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Introduction

This book was written in a time of great change in data science. From 

generative AI, regulatory risks to data deluge and technological change 

across industries, it is not enough to just be data-savvy. You increasingly 

need to understand how to make technical decisions, lead technical 

teams, and take end-to-end ownership of your models. MLOps Lifecycle 

Toolkit is your pragmatic roadmap for understanding the world of software 

engineering as a data scientist.

In this book I will introduce you to concepts, tools, processes, and 

labs to teach you MLOps in the language of data science. Having had 

the unique experience of working in both data science and software 

engineering, I wrote the book to address the growing gap I've observed 

first-hand between software engineers and data scientists. While most data 

scientists have to write code, deploy models, and design pipelines, these 

tasks are often seen as a chore and not built to scale. The result is increased 

technical debt and failed projects that threaten the accuracy, validity, 

consistency, and integrity of your models.

In this book you will build your own MLOps toolkit that you can use 

in your own projects, develop intuition, and understand MLOps at a 

conceptual level. The software toolkit is developed throughout the book 

with each chapter adding tools that map to different phases of the MLOps 

lifecycle from model training, model inference and deployment to data 

ethics. With plenty of industry examples along the way from finance to 

energy and healthcare, this book will help you make data-driven technical 

decisions, take control of your own model artifacts, and accelerate your 

technical roadmap.
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�Source Code
All source code used in this book can be downloaded from github.com/

apress/mlops-lifecycle-toolkit.
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CHAPTER 1

Introducing MLOps
As data scientists we enjoy getting to see the impact of our models in the 

real world, but if we can’t get that model into production, then the data 

value chain ends there and the rewards that come with having high-impact 

research deployed to production will not be achieved. The model will 

effectively be dead in the model graveyard, the place where data science 

models go to die.

So how do we keep our models out of this model graveyard and 

achieve greater impact? Can we move beyond simply measuring key 

performance indicators (KPIs) to moving them so that our models become 

the driver of innovation in our organization? It’s the hypothesis of this 

book that the answer is yes but involves learning to become better data-

driven, technical decision makers. In this chapter, I will define MLOps, but 

first we need to understand the reasons we need a new discipline within 

data science at all and how it can help you as a data scientist own the 

entire lifecycle from model training to model deployment.

�What Is MLOps?
Imagine you are the director of data science at a large healthcare company. 

You have a team of five people including a junior data analyst, a senior 

software (data) engineer, an expert statistician, and two experienced 

data scientists. You have millions of data sets, billions of data points 

from thousands of clinical trials, and your small team has spent the last 

several sprints developing a model that can change real people’s lives. 

© Dayne Sorvisto 2023 
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You accurately predict the likelihood that certain combinations of risk 

factors will lead to negative patient outcomes, predict the posttreatment 

complication rate, and you use an inflated Poisson regression model to 

predict the number of hospital visits based on several data sources. Your 

models are sure to have an impact, and there’s even discussion about 

bringing your research into a convolutional neural network used to aid 

doctors in diagnosing conditions. The model you created is finally at the 

cutting edge of preventative medicine. You couldn’t be more excited, but 

there’s a problem.

After several sprints of research, exploratory data analysis (EDA), data 

cleaning, feature engineering, and model selection, you have stakeholders 

asking some tough questions like, When is your model going to be in 

production? All of your code is in a Jupyter notebook, your cleaning scripts 

scattered in various folders on your laptop, and you’ve done so many 

exploratory analyses you’re starting to have trouble organizing them.

Then, the chief health officer asks if you can scale the model to include 

data points from Canada and add 100 more patient features to expand 

into new services all while continuing your ad hoc analysis for the clinical 

trial. By the way, can you also ensure you’ve removed all PII from your 

thousands of features and ensure your model is compliant with HIPAA 

(Health Insurance Portability and Accountability Act)? At this point, you 

may be feeling overwhelmed.

As data scientists we care about the impact our models have on 

business, but when creating models in the real world, the process of 

getting your model into production so it’s having an impact and creating 

value is a hard problem. There are regulatory constraints; industry-

specific constraints on model interpretability, fairness, data science ethics; 

hard technical constraints in terms of hardware and infrastructure; and 

scalability, efficiency, and performance constraints when we need to scale 

our models to meet demand and growing volumes of data (in fact, each 

order of magnitude increase in the data volume leads to new architectures 

entirely).

Chapter 1  Introducing MLOps
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MLOps can help you as a data scientist take control of the entire 

machine learning lifecycle end to end. This book is intended to be a 

rigorous approach to the emerging field of ML engineering, designed for 

the domain expert or experienced statistician who wants to become a 

more end-to-end data scientist and better technical decision maker.

The plan then is to use the language of data science, examples from 

industries and teach you the tools to build ML infrastructure; deploy 

models; set up feature groups, training pipelines, and data drift detection 

systems to accelerate your own projects; comply with regulatory 

standards; and reduce technical debt. Okay, so with this goal in mind, let’s 

teach you the MLOps lifecycle toolkit, but first let us take the first step in a 

million-mile journey and define exactly what we mean by MLOps.

�Defining MLOps
We need to define MLOps, but this is a problem because at the present 

time, MLOps is an emerging field. A definition you’ll often hear is that 

MLOps is the intersection of people, processes, and technology, but this 

definition lacks specificity. What kind of people? Domain experts? Are the 

processes in this definition referring to DevOps processes or something 

else, and where in this definition is data science? Machine learning is but 

one tool in the data scientist’s toolkit, so in some sense, MLOps is a bit of 

a misnomer as the techniques for deploying and building systems extend 

beyond machine learning (you might think of it as “Data Science Ops”).

In fact, we are also not talking about one specific industry where all of 

the MLOps techniques exist. There is no one industry where all of the data 

science is invented first, but in fact each industry may solve data science 

problems differently and have its own unique challenges for building 

and deploying models. We revised the definition and came up with the 

following definition that broadly applies to multiple industries and also 

takes into account the business environment.

Chapter 1  Introducing MLOps
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MLOps definition: MLOps (also written as ML Ops) is the intersection 

of industry domain experts, DevOps processes, and technology for 

building, deploying, and maintaining reliable, accurate, and efficient data 

science systems within a business environment. Figure 1-1 illustrates this.

Figure 1-1.  Stakeholders will never trust a black box

In machine learning, we solve optimization problems. We have data, 

models, and code. Moreover, the output of models can be non-deterministic 

with stochastic algorithms that are difficult to understand or communicate 

due to their mathematical nature and can lead stakeholders to viewing the 

system as an opaque “black box.” This view of a machine learning system as 

a black box is a real barrier to trusting the system and ultimately accepting 

its output. If stakeholders don’t trust your model, they won’t use your model. 

MLOps can also help you track key metrics and create model transparency.

This is the reason machine learning in the real world is a hard problem. 

Oftentimes the models themselves are a solved problem. For example, in 

the transportation sector, we know predicting the lifetime of a component 

in a fleet of trucks is a regression problem. For other problems, we may 

have many different types of approaches and even cutting-edge research 
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that has not been battle-tested in the real world, and as a machine learning 

engineer, you may be the first to operationalize an algorithm that is 

effectively a black box, which not only is not interpretable but may not 

be reliable. We need to be transparent about our model output and what 

our model is doing, and the first step is to begin measuring quality and 

defining what success means in your project.

So how do we even begin to measure the quality of an MLOps solution 

when there is so much variability in what an MLOps solution looks like? 

The answer to this conundrum is the MLOps maturity model, which 

applies across industries.

�MLOps Maturity Model
What does it mean to have “good” MLOps practices, and what is the 

origin of this term? You probably have several questions around MLOps 

and might be wondering what the differences are between MLOps and 

software development, so let us first discuss, in the ideal case, what MLOps 

looks like by presenting the maturity model in diagram form (Figure 1-2).
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Figure 1-2.  MLOps maturity model

Notice that the key differentiator from DevOps to stage 2 MLOps is 

the existence of an automated training pipeline with automated reporting 

requiring data management and infrastructure for reporting. The key 

differentiator from stage 2 to stage 3 is the existence of automated release 

pipelines (model management), and the differentiator between stage 3 

and the final stage (full-blown MLOps) is we approach high reliability 

including specific subsystems to detect data and model drift and some way 

of creating feedback required to “move the needle” on key measurements 

we’ll cover.

�Brief History of MLOps

MLOps has its history in DevOps processes. DevOps, the merging of 

the words “Dev” and “Ops,” changed the way software developers built, 

deployed, and maintained large-scale software systems. DevOps includes 

best practices for automating, continuous delivery, software testing and 

emphasizes developing software for the end user. However, if you notice 

the diagram of the MLOps maturity model, DevOps is not the same as 

MLOps, and it is not sufficient to apply DevOps principles to data science 

without some adaptation.

Chapter 1  Introducing MLOps
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MLOps in contrast is about continuous delivery of machine learning 

systems but extends this idea to continuous training and reproducibility 

(an important part of the scientific process).

You may be thinking, well, software development is software 

development, which naturally encompasses parts of the software 

development lifecycle including infrastructure as code (creating reusable 

environments), containerization, CI/CD pipelines, and version and model 

control systems. However, this stuff does not automatically give you model 

management and data management best practices. Hence, MLOps takes 

DevOps a step further and can be thought of as a multi-dimensional 

version of DevOps that fuses together best practices from software 

engineering, ModelOps, and DataOps to move key metrics such as 

interpretability, accuracy, reliability, and correlation with key performance 

indicators specific to your industry.

�Defining the Relationship Between Data Science 
and Engineering

Okay, we have defined MLOps, but it’s important we have a clear idea 

on what we mean by data science and software engineering and the 

differences between them.

For the purpose of this book, we use data science as an umbrella 

term for a multidisciplinary approach to extracting knowledge from data 

that uses the scientific method. Data science uses machine learning as a 

tool. This is why we talk about stochastic systems instead of just machine 

learning systems since MLOps practices can apply to more than just 

machine learning, for example, operationalizing something more abstract 

like a causal model or Bayesian network or custom statistical analysis. In 

the next section, we will look at some general patterns for data science 

projects.

Chapter 1  Introducing MLOps
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�What Are the Types of Data 
Science Projects?
It is vital to understand the types of data science projects you might 

encounter in the real world before we dive into the MLOps lifecycle, which 

will be the focus of the rest of the book. We will look at supervised machine 

learning, semi-supervised machine learning, reinforcement learning, 

probabilistic programming paradigms, and statistical analysis.

�Supervised Machine Learning
Supervised machine learning is a machine learning problem that requires 

labeled input data. Examples of supervised learning include classification 

and regression. The key is labeled data. For example, in NLP (natural 

language processing), problems can be supervised. You might be building a 

classification model using a transformer architecture to recommend products 

for new customers based on free-form data. Although you might know how 

to build a transformer model in PyTorch or TensorFlow, the challenge comes 

from labeled data itself. How do you create labels? Furthermore, how do you 

ensure these labels are consistent? This is a kind of chicken and egg problem 

that machine learning teams often face, and although there are solutions 

like Mechanical Turk, with privacy and data regulations like GDPR, it may be 

impossible to share sensitive data, and so data needs to be labeled internally, 

creating a kind of bottleneck for some teams.

�Semi-supervised Machine Learning
In semi-supervised problems, we have a rule for generating labels but 

don’t explicitly have labeled data. The difference between semi-supervised 

algorithms is the percentage of training data that is unlabeled. Unlike 

supervised learning where consistency of labels may be an issue, with 

semi-supervised the data may consist of 80% unlabeled data and a small 
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percentage, say 20%, of labeled data. In some cases like fraud detection in 

banking, this is a very important class of machine learning problems since 

not all cases of fraud are even known and identifying new cases of fraud 

is a semi-supervised problem. Graph-based semi-supervised algorithms 

have been gaining a lot of traction lately.

�Reinforcement Learning
Reinforcement learning is a type of machine learning where the goal is to 

choose an action that maximizes a future reward. There are several MLOps 

frameworks for deploying this type of machine learning system such as 

Ray, but some of the challenge is around building the environment itself, 

which may consist of thousands, millions, or billions of states depending 

on the complexity of the problem being modeled. We can also consider 

various trade-offs between exploration and exploitation.

�Probabilistic Programming
Frameworks like PyMC3 allow data scientists to create Bayesian models. 

Unfortunately, these models tend not to be very scalable, and so this type 

of programming for now is most often seen during hyper-parameter tuning 

using frameworks like Hyperopt where we need to search over a large but 

finite number of hyper-parameters but want to perform the sweep in a 

more efficient way than brute force or grid search.

�Ad Hoc Statistical Analysis
You may have been asked to perform an “EDA” or exploratory data analysis 

before, often the first step after finding suitable data sources when you’re 

trying to discover a nugget of insight you can act upon. From an MLOps 

perspective, there are important differences between this kind of “ad 

hoc” analysis and other kinds of projects since operationalizing an ad hoc 

analysis has unique challenges.
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One challenge is that data scientists work in silos of other statisticians 

creating ad hoc analysis. Ad hoc analysis is kind of an all-in category for 

data science code that is one-off or is not meant to be a part of an app or 

product since the goal may be to discover something new. Ad hoc analysis 

can range from complex programming tasks such as attribution modeling 

to specific statistical analysis like logistic regression, survival analysis, or 

some other one-off prediction.

Another noteworthy difference between ad hoc analysis and other types 

of data science projects is ad hoc analysis is likely entirely coded in a Jupyter 

notebook either in an IDE for data scientists such as Anaconda in the case 

the data scientist is running the notebook locally or Databricks notebook in 

the cloud environment collaborating with other data scientists.

An ad hoc analysis may be a means to an end, written by a lone data 

scientist to get an immediate result such as estimating a population 

parameter in a large data set to communicate to stakeholders.

Examples of ad hoc analysis might include the following:

•	 Computing correlation coefficient

•	 Estimating feature importance for a response variable 

in an observational data set

•	 Performing a causal analysis on some time series data 

to determine interdependencies among time series 

components

•	 Visualizing a pairwise correlation plot for variables in 

your data set to understand dependence structure

�The Two Worlds: Mindset Shift from Data 
Science to Engineering
It is no secret that data science is a collaborative sport. The idea of a 

lone data scientist, some kind of mythical persona that is able to work in 

isolation to deliver some groundbreaking insight that saves the company 
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from a disaster using only sklearn, probably doesn’t happen all that often 

in a real business environment. Communication is king in data science; 

the ability to present analysis and explain what your models are doing to 

an executive or a developer requires to shift mindsets and understand your 

problem from at least two different perspectives: the technical perspective 

and the business perspective. The business perspective is talked about 

quite a bit, how to communicate results to stakeholders, but what about 

the other half of this? Communicating with other technical but non–data 

science stakeholders like DevOps and IT?

The topic of cross-team communication in data science crops up when 

requesting resources, infrastructure, or more generally in any meetings 

with non–data scientists such as DevOps, IT, data engineering, or other 

engineering-focused roles as a data scientist.

Leo Breiman, the creator of random forests and bootstrap aggregation 

(bagging), wrote an essay entitled “Statistical Modeling: The Two Cultures.” 

Although Breiman may not have been talking about type A and type B 

data scientists specifically, we should be aware that in a multidisciplinary 

field like data science, there’s more than one way to solve a problem and 

sometimes one approach, although valid, is not a good culture fit for every 

technical team and needs to be reframed.

�What Is a Type A Data Scientist?
Typically a type A data scientist is one with an advanced degree in 

mathematics, statistics, or business. They tend to be focused on 

the business problem. They may be domain experts in their field or 

statisticians (both frequentist or Bayesian), but they might also come from 

an applied math or business background and be non-engineering.

These teams may work in silos because there is something I’m going 

to define as the great communication gap between type A and type B data 

scientists. The “B” in type B stands for building (not really, but this is how 

you can remember the distinction).
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As data science matures, the distinction may disappear, but more than 

likely data scientists will split into more specialized roles such as data 

analyst, machine learning engineer, data engineer, and statistician, and it 

will become even more important to understand this distinction, which we 

present in Table 1-1.

Table 1-1.  Comparing Type A and Type B Data Scientists

Type A Data Scientist Type B Data Scientist

Focuses on understanding the process 

that generated the data

Focuses on building and deploying 

models

Focuses on measuring and defining the 

problem

Focuses on building infrastructure and 

optimizing models

Values statistical validity, accuracy, and 

domain expertise

Values system performance, efficiency, 

and engineering expertise

�Types of Data Science Roles
Over the past decade, data science roles have become more specialized, 

and we often see roles such as data analyst, data engineer, machine 

learning engineer, subject matter expert, and statistician doing 

data science work to address challenges. Here are the types of data 

science roles:

•	 Business analysts: Problems change with the market 

and model output (called data drift or model drift). 

The correlation of model output with key business 

KPIs needs to be measured, and this may require 

business analysts who understand what the business 

problem means.
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•	 Big data devs: Data volume can have properties such 

as volume, veracity, and velocity that transactional 

systems are not designed to address and require 

specialized skills.

•	 DevOps: Data needs to be managed as schemas change 

over time (called schema drift) creating endless 

deployment cycles.

•	 Non-traditional software engineers: Data scientists are 

often formally trained in statistics or business and not 

software engineering.

Even within statistics, there is division between Bayesians and 

frequentists. In data science there are also some natural clusters of skills, 

and often practitioners have a dominant skill such as software engineering 

or statistics.

Okay, so there’s a rift even within statistics itself, but what about across 

industries? Is there one unified “data scientist”?

For example, geospatial statistics is its own beast with spatial 

dependence of the data unlike most data science workflows, and in 

product companies, R&D data scientists are highly sought after as not 

all model problems are solved and they require iterating on research 

and developing reasoning about data from axioms. For example, a retail 

company may be interested in releasing a new product that has never been 

seen on the market and would like to forecast demand for the product. 

Given the lack of data, novel techniques are required to solve the “cold 

start” problem. Recommender systems, which use a collaborative filtering 

approach to solve this problem, are an example, but oftentimes out-of-

the-box or standard algorithms fall short. For example, slope-one, a naive 

collaborative filtering algorithm, has many disadvantages.
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�Hackerlytics: Thinking Like an Engineer 
for Data Scientists 
The ability to build, organize, and debug code is an invaluable skill even 

if you identify as a type “A” data scientist. Automation is a key ingredient 

in this mindset, and we will get there (we cover specific MLOps tools like 

PySpark, MLflow, and give an introduction to programming in Python and 

Julia in the coming chapters), but right now we want to focus on concepts. 

If you understand the concept of technical debt, which is particularly 

relevant in data science, and the need to future-proof your code, then you 

will appreciate the MLOps tools and understand how to use them without 

getting bogged down in technical details. In order to illustrate the concept 

of technical debt, let’s take a look at a specific example that you might have 

encountered when building a machine learning pipeline with real data.

�Anti-pattern: The Brittle Training Pipeline
Suppose you work for a financial institution where you’re asked by your 

data science lead to perform some data engineering task like writing a 

query that pulls in the last 24 months of historical customer data from 

an analytical cloud data warehouse (the database doesn’t matter for this 

example; it could be anything like a SQL Pool or Snowflake). The data will 

be used for modeling consumer transactions and identifying fraudulent 

transactions, which are only 0.1% of the data.

You need to repeat this process of extracting customer transaction 

data and refreshing the table weekly from production so you have the 

latest to build important features for each customer like number of recent 

chargebacks and refunds. You are now faced with a technical choice: do 

you build a single table, or do you build multiple tables, one for each week 

that may make it easier for you to remember?
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You decide to opt for this latter option and build one table per week 

and adjust the name of the table, for example, calling it something such 

as historical_customer_transactions_20230101 for transaction dates 

ending on January 1, 2023, and the next week historical_customer_

transactions_20230108 for transactions ending on January 8, 2023. 

Unfortunately, this is a very brittle solution and may not have been a good 

technical decision.

What is brittleness? Brittleness is a concept in software engineering 

that is hard to grasp without experiencing its future consequences. In this 

scenario, our solution is brittle because a single change can break our 

pipelines or cause undue load on IT teams. For example, within six months 

you will have around 26 tables to manage; each table schema will need 

to be source controlled, leading to 26 changes each time a new feature 

is added. This could quickly become a nightmare, and building training 

pipelines will be challenging since you’ll need to store an array of dates 

and think about how to update this array each time a new date is added. So 

how do we fix this?

If we pick the first option, a single table, can we make this work and 

eliminate the array of dates from our training pipeline and reduce the 

effort it takes to manage all of these tables? Yes, easily in this case we can 

add metadata to our table, something like a snapshot date, and give our 

table a name that isn’t tethered to a specific datetime, something like 

historical_customer_transaction (whether your table name is plural or 

singular is also a technical decision you should establish early in your 

project). Understanding, evaluating, and making technical decisions like 

this comes with experience, but you can learn to become a better technical 

decision maker by applying our first MLOps tool: future-proofing your code.
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�Future-Proofing Data Science Code
As we discussed, a better way to store historical transaction data is to 

add an additional column to the table rather than in the table name itself 

(which ends up increasing the number of tables we have to manage and 

thus technical debt, operational risk, and weird code necessary to deal 

with the decision such as handling an unnecessary dynamic array of dates 

in a training pipeline).

From a DevOps perspective, this is fantastic news because you will 

reduce the IT load from schema change and data change down to a simple 

insert statement.

As you develop an engineering sense should be asking two questions 

before any technical decision:

•	 Am I being consistent? (Example: Have I used this 

naming convention before?)

•	 If I make this technical decision, what is the future 

impact on models, code, people, and processes?

Going back to our original example, by establishing a consistent 

naming convention for tables and thinking about how our naming 

convention might impact IT that may have to deploy 26 scripts to refresh 

a table, if we choose a poor naming convention such as table sprawl, code 

spiral, or repo sprawl, we’ll start to see cause and effect relationships and 

opportunities to improve our project and own workload as well. This leads 

us to the concept of technical debt.
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�What Is Technical Debt?
“Machine learning is the high interest credit card of technical debt.”1 

Simply put, technical debt occurs when we write code that doesn’t 

anticipate change. Each suboptimal technical decision you make now 

doesn’t just disappear; it remains in your code base and will at some point, 

usually at the worst time (Murphy’s Law), come back to bite you in the 

form of crashed pipelines, models that choke on production data, or failed 

projects.

Technical debt may occur for a variety of reasons such as prioritizing 

speed of delivery over all else or a lack of experience with basic software 

engineering principles such as in our brittle table example. To illustrate the 

concept of technical debt and why it behaves like real debt, let’s consider 

another industry-specific scenario.

Imagine you are told by the CEO of a brick-and-mortar retail company 

that you need to build a model to forecast customer demand for a new 

product. The product is similar to one the company has released before, 

so there is data available, but the goal is to use the model to reduce costs 

of storing unnecessary product inventory. You know black box libraries 

won’t be sufficient and you need to build a custom model and feature 

engineering library.

Your engineering sense is telling you that building a custom solution 

will require understanding various trade-offs. Should you build the perfect 

model and aim for 99% accuracy and take a hit on performance? Does 

the business need 99% accuracy, or will forecasting demand with 80% 

accuracy be sufficient to predict product inventory levels two weeks in 

advance?

1 Machine Learning: The High Interest Credit Card of Technical Debt
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�Hidden Technical Trade-Offs in MLOps
In the previous example, we identified a performance-accuracy trade-off 

(Figure 1-3) that is one of many trade-offs you’ll face in technical decision 

making when wearing an MLOps hat. MLOps is full of these hidden technical 

trade-offs that underlie each technical decision you make. By understanding 

the kinds of trade-offs, you can reduce technical debt instead of accumulating 

it. We’ve summarized some common trade-offs in data science:

Figure 1-3.  Data science projects have many hidden technical 
trade-offs

•	 Data volume vs. model accuracy (more data is better, 

but each 10× scale-up requires new infrastructure)

•	 Technical correctness vs. cognitive complexity (data 

science code has high cognitive complexity especially 

when handling every possible edge case, which can 

cause performance bottlenecks)
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•	 Model accuracy vs. model complexity (do you really need 

to use deep learning, or is a decision tree–based model 

that is 90% accurate sufficient for the first iteration?)

�How to Protect Projects from Change
Change is everywhere! Change is also inevitable and can be the seed 

of innovation in data science, so it has its upsides and downsides. The 

downsides are change can increase technical debt and, if not properly 

managed, can cause failed data science projects.

So where does it come from? What are the main drivers of change in 

data science? Change can come from stakeholders or market conditions, 

problem definition, changes in how a KPI is measured, or schema changes. 

You need to learn to protect your data science projects from change.

Software engineering principles are about learning to protect against 

change and be future thinking and so can be applied to data science. 

Writing clean code has little to do with being a gatekeeper or annoyance 

but is a necessary part of building a reliable system that isn’t going to 

crash on Sunday’s nightly data load and cause your team to be called in to 

troubleshoot an emergency.

Maybe the most basic example of shielding from change in data 

science is the concept of a view. A view is an abstraction, and as software 

engineers we like abstractions since they allow us to build things and 

depend on something that is stable and unchanging such as the name of a 

view, even if what is being abstracted, the query itself, the schema, and the 

data underneath, is constantly changing.

Managing views, source control, and understanding when to 

apply abstractions are something that can come with practice, but 

understanding the value of a good abstraction will take you a long way 

in shielding your own code from change and understanding some of the 

reasons technical decisions are made without becoming frustrated in the 

process.
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There are abstractions for data like views we can use to manage 

changes in data along with other tools like data versioning, but there 

are also abstractions for models and code like source control and model 

registries like MLflow. We’ll talk about all of these MLOps tools for 

managing change in subsequent chapters, but keep in mind the concept of 

abstractions and how these tools help us protect our project from change.

�Drivers of Change in Data Science Projects
We know the types of approaches needed to build an attribution model, 

but there is no one way to build one without historical data, and the types 

of approaches may involve more than something you’re familiar with like 

semi-supervised learning; it may involve, instead, stochastic algorithms 

or a custom solution. For attribute modeling we could think about various 

techniques from Markov chains to logistic regression of Shap values.

From a coding perspective, for each type of approach, we are 

faced with a choice as a designer of a stochastic learning system on 

programming language, framework, and tech stack to use. These 

technologies exist in the real world and not in isolation, and in the context 

of a business environment, change is constantly happening.

These combinatorial and business changes, called change 

management, can cause disruptions and delays in project timelines, and 

for data science projects, the line is often a gap between what the business 

wants and the problem that needs well-defined requirements or at worst 

an impossible problem or one that would require heroic efforts to solve 

within the time and scope.

So model, code, well-defined requirements… What about the data? We 

mentioned the business is constantly changing, and this is reflected in the 

data and the code. It is often said that a company ships its own org chart, 

and the same is true for data projects where changes to business entities 

cause changes in business rules or agreement upon ways to measure 
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KPIs for data science projects, which leads to intense downstream change 

to feature stores, feature definitions, schema changes, and downstream 

pipelines for model training and inference.

Externalities or macro-economic conditions may also cause changes 

in customer assumptions and behavior that get reflected in the model, a 

problem often called concept drift. These changes need to be monitored 

and acted upon (e.g., can we retrain the model when we detect concept 

drift), and these actions need to be automated and maintained as packages 

of configuration, code, infrastructure as code, data, and models. Artifacts 

like data and models require versioning and source control systems, and 

these take knowledge of software engineering to set up.

�Choosing a Programming Language 
for Data Science
Arguments over programming languages can be annoying, especially when 

this leads to a holy war instead of which programming language is the right 

tool for the job. For example do you want performance, type safety, or the 

ability to rapidly prototype with extensive community libraries?

This is not a programming book, and it’s more important that you 

learn how to think conceptually, which we will cover in the next chapter. 

Python is a very good language to learn if you are starting out, but there 

are other languages like Julia and R and SQL that each have their uses. You 

should consider the technical requirements, skill set of your team before 

committing to a language. For example, Python has distinct advantages 

over R for building scalable code, but when it comes to speed, you might 

consider an implementation in Julia or C++. This also comes with a 

cost: the data science community for Python is prolific, and packages 

like Pandas and sklearn are widely supported. This isn’t to say using a 

language like R or Julia is wrong, but you should make a decision based on 

available data.
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More advanced data scientists interested in specializing in MLOps may 

learn C++, Julia, or JAX (for accelerating tensor operations) in addition to 

Python and strong SQL skills.

We’ll cover programming basics including data structures and 

algorithms in the following chapter. It’s worth noting that no one 

language is best and new languages are developed all the time. In the 

future, functional programming languages oriented around probabilistic 

programming concepts will likely play a bigger role in MLOps.

�MapReduce and Big Data
Big data is a relative term. What was considered “big data” 20 years ago 

is different from what is considered “big data” today. The term became 

popular with the advent of MapReduce algorithms and Google’s Bigtable 

technology, which allowed algorithms that could be easily parallelized 

to be run over extremely large gigabyte-scale data sets. Today, we have 

frameworks like Spark, and knowledge of MapReduce and Java or Scale 

isn’t necessary since Spark has a Python API called PySpark and abstracts 

the concept of a mapper and reducer from the user. However, as data 

scientists we should understand when we’re dealing with “big data” as 

there are specific challenges. Not all “big data” is high volume. In fact there 

are three Vs in big data you may need to handle.

�Big Data a.k.a. “High Volume”
This is most commonly what is meant by “big data.” Data that is over a 

gigabyte may be considered big data, but it’s not uncommon to work 

with billions of rows or terabytes of data sourced from cold storage. High-

volume data may pose operational challenges in data science since we 

need to think about how to access it and transferring large data sets can 
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be a problem. For example, Excel has a famous 1 million row limit, and 

similarly with R, the amount of memory is restricted to 1 GB, so we need 

tools like Spark to read and process this kind of data.

�High-Velocity Data
By “high-velocity” data sources, we usually mean streaming data. 

Streaming data is data that is unbounded and may come from an API or 

IoT edge device in the case of sensor data. It’s not the size of the data that 

is an operational challenge but the speed at which data needs to be stored 

and processed. There are several technologies for processing high-velocity 

data including “real-time” or near-real-time ones (often called micro-

batch architecture) like Apache Flink or Spark Streaming.

�High-Veracity Data
If you are a statistician, you know the concept of variability. Data can have 

variability in how it’s structured as well. When data is unstructured like 

text or semi-structured like JSON or XML in the case of scraping data from 

the Web, we refer to it as high veracity. Identifying data sources as semi-

structured, structured, or unstructured is important because it dictates 

which tools we use and how we represent the data on a computer, for 

example, if dealing with structured data, it might be fine to use a data 

frame and Pandas, but if our data is text, we will need to build a pipeline 

to store and process this data and you may even need to consider NoSQL 

databases like MongoDB for this type of problem.

�Types of Data Architectures
We might choose a data architecture to minimize change like a structured 

data warehouse, but when it comes to data science projects, the inherent 

inflexibility of a structured schema creates a type of impedance mismatch. 

This is why there are a number of data architectures such as the data lake, 
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data vault, or medallion architecture that may be better fit for data science. 

These architectures allow for anticipated changes in schema, definition, 

and business rules.

�The Spiral MLOps Lifecycle
We will discuss the titular MLOps lifecycle in detail in Chapter 7, but we 

can broadly distinguish the different phases of a data science project into

	 1.	 Insight and data discovery

	 2.	 Data and feature engineering

	 3.	 Model training and evaluation

	 4.	 Model deployment and orchestration

The reason we call it a spiral lifecycle is because each of these stages 

may feedback into previous stages; however, as the technical architecture 

matures (according to the MLOps maturity model), the solution 

should converge to one where you are delivering continuous value to 

stakeholders. Figure 1-4 shows the spiral MLOps lifecycle.

Figure 1-4.  The spiral MLOps lifecycle
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�Data Discovery
Ideally, you would approach the problem like a statistician. You have 

a problem, design an experiment, choose your sampling method, and 

collect the exact data you need to ensure there are no biases in your data, 

repeating the process as many times as you can if need be. Unfortunately, 

business does not work like this. You will be forced to approach the 

problem backward; you might have a vague idea of what problem you want 

to solve and the data you need, but you may only have the resources or 

access to the data that the business has already collected.

How can MLOps help with this process? Well, the data is often stored 

as flat CSV files, which can total several gigabytes or more. A typical 

scenario is you have to figure out how to load this data and you quickly 

run into memory errors if using tools like Pandas. We’ll show you how to 

leverage distributed computing tools like Databricks to get around these 

issues without too much headache and if possible without even rewriting 

your code.

�Data Discovery and Insight Generation
This phase is all about exploring your data sets, forming and testing 

hypotheses, and developing intuition for your data. There are often several 

challenges at this stage. If you are using a tool like seaborn or matplotlib 

for generating visualizations, you might face the challenge of how to 

deploy your work or share it with other data scientists or stakeholders.

If you’re working on an NLP problem, you might have lots of different 

experiments and want to quickly test them. How do you organize all of 

your experiments, generate metrics and parameters, and compare them 

at different points in time? Understanding standard tools like MLflow and 

how to set up an experimentation framework can help.

Chapter 1  Introducing MLOps



26

Let us suppose as a data scientist you are an expert at understanding 

and identifying biases in your data. You work for a financial institution and 

are tasked with creating a customer churn model. You know net promoter 

score is a key metric, but you notice survey responses for your customers 

are missing on two key dates.

You decide to write a script in Pandas to filter out these two key dates. 

Suddenly, the next week your data has doubled in size, and your script no 

longer scales. You manually have to change the data in a spreadsheet and 

upload it to a secure file server. Now, you spend most of your time on this 

manual data cleaning step, validating key dates and updating them in a 

spreadsheet. You wish you knew how to automate some of these steps with 

a pipeline.

Few people enjoy doing ETL or ELT; however, understanding the 

basics of building pipelines and when to apply automation at scale 

especially during the data cleaning process can save you time and effort.

�Data and Feature Engineering
Feature selection may be applied to both supervised and unsupervised 

machine learning problems. In the case that labeled data exists, we might 

use some measure like correlation to measure the degree of independence 

between our features and a response or target variable. It may make sense 

to remove features that are not correlated with the target variable (a kind of 

low-pass filter), but in other cases, we may use a model itself like Lasso or 

Ridge regression or random forest to decide which features are important.

�Model Training
How do you choose the best model for your problem? A training pipeline 

in the wild can take hours or even sometimes days to finish especially if the 

pipeline consists of multiple steps.
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As an MLOps engineer, you should be familiar with frameworks 

and methods for speeding up model training. We’ll look at Hyperopt, a 

framework for using Bayesian hyperparameter search, and Horovod for 

distributed model training that takes advantage of parallelism. By speeding 

up model training time, by using distributed computing or GPU, we can 

immediately add value to a project and have more time spent doing data 

science.

�Model Evaluation
Model selection is the process of choosing the “best” model for a business 

problem. Best may not necessarily be as simple as the model with the best 

training accuracy in case the data overfits and does not generalize to new 

samples (see the bias-variance trade-off). It may be more nuanced than 

this, as there might be regulatory constraints such as in the healthcare 

and banking industries where model interpretability and fairness are a 

concern. In this case, we must make a technical decision, balancing the 

attributes of the model we desire like precision, recall, and accuracy over 

how interpretable or fair the model is and what kind of data sources we 

are legally allowed to use to train the model. MLOps can help with this 

step of the machine learning lifecycle by automating the process of model 

selection and hyper-parameter tuning.

�Deployment and Ops
You’ve trained your model and even automated some of the data cleaning 

and feature engineering processes, but now what? Your model is not 

creating business value unless it’s deployed in production, creating 

insights that decision makers can take action on and incorporate into their 

tactical or business strategy.

Chapter 1  Introducing MLOps



28

But what does it mean to deploy a model to production? It depends. 

Are you doing an online inference or batch inference? Is there a 

requirement on latency or how fast your model has to make predictions? 

Will all the features be available at prediction time, or will we have to do 

some preprocessing to generate features on the fly?

Typically infrastructure is involved; either some kind of container 

registry or orchestration tool is used, but we might also have caches to 

support low-latency workflows, GPUs to speed up tensor operations 

during prediction, or have to use APIs if we deploy an online solution. 

We’ll cover the basics of infrastructure and even show how you can deliver 

continuous value from your models through continuous integration and 

delivery pipelines.

�Monitoring Models in Production
Okay, you’ve deployed your model to production. Now what? You have to 

monitor it. You need a way to peer underneath the covers and see what is 

happening in case something goes wrong. As data scientists we are trained 

to think of model accuracy and maybe have an awareness of how efficient 

one model is compared with another, but when using cloud services, we 

must have logging and exception handling for when things go wrong. 

Again, Murphy’s Law is a guiding principle here.

Understanding the value of setting up logging and explicit exception 

handling will be a lifesaver when your model chokes on data in production 

it has never seen before. In subsequent chapters you’ll learn to think 

like an engineer to add logging to your models and recover gracefully in 

production.
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�Example Components of a Production 
Machine Learning System
A production machine learning system has many supporting components 

that go into its design or technical architecture. You can think of the 

technical architecture as a blueprint for creating the entire machine 

learning system and may include cloud storage accounts, relational and 

nonrelational (NoSQL) databases, pipelines for training and prediction, 

infrastructure for reporting to support automated training, and many 

other components. A list of some of the components that go into creating a 

technical architecture include

•	 Cloud storage accounts

•	 Relational or NoSQL databases

•	 Prediction pipeline

•	 Training pipeline

•	 Orchestration pipelines

•	 Containers and container registries

•	 Python packages

•	 Dedicated servers for training or model serving

•	 Monitoring and alerting services

•	 Key Vault for secure storage of credentials

•	 Reporting infrastructure
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�Measuring the Quality of Data 
Science Projects
The goal of this section is to give you the ability to quantitatively define and 

measure and evaluate the success of your own data science projects. You 

should begin by asking what success means for your project.

This quantitative toolbox, akin to a kind of multi-dimensional 

measuring tape, can be applied to many types of projects from traditional 

supervised, unsupervised, or semi-supervised machine learning projects 

to more custom projects that involve productionizing ad hoc data science 

workflows.

�Measuring Quality in Data Science Projects
With the rapid evolution of data science, a need has arisen for MLOps, 

which we discussed, in order to make the process effective and 

reproducible in a way that mirrors scientific rigor.

Measuring software project velocity and other KPIs common to project 

management, an analogous measurement is needed for data science. 

Table 1-2 lists some measurements that you might be interested in tracking 

for your own project. In later chapters we’ll show you how to track these 

or similar measures in production using tools like MLflow so that you can 

learn to move the needle forward.
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Table 1-2.  Common KPIs

Measurement Stakeholder Question Examples

Model accuracy Can we evaluate model 

performance?

Precision, recall, accuracy, 

F1 score; depends on the 

problem and data

Model 

interpretability

How did each feature in the model 

contribute to our prediction?

Shap values

Fairness Are there sensitive features being 

used as input into the model?

Model output distribution

Model 

availability

Does the model need to make 

predictions at any time of day or on 

demand? What happens if there is 

downtime?

Uptime

Model reliability Do the training and inference 

pipelines fail gracefully? How do 

they handle data that has never 

been seen before?

Test coverage percentage

Data drift What happens when features 

change over time?

KL divergence

Model drift Has the business problem changed? Distribution of output of 

model

Correlation with 

key KPIs

How do the features and prediction 

relate to key KPIs? Does the 

prediction drive key KPIs?

Correlation with increased 

patient hospital visits for a 

healthcare model

Data volume What is the size of our data set? Number of rows in feature 

sets

(continued)
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Table 1-2.  (continued)

Measurement Stakeholder Question Examples

Feature profile What kinds of features and how 

many?

Number of features by 

category

Prediction 

latency

How long does the user have to wait 

for a prediction?

Average number of 

milliseconds required 

to create features at 

prediction time

�Importance of Measurement in MLOps
How can we define the success of our projects? We know intuitively that 

the code we build should be reliable, maintainable, and fail gracefully 

when something goes wrong, but what is reliability and maintainability? 

We need to take a look at each of these concepts and understand what 

each means in the context of data science.

�What Is Reliability?

Reliability means there are checks, balances, and processes in place to recover 

when disaster strikes. While availability is more about uptime (is the system 

always available to make a prediction when the user needs it?), reliability 

is more about acknowledging that the system will not operate under ideal 

conditions all the time and there will be situations that are unanticipated. 

Since we cannot anticipate how the system will react when faced with data it’s 

never seen before, for example, we need to program in error handling, logging, 

and ensure we have proper tests in place to cover all code paths that could 

lead to failure. A cloud logging framework and explicit exception handling are 

two ways to make the system more reliable, but true reliability comes from 

having redundancy in the system, for example, if you’re building an API for 

your model, you should consider a load balancer and multiple workers.
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�What Is Maintainability?

Maintainability is related to code quality, modularity, and readability 

of the code. It requires a future-oriented mindset since you should be 

thinking about how you will maintain the code in the future. You may have 

an exceptional memory, but will you be able to remember every detail a 

year from now when you have ten other projects? It’s best to instead focus 

on maintainability early on so running the project in the future is easier 

and less stressful.

�Moving the Needle: From Measurement to Actionable 
Business Insights

Ultimately the goal of MLOps is to move the needle forward. If the goal of 

the data scientist is to create accurate models, it’s the job of the machine 

learning engineer to figure out how to increase accuracy, increase 

performance, and move business KPIs forward by developing tools, 

processes, and technologies that support actionable decision making.

�Hackerlytics: The Mindset of an MLOps Role
Finally, I would like to close out this chapter by discussing the mindset 

shift required for an MLOps role from data scientist. If you are a data 

scientist focused on data and analytics, you are probably used to thinking 

outside the box already to solve problems. The shift to using this out-of-

the-box thinking to solve data problems with technology is exactly the 

mindset required. In the next chapter, we’ll look at the fundamental skills 

from mathematical statistics to computer science required so you can 

begin to apply your new hackerlytics skills on real data problems.
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�Summary
In this chapter we gave an introduction to MLOps from the data scientist’s 

point of view. You should now have an understanding of what MLOps is 

and how you can leverage MLOps in your own projects to bring continuous 

value to stakeholders through your models. You should understand some 

of the technical challenges that motivate the need for an MLOps body of 

knowledge and be able to measure the quality of data science projects to 

evaluate technical gaps. Some of the majors topics covered were as follows:

•	 What is MLOps?

•	 The need for MLOps

•	 Measuring quality of data science projects

In the next few chapters, we will cover some core fundamentals needed 

for data scientists to fully take ownership of the end-to-end lifecycle of 

their projects. We’ll present these fundamentals like algorithmic and 

abstract thinking in a unique way that can help in the transition from data 

science to MLOps.
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CHAPTER 2

Foundations for 
MLOps Systems

“All models are wrong, but some are useful.”

—George Box

In this chapter, we will discuss foundations for MLOps systems by breaking 

down the topic into fundamental building blocks that you will apply in 

future chapters. While we will discuss programming nondeterministic 

systems, data structures and algorithmic thinking for data science, and 

how to translate thoughts into executable code, the goal is not to give 

a fully comprehensive introduction to these areas in a single chapter 

but instead provide further resources to point you in the right direction 

and answer an important question: Why do you need to understand 

mathematics to develop and deploy MLOps systems?

This book would be remiss without laying out the core mathematical 

and computational foundations that MLOps engineers need to understand 

to build end to end systems. It is the responsibility of the MLOps engineer 

to understand each component of the system even if it appears like a 

“black box.”

Toward this end, we will create a logistic regression model (both 

classical and Bayesian) from scratch piece by piece to estimate the 

parameters of the hypothesis using stochastic gradient descent to illustrate 
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how models built up from simple mathematical abstractions can have 

robust practical uses across various industries. First, let’s define what we 

mean by model by taking a look at some statistical terminology.

�Mathematical Thinking
Mathematics is the foundation of data science and AI. Large language 

models like ChatGPT are transforming our lives. Some of the first large 

language models such as BERT (an encoder) are based on either an 

encoder or decoder transformer architecture. While the attention layers 

that are part of this model are different both in form and in use cases, they 

are still governed by mathematics.

In this section, we lay out the rigorous foundations for MLOps, diving 

into the mathematics behind some of the models we use.

�Linear Algebra
Linear algebra is the study of linear transformations like rotation. A 

transformation is a way of describing linear combinations of vectors. 

We can arrange these vectors in a matrix form, and in fact you can prove 

every linear transformation can be represented in this way (with respect 

to a certain basis of vectors). You’ll find linear algebra used throughout 

applied mathematics since many natural phenomena can be modeled 

or approximated by linear transformations. The McCulloch-Pitts neuron 

or perceptron combines a weight vector with a feature vector using an 

operator called the dot product. When combined with a step activation 

or “threshold” function, you can build linear classifiers to solve binary 

classification problems.

Though matrices are two-dimensional, we can generalize the idea 

of a matrix to higher dimensions to create tensors. Since many machine 

learning algorithms can be written in terms of tensor operations. In 
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fact tensors themselves can be described as multilinear maps1. You can 

imagine how important linear algebra is to understanding neural networks 

and other machine learning algorithms. Another important reason for 

studying linear algebra is it is often the first exposure to writing proofs, 

developing mathematical arguments and mathematical rigor.

�Probability Distributions
By model we really mean a probability distribution. The probability 

distribution will be parameterized so that we can estimate it using real-

world data either through algorithms like gradient descent or Bayes’ rule 

(this may be difficult under some circumstances as we’ll discuss). We’re 

usually interested in two types of probability distributions: joint probability 

distributions and conditional distributions.

Join probability distribution: Given two random variables X and Y, if X 

and Y are defined on the space probability space, then we call the probability 

distribution formed by considering all possible outcomes of X and Y 

simultaneously the joint probability distribution. This probability distribution 

written as P(X, Y) encodes the marginal distributions P(X) and P(Y) as well 

as the conditional probability distributions. This is an important concept 

as many of the models we’ll be looking at will be attempting to compute or 

sample from a joint probability distribution to make some prediction.

Conditional probability distribution: Conditional probability is the 

probability of an event, Y occurring given an event X has already occurred. 

We write this conditional probability as P(Y | X) often read as “probability 

of Y given X.” Let’s look at a few examples of models we might use as data 

scientists in various industries to understand how these abstractions are 

built up from mathematical concepts.

1 An introduction to linear algebra can be found in Hoffman, K. A. (1961). Linear 
Algebra.
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�Understanding Generative and Discriminative  
Models
A generative model is synonymous with a joint probability distribution 

P(X, Y) (however, this is not strictly true since, e.g., GANs belong to the 

class of generative models) since for a classification problem it will assume 

some functional form of P(Y) and P(X | Y) in terms of some parameters 

and estimated from the training data. This is then used to compute P(Y | X) 

using Bayes’ rule. These types of models have some interesting properties, 

for instance, you can sample from them and generate new data. Data 

augmentation is a growing area especially within the healthcare and 

pharmaceutical industry where data from clinical trials is costly or not 

available.

The simplest examples of a generative model include Gaussian 

distributions, the Bernoulli model, and Naive Bayes models (also the 

simplest kind of Bayesian network).

In contrast, a discriminative model such as logistic regression 

makes a functional assumption about the form of P(Y | X) in terms 

of some parameters W and b and estimates the parameters directly 

from the training data. Then we pick the most likely class label based 

on these estimates. We’ll see how to compute parameters W and b in 

the lab: algorithmic thinking for data science2 where we’ll actually use 

stochastic gradient descent and build a logistic regression model from the 

ground up.

2 For a full introduction to algorithmic thinking and computer programming, 
the reader is directed to Abelson, H. and Sussman, G. J. (1996). Structure and 
Interpretation of Computer Programs, second edition. MIT Press.
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�Bayesian Thinking
We chose logistic regression as an example in this chapter for another 

reason: Logistic regression is a good example of a probabilistic model. 

When you train it, it automatically gives you an estimate of the probability 

of success for new data points. However, classical logistic regression is a 

frequentist model. The classical logistic regression model does not tell us if 

we can rely on the results, if we have enough data for training, or anything 

about the certainty in the parameters.

To illustrate this point, let’s suppose we train a logistic regression 

model to predict who should receive a loan. If our training data is 

imbalanced, consisting of 1000 people and 900 of which are examples 

of people we should not lend to, our model is going to overfit toward a 

lower probability of loan approval, and if we ask what is the probability of 

a new applicant getting a loan, the model may return a low probability. A 

Bayesian version of logistic regression would solve this problem. In the lab, 

you will solve this problem of imbalance data by using a Bayesian logistic 

regression model and generating a trace plot to explore the parameters 

and ensure that the parameters are well calibrated to the data. Figure 2-1 

shows a trace plot generated from this lab.

Figure 2-1.  A trace plot showing the history of parameters in a 
Bayesian model
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Of course, we need to understand yet another mathematical primitive: 

Bayes’ rule. Unlike in frequentist statistics, where we have parameters and 

point estimates, in Bayesian statistics, we have probability distributions 

as we defined earlier. In fact, every unknown in our model is a probability 

distribution called a prior that encodes our current knowledge about that 

parameter (in the lab, we have three parameters we want to estimate, with 

priors chosen from normal distributions).

Bayes’ rule updates beliefs about the parameters by computing a 

posterior probability distribution.

•	 The prior distribution can be interpreted as the current 

knowledge we have on each parameter (it may only be 

a best guess).

•	 The likelihood function is the probability of observing 

a data set given certain parameters θ of our model.

•	 The evidence is the probability of the observed data 

itself over all possible models and is very difficult to 

compute, often requiring multivariate integrals in three 

or more dimensions. Fortunately, for many problems, 

this is only a constant of proportionality that can be 

discarded3.

We speak of “turning the Bayesian crank” when the posterior of one 

problem (what we are interested in estimating) becomes the prior for 

future estimates. This is the power of Bayesian statistics and the key to 

generative models. Listing 2-1 shows the different parts of Bayes’ rule.

3 Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. In Springer  
texts in statistics. Springer International Publishing. https://doi.org/10.1007/ 
978-0-387-92407-6.
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Listing 2-1.  Bayes’ rule
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Bayes rule was actually discovered by Thomas Bayes, an English 

Presbyterian minister and statistician in the eighteenth century, but the 

work LII. An Essay Towards Solving a Problem in the Doctrine of Chances 

wasn’t published until after Bayes’ death and to this day is often a graduate 

level course not taught in undergraduate statistics programs.

So how can we develop some intuition around Bayes’ rule? Let’s start 

by asking a question:

What is the probability of a coin coming up heads? Take a few minutes 

to think about it before you answer; it’s a bit of a trick question.

Okay …I’ve asked this question to a few people and most would say it 

depends. It depends if the coin is fair or not. Ok so assuming it’s a fair coin, 

the usual answer is the chance of coming up heads is 50% or 0.5 if we’re 

using probability.

Now let’s switch this question up; let’s suppose that the coin has 

already been flipped but you cannot see the result. What is the probability? 

Go ahead and ask your colleagues or friends this question, and you might 

be surprised by the range of answers you’ll receive.

A frequentist position is that the coin has already been flipped, and 

so it is either heads or tails. The chance is either 0% heads if the coin 

landed tails or it is 100% if it landed heads. However, there’s something 

unsatisfactory about this perspective; it does not take into consideration 

the uncertainty in the model.

A Bayesian approach would be to quantify that uncertainty and say, it’s 

still 50% chance of heads and 50% chance of tails; it depends on what we know 

at the moment. If we observe the coin has landed heads, then we can update 

our hypothesis. This allows us to adapt to change and accommodate new 

information (remember, MLOps is all about being able to adapt to change). In 

the next section, we will look at some specific examples of Bayesian models.
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�Gaussian Mixture Models
K-means, one of the oldest clustering methods, behaves poorly when 

clusters are of different sizes, shapes, and densities. While K-means requires 

knowing the number of clusters as a parameter before going ahead with 

clustering, it is closely related to nonparametric Bayesian modeling in 

contrast to the Gaussian mixture model (GMM) shown in Figure 2-2.

Figure 2-2.  Clustering using a Bayesian Gaussian mixture model

A Gaussian mixture model is a probabilistic model that makes the 

assumption that the data generating process is a mixture of finite Gaussian 

distributions (one of most important probability distributions for modeling 

natural phenomena and so widely used in science, engineering, and 

medicine). It is a parametric model where the parameters of the Gaussian 

components are unknown. We can think of GMMs as a finite weighted 

sum of Gaussian component densities. Listing 2-2 shows an equation that 

governs the GMM.
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Listing 2-2.  An equation that describes the Gaussian mixture model
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However, these parameters are computationally expensive and do not 

scale well since they are computed often through maximal likelihood and 

EM (expectation-maximization) algorithms and are modeled as latent 

variables. Despite scalability problems, GMMs are used in many industries 

in particular healthcare, to model more meaningful patient groupings, 

diagnostics, and rehabilitation and to support other healthcare activities.

�General Additive Models
With generalized additive models (GAMs), you don’t have to trade off 

accuracy for interpretability. These are a very powerful extension to linear 

regression and are very flexible with their ability to incorporate nonlinear 

features in your data (imagine having to do this by hand if all we had was a 

linear regression model?)

If random forests are data driven and neural networks are model 

driven, the GAMs are somewhere in the middle, but compared to neural 

nets, SVMs, or even logistic regression, GAMs tend to have relatively 

low misclassification rates which make them great for mission critical 

applications where interpretability and misclassification rate are utmost 

importance such as in healthcare and financial applications.

If you’ve never used a GAM before, you can look at splines to start. 

Splines are smooth functions used to model nonlinear relationships 

and allow you to control the degree of smoothness through a smoothing 

parameter. Figure 2-3 shows some of the trade-offs between these 

different models.
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Figure 2-3.  Trade-offs between explainability and model accuracy

�Kernel Methods
The best known example of kernel methods, the support vector machine 

(SVM), allows us to use the “kernel trick” and work well on text based 

data which is naturally high dimensional. This means that we can embed 

features in a higher, possibly infinite, dimensional space without ever 

having to explicitly compute the embedding.

Kernel methods are particularly important in geostatistics applications 

such as kriging (Gaussian process regression) especially in the oil and 

gas industry. The main use case of kriging is to estimate the value of a 

variable over a continuous spatial field. For example, you may have sensor 

readings such as temperature and pressure in an oil and gas reservoir, but 

you may not know the sensor readings at every position in the reservoir. 

Kriging provides an inexpensive way to estimate the unknown sensor 

readings based on the readings that we do know. Kriging uses a covariance 

matrix and a kernel function to model the spatial relationships and 

spatial dependencies of data points throughout the reservoir by encoding 

similarity between features.
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Where did these models come from? Fundamentally, these algorithms 

are based on logic and mathematical properties and primitives such as 

probability distributions. If we know about the Gaussian distribution, it’s 

not a far stretch to understand how to build a Gaussian mixture model. If 

we know about covariance matrices, we can understand kernel methods 

and maybe Gaussian processes, and if we understand linear systems, we 

can build on top of this abstraction to understand GAMs.

I want to illustrate this point further, by building a model from 

fundamental principles. Logistic regression is particularly interesting to 

use for this as most people are familiar with it, but it is not a toy model; 

you can use logistic regression to solve many real-world problems 

across various industries since it is fairly robust. We can also use logistic 

functions to build many more complex models. For instance, the classical 

version of logistic regression is used to model binary classification (e.g., 

predicting likelihood of success or failure), but by combining multiple 

logistic regression models into strategies like one-vs.-all or one-vs.-

one, we can solve more complex multi-class classification problems 

with a single response variable via softmax, a generalization of logistic 

regression. Logistic functions can also be used to create neural networks: 

It’s no coincidence that in a neural network, the activation function is 

often a logistic sigmoid (pictured in the following). In this chapter’s lab 

on algorithmic thinking, you’re going to walk through some of these 

mathematical tools and build a logistic regression model from scratch. 

Figure 2-4 shows an example of a logistic sigmoid curve.
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Figure 2-4.  A logistic sigmoid curve

The parameter mu takes on the probability value ½ which makes 

intuitive sense.

�Higher Dimensional Spaces
I want to cover one more mathematical tool for the toolkit because in data 

science, unlike pure statistics, we deal with big data but also because it is 

fascinating to be able to develop intuition on higher dimensional spaces by 

learning to think geometrically.

You’ve probably heard of the “curse of dimensionality.” Things behave 

strangely in high dimensions, for example, if we could measure the volume 

of a unit sphere as we embed it into higher dimensional space, that volume 

would actually shrink as the dimension increases! That is incredibly 

counterintuitive. Figure 2-5 shows an artistic rendition of a shrinking 

sphere in higher dimensional space (since we can only visualize in three 

dimensions).
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Figure 2-5.  A shrinking sphere illustrating the unintuitive nature of 
higher dimensions

In data science in the real world, we have at minimum hundreds 

of features. It is not uncommon to have 1000 or more features, and 

so naturally we need a way to try to reduce the number of features. 

Mathematically speaking, this means we want a way to embed our data 

that lives in a high dimensional space to a lower dimensional space while 

preserving information.

Going back to our favorite example, logistic regression, we 

can illustrate another important mathematical tool to handle high 

dimensionality, regularization.

Regularization is extremely important when applying logistic 

regression because without it, the asymptotic nature of the logistic curve 

at +infinity and -infinity (remember the sigmoid?) would translate into 

zero loss in high dimensions. Consequently, we need strategies to dampen 
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the model complexity. The most common way is L2 regularization which 

means we’ll give a higher penalty to model parameters that are nonzero. 

We can also use an L1 norm (a different way of measuring distance in high 

dimensional spaces). The penalty is defined as minus the square of the 

L2 norm multiplied by a positive complexity parameter lambda. Lambda 

controls the amount of shrinkage toward zero.

Models that use L1 regularization are called Lasso regression, and 

models that use L2 are called Ridge regression. If you would like to gain 

a deeper understanding of the types of norms that can exist and higher 

dimensional spaces, in the next section, you will have the opportunity to 

learn more about mathematical statistics in a hands-on lab.

�Lab: Mathematical Statistics
Before proceeding to the next section, you can complete the optional lab 

on mathematical statistics. This will give you hands-on experience with 

probability distributions by looking at an important and fundamental tool 

in mathematical statistics: characteristic functions.

You’ll program a characteristic function from scratch. Characteristic 

functions have many interesting properties including completely 

characterizing a probability distribution and are even used in the most 

basic proofs of the central limit theorem. The steps are as follows:

Step 1. Open the notebook MLOps_Lifecycle_Toolkit_Mathematical_

Statistics_Lab.ipynb (available at github.com/apress/mlops-lifecycle-

toolkit).

Step 2. Import the math, randon, and numpy packages by running cell #2.

Step 3. Create a function for computing the characteristic function of a 

random normal with unit standard deviation by running cell #3.

Step 4. Run the remaining cells, to set up a coin toss experiment and 

recover the probability of a fair coin from the characteristic function. Was 

the coin fair?
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Although this lab is optional because it requires some advanced math, 

it’s recommended since it covers some deep mathematical territory from 

probability distributions, Fourier transforms, complex numbers, and more.

�Programming Nondeterministic Systems
In order to build real-world systems, we need to understand the types 

of data structures (arrays, lists, tensors, dataframes) and programming 

primitives (variables, loops, control flow, functions) that you’ll likely 

encounter to know what the programming is doing and to be able to read 

other data scientists code.

Knowledge of data structures, algorithms, and packages can be applied 

regardless of language. If you use a package, even an R package, you 

should read the source code and understand what it’s doing. The danger 

of not understanding what the statistical black box means the result of 

an analysis that uses your code could come out inaccurate or, worse, 

introduce non-determinism into your program.

Sources of non-determinism in ML systems

•	 Noisy data sets

•	 Poor random initialization of model parameters

•	 Black box stochastic operations

•	 Random shuffling, splits, or data augmentation
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�Programming and Computational Concepts
Let’s look at some basic programming concepts.

�Loops
Loops are a mechanism to repeat a block of code. Why use loops? One 

reason is you may have a block of code you want to repeat and, without a 

loop, you would have to copy paste the code, creating redundant code that 

is hard to read and reason about.

Another reason we use loops is for traversing a data structure such 

as a list or dataframe. A list or array has many items and a dataframe has 

many rows, in a well-defined order, and it is a natural way to process each 

element one by one; whether that element be a row or a list depends on 

the data structure.

Loops can be complex, and there’s a programming adage that goes you 

should never modify a variable in a loop.

One reason loops are important in data science is twofold:

	 1)	 Many tensor operations naturally unfold into loops 

(think dot product or tensor operations).

	 2)	 By counting the number of nested loops, you can get 

an idea on the asymptotic behavior (written in Big-O 

notation) of your algorithm; in general, nested loops 

should be avoided if possible being replaced by 

tensor operations.

The last technique is actually an optimization tool called 

vectorization. Often, vectorized code can take advantage of low level 

instructions like single instruction, multiple data, or SIMD instructions. In 

fact, most GPUs use a SIMD architecture, and libraries like JAX can take 

this idea to the next level if you need to run NumPy code on a CPU, GPU, 

or even a TPU for high performance machine learning.
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�Variables, Statements, and Mathematica  
Expressions
What is the difference between a statement and an expression?

A statement does something that assigns a value to a variable. An 

example in Python is x = 1.

This simple statement assigns the value 1 to a variable x. The variable, 

x, in this case points to a memory location used to store information.

An expression on the other hand needs to be evaluated by the 

interpreter (or compiler in a compiled language like C++ or Haskell) 

and returns a value. Expressions can be building blocks of statements or 

complex mathematical expressions. An example of an expression (but not 

a statement) is the following:

(1 + 2 + x)

We can also have Boolean expressions which we’ll look at next and are 

very important for making decisions.

�Control Flow and Boolean Expressions
Control flow refers to the order in which individual statements, 

commands, instructions, statements, or function calls are executed. 

Changing the order of statements or function calls in a program can 

change the program entirely. In imperative languages (e.g., Python can 

be coded in an imperative style), control flow is handled explicitly by 

control flow statements such as if statements that control branching. 

Usually at each branch, a choice is made and the program follows one 

path depending on a condition. These conditions are called Boolean 

expressions.
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Boolean expressions involve logical operations such as AND, OR, NOT, 

and XOR. These Boolean expressions can be combined in complex ways 

using parentheses and as mentioned are used in control flow statements in 

your program to make complex decisions.

For example, let’s suppose you have a computer program with 

variables that store true and false values. You have one variable that stores 

the percent missing and a second variable that stores the number of rows 

in your data, and you want to exclude rows that have over 25% missing 

values when your data is more than 1000 rows. You can form a Boolean 

expression as follows:

If (percent_missing > 25) AND (num_rows  >  1000):

        // drop rows

Of course, in a library like Pandas, there are functions like dropna for 

dataframes that do this sort of low level logic for you, but you can read the 

source code to understand exactly what is happening under the hood for 

the functions you care about.

�Tensor Operations and Einsums
A tensor is, simply put, a generalization of vectors to higher dimensions. 

There is some confusion on the use of the term since there are also tensors 

in physics, but in machine learning, they’re basically a bucket for your 

data. Many libraries including NumPy, TensorFlow, and PyTorch have 

ways of defining and processing tensors, and if you’ve done any deep 

learning you’re likely very familiar with tensors, but a cool tool I want to 

add to your toolkit is Einsums.

Einsums are essentially shorthand for working with tensors, and if you 

need to quickly translate complex mathematical equations (e.g., ones that 

occur in data science or machine learning papers), you can often rewrite 

them in Einsum notation in very succinct, elegant ways and then execute 
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them immediately in a library like PyTorch. For example, the following 

Einsum equation codifies matrix multiplication, and we can implement it 

in PyTorch in Listing 2-3:

Listing 2-3.  An example of Einsum notation

a = torch.arange(900).reshape(30, 30)

b = torch.arange(900).reshape(30, 30)

torch.einsum('ik,kj->ij', [a, b])

Okay, we’ve covered quite a bit. We talked about variables, loops, and 

control flow and ended with tensors, a kind of bucket for high dimensional 

data. However, there are many more “buckets” for your data that are useful 

in data science. These are called data structures, the subject of computer 

science. We’ll cover a few data structures in the next section.

�Data Structures for Data Science
This section is about data structures. While computer science has many 

data structures, data scientists should be familiar with a few core data 

structures like sets, arrays, and lists. We will start by introducing sets, 

which might be the simplest data structure to understand if you come from 

a math background.

�Sets
Sets are collections of elements. A set can contain elements, and you can 

use sets for a variety of purposes in data science for de-duplication of your 

data to checking set membership (that is to say, the set data structure 

comes with an IN operator).
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It is important to note that a set has no order (actually there is the 

well-ordering principle that says exactly the opposite, but in Python, for 

instance, and other languages, sets have no order). If we want to impose an 

order when storing elements, we should use a linear data structure like an 

array or a list, which we’ll cover next.

�Arrays and Lists
The most fundamental distinction between an array and a list is that a list 

is a heterogeneous data structure, and this mean it can store a mix of data 

types, for example strings, floats, Booleans, or even more complex user 

defined types.

 An array on the other hand is homogenous; it only is designed to store 

one type of value.

In Python, lists are a primitive data type and part of the core language. 

The ability to use list comprehensions instead of loops for mathematical 

constructs is very useful in data science. However, for efficient processing 

of data, we can use a library like NumPy which has a concept of arrays. 

This is known as a trade-off, and in this case, the trade-off exists between 

efficiency and convenience.

Part of being a good technical decision-maker is understanding these 

types of technical trade-offs and the consequences on your own project. 

For example, if you decide to profile your code and find you’re running 

into memory errors, you might consider changing to a more efficient data 

structure like a NumPy array, maybe even with a 32 bit float if you don’t 

need the extra precision of a 64 bit floating point number.

There are many different types of data structures and we’ll provide 

resources for learning about more advanced types (one of the core subjects 

of computer science), but for now, we’ll take a look at a more complex type 

that you should be aware of such as hash maps, trees, and graphs.
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�Hash Maps
Hash maps are an associative data structure; they allow the programmer to 

associate a key with a value.

They provide very fast lookup by keys, allowing you to retrieve a value 

corresponding to a key in O(1) time by using dynamically sized arrays 

under the hood and allow you to retrieve a value you’ve associated with 

your key.

If you didn’t have this kind of associative data structure, you’d have to, 

for instance, store your elements as an array of tuples and would need to 

write code to search for each key you wanted to locate in the array. This 

would not be very efficient, so when we want to associate one piece of 

information with another and only care about being able to retrieve the 

value we’ve mapped to a particular key, we should consider hash maps. 

The point is, having a command of data structures can simplify your code 

drastically and make it more efficient.

In Python, a hash map is called a dictionary. One point to keep in mind 

when using hash maps is that the keys should be hashable, meaning a 

string is OK for a key but a mutable data type like a list that can be changed 

is not allowed.

�Trees and Graphs
A graph is a mathematical data structure consisting of nodes and edges. 

The nodes are also called vertices. The difference between a tree and a 

graph is that a tree has a root node. In a graph there is no root node that 

is unique but both structures can be used for representing many different 

types of problems. Graph neural networks and graph databases are huge 

topics today in machine learning and MLOps, and part of the reason is 

that a graph, like a set, is a very general mathematical way of representing 

relationships between concepts that can be easily stored on a computer 

and processed.
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You should be aware of a couple kinds of trees and graphs in particular 

binary trees and DAGs.

�Binary Tree
A binary tree is a tree (it has a root node), and each node including the root 

has either 2 (hence binary) children or 0 children (in this case, we call it a 

leaf node). A picture of a binary tree is shown in Figure 2-6.

Figure 2-6.  A binary tree

Binary trees can be complete or perfect or have additional structure 

that makes them useful for searching such as binary search trees.
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�DAGs
A graph is a generalization of a tree. A graph however can have cycles, 

meaning if you were to visit every node and follow its neighbor, you may 

find yourself in an infinite loop. An important type of graph with no cycles 

is called an acyclic graph and is often used in MLOps tools like Airflow to 

represent data flow. Directed acyclic graphs are called “DAGs” and have 

a variety of uses in MLOps (e.g., the popular Airflow library uses DAGs for 

creating pipelines).

�SQL Basics
We’ve covered programming languages like Python, but you also need to 

know how to manipulate data in your programs. SQL is actually based on 

relational algebra and the set data structure we covered previously (the 

foundations were written by Edger F. Codd). SQL consists of queries and 

the queries can be broken down into statements. A SQL statement consists 

of the following clauses executed in the following order:

•	 FROM

•	 JOINS on other tables

•	 WHERE clause for filtering data

•	 GROUP BY for aggregating by multiple columns

•	 HAVING for filtering after aggregation

•	 SELECT for selecting columns or fields you want to use 

in your data set

•	 ORDER BY for sorting data by one or more columns 

(this can cause performance issues and should only be 

used sparingly)
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A common table expression or CTE is a very useful construct when 

operationalizing data science code. The reason it is so powerful is that 

a CTE allows you to think algorithmically, by breaking down your SQL 

query into a series of steps. Each step can depend on previous steps and is 

materialized as a kind of “virtual table.” A simple example of a CTE is given 

in the following; this CTE first creates a base table called Sensor_CTE and 

then selects from it in Listing 2-4.

Listing 2-4.  An example of a common table expression or CTE

-- An example of a CTE

WITH Sensor_CTE (SalesPersonID, SalesOrderID, SalesYear)

AS

-- Define the CTE query.

(

    �SELECT ID as Component, MAX(Pressure) as Pressure, 

AVG(Temperature) as Temperature

    FROM Sensor.Readings

    WHERE ID IS NOT NULL

    GROUP BY ID

)

-- Define the outer query referencing the CTE name.

SELECT Component, Temperature

FROM Sensor_CTE;

Understanding how joins and common table expressions (CTEs) work 

is typically what separates beginners from advanced SQL users. Most 

data science code requires multiple passes on data sets, and CTEs are a 

natural way to write more complex SQL code that requires multiple steps 

to process data.
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�Algorithmic Thinking for Data Science
An algorithm is essentially a set of rules or instructions for performing 

calculations that occur in a certain sequence. You can think of it like 

a recipe. Unlike recipes though, algorithms will usually involve data 

structures for storing data, and the heart of the algorithm will be 

manipulating these data structures to solve a problem. Unfortunately, 

you need to learn algorithmic thinking, and by doing so, we’ve created 

a lab for you. In the lab, you’re going to start with data structures we’ve 

learned to build some basic mathematical primitives like sigmoid function 

and logistic curve and combine these abstractions to build your own 

logistic regression model. Refer to the Jupyter notebook labs for this 

chapter entitled “Building a Logistic Regression Model from Scratch,” and 

complete the lab before continuing to the next section.

�Core Technical Decision-Making: Choosing 
the Right Tool
Beyond this section, we’re going to assume you’ve completed the labs and 

have a basic grasp on programming fundamentals. Before covering specific 

packages and frameworks for translating experiments and thoughts into 

executable code, I want to discuss technical decision-making briefly and 

how we should think about choosing the right framework for our problem.

The most important criterion in the real world is considering what 

tools and frameworks are already being used by your organization, 

colleagues, and the community behind the framework. Although you 

might be tempted to use a package from a language like Julia or Haskell, 

you should carefully consider whether or not you’ll have to translate your 

problem into another language at some point in the future if either the 

package is no longer supported or because nobody in your organization 

has the skill set required.
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�Translating Thoughts into Executable Code
You might want to choose one of the following packages and dive deeper 

into some frameworks that are used in the real world to build machine 

learning models. In later chapters, we’ll walk you through how to create 

your own packages. The important thing here is understanding that these 

tools we depend on in data science like Pandas or Numpy or PyTorch are 

just packages someone (or a team of people) have written and created. You 

too can learn to create your own packages, but first we need to understand 

why we use packages and how it makes our lives as both data scientists 

and MLOps engineers easier.

�Understanding Libraries and Packages
What is the point of a software package? Why not use a notebook? 

Packages allow us to bundle code together and give it a name, import it, 

and reference objects inside the package so we can reuse them without 

having to rewrite those objects. Packages can also be versioned (see 

semantic versioning4).

For example, you may have heard of RStudio package manager for R 

or pip for Python. Before experimenting with any of the packages listed 

in the following, you should understand the package manager in your 

language of choice so you can install the package. We also recommend 

environments to isolate dependencies. We’ll cover the gritty details of 

package managers and environments in Chapter 3, but for now here is a 

broad overview of some of the most interesting packages you might come 

across as an MLOps engineer.

4 Semantic versioning 2.0.0 can be found at https://semver.org/.
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�PyMc3 Package
An active area of research is in probabilistic programming. The PyMc3 

library contains various primitives for creating and working with random 

variables and models. You can perform MCMC (Markov chain Monte 

Carlo) sampling and directly translate statistical models into code.

Something to keep in mind is at the current time, these algorithms 

may not be very scalable, so you’ll usually only see Bayesian optimization 

applied to the hyperparameter search part of a machine learning 

lifecycle using libraries like HyperOpt; however, we mention probabilistic 

programming as Bayesian statistics is slowly becoming a part of 

mainstream data science.

�Numpy and Pandas
Numpy and Pandas are the bread and butter of most data science 

workflows. We could write an entire chapter covering just these 

libraries, but we’ll mention for the uninitiated that Pandas is a data 

wrangling library. It provides a data structure called a DataFrame for 

processing structured data and various methods for reading csv files and 

manipulating dataframes. NumPy has the concept of ndarrays and allows 

you to process numerical data very fast without having to know much 

about C++ or low level hardware.

�R Packages
R uses a package system called CRAN which makes available R binaries. 

Unlike Python, CRAN packages typically have higher dependency on other 

packages and tend to be focused on specific areas of statistical computing 

and data visualization.
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The reason data scientists still use R is many packages written by 

researchers and statisticians are written in R. However, you should be 

aware of the following interoperability and scalability issues with R:

•	 R is not as widely supported; for example, the machine 

learning SDK uses R, but there is a lag between when 

features are released in Python and when they become 

available in R.

•	 Writing clear, concise and easy to read code in R 

requires considerable skill and even then there are 

leaky abstractions which make code difficult to 

maintain such as

•	 R is not scalable and has memory limitations. For 

scalable R, we recommend Databricks using SparkR.

A lot of R packages revolve around the TidyVerse. You should be 

familiar with the following basic R packages:

Deplyr: Deplyr is a package that is similar to Pandas in Python and is 

used for data wrangling. The package provides primitives such as filter 

and melt.

Shiny: The R ecosystem’s answer to dashboarding in data science, 

Shiny is a package for authoring dashboards in R and fulfills the same need 

as Dash in Python. The advantage of ShinyR is you can build web apps 

without having to know how web development works. The web apps can 

be interactive, and you can interact with different panels of the dashboard 

and have multiple data sources to visualize data sets. We don’t recommend 

Shiny as it can be hard to deploy to a web server securely.

SAS: SAS is a language of statistical programming. SAS is a procedural 

language. SAS requires a SAS license and is common in healthcare and 

finance industry where exact statistical procedures need to be executed.

MATLAB/OCTAVE: MATLAB and the open source version Octave 

are libraries for linear algebra. If you are prototyping a machine learning 

algorithm whose primitives can be expressed using matrix operations 

Chapter 2  Foundations for MLOps Systems



63

(which is a lot of machine learning), then you might consider using one 

of these languages. MATLAB is also particularly popular in engineering 

disciplines for simulations and is used in numerical computing.

PySpark: Spark is a framework for distributed computing and has a 

tool called PySpark that allows you to write code similar to Pandas using 

dataframes but in a scalable way. You can translate between Pandas and 

Pyspark using the latest Pandas API for spark (replacement for Koalas) 

and process gigabytes or even terabytes of data without running into out 

of memory errors. Other alternatives are called “out of core” solutions and 

include Dask or Modin that utilize disk storage as an extension of core 

memory in order to handle memory-intensive workloads.

�Important Frameworks for Deep Learning
There are many frameworks in Python for deep learning and working 

with tensors. PyTorch and TensorFlow 2.0 with Keras API are the most 

popular. Although we could implement our own routines in a package like 

the NumPy example to build your own 2D convolutional layer and use 

these functions to build a convolutional neural network, in reality, this 

would be too slow. We would have to implement our own gradient descent 

algorithm, auto differentiation, and GPU and hardware acceleration 

routines. Instead, we should choose PyTorch or TensorFlow.

�TensorFlow
TensorFlow is an end to end machine learning framework for deep 

learning. TensorFlow is free and open sourced under Apache License 2.0 

and supports a wide variety of platforms including MacOS, Windows, 

Linux, and even Android. TensorFlow 1.0 and TensorFlow 2.0 have 

significant differences in APIs, but both provide the tensor as a core 

abstraction allowing the programmer to build computational graphs to 

represent machine learning algorithms.
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�PyTorch
The advantage is PyTorch is class oriented, and if you have a strong Python 

background, you can write a lot of custom code in an object oriented 

style without having to be very familiar with how the APIs work like in 

TensorFlow. PyTorch for this reason is used in academic papers on machine 

learning and is a solid choice for prototyping machine learning solutions.

�Theano
PyMC3 is written on top of Theano as well as some other interesting 

projects, but Theano is no longer supported so it is not recommended for 

ML development or MLOps.

�Keras
Prior to the introduction of the Keras API, developers required specific 

knowledge of the API. Keras however is very beginner friendly, and some 

useful features of TensorFlow are GPU awareness (you do not need to 

change your code to use a GPU if one is available, as TensorFlow will 

detect if for you); the Keras API is very intuitive for beginners, and there 

is a large community around TensorFlow so bugs and CVEs (security 

vulnerabilities) are patched regularly. Post TensorFlow 2.0 release, you can 

also do dynamic execution graphs.

�Further Resources in Computer 
Science Foundations
We’ve covered a lot of ground, discussed data structures and algorithmic 

thinking, and covered the basics of computer science required to work 

Chapter 2  Foundations for MLOps Systems



65

with data such as graphs, dataframes, tables, and the basics of SQL. We’ve 

talked about R and Python, two common languages for data science, and 

some of their common packages.

However, it is important to stress this is only the minimum. It 

would not be possible to cover a complete course in computer science 

for data scientists in this chapter, and so the best we can do is provide 

some recommended reading so you can educate yourself on topics 

you’re interested in or fill in gaps in your knowledge to become better 

programmers. We’ve curated the following list of books on computer 

science that we think would be most valuable for data scientists.

•	 Introduction to Algorithms by Rivest5

•	 Bayesian Methods for Hackers by Davidson Pilon6

In general, you can read a book on functional analysis (for infinite 

dimensions) or linear algebra (for finite dimensional spaces) provided in 

the following.

�Further Reading 
in Mathematical Foundations
Although we covered some mathematical concepts in this chapter, it would 

not be possible to cover even the simplest areas like linear algebra in detail 

without further resources. Some areas you may be interested in pursuing 

on your own are Bayesian statistics7 (understanding Bayes’ rule, Bayesian 

5 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to 
Algorithms. MIT Press.
6 Davidson-Pilon, C. (2015). Bayesian Methods for Hackers: Probabilistic 
Programming and Bayesian Inference. Addison-Wesley Professional.
7 McElreath, R. (2015). Statistical Rethinking: A Bayesian Course With Examples in 
R and Stan. Chapman & Hall/CRC.
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inference, and statistical thinking), statistical learning theory8 (the rigorous 

foundations of the many learning algorithms we use in MLOps), and of 

course linear algebra9 (in particular finite dimensional vector spaces are a 

good stepping stone to understand more advanced concepts).

�Summary
In this chapter, we discussed the importance of understanding mathematical 

concepts and how MLOps systems can be viewed as stochastic systems 

that are governed by mathematical abstractions. By understanding these 

mathematical abstractions and having an understanding of data structures 

and algorithmic thinking, we can become better technical decision-makers. 

Some of the topics we covered in this chapter include the following:

•	 Programming Nondeterministic systems

•	 Data Structures for Data Science

•	 Algorithmic Thinking for Data Science

•	 Translating Thoughts into Executable Code

•	 Further Resources on Computer Science

In the next chapter, we will take a more pragmatic perspective and look 

at how we can use these abstractions as tools and software packages when 

developing stochastic systems in the real world.

8 Hastie, T., Tibshirani, R., & Friedman, J. (2013). The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. Springer Science & Business Media.
9 Halmos, P. (1993). Finite-Dimensional Vector Spaces. Springer.
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CHAPTER 3

Tools for Data Science 
Developers

“Data! Data Data! I can’t make bricks without clay!”

—Sir Arthur Conan Doyle

How do we manage data and models? What are the tools we can use to 

make ourselves more efficient and agile in data science? In this chapter, we 

will deep dive into the tools and technology that you will depend on daily 

as an MLOps engineer.

AI tools can make you more productive. With the release of GPT3 in 

June 2020, the large language model and “brains” behind the ChatGPT 

app, and in March of 2023, GPT4, the first multimodal large language 

model capable of understanding both text and images was released. Data 

scientists will increasingly use AI tools to write code.

The growth is exponential, and although it cannot predict very far 

into the future what specific tools will be available, it is certain that basic 

tools like code version control systems, data version control, code editors, 

and notebooks will continue to be used in some form or another in data 

science, and what’s important is to have a solid foundation in the basics.

You will understand version control, data version control, and specific 

python packages used at various stages of the spiral MLOps lifecycle. You 

should be comfortable enough at the end of this chapter to complete the 

© Dayne Sorvisto 2023 
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_3

https://doi.org/10.1007/978-1-4842-9642-4_3


68

titular MLOps toolkit lab work where you’ll build a cookie cutter MLOps 

template you can apply to accelerate your projects and be able to install a 

wide range of MLOps packages like MLFlow and Pandas to support various 

stages of the MLOpS lifecycle.

�Data and Code Version Control Systems
Data science is a collaborative activity. When you are first learning data 

science you might spend most of your time alone, exploring data sets you 

choose and applying whatever models perform best on your data set.

In the real world you typically work on a team of data scientists, and 

even if you are the sole individual contributor on your team, you still likely 

report results to stakeholders, product managers, business analysts, and 

others and are responsible for handling changes.

All of these changes in a business impact data science as they result in 

changes in downstream feature engineering libraries and training scripts. 

You then need a way to share code snippets and get feedback in order to 

iterate on results and keep track of different versions of training scripts, 

code, and notebooks. Are there any tools to manage this change in data, 

code, and models? The answer is version control.

�What Is Version Control?
Version control is a software tool used to manage changes in source code. 

The tool keeps track of changes you make to the source code and previous 

versions and allows you to roll back to a previous version, prevent lost 

work, and pinpoint where exactly in the code base a particular line was 

changed. If you use it properly, you read the change log and understand 

the entire history of your project. Git, a distributed version control 

system (as opposed to centralized version control), is a standard for data 

science teams.
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�What Is Git?
As we mentioned, Git is a standard tool for version control. Git works 

basically by taking a snapshot of each file in your directory and storing this 

information in an index. Git is also a distributed version control system 

(as opposed to a central version control like TFS) which means it supports 

collaboration among data scientists and developers. Each developer can 

store the entire history of the project locally, and because Git only uses 

deltas, when you are ready to commit changes, you can push them to the 

remote Git server, effectively publishing your changes.

�Git Internals
Git uses commands. There are several Git commands you should be aware 

of and some special terminology like “repos” which refers to a collection 

of files that are source controlled. If you are unfamiliar with the concept 

of repos, you could think of it like a kind of directory where your source 

code lives.

In practice, when working on a data science project as in MLOps 

role, you will probably use a source control tool like Sourcetree since 

productivity is important, and also once you know the basics of the 

commands, it gets very repetitive to type each time. Tools like Sourcetree 

abstract these details away from you. You may be wondering why a 

tool like Sourcetree could help data scientists when you can use the Git 

command. As we will see in the next section, Git does provide low level 

commands for interacting with Git repositories, but Sourcetree is a GUI 

tool, and since typing the same command over and over again takes time, 

using a GUI tool will make you a more productive developer.
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�Plumbing and Porcelain: Understanding 
Git Terminology
Porcelain commands refer to high level Git commands that you will use 

often as part of your workflow. Plumbing is what Git does behind the 

scenes. An example of a porcelain command is the Git status to check for 

changes in your working directory.

Ref: A ref is essentially a pointer to a commit. A pointer is how Git 

represents branches internally.

Branch: A branch is similar to a ref in that it’s a pointer to a commit. 

You can create a new branch using the command given in Listing 3-1.

Listing 3-1.  Git command to create a new branch

git branch <branch>

Head: Some documentation makes this seem really complicated 

but it is not. In Git, there was a design choice that only one branch can 

be checked out at a time, and this had to be stored in some reference or 

pointer. (If you don’t know what a reference or a pointer is, read the Git 

documentation1).

�How Git Stores Snapshots Internally
Git assigns a special name to this pointer called HEAD. There can only be 

one HEAD at a time and it points to the current branch. This is the reason 

why you might hear HEAD referred to as the “active” branch.

You might be wondering, how is this “pointer” physically stored on 

a computer. Well, it turns out the pointer is not a memory address but a 

file. This file stores the information that the HEAD is the current branch 

1 The Git documentation covers topics including references and pointers: 
https://git-scm.com/book/en/v2/Git-Internals-Git-References
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(remember the definition of a branch from earlier). There is a physical 

location on the computer in the .git/HEAD directory where this file is 

located and you can open it up in a text editor (such as Notepad++) and 

read its contents for yourself to understand how Git stores information 

internally.

Don’t worry if this seems complicated, as it will be much easier in the 

lab work and begin to make sense when you use it and see the purpose of 

Git for yourself.

�Sourcetree for the Data Scientist
We recommend using Sourcetree, a free open source GUI based tool. If you 

are a professional software developer, you can try Kraken which has some 

additional features but requires a license. There are two steps for using 

Sourcetree:

You can download Sourcetree at sourcetreeapp.com. You need to agree 

to terms and conditions and then download the app (Figure 3-1):

Figure 3-1.  Sourcetree GUI tool for interacting with Git repositories
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Step 1: Clone a remote repository. Figure 3-2 shows the GUI interface 

for cloning a repository in Sourcetree.

Figure 3-2.  Cloning a Git repository using a GUI

Step 2: If you use a private repo, you’ll need to configure your ssh key. 

Make sure to click SSH not HTTPS as shown in Figure 3-3.
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Figure 3-3.  Copying the SSH path to your GitHub repo

�Branching Strategy for Data Science Teams
If you are on a team of at least five developers, you may have to consider 

a branching strategy. This matters less if you are on a small team or 

alone because as a data scientist you may be OK to rely on a single main 

branch, but with more than five developers, you may consider setting up a 

second branch.

If you want to learn about more complex branching strategies beyond 

feature branches, you can read about Git Flow. Usually different branching 

strategies are chosen in consideration of a software release schedule in 

collaboration with other teams depending on the size of your organization 

among other factors. Figure 3-4 shows how to create a new branch from 

the Sourcetree GUI.
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Figure 3-4.  Creating a new branch from the Sourcetree GUI

�Creating Pull Requests
Pull requests are a great tool for code reviews and should be adopted by 

data science teams. Typically the main branch is a stable branch, and 

prior to merging changes into main, you should have a peer review your 

changes. Ideally, a data scientist on your team that is familiar with Git 

would be designed as the release manager and would coordinate this with 

the team, but the process can be done informally. Figure 3-5 shows how to 

create a pull request.

Benefits of pull requests for data scientists include the following:

•	 Opportunity to review changes and learn new data 

science techniques.

•	 Catch mistakes and bugs before they are committed to 

main branch, increasing code quality metrics.
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Figure 3-5.  Creating a pull request

�Do I Need to Use Source Control?
You might wonder if all of this is necessary or do you even need source 

control. But what are the consequences of not using it? You should use 

source control for the following reasons

•	 You are part of a team of data scientists sharing code 

and collaborating and need to coordinate changes 

through a remote branch.

•	 You want to version your data so you can train models 

on a previous version of data.

•	 You are a data scientist that does not want to lose 

their work on their local system and wants something 

more reliable than a Jupyter Notebook’s autosave 

functionality.

•	 You need a way to save different snapshots of your data 

or code.

•	 You want a log or paper trail of your work in case 

something breaks (you can use the “Blame” feature to 

pinpoint the author of a change).
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�Version Control for Data
We’ve talked about code version control, but as we’ve mentioned, MLOps 

involves code, data, and models. While we use tools like Git for code 

version control, data version control exists and can be applied to both data 

and models (which are usually serialized in a binary format).

The standard package is called DVC (you can guess this stands for data 

version control). DVC works on top of Git, and many of the commands 

and terminology are similar. For example, the dvc init command is used to 

initialize data version control in your repo. In the lab, you’ll work through 

some basic dvc commands for data and model version control.

�Git and DVC Lab
In this lab (Figure 3-6), you will gain some hands-on experience with 

both Git for interacting with Git repositories and DVC for versioning data. 

Fortunately, many of the Git commands you will learn in the lab are very 

similar to the DVC commands you will learn later. However, throughout 

the lab, you should keep in mind the distinct purpose of each tool and 

where you might want to use each in your own workflow.

Figure 3-6.  GIT and data version control (DVC) lab
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Before proceeding to the next section on code editors, complete the 

version control lab titled: Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_

Git_and_Dvc

Step 1. Open Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_Git_and_Dvc.

ipynb and read the instructions.

Step 2. Copy paste the commands in the notebook into a terminal, and 

get familiar with each command and what it does; you can use the -h flag 

to see what each command does (e.g., git status -h).

Step 3. Sign up for a GitHub account by following instructions in the lab.

�Model Development and Training
So we’ve covered version control systems for both code and data but how 

about the tools we use to edit our code and develop models? You may be 

using a tool like Spyder or a Jupyter notebook to edit your code, and surely 

like most developers, this is your favorite editor. I don’t want to change 

your mind, but it’s worth knowing the range of code editors available in 

data science and when and why you might want to consider using an 

editor like VS Code over Spyder.

�Spyder
Spyder is a free and open scientific environment for data science. It was 

first released in 2009 and is available cross-platform (Windows, Linux, 

and MacOS) through Anaconda. It provides the following features and 

several more:

•	 An editor includes both syntax highlighting and code 

completion features as well as introspection.

•	 View and modify environment variables from UI.

•	 A Help pane able to render rich text documentation for 

classes and functions.
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�Visual Studio Code
You can launch vs. code using the code command as shown in Figure 3-7.

Figure 3-7.  Shortcut for launching Visual Studio Code editor from a 
terminal

I’d suggest customizing the layout but at least including the Activity Bar 

as shown in Figure 3-8.

Figure 3-8.  The Activity Bar in Visual Studio Code editor
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Visual Studio Code is a source control editor from Microsoft based on 

the electron framework and is available for MacOS, Windows, and Linux 

distributions. The tool includes debugging, source control management, 

syntax highlighting, and intelligent code completion and operates by using 

extensions to add additional functionality. It is much more of a tool for 

large software projects and includes many extensions that allow you to 

interact with cloud infrastructure, databases, and services.

For example, there is an extension for Azure that allows accessing 

resources in the cloud. If you need to format your code, you could install 

one of several profile extensions or specific packages like black2 or 

autopep83. You search for these extensions in the activity bar and can 

access functionality in extensions using the keyboard shortcut CTRL + 
SHIFT + P to access the palette. We recommend at minimum you install 

the Microsoft Python extension or the Python Extension Package which 

includes linters, intellisense, and more (we’ll need this when we create 

environments and set up tests). Figure 3-9 shows some of the Python 

extensions available in Visual Studio Code.

2 Black is a standard code formatter used across industries. The GitHub for black is 
https://github.com/psf/black
3 autopep8 automatically formats Python code conforming to PEP8 and can be 
found on GitHub at https://github.com/hhatto/autopep8
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Figure 3-9.  Python extensions available in Visual Studio Code editor

�Cloud Notebooks and Google Colab
Cloud notebooks are a convenient way for data scientists to run code and 

use Python libraries in the cloud without having to install software locally. 

A cloud notebook such as Google Colab can be a good alternative to Visual 

Studio Code editor for running experiments or prototyping code. You type 

code into cells and can run cells in order. Figure 3-10 shows the MLOps 

lifecycle toolkit lab in Google Colab.
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Figure 3-10.  The MLOps Lifecycle Toolkit Git and DVC Lab in 
Google Colab

You can also change the theme of your notebook or connect to your 

GitHub through the tools ➤ settings menu. Figure 3-11 shows how to 

configure settings in Google Colab.

Figure 3-11.  Configuring notebook settings in Google Colab
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�Programming Paradigms and Craftsmanship
What is craftsmanship in software? It refers to all of the high level skills 

you need for creating high quality data science code. Topics like naming 

conventions, documentation, writing tests, and avoiding common code smells 

all work toward writing higher quality code. Code that is high quality is often 

described as being “clean” which means it’s more readable and maintainable, 

and although it may still have a higher cognitive complexity overall than other 

software, technical debt can be reduced by taking these topics to heart. Let’s 

take a look at some of the elements of writing high quality data science code.

�Naming Conventions and Standards 
in Data Science
If you don’t reduce tech debt in your project, you may find yourself 

working overtime when something happens in production. Part of 

minimizing tech debt and keeping the project readable is ensuring a 

consistent naming convention is used for variable names, functions, class 

names and files, modules, and packages.

Some guidelines for naming standards are as follows:

•	 Use descriptive names for variables and functions.

•	 Consider using verbs for function names describing 

what your function does.

•	 Refer to the style guide of the language PEP8 for Python 

(these include advice on indentation, white space, and 

coding conventions).

•	 Use smaller line sizes for more readable code.

•	 Avoid long function names and functions with too 

many parameters – break these out into smaller 

functions that do one thing.
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�Code Smells in Data Science Code

Code smells are anti-patterns that indicate brittle code or technical debt 

or places in the program that could be improved. An example in Python 

would be using too many nested loops or hardcoding data instead of using 

a variable.

You might hear the term “code smell” in programming especially if your 

organization requires regular code reviews. During this review process, you 

will look for code smells. It is good practice to remove code smells when you 

find them as they will incur technical debt if you leave them (they may also 

make it more painful for other people to maintain your code when you have 

to hand it off to someone else or fix it yourself in the future).

A good practice is to always assume you yourself will have to maintain 

the code in 6 months or even a year from now and to make sure your code 

can be clearly understood even after you’ve forgotten the details of how 

it works.

�Documentation for Data Science Teams

Most data science projects, like other software projects, are lacking in 

documentation. Documentation for projects can come in a number of 

different formats and doesn’t necessarily have to mean a formal technical 

document; it depends on your team and the standards that have been 

established (if they exist). However, if coding standards don’t exist, here are 

some recommendations for creating awesome technical documentation:

•	 Use doc strings without hesitation.

•	 Create a central repository for documentation.

•	 Create an acceptance criterion in tickets if you’re using 

a board like JIRA or Azure DevOps.

•	 Socialize changes and ensure team members know 

how and where to add new documentation.
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You’ve seen a few doc strings in the lab from the previous chapter 

already. We can use triple quotes underneath the function signature to 

describe briefly what the function does.

These doc strings are valuable because they can describe the following 

information:

•	 What your function does: If you find yourself trying 

hard to describe what your function does or realize 

it does more than one thing, you may want to break 

it up; therefore, going through this exercise of having 

doc strings for every function can improve quality of 

your code.

•	 Description input, outputs, and data types: Since 

languages like Python are dynamically typed, we can 

run into trouble by being too flexible with our data 

types. When you train a model on training data and 

forget it can take on a certain value in production, it 

could cause your program to crash. It’s good practice 

to carefully consider the data types for any function 

arguments and, if not using type annotations, at least 

include the data type in the doc string.

Last but not least, make sure to update your documentation as 

requirements change. This leads us to the next tool in the toolkit for future 

proofing our code: TDD (test driven development).

�Test Driven Development for Data Scientists
In data science projects especially, requirements can be fuzzy or ill-defined or 

missing all together in some cases. This can lead to surprises when there are 

huge gaps between what the user of the model or software expect and what 

you as the data scientist create and lead to longer release cycles or heavy re-

factoring down the line especially with feature engineering libraries.
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One way to future-proof your code is to include tests with each function 

in your feature library. Of course this is time consuming, and on a real project, 

you may not have the time but it is strongly recommended. It only takes an 

hour or two to set up tests in Pytest or Hypothesis and create fixtures, and 

if you’re using asserts already in your code, you can use these as the basis 

for your tests, and it will save you time if you need to debug your code in 

production. Figure 3-12 shows how to select a testing framework for TDD.

Figure 3-12.  Selecting a testing framework

You may get import errors shown in Figure 3-13.

Figure 3-13.  Import errors are common when setting up Pytest in 
Visual Studio Code
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Once you fix the import errors, you can see tests by clicking the Testing 

icon in the Activity Bar and clicking run. A test that passes will have a green 

check mark to the left. You can run multiple tests at the same time. In the 

MLOps toolkit lab, you can create your own unit tests and fixtures (a way 

of passing data to tests) and play with this feature to incorporate testing 

into your own data science projects. Figure 3-14 shows how to run tests in 

Visual Studio Code.

Figure 3-14.  Running tests in Visual Studio Code
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�From Craftsmanship to Clean Code
There are many guidelines and principles for writing “clean code,” and 

as you become better developers, you will come to recognize code when 

it is clean. In data science, clean code is often an afterthought and often 

only comes after translating an ad hoc analysis into something worthy for 

production. However, here are several principles that a data scientist can 

use to reduce technical debt and write cleaner, more readable code:

•	 Be consistent! Consistency is key especially when it 

comes to naming variables.

•	 Use separate folders for feature engineering, data 

engineering, models, training, and other parts of the 

workflow.

•	 Use abstraction: Wrap low level code in a function.

•	 If your functions are too long, break them up; they 

probably do more than one thing violating the SOLID 

principle of single responsibility.

•	 Reduce the number of parameters you use in your 

functions if possible (unless maybe if you’re doing 

hyper-parameter tuning).

•	 Wrap lines and set a max line length in your editor.

�Model Packages and Deployment
Data science software consists of a number of independent modules that 

work together to achieve a goal. For example, you have a training module, 

a feature engineering module, maybe several packages you use for missing 

values, or LightGBM for ranking and regression. All of these modules share 

something in common: You can install them, deploy them, and import 

them as individual deployable units called packages.
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�Choosing a Package Manager
Packages can consist of bundles of many modules, files, and functionality 

that are maintained together and are usually broader in scope than a single 

file, function, or module. In Python, you can use packages using a Conda 

or Pip or other package manager, but it’s important to understand how to 

create your own python packages.

Setting up Packages in VS Code, use the command palette—CTRL + 

SHIFT + P keyboard shortcut (ensure to hold down CTRL, SHIFT, and P at 

the same time)—and select Python Create Environment. This is part of the 

Python extension package you installed earlier. Figures 3-15 through 3-18 

show the detailed steps for configuring a Python environment in Visual 

Studio Code including selecting a package manager.

Figure 3-15.  Creating a Python environment

Figure 3-16.  Choosing between Conda and Virtual environment. 
Both are options in Visual Studio Code
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Figure 3-17.  Visual Studio Code creating a new environment

�Anaconda

What is Anaconda? Well, it’s not a snake. Anaconda instead is bigger than 

any one tool and is an ecosystem unto itself. There’s a virtual environment 

tool called Conda which is extremely popular on data science teams. 

It provides several commands for package management including the 

following:

•	 conda create

•	 conda install

•	 conda update

•	 conda remove

•	 conda info

•	 conda search

•	 conda config

•	 conda list

Figure 3-18.  Once the environment is activated, you can install 
packages using your chosen package manager
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The command you’ll use most often to create an environment with 

packages is given in Listing 3-2:

Listing 3-2.  Conda create command for creating a new Conda 

environment

         conda create --prefix ./envs matplotlib=3.5 numpy=1.2

For MLOPs, we want to go a step further and take a look at some more 

general package managers and their features.

Pipenv: Pipenv, which we’ll use in our MLOps toolkit lab, tries to 

bring best in breed (bundler, composer, npm, yarn, and cargo) in package 

management to Python. Pipenv also treats Windows as a first class citizen 

which makes it ideal for some business environments. You don’t have to 

worry about low level details of creating a virtualenv for your projects as 

pipenv handles this for you and even auto-generates the Pipfile describing 

package versions and Pipfile.lock which is used for deterministic builds. 

Since reproducibility of experiments is an important aspect of MLOps, 

deterministic builds are ideal especially for large projects where you have 

to juggle multiple versions of packages.

An example installing the Pandas package would be given in Listing 3-3.

Listing 3-3.  pipenv command for creating a new Python environment

pipenv install pandas

You will then notice Pandas has been added to the Pipfile.

�Installing Python Packages Securely

Have you ever been working on a model and realized you need to install 

xgboost or PyTorch or some other library? It worked before but this time 

the computer beeps and dumps a massive error log on your screen. You 

spend 3 hours debugging and searching on Stackoverflow for a solution 

only to realize the recipe only works for Windows, not Mac!
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What should you do? Use Python environments. Python environments 

can save you a headache by providing isolation between software 

dependencies. We’ll show you how to set this up in the next chapter. Once 

you set up a Python environment, you may notice you spend less time 

installing and managing Python package dependencies which frees up 

more time to work on data science tasks.

�Navigating Open Source Packages for Data Scientists

Open source software packages are released under a license (typically 

permissive or copyleft like GPL) that allows its users to maintain control 

over using and accessing the software as well as distributing, studying, and 

changing. Many projects you use in data science are open source such as 

Scikit-Learn, PyTorch, and TensorFlow and can be found on GitHub.

Technical consideration when using open source software packages in 

data science are the following:

•	 PyPi and similar repositories can contain malware, 

and so packages should be trusted or scanned first 

(see Snyk4).

•	 Open source may be maintained by a community of 

dedicated volunteers so patches and updates may be at 

whim of the maintainer.

•	 Copyleft and other licensing may pose challenges for 

building enterprise software since you need to release 

the software under the same license (since software is 

often distributed as binaries).

4 You can read more about the Snyk project at https://docs.snyk.io/
manage-issues/introduction-to-snyk-projects
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�Common Packages for MLOps
Finally, we have enough knowledge to cover the central topic of this 

chapter which is packages specific to MLOps. Each of these packages 

provides pieces of the MLOps lifecycle such as experimentation, 

orchestration, training acceleration, feature engineering, or hyper-

parameter tuning. We can broadly separate these packages into two 

camps: ModelOps and DataOps.

�DataOps Packages

DataOps is a collection of best practices, processes, and technologies 

borrowed from Agile software engineering that are designed to improve 

metrics like data quality, efficient data management, and continuous data 

delivery for data science and more broadly analytics. We need DataOps 

practices and experts when we’re in the data engineering part of the 

MLOps lifecycle. Still, there are many concepts unique to MLOps such as 

feature groups and model registries that typical data engineering solutions 

do not have. In the following, we’ve compiled some of the tools you might 

encounter when working in the first stages of the MLOps lifecycle: data 

collection, data cleaning, feature engineering, and feature selection.

�Jupyter Notebook

Jupyter notebooks as mentioned are a useful alternative to a local code 

editor like Visual Studio Code. You can use notebooks for prototyping 

code and running experiments. However, for MLOps, a Python script is 

preferable to a notebook for code for a number of reasons. For example, 

when you source control a Jupyter notebook, it is actually a JSON file that 

contains a combination of source code, text, and media output. This makes 

it more difficult to read the raw file compared to a Python script where you 

can read line by line.
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Python scripts are also a standard way to represent code outside of 

data science, and you can use many different code editors from Visual 

Studio Code to text-based source code editors like Sublime Text, but 

beyond maintaining and readability, writing code as a script enables you 

to create larger software projects because your code can be organized 

into modules, packages. This structure is very important and enables you 

to understand the way the project is organized, reuse code, set up tests, 

and use automated tools like linters that make the software development 

process more efficient. Therefore, I hope you will consider using Python 

scripts with a code editor of your choice as opposed to Jupyter notebooks 

for production code.

�JupyterLab Server

If you do insist on using Jupyter notebooks, there are a number of 

environments available. One environment we already mentioned was 

Google Colab, but if you want to run your notebook locally and have a 

customizable environment that could also be deployed as a service, you 

might consider JupyterLab.

JupyterLab server is a Python package that sits between JupyterLab 

and Jupyter Server and provides RESTful APIs and utilities that can be used 

with JupyterLab to automate a number of tasks for data science and so is 

useful for MLOps. This also leads us to another widely used platform for 

MLOps that also comes with a notebook-based environment.

�Databricks

Databricks was created by the founders of Apache Spark, an open source 

software project for data engineering that allows training machine learning 

models at scale by providing abstractions like the PySpark dataframe for 

distributed data manipulation.
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Databricks provides notebooks, personas, SQL endpoints, feature 

stores, and MLFlow within its PaaS offering which is also available in 

multiple cloud vendors including Azure and AWS with their own flavor of 

Databricks.

Besides MLFlow, a vital tool for an MLOps engineer to track model 

metrics and training parameters as well as register models and compare 

experiments, Databricks has a concept of a delta lakehouse where you can 

store data in parquet format with a delta log that supports features like 

time travel and partitioning.

We’ll mention this briefly, but it could have its own chapter since this is 

a massive topic. Koalas is a drop-in solution although not 100% backward 

compatible with Pandas (of course, there’s a lag between when a feature is 

supported in Pandas and when it becomes generally available in Pandas 

for Spark), but this is a great tool to add to your toolkit when you need to 

scale your workflow. While doing development in PySpark, you don’t have 

to re-write all of your code; you use following import at the top of your file 

and use it like you would Pandas.

Dask: Dask is another drop-in solution for data wrangling similar to 

Pandas except with better support for multiprocessing and large data sets. 

The API is very similar to Pandas, but unlike Koalas or Pandas API for 

Spark, it is not really a drop-in solution

Modin: While Dask is a library that supports distributed computation, 

Modin supports scaling Pandas. It supports various backends including 

ray and Dask. Again, it’s not 100% backward compatible and has a much 

smaller community than Pandas, so use with caution on a real project.

�ModelOps Packages
ModelOps is defined by Gartner as “ focused primarily on the governance 

and lifecycle management of a wide range of operationalized artificial 

intelligence and decision models, including machine learning, knowledge 

graphs, rules, optimization, linguistic, and agent-based models.” Managing 
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models is difficult in part because there’s code and data and many different 

types of models as we’ve seen from reinforcement learning to deep 

learning to shallow models in scikit-learn and bespoke statistical models.

We list some of the most popular tools for ModelOps in the following 

that you may encounter when you work in the later half of the MLOps 

lifecycle which includes model training, hyper-parameter tuning, model 

selection, model deployment, model management, and monitoring.

Ray5: Ray is a great tool for reinforcement learning; it is based on the 

actor model of distributed computation, in computer science,6 and allows 

you to use decorators to scale out functions which is convenient when you 

don’t want to rewrite a lot of code.

KubeFlow7: KubeFlow is another open source machine learning tool 

for end to end workflows. It is built on top of Kubernetes and provides 

cloud-native interfaces for building pipelines and containerizing various 

steps of the machine learning lifecycle from training to deployment.

Seldon8: Have you ever been asked to deploy your machine learning 

models to production? First of all, what does that even mean? There are 

many ways to deploy a model. You could put it in a model registry, and you 

could containerize your model and deploy it to Ducker Hub or another 

container registry, but for some use cases especially if an end user is going 

to be interacting with your model on demand, you’ll be asked to expose 

the model as an API.

Building an API is not a trivial task. You need to understand gRPC or 

REST and at least be familiar with a framework like Flask if you’re using 

Python. Fortunately, there are tools like Seldon that allow you to shortcut 

5 The Ray framework documentation can be found at https://docs.ray.io/
en/latest/
6 Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed 
Systems. https://apps.dtic.mil/sti/pdfs/ADA157917.pdf
7 The KubeFlow project documentation can be found at www.kubeflow.org/docs/
8 The Sledon project documentation can be found at https://docs.seldon.io/
projects/seldon-core/en/latest/index.html

Chapter 3  Tools for Data Science Developers

https://docs.ray.io/en/latest/
https://docs.ray.io/en/latest/
https://apps.dtic.mil/sti/pdfs/ADA157917.pdf
http://www.kubeflow.org/docs/
https://docs.seldon.io/projects/seldon-core/en/latest/index.html
https://docs.seldon.io/projects/seldon-core/en/latest/index.html


96

some of these steps and deploy models as gRPC or REST endpoints. Seldon 

in particular offers two models for servers: reusable and nonreusable. The 

definition of each is stated in the following.

•	 Reusable model servers: These are prepackaged model 

servers. You can deploy a family of models that are 

similar to each other, reusing the server. You can host 

models in an S3 bucket or blob storage account.

•	 Nonreusable model servers: This option doesn’t require 

a central model repository, but you need to build a 

new image for each model as it’s meant to serve a 

single model.

This leads us to the standard solution right now for registering your 

model, MLFlow. You had to create your own model storage and versioning 

system and way to log metrics and keep track of experiments. All of 

these important model management tasks (ModelOps) are made easier 

with MLFlow.

�Model Tracking and Monitoring
MLFlow9 is the standard when it comes to creating your own 

experimentation framework. If you’ve ever developed loss plots and kept 

track of model metrics and parameters during hyper-parameter tuning, 

then you need to incorporate MLFlow into your project.

You can set up the MLFlow infrastructure as a stand-alone or part 

of Databricks (the original developers). We’ll see this in action in later 

chapters.

9 MLFlow project documentation can be found at https://mlflow.org/docs/
latest/index.html
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HyperOpt10: Hyperopt is a framework for Bayesian hyper-parameter 

tuning, often done after the cross validation step but before training a 

model on the entire data set. There are also many algorithms available 

depending on the type of parameter search you need to do including the 

following:

•	 Random search

•	 Tree of Parzen Estimators

•	 Annealing

•	 Tree

•	 Gaussian Process Tree

Horovod11: Horovod is a distributed deep learning framework for 

TensorFlow, Keras, PyTorch, and Apache’s MXNet. When you need to 

accelerate the time it takes to train a model, you have the choice between 

GPU accelerated training and distributed training. Horovod is also 

available on Databricks and can be a valuable tool for machine learning 

at scale.

�Packages for Data Visualization and Reporting
If you’ve ever had to do a rapid EDA or exploratory data analysis, you 

know how tedious it can be to have to write code for visualizations. Some 

people like writing algorithms and don’t like visualization, whereas others 

who are good at libraries like Matplotlib or Seaborn become the de facto 

visualization experts on the team.

10 The Hyperopt project can be found on GitHub at https://github.com/
hyperopt/hyperopt
11 The Horovod project source code can be found at https://github.com/
horovod/horovod
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From an MLOps perspective, visualizations can be an “odd one out” 

in a code base and are difficult to deploy since creating interactive plots 

and dashboards requires special knowledge and tools. You should at least 

be familiar with a couple tools beyond Matplotlib for exploratory data 

analysis including the following:

•	 Dash12: Python library for creating interactive 

dashboards

•	 PowerBI: Visualization software from Microsoft. Useful 

for data science since you can embed Python and 

deploy to cloud

�Lab: Developing an MLOps Toolkit Accelerator 
in CookieCutter
This lab is available on the Apress GitHub repository associated with 

this book. You will see in Chapter 3 the mlops_toolkit folder. We will 

use a package called cookiecutter to automate the process of setting up 

tests, train, data, models, and other folders needed in future chapters. 

Figure 3-19 shows the toolkit folders.

12 The Dash project can be found on GitHub at https://github.com/plotly/dash
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Figure 3-19.  MLOps toolkit folder structure

You might be wondering what the point of having a template like this 

is. The primary reason is it goes toward establishing standards and code 

structure that borrows from experience across several industries. This pattern 

is tried and proven, and although it is slightly opinionated on use of testing 

framework and names of folders, you can easily customize it to your purposes.

We’ll do exactly this by installing several packages that can support 

other stages of the MLOps lifecycle such as model training, validation, 

hyper-parameter tuning, and model deployment. The steps for setting up 

the lab are as follows:

Step 1. Clone the project locally and run the following command to 

open vs code:
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Listing 3-4.  Shortcut for opening Visual Studio Code13

code .

Step 2. Start a new vs. code terminal session (here we’re using 

PowerShell but you can also use Bash) and cd into the mlops_toolkit 

directory. Figure 3-20 shows the root directory.

Figure 3-20.  Root directory for MLOps toolkit supplementary 
material

Step 3. Clear the screen with the clear command and type as shown in 

Listing 3-5.

Listing 3-5.  Installing Pandas package with a specific version 

number using Pipenv

pipenv install pandas~=1.3

Step 4. Check the Pipfile containing the following lines.

Step 5. Repeat steps 2–3 for the following packages: numpy, pytest, 

hypothesis, sckit-learn, pyspark, and mlflow. By default, the latest versions 

will be installed, but we recommend using the ~ operator with a major.

minor version to allow security patches to come through. The output is 

shown in Figure 3-21.

13 Tips and Tricks for Visual Studio Code https://code.visualstudio.com/docs/
getstarted/tips-and-tricks
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Figure 3-21.  The result of installing some Python packages 
with pipenv

Step 6. CTRL + SHIFT + P to open the vs code command palette. Type 

python and choose pytest in the dropdown and select/tests folder.

Step 7. Click the tests icon in the Activity Bar and run all tests by 

clicking the “run” button.

Step 8. Run the following command with the custom name of your 

project.

Step 9. Cd into the folder you created and customize it to your own 

data science project. Here I used main_orchestrator.py for the file name.

Step 10. Python main_orchestrator.py should print a message to the 

screen as shown in Figure 3-22.

Figure 3-22.  Running the main orchestrator should print a message 
to your screen

Step 11. Go through the Git fundamentals lab again if necessary, and 

add code and data version control by running two commands in a terminal 

(works both in PowerShell and Bash) as given in Listing 3-6:
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Listing 3-6.  Initializing source and data version control commands 

in a repo14

git init

dvc init

That’s it! Not so bad and we’ve already set up tests, our very own 

custom monorepo, installed packages to support various stages of the 

lifecycle, and know how to set up code version control and data version 

control. In the next chapters, we’ll go through the gritty details of MLOps 

infrastructure, model training, model inference, and model deployment, 

developing our toolkit further.

�Summary
In this chapter, we gave an introduction to several tools for MLOps and data 

science including version control both for source code and data. We also 

talked about the differences between Jupyter notebooks and Python scripts 

and why Python scripts are the preferred format for MLOps. We looked 

at code editors like Visual Studio Code for working with Python scripts 

and talked about some of the tools, packages, and frameworks you may 

encounter in an MLOps workflow. Here is a summary of what we learned:

•	 Data and Code Version Control Systems

•	 Model Development and Training

•	 Model Packages and Deployment

•	 Model Tracking and Monitoring

In the next chapter, we will shift our attention to infrastructure and 

look at how we can begin to use some of the tools discussed in this chapter 

to build services to support the various stages of the MLOps lifecycle.

14 DVC User Guide: https://dvc.org/doc/user-guide
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CHAPTER 4

Infrastructure 
for MLOps
This chapter is about infrastructure. You might think of buildings and 

roads when you hear the word infrastructure, but in MLOps, infrastructure 

refers to the most fundamental services we need to build more complex 

systems like training, inference, and model deployment pipelines. For 

example, we need a way to create data stores that can store features for 

model training and servers with compute and memory resources for 

hosting training pipelines. In the next section, we will look at a way we 

can simplify the process of creating infrastructure by using containers 

to package up software that can easily be maintained, deployed, and 

reproduced.

�Containerization for Data Scientists
Containers have had a profound impact on the way data scientists code; in 

particular, it makes it possible to quickly and easily spin up infrastructure 

or run code inside a container that has all of the software, runtimes, tools, 

and packages you need to do data science bundled inside.

Why is this a big deal? As you’ve probably experienced in the previous 

chapter where we used Python environments to isolate packages and 

dependencies, a lot of problems with configuring and managing multiple 

packages become manageable with containerization. With simple 
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environments like Conda, you could manage multiple versions and with 

package managers like Pipenv, you had access to a Pipfile which contained 

all of the configuration you needed to manage your environment.

Now imagine you need more than just Python; you might have 

different runtime requirements. For example, maybe parts of your data 

science workflow require R packages and so you need the R runtime. 

Maybe you also have to manage multiple binaries from CRAN and have 

your code “talk” to a database which itself has dependencies like a JVM 

(Java virtual machine) or specific configuration that needs to be set.

Unless you have a strong background in IT, managing all of these 

configurations, runtimes, toolchains, compilers, and other supporting 

software becomes tedious and takes away from time you can spend on 

data science.

There’s another problem: portability. Imagine you have a package that 

requires Mac but you’re on Windows. Do you install an entire OS just to 

run that software? Containers solve this problem by allowing you to build 

once and run anywhere. They also make it pull new containers and swap 

out components of your machine learning system with ease. Let’s take a 

deep dive into one of the most popular container technologies: Docker.

�Introduction to Docker
Docker is a platform as a service that uses OS-level virtualization to 

encapsulate software as packages called containers. The software that 

hosts the containers is called the Docker Engine and is available for a 

number of platforms including Linux, Windows, and MacOS with both 

free and paid licensing. Figure 4-1 shows how containers run on top of the 

Docker Engine using OS-level virtualization.
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Figure 4-1.  How containers run using OS-level virtualization

�Anatomy of the Docker File
Okay, so we know what Docker is but how do we use it? Let’s say you want 

to create our own Jupyter based data science lab. You’ve probably installed 

Jupyter before, but could you write down a recipe that is reproducible? You 

might start by noting what operating system (OS) you’re using, installing 

dependencies like Python and pip, and then using pip to install Jupyter 

lab. If you’ve read the Jupyter lab documentations, then you probably also 

know you need to expose some default ports so you can launch and access 

your notebook from a web browser. If you wanted to do a deep learning 

workflow using GPU, you might consider installing NVIDIA drivers as well.

This is a lot of work but we can write it as a series of steps:

•	 From your host OS, install specific software packages.

•	 Install drivers and low level package managers.
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•	 Install Python and Python package managers.

•	 Use package managers to install Python packages.

•	 Run Jupyter lab.

•	 Expose ports so we can access Notebooks in our web 

browser.

In Docker, we can encode these steps as a sequence of instructions or 

commands in a text file called a Docker File. Each instruction or command 

gets executed in the Docker environment in the order it’s read starting 

from the first instruction. The first instruction usually looks something like 

the following:

FROM nvidia/cuda:12.0.1-base-ubuntu20.04

This creates what is known in Docker as a layer containing the Ubuntu 

OS with NVIDA’s cuda drivers in case we need GPU support (if you only 

have a CPU on your laptop, you can still build this docker container).

Other layers get installed on top of this layer. In our example of 

installing a deep learning library, we would need to install Cuda and 

Nvidia drivers to have GPU accelerated training (covered in the next 

section). Fortunately, in Ubuntu, these are available in the form of Ubuntu 

packages. Next, we might want to create a dedicated working dir for all of 

our notebooks. Docker comes with a WORKDIR instruction. We’ll call our 

directory /lab/

WORKDIR /lab/

We need to install data science specific Python packages for our 

lab environment and most important the Jupyter lab packages. We can 

combine this step into a single command with the RUN instruction.

RUN pip install \

    numpy \

    pandas \
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    tensorflow \

    torch \

    Jupyterlab

Finally we’ll need to launch our Jupyter server and expose port 8080 

so we can access our notebook in a browser. It’s good practice to change 

the default port, but ensure it’s not one that is reserved by the operating 

system. These steps can be accomplished using the CMD and EXPOSE 

instructions:

CMD ["jupyter", "lab", "--ip=0.0.0.0", "--port=8080",  

"--allow-root", "--no-browser"]

EXPOSE 8080

In the next section, we will apply this theoretical knowledge of Docker 

by packaging all of these steps into a Docker file in the next lab and build 

the image. Once we build the image (a binary file) we can then run the 

image, creating a container. This distinction between an image and 

container might be confusing if it’s the first time you’ve encountered the 

terms, but you should understand the difference before proceeding to the 

lab. We summarize the difference in the following since it is very important 

for understanding containers.

Docker file: A docker file is a blueprint for a Docker image; it contains 

a series of instructions in plain text describing how a docker image should 

be built. You need to first build the docker file.

Docker image: A docker image is a binary file that can be stored in 

the cloud or on disk. It is a lightweight, self-contained (hence the name 

container), executable piece of software that includes everything needed 

to run an application including the application code, application runtime, 

interpreters, compilers, system tools, package managers, and libraries.

Docker container: A docker container is a live piece of software; it’s 

a runtime instance of a Docker image created when you run the image 

through the Docker run command.
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Now that we’ve clarified the difference between a Docker image and a 

Docker container, we’re ready to start building some containers. In this lab, 

you’ll go through the previous steps in detail to create your own data science 

lab environment, an important addition to any MLOps engineer’s toolkit.

�Lab 1: Building a Docker Data Science Lab 
for MLOps
Step 1. We first need to install the Docker engine. Proceed to Install Docker 

Desktop on Windows and select your platform. We’ll be using Windows 10. 

Download the Docker Desktop Installer for Windows. We recommend the 

latest version but we’ll use 4.17.1.

Step 2. Right-click the Docker Desktop Installer run as admin. Ensure 

to check the install WSL and Desktop shortcut options in the first menu, 

and click next. Figure 4-2 shows Docker Desktop for Windows.

Figure 4-2.  Docker Desktop for Windows
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Step 3. Launch Docker Desktop from the Desktop icon and accept the 

service level agreement. Figure 4-3 shows the Docker license agreement.

Figure 4-3.  Docker license agreement

Step 4. Use the Git clone command to clone the repo provided along 

with the supplementary resources. Start a new terminal session in vs code 

and cd into Chapter 4 Labs where you will find a file called Dockerfile (this 

is where you’ll find the sequence of plain text instructions or recipe for 

building your data science lab environment).

Step 5. Run docker build -t data_science_lab . inside the directory 

with Dockerfile. The period at the end is important; it’s called the Docker 

context.

Step 6. Build your image. Assign it the name jupyter_lab with the  

 -t option and run the container. You can also pass in a token (we used 

mlops_toolkit) which will be your password for authenticating with Jupyter 

notebook.
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docker build -t jupyter_lab .

docker run --rm -it -p 8080:8080 -e JUPYTER_TOKEN=mlops_toolkit 

jupyter_lab

Did you notice anything? You should see the following splash screen. 

Figure 4-4 shows a general view of what you can expect to see, but note 

that your splash screen may look slightly different especially if you are not 

using Powershell.

Figure 4-4.  Splash screen for Jupyter Lab

Note T he PyTorch and TensorFlow wheels are around 620 and 586 
MB, respectively, at the time of writing, so these are pretty large. 
Sometimes this can be a problem if disk space is limited. Although 
we won’t cover it in this lab, optimizing the size of a Docker image 
is an interesting problem and an area of specialization within MLOps 
especially when working with deep learning frameworks.

Step 7. Navigate to localhost:8080/lab in a browser (note we exposed 

port 8080 in the Dockerfile; this is where the number comes from). Enter 

your token (“mlops_toolkit”) and you should be redirected to the lab 

environment pictured in Figure 4-5.
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Figure 4-5.  The Jupyter lab environment

Finally, click Python Kernel in your Lab environment to launch a 

Jupyter notebook. We’ll use this environment in subsequent labs if you 

need a Jupyter notebook environment. Optionally you can also use Google 

Colab (Figure 4-6).

Figure 4-6.  Examples of cells in a Jupyter notebook

You can now run notebooks inside docker and you have a reproducible 

data science lab environment you can use and share. We’ll talk about how 

you can deploy this environment to the cloud in future chapters enabling 

you to have a shared lab environment and collaborate on projects. This is 

an amazing first step toward mastering data science infrastructure, and 

Chapter 4  Infrastructure for MLOps



112

we can now talk about particular kinds of data infrastructure used by data 

scientists. In the next section, we’ll look at the feature store pattern, a 

pattern for data infrastructure used for supporting robust, scalable feature 

engineering pipelines.

�The Feature Store Pattern
Going back to the MLOps lifecycle, after data collection and basic data 

cleansing, our goal is to build features from this data. In the real world, 

you’ll frequently deal with 100s of features. It is not uncommon to have 

data science projects where 100, 200, or even 1000 or more features are 

constructed. These features eventually will be fed into a feature selection 

algorithm, for example, when we have a prediction problem using a 

supervised data, we can reduce these hundreds of features to a reasonable 

number in many ways, for example, using Lasso or a bagging algorithms 

like random forest to rank features by importance for our particular 

problem, filtering out the ones that have little predictive value.

The feature selection process, unlike most other parts of the machine 

learning lifecycle, may not be automated. One reason for this is feature 

selection is dependent on what you’re trying to model, and there may be 

specific features like demographic data and PII that need to be excluded 

even if those features have predictive value.

Although feature selection can reduce the number of features used 

in a model, we still need to maintain the complete gambit of features for 

future problems. Additionally, model accuracy deteriorates over time, the 

business definitions can change, and you may have to periodically rerun 

feature selection as you add new data sources.

So how do we store all of these features: manage different versions 

of features to support feature selection, hyper-parameter tuning, model 

retraining, and future modeling tasks that might make use of these 

hundreds of features at different points in the lifecycle? This is where the 

concept of a feature store comes into play.
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Feature store: A feature store is a design pattern in MLOps that is used 

to centralize the storage, processing, and access to features. Features in 

a feature store are organized into logical groups called feature groups, 

ensuring the features are reusable and experiments are reproducible.

�Implementing Feature Stores: Online vs. Offline 
Feature Stores
A feature store and feature groups may be implemented using a variety of 

data infrastructure. A model is trained on features which typically involve 

joining multiple normalized, disparate data sources together. These joins 

are expensive and, sometimes since data is not well-defined, may involve 

semi-joints, range joins, or window analytic functions in the mix. These 

queries, which are executed on remote data store infrastructure, need to 

support both low latency queries at prediction time and high throughput 

queries on years of historical data at training time.

To make matters more complex, features may not be available at 

prediction time or may need to be computed on the fly, possibly using the 

same code as in the training pipeline. How do we keep these two processes 

in sync and have data infrastructure support both online and offline 

workflows requiring low latency and high throughput?

This is a hard problem in MLOps but understanding the types of data 

infrastructure used to implement a feature store. Let’s look at some of this 

data infrastructure we can use for implementing feature stores.

�Lab: Exploring Data Infrastructure with Feast
Feast is an open source project (Apache License 2.0 free for commercial 

use) that can be used to quickly set up a feature store. Feast supports both 

model training and online inference and allows you to decouple data from 
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ML infrastructure, ensuring you can move from model training to model 

serving without rewriting code. Feast also supports both online and offline 

feature stores.

You can also build your own feature store using docker and installing 

the underlying database services yourself. At the end of this lab, there is 

also an exercise so you aren’t just following instructions, but first run the 

following commands:

Step 1. Open code and start a new terminal session in PowerShell or 

Bash. Install Feast:

pipenv install feast

pipenv shell

Step 2. Run the following command to initialize the Feast project. We 

will call our feature store pystore:

feast init pystore

cd pystore/feature_repo

Step 3. Look at the files created:

data/ are parquet files used for training pipeline.

example_repo.py contains demo feature definitions.

feature_store.yaml contains data source configuration.

test_workflow.py showcases how to run all key Feast commands, 

including defining, retrieving, and pushing features.

Step 4. You can run this with python test_workflow.py. Note on 

Windows we had to convert our paths to raw strings to get this to work 

(see the code for Chapter 4). Figure 4-7 shows the result of running the 

test script.
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Figure 4-7.  Running the test script locally

Step 5. Run Feast apply (inside pystore directory); this will register 

entities with Feast. Figure 4-8 shows the result of running this command.

Figure 4-8.  Running Feast apply command

Note, you should see two components with temperature and pressure 

measurements generated in your final feature store pictured in the 

following. That’s it! You’ve created your first feature store for an IoT data 

set. Figure 4-9 shows the expected output.

Figure 4-9.  Expected output for pressure and temperature readings

Chapter 4  Infrastructure for MLOps



116

Now as promised, here is an exercise you can do to get a feel for a real 

MLOps workflow.

�Exercise
Being able to iterate and make changes to feature definitions is a part of 

MLOps since features rarely stay static. In a production environment, these 

types of anomalies should be caught automatically.

Exercise 1. Modify the notebook and rerun the lab to fix the pressure 

and temperature features so that they’re in a more reasonable range for 

pressure (measured in Kilopascals) and temperature (measured on the 

Kelvin scale).

Hint  You may need to do some research on what the right range 
looks like and figure out where in the code you should make 
the change.

�Dive into Parquet Format
You also may have noticed the format we are storing our data. We used 

the parquet extension as opposed to the more common csv which you’re 

probably already familiar with. So what is the difference between a parquet 

and a csv and why might we prefer to store files in parquet format at all?

The difference is in the size and efficiency of the format. While parquet 

is highly efficient at data compression (it is a binary file) meaning the file 

sizes are much smaller, unlike csv, parquet format encodes the data and 

schema for fast storage and retrieval. You might also use Parquet format 

with libraries like Apache Arrow which can make reading a large csv file 

several times faster. There is also a difference in how the data is stored. 
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In parquet format, data is stored in a columnar format, whereas csv is 

row oriented. For data science code, columnar data store is preferred 

since only a small subset of columns are used for filtering, grouping, or 

aggregating the data.

Although knowledge of every possible data format isn’t required, you 

should be aware as an MLOps engineer that you can optimize your code 

for speed and efficiency simply by changing the format to one that better 

matches your workflow. In the next section, we’ll take a look at another 

way to optimize for speed: hardware accelerated training.

We just took a deep dive into containers and data infrastructure, but 

if you’re a pure data scientist without a background in IT, then you might 

be wondering do I really need to know how to work with low level data 

infrastructure and become an expert in containers to do MLOps for my 

own projects?

The answer depends on the use case, but in general, there are cloud 

services available for each stage of the MLOPs lifecycle. For example, you 

can use Databricks if you want an end-to-end machine learning platform 

and add components as needed by integrating with other cloud services, 

for example, PowerBI, if you need a reporting solution, Azure DevOps if 

you need to build CI/CD pipelines to deploy your code, and maybe even 

an external data storage like AWS or Azure data lake to store your models, 

artifacts, and training data sets. You technically should know about 

parquet, but in this example, you could use Delta table format which in 

uses Parquet under the hood for storing data but also gives you a delta 

log and APIs for working with this format, so the low level details are 

abstracted for you, leaving more time for data science. In the next section, 

we’ll take a deeper dive into some of the cloud services available while 

trying to remain agnostic about specific platforms like AWS, Azure, and 

Google Cloud.
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�Hardware Accelerated Training
Many times in data science, we are dealing with big data sets. Training sets 

can total gigabytes, terabytes, and with the rise of IoT data even petabytes 

of data. In addition to big data, many workflows, especially ones requiring 

deep learning like transfer learning, can be extremely intensive and require 

GPU accelerated training.

Training or even fine-tuning a large language model like BERT on 

commodity hardware using only a CPU can take days. Even if you’re not 

training a large language model from scratch, some model architectures 

like recurrent neural networks take a long time to train. How do we 

accelerate this training? We have two options: distributed training and 

GPU accelerated training. First, let’s discuss some of the major cloud 

service providers before jumping into distributed training.

�Cloud Service Providers
There are several major cloud service providers. The big 3 are Azure, Amazon 

Web Services, and Google Cloud. Each of the three has machine learning 

service offerings and provides compute, networking, and data storage 

services. For example, Amazon Web Services has s3 buckets and Azure 

has blob storage. For end-to-end machine learning, Amazon Web Services 

offer SageMaker, while Azure has Azure Machine Learning service. There 

are other services for end-to-end machine learning as well and distributed 

training like Databricks which is offered in all three of the cloud service 

providers. There are differences between the different services, for example, 

Databricks integrates with MLFlow, whereas SageMaker has its own Model 

registry, but there is a difference in the platform: not the cloud service 

provider. You can also deploy your own containers in all three cloud service 

providers. For example, if you want to deploy your own Airflow instance to 

Kubernetes, all three offer their own version of Kubernetes with differences 

in cost for compute, storage, and tooling. In the next section, we’ll take a look 

at distributed computing in some of these cloud service providers.
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�Distributed Training
All of the code we’ve run so far has been executed on a single machine. 

If you’re using a laptop or workstation, you can interact with the physical 

hardware, but if you’re running inside a cloud environment like Google 

Cloud, Azure, AWS (Amazon Web Services), Google Colab, or Databricks, 

the hardware infrastructure on the backend may not be so obvious and may 

actually be hidden from you. For example, in Databricks, you can configure a 

cluster, a collection of worker nodes and driver nodes which are themselves 

individual virtual machines complete with their own CPU or GPU for compute 

and a certain configurable amount of working memory and disk space.

The advantage of using multiple VMs when training is straightforward: 

More VMs mean more CPU or GPUs available which means model training 

can be accelerated. If you’ve ever written Pandas code that attempted to 

read in a large csv file and experienced out of memory errors, then you’ve 

probably already thought about increasing the memory available through 

out of core (spilling to disk) like Dask, but another option is to run your 

code on a distributed environment like Databricks.

You can take a look at the supplementary code provided with this 

chapter for an example of configuring Horovod for distributed training.

You can make a free account on Databricks community edition to try 

out Databricks, but we recommend you use an Azure cloud subscription 

for full functionality. The steps to get a Databricks account (which you can 

later convert to a full featured account) are as follows:

	 1.	 In a browser, navigate to https://community.

cloud.databricks.com/login.html.

	 2.	 Click sign up and create a free account. Figure 4-10 

shows how to register a Databricks account.
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Figure 4-10.  Registering a Databricks account

Click continue and make sure to select community 

edition at the bottom; otherwise, choose a cloud 

provider (AWS, Azure, or Google Cloud as shown in 

Figure 4-11):
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Figure 4-11.  Choosing a cloud provider

	 3.	 In the workspace, create a job cluster. Databricks 

distinguishes between two types of clusters: all 

purpose (interactive) and job clusters.

	 4.	 Click the cluster creation and edit page; select 

the Enable autoscaling checkbox in the Autopilot 

Options box (Figure 4-12).
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Figure 4-12.  Enable autoscaling is an option for elastic workflows

Note T his step is similar for all-purpose clusters except you will 
want to include a terminate clause after 120 minutes (or a timeout 
that fits your use case) to force the cluster to terminate after a period 
of inactivity. Forgetting this step can be costly since like many cloud 
services you are charged for what you use, and this detail is an 
important consideration when choosing to use cloud services. The 
timeout option is shown in Figure 4-13.

Figure 4-13.  Enabling timeout after 2 hours of cluster inactivity

To attach a cluster to a notebook in Databricks, follow these steps:

	 1.	 Create a new notebook in your workspace.

	 2.	 Click the “Connect” button in the top-right corner of 

the notebook (Figure 4-14).
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Figure 4-14.  Connect button to attach a notebook to a cluster

Select the cluster you just created in the previous step.

Once the cluster is attached, you are able to run your code on the cluster, 

taking advantage of the many workers available for distributed workflows. You 

can configure the number of workers in your cluster and enable autoscaling 

for larger workflows. The notebook will connect to the cluster automatically. 

You can also detach the cluster from the notebook by clicking the “Detach” 

button in the top-right corner of the notebook. You can optionally copy paste 

code provided in the next section if you want to try this out.

�Optional Lab: PaaS Feature Stores in the Cloud 
Using Databricks
You may have noticed when using Feast there were a lot of steps and you 

had to dive deep into the gritty details of data engineering infrastructure 

and even understand different types of data formats like parquet vs. csv. 

Chapter 4  Infrastructure for MLOps



124

If you’re a data scientist who wants some of those details abstracted 

from you, you may consider a Platform as a Service for building your 

feature store.

Databricks provides a machine learning workspace where feature 

stores are available without having to configure infrastructure. These 

feature stores use delta tables in the backend which rely on the open 

source Parquet format, a column oriented format for big data. Delta tables 

also come with a delta log that can keep track of transactions on the data, 

bringing atomicity, consistency, isolation, and durability to machine 

learning workflows (so-called ACID properties). You can build a feature 

store by creating a cluster with the ML runtime1 (12.1 is the latest at the 

time of writing).

The feature store client allows you to interact with the feature store, 

register data frames as feature tables, and create training sets consisting of 

labeled data and training data for use in training pipelines. Databricks also 

has online feature stores for low latency inference pipelines.

�Scaling Pandas Code with a Single Line

If you use Pandas regularly for data wrangling tasks, you may have 

encountered memory errors. Typically dataframes blow up in memory 

up at least 2x and sometimes more compared to their size on disk which 

means if you have a very large csv file, reading that csv file may trigger 

some out of memory errors if your workflow relies on Pandas. Fortunately, 

the Pandas on Spark library (formerly Koalas) allows you to write Pandas 

code to create Spark dataframes and register them in the feature store 

without having to learn the Spark API. You can import this library in 

Databricks with the following line (called a drop-in solution).

from pyspark import pandas as ps

1 Databricks ML runtime documentation can be found at https://docs.
databricks.com/runtime/mlruntime.html
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We’ve provided an option notebook lab for you called Chapter 4 Lab: 

Scaling Pandas Workflows provided with this chapter. You can import your 

notebook into your Databricks workspace and execute the code to get 

hands-on experience with scaling Pandas code.

Since Databricks requires a cloud subscription, you don’t need to 

complete this lab to understand the rest of the material in this chapter 

or the rest of the book; however, many organizations use Databricks for 

MLOps, and knowledge of PySpark, the Pandas on Spark library, clusters, 

and notebooks may be valuable in an MLOps role. You can import a 

notebook by clicking Workspace or a user folder and selecting Import as 

pictured (Figure 4-15):

Figure 4-15.  Importing a notebook in your workspace

�GPU Accelerated Training

GPU accelerated training means using a GPU to help reduce the runtime 

in training deep learning algorithms. While CPUs are latency optimized, 

GPUs are bandwidth optimized. Since deep learning involves tensor 

operations and matrix multiplications which can be implemented on a 

GPU, these operations can be sped up by using a framework that is GPU 

aware both because of the data parallelism and the higher bandwidth 

afforded by a GPU.
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One exciting change to the TensorFlow package is that since version 

2.1, TensorFlow and TensorFlow-gpu have merged. If you require a 

version of the TensorFlow package with version <= 2.1, then you can 

install TensorFlow-gpu as per the following otherwise you may substitute 

TensorFlow-gpu with TensorFlow.

In your Jupyter lab environment, you can make your notebook GPU 

aware by using TensorFlow’s TensorFlow-gpu package (other deep 

learning frameworks such as PyTorch require code changes). The steps for 

configuring GPU awareness in TensorFlow are listed in the following:

	 1.	 Uninstall your old TensorFlow.

	 2.	 Edit your Dockerfile and add the TensorFlow package 

to the RUN pip install command (note if for backward 

compatibility, you require TensorFlow < 2.1, and 

then use the older TensorFlow-gpu package instead). 

Figure 4-16 shows the informational message.

Figure 4-16.  Deprecated packages can cause problems in workflows

	 3.	 Run the docker image with GPU support using 

docker run.

	 4.	 Finally in a Jupyter notebook in your lab 

environment, you can check install using

import tensorflow as tf tf.config.list_physical_

devices('GPU').
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You should now be able to run GPU accelerated code in TensorFlow 

without additional code changes. In the following chapter, we’ll look at 

a detailed example of GPU accelerated training using the MNIST data 

set and the GPU enabled lab environment we just built (optionally, you 

can use Google Colab if you don’t have a physical GPU device). Okay, 

so we have talked about using hardware to accelerate training, but what 

about processing large amounts of data? In the next section, we will look 

at how we can coordinate the processing of massive amounts of data 

using multiple processors in parallel. These types of databases are called 

massively parallel analytic databases or MPP.

�Databases for Data Science
The distinction between an analytical system and a transactional system 

is an important one in data science. Transactional systems, also called 

“online” or operational systems, are designed to handle a large number of 

very small transactions (e.g., update one row in a table based on a primary 

key). These types of systems may support business processes like point of 

sales systems or other operationally critical parts of the business where 

speed and precision are nonnegotiable.

In contrast, analytical systems are designed to support offline 

workloads, large volumes of data, and queries over the entire historical 

data set. These analytical systems are usually implemented as a MPP 

(massively parallel processing) database. The types of queries that these 

databases can handle include large CTEs (common table expressions), 

window analytical functions, and range joins for point in time data sets. 

Snowflake is one such choice of MPP database. An example of a complex 

query that uses common table expressions and window analytic functions 

is given in Listing 4-1.
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Listing 4-1.  A Common table expression with a window analytic 

function

-- Use a common table expression to deduplicate data

WITH cte AS (

  �SELECT id, component, date, value, ROW_NUMBER() OVER 

(PARTITION BY id, component ORDER BY date DESC) AS rn

  FROM sensor_data

)

SELECT id, component, date, value

FROM cte

WHERE rn = 1;

In this example, we first create a mock sensor data table “sensor_ data” 

with four columns: id, component, date, and value. We then insert some 

sample data into this table.

Next, we define a common table expression (CTE) and give it a name. 

This code is available as part of Chapter 4 (see example_deduplicate_data.

sql). You can optionally run it by creating a cloud service account on 

Snowflake. Similar to the Databricks community edition, you can get a free 

trial using the self-service form on the Snowflake website; however, this 

is optional and the query will likely run with some modification on most 

MPP database that supports ANSI SQL since window analytic functions 

are a part of the standard since 2003. Let’s break this query apart into its 

component pieces to understand how to write a query:

The SELECT statement is used to select all four columns from the 

sensor_data table, and we use ROW_NUMBER() window analytic function 

to assign a unique row number for each row. The PARTITION BY clause 

ensures that each row number gets reset for each combination of id and 

component.

Finally, the other SELECT statement selects four columns from our 

CTE but filters only on rows where the row number is equal to 1. This has 

the effect of de-duplicating our sensor_data table. You may find queries 
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like this or even more complex CTEs in typical data science workflows 

which, for example, in this case may be used to de-duplicate a data set 

prior to running a train-test-split algorithm, avoiding data leakage. Of 

course, this is only a simple example.

Snowflake (a type of MPP database) SQL supports a wide range of 

window analytic and statistical functions for data science tasks such as 

ranking rows within a partition, calculating running totals, and finding the 

percentiles of a set of values.

Here are some examples of the types of functions that are commonly 

used in feature engineering.

•	 Ranking functions: ROW_NUMBER(), RANK(), 

DENSE_RANK()

•	 Aggregate functions: SUM(), AVG(), MIN(), 

MAX(), COUNT()

•	 Lead and lag functions: LEAD(), LAG()

•	 Percentile functions: PERCENT_RANK(), PERCENTILE_

CONT(), PERCENTILE_DISC()

•	 Cumulative distribution functions: CUME_DIST()

•	 Window frame functions: ROWS BETWEEN, 

RANGE BETWEEN

•	 Date and time functions: DATE_TRUNC(), DATE_

PART(), DATEDIFF()

•	 String functions: CONCAT(), SUBSTRING(), REGEXP_

REPLACE()

In the next section, we will briefly detail patterns for enterprise grade 

database projects so we can get familiar with common architectural 

patterns.
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�Patterns for Enterprise Grade Projects
Data lake: A data lake is centralized repository, typically separated into 

bronze, silver, and gold layers (called the medallion architecture2). The 

central repository allows you to store both structured and unstructured 

data, contrasting with a traditional relational database. If you use a cloud 

storage account like blob storage or s3 buckets, the bronze, silver, and 

gold layers can map to containers or buckets where you can administer 

permissions and assign users or service principals access to each container 

or bucket. The bronze layer is the ingestion layer and should be as close to 

the raw data sources as possible (you can, e.g., organize raw data sources 

in folders, but it is important to have a consistent naming convention 

across the data lake). The silver layer is most important for data science 

and contains cleaned and conformed data that is still close enough to the 

source that it can be used for predictive modeling and other data science 

activities. The gold layer is used for enterprise grade reporting and should 

contain business-level aggregates.

Data warehouses: Data warehouses are an older pattern and are a 

centralized repository of data. Data can be integrated from a variety of 

sources and is loaded using ELT or ETL patterns. The data warehouse can 

contain dimensional data (slowly changing dimensions) and other tables. 

This architectural pattern is not well-suited for data science workflows 

which require flexibility and have to handle schema drift but can be used 

as a valuable data source for many projects.

Data mesh: A data mesh is a decentralized approach to building data 

stores that uses self-service design and borrows from domain-oriented 

design and software development practices. Each domain is responsible 

for their own data sources, requiring a shift in responsibility, while the data 

platform team provides a domain-agnostic data platform.

2 www.databricks.com/glossary/medallion-architecture
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Databases are not only used for feature stores (to organize features 

for model training) but also for model versioning and artifact storage; in 

fact, MLFlow also uses a database. Databases are also used for logging and 

monitoring. This is an important fact that is often overlooked in MLOps. 

In the next section, we will look at No-SQL databases and how we leverage 

meta-data in our data science workflows to adapt to change.

�No-SQL Databases and Metastores
Relational databases can represent structured data in tables with 

relationships (foreign keys) between tables. However, not all data can 

be forced into this pattern. Some data, especially web data (JSON and 

XML), are semi-structured having nested hierarchies, and text-based data 

common in NLP problems are unstructured. There is also binary data 

(common when you have to deal with encrypted columns), and having 

to store, process, and define the relationships between structured, semi-

structured, and unstructured data can be cumbersome and inefficient in 

a relationship database creating technical complexity. This complexity is 

compounded by schema evolution common to data science workflows. 

Hence, there is a need for an efficient way to represent, store, and process 

semi-structured and unstructured data while meeting nonfunctional 

requirements like availability, consistency, and other criteria important 

to the data model. In this section, we will introduce both No-SQL and 

relational databases that you can use to build data models and meet 

nonfunctional requirements without having to pigeonhole your solution 

into a relational database.

•	 Cassandra: Cassandra is a No-SQL distributed database 

that supports high availability and scalability which 

makes it ideal as an online feature store.
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•	 Hive: Hive is a distributed, fault-tolerant data warehouse 

system for data analytics at scale. Essentially a data 

warehouse is a central store of data that you can run 

queries against. Behind the scenes, these SQL queries 

are converted into MapReduce jobs, so Hive is an 

abstraction over MapReduce and is not itself a database.

•	 Hive metastore: Hive metastore is a component you 

can add to your feature store. It contains names about 

features such as names of features, data types (called 

a “schema”). It is also a commonly used component 

in cloud services like Databricks delta tables, so even 

if you aren’t building your own feature store directly, 

you should have some knowledge of this important 

piece of data infrastructure.

�Relational Databases
•	 Postgresql: Postgres is a relational database system that 

can support gigabytes, terabytes, and even petabytes of 

data. We can also configure PostGres to work with Hive 

metastore. In Feast (in version greater than 0.21.0), 

Postgres is supported as a registry, online and offline 

feature store.

�Introduction to Container Orchestration
We learned about Docker and even created a Dockerfile which was a series 

of instructions used to build an image. The image, a binary containing 

layers of software, could be run like a lightweight virtual machine on our 

host operating system. But what if we have to run multiple services, each 

with their own Docker images? For example, we might have a service that 
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hosts a Jupyter notebook where we type in our Python code, but we might 

want to have another service for storing data in a database and have our 

notebook interact with this database.

One subtlety you will encounter is networking. How can we get these 

two services to “talk” to each other and create the network infrastructure to 

support this communication between services?

Also since containers are ephemeral in nature, how do we spin these 

services up when we need them and spin them down when they’re no 

longer needed while persisting the data we need? This is what container 

orchestration deals with, and the standard tool for orchestrating containers 

is Docker Compose.

We’ll be using Docker Compose in the next chapter to set up MLFlow 

and get it to “talk” to our Jupyter lab which we will need to set up 

experiment tracking for our training pipeline. You can look at the docker-

compose.yml file included with this chapter (but don’t run any commands 

just yet). Figure 4-17 shows an example YML file.

Figure 4-17.  A Docker Compose YML file
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�Commands for Managing Services 
in Docker Compose
Container orchestration is a large topic, and as we mentioned, you will be 

using it in the next chapter to set up MLFlow and build a training pipeline. 

We’ll cover MLFlow in depth, but Docker Compose has commands for 

managing the entire lifecycle of services and applications.

Here are some important commands useful for managing services:

•	 Start services: docker-compose up

•	 Stop services: docker-compose down

•	 Start a specific service: docker-compose up 

<service name>

•	 Check the version of Docker Compose: docker-

compose-v

•	 Build all services: docker-compose up --build

While Docker Compose simplifies the process of creating services, you 

still need to define multi-container applications in a single file. Imagine a 

scenario where you have infrastructure that spans across different cloud 

providers or is multitenant in nature. This kind of multitenancy contrasts 

with multi instance architectures and having a tool that can completely 

describe infrastructure as code can help with the complexity in these 

environments.

•	 Infrastructure as Code

Infrastructure as code (IaC) is a DevOps 

methodology for defining and deploying 

infrastructure as if it were source code. We have 

already seen an example of this when we spun up 

our data science lab environment by defining the 
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image, binaries, and runtime needed inside the 

Dockerfile. Since the Dockerfile itself is a series 

of instructions that can be source controlled and 

treated like any other source code, we can use it to 

generate the exact same environment every time 

we build the image and run the container from the 

image. The ability to have the same environment 

each time is called reproducibility and is an essential 

component for data science because experiments 

need to be reproducible.

It’s worth mentioning that there are specific tools and specialties 

within DevOps for managing infrastructure as code. One tool that is widely 

used in industry is Terraform. Terraform is an open source infrastructure-

as-code tool for provisioning and managing cloud infrastructure such 

as Databricks. It works with multiple cloud providers and allows MLOps 

professionals to codify infrastructure in source code that describes the 

desired end state of the system. An example configuration file is given 

in the following, but these files can get very complex, and you can use 

Terraform and similar tools to configure and manage notebooks, clusters, 

and jobs within Databricks. Figure 4-18 shows a very simple example of 

infrastructure as code in Terraform.

Figure 4-18.  Infrastructure can be described as code
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�Making Technical Decisions
We’ve come a long way in this chapter from introducing Docker, applying 

what we learned to create our own data science lab environment complete 

with Jupyter notebook, and getting our hands dirty with Feast, creating our 

own feature store from an IoT data set.

We’ve also talked about the philosophy of having infrastructure as code 

and why it’s important for the reproducibility of data science experiments. 

The final piece of the puzzle is how we can use our knowledge of 

infrastructure to make better technical decisions. Here are a few key points 

you should consider when making decisions around infrastructure in your 

own projects:

•	 Solve problems using a divide-and-conquer strategy, 

breaking services and parts of applications into 

functional components.

•	 Ask yourself if there is a cloud service or a docker 

container you might want to use for each functional 

component in your system.

•	 Understand the performance requirements for your 

workload. Do you need a lot of memory? Or do you 

need dedicated CPUs and GPUs for model training? 

Understanding the hardware requirements for different 

models can help you decide.

•	 Run code profilers on your code to identify bottlenecks 

in a data-driven way. A great profiler that comes with 

Python is cProfiler. It’s often not enough to “guess”; 

you should strive to make data-driven decisions by 

performance testing your code.
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•	 Strive to make your experiments reproducible, and 

deploying by using Docker and adopting a mentality of 

infrastructure as code can help to manage changes and 

different versions of infrastructure.

•	 Decide between PaaS (Platform as a Service) and 

Infrastructure as a Service. Sometimes, spinning 

up your own dedicated server and worrying about 

upgrades, updates, and security batches can be 

overkilled when a good PaaS meets infrastructure 

requirements.

�Summary
In this chapter, we’ve learned the fundamentals of infrastructure for 

MLOps. We’ve covered sufficient prerequisites for understanding 

containerization, cloud services, hardware accelerated training, and 

container orchestration and how we can use our knowledge to become 

better technical decision-makers on data science projects. At this point, 

you should understand what a container is and how to build containers 

and be able to define what container orchestration means and why it 

is useful for MLOps. Although this chapter covered a lot of ground and 

you’re not expected to know everything about containerization, we 

hope this chapter has peaked your curiosity as we start to build on these 

fundamentals and apply what we learned to some real data science 

problems in the coming chapters. Here is a summary of the topics we’ve 

covered:

•	 Containerization for Data Scientists

•	 Hardware Accelerated Training

•	 Feature Store Pattern and Feast
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•	 GPU Accelerated Training

•	 MPP Databases for Data Science

•	 Introduction to Container Orchestration

•	 Cloud Services and Infrastructure as Code

•	 Making Technical Decisions
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CHAPTER 5

Building Training 
Pipelines
In this chapter, you will build your own toolkit for model training. We will 

start by discussing the training and how it relates to the other stages of the 

MLOps lifecycle including the previous stage feature engineering. We’ll 

consider several different problems that make this part of the lifecycle 

challenging such as identifying runtime bottlenecks, managing features 

and schema drift, setting up infrastructure for reproducible experiment 

tracking, and how to store and version the model once it’s trained. We’ll 

also look at logging metrics, parameters, and other artifacts and discuss 

how we can keep the model, code, and data in sync. Now, let’s start by 

talking at defining the general problem of building training pipelines.

�Pipelines for Model Training
Building pipelines are a critical part of the MLOps lifecycle and arguably 

the most essential part of the development and deployment of machine 

learning systems since training the model is the process that allows you to 

determine what combination of weights, biases, and other parameters best 

fit your training data. If model training is done correctly, meaning we’ve 

correctly minimized a cost function that maps to our business problem, 
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then our end result of this process will be a model capable of generalizing 

beyond our training set, to unseen data, making predictions that can be 

actioned upon by decision-makers.

In this chapter, we will take a step back looking at model training 

instead as a process. We’ll learn how to represent this process in a natural 

way as a machine learning pipeline. We’ll also consider what can go wrong 

in this critical step of the MLOps lifecycle including what happens when 

we can’t train our model in a reasonable amount of time, what happens 

when our model doesn’t generalize, and how we can bring transparency 

and reproducibility into the training process by setting up experiment 

tracking. We’ll also consider a part of model training that is often 

overlooked: model explainability and bias elimination. Let’s look at some 

high level steps you might encounter in a training pipeline.

�ELT and Loading Training Data
Model training typically occurs after you’ve already collected your data 

and, preferably, you have a feature engineering pipeline in place to 

refresh the data. This is a complicated step. We looked at some of the data 

infrastructure you can use for building feature stores in the last chapter 

such as relational databases, massively parallel databases, and Feast and 

Databricks, but if you’ve ever had to build an ETL (extract, transform, 

and load) or ELT (extract, load, and transform) pipeline, you know that 

it involves setting up connection strings to databases and writing SQL 

queries to read data, transform it, and load it into a target database. You 

need to set up tables, handle schema drift, and decide what tools to use for 

scheduling your pipeline. This is a large topic within data engineering, and 

we can’t possibly cover every detail of this process, but we can provide you 

with knowledge of a few tools for building feature engineering pipelines:
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�Tools for Building ELT Pipelines
Data science projects need a solid foundation of data engineering in order 

to support the feature engineering process. Challenges exist around the 

part of the MLOps lifecycle between when data is collected and when that 

data is cleansed, transformed, and stored for downstream model training 

tasks. The steps that go into this are commonly called ELT or ETL (extract, 

transform, load), and there are data specialists that focus on this area 

alone. ELT is the preferred choice for data science teams since we want to 

first extract and then load the data in a database. Once the data is loaded, 

the data science team is free to transform the data as they wish without 

having to specify the transformation beforehand. With the ETL pattern, 

you need to transform the data on the fly before it is loaded which can 

become difficult. In the ELT pattern, the data science team can select the 

features that they want with data already loaded in the database and run 

experiments on raw data or iterate toward the feature engineering required 

for building the models. We also want to separate our extract, transform, 

and load steps, and we need a tool that is capable of passing data between 

steps and comes with monitoring, scheduling, logging, and ability to create 

parameterized pipelines. More specifically for data science, we also want 

to support both Python and SQL in our pipeline. Let’s take a look at a few 

of these tools for ELT in data science.

Airflow v2: Airflow (version 2) provides an abstraction called a DAG 

(directed acyclic graph) where you can build pipelines in Python, specify 

dependencies between steps (e.g., read data, transform data, and load data), 

have steps run in parallel (this is why we use a DAG to represent the pipeline 

as opposed to a more linear data structure), and provide a convenient web 

interface for monitoring and scheduling pipeline runs. You will want to use 

at least version 2 of Airflow since version 1 requires you pass data between 

steps using xargs. You can build full end-to-end training pipelines in Airflow 

locally, but when it comes time to deploy your models in production 

(we’ll talk about this in depth in a coming chapter), you might want to 
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set up Airflow as a cloud service. There are a couple options available for 

production Airflow workflows in the cloud such as Astronomer or Google 

Cloud Composer (based on Google Kubernetes Engine).

The other much more difficult option is to deploy your own Airflow 

instance to Kubernetes. This option is not recommended for the data 

scientist that wants to manage their own end-to-end lifecycle because 

setting up your own Airflow instance in production on Kubernetes does 

require knowledge of infrastructure and there are many cloud services 

available that provide high availability and reliability, so if you are 

managing the entire lifecycle end to end, it’s recommended you choose a 

cloud platform like Astrologer provides Airflow as a service, so you don’t 

have to deal with the low level details required to configure Airflow.

�Azure Data Factory and AWS Glue

If you’ve worked on ETL or ELT pipelines in the cloud before, you’ve 

probably heard of AWS Glue or Azure Data Factory depending on your 

choice of cloud provider. Both of these options can be used especially 

in combination with PySpark since Azure Data Factory has an “activity” 

(pipeline step) for running notebook Databricks, and AWS Glue can also 

run PySpark for extract, transform, and load steps. One thing to consider 

when choosing an ELT tool is which dialect of Python is supported since 

for data science, you will likely be writing your extract, load, and transform 

steps in a combination of Python and SQL. Although this isn’t a hard 

requirement, if the rest of your workflow is written in Python such as the data 

wrangling or feature engineering steps, you would need to figure out how 

to operationalize this code as part of your pipeline, and if you choose a low 

code or visual ELT tool that doesn’t support Python, you will have to have the 

additional step of translating your entire workflow which may not be possible 

especially if you have complicated statistical functions. This also leads to 

the second consideration for choosing an ELT tool for feature engineering 

pipelines: Does the tool support statistical functions required by your 

workflow? If the tool supports Python scripts, then the answer is probably 
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yes, but you should still consider what kind of packages can be installed. 

The same applies if your data science workflow is in another language other 

than Python, for example, Julia or R, and you need to consider how much 

community support there is for your language, and using a language that 

isn’t widely used may restrict the options you have for building your pipeline.

Another option for ELT is choosing a tool that supports the entire 

machine learning lifecycle end to end such as Databricks. The advantage 

of having a single platform is reduced effort and fewer integrations 

compared to a component-based system, but you still need to consider 

many questions such as how you’re going to organize your feature 

engineering pipeline, what does the folder structure look like? Where will 

the ELT scripts live? How can I add Git integration and set up jobs to run 

these scripts to refresh and update data required for the model?

The last piece of advice for this section is to have as much explicit 

logging and error handling as possible baked into your pipeline. Although 

as data scientists, we might be more focused on accuracy of our scripts, 

when you go to deploy your pipeline to production and it breaks, you will 

wish you had more information in the logs and spent more time handling 

errors in a graceful way. Adding some basic retry logic, try-except blocks, 

and basic logging can go a long way to making your feature engineering 

pipelines robust and reliable.

�Using Production Data in Training Pipeline

It goes without saying that you need production data in your training 

pipeline. It makes very little sense to train a model if the data is not accurate 

and up to date. This may pose some challenges for teams that have strict 

security protocols. You may need to communicate your need for production 

data and the business need for requiring daily or real-time refreshes of this 

data. For most workflows, daily frequency should be adequate, but know 

that if you require low latency data refreshes, it may require additional 

infrastructure and code changes to support this. You may have to consider 

using an event driven architecture rather than a batch ELT pipeline.
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�Preprocessing the Data
Okay so you have your ELT pipeline, and you’ve decided how you’re going 

to refresh the data and the frequency of updates and have chosen your 

feature store where your features will live. Your pipeline runs daily. You 

have code to read this data into a dataframe, maybe a Pandas dataframe or 

a PySpark dataframe if you’re working on a structured data set, or maybe 

you use some other libraries like Spacy for processing text based data in an 

unstructured format.

The point is, whether the data is structured or unstructured, the 

shape, volume, quality of the data, and type of machine learning problem 

determine how it will be processed. There are many variables here so your 

preprocessing steps may be different.

What matters is how you are going to translate your assumptions 

about your model into code. Your data may have many missing values, 

and your model might require a value so you will have a preprocessing 

step to handle missing values. You may be solving a classification problem 

and found your data set is imbalanced, so you may have another step that 

resamples your data to handle this. Other steps might include scaling 

the data and getting the data in a shape the model expects. Take a look at 

Listing 5-1 for an example.

Listing 5-1.  A code snippet showing preprocessing steps

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

X = df.drop('label', axis=1)

y = df['label'']
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# train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.3)

scaler = StandardScaler()

# fit transform on X_train

X_train = scaler.fit_transform(X_train)

# transform X_test

scaler.transform(X_test

So how do we handle all of these preprocessing steps? It’s really 

important to keep them all in sync, and this is why you need to use a 

pipeline. Although your ELT pipeline should be deployed using something 

like Airflow, for the complex sequence of transforms, most machine 

learning frameworks have a concept of a pipeline you can leverage for the 

transformations. For example, in sklearn, you can import pipeline from 

sklearn;pipeline as shown in Listing 5-2.

Listing 5-2.  Importing sklearn’s pipeline class

from sklearn.pipeine import Pipeline

�Handling Missing Values
Missing values in data can have many root causes. It is important to assess 

the reason why data is missing before building your training pipeline. 

Why? The reason is simple: Missing values mean you do not have all of the 

information available for prediction, but it could also indicate a problem 

with the data generating process itself, human error, or inaccurate data.

Missing at random (MAR) is a term used in data analysis and statistics 

to indicate that the missing data can be predicted from other observed 

values in the data set. While not completely random, data that is missing at 

random or MAR can be handled using techniques like multiple imputation 
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and other model based approaches to predict the missing value, so it’s 

important to understand if the data qualifies as MAR or not. An example 

in finance would be a stock market forecast. Let’s suppose you are tasked 

to build an LSTM model to forecast the price of a stock. You notice data 

is missing. Upon further investigation, you realize the missing data is 

correlated with another variable that indicates the stock market was closed 

or it was a holiday. Knowing these two indicator variables can be used to 

predict if the value was missing, so we say the price of the stock is missing 

at random. We might consider multiple imputation as a technique in our 

preprocessing steps to replace this missing value, or maybe it makes more 

sense to drop these values entirely from our model if the loss of data won’t 

impact the accuracy of our forecast too much.

In addition to MAR, there is also MCAR (missing completely at 

random) and MNAR (missing not at random). With MCAR we assume that 

the missing data is unrelated (both to covariate and response variables). 

Both MCAR and MAR are ignorable; however, MNAR is not ignorable 

meaning the pattern of missing values is related to other variables in 

the data set. An example of MNAR would be an insurance survey where 

respondents fail to report their health status when they have a health 

status that might impact the insurance premium.

�Knowing When to Scale Your Training Data
Scaling is applied when we have different units and scales in our training 

data and we want to make unbiased comparisons. Since some machine 

learning models are sensitive to scale, knowing when to include scaling in 

your training pipeline is important. Some guidelines for knowing when to 

scale your training data are as follows:

	 1.	 Do variables have different units, for example, 

kilograms and miles?
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	 2.	 Are you using regularization techniques such as 

Ridge or Lasso? You should scale your data so that 

the regularization penalty is applied fairly, or you 

may have a situation where variables with larger 

ranges are penalized more than variables with 

smaller ranges.

	 3.	 Are you using a clustering algorithm that is distance 

based? Euclidean distance is highly sensitive to outliers 

and scale, so scaling your training data is necessary to 

avoid some variables dominating the computation

A general rule of thumb is to apply scaling to the numerical variables 

in your data since from an MLOPs perspective, even if the model does not 

require it, you can improve the numerical stability and efficiency. Now that 

we’ve covered some of the preprocessing steps you might encounter in a 

training pipeline, let’s talk about a problem you will face when features 

change: schema drift.

�Understanding Schema Drift
Let us suppose you are a data scientist at a large financial institution. 

You are creating a model to predict customer churn but need to consider 

demographic and macroeconomic data. You recently were asked to add 

another variable to you model: the pricing and subscription type for each 

level of customer. You have five variables to add, one for each subscription 

type; however, you will have to adjust your entire training pipeline to 

accommodate them. This situation is called schema drift.

There are many ways to deal with schema drift, but as a general rule, 

you should build your training pipeline in a way that is flexible enough 

to accommodate future changes in variables since they will inevitably 

happen. This might be as simple as altering a table to add a new column 

or as complex as dynamically generating SQL including variable names 
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and data types, creating the table on the fly as part of the training pipeline. 

How you deal with schema drift is up to you, and some frameworks like 

Databricks provide options such as the “mergeSchema” option when 

writing to delta tables, so if you are using an end-to-end machine learning 

platform or feature store, you should consult the documentation to check if 

there is anything related to schema drift before building out a mechanism 

yourself.

�Feature Selection: To Automate or Not 
to Automate?
Feature selection is important from an MLOps perspective because it 

can dramatically reduce the size of your training data. If you are working 

on a prediction problem, you may want to discard variables that are not 

correlated with your target variable

An interesting question is how much of this process needs to be 

automated? Should your training pipeline automatically add drop 

variables as needed? This is likely very unsafe and could lead to disastrous 

consequences, for example, if someone adds a field by accident that 

contains PII (personally identifiable information), demographic data that 

violates regulatory constraints on the model or introduces data leakage 

into your model. In general, your training pipeline should be able to 

handle adding and removing features (schema drift), and you should 

monitor features for data and model drift, but having a human as part of 

the feature selection process, understanding the business implication of 

the features that go into your model is a safer bet than taking a completely 

hands-off approach.
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�Building the Model
Once we have preprocessed the data, the next step is to build the machine 

learning model. In our case, we will be using scikit-learn’s logistic 

regression model. We can define the model and fit it to the training data, as 

shown in Listing 5-3:

Listing 5-3.  Fitting a model in Sklearn

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

model.fit(X_train, y_train)

�Evaluating the Model
Once we have built the model, the next step is to evaluate the model. We 

will use scikit-learn’s accuracy_score function to calculate the accuracy of 

our model on the test data, as shown in Listing 5-4.

Listing 5-4.  Evaluating the model

from sklearn.metrics import accuracy_score

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print('Accuracy:', accuracy)

It’s important here that model evaluation can be a complex process 

that happens both during hyper-parameter tuning and after tuning when 

comparing the performance of tuned models. The former is commonly 

called the “inner validation loop” and is used on a subset of training data 

before being retested on another subset. The purpose of this procedure is 

to find the best hyper-parameters for the model. Once our model is tuned, 
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we can compare tuned models, and this is called the “outer validation 

loop” where you may choose the best model. Optionally you may choose 

tore-train the best model on the combined train and test sets in hope of 

getting better generalization. In the lab, you will build a training pipeline 

and see how some of this process works in practice.

�Automated Reporting
Recall when we defined the MLOps maturity model, we said the 

differentiator between the first and second phase was an automated 

training pipeline as well as automated reporting. While we will cover 

performance metrics and monitoring in the next chapter, it is imperative 

to have infrastructure set up for reporting during the training phase; 

otherwise, the model can be trained, and we need to make decisions on 

model performance. While many MLOps professionals consider reporting 

to be important, reporting on model performance, model drift, and feature 

drift or tying in the model output from the training phase with business 

KPIs is a difficult process. At minimum your team should have a dashboard 

so you can discuss the results of trained models with stakeholders. 

Examples include Power BI which can be deployed to a cloud service or 

rolling your own such as Dash in Python and hosting it on a web server in 

the cloud.

�Batch Processing and Feature Stores
When training a model, you need to decide if you want to store all of 

the data in memory or process the data in a batch, updating the weights 

of the model for each batch. Although gradient descent is widely used, 

theoretically there are alternative methods for optimization, for example, 

Newton’s method. However, one practical advantage of gradient descent 

based algorithms is it allows you to train the model in a distributed 
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fashion, breaking up the training set into batches. You should be aware 

if there are batch versions of your algorithm available. Gradient descent 

usually refers to batch gradient descent which trains on the entire data set 

in one go, but there are two modes for batch training you can code yourself 

when using gradient descent as an optimization algorithm, and they’re 

available in most deep learning frameworks: mini-batch and stochastic 

gradient descent.

�Mini-Batch Gradient Descent:
Mini-batch gradient descent is a tweak to the regular gradient descent 

algorithm that allows you to train your model on batches of data. The 

size of these batches of data can be tuned to fit in memory but is usually 

a power of 2 such as 64 or 512 to align with computer memory. Since the 

gradients are calculated over the entire mini-batch, the model weights get 

updated for each batch. This kind of divide and conquer strategy has many 

performance advantages, the most obvious one is the ability to run your 

computations on a smaller subset of data rather than than the entire data 

set in one shot. This translates into reduced memory footprint and faster 

computations. The trade-off you should be aware of is, unlike the regular 

batch gradient descent on the full training data, with mini-batch gradient 

descent, you are only approximating the true gradient. For most cases, this 

is acceptable, and for larger scale machine learning projects, training on 

the entire data set for several thousand epochs may not be feasible.

�Stochastic Gradient Descent
Stochastic gradient descent is another variation of the classical gradient 

descent algorithm, this time using a randomly selected sample point 

to compute the gradients. The gradient of the loss function is used to 

update the model weights for each randomly selected sample point. The 

advantage, like mini-batch gradient descent, is less memory usage and 

Chapter 5  Building Training Pipelines



152

possibly faster convergence. However, since the points are randomly 

selected from the training data, we are still only approximating the true 

gradient, and this approximation can be particularly noisy. Therefore, 

stochastic gradient descent sometimes combines with mini-batch gradient 

descent, so the noise term gets averaged out over many samples, leading to 

a smoother approximation of the true gradient.

Implementing stochastic gradient descent in a deep learning 

framework like PyTorch is as simple as importing the SGD optimizer.1

�Online Learning and Personalization
The definition of an online learning method is a scenario where you 

don’t want to train on the entire data set but still have a need to update 

the weights of the model as new data flows in. This is intuitive if we 

understand Bayes’ rule which provides one such mechanism for updating 

a probability distribution, but when it comes to classical machine learning, 

we need to use gradient descent.

Linear classifiers (SVM, logistic regression, linear regression, and so 

on) with SGD training may come with a function that can have online or 

mini-batch mode supporting delta data or both online and batch mode 

supporting both delta data and a full data set.

Linear estimators in Sklearn, for example, implement regularized 

linear models with stochastic gradient descent learning. In this case, the 

gradient of the loss is estimated for each data point that the weights are 

updated by computing the partial derivative (take a look at Chapter 2 for 

an example of working with partial derivatives and loss functions in code). 

An optimization that is used with stochastic gradient descent is decreasing 

the learning rate (impacting the model’s ability to update its weights in 

response to new data) as well as scaling the training data with zero mean 

1 PyTorch SGD optimizer documentation https://pytorch.org/docs/stable/
generated/torch.optim.SGD.html
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and unit variance (we talked a bit about this earlier in the chapter). This 

method is called feature scaling and can improve the time it takes for the 

algorithm to converge (sometimes at the cost of changing the output as 

with an SVM).

While online learning through methodologies like the partial fit 

function can be used to reduce training time, you might ask first if it is 

necessary since you need to build mechanisms for incremental data load, 

support partial fit, fine-tune the last layer of the model, and freeze the rest 

or some other methodology for updating the weights on a small subset of 

data. This can complicate the training process, so unless there is a good 

reason for doing it, you might be better to consider hardware accelerated 

training or distributed training on a full data set. However, there are still 

great reasons to consider online learning other than performance, one 

being the ability to fine-tune a model and personalize the prediction and 

in such cases. In the next section, we’ll take a look at another important 

aspect of model training: model explainability.

�Shap Values and Explainability at Training Time
Machine learning algorithms are often viewed as “black boxes” that accept 

labels and input data and give some output. As we know from Chapter 2, 

most algorithms are not “black boxes”; they’re built up from mathematical 

abstractions, and although these abstractions can be powerful, they’re also 

low bias machines, ultimately trading interpretability for a higher variance 

(see bias-variance trade-off). Neural networks, especially deep neural 

networks consisting of several layers of neurons stacked, are an example 

with both high variance and low explainability.

Fortunately, solving the problem of model explainability has come a 

long way, and some of the most widely used tools are LIME and SHAP.

LIME: LIME is an acronym for local interpretable model-agnostic 

explanations. The goal of LIME is to show how each variable is used in the 

prediction. In order to achieve this, LIME perturbed each observation and 
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fits a local model to these perturbations. The model’s coefficients are then 

used to assign a weighting to the feature importance of each variable. This 

weighting can then be interpreted as how much each variable contributed 

to the prediction, allowing the data scientist to explain the model. LIME is 

typically more performant than SHAP.

SHAP: Shapley Additive Explanations or SHAP relies on the concept 

of a Shapley value, a mathematical construct that uniquely satisfies 

some theoretical properties (from cooperative game theory) of an ideal 

model-agnostic explainability algorithm. The Shapley values can be 

interpreted as how much each feature contributed to the prediction. An 

interesting consequence of using Shapley values, which are available for 

each observation, is you can use it for model fairness as well, for example, 

to estimate the demographic parity of features in your model. SHAP 

aims to approximate the model globally and gives more accurate and 

consistent results, whereas LIME, which approximates the model locally, is 

much faster.

�Feedback Loops: Augmenting Training Pipelines 
with User Data
One way to evaluate the maturity of an MLOps solution is by asking if it 

can incorporate output of the model back into the model training process, 

creating a simple kind of feedback loop. Feedback loops are ubiquitous 

throughout engineering.

�Hyper-parameter Tuning
The final section we need to cover is hyper-parameter tuning and how it 

relates to the entire training pipeline. We know that models have hyper-

parameters which are exactly that extra parameters like depth of a tree, 

number of leaves for tree based models, regularization parameters, and 
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many other parameters that can do a variety of things from preventing 

model-overfitting to changing the architecture or efficiency of the model.

If you look at a boosting model like gradient boosting machines, 

you may have many hyper-parameters, and knowing details about how 

the algorithm works, for example, does it grow leaf-wise or level-wise, 

is essential to using the model correctly and tuning it to your business 

problem.

How do we search through a search space? We face a problem of 

combinatorial explosion if we try to do a brute force approach. We might 

try random search which reduces the search space, but then we might 

randomly miss important parameters and not have the best model at 

the end. A common approach is to use Bayesian optimization for hyper-

parameter search. With the Bayesian approach, the best combination of 

hyper-parameters is learned as the model is trained, and we can update 

our decisions on which parameters to search as the process progresses, 

leading to a much better chance of finding the best model.

How do we implement Bayesian hyper-parameter search? One library 

that you will likely run into is HyperOpt. One important point is that you 

can set up MLFlow’s experiment tracking inside the Hyperopt objective 

function. This powerful combination of MLFlow and Hyperopt can be 

an invaluable piece of your workflow. If you run the lab, you can see this 

pattern implemented and integrate it into your own MLOps toolkit. In 

the next chapter, we’ll build on top of this foundation and look at how we 

can leverage MLFlow for finding the “best model” to make predictions on 

unseen data and use this model and data as part of an inference pipeline, 

but first let’s take a look at how hardware can help to accelerate the model 

training process.

So what can go wrong in the model training process? One problem 

is that of all the steps in the MLOps lifecycle, model training can take 

the most time to complete. In fact, it may never complete if we are only 

running on a CPU. Hardware acceleration, which as we discussed, refers 
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to the process of using GPUs (or TPUs) to speed up the training process 

for machine learning models, reducing the runtime by parallelizing 

matrix and tensor operations in an efficient way. Fortunately, there is a 

straightforward way to know when you might need to consider hardware 

accelerated training; you only need to ask yourself two questions:

•	 How long does it take to train my model?

•	 Is this training time reasonable given the business 

requirements?

If the answer to the second question is no, you will need to use 

hardware accelerated training. For example, if your model takes 3 days to 

train on your laptop, this is probably not acceptable, but in some cases, 

it may be less obvious, and you will need to consider other variables like 

if you can run the training pipeline automatically outside of business 

hours; maybe a few hours of training time is acceptable to you. You might 

also consider how fast the data is growing and if you will need to share 

resources with additional models in the future. In this case, although a few 

hours of training time might technically be feasible in the short term, long 

term you will need to consider solutions like hardware accelerated training 

to speed up the process, so you can accommodate the scale that you need 

in terms of volume of data or number of models.

Model architecture is also a critical variable to consider since, for 

example, deep learning models are often very expensive to train, requiring 

hours or days to fine-tune the models. Long short term models (LSTMs), 

large language models, and many generative models like generative 

adversarial networks are best trained on a GPU, whereas if your problem 

only requires decision trees or linear regression models, you may have 

more leeway in what hardware you use.
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�Hardware Accelerated Training Lab
Open the Hardware Accelerated Training Jupyter notebook in your MLOPs 

toolkit Jupyter notebook lab environment (named Chapter_5_gpu_

accelerated_training_lab) or, optionally, in Google Colab if you do not have 

access to a GPU on your laptop.

In the example we’ve set up, you’ll be using a slightly different deep 

learning framework than we’ve seen so far. You’ll use this framework, 

TensorFlow, to train a simple neural network on the MNIST data set. As 

part of the training pipeline, you’ll need to preprocess the data, define the 

model architecture, compile the model, and set up the models’ optimizer 

and loss function.

The most important part of this lab is the line of code that sets the GPU 

explicitly, using GPU using the with tf.device(“/GPU:0”) context manager. 

This tells TensorFlow to use the first available GPU either on your laptop or 

in Google Colab to accelerate the training process.

�Experimentation Tracking
Experiment Tracking software is a broad class of software used to collect, 

store, organize, analyze, and compare results of experiments across 

different metrics, models, and parameters.

Experiment tracking allows researchers and practitioners to better 

understand the cause and effect relationships that contribute to 

experimental outcomes, compare experiments to determine common 

factors that influence results, make complex decisions on how to improve 

models and metrics to improve experiment results, and also reproduce 

these results during model training.

Remember, model training is a process that involves data and code. 

We need a way to keep track of the different versions of code and models 

and what hyper-parameters, source code, and data went into this training 

process. If we don’t log this information somewhere, we risk losing it, 

Chapter 5  Building Training Pipelines



158

and this means we’re not able to reproduce the results of the experiment, 

keep track of which experiments were actually successful or even worse, 

and answer even the most basic questions around why an experiment 

went wrong.

One tool that is arguably the gold standard when it comes to 

experiment tracking in machine learning is MLFlow. MLFlow allows you to 

store models; increment model version numbers, log metrics, parameters, 

source code, and other artifacts; and use these artifacts at a later stage such 

as in a model serving pipeline.

MLFlow is itself designed for end-to-end machine learning and can be 

used in several stages of the MLOps lifecycle from training to deployment. 

It can even be used in a research context when there is a need to quickly 

iterate on results ad hoc and keep track of experiments across different 

frameworks, significantly speeding up your research.

�MLFlow Architecture and Components
Experiment tracking: This component is used for logging metrics, 

parameters, and artifacts under a single experiment. The tracking 

component comes with a Tracking API which you can use in your training 

pipeline to log these metrics, parameters, and artifacts during the training 

process. In practice, experiment tracking can be set up in the hyper-

parameter tuning step and used in combination with other frameworks 

like HyperOpt.

Projects: The MLFlow projects component is less of a traditional 

software component and more of a format for packaging data science 

code, data, and configuration. You might use projects to increase the 

reproducibility of your experiments by keeping data, code, and config in 

sync and deploying code to the cloud.
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Model registry: The model registry component enables data scientists 

to store models with a version number. Each time the training pipeline 

runs, you can increment this version number and subsequently use the 

model API to pull a specific version number from the registry for use in a 

downstream model serving or deployment pipeline.

Model serving: The MLFlow model serving component allows you 

to expose your trained models as a RESTFul API for real-time inference 

or batch inference modes. You can also deploy models to a number 

of different environments including Docker and Kubernetes. We will 

cover model deployment in a subsequent chapter, but this is a vast topic 

that requires the deployment of not just the model itself but additional 

monitoring, authentication, and infrastructure to support the way in which 

the model is used by the end user.

Now that we’ve covered the basic components of MLFlow, how do 

we begin to use it and set up our own experiment tracking framework? 

Although we’ve worked with services in our MLOps toolkit like Feast and 

Jupyter labs, standing up these services as stand-alone Docker images and 

Python packages, MLFlow is a complex service with multiple components. 

For example, the model registry may need to support models that can get 

quite large and require either an external artifact store. We’ll be using an 

s3 bucket for this. Technically, since we want to keep everything running 

locally, we’ll be using another service called MinIO which emulates an s3 

bucket for us where we will store our models.

Fortunately, since the docker-compose file is built for you in the last 

chapter, you only need to run. Go to Chapter 5 folder and run docker-

compose up (Do you remember what this command does?). Listing 5-5 

shows how to build all services from scratch.

Listing 5-5.  Running docker-compose up with –build option

docker-compose up -d --build
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You should notice this command spun up several services for you 

including MinIO (our cloud storage emulator for model storage), our 

MLFlow server (we use a relational database called MySQL for experiment 

tracking), and MLFlow web server where we’ll be able to view our 

experiments and models once they’re registered. You’ll also notice our 

Jupyter lab notebook exists as a service and can talk to MLFlow through 

the docker-compose network backbone.

Okay, that’s a lot of technical details, but how do we actually start using 

these services? If you look at the docker-compose file, you’ll notice we 

exposed several ports. MLFlow web server is running on port 5000, our MinIO 

cloud storage service runs at port 9000, and our Jupyter lab server runs on 

port 8080 like before. If you open a browser and enter localhost:8080, you’ll 

be able to access your Jupyter lab. This is where we’ll run all of our code in this 

chapter. Table 5-1 summarizes these services and where you can access them.

Table 5-1.  Table of service endpoints used in this chapter

Service Endpoint Description Credentials

MLFlow web 

service

localhost:5000 View all experiments and  

registered models

None

Cloud storage 

service

localhost:9000 You need to access this once to  

create an s3 bucket called “mlflow”

MinIO

MinIO123

Jupyter lab localhost:8080 Where we’ll be building our training 

pipeline

None

You should open a browser and navigate to each of these services.

Now that we have built and evaluated our machine learning model, the 

final step is to track our experiments using MLFlow.

Next, we need to import the mlflow package on PyPi and set the name 

of our experiment (we’ve already installed Mlflow for you as part of the 

Jupyter lab service but it is available as a stand-alone Python package).
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When you set an experiment, all runs are grouped under this 

experiment name (each time you run your notebook, you are executing 

code and this is what is referred to as a run). You might want to establish a 

naming convention for experiments. For example, if you use a notebook, 

you could use some combination of notebook name, model types, and other 

parameters that define your experiment. An example code in Listing 5-6  

shows similar code to what you’ll find in the lab.

Listing 5-6.  Creating an experiment in MLFlow using mlflow package

import mlflow

# Start an MLFlow experiment

mlflow.set_experiment('logistic-regression-mlflow')

# Log the parameters and metrics

with mlflow.start_run():

    mlflow.log_param('model', 'LogisticRegression')

    mlflow.log_param('test_size', 0.3)

    mlflow.log_metric('train_loss', train_loss)

    # Log the model as an artifact

    mlflow.sklearn.log_model(logistic_model, 'logistic_model')

What is this code doing? First, we start an MLFlow experiment by 

calling the set_experiment function and passing in the name of our 

experiment. MLFlow also comes in different flavors. For example, we can 

use the MLFlow lightgbm flavor to log a lightgbm model or sklearn flavor 

to log a sklearn model like logistic regression (we’ll build on our logistic 

regression example from previous chapters).

Knowing which flavor of model API we’re using is important when we 

deserialize the model (a fancy way of saying, loading the model back from 

the model registry) as we want the predict_proba and predict methods to 

be available. However, it can be challenging to handle different types of 

models in a general way.
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You now have enough background knowledge to start the lab where 

you will build an end-to-end training pipeline and log model to MLFlow.

�MLFlow Lab: Building a Training Pipeline 
with MLFlow
If you haven’t done this already, now is time to run docker-compose up in 

the Chapter 5 folder and confirm all services are started by navigating to 

the service endpoints in Figure 5-1.

Step 1. Navigate to MinIO cloud storage service located at 

localhost:9000 and enter the credentials provided in Figure 5-1.

Figure 5-1.  MinIO Cloud Storage bucket

Step 2. You need to create an s3 bucket where we’ll store all of 

our models. Create a bucket called mlflow. If you’re unfamiliar with 

cloud storage, you can think of this as an external drive, which we’ll be 

referencing in our code. Figure 5-2 shows what the create bucket page 

looks like in MinIO.
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Figure 5-2.  Creating a bucket called mlflow in MinIO

Step 3. Navigate to Jupyter lab service located at localhost:8080 in a 

browser, and import the notebook for Chapter_5_model_training_mlflow_

lab. Read through all of the code first before running.

Step 4. Run all cells in the notebook, and navigate to the MLFlow web 

service located at localhost:5000. Confirm that you can see your experiment, 

runs, models, metrics, and parameters logged in the experiment tracking 

server. Figure 5-3 shows where MLFlow logs experiments.

Figure 5-3.  MLFlow experiment component
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That is it! You’ve built an end-to-end training pipeline that trains a 

model and logs it to MLFlow, and you’re able to search for the best run. 

Figure 5-4 shows the MLFlow model component.

Figure 5-4.  MLFlow model registry component

Notice the last cell uses HyperOpt’s hyper-parameter tuning 

framework to fine-tune the model. The important detail is how we define 

our search space and then set MLFlow’s experiment tracking inside the 

hyperopt objective function.

�Summary
In this chapter, we learned about training pipelines, discussing how 

model training fits into the MLOps lifecycle, after we have made technical 

decisions around ELT and feature stores and we looked at some of the 

high level steps you might encounter as part of the transformation and 

data preprocessing steps. We looked at why we need to build a pipeline 
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and how we can make our pipelines more reliable and robust. We also 

discussed many of the technical aspects around setting up experiment 

tracking and hyper-parameter tuning. Here is a list of what you’ve learned 

up to this point.

•	 Tools for Building ELT Pipelines

•	 Preprocessing Data

•	 Hardware Accelerated Training

•	 Experimentation Tracking Using MLFlow

•	 Feature Stores and Batch Processing

•	 Shap Values and Explainability at Training Time

•	 Hyper-parameter Search

•	 Online Learning

•	 Setting Up an End-to-End Training Pipeline 

Using MLFlow

In the next chapter, we will build one some of the core ideas we learned 

to deploy models and build inference pipelines.
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CHAPTER 6

Building Inference 
Pipelines
If you’ve made it this far, you’ve already created MLOps infrastructure, 

build a feature store, designed and built an end to end training pipeline 

complete with MLFlow experiment tracking for reproducibility and model 

storage in the MLFlow model registry, and tried monitoring and logging. It 

might seem like you’re almost done; however, we’re still missing a critical 

piece of the MLOps puzzle: Once you’ve trained your model, what do you 

do with it?

This is such a critical piece of the MLOps lifecycle that it’s surprising 

so many data scientists leave the design and construction of the inference 

pipeline to the last minute or bury it away as a backlog item. The reality 

is, the inference pipeline is one of the most important parts of any 

stochastic system because it’s where you will actually use your model to 

make a prediction. The success or failure of your model depends on how 

well stakeholders are able to use your model and action upon it to make 

business decisions; when they need it and without an understanding of this 

stage of the lifecycle, your project is doomed to failure. Not only that, but it’s 

the inference pipeline where you will store the model output to incorporate 

feedback loops and add monitoring and data drift detection, so you can 

understand the output of your model and be able to analyze its results.

A lot can go wrong as well, and if you aren’t aware of how to measure 

data drift and production-training skew, then your model may fail when it 

hits production data.
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In this chapter, we will look at how we can reduce the negative 

consequences of production-training skew and monitor the output of 

our model to detect changes in problem definition or changes in the 

underlying distribution of features. We will also take a detailed look at 

performance considerations for real-time and batch inference pipelines 

and design an inference API capable of supporting multi-model 

deployments and pulling models from a central model repository similar 

to an architecture described in Figure 6-1.

Figure 6-1.  Inference pipeline supporting multi-model deployment
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�Reducing Production-Training Skew
Your model was trained on data that was carefully collected and curated 

for your specific problem. At this stage, you likely have a good idea of the 

distribution of features that go into your model, and you’ve translated 

certain assumptions about your model into the training pipeline, dealing 

with issues like imbalanced data and missing values.

But what happens when your model hits production and needs to 

make a prediction on unseen data? How can we guarantee that the new 

data follows the same distribution as the training data? How can we 

guarantee the integrity of the model output so that stakeholders can trust 

the output enough to action on the insights the model provides? This is 

where the concept of production-training skew comes into our vocabulary 

and starts to impact the technical decisions we make around model 

deployment.

Production-training skew can be formally defined as a difference in 

model performance during production and training phases. Performance 

here can mean the accuracy of the model itself (e.g., the unseen data has a 

different probability distribution than expected or can be caused by failing 

to handle certain edge cases in our training pipeline that crop up when we 

go to production).

It’s worth noting that sometimes issues happen in production that 

are not anticipated even if we have a really good understanding of the 

assumptions of our data and models. For example, we might expect certain 

features to be available at inference time because they were available at 

training time, but some features might need to be computed on the fly and 

the data just may not be available.

In general, it is best practice to ensure your inference pipeline has 

safeguards in place to check our assumptions prior to using the model, 

and if features are not available, or if certain statistical assumptions are not 

met, we can have a kill switch in the inference to prevent the model from 

making an erroneous prediction.
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This highlights an important difference between stochastic systems 

and traditional software systems because the consequences of actioning 

on a bad model output may be disastrous. As I’ve mentioned, stakeholders 

may lose trust in your model, or the model may be used as part of a 

decision process that impacts real people in a negative way. Therefore, it’s 

not enough to fail gracefully or ensure our model always has an output; 

as an MLOps practitioner, you need to put model safety first and foremost 

and ensure that if critical assumptions are not met, then what went wrong 

gets logged and the inference pipeline fails.

Let’s take a look at how we can set up monitoring and alerting to 

ensure the safety and integrity of our model.

�Monitoring Infrastructure Used in 
Inference Pipelines
Although we have a firm grasp of infrastructure, we need to take a brief 

moment to talk about the type of infrastructure you will need to set up 

for monitoring your inference pipelines. There are various cloud-based 

monitoring services in all of the major cloud platforms such as Amazon 

CloudWatch, Azure Monitor, or Google Cloud Monitoring. These tools 

provide monitoring and alerting capabilities that can be integrated 

with data pipelines. Your organization may have their own monitoring 

infrastructure set up already in which case you should consider leveraging 

this instead of creating new services.

There are also specific monitoring tools for data pipelines and ELT 

frameworks; for example, AWS Glue and Airflow both have built-in 

monitoring, and you can use this to build your own custom data drift 

detection solution by creating a separate pipeline and setting up hooks 

that can talk to other infrastructure.
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The difference between the data specific monitoring tools and the 

more general cloud monitoring tools is the more general cloud monitoring 

tools also can monitor resource utilization and you can use this to get a 

sense of where performance bottlenecks exist in your code. You may have 

to read the documentation for these cloud services and learn the SDK 

(software development kit), so you integrate these tools with your own 

code base. Whether you choose a stand-alone cloud monitoring service 

or leverage an existing one or one built-in with your ELT framework will 

depend on your project and the specific problem you’re trying to solve.

Okay, so once you have made the technical decision on what type 

of monitoring service you want to use for your data drift and model drift 

detection, then we can talk about how you can implement monitoring 

in your inference pipeline and some of the challenges that you might 

encounter.

�Monitoring Data and Model Drift
Monitoring is an essential part of nearly every IT operational system. It 

also happens to be one of the ways we can make data-driven decisions 

about our production models. Monitoring is a way of collecting data 

(strictly speaking, this is logging) and the capability of observing data over 

a period of time, for example, to check if certain conditions are met that 

are actionable. The action is usually called an alert.

It’s important to realize that when working with monitoring systems, 

this data is collected in the form of logs, but the logs need not be 

centralized and are typically streamed via standard output and standard 

error and then consolidated using some logging service. Services include 

cloud services like Data Dog or Azure Monitoring or open source solutions 

like Ganglia, ElasticSearch.
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In the context of machine learning and stochastic systems, monitoring 

means monitoring the model specifically for data drift and model drift 

and ensures the reliability and integrity of our model. We define these 

related terms.

Data drift: Data drift is related to the statistical properties and the 

probability distribution that underlies the features that go into training 

the model. When the underlying distributions of features shift in terms 

of mean, variance, skewness, or other statistical properties we can track, 

then it may invalidate assumptions we have made in the training pipeline 

and render model output invalid. A way to continuously monitor these 

statistical properties needs to be implemented.

How do you measure the difference between the distribution of 

features 6 months ago and at the present time? There are several ways 

to approach this, and one way is to measure the “distance” between two 

probability distributions such as with KL divergence or Mahalanobis 

distance. The important detail here is that we need to first measure a 

baseline and we compute this distance against the baseline, usually by 

defining a threshold value. If the divergence between our observed and 

baseline exceeds this threshold, then we can choose to send out an alert 

(e.g., an email to relevant stakeholders). It’s important we actually send out 

an alert and build out the code to do this, for example, if your team uses 

Slack, you may consider building a slack bot to alert your data drift has 

occurred since important decisions need to be made on whether to retrain 

the model and understand the root cause of the shift.

Another approach to data drift is hypothesis testing. We can set the 

null hypothesis to the features that have not changed or come from a well-

known distribution like the normal distribution if your data is normally 

distributed. One commonly employed hypothesis test is the Kolmogorov-

Smirnov test where the null hypothesis is that the data comes from the 

normal distribution.
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Once we have confirmed that data drift has occurred, we have to 

make a technical decision: Should we retrain our model? This is the first 

kind of feedback we can introduce into the training pipeline and is more 

sophisticated than the alternative which is periodically retraining on a set 

schedule (which may be a waste of resources if data drift has not occurred 

or is within the SLA threshold).

Model drift: Model drift is a slightly different concept than data drift 

and can indicate that the business problem has changed. It’s important to 

define the business problem and the definitions of features as part of the 

feature engineering step so that you can validate if model drift has actually 

occurred once detected.

Detecting possible model drift is fairly straightforward but verifying 

it is not. In order to detect model drift, we only need to monitor the 

predicted values (or more generally, the output of the model) and 

compare them to the expected values over time. For example, if we have 

a multi-class classification problem, we might record the total number of 

predictions made for each class and the breakdown of our predictions by 

each class, counting the number of predictions made for each class. We 

could visualize this as a simple histogram where the bins are the classes in 

our model, and if we find this histogram changes too dramatically from the 

baseline (using since threshold we define for the specific problem), then 

we have data drift and suspected model drift (performance of our model 

may have degraded over time).

We may also keep track of accuracy and other performance metrics 

and keep track of the performance of our model over time and a baseline 

and confidence intervals if possible.

Once we have found that either the model output has changed or the 

model performance metrics are degrading, then we need to investigate if 

model drift is actually concept drift, meaning the business problem has 

shifted in some way. This may lead us not only to retrain the model but 

possibly to have to add new features, revise features, or even change the 

model and its assumptions entirely to match the new business problem.

Chapter 6  Building Inference Pipelines



174

In order to keep track of the model output, we need a reliable way to 

make predictions with our model (if the mechanism isn’t reliable or at 

least as reliable as the model output, then we won’t be able to tell when we 

model drift has occurred). Creating the API for inference is not only about 

user experience but also ensuring the accuracy and reliability of the model 

output. In the next section, we’ll go over some of the considerations that go 

into designing a reliable inference API.

�Designing Inference APIs
Okay so let’s say we have the most reliable inference API, we trust the 

data and the output of our model, and our stakeholders and users trust 

the output. The next focus needs to be on performance. We’ve noted 

previously there are technical trade-offs between accuracy and model 

performance, and while we should always consider performance early, 

it’s important not to sacrifice accuracy or fairness of the model for 

performance. On the other hand, if we don’t consider scalability and 

optimize our inference pipeline for performance, then the output may 

be rendered completely invalid by the time the prediction is made (e.g., 

delivering the prediction the next day if there is a hard requirement on 

the latency of the system). Due to this performance-accuracy, trade-off in 

some sense performance is a two-sided problem in machine learning.

In the next section, we’ll take a detailed look at what we mean by 

performance in the context of inference pipelines in terms of both 

scalability and latency but also accuracy and validity and some of the 

important performance metrics we should be tracking in our monitoring 

solution. We’ll also discuss the important problem of alignment in data 

science and how it plays a role in deciding what performance metrics 

to track.
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�Comparing Models and Performance 
for Several Models
In Chapter 5, we looked at model training and talked about the model 

tuning step. On a real-world problem, you may have many different types 

of models that you need to compare. You may have to dynamically select 

the best model, and we need a way to compare models for a problem type 

to choose the best model we should use for model inference.

One approach is once our models are tuned, we evaluate their 

performance using k-fold cross-validation and by selecting the model 

that has the best performance, for example, accuracy of F-1 score. This 

“outer validation loop” may use cross-validation but is done after hyper-

parameter tuning since we need to compare models once they are already 

tuned; it would make little sense to make a decision on what is the best 

model if we haven’t even gone through the effort of fine-tuning the model.

Since we’ll typically be working to solve one problem type like 

classification or regression or anomaly detection, there are common 

performance metrics we can use to decide objectively what the best 

model should be, and there needs to be code that can handle this 

part of the process. Let’s take a detailed look at some of these metrics 

and performance considerations used for comparing models across 

problem types.

�Performance Considerations
Model performance can refer to the accuracy and validity of our model or 

scalability, throughput and latency. In terms of accuracy and validity, there 

are many metrics, and it’s important to choose the metrics that are aligned 

with the goals of the project and the business problem we want to solve.
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Here are some examples; in this table, we try to break them down by 

type of problem to emphasize that we need to consider the alignment of 

the model with the goal. We call Table 6-1 the alignment table for data 

science.

Table 6-1.  Alignment table for data science

Problem type Metrics

Classification Accuracy

Classification Precision/recall

Classification F1 score

Regression RMSE/MAE

Recommendation Precision at k

Recommendation Recall at k

Clustering Davies-Bouldin Index

Clustering Silhouette distance

Anomaly detection Area under curve (AUC)

All problem types listed Cyclomatic complexity

Of course this is not an exhaustive list since we can’t possibly list every 

problem type you may encounter. I hope it provides a good starting point 

for designing your inference pipeline. In the next section, we’ll take a deep 

dive into the other side of performance: scalability and latency.

�Scalability
How can your machine learning system handle increasing amounts of 

data? Typically, data collection, one of the first phases of the MLOps 

lifecycle, grows over time. Without further information, we don’t know 
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at what rate this data collection process grows, but even if we assume 

logarithmic growth, over time, we need to scale with the increasing 

data volume.

You might have heard the word scalability before in the context of 

machine learning, the ability of your system to adapt to changes in data 

volume. Actually, scalability goes in both directions; in fact, cloud services 

are often described as being “elastic,” when you don’t use them they 

should scale down and during peak periods of activity, they scale up.

What does it mean to scale up and down? We usually speak of 

horizontal scalability and vertical scalability.

Vertical scalability: Vertical scalability means we add additional 

memory, CPU, and GPUs or in the case of cloud services increase these 

physical resources on the virtual machine or compute we are running. 

By vertically scaling, we’re adding more horsepower to a single worker 

machine, not adding new machines. This gets expensive after a while 

since as your memory or compute needs grow, at some point it is no 

longer feasible to upgrade the machine, and this is why for data science, 

we consider horizontally scaling workflows rather than vertically so we 

can leverage several inexpensive worker machines (often commodity 

hardware) to reach our compute and memory needs.

Horizontal scalability: Horizontal scalability means we add additional 

worker machines and consider the total compute (number of cores) 

or total memory of the entire cluster together. Usually, this comes with 

hidden complexity such as how we can network the machines together 

and shard the data across workers. Algorithms like map reduce are used to 

process big data sets across workers.

We mentioned in the previous chapter that we could use this 

horizontal scaling pattern for distributed training, but what about 

inference? When it comes to inference, we usually consider two types of 

patterns: batch mode inference and real-time inference.
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Both of these patterns require different architectures and 

infrastructure but which one you choose depends on your particular use 

case (remember, we should always try and align technical decisions with 

our use case). Here is the definition of both batch inference and real-time 

inference.

Batch inference: Batch inference means we break our feature set into 

batches and use our model to run predictions on each batch. This type of 

pattern can be scaled out horizontally and also has the advantage of not 

requiring an API, load balancer, caching, API throttling, and other kinds 

of considerations that come with designing an API. If you only need to 

populate a table for a dashboard, for example, you might consider using 

batch inference. However, this pattern might be ill-suited for use cases 

requiring real-time or near real-time inference or on demand predictions.

Real-time inference: If your requirement is to have sub-second latency 

in your inference pipeline and event driven prediction or allowing the end 

user to make on demand predictions, then you may want to move away 

from batch mode and consider building an API. Your API can still be scaled 

horizontally using a load balancer, but you will need to set up additional 

infrastructure and an online feature store. If your requirement is sub-

second latency, you may also need to use GPUs to make the prediction (or 

distributed pipelines). This is a complicated topic, and so in the next lab 

we’ll discuss some of the components that go into building an inference 

API, and then you’ll use MLFlow to register a model in production, pull 

it from the model registry, and explore how you might expose the model 

using an gRPC or RESTful API.

�What Is a RESTful API?
A RESTful API is an interface between containers (or even remote servers) 

used to facilitate communication over the Internet (the communication 

protocol is called the HTTP protocol). RESTful APIs are created in 

frameworks like Flask to exchange data.
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When an API endpoint is called either programmatically via a POST 

request (we can also do this manually using tools like Postman) or in the 

web browser (e.g., through a GET request), data (usually in the form of 

JSON) is serialized (converted to bytes) and sent across the Internet in a 

process called marshaling. The bytes are then converted back into artifacts 

like a model using a load function that is called deserialization. All of this 

happens transparently when you use a framework like Flask, and you can 

define endpoints (e.g., localhost:80/predict) which can be called either by 

other APIs or by applications that want to use your API (you could do this 

using Python’s request library; you just need to specify the endpoint, the 

data, and if it’s a POST or GET request you need to make).

APIs are one of the many ways to build inference pipelines that the 

user can interact with and are particularly suited as mentioned before for 

on demand use cases (you can just call the endpoint when you need it) or 

when you need a sophisticated application that uses your model (these 

applications are often built as microservices).

Although building a full API is beyond the scope of this book, it is 

worth being aware of a few technologies that are used in building large 

scale applications often called microservices.

�What Is a Microservice?
A microservice architecture is an architectural pattern for software 

development that organizes applications (e.g., APIs) into collections 

of independent (in software development parlance, this is often called 

loosely coupled) components called services. We’ve already seen examples 

of services when we used docker-compose to build our Jupyter lab service 

and MLFlow service, but you can also build your own services. In practice, 

these services are self-contained API endpoints written in a framework like 

Flask. Since the services are loosely coupled, they will need to talk to each 

other by sending data in the form of messages. These messages are usually 
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sent by calling an API. Since the services are loosely coupled docker 

containers, they can be scaled horizontally by adding more containers and 

distributing the load over several containers using a component called a 

load balancer. Figure 6-2 shows a typical REST API endpoint for prediction 

in Flask. The function predict exposes a route called /predict and expects 

features to be passed in as JSON strings in the body of a POST request 

(a standard way HTTP endpoints accept data). The model is loaded or 

deserialized and then used to make a prediction on the input data. The 

prediction is then returned as a json string, called a response.

Figure 6-2.  Flask API prediction endpoint
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If you want to learn more about Flask, it’s recommended you read 

the Flask documentation or several books available on microservice 

architecture in Flask. For most data scientists, building a microservice 

would be overkill, require teams of developers, and if attempted yourself 

would open up your project to security vulnerabilities and problems with 

scalability. Remember, you need to have additional components like 

load balancers and container orchestration frameworks like Kubernetes 

(docker-compose was the container orchestration tool we learned, but 

Kubernetes requires specific expertise to use effectively).

However, the pattern in Figure 6-2 is called a scoring script, and if you 

choose a cloud service that supports model inference, it will likely have 

support for creating your own inference scoring scripts which allow you 

to wrap the prediction logic in a function and expose a REST endpoint. 

Examples of cloud services that support these scoring or inference scripts 

include Databricks, AWS SageMaker, and Azure Machine Learning Service 

and MLFlow. In the lab, we’ll look at how to build your own inference API 

and some of the details involved in registering a model, loading a model, 

and exposing an API endpoint in enough detail that you will have the 

hands-on skill to work with many different cloud services.

�Lab: Building an Inference API
In the hands-on lab, you will take the code we wrote for training and adapt 

it for model inference. First, let’s look at some of the components of an 

inference API. You’re encouraged to do the supplementary reading before 

continuing to the hands-on Jupyter notebook for this chapter (I’ve already 

included them when you start the Jupyter lab for convenience, but you 

should try to import them yourself.).

Step 1. Run docker-compose up to start MLFlow and Jupyter lab 

services.
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Step 2. Open your Chapter 6 lab notebook called Chapter_6_model_

inference_lab.

Step 3. Run all cells to register the model and increment the model 

version number.

Step 4. Pull the registered model from MLFlow model registry. An 

example is given in Figure 6-3.

Step 5. Use the model to make a prediction.

Step 6. Open the deployment notebook (called Chapter_6_model_

inference_api_lab) to see how MLFlow serve can be used to expose your 

model as an inference API.

Keeping Model Training and Inference Pipelines in Sync

In Chapter 1, we talked about how technical debt could build up in a 

data science project. In fact, data science projects have been described as 

the high interest credit card of technical debt. One subtle way projects can 

accumulate technical debt at the inference stage of the lifecycle is by not 

keeping the training and inference pipelines in sync.

Figure 6-3.  Pulling a model from MLFlow registry for use in an 
inference pipeline
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The same features the model was trained on are required at time 

of prediction. So there we must generate those features somehow. It’s 

convenient to think we could reuse the exact same code, but sometimes 

not all features will be available at prediction time and additional pipelines 

are necessary. A great example is a feature like customer tenure, very 

common in finance which technically changes every instant. This should 

be recomputed at inference time before being fed into the model especially 

if there’s a large lag between when the features get refreshed and when 

the model is applied. Keeping training and inference pipelines in sync via 

shared libraries and the feature store pattern can shave off technical debt. 

While the problem of keeping pipelines in sync is a software engineering 

problem, some problems cannot be solved with software engineering since 

the root cause of the problem is a lack of data. One such example is the so-

called “cold-start” problem.

�The Cold-Start Problem
The cold-start problem is something we see in recommender systems 

but more generally when we’re working with transactional data, for 

example, customer or product data in retail, finance, or insurance. The 

cold-start problem is a scenario where we don’t have all of the history for 

a customer or we want to make predictions about something completely 

new. Since we may not have any information about a customer or product, 

our model won’t be able to make a prediction without some adjustment. 

Collaborative filtering, an approach in machine learning to filter on 

“similar” customers or products where we do have information available, 

can be used to solve the cold-start problem and make predictions on 

completely new data points1.

1 In situations where there is no data, collaborative filtering may need to be 
supplemented with approaches such as content-based filtering.
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Although we’ve covered quite a few things that could go wrong in 

our inference pipeline, we can’t anticipate every possibility, and while 

continuous monitoring plays a crucial role in making our inference 

pipelines more robust, sometimes things go wrong, code gets handed off 

to other teams, and we need to dig deeper into the system for technical 

specifics. This is where documentation can be a lifesaver.

�Documentation for Inference Pipelines
If you’re a data scientist, you probably have copious amounts of 

documentation for features and statistical properties of those features, but 

one area where documentation may be lacking is around the assumptions 

that go into building an inference pipeline.

For example, do you have a naming convention for models in 

production? How about model versioning? Can you explain the process 

for updating a model or what to do if your inference pipeline breaks 

in production and your model isn’t able to generate a prediction? All 

of these steps should be documented somewhere, usually in the form 

of a run book. It is also critical to have internal documentation such 

as a wiki that gets updated regularly. This documentation can be used 

for onboarding and hands-offs and to improve the quality of code 

and can save you when something inevitable breaks in production. 

Since documentation tends to only be used when things go wrong 

and stakeholders usually don’t like reading large volumes of technical 

documentation, we also need a way of reporting performance metrics to 

stakeholders.
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�Reporting for Inference Pipelines
Reporting is another critical component of machine learning and in 

particular building the inference and training pipeline. With respect to the 

inference pipeline and model output, reporting is particularly important 

because the model output needs to be translated into business language 

using familiar terms that the stakeholders understand.

Since the ultimate purpose of the model was to solve a business 

problem, reporting could arguably be the most important piece of the 

puzzle as far as determining the value of your model.

Reporting can contribute to understanding the model, how the users 

are interacting with the model, and understanding areas of improvement 

and should be seen as a communication tool.

Reporting can take many forms from simple automated emails 

(remember we discussed one form of this for use in data drift and model 

drift monitoring) but also more sophisticated solutions like dashboards. 

Dashboards themselves should be viewed as operational systems that 

provide accurate data to an end user, bringing together multiple disparate 

data systems. Such systems may include the model output, feature store, 

user interaction with the model output (feedback loops), as well as other 

transactional or analytic database systems used by the business.

The type of dashboard you build depends on the business problem 

and how end users will ultimately interact with your models, but one 

dashboard that can add immediate value and prevent your model from 

ending up in the model graveyard is an explainability dashboard.

The ability to explain your model results with stakeholders is a crucial 

part of any data scientists’ day to day role and information about model 

training, and what features are important when making a prediction (such 

as Shap value or lime) can serve as an invaluable communication tool. 

Some common use cases for reporting in MLOps include the following:

•	 Reporting on performance metrics

•	 Reporting on model explainability
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•	 Reporting on model fairness for model bias reduction

•	 Reporting on feature importance

•	 Reporting on how the model output translates into key 

business KPIs 

Reporting on how your model translates into key business KPIs is a 

critical exercise that should be taken into account from the beginning of 

the project before you even build the model, but keeping in mind that you 

need to translate this into a deliverable in the form of a dashboard at the 

end of the project can contribute to project planning help data scientists 

work backward from the dashboard through to the types of data and code 

needed to support the dashboard so a critical path for the project can be 

well-defined. Since data science projects have a tendency to suffer from 

lack of requirements or ambiguity, having a concrete deliverable in mind 

can reduce ambiguity and help to prioritize what is important in the 

project throughout the entire MLOps lifecycle.

�Summary
We’ve come a long way in this chapter. We discussed how to build 

inference pipeline code examples along the way, and we actually built 

an inference pipeline with MLFlow and Sklearn in our hands-on lab. You 

should have a thorough understanding of the challenges that exist at this 

stage of the lifecycle from model monitoring, data drift, and model drift 

detection, aligning our problem to performance metrics and figuring out 

how to keep track of all of these performance metrics in a sane way. We 

discussed how to choose the best model when we have several different 

types of models. We gave some examples of performance metrics you 
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may encounter in the real world for various problem types like anomaly 

detection, regression, and classification. We also discussed the importance 

of reporting, documentation, and keeping our training and inference 

pipelines in sync. Some of the core topics you should now have expertise 

include the following:

•	 Reducing Production-Training Skew

•	 Monitoring Data and Model Drift

•	 Designing Inference APIs

•	 Performance Considerations

In the next chapter, we’ll look at the final stage of the MLOps lifecycle 

and formally define the lifecycle, taking a step back from the technical and 

developing a more holistic approach to MLOps.
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CHAPTER 7

Deploying Stochastic 
Systems
If you’ve made it this far, you already have the skills to build a complete 

end to end data science system. Data science of course is more than 

machine learning and code which are really only tools, and to build end to 

end systems, we need to understand people, processes, and technology, 

so this chapter will take a step back and give you a bird’s-eye view of the 

entire MLOps lifecycle, tying in what we’ve learned in previous chapters 

to formally define each stage. Once we have the lifecycle defined, we’ll 

be able to analyze it to understand how we can reduce technical debt 

by considering the interactions between the various stages from data 

collection and data engineering through to model development and 

deployment. We’ll cover some philosophical debates between model-

centric vs. data-centric approaches to MLOps and look at how we can 

move toward continuous delivery, the ultimate litmus test for how much 

value your models are creating in production. We will also discuss how 

the rise of generative AI may impact data science development in general, 

build a CI/CD pipeline for our toolkit, and talk about how we can use 

pre-build cloud services to deploy your models. Without further ado, let’s 

explore the stages of the ML lifecycle again and introduce the spiral ML 

lifecycle formally.
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�Introducing the Spiral MLOps Lifecycle
Although we hinted at the ML lifecycle throughout this book and 

even talked about the “spiral” MLOps lifecycle in Chapter 1 (shown in 

Figure 7-1), we lacked the context to really define the lifecycle completely 

and to understand the big picture from a holistic point of view. Although 

you might see the machine learning lifecycle or MLOps lifecycle (to 

me the difference between the two is that MLOps takes into account 

the business and IT environment the models live in), the reality is a lot 

messier. It’s always been a pet peeve of mine that there’s infographics 

used in data science that summarize complex ideas very concisely but 

don’t map very well to real-world problems. Essentially these infographics 

are communication tools but not structures that can be mathematically 

defined or reasoned upon without a lot of imagination. Therefore, it’s my 

goal to take the MLOps lifecycle infographic we saw in Chapter 1 to the 

level where you can actually recognize it in a real project or even adapt it to 

your own custom project since not all data science problems are the same 

across industries (maybe this is a kind of meta transfer learning problem in 

itself).
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Figure 7-1.  The spiral MLOps lifecycle

So what is a lifecycle? In the context of biology, a lifecycle is a series of 

changes in the life of an organism. It’s in itself a model for understanding 

change and a way of identifying the phases that come to define the 

organism over time.

Although MLOps is not a living organism, your IT environment is 

in many ways like a living, breathing organism. When we throw models 

and code into the mix, we legitimately have a kind of chaotic system, 

that although may not be technically living changes over time and is best 

understood by breaking it down into distinct phases.

The phases which include developing, deploying, and maintaining 

models can further be segmented into more granular stages that go into 

creating a useful machine learning model that solves a business problem.
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�Problem Definition
We want to start with the problem definition and requirements for the 

problem. This is the initial step of the lifecycle, where we define the 

initial conditions and involve gathering of information in the form of 

requirements. This is vitally important because if you can’t define the 

problem or the requirements (a step often skipped in data science projects 

and justified in hand-wavy ways), then this ambiguity can trickle down 

into the user stories and individual developer tasks, creating chaos.

�Problem Validation
The next phase of the lifecycle is validating the model. Some people 

confuse this with exploratory data analysis which is sometimes used as 

justification for finding a problem, but the goal should be to understand 

the problem better, what we’re looking at, and the types of data sources 

available and validate whether or not we can solve the problem in the 

first phase. Problem validation is different than exploratory analysis 

though. Although this phase may be tedious, it saves a lot of time because 

it’s relatively cheap to validate a problem but costly to implement a full 

solution that ends up missing the mark in the end.

�Data Collection or Data Discovery
Once we have validated a problem, we can collect data. Collecting data 

is expensive. Even if you don’t collect the data, there is still a lot of data 

discovery that has to take place. You may leverage metadata if you have a 

catalog built already, but if not, you may have to build the metadata catalog 

yourself and discover the name, variable names, data types, and statistical 

properties of the data.
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�Data Validation
At this stage, a decision needs to be made whether there is enough value 

in the discovered data sources or if you need to go back to the first stage to 

refine your problem. This is another example of a feedback loop or what 

we’re calling a “spiral” since the process may be continuous and hopefully 

converge to a performance model at the end of the process.

�Data Engineering
After data collection and data validation, the next step is data engineering. 

MLOps requires a solid data engineering foundation to support modeling 

activities, and this is not trivial. If you’re the data engineering and MLOps 

practitioner on the team, then you might struggle to build this foundation 

before you’re able to make use of MLOps.

You will set up feature stores, build feature pipelines, decide on 

a schedule for your pipeline (refresh rate), and ensure you’re using 

production data sources. You have to decide which data sources are most 

valuable to operationalize. If the data sources are normalized (3NF or 

2NF), you may have to join them together into a centralized repository.

At this stage, you may have a data architecture in mind such as a Data 

Warehouse or a Data Lake or Data Vault and build robust ELT pipelines. 

The goal of this phase is to have feature stores that are accessible, secure, 

and centralized and to ensure that there’s enough data to support model 

training.

You may start feature engineering, building a library of features for 

model training, to support a variety of problem types.

If you are truly dealing with a prediction problem, you may only keep 

features with predictive value, but you may also have to deal with issues of 

multicollinearity and interpretability.
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�Model Training
Model development starts. You may start with a model baseline like simple 

linear regression or logistic regression; the simpler the model, the better 

the baseline. You might gradually increase the variance of the model. 

The boundary between the previous phase, data engineering, and model 

training will be blurred as you refine your model and require new features 

be added to the feature store and deal with schema drift and the curse 

of dimensionality. Eventually you’ll have to create a way to reduce the 

number of features and may struggle to keep track of the entire library of 

features as business demand grows.

Since the lifecycle is a continuous process, after several iterations, 

the architecture of the model itself may change, and if enough data is 

available, you might consider deep learning at some point. This stage may 

start simple but also grow horizontally in terms of the number of models 

you need to support and the number of problem types and performance 

metrics that need to be tracked. As your MLOps process gets more 

advanced, the model training phase will eventually require MLFlow or 

similar experiment tracking software, hyper-parameter tuning frameworks 

like HyperOpt, hardware accelerated or distributed training, and 

eventually full training automation, registering your models in a model 

registry and having some kind of versioning system.

�Diagnostic Plots and Model Retraining
Depending on the problem type, there are specific visual tools for 

evaluating models called diagnostic plots. For example, if you have a 

classification problem, you might consider plotting a decision surface 

for your model to evaluate its strengths and weaknesses. For a linear 

regression problem, you may be interested in plotting residuals vs. fitted 

values or some other variation to decide if it’s a good or bad model.
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Some of these plots may be used as diagnostic tools but not traditional 

monitoring tools which may not be able to accommodate images, so 

you could, for example, have a Jupyter notebook that’s source controlled 

a part of the project and can generate these images on a schedule, for 

example, once a week, or another option is to build a separate monitoring 

dashboard using tools like Dash or PowerBI; the choice of reporting 

software really depends on your project and how you’re comfortable 

creating the visuals, but it probably needs to support Python and libraries 

used like Pandas.

For model retraining, you can have more complex triggers such as if 

the distribution of features changes or if model performance over time is 

trending downward, but a simple solution to start is to retrain the model 

monthly. Note that these are two different types of triggers and both are 

needed to determine when to retrain the model since model performance 

can degrade over time but also the distribution of features themselves 

can change.

You should also consider how you write features to a table. For 

example, you might want to add a timestamp column and append features 

to a table so you have a complete history available for model retraining. 

These types of technical decisions around how frequently data needs to 

be updated, whether historical data needs to be maintained for model 

retraining, and how to operationalize diagnostic plots and other visuals are 

complex decisions that may require several team discussions.

�Model Inference
In this phase, you’ll select the best model, pulling the model from the 

model registry for use in an inference pipeline. You may decide to go 

through another round of cross-validation to evaluate the best model. 

You will need to have an inference pipeline that compiles your features 

and makes them available at prediction time. The runtime, model, and 

features will all need to be available at the same time for the model to 
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make a prediction. Your inference pipeline may be as complicated as a 

full application or microservice or as simple as an API endpoint or batch 

inference pipeline depending on the requirements gathered during 

requirements gathering.

One commonality between model training and model inference is 

schema drift. Schema drift is also a factor in choosing a data architecture 

that can adapt to the demands of data science workloads since features 

that are used in both training and inference can change. The implication 

is that we either need to have complex code flows, updates, and frequent 

release cycles to accommodate changes in feature definition, or we need 

to create our tables dynamically using metadata. Since data types of each 

feature determine how the data is physically stored, changes in data type 

can impact our ability to store historical data required for model training. 

In the next section, I will talk about the various levels of schema drift.

�The Various Levels of Schema Drift in 
Data Science
Schema drift is a different issue than data drift and is common to virtually 

all data science projects of sufficient complexity since features fed into the 

model may change. We have talked about schema drift before but post-

deployment features can still change. It’s interesting to note that there is no 

one size fits all solution to the problem of schema drift and actually there 

are various levels of schema drift. For example, you may have additive 

changes where you are only adding features and you may be able to simply 

set an option to allow the dataframe’s schema to merge with the target 

table schema. You can implement this solution manually as well with a 

DDL SQL command like ALTER TABLE to avoid loss of historical data that 

may be required for model training.
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However, what do you do when the order of columns changes, the data 

types are incompatible, for example, string to a float (casting a string to a 

float would lead to a loss of information), or there are other destructive 

operations on the table schema that are fundamentally not compatible 

with the target table? In this case, you may have to drop the table entirely. 

Many databases have a CREATE OR REPLACE TABLE statement, but 

you can implement this yourself by checking if the table exists and if 

it does dropping it and then recreating it. You should be careful to use 

atomic operations though if you’re deploying this code to a distributed 

environment since race conditions and a source of strange errors in 

production are possible.

Traditional ways of handling schema drift like slowly changing 

dimensions don’t work well for data science since features can change 

rapidly and the entire table structure may change this actually has 

consequences for model training since you could risk wiping out historical 

data required at a future point in time for training the model so running 

an ALTER TABLE statement on specific columns may be the safest bet 

along with regular backups of the data if possible. The schema itself, the 

metadata that describes the data types and structure of the table, needs to 

be stored as well with each version since of course this will change as well.

�The Need for a More Flexible Table in 
Data Science
We talked about schema drift, and if you have actually worked as a data 

scientist, you might have encountered the problem of features being 

added or subtracted, names changing, data types changing regularly, and 

having to constantly update your tables. Traditional wisdom in database 

management assumes that the table structure is fixed which doesn’t work 

well for data science.
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While No-SQL databases and columnar storage address the problems 

of having a more flexible API and how to store data for analytical queries, 

you still need to handle schema drift. It’s interesting to note that traditional 

SQL is based on relational algebra, and the equivalence with relational 

calculus under certain conditions such as domain independence is known 

as Codd’s theorem.

While relational algebra and relational calculus are equivalent, 

relational calculus focuses on what to retrieve rather than how to retrieve 

it and so is more flexible. In relational calculus, there is no description 

of how to evaluate a query but instead a description (very similar to a 

prompt) of what information needs to be retrieved.

Whether a new kind of database is needed for data science that can 

better handle schema drift on a foundational level while maintaining 

performance for analytical queries is an open question that remains to be 

answered, but perhaps this technology could come from a fusion of large 

language models and the decades of wisdom built into relational database 

engineers (“optimizers”). In the next section, we will take all of the pieces 

of the lifecycle we have learned so far and discuss model deployment in 

general and ways to integrate all of the pieces of the puzzle into an existing 

business ecosystem.

�Model Deployment
The model needs to be integrated into an existing business process. This 

seems like a technical problem but largely depends on your organization 

and industry. In the next section, we will look at how you can integrate 

your model into your business process as part of a larger system involving 

people, processes, and technology.
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�Deploying Model as Public or Private API
In the previous chapter, we talked about inference pipelines and 

microservices but for simple use cases where you only want to deploy a 

model, so it can be consumed as a private or public API endpoint, and 

there are many cloud services for doing this type of task; these types of 

cloud offerings are often called model as a service or inference as a service.

Hugging Face, for example, provides inference endpoints to easily 

deploy transformers, diffusers, or custom models to dedicated fully 

managed infrastructure in the cloud. This offering is a platform as a service 

where Hugging Face handles the security, load balancing, and other low 

level details, and you can choose your cloud provider and region if you 

have data compliance requirements. You can also choose public or private 

endpoints (intra-region secured AWS or Azure PrivateLink to VPC) that are 

not accessible over the Internet.

�Integrating Your Model into a Business System
For stakeholders, one strategy for hedging against the vicissitudes 

of business is improving operational efficiency, reducing costs, and 

identifying opportunities to improve decision-making processes through 

models and innovate on insights found through data science. However, 

integrating a model into an established business system is a challenging 

problem and one that might be glossed over by data scientists and other 

technical leaders. The challenge is magnified when the machine learning 

system requires input from multiple departments and teams within those 

departments that have conflicting goals.

One way you can start to bring a model into an established business 

environment is by thinking incrementally and identifying opportunities 

where machine learning could bring the most value. Start with the pain 

points; are there repetitive tasks that could be automated? Are there tasks 

that nobody wants to do and may be a quick win? A good example would 
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be cleaning data. Nobody enjoys data cleaning, but it’s a business necessity 

and if that process is still done in spreadsheets, it may be a good candidate 

for automation.

Once you’ve identified a task that could be automated, you can 

investigate the data sources and look for ways the process could be 

improved. At this stage, it’s critical to create a strategy and secure 

stakeholder buy-in for the first few phases of your project. Once you’ve 

proven you can bring value, adding multiple data sources, testing 

algorithms, training models, adding monitoring, and alerting can naturally 

add value and provide a segway into the next phases of the project.

�Developing a Deployment Strategy
There are several established frameworks for data science and data mining 

that you might want to consider when building a business strategy and 

executing against that strategy. Although this book is meant to cover the 

technical aspects of the MLOps lifecycle, model deployment involves 

people and processes, and having a set of tools for execution can serve as 

a kind of checklist and mitigate risk of forgetting a step. Here are a couple 

frameworks you might incorporate into your own model deployment 

strategy.

CRISP-DM: The CRISP-DM (Cross-Industry Standard Process for Data 

Mining) is a standard framework originally developed for data mining 

but applies equally well to machine learning and data science. One of its 

advantages is it applies across multiple industries (we will look at specific 

case studies in a later chapter but it’s worthwhile to have a framework that 

applies to multiple industries in mind). It has six phases which broadly 

correspond to phases in the MLOps lifecycle including model deployment:

	 1.	 Business understanding

	 2.	 Data understanding
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	 3.	 Data preparation

	 4.	 Modeling

	 5.	 Evaluation

	 6.	 Deployment

Each of these phases consists of tasks, and phases follow sequentially 

with arrows between data preparation and modeling (unlike the spiral we 

talked about earlier), but this gives a very structured approach to data science 

and you can use it as a deployment checklist to make sure you’re not missing 

steps. For nontechnical stakeholders, this may be a good way to communicate 

the various phases in a linear way. In the next section, we will look at ways in 

which these frameworks can be used to reduce technical debt.

�Reducing Technical Debt in your Lifecycle
Technical debt can appear in many forms and can come about in different 

ways from working too fast to using suboptimal algorithms to forgetting 

how code works and making changes without updating old code and 

documentation. At the model deployment phase, it’s critical to have 

standards in place to reduce technical debt across all stages of the lifecycle. 

Here are some deployment checklists you can use to ensure you’re paying 

down technical debt in a timely manner:

	 1.	 Implement quality checks and linters before 

deployment. Friction between teams can often be 

reduced by doing something as simple as installing 

a code linter to ensure code is formatted in a 

standard way, eliminating arguments over what 

style is the best (since most data scientists have 

their own style). This can be done, for instance, 

on the main branch of the shared repository your 

team uses.
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	 2.	 Hold regular code reviews and designate someone 

in charge of merging PRs (or you could implement 

this in a round-robin style).

	 3.	 Periodically reassess model performance post-

deployment, and keep up to date with alerts and 

errors that are generated once the model goes to 

production.

	 4.	 Automate testing and monitoring as much as 

possible.

By following some of the preceding strategies, you can minimize 

technical debt post-deployment. At this point, you might be asking, 

I’ve already deployed my model, I’ve set up monitoring and automated 

testing, is it all hands-off from here? The answer is unfortunately, no. 

Data changes, environments change, and this does not stop after you 

deploy your model. Remember, the lifecycle is a continuous process. In 

the following section, we will look at what this process and how you can 

apply Agile principles in data science to make the process more efficient 

for you and your team. One way that you can reduce technical debt is with 

generative AI. In the next section, we will briefly look at how you can use 

generative AI to reduce technical debt by automating code reviews.

�Generative AI for Code Reviews 
and Development
Generative AI leverages large language models which use reinforcement 

learning and the quadratic complexity of the transformer architecture at 

scale to billions of parameters. It can automate common tasks in coding 

and provide feedback through prompt-based development. With the rise 

of tools like AutoGPT, even prompt engineering is slowly being replaced. 
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Will this be a good thing for data scientists? I think so, as it can automate 

the boring stuff. Even for software developers, if you’re a creative builder, 

you will be able to be more productive.

One way generative AI could improve the data scientist development 

cycle is through automated code reviews, getting feedback on their 

code before it is deployed. Some other ways but this list is by no means 

exhaustive.

•	 Automated code reviews

•	 Optimizing code (focus on accuracy)

•	 Translating between SQL and Python or other 

languages (removes translation bottlenecks)

•	 Generating tests for test-driven development

However, focus needs to be on validation. Output of generative models 

cannot be trusted, and data scientists will play a vital role in ensuring 

the validity, accuracy, and quality of model output when generative AI is 

mis-used. We should also be mindful of the cost per token and the license 

requirements before using this in your data science development cycle. 

We’ll talk a lot more about these ethical issues in the next chapter, but 

generative AI has potential to reduce technical debt and free up time for 

doing data science.

�Adapting Agile for Data Scientists
You may have heard of Agile before especially if you have worked on 

software projects in the last 20 years. Agile is a project management 

methodology, and although some developers have a love-hate relationship 

with Agile, some principles can be adapted to data science, and others fail 

miserably.
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One principle of Agile that can be adapted is the principle of regular 

communication. Data science and software development share a common 

thread in that it’s really all about communication. There’s even a term for 

this called Conway’s law which states

Any organization that designs a system will produce a design whose 

structure is a copy of the organization's communication structure

What does this mean? It means, if you fail to communicate effectively 

with other data scientists, the structure of your project will reflect this 

chaos and the system you end up creating will be a mess. Setting up a side 

channel for communication, for example, via Microsoft Teams, can help to 

dissipate this risk.

How about another conundrum often faced in real-world projects: 

conflicting requirements. In data science, stakeholders can be incredibly 

demanding, and requirements you gathered in the early phase of the lifecycle 

will change and you will face conflicts. We can borrow from another principle 

of Agile development to help in this scenario, namely, prioritizing tasks.

Another important principle of both agile and other methodologies like  

Twelve-Factor App is the notion of clean code that can be run in separate 

build, run and deploy stages and that can be easily adapted. While clean 

code and code management is an important tenet of Agile, in data science, 

it’s all about the data. By emphasizing proper data management, we can 

ensure our models are accurate. For example, developing and prioritizing 

a process to improve the consistency of our labeled data set could have a 

massive impact on the accuracy of our models.

You may want to consider applying test-driven development to data 

science especially in early-stage development. While testing data heavy 

workflows is not easy, choosing a test framework, for example, Pytest or 

Hypothesis, and developing data fixtures (preferably ones that use realistic 

data from a database) can ensure models and code are performing as you 

expect even after you’ve deployed your model. These tests from the early 

development stage can easily be added to a CI/CD pipeline as well and 

become part of the model deployment process.
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One area where Agile fails miserably in data science is regular sprints. 

Since the lifecycle has feedback into previous phases, for example, 

retraining models due to data drift may require reengineering some of the 

features or collecting more data. How do you anticipate these changes 

and fit them into a regular sprint? This is a difficult question as urgent and 

important tasks can get added to the board mid sprint and cause havoc on 

data science teams. Understanding the difference between model-centric 

and data-centric workflows may help to align teams and reduce some of 

the pain points in trying to pigeonhole data science into regular sprints.

�Model-Centric vs. Data-Centric Workflows
When we talk about model deployment, there are two main approaches we 

could take to the overall process: a model-centric approach and a data-

centric approach. What do I mean by model-centric and data-centric?

In order to illustrate this somewhat philosophical concept, let’s 

suppose you are working on an NLP problem. You’re trying to classify 

unstructured data collected from a free form response field on a survey 

into categories that can help the support team quickly prioritize issues. 

For example, the text “I have a problem with my Internet connection” may 

be classified as “connectivity issue”. In fact you’ve done an exploratory 

analysis of the data, and you know 90% of the training data falls into the 

buckets of “connectivity issue,” “hardware issue,” and “authentication 

issue,” corresponding to labels in your training set. However, there’s a lot 

of training data, several gigabytes, and there’s some ambiguity. You also 

had to label a lot of the data by hand, and you’re not sure if it’s completely 

consistent, and 10% of the data may be classified into new buckets.

Your model accuracy is only 70%, and you decide to improve this 

accuracy by changing the type of model and its architecture. Eventually 

you decide to try transfer learning, fine-tuning the last layers of a large 

language model on your specific data set, and this improves the accuracy 
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to 85%. Since you primarily focused on the model and how you could 

improve the model, you’ve taken a model-centric approach to this 

problem, but is there another way?

In fact you could have taken a data-centric approach to improving 

model accuracy by focusing more on the data. You could have improved 

the consistency of the labeled data or developed a process to label the 

10% of the data that was unlabeled. This would have been a data-centric 

approach.

In reality, you could mix the two and use semi-supervised learning, 

developing a model or rule to label the remaining 10% of data and then 

working to increase the consistency of the data, taking both a model- and 

data-centric approach to improving model accuracy.

So which approach is better? There is some debate, and both 

approaches can have their advantages and disadvantages, but when the 

problem is well-understood, optimizing the model makes sense. When 

the problem is less well-understood, there’s ambiguity or complexity 

in the data or we’re working with a very large amount of data, and 

then a data-centric approach may be the best option since the focus 

would be on capturing the variability and complexity of the data to 

move performance metrics in the right direction. Like most things in 

engineering, there are guiding principles and rules of thumb but with 

no clear-cut answer that applies universally in all cases. Regardless 

of the approach you take for your specific problem, you will want 

to automate the process of deployment as much as possible, and in 

the next section, we’ll borrow from a DevOps concept of continuous 

delivery and continuous deployment and see how it applies to 

stochastic systems.
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�Continuous Delivery for Stochastic Systems
In the previous three chapters, we discussed several types of pipelines. We 

talked about ETL and ELT pipelines for refreshing our feature stores, we 

talked about training pipelines and actually built an end to end training 

pipeline, and we talked about inference pipelines that automated the 

model prediction. How about model deployment? Is there a pipeline we 

can create for this process? The answer is yes and it even has a name; these 

types of pipelines are called CI/CD pipelines.

CI/CD (continuous integration and continuous deployment) are a type 

of pipeline with several steps to guarantee that each time there’s a code, 

model, or data change, that change gets tested and deployed to the right 

environment.

You may have several types of environments including development, 

testing, staging, and production consisting of databases, configuration, 

code, and data that need to be deployed to these environments. The CI/CD 

pipeline will consist of several steps:

	 1.	 Version control: The pipeline can be “triggered” 

whenever there’s a commit to the main branch. This 

could, for example, be a pull request after a code 

review and cause the pipeline to start.

	 2.	 Automated tests: After starting, several tests will be 

run. As a data scientist, you can define what tests 

get run; for example, you may want to check if your 

features have the statistical properties you expect 

before deploying. These tests can include security 

tests, data quality and code quality checks, as well as 

formatting like linking.
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	 3.	 Build step: After the tests have passed, the next 

step of the pipeline will take the code, data, and 

models and package them up into an environment 

and runtime. This may be a docker container, for 

example, which can be deployed.

	 4.	 Deployment: Once the changes are packaged 

and containerized, the container is deployed to 

the target environment. This environment could 

be production, releasing your changes to a live 

environment with end users (do you see why we 

need tests first?)

�Introducing to Kubeflow for Data Scientists
Kubeflow is an open source tool for data scientists that makes it relatively 

straightforward for both data scientists and MLOps engineers to build, 

deploy, and manage workflows at scale. Kubeflow provides several 

features for deploying models that are particularly useful for data scientists 

like Jupyter notebook server (similar to the one we build ourselves) for 

managing and deploying models and code.

Kubeflow is designed to work on top of Kubernetes, so it may be 

overkill for your project. In the lab, you’ll be able to optionally remove 

the Kubeflow step of the CI/CD pipeline if you only want to say host your 

project on GitHub or push your code and models to a docker container 

and host it on a docker registry. However, knowledge of Kubeflow is 

worthwhile for data scientists because you may encounter it in the wild, 

and knowing that a tool exists that abstracts away some of the details 

required to work with Kubernetes is enough to get you started on the 

right path.
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For data scientists, you can use Kubeflow in several ways to do 

machine learning at scale.

	 1.	 Kubeflow provides a Jupyter notebook server for 

developing and test models. In combination with 

MLFlow, this can be a powerful tool for setting up 

experiments and hyper-parameter tuning

	 2.	 Scaling workflows: Data scientists can leverage 

Kubeflow to do model training at scale. Kubeflow 

can be used to provision resources like clusters 

required for distributed training on GPUs or CPUs 

and takes care of scheduling, orchestration, and 

managing cluster resources.

	 3.	 Model deployment and serving: Data scientist can 

use Kubeflow to deploy models to production and 

serve production models to end users by deploying 

them as Kubernetes services (remember, this is for 

a full-blown application or inference API). You can 

manage or fine-tune the Kubernetes deployment as 

well add load balancers and other services so you 

can scale up or scale down to match demand.

I’ve also said this several times before; but, for some projects using 

Kubernetes, it is not necessary, and you may choose a batch oriented 

workflow for the deployment step in which case you only need to build a 

batch inference pipeline and use your model to make predictions in batch. 

This is a completely valid way to deploy models. In the lab, we’ll look at 

creating a CI/CD pipeline that you can modify to match your particular 

deployment needs.
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�Lab: Deploying Your Data Science Project
This is the final hands-on lab of the book, and you’re going to build your 

own CI/CD pipeline. The goal of this lab is to have a CI/CD pipeline that is 

part of the toolkit and that you can modify to deploy your own projects to 

the cloud by adding steps as necessary. We’ll be using GitHub actions in 

this lab. You can follow along with the following steps to understand how 

the pipeline is constructed or look at the finished CI/CD pipeline located 

in the .github folder of the final MLOps toolkit included with this chapter.

Before you proceed with the lab, you should know that YAML is 

another data format for configuration files consisting of key value pairs that 

can be arranged in a hierarchy. It’s a human-readable format (actually it’s a 

superset of JSON) and is a widely used standard for defining infrastructure 

as code, CI/CD pipelines, and a range of other configurations used 

in MLOps.

	 1.	 Create a new GitHub repository for your data 

science project (if you need help with this, refer to 

the lab from Chapter 3 on setting up source control).

	 2.	 Create a .github/workflows folder in the project root. 

In our case, this folder already exists.

	 3.	 Create a new YAML file in the .github/workflows 

folder and name it, for example, cicd_model_

deployment.yml.

	 4.	 Edit the YAML file as needed for your specific 

data science project. For example, you may need 

to update the name of the Docker image and 

the name of the container registry or remove the 

step to deploy to Kubernetes if you are not using 

Kubernetes with your project.
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	 5.	 Commit the changes and push these changes to the 

repository created in the first step.

	 6.	 Add two secrets to the repository settings: 

REGISTRY_USERNAME and REGISTRY_

PASSWORD. These secrets should be kept 

confidential and correspond to the username and 

password for the container registry (e.g., Docker 

Hub or Azure Container Registry) that you are using.

	 7.	 Try to push changes to the main branch of the 

repository; the pipeline will automatically be 

triggered.

This CI/CD pipeline performs the following steps:

•	 Checkout the code from the repository.

•	 Set up a Python environment with the specified version 

of Python.

•	 Install pipenv and the project dependencies.

•	 Convert notebooks to Python scripts.

•	 Run Pytest to test the code.

•	 Build and push a Docker image with the latest changes.

•	 Deploy the Docker image to Kubeflow using kfctl.

You can modify this lab to fit your needs; you now have a full CI/

CD pipeline with automated tests and a way to deploy your models to 

Kubeflow whenever a change is pushed to main. Remember, you should go 

through a PR process to ensure code quality before pushing to main. We’ve 

also included all of the notebooks from previous labs in the toolkit as a 

complete package.
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�Open Source vs. Closed Source in Data Science
Machine learning software can be open and closed, and if you’ve been 

following industry trends, there is a battle between the two philosophies 

as companies seek to establish a data moat; the open source community 

continues to develop open source versions of tools, models, and software 

packages.

Somewhere between the two are composed of both open and closed 

components (maybe we could refer to this as “clopen” software). This is 

further complicated by models that significantly transform the input like 

generative AI. When deploying models that use open source components 

you have to make a technical decision whether to open source or closed 

source your software at the end of the day and which components you 

choose and accompanying licensing impacts this decision. This adds even 

more complexity to the problem of MLOps placing a premium on MLOps 

practitioners to make ethical decisions when it comes to the decision 

systems they are deploying, regardless of the underlying technology 

behind the models. In the next chapter, we’ll look at some of these ethical 

decisions and how they impact the MLOps role.

�Monolithic vs. Distributed Architectures
Architecture is about trade-offs, and although we’ve covered many rules 

of thumb in this book like SOLID principles, distributed architectures 

for more event driven and real-time workstreams vs. batch oriented 

architectures that tend to be more monolithic, there is no one perfect 

architecture for each project, and you need to understand the trade-offs 

and the type of performance, security, data, and process requirements 

to decide what is the best architecture. Once you are committed to an 

architecture or platform, it can be difficult to change though, so you should 

do this ground work up front and commit to one type of architecture and 

platform.
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�Choosing a Deployment Model
In data science, there are several types of deployment models that can be 

used, and in some cases, you need to support multi-model deployment. 

Choosing a deployment model that best suits your needs is key to a 

smooth transition from development to deployment.

On-premises deployment: In this deployment mode, you utilize your 

own servers or IT environment (physical hardware, e.g., your own GPU 

enabled server running Jupyter labs). Although this gives you maximum 

control over the hardware, you are responsible for patching, updates, any 

upgrades, and regular maintenance as well as the inbound and outbound 

network connectivity and security.

Public cloud deployment: This may be a cloud service provider like 

Azure, for instance, with your own resource groups and cloud services 

such as Databricks. Cloud deployment may also include public services 

like releasing packages to PyPi or hosting packages on web servers or 

even GitHub.

Mobile deployment: Creating machine learning for smartphones or 

mobile devices is becoming more popular lately. Since these devices 

have limited memory compared to servers, you need to choose between 

hosting your models in the cloud and connecting to them from the device 

or reducing the size of the model. There is ongoing research to reduce the 

size of large language models and other models, for example, quantization1 

(representing the model weights as fewer bits) and knowledge distillation 

(“distilling a model2”) to achieve a smaller size.

1 Kohonen, T. (1998). Learning Vector Quantization. In Springer series in 
information sciences (pp. 245–261). Springer Nature. https://doi.org/10.1007/ 
978-3-642-56927-2_6
2 Yuan, L., Tay, F. E. H., Li, G., Wang, T., & Feng, J. (2020). Revisiting Knowledge 
Distillation via Label Smoothing Regularization. https://doi.org/10.1109/
cvpr42600.2020.00396
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�Post-deployment
The post-deployment, although not technically a phase since it’s an 

ongoing continuous process so it is not formerly part of the lifecycle, refers 

to the stage where the trained model is deployed to production and being 

used. Some of the considerations during this phase are communicating 

with stakeholders, soliciting user feedback, regular maintenance, and 

monitoring (e.g., of an API you rely on is deprecated and it must be 

updated, or if you find a CVE or common vulnerability exposure that 

impacts a PyPi package you’re using, you need to patch it).

Beyond security and stakeholder feedback, collecting user feedback 

and monitoring how the users are interacting with your model can be 

invaluable for future projects and be used to train the model and augment 

existing data sources. Post-deployment monitoring ensures that all of the 

models deployed to production continue to provide business value and are 

used in an ethical way.

�Deploying More General Stochastic Systems
Can we use the principles in this book to deploy more general stochastic 

systems such as Bayesian machine learning models? The answer is yes, but 

we should discuss some of the caveats.

If you use a library like PyMC3 (we used this in the second chapter 

to create a Bayesian logistic regression model), you can still save your 

model, but you should choose a custom serialization framework to match 

the model architecture, for example, ONNX, an open standard for neural 

network architectures, but others include HDF5 and Python’s pickle (e.g., 

this works well with Bayesian models from PyMC3).

You may also need to consider the types of performance metrics you 

want to track, for example, Bayesian information criterion for feature 

selection or Bayesian credibility interval along with a prediction.
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The other problem is you’ll need to carefully consider sampling 

methods you use and may have to have hardware to ensure you have 

sufficient entropy for random sampling. Some of the algorithms may not 

scale well to large data sets or be intractable, so you may have a need to 

use Monte Carlo methods as opposed to a “big data” solution that may be a 

necessary approach for some algorithms.

There may be other stochastic algorithms that you may encounter 

that need to productionize. For example, reinforcement learning could be 

applied as part of a training pipeline to do hyper-parameter search or in 

specific use cases in healthcare, finance, and energy to simulate physical 

systems and make recommendations, dynamic planning, and natural 

language processing.

If you use a reinforcement learning algorithm like Q-learning, you 

will have to think about how to represent your environment and agents 

and how to update a Q-table and choose a framework that can handle 

interacting with the environment between learning steps, so you may 

choose a framework like Ray RLlib framework that offers support for highly 

distributed workflows.

Understanding the problem type may help you to identify the 

frameworks available since you should not reinvent the wheel (e.g., 

reinforcement learning frameworks, deep learning frameworks, 

frameworks for Bayesian inference). Other times, you may be able 

to achieve similar results with another approach where a library of 

framework exists (e.g., many problems can be reframed to use a different 

methodology, like how you can solve the multiarmed bandit problem 

using reinforcement learning or Bayesian sampling, and this is a kind of 

equifinality prosperity of many stochastic systems).

Still, you may one day encounter a bespoke stochastic algorithm that has 

never been used before in the wild, where no Python wrapper exists, and in 

that case, you would have to build your own from scratch. In this scenario, 

you would require knowledge of a low level language like C++, compilers, 

hardware, distributed systems, and APIs like MPI, OpenMP, or CUDA.
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�Summary
In this chapter, we looked at the spiral MLOps lifecycle and its different 

phases. We took another look at reducing technical debt from a holistic 

point of view after understanding each phase of the lifecycle. We discussed 

the philosophy behind taking a model-centric vs. a data-centric view of 

MLOps and why when working with big data, a data-centric view that 

encapsulates variability and complexity in the data may be preferable. 

We took a look at continuous delivery for stochastic systems and how we 

could adapt principles in this chapter to deploying Bayesian systems or 

more general types of stochastic systems along with some of the technical 

challenges. Finally, you did a hands-on lab, designing a CI/CD pipeline for 

the final toolkit that is a part of this book. Here is a summary of some of the 

topics we covered.

•	 Introducing the Spiral MLOps Lifecycle

•	 Reducing Technical Debt in Your Lifecycle

•	 The Various Levels of Schema Drift in Data Science

•	 Model Deployment

•	 Continuous Delivery for Stochastic Systems

In the final two chapters, we will diverge from the technical and 

hands-on components and instead take a deep dive into the ethical 

considerations around using AI and machine learning responsibly. We’ll 

focus on model fairness, bias reduction, and policy that can minimize 

technical risk.
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CHAPTER 8

Data Ethics
The panopticon is a design that originated with the English philosopher 

and social theorist Jeremy Bentham in the eighteenth century. The device 

would allow prisoners to be observed by a single security guard, without 

the prisoners knowing they were being watched. Today, the panopticon 

is used as a metaphor to highlight the threat to privacy and personal 

autonomy that comes with the collection, processing, and analysis of 

big data and shows the need to protect personal information in the face 

of increasing technological advancement. For example, multinational 

businesses face increasing scrutiny over how to store, process, and transfer 

private user data across geographic boundaries1.

In this chapter, we will discuss data ethics (derived from the Greek 

word ethos meaning habit or custom); the principles that govern the 

way we use, consume, collect, share, and analyze data; and how as 

practitioners of data science can ensure the decision systems we build 

adhere to ethical standards.

Although this might seem like a diversion from the technical into 

the realm of applied philosophy, what separates the data scientist from 

traditional software engineers is that we work with data and that data 

can represent real people or it may be used to make decisions about 

entire groups of people, for example, loan applications or to deny 

someone a loan.

1 Increasing uncertainty over how businesses transfer data across geographic 
boundaries is a current issue in data ethics.

© Dayne Sorvisto 2023 
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_8
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If we don’t consider what type of data goes into those decisions when 

we train a model, we may be responsible for building systems that are 

unethical. In the age of big data, where organizations collect vast amounts 

of data including demographic data which may be particularly sensitive, 

how that data is collected, stored, and processed is increasingly being 

regulated by policies and laws like the GDPR data protection act in the 

European Union and similar legislation in countries.

You may be a technical wizard at statistics or data analysis or 

software development, but without a solid understanding of data ethics, 

you may be doing more harm than good with your work, and your work 

may end up being a net negative to society as a whole. It is my opinion 

that what separates a scientist from a nonscientist or an engineer from 

a nonengineer isn’t just knowledge but ethics. In this chapter, we will 

give a definition of data ethics and clarify some of the guiding principles 

you can use to shape your technical decision-making into ethical 

decision-making.

While this is not a book on generative AI, due to recent events, 

generative AI is set to shape a lot of the regulation around data ethics in 

the coming years. We will also cover some of the ethical implications of 

generative AI in this chapter, so you can understand the implications to 

your own organization if you incorporate generative AI into your data 

science projects.

Finally, we’ll provide some recommendations for you how you can 

implement safeguards in your data science project such as retention 

policies to mitigate some of the risks that come with working with PII and 

other types of sensitive data.
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�Data Ethics
Data ethics is a branch of applied philosophy concerned with the 

principles that distinguish “good” decisions from “bad” decisions in 

the context of data and personal information. Unlike morality, which 

may determine individual behavior, ethics applies more broadly to a 

professional set of standards that is community driven. 

Some of the ethical questions that data ethicists are concerned with 

include the following:

•	 Who owns data, the person it describes or the 

organizations that collect it?

•	 Does the organization or person processing the data 

have informed consent (important in the healthcare 

industry)?

•	 Are reasonable efforts made to safeguard personal 

privacy when the data is collected and stored?

•	 Should data that has a significant impact to society as a 

whole be open sourced?

•	 Can we measure algorithmic bias in the models we use 

to make decisions?

All of these questions are important as data scientists since we have 

access to vast amounts of personal data, and if this data is not handled 

properly, harm can be done to large groups of individuals. For example, 

an application that is meant to reduce bias in human decision-making but 

then exposes personal information of the groups it’s trying to help may end 

up doing more harm than good.
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Avoiding algorithmic bias and discrimination, improving the 

transparency and accountability of the data collection and analysis 

process, and upholding professional ethical standards are critical to the 

long term success of data scientists and MLOps and ensuring your models 

are valuable and sustainable.

�Model Sustainability
I want to define the concept of model sustainability which I think is 

valuable to keep in mind when considering the role data ethics plays in 

data science and technical decision-making. What does it mean for a 

model to be sustainable? To be sustainable, it needs to adapt to change but 

not just technical change, change in society as a whole.

The fact is some data is political in nature; the boundaries between 

data and the individuals or group’s data represents can be fuzzy, and 

when we start adding feedback loops into our model and complex chains 

of decision-making, how our models impact others may be difficult to 

measure. The other problem is social change is something not often 

considered by technical decision-makers, and a lot of software engineering 

is creating methodologies that protect against technical change but not 

social change. As data scientists, we need to be cognizant of both and have 

methodologies for making our models robust to social change as well 

which may come in the form of regulatory requirements or internal policy.

So how do we decide whether our model is able to adapt to regulatory 

requirements and social change? In the next section, we’ll define data 

ethics as it applies to data science and discuss many issues around privacy, 

handling personal information, and how we can factor ethical decisions 

when making technical trade-offs.
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�Data Ethics for Data Science
How can we improve our ethical decision-making? In the real world, you 

may encounter trade-offs; for example, you may have data available that 

could improve the accuracy of your model. You may even have a functional 

requirement to achieve a certain accuracy threshold with your model. 

However, it’s not acceptable to increase accuracy at the cost of algorithmic 

bias in the model. It is simplistic to assume just because a variable is 

“important” from a prediction point of view that it should be included 

automatically. This is also part of the reason why feature selection 

shouldn’t be fully automated.

There are many ways to monitor bias, and this should be a part of the 

continuous monitoring process at minimum. A plan should be made to 

reduce algorithmic bias either by finding substitutes for variables that are 

sensitive, removing them all together. How the data was collected is also 

important; if the data was inferred without the user’s informed consent, 

then it may not be ethical.

It’s also possible stakeholders may not understand the implications of 

algorithmic bias in a model or the ethical implications of using sensitive 

PII in a model. In this case, it’s the responsibility of the data scientist to 

explain the problem just as they would any other technical blocker.

Since data ethics is a rapidly evolving field, there are laws and 

regulations such as GDPR that can provide guidelines for making ethical 

decisions. In the next section, we will cover some of the most common 

legislation from around the world that may have impact to your projects.

�GDPR and Data Governance
The General Data Protection Regulation (GDPR) is Europe’s latest 

framework for data protection and was written in 2016 but became 

enforceable on May 25, 2018, replacing the previous 1995 data protection 
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directive. The GDPR document has 11 chapters around general provisions, 

data rights, duties of controllers and processors of data, and liabilities for 

data breaches. One of the biggest impacts of the GDPR is its improvements 

in the way organizations handle personal data, reducing organization’s 

ability to store and collect personal data in some circumstances and 

making the entire data collection process more expensive.

Personal data is any data which identifies or could identify a person 

and includes genetic data, biometric data, data processed for the purposes 

of identifying a human being, health-related data sets, and any kind of data 

that could be discriminatory or used for discriminatory purposes.

As a data scientist, if you do business with clients located in the 

European Union, you may have to abide by the GDPR. How does this 

translate into technical decision-making? You will likely have to set up 

separate infrastructure for the storage of data using a data center that is 

physically located in a particular geographic region. You will also have to 

ensure that when data is processed and analyzed, it does not cross this 

boundary, for example, moving data between geographic zones may have 

regulatory implications.

Similar legislation has been passed in several other countries since the 

GDPR such as Canada’s Digital Charter Implementation Act on November 

17, 2020. Although GDPR is a general data protection regulation (hence 

the name GDPR), there are regulations that apply to specific industries 

especially in healthcare and finance.

HIPAA: HIPAA or the Health Insurance Portability and Accountability 

Act is a 1996 act of the US Congress and protects patient data and health 

information from being disclosed. Since HIPAA is an American law, it 

only applies to American companies and when working with American 

customers, but if your organization does business with US citizens, you 

need to be aware of this law. The equivalent legislation in Canada is 

PIPEDA (Personal Information Protection and Electronic Documents 

Act) and is much broader than HIPAA, covering personal information in 

addition to health and patient data.
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�Ethics in Data Science
There are some guiding principles data scientists can use to make more 

ethical decisions. These principles include the following:

•	 Identify sensitive features and columns in a database 

and apply appropriate levels of encryption to PII 

(personally identifiable information).

•	 Set up mechanisms to decrypt PII if necessary but 

ensure that appropriate security and access controls 

are in place such as row level security and that only the 

information necessary to a job is made available.

•	 Add continuous monitoring to identify bias in model 

output for demographic data using metrics such as 

demographic parity.

•	 Assess the data set to understand if sensitive 

information could be inferred from any of the 

attributes, and take measures to remove these 

attributes or put in place appropriate safeguards to 

ensure this information is not misused.

•	 Understand how the models you develop will be used 

by business decision-makers and whether your model 

introduces any kind of unfairness or bias into the 

decision-making process either through the way the 

data is collected and processed or in the output of the 

model itself.

While these are not an exhaustive list, it should serve as a starting point 

for further discussion with your team to set standards for ethical decision-

making and to highlight the importance data ethics plays in our own work. 

In the next section, we will look at an area that poses some risk for data 

scientists: the rise of generative AI.
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�Generative AI’s Impact on Data Ethics
In 2023, Databricks released an ai_generate_text function in public 

preview that returns text generated by a large language model (LLM) 

given a prompt. The function is only available with Databricks SQL and 

Severless but can be used, for example, when creating a SQL query against 

a feature store. A data scientist could use this function to add generative AI 

to their project, and this is only one early example of how generative AI is 

increasingly making its way into data science tools.

The risk of being incorrect when discussing an event that is currently 

unfolding is relatively high, but this chapter wouldn’t be complete without 

discussing the impact generative AI is having on data ethics. One of the 

biggest challenges generative AI poses to data ethics is related to data 

ownership.

How generative AI will impact how we view data ownership is still 

speculative as of 2023, but observers are already starting to see the profound 

impact it is having. A lot of the debate is around whether a human input 

into a model still owns the output of that model after it is sufficiently 

transformed. This is an incredibly interesting question that is poised to 

disrupt a lot of the current thinking that exists around data ownership, and 

if you use generative AI in your data science project, you need to be aware 

of the implications. I would suggest for the time being at least label output 

generated by a generative AI so you can identify it in your code base if you 

need to remove it in the future. Setting up a tagging system to this would be a 

clean way to implement a strategy in your own organization.

�Safeguards for Mitigating Risk
We could spend years studying data ethics, and we still would never cover 

every scenario you might encounter. A compromise is needed between 

theory and practice to allow the reality of working with sensitive data 
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attributes and PII and planning for the worst-case scenario such as a data 

breach or misuse of this information. Here are some safeguards you can 

implement in your own data science projects to mitigate this risk.

•	 Implement data retention policy, for example, 

removing data that is older than 30 days.

•	 Only collect data that is necessary to the model at hand 

and don’t store data that is not relevant to the model 

especially if it contains PII.

•	 Encrypt all features that are considered PII such as 

email addresses, account numbers, customer numbers, 

phone numbers, and financial information such as 

credit card numbers.

•	 Consider implementing row level security and using 

data masking for tables and views that contain PII.

•	 Rotate access keys regularly and ensure data is 

encrypted in transit and at rest using latest encryption 

standards.

•	 Check PyPi packages and third party software before 

using them in a project in case they contain malicious 

software.

•	 Work with the security team to create a plan to monitor 

and protect data assets and minimize the risk of 

data breach.

•	 Implement continuous bias monitoring for models that 

use demographic data to ensure that the output is fair.

•	 Consider tagging anything created with generative AI 

during development.

Chapter 8  Data Ethics



226

�Data Governance for Data Scientists
Data governance in the context of data science refers to a set of policies, 

procedures, and standards that govern the collection, management, 

analysis, processing, sharing, and access to data within an organization. 

Data governance is vital to provide guarantees that data is used responsibly 

and ethically and that decisions that come about as a result of a data 

analysis whether it be an ad hoc analysis or the output of an automated 

system are reliable, accurate, and ethical and are well-aligned with the 

ethical goals of the organization.

Data quality management is a part of data governance that implements 

data quality checks to ensure data is reliable. This goes beyond basic data 

cleaning and preprocessing and may include business initiatives in master 

data management and total data quality to maximize the quality of data 

across the entire organization rather than within a specific department.

Data security is another component of data governance and ensures 

that it is protected from unauthorized access and that the organization is 

taking steps to mitigate the risk of data breach. Policies such as requiring 

de-identification, anonymization, and encryption of data systems both at 

rest and in transit may be enforced by the data governance and security 

teams depending on the organization’s threat model. The role of a data 

scientist and MLOps practitioner is to ensure the policies are implemented 

in accordance with these policies and to provide recommendations on 

how to mitigate risk of data breaches. Unfortunately, many data science 

tools are not secure, and malicious software is all too common in PyPi 

packages. A common attack is changing the name of a PyPi package to a 

name used internally by a data science team and hosting the malicious 

software on a public PyPi server. Such attacks are only the tip of the iceberg 

because security is often an afterthought in analytics and not a priority, 

even in Enterprise analytics software that should come with an assumption 

of security.
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Data stewardship is another area of data governance related to data 

ownership but is more concerned with defining roles within different data 

teams such as data analyst, data engineer, MLOPs, and data scientist. In a 

RBAC or role based access control security model, each role would have 

well-defined permissions and responsibilities that can be enforced to 

protect data assets.

Finally, an organization should have a document defining and 

describing its data lifecycle. We talked about the MLOps lifecycle, but 

data also has a lifecycle, as it’s created, and it’s transformed into other 

data, creating new data sources, and these data sources are used but 

ultimately at some point are either deleted or archived and stored long 

term (requiring special consideration in terms of security). This entire 

lifecycle should be a part of the data governance process within your team 

to minimize risk of data loss and data breach and guarantee the ethical use 

of data across the entire data lifecycle.

�Privacy and Data Science
Privacy concerns arise in the collection, storage, and sharing of personal 

information and data sources containing PII as well as in the use of data 

for purposes such as surveillance, voice and facial recognition technology, 

and other use cases where data is applied to identify individuals or features 

of individuals.

The history of data privacy can be traced back to the early days of 

computing. In 1973, some of the first laws on privacy were created with the 

passing of the Fair Credit Reporting Act which regulated the use of credit 

reports by credit reporting agencies to ensure not only accuracy but also 

the privacy of customer data. The following year, the United States also 

passed the Privacy Act which required federal agencies to protect privacy 

and personal information. Similar laws were passed in Europe in the 

1980s, and by the 1990s with the rise of the Internet, data privacy concerns 

became an even bigger part of the public conscience.
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Data science teams should only collect data that is necessary to the 

model at hand or future models and should ensure they have consent 

from the users whose data they’re collecting. Not being transparent about 

the data collection process or how long data is stored means a risk to the 

reputation of the organization.

�How to Identify PII in Big Data
When we’re working with big data sets, these can be big in terms of volume 

but also in terms of the number of features, so-called “wide” data. It’s not 

uncommon to have hundreds or even thousands of features.

One way to identify PII is to write some code that can dynamically 

churn through all of the features and verify columns like “gender,” “age,” 

“birthdate,” “zip code,” and any kind of demographic features that doesn't 

uniquely identify a person. While primary keys may be an obvious type of 

PII if they can be used to identify a person (e.g., a customer account key), 

for other features whether or not they can identify a person may require 

some more thought.

You may have to do some math around this; for example, if you 

have a combination of age or birth date and zip code, you might be 

able to identify a person depending on how many people live in a 

certain zip code. You could actually go through the calculation by 

using the Birthday Problem that states in a random group of 23 people, 

the probability of 2 people in that group having the same birthday is 

0.5 or 50%.

We could generalize this heuristic and ask for any subset of 

demographic features in a big data set: What is the probability of a pair 

or combination of those features uniquely identifying a person? If the 

probability is high, you may have a hidden ethical trade-off between using 
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the feature and increasing accuracy of your model and dropping the 

feature from your data set. At what specific threshold is acceptable to you 

and your problem depends on the problem, how the model is used, and 

your strategy for handling the PII.

This illustrates two important points when identifying PII: It’s the 

combination of features that might uniquely identify someone rather 

than any one feature on its own, so when you’re working with big data 

sets in particular, this is something to consider. Additionally, we can 

mathematically quantify the risk of identifying a particular person in a data 

set in some circumstances and actually quantify the risk.

�Using Only the Data You Need
We’ve talked about PII but also there’s a common sense approach here: 

We should only be using the data we actually need for the model at 

hand. Given, there may be an auxiliary need to use demographic data for 

marketing purposes, and that may be the reason why you need to include 

it in your feature set, but as much as possible, you should try to trim the 

fat and reduce the amount of data you’re using. This also helps with 

performance; you don’t want to bring in ten columns that are not needed 

since that’s going to be a waste of space and bandwidth.

One question you can ask to trim the fat is are the features correlated 

with the response variable? This is a relatively common sense approach 

and may not work in all situations, but identifying the variables in your 

model that have no correlation with your target variable(s), you can create 

a shortlist of variables that could be removed. In the next section, we’ll 

take a step back and look at data ethics from the point of view of data 

governance and the big picture impact of our models on the environment 

and society.

Chapter 8  Data Ethics



230

�ESG and Social Responsibility 
for Data Science
Social responsibility and ESG (environmental, social, and governance) are 

increasingly becoming a part of organization strategies and future goals. 

Since data scientists seek to unlock value in data, understanding ESG and 

the role social responsibility plays in their organizations’ long term goals 

will become increasingly important to the role of data science and MLOps.

Social responsibility in data science means the use of data to make 

decisions that benefit society, promote social good, and prevent harm to 

individuals or groups of individuals. An example is that data can be used 

to identify patterns of bias in big data and inform decision-makers on 

how these patterns of bias can be reduced. In industries such as energy, 

ESG involves a more concrete tracking of carbon emissions and the 

impact of the business on climate change and the environment and is a 

new opportunity for data scientists to drive positive change by coming up 

with innovative ways to measure ESG impact and make ESG initiatives 

data-driven.

�Data Ethics Maturity Framework
If you remember way back in Chapter 1, we defined the MLOps maturity 

model and discussed different phases of maturity and how we could 

evaluate the maturity of a data science project. We can develop a similar 

framework for ethics in data science based on many data governance 

maturity frameworks used across industries.2 Take a look at Table 8-1.

2 Al-Ruithe, M., & Benkhelifa, E. (2017). Cloud data governance maturity model. 
https://doi.org/10.1145/3018896.3036394
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How might you use Table 8-1 on your own project? Although we could 

add more dimensions such as social responsibility, data accessibility, 

and data security, understanding the impact of your data and models on 

transparency, privacy, and bias is a good starting point for understanding 

the ethical considerations around your problem.

Why a framework? It may seem like overkill but can help you to 

reduce technical risks associated with unethical use of data by providing 

a measurable and pragmatic method for evaluating and monitoring the 

project across these various dimensions.

This framework is not theoretical, and the process should also start 

early before data is collected since collecting and storing PII may already 

violate laws and regulations without having to have processed it. While 

transparency and privacy may also be qualitative dimensions that can’t be 

measured directly, bias (not bias in the statistical sense) meaning whether 

the model is fair or not actually can be measured quantitatively using 

metrics like demographic parity (a kind of conditional probability). How 

you measure bias is different for each type of problem. For example, for 

a multi-class classification problem, you might compute bias differently 

than for regression, but continuous monitoring and active bias reduction 

would be what differentiates a level 3 and level 2 solution in this maturity 

framework. In the next section, we’ll look at responsible use of AI and how 

some of the ideas around AI might apply to data science as a whole.

�Responsible Use of AI in Data Science
Data science is not artificial intelligence, but data scientists may use 

AI such as generative AI both as developers to make themselves more 

productive and to generate features for even entire data sets. For example, 

one application of generative AI is you can sample from a generative 

model to “query” it, and this might be as simple as feeding in a prompt 

but could actually involve complex statistical sampling methods with 

applications from recommendation to data augmentation.
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While the applications of generative AI in data science are without 

bound, there are ethical challenges posed by generative AI, and these are 

multifaceted challenges at the intersection of society, technology, and 

philosophy. It is not even known at this time whether emergent properties 

such as consciousness itself could arise from certain types of AI, and this 

creates a moral quandary.

With increasing attention on the responsible use of AI, the ethics 

of artificial intelligence is becoming a mainstay in many data science 

discussions across all types of industries and organizations, even those not 

traditionally seen as technology companies.

Topics like bias in large language models whether or not language 

models or other types of AI can have emergent properties like 

consciousness and the existential threat posed by AI will continue to push 

our understanding of data ethics.

Staying on top of the rapid advancements in AI almost requires a 

superhuman AI itself to digest the vast amounts of information available, 

but there are some resources available.

�Further Resources
Data ethics is a rapidly evolving field and multidisciplinary field at the 

intersection of technology, society, and philosophy, so it’s important to 

stay current. Some ways you can stay up to date with data ethics include 

the following:

	 1.	 Subscribing to industry publications including 

journals, magazines, and blogs and following news, 

for example, setting an alert for GDPR or similar 

data regulation. This may help to stay up to date on 

current debates and emergent news.
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	 2.	 Joining reputable professional organizations. 

Although there is no centralized body for data 

ethics, finding like-minded professionals can 

provide guidance and practical experience that 

you may not find elsewhere especially if there is 

controversy around a particular ethical question.

	 3.	 Taking courses and reading the history of data ethics 

can help to make more informed decisions when 

working with data and personal information.

Data scientists and MLOps professionals that understand data 

ethics will help to standardize this body of knowledge and keep the data 

ecosystem free from long term negative consequences of making unethical 

choices when working with data.

In the final lab for this book, we will look at how you can integrate 

practical bias reduction into your project to reduce the risk of unethical 

use of the models you create, and the lab will provide some starter code 

you can use in your own project.

�Data Ethics Lab: Adding Bias Reduction 
to Titanic Disaster Dataset
If you’ve done any kind of machine learning, you’re probably familiar with 

this Titanic data set, but it’s always struck me how people go through the 

example without thinking about the types of features used in the example, 

so it’s always felt incomplete. In the lab, you’ll add the necessary code to 

compute demographic parity to decide if the model is fair or not using the 

Shap library.

Here is the recipe for this lab.

Step 1. You’ll first need to install the Shap library from PyPi preferably 

in your virtual environment.
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Step 2. Run the python file chapter_8_data_ethics_lab.py.

Step 3. Decide if the model is biased or not based on the demographic 

parity. Feel free to change the data to make the model unbiased.

�Summary
In this chapter, we defined data ethics and discussed why ethics are 

important for professionals that work with data including the following:

•	 Ethics for Data Science Projects

•	 GDPR and Data Governance

•	 Ethics in Data Science

•	 Further Resources

We looked at some guiding principles for applying ethical decision-

making in data science and some case studies and examples of specific 

regulation that governs the ethical standards within the data ecosystem 

today. While technology and ethics are extremely important, it is only half 

the picture, and both regulation regarding data ethics and the technology 

we in MLOps are spared by domain knowledge and the intricacies of each 

individual industry. In the next chapter, we will look at specific industries 

from energy to finance and healthcare.
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CHAPTER 9

Case Studies 
by Industry
In this chapter, we will finally look at the most important aspect of data 

science: domain knowledge. You can think of this chapter as providing a 

kind of ladder, as you won’t be a domain expert reading this chapter alone 

but maybe you will be able to get to where you want to go by asking the 

right questions. After all, data science is not about technology or code, 

but it’s about the data and, more specifically, the domain knowledge and 

concepts that data represents. Each industry has unique problems that 

may not be well understood outside of that industry.

So what is data? Data in some sense is more general than even 

numbers since it can be both quantitative and qualitative. Numerical 

data is a type of data, while categorical or natural language-based data 

represent raw concepts. Domain and industry knowledge is really the 

“soul” behind the data, the elusive part of any data science project that 

gives the data meaning.

While many modeling problems are considered solved especially in 

supervised machine learning where basic classification and regression 

problems can be repurposed over and over again possibly with very little 

domain knowledge, to actually drive performance metrics and solve novel 

problems that will bring a competitive advantage to your industry and 

even to be able to identify which problems are actually “hard” will require 

domain knowledge.

© Dayne Sorvisto 2023 
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_9

https://doi.org/10.1007/978-1-4842-9642-4_9
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This is the last chapter in the book because unlike previous chapters, 

domain knowledge is not easy to learn; it has to be earned through years 

of experience. Mathematics can be learned and technology can be learned 

to some degree, but domain knowledge is purely experience based, 

knowing what to measure, how to measure it, what is noise, what features 

to throw away and what to keep, how to sample the data to avoid bias, how 

to treat missing values, how to compute features (code that encodes all 

of this business logic to eliminate bias in data can get very complex), and 

knowing what algorithms are currently used and why for the particular 

domain are all something that needs to be learned from experience. It also 

changes, and unless you’re working in a domain, it can be hard to even get 

an understanding of what problems are important and what models are 

considered solved.

It’s the goal of this chapter to discuss some of the problems across 

different industries and look at ways in which MLOps can improve the lives 

of domain experts in those areas or to provide some further information 

for data scientists that have experience in one industry and are looking 

to transfer that knowledge to another industry. We’ll also take a look at 

how we can use this knowledge, store and share it across industries, and 

leverage it for strategic advantage for our organization by using the MLOps 

lifecycle. 

�Causal Data Science and 
Confounding Variables
One of the things that makes data science difficult is confounding 

variables and illustrates why we need to have domain knowledge to 

truly understand the dependence structure in our data. Without a solid 

understanding of our data, we won’t be able to identify confounding 

variables, and we may introduce spurious correlations into our results, and 

our models won’t be an accurate representation of reality.
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What is a confounding variable? A confounding variable is a third 

variable that influences both the independent and dependent variables in 

a model. This is a causal concept meaning we can’t just use correlations 

to identify confounders, but we need a solid understanding of the data 

domain and the causal factors that underlie the model; after all, correlation 

does not imply causation. A visual representation of a confounding 

variable is shown in Figure 9-1.

Figure 9-1.  A confounding variable influences both the independent 
and dependent variables

For example, you might look at the impact of a variable like amount of 

alcohol consumed on a daily basis on mortality rate. However, there are 

many confounding variables like age that may be considered confounding 

variables since age can have an effect on both alcohol consumption and 

mortality rate. Another good example is the placebo effect where you 

might have a randomized experiment with two groups but one group was 

administered a placebo. Since the belief that the treatment is effective may 
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influence the outcome of the treatment (e.g., believing a treatment will give 

you more energy may cause you to feel less tired), the experiment needs to 

be controlled to account for the placebo effect by splitting participants into 

two randomized groups.

So how can we identify confounding variables? There is no known 

algorithm for learning all of the cause and effect relationships and 

identifying confounding variables (although causal data science is an 

active area of research with promising techniques like Bayesian networks 

and counterfactual inference). We can’t rely on correlation to help us here 

since correlation is not causation and you need to develop a mental model 

of the cause and effect relationships you’re studying to truly avoid spurious 

results.

This understanding of cause and effect can only come from domain 

experience and is the main motivation for understanding the domain 

we’re modeling. In the next section, we’ll take a bottom-up approach and 

look at domain specific problems broken down by industry from energy, 

finance, manufacturing, healthcare, and more and try to get a better 

understanding of each industry’s problem domains.

�Energy Industry
One use of data science in the energy industry is in upstream oil and 

gas. Geostatistics, which takes into account spatial dependencies in data 

(data points that are close together on the Earth’s surface are assumed to 

be similar), leads to important applications like Kriging and geospatial 

sampling.

Collecting data on well reservoirs is costly, and having techniques 

that can infer unknown data without directly measuring it is an important 

application. Another area is in midstream oil and gas, where energy needs 

to be physically transpired in pipelines or, in the case of utilities, physically 

transported over a distribution network. How do we detect anomalies and 

make this process more efficient?
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Safety is also critical in this area, and using data science to identify 

leakages and other anomalies to reduce outages or, in the case of oil and 

gas, to prevent shutdowns is a focus of a lot of modeling applications.

�Manufacturing
Manufacturing is becoming increasingly data-driven as organizations 

recognize the potential of data analytics to optimize their operations and 

increase operational efficiency. An increase in operational efficiency of just 

0.1% can translate into large cost savings in absolute terms since that 0.1% 

is relative to EBITDA or operating income.

The use of data science and MLOps can help manufacturing 

executives gain insight into production processes, reduce waste, develop 

lean processes, improve quality control, and forecast equipment and 

component failures before they happen.

A concrete example is predictive maintenance or forecasting the time 

to failure or similar variable from sensor data. Sensor data may be from 

entire fleets of equipment or production equipment from manufacturers 

and can help predict which components are likely to fail. This may aid in 

scheduling maintenance, reducing downtime, and increasing output.

Statistical quality control is another area of operational research where 

data science can lead to innovative improvements. Identifying trends in 

product defects can help manufacturers analyze root causes of defects and 

adjust their processes to reduce future defects or to adjust inventory levels 

and lead times on the fly.

�Transportation
Transportation and manufacturing have many overlaps in terms of data 

science use cases. Transportation itself is a huge industry that is best 

broken down into different subindustries that include railways, shipping, 
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aviation, and more. Striking the right balance between safety and 

efficiency is one of the drivers of using data science in transportation, and 

again predictive maintenance has many applications.

Edge devices that may be attached to entire fleets of vehicles emit 

various sensor readings like pressure and temperature (we looked at an 

example of this in our feature engineering lab) and can be analyzed to 

forecast time to failure and improve scheduling efficiency. It’s important 

to note here that these sensor data sets are massive data sets especially if 

they come from entire fleets of vehicles and may include real-time data, 

so MLOps play a critical role in transportation data science especially 

in scheduling off-peak hours and minimizing scheduling conflicts and 

complex route planning.

For example, how do you determine the best routes to take when 

your loss function includes information on fuel consumption and other 

transportation costs and you have to minimize this loss over a massive 

data set of sensor readings? To make matters more complicated, the 

fleet of vehicles may extend across broad geographical boundaries and 

include different units that need to be normalized, and all of this data 

has to be processed in a way that takes into account operational safety 

as well as efficiency. Safety data itself can be multimodal coming from 

traffic cameras, sensors, and other sources to identify areas with high 

incidence rate.

�Retail
Retail is an industry that has been completely transformed by data 

science in the last 20 years, from recommender systems and customer 

segmentation to pricing optimization and demand forecasting for new 

productions.
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Customer segmentation (looking at the customer along dimensions 

like geography, psychology, demographic, buying patterns, purchasing 

preferences, and other traits) helps to personalize messages and product 

offerings and can be used in combination with a recommender system.

Demand forecasting can help retailers analyze historical sales and 

transactional data to study variables such as weather, promotions, 

holidays, and macroeconomic data to predict demand for new productions 

and decide where to allocate resources and marketing efforts. Demand 

forecasting is primarily used for reducing inventory levels and increasing 

sales by anticipating spikes in sales volumes. Demand forecasting can also 

be applied to optimize supply chains by adapting to spikes and decreases 

in demand.

Related to sales, price optimization is a classical use case for retail data 

science. Data science can help optimize pricing strategies based on current 

market trends like inflation and interest rates. Customer demand forecasts 

can also be fed into these models with competitor pricing to maximize 

profit margins year over year. Developing pricing strategy is necessary in 

competitive markets like retail where pricing may be a key differentiator of 

the product.

Recommender systems can be created by querying models to 

recommend new products and services to customer segments based on 

past purchases (when available) or other data like browsing history for 

online retailers.

�Agritech
Agricultural communities developed over 10,000 years ago, so it’s not every 

day agriculture gets a major overhaul, but data science has tremendous 

potential in the intersection of agriculture and technology called agritech 

to improve agricultural processes and increase yields and overall efficiency 

in precision farming.
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Precision farming in particular uses data science to collect data from 

sensors, drones, and other sources to optimize crop yields and reduce 

use of fertilizers and pesticides that can harm the environment and 

reduce yield. The main factors that influence crop yield include weather, 

agricultural land, water, and harvest frequency, and data collected from 

sensors can be used to maximize yield.

�Finance Industry
Finance is one of the most interesting industries for data science 

applications. Fraud detection (a kind of anomaly detection problem) 

seeks to detect fraudulent transactions and prevent financial crime. Fraud 

detection is possible in part because of our ability to process vast amounts 

of data and to measure a baseline behavior in the transactions to detect 

patterns of fraud even if they’re less than 1% of the entire sample.

Risk management is another area where data scientists build predictive 

models, to quantify risk and the likelihood and frequency of occurrence. 

Predicting which customers might default on a loan, for instance, is an 

important problem in predictive modeling. MLOps can help to streamline 

risk management problems by bringing transparency and explainability 

into the modeling process, introducing mathematical methods like SHAP 

or LIME to report on which attributes went into a particular loan decision. 

Model explainability and fairness are particularly important in credit 

risk scoring where demographic features (income, geographic location), 

payment history, and other personal information are fed into the model 

in hope of getting a more accurate picture of someone’s credit risk at the 

current time.

Metrics like net promoter score and customer lifetime value are 

frequently used in modeling. Industry standards are extremely important 

in the finance industry especially when it comes to data science. Risk 

modeling, for instance, is important because if we can calculate risk of 
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churn or risk of default, we can concentrate resources around preventing 

those customers from churning provided they have sufficient customer 

lifetime value.

However, how you approach the risk model in finance may be different 

than other industries. Continuous features are often discretized, meaning 

the features are placed into buckets. One of the reasons for this is so we 

can create a scorecard at the end since there are often laws and regulations 

around reporting credit risk and the models need to be interpretable by 

someone without advanced knowledge of the model. There’s also the 

assumption of monotonicity with credit risk. This is difficult to include in 

some models.

�Healthcare Industry
We can look at applications of data science in healthcare and predict 

where MLOps can impact healthcare. One area that is very active is in 

medical image analysis and, more generally, preventative medicine.

Preventative medicine uses X-rays, CT scans, MRI scans, and 

healthcare data to detect abnormalities and diagnose disease and malities 

faster than a human doctor or even a traditional lab test could. Imagine 

you could diagnose disease years in advance and treat them before they 

become a problem that threatens the health of the patient.

While X-rays, CT scans, and other types of medical imaging would 

require computer vision models such as convolutional neural networks, 

preventative medicine may also look at the entire history of the patient 

to summarize it for medical professionals (e.g., autoencoders or topic 

analysis algorithms) require natural language processing and domain 

knowledge of medicine. These will be vast data sets and require 

infrastructure to support big data as well as require security and data 

privacy safeguards to protect patient data (e.g., this data may be regulated 

by HIPAA or similar regulation).
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Predictive analytics can ultimately be used to reduce hospital 

readmissions and reduce patient risk factors over the long term, but 

moving these metrics requires reporting, monitoring, and ability to feed 

patient outcomes back into the model for retraining.

Two emerging areas of research in healthcare are drug discovery and 

clinical decision support systems. Causal inference can be applied to 

discover new combinations of drugs and build new treatments or even 

speed up the clinical trials or augment data sources that are too expensive 

to collect.

Monitoring infrastructure can be set up to monitor patients in real 

time and provide healthcare practitioners with real-time data on patients 

that can be used to make better healthcare decisions resulting in better 

patient outcomes and reduced hospital visits. The potential to increase the 

efficiency and optimize resource allocation in the healthcare space will be 

one of the most important applications of MLOps in the twenty-first century.

�Insurance Industry
If you’re a data scientist in this field, then there’s a lot of opportunity for 

innovation. One unique example is preventative maintenance. We might 

not think of preventative maintenance having applications in something 

like insurance, but what if insurance companies could use sensor data 

to predict when vehicles need to be maintained, preventing breakdowns 

before they happen and keeping claims at a minimum. This would benefit 

both the drive of the vehicle and the insurance company.

Data science is playing an increasingly vital role within the insurance 

industry, enabling insurers to make more accurate assessments of risk 

and personalize policies. Most people know there are large volumes of 

customer data available to predict the likelihood of claims behind made, 

for example, insurers could use customer demographic data, credit scores, 

and historical claim data and develop personalized risk strategy models.
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Fraudulent claims are expensive to insurers and lead to bottlenecks 

and inefficiencies in the process as insurers seek to eliminate fake claims 

with strict policy rules and procedures for underwriting. However, 

analyzing patterns in customer data, we can use anomaly detection to 

identify fraudulent claims without the additional cost.

Customer experience is another area within the insurance industry 

that could use some improvements. Although we don’t usually think of 

insurance companies as being in the customer service industry, with 

increasing competition in this space, using data science to fine-tune policy 

to customer needs would lead to new business opportunities. All of these 

types of models require big data, and MLOps can make the insurance 

industry much more operationally efficient, to automate the underwriting 

process and make personalized policy recommendations based on 

customer risk profiles and other factors.

�Product Data Science
Each of the industries mentioned continue to be disrupted by innovative 

technology companies that are increasingly becoming data and analytics 

companies that leverage data to improve traditional business processes. 

A great example is in healthcare where machine learning is being applied 

to preventative medicine to diagnose disease and infections before 

they become advanced or untreatable. By developing new diagnostic 

techniques with machine learning, countless lives can be saved.

Another area ripe for disruption is in the financial industry where 

customers that would not traditionally qualify for a loan may be 

considered because there’s data available to evaluate the risk of default.

While product data science is different in the sense that you need to 

understand the product end to end rather than building a model to make 

an existing process more efficient, your model needs to have product-

market fit. Understanding the customer or end user of the group across 
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various dimensions such as demographic, psychological, behavioral, 

and geographic data sets can help to segment customers and provide 

insight into what kind of model may best meet the needs of each customer 

segment.

Customer segmentation may be an invaluable approach to product 

data scientists and, also, the ability to ask questions to establish and 

uncover novel ways of modeling a problem since, unlike in industry, 

the modeling problem itself may not be a solved problem. This is why 

advanced knowledge of statistics and experience with research are 

required to be an effective product data scientist.

�Research and Development Data Science: 
The Last Frontier
Data science at the edge is a rugged landscape, a mixture of many different 

disciplines that are constantly evolving. In fact, some industries may not 

even be invented yet. You might wonder how data science might look in 

50 years. While predicting something like how data science will evolve 

50 years out is clearly not possible, if we want to predict how we might 

better position ourselves to understand the massive amount of change 

in this field, we might want to look at research and development and the 

kind of impact data science has had on scientific research and business 

innovation.

In particular, we can look at areas from applied research to 

commercialization to new lines of business in various industries. Data 

science has increasingly become important in science and engineering, 

and although we can’t predict the future, we can look at fields like 

genomics, neuroscience, environmental science, physics, mathematics, 

and biomedical research to gain an understanding of some global trends. 

We summarize these trends in the following.
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•	 Genomics: Data science is used to analyze genomic 

and proteomic data to identify patterns, sequences, 

and mutations in genes and proteins. Deep learning 

systems like AlphaFold can accurately predict 3D 

models of protein structures and are accelerating 

research in this area.

•	 Neuroscience: Data science is increasingly being 

combined with brain imaging such as fMRI and EEG to 

unlock structure and function in the brain and provide 

new treatments for brain diseases.

•	 Environmental science: Data science is being used 

to analyze climate data, satellite imagery, and 

oceanographic and seismic data to understand how 

human activities impact our environment and to create 

new climate adaption technologies.

•	 Physics: Data science is used in physics to analyze big 

data sets and identify complex patterns in data from 

particle accelerators, telescopes, and scans of the 

universe. This information can be used to find new star 

systems and planets (data-driven astronomy) and to 

even develop new theories and models of the universe.

•	 Mathematics: Most of the focus on large language 

models has been on training these models to 

understand natural language and not formal 

languages like mathematics. While AI may not replace 

mathematicians completely, generative AI may be used 

to generate proofs, while formal verification may be 

used to validate these proofs. Building a system that 

uses both generative AI and formal verification systems 
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like automated theorem provers as components will 

lead to groundbreaking results and the first proofs 

completely generated by AI mathematicians.

•	 Biomedical research: Data science is used to analyze 

clinical trial data, biomedical data, and data from drug 

trials to develop new treatments and interventions 

for debilitating diseases. Causal data science is an 

emerging area within data science that has tremendous 

potential to expedite biomedical research.

Although we can list many active areas of research where data science 

has had an impact or will have an impact in the future, this relationship 

goes in both directions. While branches of mathematics like statistics 

and linear algebra have had the biggest impact on data science so far, 

other areas of mathematics like topology continue to find its way into 

mainstream data science through manifold learning techniques like t-SNE 

belonging to the emerging field of topological data analysis.

Other areas of mathematics are slowly making their way into data 

science, and people find new ways to apply old mathematical techniques 

to data processing. One interesting area is in algebraic data analysis where 

age-old techniques like Fourier transforms and wavelets are being used 

to change the way we analyze data. I mentioned this in Chapter 2, but 

if you take the Fourier transform of a probability distribution, you get 

the characteristic function of that distribution. Characteristic functions 

are a kind of algebraic object, and they’ve been applied in many proofs 

in mathematical statistics like proof of the central limit theorem. While 

other applications of Fourier transforms like wavelet signal processing are 

being used in some areas of data science, there are many mathematical 

techniques that will eventually find their way into mainstream data 

science.

In the next few sections, we’ll pivot back to more concrete use cases of 

data in industry and how you can apply them in your own organization.
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�Building a Data Moat for Your Organization
A data moat is a competitive advantage where data itself is treated as 

a business asset. By leveraging data as an asset, businesses can create 

barriers to entry for competition and use data as a strategic advantage. 

The key to building a data moat is using data in a way that cannot easily be 

replicated. As a data scientist, you know what data is valuable, but as an 

MLOps practitioner, you can use this knowledge to build a data moat.

The first step would be to collect as much data as possible but to 

implement quality gates to safeguard the quality of the collection. This 

may require an investment in IT systems and tools to collect and process 

data effectively to determine what should be kept and what is noise.

The next phase is to identify what data cannot be replicated. This is the 

most valuable asset for a business and might be customer data, industry 

data, or data that was extremely difficult to collect.

Once you have identified enough quality data sources that cannot 

be easily replicated, you can analyze this data to leverage it in your 

operations. The full MLOps lifecycle applies at this stage, and you may 

start with a single data science project and slowly, iteratively build toward 

becoming a data-driven organization where you can offer new innovative 

service lines and products from this data.

Finally, after you’ve integrated a certain level of MLOps maturity 

meaning you’re able to create feedback into your data collecting process 

to create more data, insights, services, and products, you need to 

safeguard the data and protect it like any other highly valuable asset by 

implementing proper data governance policies. This entire process may 

happen over a number of years.

One of the difficulties in building your organization’s data moat is 

lack of domain expertise and capturing domain expertise in your MLOps 

process. In the next section, we’ll look at the history of domain experts 

and how organizations have attempted to capture domain expertise when 

building their data moats.
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�The Changing Role of the Domain Expert 
Through History
Throughout history, there have been many AI winters and many attempts 

to capture domain expertise and store it. Expert systems were formally 

around as early as the 1960s and were designed to mimic expert decision-

making ability in a specific domain. The first commercial expert system 

called Dendral was invented to help organic chemists identify unknown 

organic molecules by analyzing mass spectra. This and subsequent 

expert systems were rule based, and by the 1980s, they were able to make 

use of some simple machine learning algorithms. In the 1990s, expert 

systems were used in industries ranging from finance to healthcare and 

manufacturing to provide specialist support for complex tasks, but there 

was a problem: These expert systems were difficult to maintain, requiring 

human experts to update the knowledge base and rules.

Today, chatbots use a different approach: generative AI creating new 

data from old data that are far less brittle than expert systems. However, 

currently there is no way to update these chatbots in real time (requiring 

layers of reinforcement learning), and if data used to train these models 

is insufficient, the knowledge will be inaccurate. These models are also 

expensive to train with a fixed cost per token, and you have to train one 

model per domain; there is little to no transfer between domains leading 

to knowledge silos. This leads to an interesting question: What is the role of 

the domain expert in data science in the face of this change?

A challenging problem is there are many different kinds of data 

scientists not just differentiated by role and skill but domain expertise: 

knowing what tools are useful and what problems have been solved before 

and being able to communicate that knowledge.

Mathematics is a universal language. Data visualization can be used 

to communicate results of data analysis but hides the details of how you 

arrived at that problem. To make things worse, each industry has its own 
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vocabulary, standards, and ways of measuring. That being said, there 

are still a couple ways to store domain knowledge and maybe share that 

knowledge across industry and teams.

•	 Documentation: This is a straightforward way to store 

domain knowledge and share it across teams and 

industries. This may include books, technical manuals, 

research blogs from leading companies, academic 

journals, and trade journals.

•	 Knowledge graphs: Knowledge graphs are a way 

to organize domain knowledge into relationships 

between concepts. For domain knowledge that is highly 

relationship driven like social networks, this may be a 

good tool to represent knowledge.

•	 Expert systems: Expert systems were an attempt to 

represent expertise in a rule based system but have 

many limitations.

•	 Ontologies: Ontologies are a formal way to store 

academic domain knowledge by representing 

knowledge as a set of concepts and relationships 

between concepts. This differs from knowledge graphs 

in that ontologies are full semantic models for an entire 

domain while knowledge graphs are specific to a task.

•	 Generative AI: Large language models are increasingly 

being used to store domain knowledge. At this time, 

training large language models on custom data is an 

expensive process, but as the cost per token decreases 

over time, generative AI may become the standard way 

to share domain knowledge.
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•	 Code: An example of this is the toolkit we created, but 

open source projects are good way to share knowledge 

across domains, for example, developing an R library 

to solve a problem in one industry and sharing it on 

CRAN so it can be applied in another industry.

•	 Metadata: Defining standard vocabulary for your 

industry and developing a metadata dictionary, for 

example, to annotate features in a feature store.

While we have many ways to share domain expertise from simple 

documentation to more formal methods to represent entire domains, 

sharing knowledge is only one piece of the puzzle. Data and the knowledge 

it represents grow over time and need to be processed not just stored. 

The situation where data outpaces processing capabilities may become a 

limiting factor in some domains.

�Will Data Outpace Processing Capabilities?
IoT data is increasing at an alarming rate. This scenario is often called data 

deluge and happens when data grows faster than our ability to process it? 

While exascale computing promises to provide hardware capable of 1018 

IEEE 754 Double Precision (64-bit) operations (multiplications and/or 

additions) per second, data is much easier to produce than it is to process. 

So-called dark data is produced when organizations have collected data 

but do not have the throughput to process it. While MLOps can help 

in unlocking some of this dark data, new systems, technologies, and 

hardware may have to be incorporated into the MLOps lifecycle to handle 

increasing volumes of data.
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�The MLOps Lifecycle Toolkit
The reader of this book is encouraged to use the MLOps lifecycle toolkit 

that is provided with the code for this chapter. I have added MLFlow and 

Jupyter lab components that use containers to the Infrastructure folder 

and added the model fairness code to the fairness folder so you can use 

it in your own projects. The accompanying software (“the toolkit”) suit 

their own needs. The idea for an agnostic toolkit that can be used as a 

starter project or accelerator for MLOps can facilitate data science in your 

organization in combination with this book that serves as documentation 

for the toolkit.

Building a toolkit that is agnostic that includes tools for 

containerization, model deployment, feature engineering, and model 

development in a cookie cutter template means it’s highly customizable 

to the needs of your particular industry and project as a way to share 

knowledge and provide a foundation for domain experts doing data 

science.

The field of data science is very fast-paced encompassing not 

only machine learning but nonparametric algorithms and statistical 

techniques, big data, and most importantly domain knowledge that shapes 

the field as a whole. As domain knowledge changes, the toolkit may evolve, 

but the invariants like mathematical knowledge, algorithmic thinking, and 

principles for engineering large-scale systems will only be transformed 

and applied to new problems. Figure 9-2 shows the end-to-end MLOps 

lifecycle components used in the toolkit as an architectural diagram.
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Figure 9-2.  Relationships between MLOps lifecycle components
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�Summary
In this chapter, we looked at various applications of data science by 

industry. Some of the industries we discussed include the following:

•	 Energy Industry

•	 Finance Industry

•	 Healthcare Industry

•	 Insurance Industry

We concentrated on broad problems within each industry and 

emphasized the importance of industry standard techniques, vocabulary, 

and domain knowledge in data science. We looked at the changing role 

of the domain expert throughout history including attempts to capture 

knowledge and store it as expert systems and in generative AI. We 

discussed the hypothetical point where our ability to produce data may 

outpace our ability to process data and how this may impact the MLOps 

lifecycle in the future. Finally, we talked about contributing to the MLOps 

toolkit, the accompanying piece of software that comes with this book, 

providing the final version in the code that comes with this chapter with 

all the previous labs and infrastructure components used in previous 

chapters.
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