
35

CHAPTER 2

Foundations for
MLOps Systems

“All models are wrong, but some are useful.”

—George Box

In this chapter, we will discuss foundations for MLOps systems by breaking

down the topic into fundamental building blocks that you will apply in

future chapters. While we will discuss programming nondeterministic

systems, data structures and algorithmic thinking for data science, and

how to translate thoughts into executable code, the goal is not to give

a fully comprehensive introduction to these areas in a single chapter

but instead provide further resources to point you in the right direction

and answer an important question: Why do you need to understand

mathematics to develop and deploy MLOps systems?

This book would be remiss without laying out the core mathematical

and computational foundations that MLOps engineers need to understand

to build end to end systems. It is the responsibility of the MLOps engineer

to understand each component of the system even if it appears like a

“black box.”

Toward this end, we will create a logistic regression model (both

classical and Bayesian) from scratch piece by piece to estimate the

parameters of the hypothesis using stochastic gradient descent to illustrate

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_2

https://doi.org/10.1007/978-1-4842-9642-4_2#DOI

36

how models built up from simple mathematical abstractions can have

robust practical uses across various industries. First, let’s define what we

mean by model by taking a look at some statistical terminology.

�Mathematical Thinking
Mathematics is the foundation of data science and AI. Large language

models like ChatGPT are transforming our lives. Some of the first large

language models such as BERT (an encoder) are based on either an

encoder or decoder transformer architecture. While the attention layers

that are part of this model are different both in form and in use cases, they

are still governed by mathematics.

In this section, we lay out the rigorous foundations for MLOps, diving

into the mathematics behind some of the models we use.

�Linear Algebra
Linear algebra is the study of linear transformations like rotation. A

transformation is a way of describing linear combinations of vectors.

We can arrange these vectors in a matrix form, and in fact you can prove

every linear transformation can be represented in this way (with respect

to a certain basis of vectors). You’ll find linear algebra used throughout

applied mathematics since many natural phenomena can be modeled

or approximated by linear transformations. The McCulloch-Pitts neuron

or perceptron combines a weight vector with a feature vector using an

operator called the dot product. When combined with a step activation

or “threshold” function, you can build linear classifiers to solve binary

classification problems.

Though matrices are two-dimensional, we can generalize the idea

of a matrix to higher dimensions to create tensors. Since many machine

learning algorithms can be written in terms of tensor operations. In

Chapter 2 Foundations for MLOps Systems

37

fact tensors themselves can be described as multilinear maps1. You can

imagine how important linear algebra is to understanding neural networks

and other machine learning algorithms. Another important reason for

studying linear algebra is it is often the first exposure to writing proofs,

developing mathematical arguments and mathematical rigor.

�Probability Distributions
By model we really mean a probability distribution. The probability

distribution will be parameterized so that we can estimate it using real-

world data either through algorithms like gradient descent or Bayes’ rule

(this may be difficult under some circumstances as we’ll discuss). We’re

usually interested in two types of probability distributions: joint probability

distributions and conditional distributions.

Join probability distribution: Given two random variables X and Y, if X

and Y are defined on the space probability space, then we call the probability

distribution formed by considering all possible outcomes of X and Y

simultaneously the joint probability distribution. This probability distribution

written as P(X, Y) encodes the marginal distributions P(X) and P(Y) as well

as the conditional probability distributions. This is an important concept

as many of the models we’ll be looking at will be attempting to compute or

sample from a joint probability distribution to make some prediction.

Conditional probability distribution: Conditional probability is the

probability of an event, Y occurring given an event X has already occurred.

We write this conditional probability as P(Y | X) often read as “probability

of Y given X.” Let’s look at a few examples of models we might use as data

scientists in various industries to understand how these abstractions are

built up from mathematical concepts.

1 An introduction to linear algebra can be found in Hoffman, K. A. (1961). Linear
Algebra.

Chapter 2 Foundations for MLOps Systems

38

�Understanding Generative and Discriminative
Models
A generative model is synonymous with a joint probability distribution

P(X, Y) (however, this is not strictly true since, e.g., GANs belong to the

class of generative models) since for a classification problem it will assume

some functional form of P(Y) and P(X | Y) in terms of some parameters

and estimated from the training data. This is then used to compute P(Y | X)

using Bayes’ rule. These types of models have some interesting properties,

for instance, you can sample from them and generate new data. Data

augmentation is a growing area especially within the healthcare and

pharmaceutical industry where data from clinical trials is costly or not

available.

The simplest examples of a generative model include Gaussian

distributions, the Bernoulli model, and Naive Bayes models (also the

simplest kind of Bayesian network).

In contrast, a discriminative model such as logistic regression

makes a functional assumption about the form of P(Y | X) in terms

of some parameters W and b and estimates the parameters directly

from the training data. Then we pick the most likely class label based

on these estimates. We’ll see how to compute parameters W and b in

the lab: algorithmic thinking for data science2 where we’ll actually use

stochastic gradient descent and build a logistic regression model from the

ground up.

2 For a full introduction to algorithmic thinking and computer programming,
the reader is directed to Abelson, H. and Sussman, G. J. (1996). Structure and
Interpretation of Computer Programs, second edition. MIT Press.

Chapter 2 Foundations for MLOps Systems

39

�Bayesian Thinking
We chose logistic regression as an example in this chapter for another

reason: Logistic regression is a good example of a probabilistic model.

When you train it, it automatically gives you an estimate of the probability

of success for new data points. However, classical logistic regression is a

frequentist model. The classical logistic regression model does not tell us if

we can rely on the results, if we have enough data for training, or anything

about the certainty in the parameters.

To illustrate this point, let’s suppose we train a logistic regression

model to predict who should receive a loan. If our training data is

imbalanced, consisting of 1000 people and 900 of which are examples

of people we should not lend to, our model is going to overfit toward a

lower probability of loan approval, and if we ask what is the probability of

a new applicant getting a loan, the model may return a low probability. A

Bayesian version of logistic regression would solve this problem. In the lab,

you will solve this problem of imbalance data by using a Bayesian logistic

regression model and generating a trace plot to explore the parameters

and ensure that the parameters are well calibrated to the data. Figure 2-1

shows a trace plot generated from this lab.

Figure 2-1.  A trace plot showing the history of parameters in a
Bayesian model

Chapter 2 Foundations for MLOps Systems

40

Of course, we need to understand yet another mathematical primitive:

Bayes’ rule. Unlike in frequentist statistics, where we have parameters and

point estimates, in Bayesian statistics, we have probability distributions

as we defined earlier. In fact, every unknown in our model is a probability

distribution called a prior that encodes our current knowledge about that

parameter (in the lab, we have three parameters we want to estimate, with

priors chosen from normal distributions).

Bayes’ rule updates beliefs about the parameters by computing a

posterior probability distribution.

•	 The prior distribution can be interpreted as the current

knowledge we have on each parameter (it may only be

a best guess).

•	 The likelihood function is the probability of observing

a data set given certain parameters θ of our model.

•	 The evidence is the probability of the observed data

itself over all possible models and is very difficult to

compute, often requiring multivariate integrals in three

or more dimensions. Fortunately, for many problems,

this is only a constant of proportionality that can be

discarded3.

We speak of “turning the Bayesian crank” when the posterior of one

problem (what we are interested in estimating) becomes the prior for

future estimates. This is the power of Bayesian statistics and the key to

generative models. Listing 2-1 shows the different parts of Bayes’ rule.

3 Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. In Springer
texts in statistics. Springer International Publishing. https://doi.org/10.1007/
978-0-387-92407-6.

Chapter 2 Foundations for MLOps Systems

https://doi.org/10.1007/978-0-387-92407-6
https://doi.org/10.1007/978-0-387-92407-6

41

Listing 2-1.  Bayes’ rule

			
P | ,

| ,

|
θ

θ θ
X y

P y X P

P y X
() = () ()

() 	

Bayes rule was actually discovered by Thomas Bayes, an English

Presbyterian minister and statistician in the eighteenth century, but the

work LII. An Essay Towards Solving a Problem in the Doctrine of Chances

wasn’t published until after Bayes’ death and to this day is often a graduate

level course not taught in undergraduate statistics programs.

So how can we develop some intuition around Bayes’ rule? Let’s start

by asking a question:

What is the probability of a coin coming up heads? Take a few minutes

to think about it before you answer; it’s a bit of a trick question.

Okay …I’ve asked this question to a few people and most would say it

depends. It depends if the coin is fair or not. Ok so assuming it’s a fair coin,

the usual answer is the chance of coming up heads is 50% or 0.5 if we’re

using probability.

Now let’s switch this question up; let’s suppose that the coin has

already been flipped but you cannot see the result. What is the probability?

Go ahead and ask your colleagues or friends this question, and you might

be surprised by the range of answers you’ll receive.

A frequentist position is that the coin has already been flipped, and

so it is either heads or tails. The chance is either 0% heads if the coin

landed tails or it is 100% if it landed heads. However, there’s something

unsatisfactory about this perspective; it does not take into consideration

the uncertainty in the model.

A Bayesian approach would be to quantify that uncertainty and say, it’s

still 50% chance of heads and 50% chance of tails; it depends on what we know

at the moment. If we observe the coin has landed heads, then we can update

our hypothesis. This allows us to adapt to change and accommodate new

information (remember, MLOps is all about being able to adapt to change). In

the next section, we will look at some specific examples of Bayesian models.

Chapter 2 Foundations for MLOps Systems

42

�Gaussian Mixture Models
K-means, one of the oldest clustering methods, behaves poorly when

clusters are of different sizes, shapes, and densities. While K-means requires

knowing the number of clusters as a parameter before going ahead with

clustering, it is closely related to nonparametric Bayesian modeling in

contrast to the Gaussian mixture model (GMM) shown in Figure 2-2.

Figure 2-2.  Clustering using a Bayesian Gaussian mixture model

A Gaussian mixture model is a probabilistic model that makes the

assumption that the data generating process is a mixture of finite Gaussian

distributions (one of most important probability distributions for modeling

natural phenomena and so widely used in science, engineering, and

medicine). It is a parametric model where the parameters of the Gaussian

components are unknown. We can think of GMMs as a finite weighted

sum of Gaussian component densities. Listing 2-2 shows an equation that

governs the GMM.

Chapter 2 Foundations for MLOps Systems

43

Listing 2-2.  An equation that describes the Gaussian mixture model

			

p x
i

m

i i
i

() = 









=
∑

1

θ  x | ,µµ ∑
	

However, these parameters are computationally expensive and do not

scale well since they are computed often through maximal likelihood and

EM (expectation-maximization) algorithms and are modeled as latent

variables. Despite scalability problems, GMMs are used in many industries

in particular healthcare, to model more meaningful patient groupings,

diagnostics, and rehabilitation and to support other healthcare activities.

�General Additive Models
With generalized additive models (GAMs), you don’t have to trade off

accuracy for interpretability. These are a very powerful extension to linear

regression and are very flexible with their ability to incorporate nonlinear

features in your data (imagine having to do this by hand if all we had was a

linear regression model?)

If random forests are data driven and neural networks are model

driven, the GAMs are somewhere in the middle, but compared to neural

nets, SVMs, or even logistic regression, GAMs tend to have relatively

low misclassification rates which make them great for mission critical

applications where interpretability and misclassification rate are utmost

importance such as in healthcare and financial applications.

If you’ve never used a GAM before, you can look at splines to start.

Splines are smooth functions used to model nonlinear relationships

and allow you to control the degree of smoothness through a smoothing

parameter. Figure 2-3 shows some of the trade-offs between these

different models.

Chapter 2 Foundations for MLOps Systems

44

Figure 2-3.  Trade-offs between explainability and model accuracy

�Kernel Methods
The best known example of kernel methods, the support vector machine

(SVM), allows us to use the “kernel trick” and work well on text based

data which is naturally high dimensional. This means that we can embed

features in a higher, possibly infinite, dimensional space without ever

having to explicitly compute the embedding.

Kernel methods are particularly important in geostatistics applications

such as kriging (Gaussian process regression) especially in the oil and

gas industry. The main use case of kriging is to estimate the value of a

variable over a continuous spatial field. For example, you may have sensor

readings such as temperature and pressure in an oil and gas reservoir, but

you may not know the sensor readings at every position in the reservoir.

Kriging provides an inexpensive way to estimate the unknown sensor

readings based on the readings that we do know. Kriging uses a covariance

matrix and a kernel function to model the spatial relationships and

spatial dependencies of data points throughout the reservoir by encoding

similarity between features.

Chapter 2 Foundations for MLOps Systems

45

Where did these models come from? Fundamentally, these algorithms

are based on logic and mathematical properties and primitives such as

probability distributions. If we know about the Gaussian distribution, it’s

not a far stretch to understand how to build a Gaussian mixture model. If

we know about covariance matrices, we can understand kernel methods

and maybe Gaussian processes, and if we understand linear systems, we

can build on top of this abstraction to understand GAMs.

I want to illustrate this point further, by building a model from

fundamental principles. Logistic regression is particularly interesting to

use for this as most people are familiar with it, but it is not a toy model;

you can use logistic regression to solve many real-world problems

across various industries since it is fairly robust. We can also use logistic

functions to build many more complex models. For instance, the classical

version of logistic regression is used to model binary classification (e.g.,

predicting likelihood of success or failure), but by combining multiple

logistic regression models into strategies like one-vs.-all or one-vs.-

one, we can solve more complex multi-class classification problems

with a single response variable via softmax, a generalization of logistic

regression. Logistic functions can also be used to create neural networks:

It’s no coincidence that in a neural network, the activation function is

often a logistic sigmoid (pictured in the following). In this chapter’s lab

on algorithmic thinking, you’re going to walk through some of these

mathematical tools and build a logistic regression model from scratch.

Figure 2-4 shows an example of a logistic sigmoid curve.

Chapter 2 Foundations for MLOps Systems

46

Figure 2-4.  A logistic sigmoid curve

The parameter mu takes on the probability value ½ which makes

intuitive sense.

�Higher Dimensional Spaces
I want to cover one more mathematical tool for the toolkit because in data

science, unlike pure statistics, we deal with big data but also because it is

fascinating to be able to develop intuition on higher dimensional spaces by

learning to think geometrically.

You’ve probably heard of the “curse of dimensionality.” Things behave

strangely in high dimensions, for example, if we could measure the volume

of a unit sphere as we embed it into higher dimensional space, that volume

would actually shrink as the dimension increases! That is incredibly

counterintuitive. Figure 2-5 shows an artistic rendition of a shrinking

sphere in higher dimensional space (since we can only visualize in three

dimensions).

Chapter 2 Foundations for MLOps Systems

47

Figure 2-5.  A shrinking sphere illustrating the unintuitive nature of
higher dimensions

In data science in the real world, we have at minimum hundreds

of features. It is not uncommon to have 1000 or more features, and

so naturally we need a way to try to reduce the number of features.

Mathematically speaking, this means we want a way to embed our data

that lives in a high dimensional space to a lower dimensional space while

preserving information.

Going back to our favorite example, logistic regression, we

can illustrate another important mathematical tool to handle high

dimensionality, regularization.

Regularization is extremely important when applying logistic

regression because without it, the asymptotic nature of the logistic curve

at +infinity and -infinity (remember the sigmoid?) would translate into

zero loss in high dimensions. Consequently, we need strategies to dampen

Chapter 2 Foundations for MLOps Systems

48

the model complexity. The most common way is L2 regularization which

means we’ll give a higher penalty to model parameters that are nonzero.

We can also use an L1 norm (a different way of measuring distance in high

dimensional spaces). The penalty is defined as minus the square of the

L2 norm multiplied by a positive complexity parameter lambda. Lambda

controls the amount of shrinkage toward zero.

Models that use L1 regularization are called Lasso regression, and

models that use L2 are called Ridge regression. If you would like to gain

a deeper understanding of the types of norms that can exist and higher

dimensional spaces, in the next section, you will have the opportunity to

learn more about mathematical statistics in a hands-on lab.

�Lab: Mathematical Statistics
Before proceeding to the next section, you can complete the optional lab

on mathematical statistics. This will give you hands-on experience with

probability distributions by looking at an important and fundamental tool

in mathematical statistics: characteristic functions.

You’ll program a characteristic function from scratch. Characteristic

functions have many interesting properties including completely

characterizing a probability distribution and are even used in the most

basic proofs of the central limit theorem. The steps are as follows:

Step 1. Open the notebook MLOps_Lifecycle_Toolkit_Mathematical_

Statistics_Lab.ipynb (available at github.com/apress/mlops-lifecycle-

toolkit).

Step 2. Import the math, randon, and numpy packages by running cell #2.

Step 3. Create a function for computing the characteristic function of a

random normal with unit standard deviation by running cell #3.

Step 4. Run the remaining cells, to set up a coin toss experiment and

recover the probability of a fair coin from the characteristic function. Was

the coin fair?

Chapter 2 Foundations for MLOps Systems

49

Although this lab is optional because it requires some advanced math,

it’s recommended since it covers some deep mathematical territory from

probability distributions, Fourier transforms, complex numbers, and more.

�Programming Nondeterministic Systems
In order to build real-world systems, we need to understand the types

of data structures (arrays, lists, tensors, dataframes) and programming

primitives (variables, loops, control flow, functions) that you’ll likely

encounter to know what the programming is doing and to be able to read

other data scientists code.

Knowledge of data structures, algorithms, and packages can be applied

regardless of language. If you use a package, even an R package, you

should read the source code and understand what it’s doing. The danger

of not understanding what the statistical black box means the result of

an analysis that uses your code could come out inaccurate or, worse,

introduce non-determinism into your program.

Sources of non-determinism in ML systems

•	 Noisy data sets

•	 Poor random initialization of model parameters

•	 Black box stochastic operations

•	 Random shuffling, splits, or data augmentation

Chapter 2 Foundations for MLOps Systems

50

�Programming and Computational Concepts
Let’s look at some basic programming concepts.

�Loops
Loops are a mechanism to repeat a block of code. Why use loops? One

reason is you may have a block of code you want to repeat and, without a

loop, you would have to copy paste the code, creating redundant code that

is hard to read and reason about.

Another reason we use loops is for traversing a data structure such

as a list or dataframe. A list or array has many items and a dataframe has

many rows, in a well-defined order, and it is a natural way to process each

element one by one; whether that element be a row or a list depends on

the data structure.

Loops can be complex, and there’s a programming adage that goes you

should never modify a variable in a loop.

One reason loops are important in data science is twofold:

	 1)	 Many tensor operations naturally unfold into loops

(think dot product or tensor operations).

	 2)	 By counting the number of nested loops, you can get

an idea on the asymptotic behavior (written in Big-O

notation) of your algorithm; in general, nested loops

should be avoided if possible being replaced by

tensor operations.

The last technique is actually an optimization tool called

vectorization. Often, vectorized code can take advantage of low level

instructions like single instruction, multiple data, or SIMD instructions. In

fact, most GPUs use a SIMD architecture, and libraries like JAX can take

this idea to the next level if you need to run NumPy code on a CPU, GPU,

or even a TPU for high performance machine learning.

Chapter 2 Foundations for MLOps Systems

51

�Variables, Statements, and Mathematica
Expressions
What is the difference between a statement and an expression?

A statement does something that assigns a value to a variable. An

example in Python is x = 1.

This simple statement assigns the value 1 to a variable x. The variable,

x, in this case points to a memory location used to store information.

An expression on the other hand needs to be evaluated by the

interpreter (or compiler in a compiled language like C++ or Haskell)

and returns a value. Expressions can be building blocks of statements or

complex mathematical expressions. An example of an expression (but not

a statement) is the following:

(1 + 2 + x)

We can also have Boolean expressions which we’ll look at next and are

very important for making decisions.

�Control Flow and Boolean Expressions
Control flow refers to the order in which individual statements,

commands, instructions, statements, or function calls are executed.

Changing the order of statements or function calls in a program can

change the program entirely. In imperative languages (e.g., Python can

be coded in an imperative style), control flow is handled explicitly by

control flow statements such as if statements that control branching.

Usually at each branch, a choice is made and the program follows one

path depending on a condition. These conditions are called Boolean

expressions.

Chapter 2 Foundations for MLOps Systems

52

Boolean expressions involve logical operations such as AND, OR, NOT,

and XOR. These Boolean expressions can be combined in complex ways

using parentheses and as mentioned are used in control flow statements in

your program to make complex decisions.

For example, let’s suppose you have a computer program with

variables that store true and false values. You have one variable that stores

the percent missing and a second variable that stores the number of rows

in your data, and you want to exclude rows that have over 25% missing

values when your data is more than 1000 rows. You can form a Boolean

expression as follows:

If (percent_missing > 25) AND (num_rows > 1000):

 // drop rows

Of course, in a library like Pandas, there are functions like dropna for

dataframes that do this sort of low level logic for you, but you can read the

source code to understand exactly what is happening under the hood for

the functions you care about.

�Tensor Operations and Einsums
A tensor is, simply put, a generalization of vectors to higher dimensions.

There is some confusion on the use of the term since there are also tensors

in physics, but in machine learning, they’re basically a bucket for your

data. Many libraries including NumPy, TensorFlow, and PyTorch have

ways of defining and processing tensors, and if you’ve done any deep

learning you’re likely very familiar with tensors, but a cool tool I want to

add to your toolkit is Einsums.

Einsums are essentially shorthand for working with tensors, and if you

need to quickly translate complex mathematical equations (e.g., ones that

occur in data science or machine learning papers), you can often rewrite

them in Einsum notation in very succinct, elegant ways and then execute

Chapter 2 Foundations for MLOps Systems

53

them immediately in a library like PyTorch. For example, the following

Einsum equation codifies matrix multiplication, and we can implement it

in PyTorch in Listing 2-3:

Listing 2-3.  An example of Einsum notation

a = torch.arange(900).reshape(30, 30)

b = torch.arange(900).reshape(30, 30)

torch.einsum('ik,kj->ij', [a, b])

Okay, we’ve covered quite a bit. We talked about variables, loops, and

control flow and ended with tensors, a kind of bucket for high dimensional

data. However, there are many more “buckets” for your data that are useful

in data science. These are called data structures, the subject of computer

science. We’ll cover a few data structures in the next section.

�Data Structures for Data Science
This section is about data structures. While computer science has many

data structures, data scientists should be familiar with a few core data

structures like sets, arrays, and lists. We will start by introducing sets,

which might be the simplest data structure to understand if you come from

a math background.

�Sets
Sets are collections of elements. A set can contain elements, and you can

use sets for a variety of purposes in data science for de-duplication of your

data to checking set membership (that is to say, the set data structure

comes with an IN operator).

Chapter 2 Foundations for MLOps Systems

54

It is important to note that a set has no order (actually there is the

well-ordering principle that says exactly the opposite, but in Python, for

instance, and other languages, sets have no order). If we want to impose an

order when storing elements, we should use a linear data structure like an

array or a list, which we’ll cover next.

�Arrays and Lists
The most fundamental distinction between an array and a list is that a list

is a heterogeneous data structure, and this mean it can store a mix of data

types, for example strings, floats, Booleans, or even more complex user

defined types.

 An array on the other hand is homogenous; it only is designed to store

one type of value.

In Python, lists are a primitive data type and part of the core language.

The ability to use list comprehensions instead of loops for mathematical

constructs is very useful in data science. However, for efficient processing

of data, we can use a library like NumPy which has a concept of arrays.

This is known as a trade-off, and in this case, the trade-off exists between

efficiency and convenience.

Part of being a good technical decision-maker is understanding these

types of technical trade-offs and the consequences on your own project.

For example, if you decide to profile your code and find you’re running

into memory errors, you might consider changing to a more efficient data

structure like a NumPy array, maybe even with a 32 bit float if you don’t

need the extra precision of a 64 bit floating point number.

There are many different types of data structures and we’ll provide

resources for learning about more advanced types (one of the core subjects

of computer science), but for now, we’ll take a look at a more complex type

that you should be aware of such as hash maps, trees, and graphs.

Chapter 2 Foundations for MLOps Systems

55

�Hash Maps
Hash maps are an associative data structure; they allow the programmer to

associate a key with a value.

They provide very fast lookup by keys, allowing you to retrieve a value

corresponding to a key in O(1) time by using dynamically sized arrays

under the hood and allow you to retrieve a value you’ve associated with

your key.

If you didn’t have this kind of associative data structure, you’d have to,

for instance, store your elements as an array of tuples and would need to

write code to search for each key you wanted to locate in the array. This

would not be very efficient, so when we want to associate one piece of

information with another and only care about being able to retrieve the

value we’ve mapped to a particular key, we should consider hash maps.

The point is, having a command of data structures can simplify your code

drastically and make it more efficient.

In Python, a hash map is called a dictionary. One point to keep in mind

when using hash maps is that the keys should be hashable, meaning a

string is OK for a key but a mutable data type like a list that can be changed

is not allowed.

�Trees and Graphs
A graph is a mathematical data structure consisting of nodes and edges.

The nodes are also called vertices. The difference between a tree and a

graph is that a tree has a root node. In a graph there is no root node that

is unique but both structures can be used for representing many different

types of problems. Graph neural networks and graph databases are huge

topics today in machine learning and MLOps, and part of the reason is

that a graph, like a set, is a very general mathematical way of representing

relationships between concepts that can be easily stored on a computer

and processed.

Chapter 2 Foundations for MLOps Systems

56

You should be aware of a couple kinds of trees and graphs in particular

binary trees and DAGs.

�Binary Tree
A binary tree is a tree (it has a root node), and each node including the root

has either 2 (hence binary) children or 0 children (in this case, we call it a

leaf node). A picture of a binary tree is shown in Figure 2-6.

Figure 2-6.  A binary tree

Binary trees can be complete or perfect or have additional structure

that makes them useful for searching such as binary search trees.

Chapter 2 Foundations for MLOps Systems

57

�DAGs
A graph is a generalization of a tree. A graph however can have cycles,

meaning if you were to visit every node and follow its neighbor, you may

find yourself in an infinite loop. An important type of graph with no cycles

is called an acyclic graph and is often used in MLOps tools like Airflow to

represent data flow. Directed acyclic graphs are called “DAGs” and have

a variety of uses in MLOps (e.g., the popular Airflow library uses DAGs for

creating pipelines).

�SQL Basics
We’ve covered programming languages like Python, but you also need to

know how to manipulate data in your programs. SQL is actually based on

relational algebra and the set data structure we covered previously (the

foundations were written by Edger F. Codd). SQL consists of queries and

the queries can be broken down into statements. A SQL statement consists

of the following clauses executed in the following order:

•	 FROM

•	 JOINS on other tables

•	 WHERE clause for filtering data

•	 GROUP BY for aggregating by multiple columns

•	 HAVING for filtering after aggregation

•	 SELECT for selecting columns or fields you want to use

in your data set

•	 ORDER BY for sorting data by one or more columns

(this can cause performance issues and should only be

used sparingly)

Chapter 2 Foundations for MLOps Systems

58

A common table expression or CTE is a very useful construct when

operationalizing data science code. The reason it is so powerful is that

a CTE allows you to think algorithmically, by breaking down your SQL

query into a series of steps. Each step can depend on previous steps and is

materialized as a kind of “virtual table.” A simple example of a CTE is given

in the following; this CTE first creates a base table called Sensor_CTE and

then selects from it in Listing 2-4.

Listing 2-4.  An example of a common table expression or CTE

-- An example of a CTE

WITH Sensor_CTE (SalesPersonID, SalesOrderID, SalesYear)

AS

-- Define the CTE query.

(

 �SELECT ID as Component, MAX(Pressure) as Pressure,

AVG(Temperature) as Temperature

 FROM Sensor.Readings

 WHERE ID IS NOT NULL

 GROUP BY ID

)

-- Define the outer query referencing the CTE name.

SELECT Component, Temperature

FROM Sensor_CTE;

Understanding how joins and common table expressions (CTEs) work

is typically what separates beginners from advanced SQL users. Most

data science code requires multiple passes on data sets, and CTEs are a

natural way to write more complex SQL code that requires multiple steps

to process data.

Chapter 2 Foundations for MLOps Systems

59

�Algorithmic Thinking for Data Science
An algorithm is essentially a set of rules or instructions for performing

calculations that occur in a certain sequence. You can think of it like

a recipe. Unlike recipes though, algorithms will usually involve data

structures for storing data, and the heart of the algorithm will be

manipulating these data structures to solve a problem. Unfortunately,

you need to learn algorithmic thinking, and by doing so, we’ve created

a lab for you. In the lab, you’re going to start with data structures we’ve

learned to build some basic mathematical primitives like sigmoid function

and logistic curve and combine these abstractions to build your own

logistic regression model. Refer to the Jupyter notebook labs for this

chapter entitled “Building a Logistic Regression Model from Scratch,” and

complete the lab before continuing to the next section.

�Core Technical Decision-Making: Choosing
the Right Tool
Beyond this section, we’re going to assume you’ve completed the labs and

have a basic grasp on programming fundamentals. Before covering specific

packages and frameworks for translating experiments and thoughts into

executable code, I want to discuss technical decision-making briefly and

how we should think about choosing the right framework for our problem.

The most important criterion in the real world is considering what

tools and frameworks are already being used by your organization,

colleagues, and the community behind the framework. Although you

might be tempted to use a package from a language like Julia or Haskell,

you should carefully consider whether or not you’ll have to translate your

problem into another language at some point in the future if either the

package is no longer supported or because nobody in your organization

has the skill set required.

Chapter 2 Foundations for MLOps Systems

60

�Translating Thoughts into Executable Code
You might want to choose one of the following packages and dive deeper

into some frameworks that are used in the real world to build machine

learning models. In later chapters, we’ll walk you through how to create

your own packages. The important thing here is understanding that these

tools we depend on in data science like Pandas or Numpy or PyTorch are

just packages someone (or a team of people) have written and created. You

too can learn to create your own packages, but first we need to understand

why we use packages and how it makes our lives as both data scientists

and MLOps engineers easier.

�Understanding Libraries and Packages
What is the point of a software package? Why not use a notebook?

Packages allow us to bundle code together and give it a name, import it,

and reference objects inside the package so we can reuse them without

having to rewrite those objects. Packages can also be versioned (see

semantic versioning4).

For example, you may have heard of RStudio package manager for R

or pip for Python. Before experimenting with any of the packages listed

in the following, you should understand the package manager in your

language of choice so you can install the package. We also recommend

environments to isolate dependencies. We’ll cover the gritty details of

package managers and environments in Chapter 3, but for now here is a

broad overview of some of the most interesting packages you might come

across as an MLOps engineer.

4 Semantic versioning 2.0.0 can be found at https://semver.org/.

Chapter 2 Foundations for MLOps Systems

https://doi.org/10.1007/978-1-4842-9642-4_3
https://semver.org/

61

�PyMc3 Package
An active area of research is in probabilistic programming. The PyMc3

library contains various primitives for creating and working with random

variables and models. You can perform MCMC (Markov chain Monte

Carlo) sampling and directly translate statistical models into code.

Something to keep in mind is at the current time, these algorithms

may not be very scalable, so you’ll usually only see Bayesian optimization

applied to the hyperparameter search part of a machine learning

lifecycle using libraries like HyperOpt; however, we mention probabilistic

programming as Bayesian statistics is slowly becoming a part of

mainstream data science.

�Numpy and Pandas
Numpy and Pandas are the bread and butter of most data science

workflows. We could write an entire chapter covering just these

libraries, but we’ll mention for the uninitiated that Pandas is a data

wrangling library. It provides a data structure called a DataFrame for

processing structured data and various methods for reading csv files and

manipulating dataframes. NumPy has the concept of ndarrays and allows

you to process numerical data very fast without having to know much

about C++ or low level hardware.

�R Packages
R uses a package system called CRAN which makes available R binaries.

Unlike Python, CRAN packages typically have higher dependency on other

packages and tend to be focused on specific areas of statistical computing

and data visualization.

Chapter 2 Foundations for MLOps Systems

62

The reason data scientists still use R is many packages written by

researchers and statisticians are written in R. However, you should be

aware of the following interoperability and scalability issues with R:

•	 R is not as widely supported; for example, the machine

learning SDK uses R, but there is a lag between when

features are released in Python and when they become

available in R.

•	 Writing clear, concise and easy to read code in R

requires considerable skill and even then there are

leaky abstractions which make code difficult to

maintain such as

•	 R is not scalable and has memory limitations. For

scalable R, we recommend Databricks using SparkR.

A lot of R packages revolve around the TidyVerse. You should be

familiar with the following basic R packages:

Deplyr: Deplyr is a package that is similar to Pandas in Python and is

used for data wrangling. The package provides primitives such as filter

and melt.

Shiny: The R ecosystem’s answer to dashboarding in data science,

Shiny is a package for authoring dashboards in R and fulfills the same need

as Dash in Python. The advantage of ShinyR is you can build web apps

without having to know how web development works. The web apps can

be interactive, and you can interact with different panels of the dashboard

and have multiple data sources to visualize data sets. We don’t recommend

Shiny as it can be hard to deploy to a web server securely.

SAS: SAS is a language of statistical programming. SAS is a procedural

language. SAS requires a SAS license and is common in healthcare and

finance industry where exact statistical procedures need to be executed.

MATLAB/OCTAVE: MATLAB and the open source version Octave

are libraries for linear algebra. If you are prototyping a machine learning

algorithm whose primitives can be expressed using matrix operations

Chapter 2 Foundations for MLOps Systems

63

(which is a lot of machine learning), then you might consider using one

of these languages. MATLAB is also particularly popular in engineering

disciplines for simulations and is used in numerical computing.

PySpark: Spark is a framework for distributed computing and has a

tool called PySpark that allows you to write code similar to Pandas using

dataframes but in a scalable way. You can translate between Pandas and

Pyspark using the latest Pandas API for spark (replacement for Koalas)

and process gigabytes or even terabytes of data without running into out

of memory errors. Other alternatives are called “out of core” solutions and

include Dask or Modin that utilize disk storage as an extension of core

memory in order to handle memory-intensive workloads.

�Important Frameworks for Deep Learning
There are many frameworks in Python for deep learning and working

with tensors. PyTorch and TensorFlow 2.0 with Keras API are the most

popular. Although we could implement our own routines in a package like

the NumPy example to build your own 2D convolutional layer and use

these functions to build a convolutional neural network, in reality, this

would be too slow. We would have to implement our own gradient descent

algorithm, auto differentiation, and GPU and hardware acceleration

routines. Instead, we should choose PyTorch or TensorFlow.

�TensorFlow
TensorFlow is an end to end machine learning framework for deep

learning. TensorFlow is free and open sourced under Apache License 2.0

and supports a wide variety of platforms including MacOS, Windows,

Linux, and even Android. TensorFlow 1.0 and TensorFlow 2.0 have

significant differences in APIs, but both provide the tensor as a core

abstraction allowing the programmer to build computational graphs to

represent machine learning algorithms.

Chapter 2 Foundations for MLOps Systems

64

�PyTorch
The advantage is PyTorch is class oriented, and if you have a strong Python

background, you can write a lot of custom code in an object oriented

style without having to be very familiar with how the APIs work like in

TensorFlow. PyTorch for this reason is used in academic papers on machine

learning and is a solid choice for prototyping machine learning solutions.

�Theano
PyMC3 is written on top of Theano as well as some other interesting

projects, but Theano is no longer supported so it is not recommended for

ML development or MLOps.

�Keras
Prior to the introduction of the Keras API, developers required specific

knowledge of the API. Keras however is very beginner friendly, and some

useful features of TensorFlow are GPU awareness (you do not need to

change your code to use a GPU if one is available, as TensorFlow will

detect if for you); the Keras API is very intuitive for beginners, and there

is a large community around TensorFlow so bugs and CVEs (security

vulnerabilities) are patched regularly. Post TensorFlow 2.0 release, you can

also do dynamic execution graphs.

�Further Resources in Computer
Science Foundations
We’ve covered a lot of ground, discussed data structures and algorithmic

thinking, and covered the basics of computer science required to work

Chapter 2 Foundations for MLOps Systems

65

with data such as graphs, dataframes, tables, and the basics of SQL. We’ve

talked about R and Python, two common languages for data science, and

some of their common packages.

However, it is important to stress this is only the minimum. It

would not be possible to cover a complete course in computer science

for data scientists in this chapter, and so the best we can do is provide

some recommended reading so you can educate yourself on topics

you’re interested in or fill in gaps in your knowledge to become better

programmers. We’ve curated the following list of books on computer

science that we think would be most valuable for data scientists.

•	 Introduction to Algorithms by Rivest5

•	 Bayesian Methods for Hackers by Davidson Pilon6

In general, you can read a book on functional analysis (for infinite

dimensions) or linear algebra (for finite dimensional spaces) provided in

the following.

�Further Reading
in Mathematical Foundations
Although we covered some mathematical concepts in this chapter, it would

not be possible to cover even the simplest areas like linear algebra in detail

without further resources. Some areas you may be interested in pursuing

on your own are Bayesian statistics7 (understanding Bayes’ rule, Bayesian

5 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to
Algorithms. MIT Press.
6 Davidson-Pilon, C. (2015). Bayesian Methods for Hackers: Probabilistic
Programming and Bayesian Inference. Addison-Wesley Professional.
7 McElreath, R. (2015). Statistical Rethinking: A Bayesian Course With Examples in
R and Stan. Chapman & Hall/CRC.

Chapter 2 Foundations for MLOps Systems

66

inference, and statistical thinking), statistical learning theory8 (the rigorous

foundations of the many learning algorithms we use in MLOps), and of

course linear algebra9 (in particular finite dimensional vector spaces are a

good stepping stone to understand more advanced concepts).

�Summary
In this chapter, we discussed the importance of understanding mathematical

concepts and how MLOps systems can be viewed as stochastic systems

that are governed by mathematical abstractions. By understanding these

mathematical abstractions and having an understanding of data structures

and algorithmic thinking, we can become better technical decision-makers.

Some of the topics we covered in this chapter include the following:

•	 Programming Nondeterministic systems

•	 Data Structures for Data Science

•	 Algorithmic Thinking for Data Science

•	 Translating Thoughts into Executable Code

•	 Further Resources on Computer Science

In the next chapter, we will take a more pragmatic perspective and look

at how we can use these abstractions as tools and software packages when

developing stochastic systems in the real world.

8 Hastie, T., Tibshirani, R., & Friedman, J. (2013). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Science & Business Media.
9 Halmos, P. (1993). Finite-Dimensional Vector Spaces. Springer.

Chapter 2 Foundations for MLOps Systems

	Chapter 2: Foundations for MLOps Systems
	Mathematical Thinking
	Linear Algebra
	Probability Distributions
	Understanding Generative and Discriminative Models

	Bayesian Thinking
	Gaussian Mixture Models
	General Additive Models
	Kernel Methods
	Higher Dimensional Spaces
	Lab: Mathematical Statistics
	Programming Nondeterministic Systems
	Programming and Computational Concepts
	Loops
	Variables, Statements, and Mathematica Expressions
	Control Flow and Boolean Expressions
	Tensor Operations and Einsums

	Data Structures for Data Science
	Sets
	Arrays and Lists
	Hash Maps
	Trees and Graphs
	Binary Tree
	DAGs

	SQL Basics
	Algorithmic Thinking for Data Science
	Core Technical Decision-Making: Choosing the Right Tool
	Translating Thoughts into Executable Code
	Understanding Libraries and Packages
	PyMc3 Package

	Numpy and Pandas
	R Packages
	Important Frameworks for Deep Learning
	TensorFlow
	PyTorch
	Theano
	Keras

	Further Resources in Computer Science Foundations
	Further Reading in Mathematical Foundations
	Summary

