
1

CHAPTER 1

Introducing MLOps
As data scientists we enjoy getting to see the impact of our models in the

real world, but if we can’t get that model into production, then the data

value chain ends there and the rewards that come with having high-impact

research deployed to production will not be achieved. The model will

effectively be dead in the model graveyard, the place where data science

models go to die.

So how do we keep our models out of this model graveyard and

achieve greater impact? Can we move beyond simply measuring key

performance indicators (KPIs) to moving them so that our models become

the driver of innovation in our organization? It’s the hypothesis of this

book that the answer is yes but involves learning to become better data-

driven, technical decision makers. In this chapter, I will define MLOps, but

first we need to understand the reasons we need a new discipline within

data science at all and how it can help you as a data scientist own the

entire lifecycle from model training to model deployment.

�What Is MLOps?
Imagine you are the director of data science at a large healthcare company.

You have a team of five people including a junior data analyst, a senior

software (data) engineer, an expert statistician, and two experienced

data scientists. You have millions of data sets, billions of data points

from thousands of clinical trials, and your small team has spent the last

several sprints developing a model that can change real people’s lives.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_1

https://doi.org/10.1007/978-1-4842-9642-4_1#DOI

2

You accurately predict the likelihood that certain combinations of risk

factors will lead to negative patient outcomes, predict the posttreatment

complication rate, and you use an inflated Poisson regression model to

predict the number of hospital visits based on several data sources. Your

models are sure to have an impact, and there’s even discussion about

bringing your research into a convolutional neural network used to aid

doctors in diagnosing conditions. The model you created is finally at the

cutting edge of preventative medicine. You couldn’t be more excited, but

there’s a problem.

After several sprints of research, exploratory data analysis (EDA), data

cleaning, feature engineering, and model selection, you have stakeholders

asking some tough questions like, When is your model going to be in

production? All of your code is in a Jupyter notebook, your cleaning scripts

scattered in various folders on your laptop, and you’ve done so many

exploratory analyses you’re starting to have trouble organizing them.

Then, the chief health officer asks if you can scale the model to include

data points from Canada and add 100 more patient features to expand

into new services all while continuing your ad hoc analysis for the clinical

trial. By the way, can you also ensure you’ve removed all PII from your

thousands of features and ensure your model is compliant with HIPAA

(Health Insurance Portability and Accountability Act)? At this point, you

may be feeling overwhelmed.

As data scientists we care about the impact our models have on

business, but when creating models in the real world, the process of

getting your model into production so it’s having an impact and creating

value is a hard problem. There are regulatory constraints; industry-

specific constraints on model interpretability, fairness, data science ethics;

hard technical constraints in terms of hardware and infrastructure; and

scalability, efficiency, and performance constraints when we need to scale

our models to meet demand and growing volumes of data (in fact, each

order of magnitude increase in the data volume leads to new architectures

entirely).

Chapter 1 Introducing MLOps

3

MLOps can help you as a data scientist take control of the entire

machine learning lifecycle end to end. This book is intended to be a

rigorous approach to the emerging field of ML engineering, designed for

the domain expert or experienced statistician who wants to become a

more end-to-end data scientist and better technical decision maker.

The plan then is to use the language of data science, examples from

industries and teach you the tools to build ML infrastructure; deploy

models; set up feature groups, training pipelines, and data drift detection

systems to accelerate your own projects; comply with regulatory

standards; and reduce technical debt. Okay, so with this goal in mind, let’s

teach you the MLOps lifecycle toolkit, but first let us take the first step in a

million-mile journey and define exactly what we mean by MLOps.

�Defining MLOps
We need to define MLOps, but this is a problem because at the present

time, MLOps is an emerging field. A definition you’ll often hear is that

MLOps is the intersection of people, processes, and technology, but this

definition lacks specificity. What kind of people? Domain experts? Are the

processes in this definition referring to DevOps processes or something

else, and where in this definition is data science? Machine learning is but

one tool in the data scientist’s toolkit, so in some sense, MLOps is a bit of

a misnomer as the techniques for deploying and building systems extend

beyond machine learning (you might think of it as “Data Science Ops”).

In fact, we are also not talking about one specific industry where all of

the MLOps techniques exist. There is no one industry where all of the data

science is invented first, but in fact each industry may solve data science

problems differently and have its own unique challenges for building

and deploying models. We revised the definition and came up with the

following definition that broadly applies to multiple industries and also

takes into account the business environment.

Chapter 1 Introducing MLOps

4

MLOps definition: MLOps (also written as ML Ops) is the intersection

of industry domain experts, DevOps processes, and technology for

building, deploying, and maintaining reliable, accurate, and efficient data

science systems within a business environment. Figure 1-1 illustrates this.

Figure 1-1.  Stakeholders will never trust a black box

In machine learning, we solve optimization problems. We have data,

models, and code. Moreover, the output of models can be non-deterministic

with stochastic algorithms that are difficult to understand or communicate

due to their mathematical nature and can lead stakeholders to viewing the

system as an opaque “black box.” This view of a machine learning system as

a black box is a real barrier to trusting the system and ultimately accepting

its output. If stakeholders don’t trust your model, they won’t use your model.

MLOps can also help you track key metrics and create model transparency.

This is the reason machine learning in the real world is a hard problem.

Oftentimes the models themselves are a solved problem. For example, in

the transportation sector, we know predicting the lifetime of a component

in a fleet of trucks is a regression problem. For other problems, we may

have many different types of approaches and even cutting-edge research

Chapter 1 Introducing MLOps

5

that has not been battle-tested in the real world, and as a machine learning

engineer, you may be the first to operationalize an algorithm that is

effectively a black box, which not only is not interpretable but may not

be reliable. We need to be transparent about our model output and what

our model is doing, and the first step is to begin measuring quality and

defining what success means in your project.

So how do we even begin to measure the quality of an MLOps solution

when there is so much variability in what an MLOps solution looks like?

The answer to this conundrum is the MLOps maturity model, which

applies across industries.

�MLOps Maturity Model
What does it mean to have “good” MLOps practices, and what is the

origin of this term? You probably have several questions around MLOps

and might be wondering what the differences are between MLOps and

software development, so let us first discuss, in the ideal case, what MLOps

looks like by presenting the maturity model in diagram form (Figure 1-2).

Chapter 1 Introducing MLOps

6

Figure 1-2.  MLOps maturity model

Notice that the key differentiator from DevOps to stage 2 MLOps is

the existence of an automated training pipeline with automated reporting

requiring data management and infrastructure for reporting. The key

differentiator from stage 2 to stage 3 is the existence of automated release

pipelines (model management), and the differentiator between stage 3

and the final stage (full-blown MLOps) is we approach high reliability

including specific subsystems to detect data and model drift and some way

of creating feedback required to “move the needle” on key measurements

we’ll cover.

�Brief History of MLOps

MLOps has its history in DevOps processes. DevOps, the merging of

the words “Dev” and “Ops,” changed the way software developers built,

deployed, and maintained large-scale software systems. DevOps includes

best practices for automating, continuous delivery, software testing and

emphasizes developing software for the end user. However, if you notice

the diagram of the MLOps maturity model, DevOps is not the same as

MLOps, and it is not sufficient to apply DevOps principles to data science

without some adaptation.

Chapter 1 Introducing MLOps

7

MLOps in contrast is about continuous delivery of machine learning

systems but extends this idea to continuous training and reproducibility

(an important part of the scientific process).

You may be thinking, well, software development is software

development, which naturally encompasses parts of the software

development lifecycle including infrastructure as code (creating reusable

environments), containerization, CI/CD pipelines, and version and model

control systems. However, this stuff does not automatically give you model

management and data management best practices. Hence, MLOps takes

DevOps a step further and can be thought of as a multi-dimensional

version of DevOps that fuses together best practices from software

engineering, ModelOps, and DataOps to move key metrics such as

interpretability, accuracy, reliability, and correlation with key performance

indicators specific to your industry.

�Defining the Relationship Between Data Science
and Engineering

Okay, we have defined MLOps, but it’s important we have a clear idea

on what we mean by data science and software engineering and the

differences between them.

For the purpose of this book, we use data science as an umbrella

term for a multidisciplinary approach to extracting knowledge from data

that uses the scientific method. Data science uses machine learning as a

tool. This is why we talk about stochastic systems instead of just machine

learning systems since MLOps practices can apply to more than just

machine learning, for example, operationalizing something more abstract

like a causal model or Bayesian network or custom statistical analysis. In

the next section, we will look at some general patterns for data science

projects.

Chapter 1 Introducing MLOps

8

�What Are the Types of Data
Science Projects?
It is vital to understand the types of data science projects you might

encounter in the real world before we dive into the MLOps lifecycle, which

will be the focus of the rest of the book. We will look at supervised machine

learning, semi-supervised machine learning, reinforcement learning,

probabilistic programming paradigms, and statistical analysis.

�Supervised Machine Learning
Supervised machine learning is a machine learning problem that requires

labeled input data. Examples of supervised learning include classification

and regression. The key is labeled data. For example, in NLP (natural

language processing), problems can be supervised. You might be building a

classification model using a transformer architecture to recommend products

for new customers based on free-form data. Although you might know how

to build a transformer model in PyTorch or TensorFlow, the challenge comes

from labeled data itself. How do you create labels? Furthermore, how do you

ensure these labels are consistent? This is a kind of chicken and egg problem

that machine learning teams often face, and although there are solutions

like Mechanical Turk, with privacy and data regulations like GDPR, it may be

impossible to share sensitive data, and so data needs to be labeled internally,

creating a kind of bottleneck for some teams.

�Semi-supervised Machine Learning
In semi-supervised problems, we have a rule for generating labels but

don’t explicitly have labeled data. The difference between semi-supervised

algorithms is the percentage of training data that is unlabeled. Unlike

supervised learning where consistency of labels may be an issue, with

semi-supervised the data may consist of 80% unlabeled data and a small

Chapter 1 Introducing MLOps

9

percentage, say 20%, of labeled data. In some cases like fraud detection in

banking, this is a very important class of machine learning problems since

not all cases of fraud are even known and identifying new cases of fraud

is a semi-supervised problem. Graph-based semi-supervised algorithms

have been gaining a lot of traction lately.

�Reinforcement Learning
Reinforcement learning is a type of machine learning where the goal is to

choose an action that maximizes a future reward. There are several MLOps

frameworks for deploying this type of machine learning system such as

Ray, but some of the challenge is around building the environment itself,

which may consist of thousands, millions, or billions of states depending

on the complexity of the problem being modeled. We can also consider

various trade-offs between exploration and exploitation.

�Probabilistic Programming
Frameworks like PyMC3 allow data scientists to create Bayesian models.

Unfortunately, these models tend not to be very scalable, and so this type

of programming for now is most often seen during hyper-parameter tuning

using frameworks like Hyperopt where we need to search over a large but

finite number of hyper-parameters but want to perform the sweep in a

more efficient way than brute force or grid search.

�Ad Hoc Statistical Analysis
You may have been asked to perform an “EDA” or exploratory data analysis

before, often the first step after finding suitable data sources when you’re

trying to discover a nugget of insight you can act upon. From an MLOps

perspective, there are important differences between this kind of “ad

hoc” analysis and other kinds of projects since operationalizing an ad hoc

analysis has unique challenges.

Chapter 1 Introducing MLOps

10

One challenge is that data scientists work in silos of other statisticians

creating ad hoc analysis. Ad hoc analysis is kind of an all-in category for

data science code that is one-off or is not meant to be a part of an app or

product since the goal may be to discover something new. Ad hoc analysis

can range from complex programming tasks such as attribution modeling

to specific statistical analysis like logistic regression, survival analysis, or

some other one-off prediction.

Another noteworthy difference between ad hoc analysis and other types

of data science projects is ad hoc analysis is likely entirely coded in a Jupyter

notebook either in an IDE for data scientists such as Anaconda in the case

the data scientist is running the notebook locally or Databricks notebook in

the cloud environment collaborating with other data scientists.

An ad hoc analysis may be a means to an end, written by a lone data

scientist to get an immediate result such as estimating a population

parameter in a large data set to communicate to stakeholders.

Examples of ad hoc analysis might include the following:

•	 Computing correlation coefficient

•	 Estimating feature importance for a response variable

in an observational data set

•	 Performing a causal analysis on some time series data

to determine interdependencies among time series

components

•	 Visualizing a pairwise correlation plot for variables in

your data set to understand dependence structure

�The Two Worlds: Mindset Shift from Data
Science to Engineering
It is no secret that data science is a collaborative sport. The idea of a

lone data scientist, some kind of mythical persona that is able to work in

isolation to deliver some groundbreaking insight that saves the company

Chapter 1 Introducing MLOps

11

from a disaster using only sklearn, probably doesn’t happen all that often

in a real business environment. Communication is king in data science;

the ability to present analysis and explain what your models are doing to

an executive or a developer requires to shift mindsets and understand your

problem from at least two different perspectives: the technical perspective

and the business perspective. The business perspective is talked about

quite a bit, how to communicate results to stakeholders, but what about

the other half of this? Communicating with other technical but non–data

science stakeholders like DevOps and IT?

The topic of cross-team communication in data science crops up when

requesting resources, infrastructure, or more generally in any meetings

with non–data scientists such as DevOps, IT, data engineering, or other

engineering-focused roles as a data scientist.

Leo Breiman, the creator of random forests and bootstrap aggregation

(bagging), wrote an essay entitled “Statistical Modeling: The Two Cultures.”

Although Breiman may not have been talking about type A and type B

data scientists specifically, we should be aware that in a multidisciplinary

field like data science, there’s more than one way to solve a problem and

sometimes one approach, although valid, is not a good culture fit for every

technical team and needs to be reframed.

�What Is a Type A Data Scientist?
Typically a type A data scientist is one with an advanced degree in

mathematics, statistics, or business. They tend to be focused on

the business problem. They may be domain experts in their field or

statisticians (both frequentist or Bayesian), but they might also come from

an applied math or business background and be non-engineering.

These teams may work in silos because there is something I’m going

to define as the great communication gap between type A and type B data

scientists. The “B” in type B stands for building (not really, but this is how

you can remember the distinction).

Chapter 1 Introducing MLOps

12

As data science matures, the distinction may disappear, but more than

likely data scientists will split into more specialized roles such as data

analyst, machine learning engineer, data engineer, and statistician, and it

will become even more important to understand this distinction, which we

present in Table 1-1.

Table 1-1.  Comparing Type A and Type B Data Scientists

Type A Data Scientist Type B Data Scientist

Focuses on understanding the process

that generated the data

Focuses on building and deploying

models

Focuses on measuring and defining the

problem

Focuses on building infrastructure and

optimizing models

Values statistical validity, accuracy, and

domain expertise

Values system performance, efficiency,

and engineering expertise

�Types of Data Science Roles
Over the past decade, data science roles have become more specialized,

and we often see roles such as data analyst, data engineer, machine

learning engineer, subject matter expert, and statistician doing

data science work to address challenges. Here are the types of data

science roles:

•	 Business analysts: Problems change with the market

and model output (called data drift or model drift).

The correlation of model output with key business

KPIs needs to be measured, and this may require

business analysts who understand what the business

problem means.

Chapter 1 Introducing MLOps

13

•	 Big data devs: Data volume can have properties such

as volume, veracity, and velocity that transactional

systems are not designed to address and require

specialized skills.

•	 DevOps: Data needs to be managed as schemas change

over time (called schema drift) creating endless

deployment cycles.

•	 Non-traditional software engineers: Data scientists are

often formally trained in statistics or business and not

software engineering.

Even within statistics, there is division between Bayesians and

frequentists. In data science there are also some natural clusters of skills,

and often practitioners have a dominant skill such as software engineering

or statistics.

Okay, so there’s a rift even within statistics itself, but what about across

industries? Is there one unified “data scientist”?

For example, geospatial statistics is its own beast with spatial

dependence of the data unlike most data science workflows, and in

product companies, R&D data scientists are highly sought after as not

all model problems are solved and they require iterating on research

and developing reasoning about data from axioms. For example, a retail

company may be interested in releasing a new product that has never been

seen on the market and would like to forecast demand for the product.

Given the lack of data, novel techniques are required to solve the “cold

start” problem. Recommender systems, which use a collaborative filtering

approach to solve this problem, are an example, but oftentimes out-of-

the-box or standard algorithms fall short. For example, slope-one, a naive

collaborative filtering algorithm, has many disadvantages.

Chapter 1 Introducing MLOps

14

�Hackerlytics: Thinking Like an Engineer
for Data Scientists
The ability to build, organize, and debug code is an invaluable skill even

if you identify as a type “A” data scientist. Automation is a key ingredient

in this mindset, and we will get there (we cover specific MLOps tools like

PySpark, MLflow, and give an introduction to programming in Python and

Julia in the coming chapters), but right now we want to focus on concepts.

If you understand the concept of technical debt, which is particularly

relevant in data science, and the need to future-proof your code, then you

will appreciate the MLOps tools and understand how to use them without

getting bogged down in technical details. In order to illustrate the concept

of technical debt, let’s take a look at a specific example that you might have

encountered when building a machine learning pipeline with real data.

�Anti-pattern: The Brittle Training Pipeline
Suppose you work for a financial institution where you’re asked by your

data science lead to perform some data engineering task like writing a

query that pulls in the last 24 months of historical customer data from

an analytical cloud data warehouse (the database doesn’t matter for this

example; it could be anything like a SQL Pool or Snowflake). The data will

be used for modeling consumer transactions and identifying fraudulent

transactions, which are only 0.1% of the data.

You need to repeat this process of extracting customer transaction

data and refreshing the table weekly from production so you have the

latest to build important features for each customer like number of recent

chargebacks and refunds. You are now faced with a technical choice: do

you build a single table, or do you build multiple tables, one for each week

that may make it easier for you to remember?

Chapter 1 Introducing MLOps

15

You decide to opt for this latter option and build one table per week

and adjust the name of the table, for example, calling it something such

as historical_customer_transactions_20230101 for transaction dates

ending on January 1, 2023, and the next week historical_customer_

transactions_20230108 for transactions ending on January 8, 2023.

Unfortunately, this is a very brittle solution and may not have been a good

technical decision.

What is brittleness? Brittleness is a concept in software engineering

that is hard to grasp without experiencing its future consequences. In this

scenario, our solution is brittle because a single change can break our

pipelines or cause undue load on IT teams. For example, within six months

you will have around 26 tables to manage; each table schema will need

to be source controlled, leading to 26 changes each time a new feature

is added. This could quickly become a nightmare, and building training

pipelines will be challenging since you’ll need to store an array of dates

and think about how to update this array each time a new date is added. So

how do we fix this?

If we pick the first option, a single table, can we make this work and

eliminate the array of dates from our training pipeline and reduce the

effort it takes to manage all of these tables? Yes, easily in this case we can

add metadata to our table, something like a snapshot date, and give our

table a name that isn’t tethered to a specific datetime, something like

historical_customer_transaction (whether your table name is plural or

singular is also a technical decision you should establish early in your

project). Understanding, evaluating, and making technical decisions like

this comes with experience, but you can learn to become a better technical

decision maker by applying our first MLOps tool: future-proofing your code.

Chapter 1 Introducing MLOps

16

�Future-Proofing Data Science Code
As we discussed, a better way to store historical transaction data is to

add an additional column to the table rather than in the table name itself

(which ends up increasing the number of tables we have to manage and

thus technical debt, operational risk, and weird code necessary to deal

with the decision such as handling an unnecessary dynamic array of dates

in a training pipeline).

From a DevOps perspective, this is fantastic news because you will

reduce the IT load from schema change and data change down to a simple

insert statement.

As you develop an engineering sense should be asking two questions

before any technical decision:

•	 Am I being consistent? (Example: Have I used this

naming convention before?)

•	 If I make this technical decision, what is the future

impact on models, code, people, and processes?

Going back to our original example, by establishing a consistent

naming convention for tables and thinking about how our naming

convention might impact IT that may have to deploy 26 scripts to refresh

a table, if we choose a poor naming convention such as table sprawl, code

spiral, or repo sprawl, we’ll start to see cause and effect relationships and

opportunities to improve our project and own workload as well. This leads

us to the concept of technical debt.

Chapter 1 Introducing MLOps

17

�What Is Technical Debt?
“Machine learning is the high interest credit card of technical debt.”1

Simply put, technical debt occurs when we write code that doesn’t

anticipate change. Each suboptimal technical decision you make now

doesn’t just disappear; it remains in your code base and will at some point,

usually at the worst time (Murphy’s Law), come back to bite you in the

form of crashed pipelines, models that choke on production data, or failed

projects.

Technical debt may occur for a variety of reasons such as prioritizing

speed of delivery over all else or a lack of experience with basic software

engineering principles such as in our brittle table example. To illustrate the

concept of technical debt and why it behaves like real debt, let’s consider

another industry-specific scenario.

Imagine you are told by the CEO of a brick-and-mortar retail company

that you need to build a model to forecast customer demand for a new

product. The product is similar to one the company has released before,

so there is data available, but the goal is to use the model to reduce costs

of storing unnecessary product inventory. You know black box libraries

won’t be sufficient and you need to build a custom model and feature

engineering library.

Your engineering sense is telling you that building a custom solution

will require understanding various trade-offs. Should you build the perfect

model and aim for 99% accuracy and take a hit on performance? Does

the business need 99% accuracy, or will forecasting demand with 80%

accuracy be sufficient to predict product inventory levels two weeks in

advance?

1 Machine Learning: The High Interest Credit Card of Technical Debt

Chapter 1 Introducing MLOps

https://research.google.com/pubs/pub43146.html?authuser=2

18

�Hidden Technical Trade-Offs in MLOps
In the previous example, we identified a performance-accuracy trade-off

(Figure 1-3) that is one of many trade-offs you’ll face in technical decision

making when wearing an MLOps hat. MLOps is full of these hidden technical

trade-offs that underlie each technical decision you make. By understanding

the kinds of trade-offs, you can reduce technical debt instead of accumulating

it. We’ve summarized some common trade-offs in data science:

Figure 1-3.  Data science projects have many hidden technical
trade-offs

•	 Data volume vs. model accuracy (more data is better,

but each 10× scale-up requires new infrastructure)

•	 Technical correctness vs. cognitive complexity (data

science code has high cognitive complexity especially

when handling every possible edge case, which can

cause performance bottlenecks)

Chapter 1 Introducing MLOps

19

•	 Model accuracy vs. model complexity (do you really need

to use deep learning, or is a decision tree–based model

that is 90% accurate sufficient for the first iteration?)

�How to Protect Projects from Change
Change is everywhere! Change is also inevitable and can be the seed

of innovation in data science, so it has its upsides and downsides. The

downsides are change can increase technical debt and, if not properly

managed, can cause failed data science projects.

So where does it come from? What are the main drivers of change in

data science? Change can come from stakeholders or market conditions,

problem definition, changes in how a KPI is measured, or schema changes.

You need to learn to protect your data science projects from change.

Software engineering principles are about learning to protect against

change and be future thinking and so can be applied to data science.

Writing clean code has little to do with being a gatekeeper or annoyance

but is a necessary part of building a reliable system that isn’t going to

crash on Sunday’s nightly data load and cause your team to be called in to

troubleshoot an emergency.

Maybe the most basic example of shielding from change in data

science is the concept of a view. A view is an abstraction, and as software

engineers we like abstractions since they allow us to build things and

depend on something that is stable and unchanging such as the name of a

view, even if what is being abstracted, the query itself, the schema, and the

data underneath, is constantly changing.

Managing views, source control, and understanding when to

apply abstractions are something that can come with practice, but

understanding the value of a good abstraction will take you a long way

in shielding your own code from change and understanding some of the

reasons technical decisions are made without becoming frustrated in the

process.

Chapter 1 Introducing MLOps

20

There are abstractions for data like views we can use to manage

changes in data along with other tools like data versioning, but there

are also abstractions for models and code like source control and model

registries like MLflow. We’ll talk about all of these MLOps tools for

managing change in subsequent chapters, but keep in mind the concept of

abstractions and how these tools help us protect our project from change.

�Drivers of Change in Data Science Projects
We know the types of approaches needed to build an attribution model,

but there is no one way to build one without historical data, and the types

of approaches may involve more than something you’re familiar with like

semi-supervised learning; it may involve, instead, stochastic algorithms

or a custom solution. For attribute modeling we could think about various

techniques from Markov chains to logistic regression of Shap values.

From a coding perspective, for each type of approach, we are

faced with a choice as a designer of a stochastic learning system on

programming language, framework, and tech stack to use. These

technologies exist in the real world and not in isolation, and in the context

of a business environment, change is constantly happening.

These combinatorial and business changes, called change

management, can cause disruptions and delays in project timelines, and

for data science projects, the line is often a gap between what the business

wants and the problem that needs well-defined requirements or at worst

an impossible problem or one that would require heroic efforts to solve

within the time and scope.

So model, code, well-defined requirements… What about the data? We

mentioned the business is constantly changing, and this is reflected in the

data and the code. It is often said that a company ships its own org chart,

and the same is true for data projects where changes to business entities

cause changes in business rules or agreement upon ways to measure

Chapter 1 Introducing MLOps

21

KPIs for data science projects, which leads to intense downstream change

to feature stores, feature definitions, schema changes, and downstream

pipelines for model training and inference.

Externalities or macro-economic conditions may also cause changes

in customer assumptions and behavior that get reflected in the model, a

problem often called concept drift. These changes need to be monitored

and acted upon (e.g., can we retrain the model when we detect concept

drift), and these actions need to be automated and maintained as packages

of configuration, code, infrastructure as code, data, and models. Artifacts

like data and models require versioning and source control systems, and

these take knowledge of software engineering to set up.

�Choosing a Programming Language
for Data Science
Arguments over programming languages can be annoying, especially when

this leads to a holy war instead of which programming language is the right

tool for the job. For example do you want performance, type safety, or the

ability to rapidly prototype with extensive community libraries?

This is not a programming book, and it’s more important that you

learn how to think conceptually, which we will cover in the next chapter.

Python is a very good language to learn if you are starting out, but there

are other languages like Julia and R and SQL that each have their uses. You

should consider the technical requirements, skill set of your team before

committing to a language. For example, Python has distinct advantages

over R for building scalable code, but when it comes to speed, you might

consider an implementation in Julia or C++. This also comes with a

cost: the data science community for Python is prolific, and packages

like Pandas and sklearn are widely supported. This isn’t to say using a

language like R or Julia is wrong, but you should make a decision based on

available data.

Chapter 1 Introducing MLOps

22

More advanced data scientists interested in specializing in MLOps may

learn C++, Julia, or JAX (for accelerating tensor operations) in addition to

Python and strong SQL skills.

We’ll cover programming basics including data structures and

algorithms in the following chapter. It’s worth noting that no one

language is best and new languages are developed all the time. In the

future, functional programming languages oriented around probabilistic

programming concepts will likely play a bigger role in MLOps.

�MapReduce and Big Data
Big data is a relative term. What was considered “big data” 20 years ago

is different from what is considered “big data” today. The term became

popular with the advent of MapReduce algorithms and Google’s Bigtable

technology, which allowed algorithms that could be easily parallelized

to be run over extremely large gigabyte-scale data sets. Today, we have

frameworks like Spark, and knowledge of MapReduce and Java or Scale

isn’t necessary since Spark has a Python API called PySpark and abstracts

the concept of a mapper and reducer from the user. However, as data

scientists we should understand when we’re dealing with “big data” as

there are specific challenges. Not all “big data” is high volume. In fact there

are three Vs in big data you may need to handle.

�Big Data a.k.a. “High Volume”
This is most commonly what is meant by “big data.” Data that is over a

gigabyte may be considered big data, but it’s not uncommon to work

with billions of rows or terabytes of data sourced from cold storage. High-

volume data may pose operational challenges in data science since we

need to think about how to access it and transferring large data sets can

Chapter 1 Introducing MLOps

23

be a problem. For example, Excel has a famous 1 million row limit, and

similarly with R, the amount of memory is restricted to 1 GB, so we need

tools like Spark to read and process this kind of data.

�High-Velocity Data
By “high-velocity” data sources, we usually mean streaming data.

Streaming data is data that is unbounded and may come from an API or

IoT edge device in the case of sensor data. It’s not the size of the data that

is an operational challenge but the speed at which data needs to be stored

and processed. There are several technologies for processing high-velocity

data including “real-time” or near-real-time ones (often called micro-

batch architecture) like Apache Flink or Spark Streaming.

�High-Veracity Data
If you are a statistician, you know the concept of variability. Data can have

variability in how it’s structured as well. When data is unstructured like

text or semi-structured like JSON or XML in the case of scraping data from

the Web, we refer to it as high veracity. Identifying data sources as semi-

structured, structured, or unstructured is important because it dictates

which tools we use and how we represent the data on a computer, for

example, if dealing with structured data, it might be fine to use a data

frame and Pandas, but if our data is text, we will need to build a pipeline

to store and process this data and you may even need to consider NoSQL

databases like MongoDB for this type of problem.

�Types of Data Architectures
We might choose a data architecture to minimize change like a structured

data warehouse, but when it comes to data science projects, the inherent

inflexibility of a structured schema creates a type of impedance mismatch.

This is why there are a number of data architectures such as the data lake,

Chapter 1 Introducing MLOps

24

data vault, or medallion architecture that may be better fit for data science.

These architectures allow for anticipated changes in schema, definition,

and business rules.

�The Spiral MLOps Lifecycle
We will discuss the titular MLOps lifecycle in detail in Chapter 7, but we

can broadly distinguish the different phases of a data science project into

	 1.	 Insight and data discovery

	 2.	 Data and feature engineering

	 3.	 Model training and evaluation

	 4.	 Model deployment and orchestration

The reason we call it a spiral lifecycle is because each of these stages

may feedback into previous stages; however, as the technical architecture

matures (according to the MLOps maturity model), the solution

should converge to one where you are delivering continuous value to

stakeholders. Figure 1-4 shows the spiral MLOps lifecycle.

Figure 1-4.  The spiral MLOps lifecycle

Chapter 1 Introducing MLOps

https://doi.org/10.1007/978-1-4842-9642-4_7

25

�Data Discovery
Ideally, you would approach the problem like a statistician. You have

a problem, design an experiment, choose your sampling method, and

collect the exact data you need to ensure there are no biases in your data,

repeating the process as many times as you can if need be. Unfortunately,

business does not work like this. You will be forced to approach the

problem backward; you might have a vague idea of what problem you want

to solve and the data you need, but you may only have the resources or

access to the data that the business has already collected.

How can MLOps help with this process? Well, the data is often stored

as flat CSV files, which can total several gigabytes or more. A typical

scenario is you have to figure out how to load this data and you quickly

run into memory errors if using tools like Pandas. We’ll show you how to

leverage distributed computing tools like Databricks to get around these

issues without too much headache and if possible without even rewriting

your code.

�Data Discovery and Insight Generation
This phase is all about exploring your data sets, forming and testing

hypotheses, and developing intuition for your data. There are often several

challenges at this stage. If you are using a tool like seaborn or matplotlib

for generating visualizations, you might face the challenge of how to

deploy your work or share it with other data scientists or stakeholders.

If you’re working on an NLP problem, you might have lots of different

experiments and want to quickly test them. How do you organize all of

your experiments, generate metrics and parameters, and compare them

at different points in time? Understanding standard tools like MLflow and

how to set up an experimentation framework can help.

Chapter 1 Introducing MLOps

26

Let us suppose as a data scientist you are an expert at understanding

and identifying biases in your data. You work for a financial institution and

are tasked with creating a customer churn model. You know net promoter

score is a key metric, but you notice survey responses for your customers

are missing on two key dates.

You decide to write a script in Pandas to filter out these two key dates.

Suddenly, the next week your data has doubled in size, and your script no

longer scales. You manually have to change the data in a spreadsheet and

upload it to a secure file server. Now, you spend most of your time on this

manual data cleaning step, validating key dates and updating them in a

spreadsheet. You wish you knew how to automate some of these steps with

a pipeline.

Few people enjoy doing ETL or ELT; however, understanding the

basics of building pipelines and when to apply automation at scale

especially during the data cleaning process can save you time and effort.

�Data and Feature Engineering
Feature selection may be applied to both supervised and unsupervised

machine learning problems. In the case that labeled data exists, we might

use some measure like correlation to measure the degree of independence

between our features and a response or target variable. It may make sense

to remove features that are not correlated with the target variable (a kind of

low-pass filter), but in other cases, we may use a model itself like Lasso or

Ridge regression or random forest to decide which features are important.

�Model Training
How do you choose the best model for your problem? A training pipeline

in the wild can take hours or even sometimes days to finish especially if the

pipeline consists of multiple steps.

Chapter 1 Introducing MLOps

27

As an MLOps engineer, you should be familiar with frameworks

and methods for speeding up model training. We’ll look at Hyperopt, a

framework for using Bayesian hyperparameter search, and Horovod for

distributed model training that takes advantage of parallelism. By speeding

up model training time, by using distributed computing or GPU, we can

immediately add value to a project and have more time spent doing data

science.

�Model Evaluation
Model selection is the process of choosing the “best” model for a business

problem. Best may not necessarily be as simple as the model with the best

training accuracy in case the data overfits and does not generalize to new

samples (see the bias-variance trade-off). It may be more nuanced than

this, as there might be regulatory constraints such as in the healthcare

and banking industries where model interpretability and fairness are a

concern. In this case, we must make a technical decision, balancing the

attributes of the model we desire like precision, recall, and accuracy over

how interpretable or fair the model is and what kind of data sources we

are legally allowed to use to train the model. MLOps can help with this

step of the machine learning lifecycle by automating the process of model

selection and hyper-parameter tuning.

�Deployment and Ops
You’ve trained your model and even automated some of the data cleaning

and feature engineering processes, but now what? Your model is not

creating business value unless it’s deployed in production, creating

insights that decision makers can take action on and incorporate into their

tactical or business strategy.

Chapter 1 Introducing MLOps

28

But what does it mean to deploy a model to production? It depends.

Are you doing an online inference or batch inference? Is there a

requirement on latency or how fast your model has to make predictions?

Will all the features be available at prediction time, or will we have to do

some preprocessing to generate features on the fly?

Typically infrastructure is involved; either some kind of container

registry or orchestration tool is used, but we might also have caches to

support low-latency workflows, GPUs to speed up tensor operations

during prediction, or have to use APIs if we deploy an online solution.

We’ll cover the basics of infrastructure and even show how you can deliver

continuous value from your models through continuous integration and

delivery pipelines.

�Monitoring Models in Production
Okay, you’ve deployed your model to production. Now what? You have to

monitor it. You need a way to peer underneath the covers and see what is

happening in case something goes wrong. As data scientists we are trained

to think of model accuracy and maybe have an awareness of how efficient

one model is compared with another, but when using cloud services, we

must have logging and exception handling for when things go wrong.

Again, Murphy’s Law is a guiding principle here.

Understanding the value of setting up logging and explicit exception

handling will be a lifesaver when your model chokes on data in production

it has never seen before. In subsequent chapters you’ll learn to think

like an engineer to add logging to your models and recover gracefully in

production.

Chapter 1 Introducing MLOps

29

�Example Components of a Production
Machine Learning System
A production machine learning system has many supporting components

that go into its design or technical architecture. You can think of the

technical architecture as a blueprint for creating the entire machine

learning system and may include cloud storage accounts, relational and

nonrelational (NoSQL) databases, pipelines for training and prediction,

infrastructure for reporting to support automated training, and many

other components. A list of some of the components that go into creating a

technical architecture include

•	 Cloud storage accounts

•	 Relational or NoSQL databases

•	 Prediction pipeline

•	 Training pipeline

•	 Orchestration pipelines

•	 Containers and container registries

•	 Python packages

•	 Dedicated servers for training or model serving

•	 Monitoring and alerting services

•	 Key Vault for secure storage of credentials

•	 Reporting infrastructure

Chapter 1 Introducing MLOps

30

�Measuring the Quality of Data
Science Projects
The goal of this section is to give you the ability to quantitatively define and

measure and evaluate the success of your own data science projects. You

should begin by asking what success means for your project.

This quantitative toolbox, akin to a kind of multi-dimensional

measuring tape, can be applied to many types of projects from traditional

supervised, unsupervised, or semi-supervised machine learning projects

to more custom projects that involve productionizing ad hoc data science

workflows.

�Measuring Quality in Data Science Projects
With the rapid evolution of data science, a need has arisen for MLOps,

which we discussed, in order to make the process effective and

reproducible in a way that mirrors scientific rigor.

Measuring software project velocity and other KPIs common to project

management, an analogous measurement is needed for data science.

Table 1-2 lists some measurements that you might be interested in tracking

for your own project. In later chapters we’ll show you how to track these

or similar measures in production using tools like MLflow so that you can

learn to move the needle forward.

Chapter 1 Introducing MLOps

31

Table 1-2.  Common KPIs

Measurement Stakeholder Question Examples

Model accuracy Can we evaluate model

performance?

Precision, recall, accuracy,

F1 score; depends on the

problem and data

Model

interpretability

How did each feature in the model

contribute to our prediction?

Shap values

Fairness Are there sensitive features being

used as input into the model?

Model output distribution

Model

availability

Does the model need to make

predictions at any time of day or on

demand? What happens if there is

downtime?

Uptime

Model reliability Do the training and inference

pipelines fail gracefully? How do

they handle data that has never

been seen before?

Test coverage percentage

Data drift What happens when features

change over time?

KL divergence

Model drift Has the business problem changed? Distribution of output of

model

Correlation with

key KPIs

How do the features and prediction

relate to key KPIs? Does the

prediction drive key KPIs?

Correlation with increased

patient hospital visits for a

healthcare model

Data volume What is the size of our data set? Number of rows in feature

sets

(continued)

Chapter 1 Introducing MLOps

32

Table 1-2.  (continued)

Measurement Stakeholder Question Examples

Feature profile What kinds of features and how

many?

Number of features by

category

Prediction

latency

How long does the user have to wait

for a prediction?

Average number of

milliseconds required

to create features at

prediction time

�Importance of Measurement in MLOps
How can we define the success of our projects? We know intuitively that

the code we build should be reliable, maintainable, and fail gracefully

when something goes wrong, but what is reliability and maintainability?

We need to take a look at each of these concepts and understand what

each means in the context of data science.

�What Is Reliability?

Reliability means there are checks, balances, and processes in place to recover

when disaster strikes. While availability is more about uptime (is the system

always available to make a prediction when the user needs it?), reliability

is more about acknowledging that the system will not operate under ideal

conditions all the time and there will be situations that are unanticipated.

Since we cannot anticipate how the system will react when faced with data it’s

never seen before, for example, we need to program in error handling, logging,

and ensure we have proper tests in place to cover all code paths that could

lead to failure. A cloud logging framework and explicit exception handling are

two ways to make the system more reliable, but true reliability comes from

having redundancy in the system, for example, if you’re building an API for

your model, you should consider a load balancer and multiple workers.

Chapter 1 Introducing MLOps

33

�What Is Maintainability?

Maintainability is related to code quality, modularity, and readability

of the code. It requires a future-oriented mindset since you should be

thinking about how you will maintain the code in the future. You may have

an exceptional memory, but will you be able to remember every detail a

year from now when you have ten other projects? It’s best to instead focus

on maintainability early on so running the project in the future is easier

and less stressful.

�Moving the Needle: From Measurement to Actionable
Business Insights

Ultimately the goal of MLOps is to move the needle forward. If the goal of

the data scientist is to create accurate models, it’s the job of the machine

learning engineer to figure out how to increase accuracy, increase

performance, and move business KPIs forward by developing tools,

processes, and technologies that support actionable decision making.

�Hackerlytics: The Mindset of an MLOps Role
Finally, I would like to close out this chapter by discussing the mindset

shift required for an MLOps role from data scientist. If you are a data

scientist focused on data and analytics, you are probably used to thinking

outside the box already to solve problems. The shift to using this out-of-

the-box thinking to solve data problems with technology is exactly the

mindset required. In the next chapter, we’ll look at the fundamental skills

from mathematical statistics to computer science required so you can

begin to apply your new hackerlytics skills on real data problems.

Chapter 1 Introducing MLOps

34

�Summary
In this chapter we gave an introduction to MLOps from the data scientist’s

point of view. You should now have an understanding of what MLOps is

and how you can leverage MLOps in your own projects to bring continuous

value to stakeholders through your models. You should understand some

of the technical challenges that motivate the need for an MLOps body of

knowledge and be able to measure the quality of data science projects to

evaluate technical gaps. Some of the majors topics covered were as follows:

•	 What is MLOps?

•	 The need for MLOps

•	 Measuring quality of data science projects

In the next few chapters, we will cover some core fundamentals needed

for data scientists to fully take ownership of the end-to-end lifecycle of

their projects. We’ll present these fundamentals like algorithmic and

abstract thinking in a unique way that can help in the transition from data

science to MLOps.

Chapter 1 Introducing MLOps

	Chapter 1: Introducing MLOps
	What Is MLOps?
	Defining MLOps
	MLOps Maturity Model
	Brief History of MLOps
	Defining the Relationship Between Data Science and Engineering

	What Are the Types of Data Science Projects?
	Supervised Machine Learning
	Semi-supervised Machine Learning
	Reinforcement Learning
	Probabilistic Programming
	Ad Hoc Statistical Analysis

	The Two Worlds: Mindset Shift from Data Science to Engineering
	What Is a Type A Data Scientist?
	Types of Data Science Roles

	Hackerlytics: Thinking Like an Engineer for Data Scientists
	Anti-pattern: The Brittle Training Pipeline
	Future-Proofing Data Science Code
	What Is Technical Debt?
	Hidden Technical Trade-Offs in MLOps
	How to Protect Projects from Change
	Drivers of Change in Data Science Projects
	Choosing a Programming Language for Data Science
	MapReduce and Big Data
	Big Data a.k.a. “High Volume”
	High-Velocity Data
	High-Veracity Data
	Types of Data Architectures

	The Spiral MLOps Lifecycle
	Data Discovery
	Data Discovery and Insight Generation
	Data and Feature Engineering
	Model Training
	Model Evaluation
	Deployment and Ops
	Monitoring Models in Production

	Example Components of a Production Machine Learning System
	Measuring the Quality of Data Science Projects
	Measuring Quality in Data Science Projects
	Importance of Measurement in MLOps
	What Is Reliability?
	What Is Maintainability?
	Moving the Needle: From Measurement to Actionable Business Insights

	Hackerlytics: The Mindset of an MLOps Role
	Summary

