations naturally unfold into loops 

(think dot product or tensor operations).

	 2)	 By counting the number of nested loops, you can get 

an idea on the asymptotic behavior (written in Big-O 

notation) of your algorithm; in general, nested loops 

should be avoided if possible being replaced by 

tensor operations.

The last technique is actually an optimization tool called 

vectorization. Often, vectorized code can take advantage of low level 

instructions like single instruction, multiple data, or SIMD instructions. In 

fact, most GPUs use a SIMD architecture, and libraries like JAX can take 

this idea to the next level if you need to run NumPy code on a CPU, GPU, 

or even a TPU for high performance machine learning.
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�Variables, Statements, and Mathematica  
Expressions
What is the difference between a statement and an expression?

A statement does something that assigns a value to a variable. An 

example in Python is x = 1.

This simple statement assigns the value 1 to a variable x. The variable, 

x, in this case points to a memory location used to store information.

An expression on the other hand needs to be evaluated by the 

interpreter (or compiler in a compiled language like C++ or Haskell) 

and returns a value. Expressions can be building blocks of statements or 

complex mathematical expressions. An example of an expression (but not 

a statement) is the following:

(1 + 2 + x)

We can also have Boolean expressions which we’ll look at next and are 

very important for making decisions.

�Control Flow and Boolean Expressions
Control flow refers to the order in which individual statements, 

commands, instructions, statements, or function calls are executed. 

Changing the order of statements or function calls in a program can 

change the program entirely. In imperative languages (e.g., Python can 

be coded in an imperative style), control flow is handled explicitly by 

control flow statements such as if statements that control branching. 

Usually at each branch, a choice is made and the program follows one 

path depending on a condition. These conditions are called Boolean 

expressions.
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Boolean expressions involve logical operations such as AND, OR, NOT, 

and XOR. These Boolean expressions can be combined in complex ways 

using parentheses and as mentioned are used in control flow statements in 

your program to make complex decisions.

For example, let’s suppose you have a computer program with 

variables that store true and false values. You have one variable that stores 

the percent missing and a second variable that stores the number of rows 

in your data, and you want to exclude rows that have over 25% missing 

values when your data is more than 1000 rows. You can form a Boolean 

expression as follows:

If (percent_missing > 25) AND (num_rows  >  1000):

        // drop rows

Of course, in a library like Pandas, there are functions like dropna for 

dataframes that do this sort of low level logic for you, but you can read the 

source code to understand exactly what is happening under the hood for 

the functions you care about.

�Tensor Operations and Einsums
A tensor is, simply put, a generalization of vectors to higher dimensions. 

There is some confusion on the use of the term since there are also tensors 

in physics, but in machine learning, they’re basically a bucket for your 

data. Many libraries including NumPy, TensorFlow, and PyTorch have 

ways of defining and processing tensors, and if you’ve done any deep 

learning you’re likely very familiar with tensors, but a cool tool I want to 

add to your toolkit is Einsums.

Einsums are essentially shorthand for working with tensors, and if you 

need to quickly translate complex mathematical equations (e.g., ones that 

occur in data science or machine learning papers), you can often rewrite 

them in Einsum notation in very succinct, elegant ways and then execute 
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them immediately in a library like PyTorch. For example, the following 

Einsum equation codifies matrix multiplication, and we can implement it 

in PyTorch in Listing 2-3:

Listing 2-3.  An example of Einsum notation

a = torch.arange(900).reshape(30, 30)

b = torch.arange(900).reshape(30, 30)

torch.einsum('ik,kj->ij', [a, b])

Okay, we’ve covered quite a bit. We talked about variables, loops, and 

control flow and ended with tensors, a kind of bucket for high dimensional 

data. However, there are many more “buckets” for your data that are useful 

in data science. These are called data structures, the subject of computer 

science. We’ll cover a few data structures in the next section.

�Data Structures for Data Science
This section is about data structures. While computer science has many 

data structures, data scientists should be familiar with a few core data 

structures like sets, arrays, and lists. We will start by introducing sets, 

which might be the simplest data structure to understand if you come from 

a math background.

�Sets
Sets are collections of elements. A set can contain elements, and you can 

use sets for a variety of purposes in data science for de-duplication of your 

data to checking set membership (that is to say, the set data structure 

comes with an IN operator).
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It is important to note that a set has no order (actually there is the 

well-ordering principle that says exactly the opposite, but in Python, for 

instance, and other languages, sets have no order). If we want to impose an 

order when storing elements, we should use a linear data structure like an 

array or a list, which we’ll cover next.

�Arrays and Lists
The most fundamental distinction between an array and a list is that a list 

is a heterogeneous data structure, and this mean it can store a mix of data 

types, for example strings, floats, Booleans, or even more complex user 

defined types.

 An array on the other hand is homogenous; it only is designed to store 

one type of value.

In Python, lists are a primitive data type and part of the core language. 

The ability to use list comprehensions instead of loops for mathematical 

constructs is very useful in data science. However, for efficient processing 

of data, we can use a library like NumPy which has a concept of arrays. 

This is known as a trade-off, and in this case, the trade-off exists between 

efficiency and convenience.

Part of being a good technical decision-maker is understanding these 

types of technical trade-offs and the consequences on your own project. 

For example, if you decide to profile your code and find you’re running 

into memory errors, you might consider changing to a more efficient data 

structure like a NumPy array, maybe even with a 32 bit float if you don’t 

need the extra precision of a 64 bit floating point number.

There are many different types of data structures and we’ll provide 

resources for learning about more advanced types (one of the core subjects 

of computer science), but for now, we’ll take a look at a more complex type 

that you should be aware of such as hash maps, trees, and graphs.
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�Hash Maps
Hash maps are an associative data structure; they allow the programmer to 

associate a key with a value.

They provide very fast lookup by keys, allowing you to retrieve a value 

corresponding to a key in O(1) time by using dynamically sized arrays 

under the hood and allow you to retrieve a value you’ve associated with 

your key.

If you didn’t have this kind of associative data structure, you’d have to, 

for instance, store your elements as an array of tuples and would need to 

write code to search for each key you wanted to locate in the array. This 

would not be very efficient, so when we want to associate one piece of 

information with another and only care about being able to retrieve the 

value we’ve mapped to a particular key, we should consider hash maps. 

The point is, having a command of data structures can simplify your code 

drastically and make it more efficient.

In Python, a hash map is called a dictionary. One point to keep in mind 

when using hash maps is that the keys should be hashable, meaning a 

string is OK for a key but a mutable data type like a list that can be changed 

is not allowed.

�Trees and Graphs
A graph is a mathematical data structure consisting of nodes and edges. 

The nodes are also called vertices. The difference between a tree and a 

graph is that a tree has a root node. In a graph there is no root node that 

is unique but both structures can be used for representing many different 

types of problems. Graph neural networks and graph databases are huge 

topics today in machine learning and MLOps, and part of the reason is 

that a graph, like a set, is a very general mathematical way of representing 

relationships between concepts that can be easily stored on a computer 

and processed.
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You should be aware of a couple kinds of trees and graphs in particular 

binary trees and DAGs.

�Binary Tree
A binary tree is a tree (it has a root node), and each node including the root 

has either 2 (hence binary) children or 0 children (in this case, we call it a 

leaf node). A picture of a binary tree is shown in Figure 2-6.

Figure 2-6.  A binary tree

Binary trees can be complete or perfect or have additional structure 

that makes them useful for searching such as binary search trees.
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�DAGs
A graph is a generalization of a tree. A graph however can have cycles, 

meaning if you were to visit every node and follow its neighbor, you may 

find yourself in an infinite loop. An important type of graph with no cycles 

is called an acyclic graph and is often used in MLOps tools like Airflow to 

represent data flow. Directed acyclic graphs are called “DAGs” and have 

a variety of uses in MLOps (e.g., the popular Airflow library uses DAGs for 

creating pipelines).

�SQL Basics
We’ve covered programming languages like Python, but you also need to 

know how to manipulate data in your programs. SQL is actually based on 

relational algebra and the set data structure we covered previously (the 

foundations were written by Edger F. Codd). SQL consists of queries and 

the queries can be broken down into statements. A SQL statement consists 

of the following clauses executed in the following order:

•	 FROM

•	 JOINS on other tables

•	 WHERE clause for filtering data

•	 GROUP BY for aggregating by multiple columns

•	 HAVING for filtering after aggregation

•	 SELECT for selecting columns or fields you want to use 

in your data set

•	 ORDER BY for sorting data by one or more columns 

(this can cause performance issues and should only be 

used sparingly)
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A common table expression or CTE is a very useful construct when 

operationalizing data science code. The reason it is so powerful is that 

a CTE allows you to think algorithmically, by breaking down your SQL 

query into a series of steps. Each step can depend on previous steps and is 

materialized as a kind of “virtual table.” A simple example of a CTE is given 

in the following; this CTE first creates a base table called Sensor_CTE and 

then selects from it in Listing 2-4.

Listing 2-4.  An example of a common table expression or CTE

-- An example of a CTE

WITH Sensor_CTE (SalesPersonID, SalesOrderID, SalesYear)

AS

-- Define the CTE query.

(

    �SELECT ID as Component, MAX(Pressure) as Pressure, 

AVG(Temperature) as Temperature

    FROM Sensor.Readings

    WHERE ID IS NOT NULL

    GROUP BY ID

)

-- Define the outer query referencing the CTE name.

SELECT Component, Temperature

FROM Sensor_CTE;

Understanding how joins and common table expressions (CTEs) work 

is typically what separates beginners from advanced SQL users. Most 

data science code requires multiple passes on data sets, and CTEs are a 

natural way to write more complex SQL code that requires multiple steps 

to process data.
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�Algorithmic Thinking for Data Science
An algorithm is essentially a set of rules or instructions for performing 

calculations that occur in a certain sequence. You can think of it like 

a recipe. Unlike recipes though, algorithms will usually involve data 

structures for storing data, and the heart of the algorithm will be 

manipulating these data structures to solve a problem. Unfortunately, 

you need to learn algorithmic thinking, and by doing so, we’ve created 

a lab for you. In the lab, you’re going to start with data structures we’ve 

learned to build some basic mathematical primitives like sigmoid function 

and logistic curve and combine these abstractions to build your own 

logistic regression model. Refer to the Jupyter notebook labs for this 

chapter entitled “Building a Logistic Regression Model from Scratch,” and 

complete the lab before continuing to the next section.

�Core Technical Decision-Making: Choosing 
the Right Tool
Beyond this section, we’re going to assume you’ve completed the labs and 

have a basic grasp on programming fundamentals. Before covering specific 

packages and frameworks for translating experiments and thoughts into 

executable code, I want to discuss technical decision-making briefly and 

how we should think about choosing the right framework for our problem.

The most important criterion in the real world is considering what 

tools and frameworks are already being used by your organization, 

colleagues, and the community behind the framework. Although you 

might be tempted to use a package from a language like Julia or Haskell, 

you should carefully consider whether or not you’ll have to translate your 

problem into another language at some point in the future if either the 

package is no longer supported or because nobody in your organization 

has the skill set required.
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�Translating Thoughts into Executable Code
You might want to choose one of the following packages and dive deeper 

into some frameworks that are used in the real world to build machine 

learning models. In later chapters, we’ll walk you through how to create 

your own packages. The important thing here is understanding that these 

tools we depend on in data science like Pandas or Numpy or PyTorch are 

just packages someone (or a team of people) have written and created. You 

too can learn to create your own packages, but first we need to understand 

why we use packages and how it makes our lives as both data scientists 

and MLOps engineers easier.

�Understanding Libraries and Packages
What is the point of a software package? Why not use a notebook? 

Packages allow us to bundle code together and give it a name, import it, 

and reference objects inside the package so we can reuse them without 

having to rewrite those objects. Packages can also be versioned (see 

semantic versioning4).

For example, you may have heard of RStudio package manager for R 

or pip for Python. Before experimenting with any of the packages listed 

in the following, you should understand the package manager in your 

language of choice so you can install the package. We also recommend 

environments to isolate dependencies. We’ll cover the gritty details of 

package managers and environments in Chapter 3, but for now here is a 

broad overview of some of the most interesting packages you might come 

across as an MLOps engineer.

4 Semantic versioning 2.0.0 can be found at https://semver.org/.
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�PyMc3 Package
An active area of research is in probabilistic programming. The PyMc3 

library contains various primitives for creating and working with random 

variables and models. You can perform MCMC (Markov chain Monte 

Carlo) sampling and directly translate statistical models into code.

Something to keep in mind is at the current time, these algorithms 

may not be very scalable, so you’ll usually only see Bayesian optimization 

applied to the hyperparameter search part of a machine learning 

lifecycle using libraries like HyperOpt; however, we mention probabilistic 

programming as Bayesian statistics is slowly becoming a part of 

mainstream data science.

�Numpy and Pandas
Numpy and Pandas are the bread and butter of most data science 

workflows. We could write an entire chapter covering just these 

libraries, but we’ll mention for the uninitiated that Pandas is a data 

wrangling library. It provides a data structure called a DataFrame for 

processing structured data and various methods for reading csv files and 

manipulating dataframes. NumPy has the concept of ndarrays and allows 

you to process numerical data very fast without having to know much 

about C++ or low level hardware.

�R Packages
R uses a package system called CRAN which makes available R binaries. 

Unlike Python, CRAN packages typically have higher dependency on other 

packages and tend to be focused on specific areas of statistical computing 

and data visualization.
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The reason data scientists still use R is many packages written by 

researchers and statisticians are written in R. However, you should be 

aware of the following interoperability and scalability issues with R:

•	 R is not as widely supported; for example, the machine 

learning SDK uses R, but there is a lag between when 

features are released in Python and when they become 

available in R.

•	 Writing clear, concise and easy to read code in R 

requires considerable skill and even then there are 

leaky abstractions which make code difficult to 

maintain such as

•	 R is not scalable and has memory limitations. For 

scalable R, we recommend Databricks using SparkR.

A lot of R packages revolve around the TidyVerse. You should be 

familiar with the following basic R packages:

Deplyr: Deplyr is a package that is similar to Pandas in Python and is 

used for data wrangling. The package provides primitives such as filter 

and melt.

Shiny: The R ecosystem’s answer to dashboarding in data science, 

Shiny is a package for authoring dashboards in R and fulfills the same need 

as Dash in Python. The advantage of ShinyR is you can build web apps 

without having to know how web development works. The web apps can 

be interactive, and you can interact with different panels of the dashboard 

and have multiple data sources to visualize data sets. We don’t recommend 

Shiny as it can be hard to deploy to a web server securely.

SAS: SAS is a language of statistical programming. SAS is a procedural 

language. SAS requires a SAS license and is common in healthcare and 

finance industry where exact statistical procedures need to be executed.

MATLAB/OCTAVE: MATLAB and the open source version Octave 

are libraries for linear algebra. If you are prototyping a machine learning 

algorithm whose primitives can be expressed using matrix operations 
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(which is a lot of machine learning), then you might consider using one 

of these languages. MATLAB is also particularly popular in engineering 

disciplines for simulations and is used in numerical computing.

PySpark: Spark is a framework for distributed computing and has a 

tool called PySpark that allows you to write code similar to Pandas using 

dataframes but in a scalable way. You can translate between Pandas and 

Pyspark using the latest Pandas API for spark (replacement for Koalas) 

and process gigabytes or even terabytes of data without running into out 

of memory errors. Other alternatives are called “out of core” solutions and 

include Dask or Modin that utilize disk storage as an extension of core 

memory in order to handle memory-intensive workloads.

�Important Frameworks for Deep Learning
There are many frameworks in Python for deep learning and working 

with tensors. PyTorch and TensorFlow 2.0 with Keras API are the most 

popular. Although we could implement our own routines in a package like 

the NumPy example to build your own 2D convolutional layer and use 

these functions to build a convolutional neural network, in reality, this 

would be too slow. We would have to implement our own gradient descent 

algorithm, auto differentiation, and GPU and hardware acceleration 

routines. Instead, we should choose PyTorch or TensorFlow.

�TensorFlow
TensorFlow is an end to end machine learning framework for deep 

learning. TensorFlow is free and open sourced under Apache License 2.0 

and supports a wide variety of platforms including MacOS, Windows, 

Linux, and even Android. TensorFlow 1.0 and TensorFlow 2.0 have 

significant differences in APIs, but both provide the tensor as a core 

abstraction allowing the programmer to build computational graphs to 

represent machine learning algorithms.
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�PyTorch
The advantage is PyTorch is class oriented, and if you have a strong Python 

background, you can write a lot of custom code in an object oriented 

style without having to be very familiar with how the APIs work like in 

TensorFlow. PyTorch for this reason is used in academic papers on machine 

learning and is a solid choice for prototyping machine learning solutions.

�Theano
PyMC3 is written on top of Theano as well as some other interesting 

projects, but Theano is no longer supported so it is not recommended for 

ML development or MLOps.

�Keras
Prior to the introduction of the Keras API, developers required specific 

knowledge of the API. Keras however is very beginner friendly, and some 

useful features of TensorFlow are GPU awareness (you do not need to 

change your code to use a GPU if one is available, as TensorFlow will 

detect if for you); the Keras API is very intuitive for beginners, and there 

is a large community around TensorFlow so bugs and CVEs (security 

vulnerabilities) are patched regularly. Post TensorFlow 2.0 release, you can 

also do dynamic execution graphs.

�Further Resources in Computer 
Science Foundations
We’ve covered a lot of ground, discussed data structures and algorithmic 

thinking, and covered the basics of computer science required to work 
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with data such as graphs, dataframes, tables, and the basics of SQL. We’ve 

talked about R and Python, two common languages for data science, and 

some of their common packages.

However, it is important to stress this is only the minimum. It 

would not be possible to cover a complete course in computer science 

for data scientists in this chapter, and so the best we can do is provide 

some recommended reading so you can educate yourself on topics 

you’re interested in or fill in gaps in your knowledge to become better 

programmers. We’ve curated the following list of books on computer 

science that we think would be most valuable for data scientists.

•	 Introduction to Algorithms by Rivest5

•	 Bayesian Methods for Hackers by Davidson Pilon6

In general, you can read a book on functional analysis (for infinite 

dimensions) or linear algebra (for finite dimensional spaces) provided in 

the following.

�Further Reading 
in Mathematical Foundations
Although we covered some mathematical concepts in this chapter, it would 

not be possible to cover even the simplest areas like linear algebra in detail 

without further resources. Some areas you may be interested in pursuing 

on your own are Bayesian statistics7 (understanding Bayes’ rule, Bayesian 

5 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to 
Algorithms. MIT Press.
6 Davidson-Pilon, C. (2015). Bayesian Methods for Hackers: Probabilistic 
Programming and Bayesian Inference. Addison-Wesley Professional.
7 McElreath, R. (2015). Statistical Rethinking: A Bayesian Course With Examples in 
R and Stan. Chapman & Hall/CRC.
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inference, and statistical thinking), statistical learning theory8 (the rigorous 

foundations of the many learning algorithms we use in MLOps), and of 

course linear algebra9 (in particular finite dimensional vector spaces are a 

good stepping stone to understand more advanced concepts).

�Summary
In this chapter, we discussed the importance of understanding mathematical 

concepts and how MLOps systems can be viewed as stochastic systems 

that are governed by mathematical abstractions. By understanding these 

mathematical abstractions and having an understanding of data structures 

and algorithmic thinking, we can become better technical decision-makers. 

Some of the topics we covered in this chapter include the following:

•	 Programming Nondeterministic systems

•	 Data Structures for Data Science

•	 Algorithmic Thinking for Data Science

•	 Translating Thoughts into Executable Code

•	 Further Resources on Computer Science

In the next chapter, we will take a more pragmatic perspective and look 

at how we can use these abstractions as tools and software packages when 

developing stochastic systems in the real world.

8 Hastie, T., Tibshirani, R., & Friedman, J. (2013). The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. Springer Science & Business Media.
9 Halmos, P. (1993). Finite-Dimensional Vector Spaces. Springer.
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