
MLOps
Lifecycle Toolkit

A Software Engineering Roadmap
for Designing, Deploying, and Scaling
Stochastic Systems
—
Dayne Sorvisto

MLOps Lifecycle
Toolkit

A Software Engineering
Roadmap for Designing,
Deploying, and Scaling

Stochastic Systems

Dayne Sorvisto

MLOps Lifecycle Toolkit: A Software Engineering Roadmap for Designing,

Deploying, and Scaling Stochastic Systems

ISBN-13 (pbk): 978-1-4842-9641-7		 ISBN-13 (electronic): 978-1-4842-9642-4
https://doi.org/10.1007/978-1-4842-9642-4

Copyright © 2023 by Dayne Sorvisto

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Editorial Assistant: Mark Powers

Cover designed by eStudio Calamar

Cover image by Jerry Yaar on Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (github.com/apress). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Dayne Sorvisto
Calgary, AB, Canada

https://doi.org/10.1007/978-1-4842-9642-4

I dedicate this book to my mom, my wife, and Lucy.

v

Table of Contents

About the Author���xv

About the Technical Reviewer���xvii

Acknowledgments��xix

Introduction��xxi

Chapter 1: �Introducing MLOps���1

What Is MLOps?���1

Defining MLOps��3

MLOps Maturity Model���5

What Are the Types of Data Science Projects?��8

Supervised Machine Learning��8

Semi-supervised Machine Learning���8

Reinforcement Learning���9

Probabilistic Programming���9

Ad Hoc Statistical Analysis���9

The Two Worlds: Mindset Shift from Data Science to Engineering����������������������10

What Is a Type A Data Scientist?��11

Types of Data Science Roles��12

Hackerlytics: Thinking Like an Engineer for Data Scientists �������������������������������14

Anti-pattern: The Brittle Training Pipeline��14

Future-Proofing Data Science Code���16

What Is Technical Debt?���17

vi

Hidden Technical Trade-Offs in MLOps��18

How to Protect Projects from Change��19

Drivers of Change in Data Science Projects���20

Choosing a Programming Language for Data Science���21

MapReduce and Big Data���22

Big Data a.k.a. “High Volume”��22

High-Velocity Data��23

High-Veracity Data��23

Types of Data Architectures��23

The Spiral MLOps Lifecycle��24

Data Discovery���25

Data Discovery and Insight Generation��25

Data and Feature Engineering��26

Model Training��26

Model Evaluation��27

Deployment and Ops��27

Monitoring Models in Production��28

Example Components of a Production Machine Learning System�����������������������29

Measuring the Quality of Data Science Projects��30

Measuring Quality in Data Science Projects���30

Importance of Measurement in MLOps��32

Hackerlytics: The Mindset of an MLOps Role���33

Summary���34

Table of Contents

vii

Chapter 2: �Foundations for MLOps Systems��35

Mathematical Thinking���36

Linear Algebra��36

Probability Distributions���37

Understanding Generative and Discriminative Models�����������������������������������38

Bayesian Thinking��39

Gaussian Mixture Models���42

General Additive Models��43

Kernel Methods��44

Higher Dimensional Spaces���46

Lab: Mathematical Statistics��48

Programming Nondeterministic Systems��49

Programming and Computational Concepts��50

Loops��50

Variables, Statements, and Mathematica Expressions�����������������������������������51

Control Flow and Boolean Expressions��51

Tensor Operations and Einsums���52

Data Structures for Data Science���53

Sets��53

Arrays and Lists��54

Hash Maps��55

Trees and Graphs��55

Binary Tree��56

DAGs���57

SQL Basics���57

Algorithmic Thinking for Data Science���59

Core Technical Decision-Making: Choosing the Right Tool�����������������������������������59

Table of Contents

viii

Translating Thoughts into Executable Code���60

Understanding Libraries and Packages��60

PyMc3 Package��61

Numpy and Pandas��61

R Packages���61

Important Frameworks for Deep Learning���63

TensorFlow���63

PyTorch���64

Theano��64

Keras��64

Further Resources in Computer Science Foundations���64

Further Reading in Mathematical Foundations��65

Summary���66

Chapter 3: �Tools for Data Science Developers�������������������������������������67

Data and Code Version Control Systems��68

What Is Version Control?���68

What Is Git?��69

Git Internals��69

Plumbing and Porcelain: Understanding Git Terminology�������������������������������70

How Git Stores Snapshots Internally��70

Sourcetree for the Data Scientist���71

Branching Strategy for Data Science Teams��73

Creating Pull Requests���74

Do I Need to Use Source Control?��75

Version Control for Data���76

Git and DVC Lab��76

Table of Contents

ix

Model Development and Training���77

Spyder��77

Visual Studio Code��78

Cloud Notebooks and Google Colab��80

Programming Paradigms and Craftsmanship���82

Naming Conventions and Standards in Data Science������������������������������������82

Test Driven Development for Data Scientists���84

From Craftsmanship to Clean Code��87

Model Packages and Deployment��87

Choosing a Package Manager��88

Common Packages for MLOps���92

ModelOps Packages���94

Model Tracking and Monitoring��96

Packages for Data Visualization and Reporting��97

Lab: Developing an MLOps Toolkit Accelerator in CookieCutter���������������������98

Summary���102

Chapter 4: �Infrastructure for MLOps��103

Containerization for Data Scientists���103

Introduction to Docker��104

Anatomy of the Docker File��105

Lab 1: Building a Docker Data Science Lab for MLOps��������������������������������108

The Feature Store Pattern��112

Implementing Feature Stores: Online vs. Offline Feature Stores������������������113

Lab: Exploring Data Infrastructure with Feast��113

Exercise��116

Dive into Parquet Format��116

Table of Contents

x

Hardware Accelerated Training��118

Cloud Service Providers���118

Distributed Training��119

Optional Lab: PaaS Feature Stores in the Cloud Using Databricks���������������123

Databases for Data Science���127

Patterns for Enterprise Grade Projects���130

No-SQL Databases and Metastores��131

Relational Databases��132

Introduction to Container Orchestration���132

Commands for Managing Services in Docker Compose�������������������������������134

Making Technical Decisions���136

Summary���137

Chapter 5: �Building Training Pipelines��139

Pipelines for Model Training���139

ELT and Loading Training Data��140

Tools for Building ELT Pipelines��141

Preprocessing the Data��144

Handling Missing Values���145

Knowing When to Scale Your Training Data��146

Understanding Schema Drift��147

Feature Selection: To Automate or Not to Automate?�����������������������������������148

Building the Model���149

Evaluating the Model��149

Automated Reporting��150

Batch Processing and Feature Stores��150

Mini-Batch Gradient Descent:���151

Stochastic Gradient Descent��151

Online Learning and Personalization��152

Table of Contents

xi

Shap Values and Explainability at Training Time���153

Feedback Loops: Augmenting Training Pipelines with User Data�����������������154

Hyper-parameter Tuning��154

Hardware Accelerated Training Lab��157

Experimentation Tracking���157

MLFlow Architecture and Components��158

MLFlow Lab: Building a Training Pipeline with MLFlow�������������������������������������162

Summary���164

Chapter 6: �Building Inference Pipelines��167

Reducing Production-Training Skew��169

Monitoring Infrastructure Used in Inference Pipelines���������������������������������������170

Monitoring Data and Model Drift��171

Designing Inference APIs���174

Comparing Models and Performance for Several Models����������������������������������175

Performance Considerations��175

Scalability��176

What Is a RESTful API?���178

What Is a Microservice?���179

Lab: Building an Inference API���181

The Cold-Start Problem��183

Documentation for Inference Pipelines��184

Reporting for Inference Pipelines��185

Summary���186

Table of Contents

xii

Chapter 7: �Deploying Stochastic Systems���189

Introducing the Spiral MLOps Lifecycle���190

Problem Definition��192

Problem Validation��192

Data Collection or Data Discovery��192

Data Validation��193

Data Engineering��193

Model Training��194

Diagnostic Plots and Model Retraining���194

Model Inference��195

The Various Levels of Schema Drift in Data Science���196

The Need for a More Flexible Table in Data Science������������������������������������197

Model Deployment���198

Deploying Model as Public or Private API���199

Integrating Your Model into a Business System���199

Developing a Deployment Strategy��200

Reducing Technical Debt in your Lifecycle���201

Generative AI for Code Reviews and Development���������������������������������������202

Adapting Agile for Data Scientists��203

Model-Centric vs. Data-Centric Workflows��205

Continuous Delivery for Stochastic Systems���207

Introducing to Kubeflow for Data Scientists���208

Lab: Deploying Your Data Science Project��210

Open Source vs. Closed Source in Data Science��212

Monolithic vs. Distributed Architectures���212

Choosing a Deployment Model���213

Table of Contents

xiii

Post-deployment��214

Deploying More General Stochastic Systems���214

Summary���216

Chapter 8: �Data Ethics���217

Data Ethics���219

Model Sustainability���220

Data Ethics for Data Science���221

GDPR and Data Governance���221

Ethics in Data Science���223

Generative AI’s Impact on Data Ethics���224

Safeguards for Mitigating Risk��224

Data Governance for Data Scientists���226

Privacy and Data Science��227

How to Identify PII in Big Data���228

Using Only the Data You Need��229

ESG and Social Responsibility for Data Science��230

Data Ethics Maturity Framework���230

Responsible Use of AI in Data Science���233

Further Resources��234

Data Ethics Lab: Adding Bias Reduction to Titanic Disaster Dataset�����������������235

Summary���236

Chapter 9: �Case Studies by Industry���237

Causal Data Science and Confounding Variables���238

Energy Industry��240

Manufacturing��241

Transportation��241

Retail��242

Table of Contents

xiv

Agritech��243

Finance Industry��244

Healthcare Industry��245

Insurance Industry���246

Product Data Science���247

Research and Development Data Science: The Last Frontier����������������������������248

Building a Data Moat for Your Organization���251

The Changing Role of the Domain Expert Through History��������������������������������252

Will Data Outpace Processing Capabilities?��254

The MLOps Lifecycle Toolkit���255

Summary���257

��Index��259

Table of Contents

xv

About the Author

Dayne Sorvisto has a Master of Science degree

in Mathematics and Statistics and became

an expert in MLOps. He started his career

in data science before becoming a software

engineer. He has worked for tech start-ups

and has consulted for Fortune 500 companies

in diverse industries including energy and

finance. Dayne has previously won awards

for his research including the Industry Track

Best Paper Award. He has also written about security in MLOps systems

for Dell EMC’s Proven Professional Knowledge Sharing platform and has

contributed to many of the open source projects he uses regularly.

xvii

About the Technical Reviewer

Ashutosh Parida is an accomplished leader

in artificial intelligence and machine learning

(AI/ML) and currently serving as Assistant

Vice President, heading AI/ML product

development at DeHaat, a leading AgriTech

start-up in India. With over a decade of

experience in data science, his expertise

spans various domains, including vision, NLU,

recommendation engines, and forecasting. 

With a bachelor’s degree in Computer

Science and Engineering from IIIT Hyderabad and a career spanning 17

years at global technology leaders like Oracle, Samsung, Akamai, and

Qualcomm, Ashutosh has been a site lead for multiple projects and has

launched products serving millions of users. He also has open source

contributions to his credit.

Stay connected with Ashutosh on LinkedIn to stay updated on his

pioneering work and gain valuable industry insights: linkedin.com/in/

ashutoshparida.

xix

Acknowledgments

I want to thank my wife, Kaye, for providing me with boundless inspiration

throughout the writing of this book. I also want to thank the entire Apress

team from the editors that turned my vision for this book into a reality

to the technical reviewer, project coordinators, and everyone else who

gave feedback and contributed to this book. It would not be possible

without you.

xxi

Introduction

This book was written in a time of great change in data science. From

generative AI, regulatory risks to data deluge and technological change

across industries, it is not enough to just be data-savvy. You increasingly

need to understand how to make technical decisions, lead technical

teams, and take end-to-end ownership of your models. MLOps Lifecycle

Toolkit is your pragmatic roadmap for understanding the world of software

engineering as a data scientist.

In this book I will introduce you to concepts, tools, processes, and

labs to teach you MLOps in the language of data science. Having had

the unique experience of working in both data science and software

engineering, I wrote the book to address the growing gap I've observed

first-hand between software engineers and data scientists. While most data

scientists have to write code, deploy models, and design pipelines, these

tasks are often seen as a chore and not built to scale. The result is increased

technical debt and failed projects that threaten the accuracy, validity,

consistency, and integrity of your models.

In this book you will build your own MLOps toolkit that you can use

in your own projects, develop intuition, and understand MLOps at a

conceptual level. The software toolkit is developed throughout the book

with each chapter adding tools that map to different phases of the MLOps

lifecycle from model training, model inference and deployment to data

ethics. With plenty of industry examples along the way from finance to

energy and healthcare, this book will help you make data-driven technical

decisions, take control of your own model artifacts, and accelerate your

technical roadmap.

xxii

�Source Code
All source code used in this book can be downloaded from github.com/

apress/mlops-lifecycle-toolkit.

Introduction

1

CHAPTER 1

Introducing MLOps
As data scientists we enjoy getting to see the impact of our models in the

real world, but if we can’t get that model into production, then the data

value chain ends there and the rewards that come with having high-impact

research deployed to production will not be achieved. The model will

effectively be dead in the model graveyard, the place where data science

models go to die.

So how do we keep our models out of this model graveyard and

achieve greater impact? Can we move beyond simply measuring key

performance indicators (KPIs) to moving them so that our models become

the driver of innovation in our organization? It’s the hypothesis of this

book that the answer is yes but involves learning to become better data-

driven, technical decision makers. In this chapter, I will define MLOps, but

first we need to understand the reasons we need a new discipline within

data science at all and how it can help you as a data scientist own the

entire lifecycle from model training to model deployment.

�What Is MLOps?
Imagine you are the director of data science at a large healthcare company.

You have a team of five people including a junior data analyst, a senior

software (data) engineer, an expert statistician, and two experienced

data scientists. You have millions of data sets, billions of data points

from thousands of clinical trials, and your small team has spent the last

several sprints developing a model that can change real people’s lives.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_1

https://doi.org/10.1007/978-1-4842-9642-4_1

2

You accurately predict the likelihood that certain combinations of risk

factors will lead to negative patient outcomes, predict the posttreatment

complication rate, and you use an inflated Poisson regression model to

predict the number of hospital visits based on several data sources. Your

models are sure to have an impact, and there’s even discussion about

bringing your research into a convolutional neural network used to aid

doctors in diagnosing conditions. The model you created is finally at the

cutting edge of preventative medicine. You couldn’t be more excited, but

there’s a problem.

After several sprints of research, exploratory data analysis (EDA), data

cleaning, feature engineering, and model selection, you have stakeholders

asking some tough questions like, When is your model going to be in

production? All of your code is in a Jupyter notebook, your cleaning scripts

scattered in various folders on your laptop, and you’ve done so many

exploratory analyses you’re starting to have trouble organizing them.

Then, the chief health officer asks if you can scale the model to include

data points from Canada and add 100 more patient features to expand

into new services all while continuing your ad hoc analysis for the clinical

trial. By the way, can you also ensure you’ve removed all PII from your

thousands of features and ensure your model is compliant with HIPAA

(Health Insurance Portability and Accountability Act)? At this point, you

may be feeling overwhelmed.

As data scientists we care about the impact our models have on

business, but when creating models in the real world, the process of

getting your model into production so it’s having an impact and creating

value is a hard problem. There are regulatory constraints; industry-

specific constraints on model interpretability, fairness, data science ethics;

hard technical constraints in terms of hardware and infrastructure; and

scalability, efficiency, and performance constraints when we need to scale

our models to meet demand and growing volumes of data (in fact, each

order of magnitude increase in the data volume leads to new architectures

entirely).

Chapter 1 Introducing MLOps

3

MLOps can help you as a data scientist take control of the entire

machine learning lifecycle end to end. This book is intended to be a

rigorous approach to the emerging field of ML engineering, designed for

the domain expert or experienced statistician who wants to become a

more end-to-end data scientist and better technical decision maker.

The plan then is to use the language of data science, examples from

industries and teach you the tools to build ML infrastructure; deploy

models; set up feature groups, training pipelines, and data drift detection

systems to accelerate your own projects; comply with regulatory

standards; and reduce technical debt. Okay, so with this goal in mind, let’s

teach you the MLOps lifecycle toolkit, but first let us take the first step in a

million-mile journey and define exactly what we mean by MLOps.

�Defining MLOps
We need to define MLOps, but this is a problem because at the present

time, MLOps is an emerging field. A definition you’ll often hear is that

MLOps is the intersection of people, processes, and technology, but this

definition lacks specificity. What kind of people? Domain experts? Are the

processes in this definition referring to DevOps processes or something

else, and where in this definition is data science? Machine learning is but

one tool in the data scientist’s toolkit, so in some sense, MLOps is a bit of

a misnomer as the techniques for deploying and building systems extend

beyond machine learning (you might think of it as “Data Science Ops”).

In fact, we are also not talking about one specific industry where all of

the MLOps techniques exist. There is no one industry where all of the data

science is invented first, but in fact each industry may solve data science

problems differently and have its own unique challenges for building

and deploying models. We revised the definition and came up with the

following definition that broadly applies to multiple industries and also

takes into account the business environment.

Chapter 1 Introducing MLOps

4

MLOps definition: MLOps (also written as ML Ops) is the intersection

of industry domain experts, DevOps processes, and technology for

building, deploying, and maintaining reliable, accurate, and efficient data

science systems within a business environment. Figure 1-1 illustrates this.

Figure 1-1.  Stakeholders will never trust a black box

In machine learning, we solve optimization problems. We have data,

models, and code. Moreover, the output of models can be non-deterministic

with stochastic algorithms that are difficult to understand or communicate

due to their mathematical nature and can lead stakeholders to viewing the

system as an opaque “black box.” This view of a machine learning system as

a black box is a real barrier to trusting the system and ultimately accepting

its output. If stakeholders don’t trust your model, they won’t use your model.

MLOps can also help you track key metrics and create model transparency.

This is the reason machine learning in the real world is a hard problem.

Oftentimes the models themselves are a solved problem. For example, in

the transportation sector, we know predicting the lifetime of a component

in a fleet of trucks is a regression problem. For other problems, we may

have many different types of approaches and even cutting-edge research

Chapter 1 Introducing MLOps

5

that has not been battle-tested in the real world, and as a machine learning

engineer, you may be the first to operationalize an algorithm that is

effectively a black box, which not only is not interpretable but may not

be reliable. We need to be transparent about our model output and what

our model is doing, and the first step is to begin measuring quality and

defining what success means in your project.

So how do we even begin to measure the quality of an MLOps solution

when there is so much variability in what an MLOps solution looks like?

The answer to this conundrum is the MLOps maturity model, which

applies across industries.

�MLOps Maturity Model
What does it mean to have “good” MLOps practices, and what is the

origin of this term? You probably have several questions around MLOps

and might be wondering what the differences are between MLOps and

software development, so let us first discuss, in the ideal case, what MLOps

looks like by presenting the maturity model in diagram form (Figure 1-2).

Chapter 1 Introducing MLOps

6

Figure 1-2.  MLOps maturity model

Notice that the key differentiator from DevOps to stage 2 MLOps is

the existence of an automated training pipeline with automated reporting

requiring data management and infrastructure for reporting. The key

differentiator from stage 2 to stage 3 is the existence of automated release

pipelines (model management), and the differentiator between stage 3

and the final stage (full-blown MLOps) is we approach high reliability

including specific subsystems to detect data and model drift and some way

of creating feedback required to “move the needle” on key measurements

we’ll cover.

�Brief History of MLOps

MLOps has its history in DevOps processes. DevOps, the merging of

the words “Dev” and “Ops,” changed the way software developers built,

deployed, and maintained large-scale software systems. DevOps includes

best practices for automating, continuous delivery, software testing and

emphasizes developing software for the end user. However, if you notice

the diagram of the MLOps maturity model, DevOps is not the same as

MLOps, and it is not sufficient to apply DevOps principles to data science

without some adaptation.

Chapter 1 Introducing MLOps

7

MLOps in contrast is about continuous delivery of machine learning

systems but extends this idea to continuous training and reproducibility

(an important part of the scientific process).

You may be thinking, well, software development is software

development, which naturally encompasses parts of the software

development lifecycle including infrastructure as code (creating reusable

environments), containerization, CI/CD pipelines, and version and model

control systems. However, this stuff does not automatically give you model

management and data management best practices. Hence, MLOps takes

DevOps a step further and can be thought of as a multi-dimensional

version of DevOps that fuses together best practices from software

engineering, ModelOps, and DataOps to move key metrics such as

interpretability, accuracy, reliability, and correlation with key performance

indicators specific to your industry.

�Defining the Relationship Between Data Science
and Engineering

Okay, we have defined MLOps, but it’s important we have a clear idea

on what we mean by data science and software engineering and the

differences between them.

For the purpose of this book, we use data science as an umbrella

term for a multidisciplinary approach to extracting knowledge from data

that uses the scientific method. Data science uses machine learning as a

tool. This is why we talk about stochastic systems instead of just machine

learning systems since MLOps practices can apply to more than just

machine learning, for example, operationalizing something more abstract

like a causal model or Bayesian network or custom statistical analysis. In

the next section, we will look at some general patterns for data science

projects.

Chapter 1 Introducing MLOps

8

�What Are the Types of Data
Science Projects?
It is vital to understand the types of data science projects you might

encounter in the real world before we dive into the MLOps lifecycle, which

will be the focus of the rest of the book. We will look at supervised machine

learning, semi-supervised machine learning, reinforcement learning,

probabilistic programming paradigms, and statistical analysis.

�Supervised Machine Learning
Supervised machine learning is a machine learning problem that requires

labeled input data. Examples of supervised learning include classification

and regression. The key is labeled data. For example, in NLP (natural

language processing), problems can be supervised. You might be building a

classification model using a transformer architecture to recommend products

for new customers based on free-form data. Although you might know how

to build a transformer model in PyTorch or TensorFlow, the challenge comes

from labeled data itself. How do you create labels? Furthermore, how do you

ensure these labels are consistent? This is a kind of chicken and egg problem

that machine learning teams often face, and although there are solutions

like Mechanical Turk, with privacy and data regulations like GDPR, it may be

impossible to share sensitive data, and so data needs to be labeled internally,

creating a kind of bottleneck for some teams.

�Semi-supervised Machine Learning
In semi-supervised problems, we have a rule for generating labels but

don’t explicitly have labeled data. The difference between semi-supervised

algorithms is the percentage of training data that is unlabeled. Unlike

supervised learning where consistency of labels may be an issue, with

semi-supervised the data may consist of 80% unlabeled data and a small

Chapter 1 Introducing MLOps

9

percentage, say 20%, of labeled data. In some cases like fraud detection in

banking, this is a very important class of machine learning problems since

not all cases of fraud are even known and identifying new cases of fraud

is a semi-supervised problem. Graph-based semi-supervised algorithms

have been gaining a lot of traction lately.

�Reinforcement Learning
Reinforcement learning is a type of machine learning where the goal is to

choose an action that maximizes a future reward. There are several MLOps

frameworks for deploying this type of machine learning system such as

Ray, but some of the challenge is around building the environment itself,

which may consist of thousands, millions, or billions of states depending

on the complexity of the problem being modeled. We can also consider

various trade-offs between exploration and exploitation.

�Probabilistic Programming
Frameworks like PyMC3 allow data scientists to create Bayesian models.

Unfortunately, these models tend not to be very scalable, and so this type

of programming for now is most often seen during hyper-parameter tuning

using frameworks like Hyperopt where we need to search over a large but

finite number of hyper-parameters but want to perform the sweep in a

more efficient way than brute force or grid search.

�Ad Hoc Statistical Analysis
You may have been asked to perform an “EDA” or exploratory data analysis

before, often the first step after finding suitable data sources when you’re

trying to discover a nugget of insight you can act upon. From an MLOps

perspective, there are important differences between this kind of “ad

hoc” analysis and other kinds of projects since operationalizing an ad hoc

analysis has unique challenges.

Chapter 1 Introducing MLOps

10

One challenge is that data scientists work in silos of other statisticians

creating ad hoc analysis. Ad hoc analysis is kind of an all-in category for

data science code that is one-off or is not meant to be a part of an app or

product since the goal may be to discover something new. Ad hoc analysis

can range from complex programming tasks such as attribution modeling

to specific statistical analysis like logistic regression, survival analysis, or

some other one-off prediction.

Another noteworthy difference between ad hoc analysis and other types

of data science projects is ad hoc analysis is likely entirely coded in a Jupyter

notebook either in an IDE for data scientists such as Anaconda in the case

the data scientist is running the notebook locally or Databricks notebook in

the cloud environment collaborating with other data scientists.

An ad hoc analysis may be a means to an end, written by a lone data

scientist to get an immediate result such as estimating a population

parameter in a large data set to communicate to stakeholders.

Examples of ad hoc analysis might include the following:

•	 Computing correlation coefficient

•	 Estimating feature importance for a response variable

in an observational data set

•	 Performing a causal analysis on some time series data

to determine interdependencies among time series

components

•	 Visualizing a pairwise correlation plot for variables in

your data set to understand dependence structure

�The Two Worlds: Mindset Shift from Data
Science to Engineering
It is no secret that data science is a collaborative sport. The idea of a

lone data scientist, some kind of mythical persona that is able to work in

isolation to deliver some groundbreaking insight that saves the company

Chapter 1 Introducing MLOps

11

from a disaster using only sklearn, probably doesn’t happen all that often

in a real business environment. Communication is king in data science;

the ability to present analysis and explain what your models are doing to

an executive or a developer requires to shift mindsets and understand your

problem from at least two different perspectives: the technical perspective

and the business perspective. The business perspective is talked about

quite a bit, how to communicate results to stakeholders, but what about

the other half of this? Communicating with other technical but non–data

science stakeholders like DevOps and IT?

The topic of cross-team communication in data science crops up when

requesting resources, infrastructure, or more generally in any meetings

with non–data scientists such as DevOps, IT, data engineering, or other

engineering-focused roles as a data scientist.

Leo Breiman, the creator of random forests and bootstrap aggregation

(bagging), wrote an essay entitled “Statistical Modeling: The Two Cultures.”

Although Breiman may not have been talking about type A and type B

data scientists specifically, we should be aware that in a multidisciplinary

field like data science, there’s more than one way to solve a problem and

sometimes one approach, although valid, is not a good culture fit for every

technical team and needs to be reframed.

�What Is a Type A Data Scientist?
Typically a type A data scientist is one with an advanced degree in

mathematics, statistics, or business. They tend to be focused on

the business problem. They may be domain experts in their field or

statisticians (both frequentist or Bayesian), but they might also come from

an applied math or business background and be non-engineering.

These teams may work in silos because there is something I’m going

to define as the great communication gap between type A and type B data

scientists. The “B” in type B stands for building (not really, but this is how

you can remember the distinction).

Chapter 1 Introducing MLOps

12

As data science matures, the distinction may disappear, but more than

likely data scientists will split into more specialized roles such as data

analyst, machine learning engineer, data engineer, and statistician, and it

will become even more important to understand this distinction, which we

present in Table 1-1.

Table 1-1.  Comparing Type A and Type B Data Scientists

Type A Data Scientist Type B Data Scientist

Focuses on understanding the process

that generated the data

Focuses on building and deploying

models

Focuses on measuring and defining the

problem

Focuses on building infrastructure and

optimizing models

Values statistical validity, accuracy, and

domain expertise

Values system performance, efficiency,

and engineering expertise

�Types of Data Science Roles
Over the past decade, data science roles have become more specialized,

and we often see roles such as data analyst, data engineer, machine

learning engineer, subject matter expert, and statistician doing

data science work to address challenges. Here are the types of data

science roles:

•	 Business analysts: Problems change with the market

and model output (called data drift or model drift).

The correlation of model output with key business

KPIs needs to be measured, and this may require

business analysts who understand what the business

problem means.

Chapter 1 Introducing MLOps

13

•	 Big data devs: Data volume can have properties such

as volume, veracity, and velocity that transactional

systems are not designed to address and require

specialized skills.

•	 DevOps: Data needs to be managed as schemas change

over time (called schema drift) creating endless

deployment cycles.

•	 Non-traditional software engineers: Data scientists are

often formally trained in statistics or business and not

software engineering.

Even within statistics, there is division between Bayesians and

frequentists. In data science there are also some natural clusters of skills,

and often practitioners have a dominant skill such as software engineering

or statistics.

Okay, so there’s a rift even within statistics itself, but what about across

industries? Is there one unified “data scientist”?

For example, geospatial statistics is its own beast with spatial

dependence of the data unlike most data science workflows, and in

product companies, R&D data scientists are highly sought after as not

all model problems are solved and they require iterating on research

and developing reasoning about data from axioms. For example, a retail

company may be interested in releasing a new product that has never been

seen on the market and would like to forecast demand for the product.

Given the lack of data, novel techniques are required to solve the “cold

start” problem. Recommender systems, which use a collaborative filtering

approach to solve this problem, are an example, but oftentimes out-of-

the-box or standard algorithms fall short. For example, slope-one, a naive

collaborative filtering algorithm, has many disadvantages.

Chapter 1 Introducing MLOps

14

�Hackerlytics: Thinking Like an Engineer
for Data Scientists
The ability to build, organize, and debug code is an invaluable skill even

if you identify as a type “A” data scientist. Automation is a key ingredient

in this mindset, and we will get there (we cover specific MLOps tools like

PySpark, MLflow, and give an introduction to programming in Python and

Julia in the coming chapters), but right now we want to focus on concepts.

If you understand the concept of technical debt, which is particularly

relevant in data science, and the need to future-proof your code, then you

will appreciate the MLOps tools and understand how to use them without

getting bogged down in technical details. In order to illustrate the concept

of technical debt, let’s take a look at a specific example that you might have

encountered when building a machine learning pipeline with real data.

�Anti-pattern: The Brittle Training Pipeline
Suppose you work for a financial institution where you’re asked by your

data science lead to perform some data engineering task like writing a

query that pulls in the last 24 months of historical customer data from

an analytical cloud data warehouse (the database doesn’t matter for this

example; it could be anything like a SQL Pool or Snowflake). The data will

be used for modeling consumer transactions and identifying fraudulent

transactions, which are only 0.1% of the data.

You need to repeat this process of extracting customer transaction

data and refreshing the table weekly from production so you have the

latest to build important features for each customer like number of recent

chargebacks and refunds. You are now faced with a technical choice: do

you build a single table, or do you build multiple tables, one for each week

that may make it easier for you to remember?

Chapter 1 Introducing MLOps

15

You decide to opt for this latter option and build one table per week

and adjust the name of the table, for example, calling it something such

as historical_customer_transactions_20230101 for transaction dates

ending on January 1, 2023, and the next week historical_customer_

transactions_20230108 for transactions ending on January 8, 2023.

Unfortunately, this is a very brittle solution and may not have been a good

technical decision.

What is brittleness? Brittleness is a concept in software engineering

that is hard to grasp without experiencing its future consequences. In this

scenario, our solution is brittle because a single change can break our

pipelines or cause undue load on IT teams. For example, within six months

you will have around 26 tables to manage; each table schema will need

to be source controlled, leading to 26 changes each time a new feature

is added. This could quickly become a nightmare, and building training

pipelines will be challenging since you’ll need to store an array of dates

and think about how to update this array each time a new date is added. So

how do we fix this?

If we pick the first option, a single table, can we make this work and

eliminate the array of dates from our training pipeline and reduce the

effort it takes to manage all of these tables? Yes, easily in this case we can

add metadata to our table, something like a snapshot date, and give our

table a name that isn’t tethered to a specific datetime, something like

historical_customer_transaction (whether your table name is plural or

singular is also a technical decision you should establish early in your

project). Understanding, evaluating, and making technical decisions like

this comes with experience, but you can learn to become a better technical

decision maker by applying our first MLOps tool: future-proofing your code.

Chapter 1 Introducing MLOps

16

�Future-Proofing Data Science Code
As we discussed, a better way to store historical transaction data is to

add an additional column to the table rather than in the table name itself

(which ends up increasing the number of tables we have to manage and

thus technical debt, operational risk, and weird code necessary to deal

with the decision such as handling an unnecessary dynamic array of dates

in a training pipeline).

From a DevOps perspective, this is fantastic news because you will

reduce the IT load from schema change and data change down to a simple

insert statement.

As you develop an engineering sense should be asking two questions

before any technical decision:

•	 Am I being consistent? (Example: Have I used this

naming convention before?)

•	 If I make this technical decision, what is the future

impact on models, code, people, and processes?

Going back to our original example, by establishing a consistent

naming convention for tables and thinking about how our naming

convention might impact IT that may have to deploy 26 scripts to refresh

a table, if we choose a poor naming convention such as table sprawl, code

spiral, or repo sprawl, we’ll start to see cause and effect relationships and

opportunities to improve our project and own workload as well. This leads

us to the concept of technical debt.

Chapter 1 Introducing MLOps

17

�What Is Technical Debt?
“Machine learning is the high interest credit card of technical debt.”1

Simply put, technical debt occurs when we write code that doesn’t

anticipate change. Each suboptimal technical decision you make now

doesn’t just disappear; it remains in your code base and will at some point,

usually at the worst time (Murphy’s Law), come back to bite you in the

form of crashed pipelines, models that choke on production data, or failed

projects.

Technical debt may occur for a variety of reasons such as prioritizing

speed of delivery over all else or a lack of experience with basic software

engineering principles such as in our brittle table example. To illustrate the

concept of technical debt and why it behaves like real debt, let’s consider

another industry-specific scenario.

Imagine you are told by the CEO of a brick-and-mortar retail company

that you need to build a model to forecast customer demand for a new

product. The product is similar to one the company has released before,

so there is data available, but the goal is to use the model to reduce costs

of storing unnecessary product inventory. You know black box libraries

won’t be sufficient and you need to build a custom model and feature

engineering library.

Your engineering sense is telling you that building a custom solution

will require understanding various trade-offs. Should you build the perfect

model and aim for 99% accuracy and take a hit on performance? Does

the business need 99% accuracy, or will forecasting demand with 80%

accuracy be sufficient to predict product inventory levels two weeks in

advance?

1 Machine Learning: The High Interest Credit Card of Technical Debt

Chapter 1 Introducing MLOps

https://research.google.com/pubs/pub43146.html?authuser=2

18

�Hidden Technical Trade-Offs in MLOps
In the previous example, we identified a performance-accuracy trade-off

(Figure 1-3) that is one of many trade-offs you’ll face in technical decision

making when wearing an MLOps hat. MLOps is full of these hidden technical

trade-offs that underlie each technical decision you make. By understanding

the kinds of trade-offs, you can reduce technical debt instead of accumulating

it. We’ve summarized some common trade-offs in data science:

Figure 1-3.  Data science projects have many hidden technical
trade-offs

•	 Data volume vs. model accuracy (more data is better,

but each 10× scale-up requires new infrastructure)

•	 Technical correctness vs. cognitive complexity (data

science code has high cognitive complexity especially

when handling every possible edge case, which can

cause performance bottlenecks)

Chapter 1 Introducing MLOps

19

•	 Model accuracy vs. model complexity (do you really need

to use deep learning, or is a decision tree–based model

that is 90% accurate sufficient for the first iteration?)

�How to Protect Projects from Change
Change is everywhere! Change is also inevitable and can be the seed

of innovation in data science, so it has its upsides and downsides. The

downsides are change can increase technical debt and, if not properly

managed, can cause failed data science projects.

So where does it come from? What are the main drivers of change in

data science? Change can come from stakeholders or market conditions,

problem definition, changes in how a KPI is measured, or schema changes.

You need to learn to protect your data science projects from change.

Software engineering principles are about learning to protect against

change and be future thinking and so can be applied to data science.

Writing clean code has little to do with being a gatekeeper or annoyance

but is a necessary part of building a reliable system that isn’t going to

crash on Sunday’s nightly data load and cause your team to be called in to

troubleshoot an emergency.

Maybe the most basic example of shielding from change in data

science is the concept of a view. A view is an abstraction, and as software

engineers we like abstractions since they allow us to build things and

depend on something that is stable and unchanging such as the name of a

view, even if what is being abstracted, the query itself, the schema, and the

data underneath, is constantly changing.

Managing views, source control, and understanding when to

apply abstractions are something that can come with practice, but

understanding the value of a good abstraction will take you a long way

in shielding your own code from change and understanding some of the

reasons technical decisions are made without becoming frustrated in the

process.

Chapter 1 Introducing MLOps

20

There are abstractions for data like views we can use to manage

changes in data along with other tools like data versioning, but there

are also abstractions for models and code like source control and model

registries like MLflow. We’ll talk about all of these MLOps tools for

managing change in subsequent chapters, but keep in mind the concept of

abstractions and how these tools help us protect our project from change.

�Drivers of Change in Data Science Projects
We know the types of approaches needed to build an attribution model,

but there is no one way to build one without historical data, and the types

of approaches may involve more than something you’re familiar with like

semi-supervised learning; it may involve, instead, stochastic algorithms

or a custom solution. For attribute modeling we could think about various

techniques from Markov chains to logistic regression of Shap values.

From a coding perspective, for each type of approach, we are

faced with a choice as a designer of a stochastic learning system on

programming language, framework, and tech stack to use. These

technologies exist in the real world and not in isolation, and in the context

of a business environment, change is constantly happening.

These combinatorial and business changes, called change

management, can cause disruptions and delays in project timelines, and

for data science projects, the line is often a gap between what the business

wants and the problem that needs well-defined requirements or at worst

an impossible problem or one that would require heroic efforts to solve

within the time and scope.

So model, code, well-defined requirements… What about the data? We

mentioned the business is constantly changing, and this is reflected in the

data and the code. It is often said that a company ships its own org chart,

and the same is true for data projects where changes to business entities

cause changes in business rules or agreement upon ways to measure

Chapter 1 Introducing MLOps

21

KPIs for data science projects, which leads to intense downstream change

to feature stores, feature definitions, schema changes, and downstream

pipelines for model training and inference.

Externalities or macro-economic conditions may also cause changes

in customer assumptions and behavior that get reflected in the model, a

problem often called concept drift. These changes need to be monitored

and acted upon (e.g., can we retrain the model when we detect concept

drift), and these actions need to be automated and maintained as packages

of configuration, code, infrastructure as code, data, and models. Artifacts

like data and models require versioning and source control systems, and

these take knowledge of software engineering to set up.

�Choosing a Programming Language
for Data Science
Arguments over programming languages can be annoying, especially when

this leads to a holy war instead of which programming language is the right

tool for the job. For example do you want performance, type safety, or the

ability to rapidly prototype with extensive community libraries?

This is not a programming book, and it’s more important that you

learn how to think conceptually, which we will cover in the next chapter.

Python is a very good language to learn if you are starting out, but there

are other languages like Julia and R and SQL that each have their uses. You

should consider the technical requirements, skill set of your team before

committing to a language. For example, Python has distinct advantages

over R for building scalable code, but when it comes to speed, you might

consider an implementation in Julia or C++. This also comes with a

cost: the data science community for Python is prolific, and packages

like Pandas and sklearn are widely supported. This isn’t to say using a

language like R or Julia is wrong, but you should make a decision based on

available data.

Chapter 1 Introducing MLOps

22

More advanced data scientists interested in specializing in MLOps may

learn C++, Julia, or JAX (for accelerating tensor operations) in addition to

Python and strong SQL skills.

We’ll cover programming basics including data structures and

algorithms in the following chapter. It’s worth noting that no one

language is best and new languages are developed all the time. In the

future, functional programming languages oriented around probabilistic

programming concepts will likely play a bigger role in MLOps.

�MapReduce and Big Data
Big data is a relative term. What was considered “big data” 20 years ago

is different from what is considered “big data” today. The term became

popular with the advent of MapReduce algorithms and Google’s Bigtable

technology, which allowed algorithms that could be easily parallelized

to be run over extremely large gigabyte-scale data sets. Today, we have

frameworks like Spark, and knowledge of MapReduce and Java or Scale

isn’t necessary since Spark has a Python API called PySpark and abstracts

the concept of a mapper and reducer from the user. However, as data

scientists we should understand when we’re dealing with “big data” as

there are specific challenges. Not all “big data” is high volume. In fact there

are three Vs in big data you may need to handle.

�Big Data a.k.a. “High Volume”
This is most commonly what is meant by “big data.” Data that is over a

gigabyte may be considered big data, but it’s not uncommon to work

with billions of rows or terabytes of data sourced from cold storage. High-

volume data may pose operational challenges in data science since we

need to think about how to access it and transferring large data sets can

Chapter 1 Introducing MLOps

23

be a problem. For example, Excel has a famous 1 million row limit, and

similarly with R, the amount of memory is restricted to 1 GB, so we need

tools like Spark to read and process this kind of data.

�High-Velocity Data
By “high-velocity” data sources, we usually mean streaming data.

Streaming data is data that is unbounded and may come from an API or

IoT edge device in the case of sensor data. It’s not the size of the data that

is an operational challenge but the speed at which data needs to be stored

and processed. There are several technologies for processing high-velocity

data including “real-time” or near-real-time ones (often called micro-

batch architecture) like Apache Flink or Spark Streaming.

�High-Veracity Data
If you are a statistician, you know the concept of variability. Data can have

variability in how it’s structured as well. When data is unstructured like

text or semi-structured like JSON or XML in the case of scraping data from

the Web, we refer to it as high veracity. Identifying data sources as semi-

structured, structured, or unstructured is important because it dictates

which tools we use and how we represent the data on a computer, for

example, if dealing with structured data, it might be fine to use a data

frame and Pandas, but if our data is text, we will need to build a pipeline

to store and process this data and you may even need to consider NoSQL

databases like MongoDB for this type of problem.

�Types of Data Architectures
We might choose a data architecture to minimize change like a structured

data warehouse, but when it comes to data science projects, the inherent

inflexibility of a structured schema creates a type of impedance mismatch.

This is why there are a number of data architectures such as the data lake,

Chapter 1 Introducing MLOps

24

data vault, or medallion architecture that may be better fit for data science.

These architectures allow for anticipated changes in schema, definition,

and business rules.

�The Spiral MLOps Lifecycle
We will discuss the titular MLOps lifecycle in detail in Chapter 7, but we

can broadly distinguish the different phases of a data science project into

	 1.	 Insight and data discovery

	 2.	 Data and feature engineering

	 3.	 Model training and evaluation

	 4.	 Model deployment and orchestration

The reason we call it a spiral lifecycle is because each of these stages

may feedback into previous stages; however, as the technical architecture

matures (according to the MLOps maturity model), the solution

should converge to one where you are delivering continuous value to

stakeholders. Figure 1-4 shows the spiral MLOps lifecycle.

Figure 1-4.  The spiral MLOps lifecycle

Chapter 1 Introducing MLOps

25

�Data Discovery
Ideally, you would approach the problem like a statistician. You have

a problem, design an experiment, choose your sampling method, and

collect the exact data you need to ensure there are no biases in your data,

repeating the process as many times as you can if need be. Unfortunately,

business does not work like this. You will be forced to approach the

problem backward; you might have a vague idea of what problem you want

to solve and the data you need, but you may only have the resources or

access to the data that the business has already collected.

How can MLOps help with this process? Well, the data is often stored

as flat CSV files, which can total several gigabytes or more. A typical

scenario is you have to figure out how to load this data and you quickly

run into memory errors if using tools like Pandas. We’ll show you how to

leverage distributed computing tools like Databricks to get around these

issues without too much headache and if possible without even rewriting

your code.

�Data Discovery and Insight Generation
This phase is all about exploring your data sets, forming and testing

hypotheses, and developing intuition for your data. There are often several

challenges at this stage. If you are using a tool like seaborn or matplotlib

for generating visualizations, you might face the challenge of how to

deploy your work or share it with other data scientists or stakeholders.

If you’re working on an NLP problem, you might have lots of different

experiments and want to quickly test them. How do you organize all of

your experiments, generate metrics and parameters, and compare them

at different points in time? Understanding standard tools like MLflow and

how to set up an experimentation framework can help.

Chapter 1 Introducing MLOps

26

Let us suppose as a data scientist you are an expert at understanding

and identifying biases in your data. You work for a financial institution and

are tasked with creating a customer churn model. You know net promoter

score is a key metric, but you notice survey responses for your customers

are missing on two key dates.

You decide to write a script in Pandas to filter out these two key dates.

Suddenly, the next week your data has doubled in size, and your script no

longer scales. You manually have to change the data in a spreadsheet and

upload it to a secure file server. Now, you spend most of your time on this

manual data cleaning step, validating key dates and updating them in a

spreadsheet. You wish you knew how to automate some of these steps with

a pipeline.

Few people enjoy doing ETL or ELT; however, understanding the

basics of building pipelines and when to apply automation at scale

especially during the data cleaning process can save you time and effort.

�Data and Feature Engineering
Feature selection may be applied to both supervised and unsupervised

machine learning problems. In the case that labeled data exists, we might

use some measure like correlation to measure the degree of independence

between our features and a response or target variable. It may make sense

to remove features that are not correlated with the target variable (a kind of

low-pass filter), but in other cases, we may use a model itself like Lasso or

Ridge regression or random forest to decide which features are important.

�Model Training
How do you choose the best model for your problem? A training pipeline

in the wild can take hours or even sometimes days to finish especially if the

pipeline consists of multiple steps.

Chapter 1 Introducing MLOps

27

As an MLOps engineer, you should be familiar with frameworks

and methods for speeding up model training. We’ll look at Hyperopt, a

framework for using Bayesian hyperparameter search, and Horovod for

distributed model training that takes advantage of parallelism. By speeding

up model training time, by using distributed computing or GPU, we can

immediately add value to a project and have more time spent doing data

science.

�Model Evaluation
Model selection is the process of choosing the “best” model for a business

problem. Best may not necessarily be as simple as the model with the best

training accuracy in case the data overfits and does not generalize to new

samples (see the bias-variance trade-off). It may be more nuanced than

this, as there might be regulatory constraints such as in the healthcare

and banking industries where model interpretability and fairness are a

concern. In this case, we must make a technical decision, balancing the

attributes of the model we desire like precision, recall, and accuracy over

how interpretable or fair the model is and what kind of data sources we

are legally allowed to use to train the model. MLOps can help with this

step of the machine learning lifecycle by automating the process of model

selection and hyper-parameter tuning.

�Deployment and Ops
You’ve trained your model and even automated some of the data cleaning

and feature engineering processes, but now what? Your model is not

creating business value unless it’s deployed in production, creating

insights that decision makers can take action on and incorporate into their

tactical or business strategy.

Chapter 1 Introducing MLOps

28

But what does it mean to deploy a model to production? It depends.

Are you doing an online inference or batch inference? Is there a

requirement on latency or how fast your model has to make predictions?

Will all the features be available at prediction time, or will we have to do

some preprocessing to generate features on the fly?

Typically infrastructure is involved; either some kind of container

registry or orchestration tool is used, but we might also have caches to

support low-latency workflows, GPUs to speed up tensor operations

during prediction, or have to use APIs if we deploy an online solution.

We’ll cover the basics of infrastructure and even show how you can deliver

continuous value from your models through continuous integration and

delivery pipelines.

�Monitoring Models in Production
Okay, you’ve deployed your model to production. Now what? You have to

monitor it. You need a way to peer underneath the covers and see what is

happening in case something goes wrong. As data scientists we are trained

to think of model accuracy and maybe have an awareness of how efficient

one model is compared with another, but when using cloud services, we

must have logging and exception handling for when things go wrong.

Again, Murphy’s Law is a guiding principle here.

Understanding the value of setting up logging and explicit exception

handling will be a lifesaver when your model chokes on data in production

it has never seen before. In subsequent chapters you’ll learn to think

like an engineer to add logging to your models and recover gracefully in

production.

Chapter 1 Introducing MLOps

29

�Example Components of a Production
Machine Learning System
A production machine learning system has many supporting components

that go into its design or technical architecture. You can think of the

technical architecture as a blueprint for creating the entire machine

learning system and may include cloud storage accounts, relational and

nonrelational (NoSQL) databases, pipelines for training and prediction,

infrastructure for reporting to support automated training, and many

other components. A list of some of the components that go into creating a

technical architecture include

•	 Cloud storage accounts

•	 Relational or NoSQL databases

•	 Prediction pipeline

•	 Training pipeline

•	 Orchestration pipelines

•	 Containers and container registries

•	 Python packages

•	 Dedicated servers for training or model serving

•	 Monitoring and alerting services

•	 Key Vault for secure storage of credentials

•	 Reporting infrastructure

Chapter 1 Introducing MLOps

30

�Measuring the Quality of Data
Science Projects
The goal of this section is to give you the ability to quantitatively define and

measure and evaluate the success of your own data science projects. You

should begin by asking what success means for your project.

This quantitative toolbox, akin to a kind of multi-dimensional

measuring tape, can be applied to many types of projects from traditional

supervised, unsupervised, or semi-supervised machine learning projects

to more custom projects that involve productionizing ad hoc data science

workflows.

�Measuring Quality in Data Science Projects
With the rapid evolution of data science, a need has arisen for MLOps,

which we discussed, in order to make the process effective and

reproducible in a way that mirrors scientific rigor.

Measuring software project velocity and other KPIs common to project

management, an analogous measurement is needed for data science.

Table 1-2 lists some measurements that you might be interested in tracking

for your own project. In later chapters we’ll show you how to track these

or similar measures in production using tools like MLflow so that you can

learn to move the needle forward.

Chapter 1 Introducing MLOps

31

Table 1-2.  Common KPIs

Measurement Stakeholder Question Examples

Model accuracy Can we evaluate model

performance?

Precision, recall, accuracy,

F1 score; depends on the

problem and data

Model

interpretability

How did each feature in the model

contribute to our prediction?

Shap values

Fairness Are there sensitive features being

used as input into the model?

Model output distribution

Model

availability

Does the model need to make

predictions at any time of day or on

demand? What happens if there is

downtime?

Uptime

Model reliability Do the training and inference

pipelines fail gracefully? How do

they handle data that has never

been seen before?

Test coverage percentage

Data drift What happens when features

change over time?

KL divergence

Model drift Has the business problem changed? Distribution of output of

model

Correlation with

key KPIs

How do the features and prediction

relate to key KPIs? Does the

prediction drive key KPIs?

Correlation with increased

patient hospital visits for a

healthcare model

Data volume What is the size of our data set? Number of rows in feature

sets

(continued)

Chapter 1 Introducing MLOps

32

Table 1-2.  (continued)

Measurement Stakeholder Question Examples

Feature profile What kinds of features and how

many?

Number of features by

category

Prediction

latency

How long does the user have to wait

for a prediction?

Average number of

milliseconds required

to create features at

prediction time

�Importance of Measurement in MLOps
How can we define the success of our projects? We know intuitively that

the code we build should be reliable, maintainable, and fail gracefully

when something goes wrong, but what is reliability and maintainability?

We need to take a look at each of these concepts and understand what

each means in the context of data science.

�What Is Reliability?

Reliability means there are checks, balances, and processes in place to recover

when disaster strikes. While availability is more about uptime (is the system

always available to make a prediction when the user needs it?), reliability

is more about acknowledging that the system will not operate under ideal

conditions all the time and there will be situations that are unanticipated.

Since we cannot anticipate how the system will react when faced with data it’s

never seen before, for example, we need to program in error handling, logging,

and ensure we have proper tests in place to cover all code paths that could

lead to failure. A cloud logging framework and explicit exception handling are

two ways to make the system more reliable, but true reliability comes from

having redundancy in the system, for example, if you’re building an API for

your model, you should consider a load balancer and multiple workers.

Chapter 1 Introducing MLOps

33

�What Is Maintainability?

Maintainability is related to code quality, modularity, and readability

of the code. It requires a future-oriented mindset since you should be

thinking about how you will maintain the code in the future. You may have

an exceptional memory, but will you be able to remember every detail a

year from now when you have ten other projects? It’s best to instead focus

on maintainability early on so running the project in the future is easier

and less stressful.

�Moving the Needle: From Measurement to Actionable
Business Insights

Ultimately the goal of MLOps is to move the needle forward. If the goal of

the data scientist is to create accurate models, it’s the job of the machine

learning engineer to figure out how to increase accuracy, increase

performance, and move business KPIs forward by developing tools,

processes, and technologies that support actionable decision making.

�Hackerlytics: The Mindset of an MLOps Role
Finally, I would like to close out this chapter by discussing the mindset

shift required for an MLOps role from data scientist. If you are a data

scientist focused on data and analytics, you are probably used to thinking

outside the box already to solve problems. The shift to using this out-of-

the-box thinking to solve data problems with technology is exactly the

mindset required. In the next chapter, we’ll look at the fundamental skills

from mathematical statistics to computer science required so you can

begin to apply your new hackerlytics skills on real data problems.

Chapter 1 Introducing MLOps

34

�Summary
In this chapter we gave an introduction to MLOps from the data scientist’s

point of view. You should now have an understanding of what MLOps is

and how you can leverage MLOps in your own projects to bring continuous

value to stakeholders through your models. You should understand some

of the technical challenges that motivate the need for an MLOps body of

knowledge and be able to measure the quality of data science projects to

evaluate technical gaps. Some of the majors topics covered were as follows:

•	 What is MLOps?

•	 The need for MLOps

•	 Measuring quality of data science projects

In the next few chapters, we will cover some core fundamentals needed

for data scientists to fully take ownership of the end-to-end lifecycle of

their projects. We’ll present these fundamentals like algorithmic and

abstract thinking in a unique way that can help in the transition from data

science to MLOps.

Chapter 1 Introducing MLOps

35

CHAPTER 2

Foundations for
MLOps Systems

“All models are wrong, but some are useful.”

—George Box

In this chapter, we will discuss foundations for MLOps systems by breaking

down the topic into fundamental building blocks that you will apply in

future chapters. While we will discuss programming nondeterministic

systems, data structures and algorithmic thinking for data science, and

how to translate thoughts into executable code, the goal is not to give

a fully comprehensive introduction to these areas in a single chapter

but instead provide further resources to point you in the right direction

and answer an important question: Why do you need to understand

mathematics to develop and deploy MLOps systems?

This book would be remiss without laying out the core mathematical

and computational foundations that MLOps engineers need to understand

to build end to end systems. It is the responsibility of the MLOps engineer

to understand each component of the system even if it appears like a

“black box.”

Toward this end, we will create a logistic regression model (both

classical and Bayesian) from scratch piece by piece to estimate the

parameters of the hypothesis using stochastic gradient descent to illustrate

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_2

https://doi.org/10.1007/978-1-4842-9642-4_2

36

how models built up from simple mathematical abstractions can have

robust practical uses across various industries. First, let’s define what we

mean by model by taking a look at some statistical terminology.

�Mathematical Thinking
Mathematics is the foundation of data science and AI. Large language

models like ChatGPT are transforming our lives. Some of the first large

language models such as BERT (an encoder) are based on either an

encoder or decoder transformer architecture. While the attention layers

that are part of this model are different both in form and in use cases, they

are still governed by mathematics.

In this section, we lay out the rigorous foundations for MLOps, diving

into the mathematics behind some of the models we use.

�Linear Algebra
Linear algebra is the study of linear transformations like rotation. A

transformation is a way of describing linear combinations of vectors.

We can arrange these vectors in a matrix form, and in fact you can prove

every linear transformation can be represented in this way (with respect

to a certain basis of vectors). You’ll find linear algebra used throughout

applied mathematics since many natural phenomena can be modeled

or approximated by linear transformations. The McCulloch-Pitts neuron

or perceptron combines a weight vector with a feature vector using an

operator called the dot product. When combined with a step activation

or “threshold” function, you can build linear classifiers to solve binary

classification problems.

Though matrices are two-dimensional, we can generalize the idea

of a matrix to higher dimensions to create tensors. Since many machine

learning algorithms can be written in terms of tensor operations. In

Chapter 2 Foundations for MLOps Systems

37

fact tensors themselves can be described as multilinear maps1. You can

imagine how important linear algebra is to understanding neural networks

and other machine learning algorithms. Another important reason for

studying linear algebra is it is often the first exposure to writing proofs,

developing mathematical arguments and mathematical rigor.

�Probability Distributions
By model we really mean a probability distribution. The probability

distribution will be parameterized so that we can estimate it using real-

world data either through algorithms like gradient descent or Bayes’ rule

(this may be difficult under some circumstances as we’ll discuss). We’re

usually interested in two types of probability distributions: joint probability

distributions and conditional distributions.

Join probability distribution: Given two random variables X and Y, if X

and Y are defined on the space probability space, then we call the probability

distribution formed by considering all possible outcomes of X and Y

simultaneously the joint probability distribution. This probability distribution

written as P(X, Y) encodes the marginal distributions P(X) and P(Y) as well

as the conditional probability distributions. This is an important concept

as many of the models we’ll be looking at will be attempting to compute or

sample from a joint probability distribution to make some prediction.

Conditional probability distribution: Conditional probability is the

probability of an event, Y occurring given an event X has already occurred.

We write this conditional probability as P(Y | X) often read as “probability

of Y given X.” Let’s look at a few examples of models we might use as data

scientists in various industries to understand how these abstractions are

built up from mathematical concepts.

1 An introduction to linear algebra can be found in Hoffman, K. A. (1961). Linear
Algebra.

Chapter 2 Foundations for MLOps Systems

38

�Understanding Generative and Discriminative
Models
A generative model is synonymous with a joint probability distribution

P(X, Y) (however, this is not strictly true since, e.g., GANs belong to the

class of generative models) since for a classification problem it will assume

some functional form of P(Y) and P(X | Y) in terms of some parameters

and estimated from the training data. This is then used to compute P(Y | X)

using Bayes’ rule. These types of models have some interesting properties,

for instance, you can sample from them and generate new data. Data

augmentation is a growing area especially within the healthcare and

pharmaceutical industry where data from clinical trials is costly or not

available.

The simplest examples of a generative model include Gaussian

distributions, the Bernoulli model, and Naive Bayes models (also the

simplest kind of Bayesian network).

In contrast, a discriminative model such as logistic regression

makes a functional assumption about the form of P(Y | X) in terms

of some parameters W and b and estimates the parameters directly

from the training data. Then we pick the most likely class label based

on these estimates. We’ll see how to compute parameters W and b in

the lab: algorithmic thinking for data science2 where we’ll actually use

stochastic gradient descent and build a logistic regression model from the

ground up.

2 For a full introduction to algorithmic thinking and computer programming,
the reader is directed to Abelson, H. and Sussman, G. J. (1996). Structure and
Interpretation of Computer Programs, second edition. MIT Press.

Chapter 2 Foundations for MLOps Systems

39

�Bayesian Thinking
We chose logistic regression as an example in this chapter for another

reason: Logistic regression is a good example of a probabilistic model.

When you train it, it automatically gives you an estimate of the probability

of success for new data points. However, classical logistic regression is a

frequentist model. The classical logistic regression model does not tell us if

we can rely on the results, if we have enough data for training, or anything

about the certainty in the parameters.

To illustrate this point, let’s suppose we train a logistic regression

model to predict who should receive a loan. If our training data is

imbalanced, consisting of 1000 people and 900 of which are examples

of people we should not lend to, our model is going to overfit toward a

lower probability of loan approval, and if we ask what is the probability of

a new applicant getting a loan, the model may return a low probability. A

Bayesian version of logistic regression would solve this problem. In the lab,

you will solve this problem of imbalance data by using a Bayesian logistic

regression model and generating a trace plot to explore the parameters

and ensure that the parameters are well calibrated to the data. Figure 2-1

shows a trace plot generated from this lab.

Figure 2-1.  A trace plot showing the history of parameters in a
Bayesian model

Chapter 2 Foundations for MLOps Systems

40

Of course, we need to understand yet another mathematical primitive:

Bayes’ rule. Unlike in frequentist statistics, where we have parameters and

point estimates, in Bayesian statistics, we have probability distributions

as we defined earlier. In fact, every unknown in our model is a probability

distribution called a prior that encodes our current knowledge about that

parameter (in the lab, we have three parameters we want to estimate, with

priors chosen from normal distributions).

Bayes’ rule updates beliefs about the parameters by computing a

posterior probability distribution.

•	 The prior distribution can be interpreted as the current

knowledge we have on each parameter (it may only be

a best guess).

•	 The likelihood function is the probability of observing

a data set given certain parameters θ of our model.

•	 The evidence is the probability of the observed data

itself over all possible models and is very difficult to

compute, often requiring multivariate integrals in three

or more dimensions. Fortunately, for many problems,

this is only a constant of proportionality that can be

discarded3.

We speak of “turning the Bayesian crank” when the posterior of one

problem (what we are interested in estimating) becomes the prior for

future estimates. This is the power of Bayesian statistics and the key to

generative models. Listing 2-1 shows the different parts of Bayes’ rule.

3 Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. In Springer
texts in statistics. Springer International Publishing. https://doi.org/10.1007/
978-0-387-92407-6.

Chapter 2 Foundations for MLOps Systems

https://doi.org/10.1007/978-0-387-92407-6
https://doi.org/10.1007/978-0-387-92407-6

41

Listing 2-1.  Bayes’ rule

			
P | ,

| ,

|
θ

θ θ
X y

P y X P

P y X
() = () ()

() 	

Bayes rule was actually discovered by Thomas Bayes, an English

Presbyterian minister and statistician in the eighteenth century, but the

work LII. An Essay Towards Solving a Problem in the Doctrine of Chances

wasn’t published until after Bayes’ death and to this day is often a graduate

level course not taught in undergraduate statistics programs.

So how can we develop some intuition around Bayes’ rule? Let’s start

by asking a question:

What is the probability of a coin coming up heads? Take a few minutes

to think about it before you answer; it’s a bit of a trick question.

Okay …I’ve asked this question to a few people and most would say it

depends. It depends if the coin is fair or not. Ok so assuming it’s a fair coin,

the usual answer is the chance of coming up heads is 50% or 0.5 if we’re

using probability.

Now let’s switch this question up; let’s suppose that the coin has

already been flipped but you cannot see the result. What is the probability?

Go ahead and ask your colleagues or friends this question, and you might

be surprised by the range of answers you’ll receive.

A frequentist position is that the coin has already been flipped, and

so it is either heads or tails. The chance is either 0% heads if the coin

landed tails or it is 100% if it landed heads. However, there’s something

unsatisfactory about this perspective; it does not take into consideration

the uncertainty in the model.

A Bayesian approach would be to quantify that uncertainty and say, it’s

still 50% chance of heads and 50% chance of tails; it depends on what we know

at the moment. If we observe the coin has landed heads, then we can update

our hypothesis. This allows us to adapt to change and accommodate new

information (remember, MLOps is all about being able to adapt to change). In

the next section, we will look at some specific examples of Bayesian models.

Chapter 2 Foundations for MLOps Systems

42

�Gaussian Mixture Models
K-means, one of the oldest clustering methods, behaves poorly when

clusters are of different sizes, shapes, and densities. While K-means requires

knowing the number of clusters as a parameter before going ahead with

clustering, it is closely related to nonparametric Bayesian modeling in

contrast to the Gaussian mixture model (GMM) shown in Figure 2-2.

Figure 2-2.  Clustering using a Bayesian Gaussian mixture model

A Gaussian mixture model is a probabilistic model that makes the

assumption that the data generating process is a mixture of finite Gaussian

distributions (one of most important probability distributions for modeling

natural phenomena and so widely used in science, engineering, and

medicine). It is a parametric model where the parameters of the Gaussian

components are unknown. We can think of GMMs as a finite weighted

sum of Gaussian component densities. Listing 2-2 shows an equation that

governs the GMM.

Chapter 2 Foundations for MLOps Systems

43

Listing 2-2.  An equation that describes the Gaussian mixture model

			

p x
i

m

i i
i

() = 









=
∑

1

θ  x | ,µµ ∑
	

However, these parameters are computationally expensive and do not

scale well since they are computed often through maximal likelihood and

EM (expectation-maximization) algorithms and are modeled as latent

variables. Despite scalability problems, GMMs are used in many industries

in particular healthcare, to model more meaningful patient groupings,

diagnostics, and rehabilitation and to support other healthcare activities.

�General Additive Models
With generalized additive models (GAMs), you don’t have to trade off

accuracy for interpretability. These are a very powerful extension to linear

regression and are very flexible with their ability to incorporate nonlinear

features in your data (imagine having to do this by hand if all we had was a

linear regression model?)

If random forests are data driven and neural networks are model

driven, the GAMs are somewhere in the middle, but compared to neural

nets, SVMs, or even logistic regression, GAMs tend to have relatively

low misclassification rates which make them great for mission critical

applications where interpretability and misclassification rate are utmost

importance such as in healthcare and financial applications.

If you’ve never used a GAM before, you can look at splines to start.

Splines are smooth functions used to model nonlinear relationships

and allow you to control the degree of smoothness through a smoothing

parameter. Figure 2-3 shows some of the trade-offs between these

different models.

Chapter 2 Foundations for MLOps Systems

44

Figure 2-3.  Trade-offs between explainability and model accuracy

�Kernel Methods
The best known example of kernel methods, the support vector machine

(SVM), allows us to use the “kernel trick” and work well on text based

data which is naturally high dimensional. This means that we can embed

features in a higher, possibly infinite, dimensional space without ever

having to explicitly compute the embedding.

Kernel methods are particularly important in geostatistics applications

such as kriging (Gaussian process regression) especially in the oil and

gas industry. The main use case of kriging is to estimate the value of a

variable over a continuous spatial field. For example, you may have sensor

readings such as temperature and pressure in an oil and gas reservoir, but

you may not know the sensor readings at every position in the reservoir.

Kriging provides an inexpensive way to estimate the unknown sensor

readings based on the readings that we do know. Kriging uses a covariance

matrix and a kernel function to model the spatial relationships and

spatial dependencies of data points throughout the reservoir by encoding

similarity between features.

Chapter 2 Foundations for MLOps Systems

45

Where did these models come from? Fundamentally, these algorithms

are based on logic and mathematical properties and primitives such as

probability distributions. If we know about the Gaussian distribution, it’s

not a far stretch to understand how to build a Gaussian mixture model. If

we know about covariance matrices, we can understand kernel methods

and maybe Gaussian processes, and if we understand linear systems, we

can build on top of this abstraction to understand GAMs.

I want to illustrate this point further, by building a model from

fundamental principles. Logistic regression is particularly interesting to

use for this as most people are familiar with it, but it is not a toy model;

you can use logistic regression to solve many real-world problems

across various industries since it is fairly robust. We can also use logistic

functions to build many more complex models. For instance, the classical

version of logistic regression is used to model binary classification (e.g.,

predicting likelihood of success or failure), but by combining multiple

logistic regression models into strategies like one-vs.-all or one-vs.-

one, we can solve more complex multi-class classification problems

with a single response variable via softmax, a generalization of logistic

regression. Logistic functions can also be used to create neural networks:

It’s no coincidence that in a neural network, the activation function is

often a logistic sigmoid (pictured in the following). In this chapter’s lab

on algorithmic thinking, you’re going to walk through some of these

mathematical tools and build a logistic regression model from scratch.

Figure 2-4 shows an example of a logistic sigmoid curve.

Chapter 2 Foundations for MLOps Systems

46

Figure 2-4.  A logistic sigmoid curve

The parameter mu takes on the probability value ½ which makes

intuitive sense.

�Higher Dimensional Spaces
I want to cover one more mathematical tool for the toolkit because in data

science, unlike pure statistics, we deal with big data but also because it is

fascinating to be able to develop intuition on higher dimensional spaces by

learning to think geometrically.

You’ve probably heard of the “curse of dimensionality.” Things behave

strangely in high dimensions, for example, if we could measure the volume

of a unit sphere as we embed it into higher dimensional space, that volume

would actually shrink as the dimension increases! That is incredibly

counterintuitive. Figure 2-5 shows an artistic rendition of a shrinking

sphere in higher dimensional space (since we can only visualize in three

dimensions).

Chapter 2 Foundations for MLOps Systems

47

Figure 2-5.  A shrinking sphere illustrating the unintuitive nature of
higher dimensions

In data science in the real world, we have at minimum hundreds

of features. It is not uncommon to have 1000 or more features, and

so naturally we need a way to try to reduce the number of features.

Mathematically speaking, this means we want a way to embed our data

that lives in a high dimensional space to a lower dimensional space while

preserving information.

Going back to our favorite example, logistic regression, we

can illustrate another important mathematical tool to handle high

dimensionality, regularization.

Regularization is extremely important when applying logistic

regression because without it, the asymptotic nature of the logistic curve

at +infinity and -infinity (remember the sigmoid?) would translate into

zero loss in high dimensions. Consequently, we need strategies to dampen

Chapter 2 Foundations for MLOps Systems

48

the model complexity. The most common way is L2 regularization which

means we’ll give a higher penalty to model parameters that are nonzero.

We can also use an L1 norm (a different way of measuring distance in high

dimensional spaces). The penalty is defined as minus the square of the

L2 norm multiplied by a positive complexity parameter lambda. Lambda

controls the amount of shrinkage toward zero.

Models that use L1 regularization are called Lasso regression, and

models that use L2 are called Ridge regression. If you would like to gain

a deeper understanding of the types of norms that can exist and higher

dimensional spaces, in the next section, you will have the opportunity to

learn more about mathematical statistics in a hands-on lab.

�Lab: Mathematical Statistics
Before proceeding to the next section, you can complete the optional lab

on mathematical statistics. This will give you hands-on experience with

probability distributions by looking at an important and fundamental tool

in mathematical statistics: characteristic functions.

You’ll program a characteristic function from scratch. Characteristic

functions have many interesting properties including completely

characterizing a probability distribution and are even used in the most

basic proofs of the central limit theorem. The steps are as follows:

Step 1. Open the notebook MLOps_Lifecycle_Toolkit_Mathematical_

Statistics_Lab.ipynb (available at github.com/apress/mlops-lifecycle-

toolkit).

Step 2. Import the math, randon, and numpy packages by running cell #2.

Step 3. Create a function for computing the characteristic function of a

random normal with unit standard deviation by running cell #3.

Step 4. Run the remaining cells, to set up a coin toss experiment and

recover the probability of a fair coin from the characteristic function. Was

the coin fair?

Chapter 2 Foundations for MLOps Systems

49

Although this lab is optional because it requires some advanced math,

it’s recommended since it covers some deep mathematical territory from

probability distributions, Fourier transforms, complex numbers, and more.

�Programming Nondeterministic Systems
In order to build real-world systems, we need to understand the types

of data structures (arrays, lists, tensors, dataframes) and programming

primitives (variables, loops, control flow, functions) that you’ll likely

encounter to know what the programming is doing and to be able to read

other data scientists code.

Knowledge of data structures, algorithms, and packages can be applied

regardless of language. If you use a package, even an R package, you

should read the source code and understand what it’s doing. The danger

of not understanding what the statistical black box means the result of

an analysis that uses your code could come out inaccurate or, worse,

introduce non-determinism into your program.

Sources of non-determinism in ML systems

•	 Noisy data sets

•	 Poor random initialization of model parameters

•	 Black box stochastic operations

•	 Random shuffling, splits, or data augmentation

Chapter 2 Foundations for MLOps Systems

50

�Programming and Computational Concepts
Let’s look at some basic programming concepts.

�Loops
Loops are a mechanism to repeat a block of code. Why use loops? One

reason is you may have a block of code you want to repeat and, without a

loop, you would have to copy paste the code, creating redundant code that

is hard to read and reason about.

Another reason we use loops is for traversing a data structure such

as a list or dataframe. A list or array has many items and a dataframe has

many rows, in a well-defined order, and it is a natural way to process each

element one by one; whether that element be a row or a list depends on

the data structure.

Loops can be complex, and there’s a programming adage that goes you

should never modify a variable in a loop.

One reason loops are important in data science is twofold:

	 1)	 Many tensor operations naturally unfold into loops

(think dot product or tensor operations).

	 2)	 By counting the number of nested loops, you can get

an idea on the asymptotic behavior (written in Big-O

notation) of your algorithm; in general, nested loops

should be avoided if possible being replaced by

tensor operations.

The last technique is actually an optimization tool called

vectorization. Often, vectorized code can take advantage of low level

instructions like single instruction, multiple data, or SIMD instructions. In

fact, most GPUs use a SIMD architecture, and libraries like JAX can take

this idea to the next level if you need to run NumPy code on a CPU, GPU,

or even a TPU for high performance machine learning.

Chapter 2 Foundations for MLOps Systems

51

�Variables, Statements, and Mathematica
Expressions
What is the difference between a statement and an expression?

A statement does something that assigns a value to a variable. An

example in Python is x = 1.

This simple statement assigns the value 1 to a variable x. The variable,

x, in this case points to a memory location used to store information.

An expression on the other hand needs to be evaluated by the

interpreter (or compiler in a compiled language like C++ or Haskell)

and returns a value. Expressions can be building blocks of statements or

complex mathematical expressions. An example of an expression (but not

a statement) is the following:

(1 + 2 + x)

We can also have Boolean expressions which we’ll look at next and are

very important for making decisions.

�Control Flow and Boolean Expressions
Control flow refers to the order in which individual statements,

commands, instructions, statements, or function calls are executed.

Changing the order of statements or function calls in a program can

change the program entirely. In imperative languages (e.g., Python can

be coded in an imperative style), control flow is handled explicitly by

control flow statements such as if statements that control branching.

Usually at each branch, a choice is made and the program follows one

path depending on a condition. These conditions are called Boolean

expressions.

Chapter 2 Foundations for MLOps Systems

52

Boolean expressions involve logical operations such as AND, OR, NOT,

and XOR. These Boolean expressions can be combined in complex ways

using parentheses and as mentioned are used in control flow statements in

your program to make complex decisions.

For example, let’s suppose you have a computer program with

variables that store true and false values. You have one variable that stores

the percent missing and a second variable that stores the number of rows

in your data, and you want to exclude rows that have over 25% missing

values when your data is more than 1000 rows. You can form a Boolean

expression as follows:

If (percent_missing > 25) AND (num_rows > 1000):

 // drop rows

Of course, in a library like Pandas, there are functions like dropna for

dataframes that do this sort of low level logic for you, but you can read the

source code to understand exactly what is happening under the hood for

the functions you care about.

�Tensor Operations and Einsums
A tensor is, simply put, a generalization of vectors to higher dimensions.

There is some confusion on the use of the term since there are also tensors

in physics, but in machine learning, they’re basically a bucket for your

data. Many libraries including NumPy, TensorFlow, and PyTorch have

ways of defining and processing tensors, and if you’ve done any deep

learning you’re likely very familiar with tensors, but a cool tool I want to

add to your toolkit is Einsums.

Einsums are essentially shorthand for working with tensors, and if you

need to quickly translate complex mathematical equations (e.g., ones that

occur in data science or machine learning papers), you can often rewrite

them in Einsum notation in very succinct, elegant ways and then execute

Chapter 2 Foundations for MLOps Systems

53

them immediately in a library like PyTorch. For example, the following

Einsum equation codifies matrix multiplication, and we can implement it

in PyTorch in Listing 2-3:

Listing 2-3.  An example of Einsum notation

a = torch.arange(900).reshape(30, 30)

b = torch.arange(900).reshape(30, 30)

torch.einsum('ik,kj->ij', [a, b])

Okay, we’ve covered quite a bit. We talked about variables, loops, and

control flow and ended with tensors, a kind of bucket for high dimensional

data. However, there are many more “buckets” for your data that are useful

in data science. These are called data structures, the subject of computer

science. We’ll cover a few data structures in the next section.

�Data Structures for Data Science
This section is about data structures. While computer science has many

data structures, data scientists should be familiar with a few core data

structures like sets, arrays, and lists. We will start by introducing sets,

which might be the simplest data structure to understand if you come from

a math background.

�Sets
Sets are collections of elements. A set can contain elements, and you can

use sets for a variety of purposes in data science for de-duplication of your

data to checking set membership (that is to say, the set data structure

comes with an IN operator).

Chapter 2 Foundations for MLOps Systems

54

It is important to note that a set has no order (actually there is the

well-ordering principle that says exactly the opposite, but in Python, for

instance, and other languages, sets have no order). If we want to impose an

order when storing elements, we should use a linear data structure like an

array or a list, which we’ll cover next.

�Arrays and Lists
The most fundamental distinction between an array and a list is that a list

is a heterogeneous data structure, and this mean it can store a mix of data

types, for example strings, floats, Booleans, or even more complex user

defined types.

 An array on the other hand is homogenous; it only is designed to store

one type of value.

In Python, lists are a primitive data type and part of the core language.

The ability to use list comprehensions instead of loops for mathematical

constructs is very useful in data science. However, for efficient processing

of data, we can use a library like NumPy which has a concept of arrays.

This is known as a trade-off, and in this case, the trade-off exists between

efficiency and convenience.

Part of being a good technical decision-maker is understanding these

types of technical trade-offs and the consequences on your own project.

For example, if you decide to profile your code and find you’re running

into memory errors, you might consider changing to a more efficient data

structure like a NumPy array, maybe even with a 32 bit float if you don’t

need the extra precision of a 64 bit floating point number.

There are many different types of data structures and we’ll provide

resources for learning about more advanced types (one of the core subjects

of computer science), but for now, we’ll take a look at a more complex type

that you should be aware of such as hash maps, trees, and graphs.

Chapter 2 Foundations for MLOps Systems

55

�Hash Maps
Hash maps are an associative data structure; they allow the programmer to

associate a key with a value.

They provide very fast lookup by keys, allowing you to retrieve a value

corresponding to a key in O(1) time by using dynamically sized arrays

under the hood and allow you to retrieve a value you’ve associated with

your key.

If you didn’t have this kind of associative data structure, you’d have to,

for instance, store your elements as an array of tuples and would need to

write code to search for each key you wanted to locate in the array. This

would not be very efficient, so when we want to associate one piece of

information with another and only care about being able to retrieve the

value we’ve mapped to a particular key, we should consider hash maps.

The point is, having a command of data structures can simplify your code

drastically and make it more efficient.

In Python, a hash map is called a dictionary. One point to keep in mind

when using hash maps is that the keys should be hashable, meaning a

string is OK for a key but a mutable data type like a list that can be changed

is not allowed.

�Trees and Graphs
A graph is a mathematical data structure consisting of nodes and edges.

The nodes are also called vertices. The difference between a tree and a

graph is that a tree has a root node. In a graph there is no root node that

is unique but both structures can be used for representing many different

types of problems. Graph neural networks and graph databases are huge

topics today in machine learning and MLOps, and part of the reason is

that a graph, like a set, is a very general mathematical way of representing

relationships between concepts that can be easily stored on a computer

and processed.

Chapter 2 Foundations for MLOps Systems

56

You should be aware of a couple kinds of trees and graphs in particular

binary trees and DAGs.

�Binary Tree
A binary tree is a tree (it has a root node), and each node including the root

has either 2 (hence binary) children or 0 children (in this case, we call it a

leaf node). A picture of a binary tree is shown in Figure 2-6.

Figure 2-6.  A binary tree

Binary trees can be complete or perfect or have additional structure

that makes them useful for searching such as binary search trees.

Chapter 2 Foundations for MLOps Systems

57

�DAGs
A graph is a generalization of a tree. A graph however can have cycles,

meaning if you were to visit every node and follow its neighbor, you may

find yourself in an infinite loop. An important type of graph with no cycles

is called an acyclic graph and is often used in MLOps tools like Airflow to

represent data flow. Directed acyclic graphs are called “DAGs” and have

a variety of uses in MLOps (e.g., the popular Airflow library uses DAGs for

creating pipelines).

�SQL Basics
We’ve covered programming languages like Python, but you also need to

know how to manipulate data in your programs. SQL is actually based on

relational algebra and the set data structure we covered previously (the

foundations were written by Edger F. Codd). SQL consists of queries and

the queries can be broken down into statements. A SQL statement consists

of the following clauses executed in the following order:

•	 FROM

•	 JOINS on other tables

•	 WHERE clause for filtering data

•	 GROUP BY for aggregating by multiple columns

•	 HAVING for filtering after aggregation

•	 SELECT for selecting columns or fields you want to use

in your data set

•	 ORDER BY for sorting data by one or more columns

(this can cause performance issues and should only be

used sparingly)

Chapter 2 Foundations for MLOps Systems

58

A common table expression or CTE is a very useful construct when

operationalizing data science code. The reason it is so powerful is that

a CTE allows you to think algorithmically, by breaking down your SQL

query into a series of steps. Each step can depend on previous steps and is

materialized as a kind of “virtual table.” A simple example of a CTE is given

in the following; this CTE first creates a base table called Sensor_CTE and

then selects from it in Listing 2-4.

Listing 2-4.  An example of a common table expression or CTE

-- An example of a CTE

WITH Sensor_CTE (SalesPersonID, SalesOrderID, SalesYear)

AS

-- Define the CTE query.

(

 �SELECT ID as Component, MAX(Pressure) as Pressure,

AVG(Temperature) as Temperature

 FROM Sensor.Readings

 WHERE ID IS NOT NULL

 GROUP BY ID

)

-- Define the outer query referencing the CTE name.

SELECT Component, Temperature

FROM Sensor_CTE;

Understanding how joins and common table expressions (CTEs) work

is typically what separates beginners from advanced SQL users. Most

data science code requires multiple passes on data sets, and CTEs are a

natural way to write more complex SQL code that requires multiple steps

to process data.

Chapter 2 Foundations for MLOps Systems

59

�Algorithmic Thinking for Data Science
An algorithm is essentially a set of rules or instructions for performing

calculations that occur in a certain sequence. You can think of it like

a recipe. Unlike recipes though, algorithms will usually involve data

structures for storing data, and the heart of the algorithm will be

manipulating these data structures to solve a problem. Unfortunately,

you need to learn algorithmic thinking, and by doing so, we’ve created

a lab for you. In the lab, you’re going to start with data structures we’ve

learned to build some basic mathematical primitives like sigmoid function

and logistic curve and combine these abstractions to build your own

logistic regression model. Refer to the Jupyter notebook labs for this

chapter entitled “Building a Logistic Regression Model from Scratch,” and

complete the lab before continuing to the next section.

�Core Technical Decision-Making: Choosing
the Right Tool
Beyond this section, we’re going to assume you’ve completed the labs and

have a basic grasp on programming fundamentals. Before covering specific

packages and frameworks for translating experiments and thoughts into

executable code, I want to discuss technical decision-making briefly and

how we should think about choosing the right framework for our problem.

The most important criterion in the real world is considering what

tools and frameworks are already being used by your organization,

colleagues, and the community behind the framework. Although you

might be tempted to use a package from a language like Julia or Haskell,

you should carefully consider whether or not you’ll have to translate your

problem into another language at some point in the future if either the

package is no longer supported or because nobody in your organization

has the skill set required.

Chapter 2 Foundations for MLOps Systems

60

�Translating Thoughts into Executable Code
You might want to choose one of the following packages and dive deeper

into some frameworks that are used in the real world to build machine

learning models. In later chapters, we’ll walk you through how to create

your own packages. The important thing here is understanding that these

tools we depend on in data science like Pandas or Numpy or PyTorch are

just packages someone (or a team of people) have written and created. You

too can learn to create your own packages, but first we need to understand

why we use packages and how it makes our lives as both data scientists

and MLOps engineers easier.

�Understanding Libraries and Packages
What is the point of a software package? Why not use a notebook?

Packages allow us to bundle code together and give it a name, import it,

and reference objects inside the package so we can reuse them without

having to rewrite those objects. Packages can also be versioned (see

semantic versioning4).

For example, you may have heard of RStudio package manager for R

or pip for Python. Before experimenting with any of the packages listed

in the following, you should understand the package manager in your

language of choice so you can install the package. We also recommend

environments to isolate dependencies. We’ll cover the gritty details of

package managers and environments in Chapter 3, but for now here is a

broad overview of some of the most interesting packages you might come

across as an MLOps engineer.

4 Semantic versioning 2.0.0 can be found at https://semver.org/.

Chapter 2 Foundations for MLOps Systems

https://semver.org/

61

�PyMc3 Package
An active area of research is in probabilistic programming. The PyMc3

library contains various primitives for creating and working with random

variables and models. You can perform MCMC (Markov chain Monte

Carlo) sampling and directly translate statistical models into code.

Something to keep in mind is at the current time, these algorithms

may not be very scalable, so you’ll usually only see Bayesian optimization

applied to the hyperparameter search part of a machine learning

lifecycle using libraries like HyperOpt; however, we mention probabilistic

programming as Bayesian statistics is slowly becoming a part of

mainstream data science.

�Numpy and Pandas
Numpy and Pandas are the bread and butter of most data science

workflows. We could write an entire chapter covering just these

libraries, but we’ll mention for the uninitiated that Pandas is a data

wrangling library. It provides a data structure called a DataFrame for

processing structured data and various methods for reading csv files and

manipulating dataframes. NumPy has the concept of ndarrays and allows

you to process numerical data very fast without having to know much

about C++ or low level hardware.

�R Packages
R uses a package system called CRAN which makes available R binaries.

Unlike Python, CRAN packages typically have higher dependency on other

packages and tend to be focused on specific areas of statistical computing

and data visualization.

Chapter 2 Foundations for MLOps Systems

62

The reason data scientists still use R is many packages written by

researchers and statisticians are written in R. However, you should be

aware of the following interoperability and scalability issues with R:

•	 R is not as widely supported; for example, the machine

learning SDK uses R, but there is a lag between when

features are released in Python and when they become

available in R.

•	 Writing clear, concise and easy to read code in R

requires considerable skill and even then there are

leaky abstractions which make code difficult to

maintain such as

•	 R is not scalable and has memory limitations. For

scalable R, we recommend Databricks using SparkR.

A lot of R packages revolve around the TidyVerse. You should be

familiar with the following basic R packages:

Deplyr: Deplyr is a package that is similar to Pandas in Python and is

used for data wrangling. The package provides primitives such as filter

and melt.

Shiny: The R ecosystem’s answer to dashboarding in data science,

Shiny is a package for authoring dashboards in R and fulfills the same need

as Dash in Python. The advantage of ShinyR is you can build web apps

without having to know how web development works. The web apps can

be interactive, and you can interact with different panels of the dashboard

and have multiple data sources to visualize data sets. We don’t recommend

Shiny as it can be hard to deploy to a web server securely.

SAS: SAS is a language of statistical programming. SAS is a procedural

language. SAS requires a SAS license and is common in healthcare and

finance industry where exact statistical procedures need to be executed.

MATLAB/OCTAVE: MATLAB and the open source version Octave

are libraries for linear algebra. If you are prototyping a machine learning

algorithm whose primitives can be expressed using matrix operations

Chapter 2 Foundations for MLOps Systems

63

(which is a lot of machine learning), then you might consider using one

of these languages. MATLAB is also particularly popular in engineering

disciplines for simulations and is used in numerical computing.

PySpark: Spark is a framework for distributed computing and has a

tool called PySpark that allows you to write code similar to Pandas using

dataframes but in a scalable way. You can translate between Pandas and

Pyspark using the latest Pandas API for spark (replacement for Koalas)

and process gigabytes or even terabytes of data without running into out

of memory errors. Other alternatives are called “out of core” solutions and

include Dask or Modin that utilize disk storage as an extension of core

memory in order to handle memory-intensive workloads.

�Important Frameworks for Deep Learning
There are many frameworks in Python for deep learning and working

with tensors. PyTorch and TensorFlow 2.0 with Keras API are the most

popular. Although we could implement our own routines in a package like

the NumPy example to build your own 2D convolutional layer and use

these functions to build a convolutional neural network, in reality, this

would be too slow. We would have to implement our own gradient descent

algorithm, auto differentiation, and GPU and hardware acceleration

routines. Instead, we should choose PyTorch or TensorFlow.

�TensorFlow
TensorFlow is an end to end machine learning framework for deep

learning. TensorFlow is free and open sourced under Apache License 2.0

and supports a wide variety of platforms including MacOS, Windows,

Linux, and even Android. TensorFlow 1.0 and TensorFlow 2.0 have

significant differences in APIs, but both provide the tensor as a core

abstraction allowing the programmer to build computational graphs to

represent machine learning algorithms.

Chapter 2 Foundations for MLOps Systems

64

�PyTorch
The advantage is PyTorch is class oriented, and if you have a strong Python

background, you can write a lot of custom code in an object oriented

style without having to be very familiar with how the APIs work like in

TensorFlow. PyTorch for this reason is used in academic papers on machine

learning and is a solid choice for prototyping machine learning solutions.

�Theano
PyMC3 is written on top of Theano as well as some other interesting

projects, but Theano is no longer supported so it is not recommended for

ML development or MLOps.

�Keras
Prior to the introduction of the Keras API, developers required specific

knowledge of the API. Keras however is very beginner friendly, and some

useful features of TensorFlow are GPU awareness (you do not need to

change your code to use a GPU if one is available, as TensorFlow will

detect if for you); the Keras API is very intuitive for beginners, and there

is a large community around TensorFlow so bugs and CVEs (security

vulnerabilities) are patched regularly. Post TensorFlow 2.0 release, you can

also do dynamic execution graphs.

�Further Resources in Computer
Science Foundations
We’ve covered a lot of ground, discussed data structures and algorithmic

thinking, and covered the basics of computer science required to work

Chapter 2 Foundations for MLOps Systems

65

with data such as graphs, dataframes, tables, and the basics of SQL. We’ve

talked about R and Python, two common languages for data science, and

some of their common packages.

However, it is important to stress this is only the minimum. It

would not be possible to cover a complete course in computer science

for data scientists in this chapter, and so the best we can do is provide

some recommended reading so you can educate yourself on topics

you’re interested in or fill in gaps in your knowledge to become better

programmers. We’ve curated the following list of books on computer

science that we think would be most valuable for data scientists.

•	 Introduction to Algorithms by Rivest5

•	 Bayesian Methods for Hackers by Davidson Pilon6

In general, you can read a book on functional analysis (for infinite

dimensions) or linear algebra (for finite dimensional spaces) provided in

the following.

�Further Reading
in Mathematical Foundations
Although we covered some mathematical concepts in this chapter, it would

not be possible to cover even the simplest areas like linear algebra in detail

without further resources. Some areas you may be interested in pursuing

on your own are Bayesian statistics7 (understanding Bayes’ rule, Bayesian

5 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to
Algorithms. MIT Press.
6 Davidson-Pilon, C. (2015). Bayesian Methods for Hackers: Probabilistic
Programming and Bayesian Inference. Addison-Wesley Professional.
7 McElreath, R. (2015). Statistical Rethinking: A Bayesian Course With Examples in
R and Stan. Chapman & Hall/CRC.

Chapter 2 Foundations for MLOps Systems

66

inference, and statistical thinking), statistical learning theory8 (the rigorous

foundations of the many learning algorithms we use in MLOps), and of

course linear algebra9 (in particular finite dimensional vector spaces are a

good stepping stone to understand more advanced concepts).

�Summary
In this chapter, we discussed the importance of understanding mathematical

concepts and how MLOps systems can be viewed as stochastic systems

that are governed by mathematical abstractions. By understanding these

mathematical abstractions and having an understanding of data structures

and algorithmic thinking, we can become better technical decision-makers.

Some of the topics we covered in this chapter include the following:

•	 Programming Nondeterministic systems

•	 Data Structures for Data Science

•	 Algorithmic Thinking for Data Science

•	 Translating Thoughts into Executable Code

•	 Further Resources on Computer Science

In the next chapter, we will take a more pragmatic perspective and look

at how we can use these abstractions as tools and software packages when

developing stochastic systems in the real world.

8 Hastie, T., Tibshirani, R., & Friedman, J. (2013). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Science & Business Media.
9 Halmos, P. (1993). Finite-Dimensional Vector Spaces. Springer.

Chapter 2 Foundations for MLOps Systems

67

CHAPTER 3

Tools for Data Science
Developers

“Data! Data Data! I can’t make bricks without clay!”

—Sir Arthur Conan Doyle

How do we manage data and models? What are the tools we can use to

make ourselves more efficient and agile in data science? In this chapter, we

will deep dive into the tools and technology that you will depend on daily

as an MLOps engineer.

AI tools can make you more productive. With the release of GPT3 in

June 2020, the large language model and “brains” behind the ChatGPT

app, and in March of 2023, GPT4, the first multimodal large language

model capable of understanding both text and images was released. Data

scientists will increasingly use AI tools to write code.

The growth is exponential, and although it cannot predict very far

into the future what specific tools will be available, it is certain that basic

tools like code version control systems, data version control, code editors,

and notebooks will continue to be used in some form or another in data

science, and what’s important is to have a solid foundation in the basics.

You will understand version control, data version control, and specific

python packages used at various stages of the spiral MLOps lifecycle. You

should be comfortable enough at the end of this chapter to complete the

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_3

https://doi.org/10.1007/978-1-4842-9642-4_3

68

titular MLOps toolkit lab work where you’ll build a cookie cutter MLOps

template you can apply to accelerate your projects and be able to install a

wide range of MLOps packages like MLFlow and Pandas to support various

stages of the MLOpS lifecycle.

�Data and Code Version Control Systems
Data science is a collaborative activity. When you are first learning data

science you might spend most of your time alone, exploring data sets you

choose and applying whatever models perform best on your data set.

In the real world you typically work on a team of data scientists, and

even if you are the sole individual contributor on your team, you still likely

report results to stakeholders, product managers, business analysts, and

others and are responsible for handling changes.

All of these changes in a business impact data science as they result in

changes in downstream feature engineering libraries and training scripts.

You then need a way to share code snippets and get feedback in order to

iterate on results and keep track of different versions of training scripts,

code, and notebooks. Are there any tools to manage this change in data,

code, and models? The answer is version control.

�What Is Version Control?
Version control is a software tool used to manage changes in source code.

The tool keeps track of changes you make to the source code and previous

versions and allows you to roll back to a previous version, prevent lost

work, and pinpoint where exactly in the code base a particular line was

changed. If you use it properly, you read the change log and understand

the entire history of your project. Git, a distributed version control

system (as opposed to centralized version control), is a standard for data

science teams.

Chapter 3 Tools for Data Science Developers

69

�What Is Git?
As we mentioned, Git is a standard tool for version control. Git works

basically by taking a snapshot of each file in your directory and storing this

information in an index. Git is also a distributed version control system

(as opposed to a central version control like TFS) which means it supports

collaboration among data scientists and developers. Each developer can

store the entire history of the project locally, and because Git only uses

deltas, when you are ready to commit changes, you can push them to the

remote Git server, effectively publishing your changes.

�Git Internals
Git uses commands. There are several Git commands you should be aware

of and some special terminology like “repos” which refers to a collection

of files that are source controlled. If you are unfamiliar with the concept

of repos, you could think of it like a kind of directory where your source

code lives.

In practice, when working on a data science project as in MLOps

role, you will probably use a source control tool like Sourcetree since

productivity is important, and also once you know the basics of the

commands, it gets very repetitive to type each time. Tools like Sourcetree

abstract these details away from you. You may be wondering why a

tool like Sourcetree could help data scientists when you can use the Git

command. As we will see in the next section, Git does provide low level

commands for interacting with Git repositories, but Sourcetree is a GUI

tool, and since typing the same command over and over again takes time,

using a GUI tool will make you a more productive developer.

Chapter 3 Tools for Data Science Developers

70

�Plumbing and Porcelain: Understanding
Git Terminology
Porcelain commands refer to high level Git commands that you will use

often as part of your workflow. Plumbing is what Git does behind the

scenes. An example of a porcelain command is the Git status to check for

changes in your working directory.

Ref: A ref is essentially a pointer to a commit. A pointer is how Git

represents branches internally.

Branch: A branch is similar to a ref in that it’s a pointer to a commit.

You can create a new branch using the command given in Listing 3-1.

Listing 3-1.  Git command to create a new branch

git branch <branch>

Head: Some documentation makes this seem really complicated

but it is not. In Git, there was a design choice that only one branch can

be checked out at a time, and this had to be stored in some reference or

pointer. (If you don’t know what a reference or a pointer is, read the Git

documentation1).

�How Git Stores Snapshots Internally
Git assigns a special name to this pointer called HEAD. There can only be

one HEAD at a time and it points to the current branch. This is the reason

why you might hear HEAD referred to as the “active” branch.

You might be wondering, how is this “pointer” physically stored on

a computer. Well, it turns out the pointer is not a memory address but a

file. This file stores the information that the HEAD is the current branch

1 The Git documentation covers topics including references and pointers:
https://git-scm.com/book/en/v2/Git-Internals-Git-References

Chapter 3 Tools for Data Science Developers

https://git-scm.com/book/en/v2/Git-Internals-Git-References

71

(remember the definition of a branch from earlier). There is a physical

location on the computer in the .git/HEAD directory where this file is

located and you can open it up in a text editor (such as Notepad++) and

read its contents for yourself to understand how Git stores information

internally.

Don’t worry if this seems complicated, as it will be much easier in the

lab work and begin to make sense when you use it and see the purpose of

Git for yourself.

�Sourcetree for the Data Scientist
We recommend using Sourcetree, a free open source GUI based tool. If you

are a professional software developer, you can try Kraken which has some

additional features but requires a license. There are two steps for using

Sourcetree:

You can download Sourcetree at sourcetreeapp.com. You need to agree

to terms and conditions and then download the app (Figure 3-1):

Figure 3-1.  Sourcetree GUI tool for interacting with Git repositories

Chapter 3 Tools for Data Science Developers

72

Step 1: Clone a remote repository. Figure 3-2 shows the GUI interface

for cloning a repository in Sourcetree.

Figure 3-2.  Cloning a Git repository using a GUI

Step 2: If you use a private repo, you’ll need to configure your ssh key.

Make sure to click SSH not HTTPS as shown in Figure 3-3.

Chapter 3 Tools for Data Science Developers

73

Figure 3-3.  Copying the SSH path to your GitHub repo

�Branching Strategy for Data Science Teams
If you are on a team of at least five developers, you may have to consider

a branching strategy. This matters less if you are on a small team or

alone because as a data scientist you may be OK to rely on a single main

branch, but with more than five developers, you may consider setting up a

second branch.

If you want to learn about more complex branching strategies beyond

feature branches, you can read about Git Flow. Usually different branching

strategies are chosen in consideration of a software release schedule in

collaboration with other teams depending on the size of your organization

among other factors. Figure 3-4 shows how to create a new branch from

the Sourcetree GUI.

Chapter 3 Tools for Data Science Developers

74

Figure 3-4.  Creating a new branch from the Sourcetree GUI

�Creating Pull Requests
Pull requests are a great tool for code reviews and should be adopted by

data science teams. Typically the main branch is a stable branch, and

prior to merging changes into main, you should have a peer review your

changes. Ideally, a data scientist on your team that is familiar with Git

would be designed as the release manager and would coordinate this with

the team, but the process can be done informally. Figure 3-5 shows how to

create a pull request.

Benefits of pull requests for data scientists include the following:

•	 Opportunity to review changes and learn new data

science techniques.

•	 Catch mistakes and bugs before they are committed to

main branch, increasing code quality metrics.

Chapter 3 Tools for Data Science Developers

75

Figure 3-5.  Creating a pull request

�Do I Need to Use Source Control?
You might wonder if all of this is necessary or do you even need source

control. But what are the consequences of not using it? You should use

source control for the following reasons

•	 You are part of a team of data scientists sharing code

and collaborating and need to coordinate changes

through a remote branch.

•	 You want to version your data so you can train models

on a previous version of data.

•	 You are a data scientist that does not want to lose

their work on their local system and wants something

more reliable than a Jupyter Notebook’s autosave

functionality.

•	 You need a way to save different snapshots of your data

or code.

•	 You want a log or paper trail of your work in case

something breaks (you can use the “Blame” feature to

pinpoint the author of a change).

Chapter 3 Tools for Data Science Developers

76

�Version Control for Data
We’ve talked about code version control, but as we’ve mentioned, MLOps

involves code, data, and models. While we use tools like Git for code

version control, data version control exists and can be applied to both data

and models (which are usually serialized in a binary format).

The standard package is called DVC (you can guess this stands for data

version control). DVC works on top of Git, and many of the commands

and terminology are similar. For example, the dvc init command is used to

initialize data version control in your repo. In the lab, you’ll work through

some basic dvc commands for data and model version control.

�Git and DVC Lab
In this lab (Figure 3-6), you will gain some hands-on experience with

both Git for interacting with Git repositories and DVC for versioning data.

Fortunately, many of the Git commands you will learn in the lab are very

similar to the DVC commands you will learn later. However, throughout

the lab, you should keep in mind the distinct purpose of each tool and

where you might want to use each in your own workflow.

Figure 3-6.  GIT and data version control (DVC) lab

Chapter 3 Tools for Data Science Developers

77

Before proceeding to the next section on code editors, complete the

version control lab titled: Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_

Git_and_Dvc

Step 1. Open Chapter_3_MLOPS_Lifecycle_Toolkit_Lab_Git_and_Dvc.

ipynb and read the instructions.

Step 2. Copy paste the commands in the notebook into a terminal, and

get familiar with each command and what it does; you can use the -h flag

to see what each command does (e.g., git status -h).

Step 3. Sign up for a GitHub account by following instructions in the lab.

�Model Development and Training
So we’ve covered version control systems for both code and data but how

about the tools we use to edit our code and develop models? You may be

using a tool like Spyder or a Jupyter notebook to edit your code, and surely

like most developers, this is your favorite editor. I don’t want to change

your mind, but it’s worth knowing the range of code editors available in

data science and when and why you might want to consider using an

editor like VS Code over Spyder.

�Spyder
Spyder is a free and open scientific environment for data science. It was

first released in 2009 and is available cross-platform (Windows, Linux,

and MacOS) through Anaconda. It provides the following features and

several more:

•	 An editor includes both syntax highlighting and code

completion features as well as introspection.

•	 View and modify environment variables from UI.

•	 A Help pane able to render rich text documentation for

classes and functions.

Chapter 3 Tools for Data Science Developers

78

�Visual Studio Code
You can launch vs. code using the code command as shown in Figure 3-7.

Figure 3-7.  Shortcut for launching Visual Studio Code editor from a
terminal

I’d suggest customizing the layout but at least including the Activity Bar

as shown in Figure 3-8.

Figure 3-8.  The Activity Bar in Visual Studio Code editor

Chapter 3 Tools for Data Science Developers

79

Visual Studio Code is a source control editor from Microsoft based on

the electron framework and is available for MacOS, Windows, and Linux

distributions. The tool includes debugging, source control management,

syntax highlighting, and intelligent code completion and operates by using

extensions to add additional functionality. It is much more of a tool for

large software projects and includes many extensions that allow you to

interact with cloud infrastructure, databases, and services.

For example, there is an extension for Azure that allows accessing

resources in the cloud. If you need to format your code, you could install

one of several profile extensions or specific packages like black2 or

autopep83. You search for these extensions in the activity bar and can

access functionality in extensions using the keyboard shortcut CTRL +
SHIFT + P to access the palette. We recommend at minimum you install

the Microsoft Python extension or the Python Extension Package which

includes linters, intellisense, and more (we’ll need this when we create

environments and set up tests). Figure 3-9 shows some of the Python

extensions available in Visual Studio Code.

2 Black is a standard code formatter used across industries. The GitHub for black is
https://github.com/psf/black
3 autopep8 automatically formats Python code conforming to PEP8 and can be
found on GitHub at https://github.com/hhatto/autopep8

Chapter 3 Tools for Data Science Developers

https://github.com/psf/black
https://github.com/hhatto/autopep8

80

Figure 3-9.  Python extensions available in Visual Studio Code editor

�Cloud Notebooks and Google Colab
Cloud notebooks are a convenient way for data scientists to run code and

use Python libraries in the cloud without having to install software locally.

A cloud notebook such as Google Colab can be a good alternative to Visual

Studio Code editor for running experiments or prototyping code. You type

code into cells and can run cells in order. Figure 3-10 shows the MLOps

lifecycle toolkit lab in Google Colab.

Chapter 3 Tools for Data Science Developers

81

Figure 3-10.  The MLOps Lifecycle Toolkit Git and DVC Lab in
Google Colab

You can also change the theme of your notebook or connect to your

GitHub through the tools ➤ settings menu. Figure 3-11 shows how to

configure settings in Google Colab.

Figure 3-11.  Configuring notebook settings in Google Colab

Chapter 3 Tools for Data Science Developers

82

�Programming Paradigms and Craftsmanship
What is craftsmanship in software? It refers to all of the high level skills

you need for creating high quality data science code. Topics like naming

conventions, documentation, writing tests, and avoiding common code smells

all work toward writing higher quality code. Code that is high quality is often

described as being “clean” which means it’s more readable and maintainable,

and although it may still have a higher cognitive complexity overall than other

software, technical debt can be reduced by taking these topics to heart. Let’s

take a look at some of the elements of writing high quality data science code.

�Naming Conventions and Standards
in Data Science
If you don’t reduce tech debt in your project, you may find yourself

working overtime when something happens in production. Part of

minimizing tech debt and keeping the project readable is ensuring a

consistent naming convention is used for variable names, functions, class

names and files, modules, and packages.

Some guidelines for naming standards are as follows:

•	 Use descriptive names for variables and functions.

•	 Consider using verbs for function names describing

what your function does.

•	 Refer to the style guide of the language PEP8 for Python

(these include advice on indentation, white space, and

coding conventions).

•	 Use smaller line sizes for more readable code.

•	 Avoid long function names and functions with too

many parameters – break these out into smaller

functions that do one thing.

Chapter 3 Tools for Data Science Developers

83

�Code Smells in Data Science Code

Code smells are anti-patterns that indicate brittle code or technical debt

or places in the program that could be improved. An example in Python

would be using too many nested loops or hardcoding data instead of using

a variable.

You might hear the term “code smell” in programming especially if your

organization requires regular code reviews. During this review process, you

will look for code smells. It is good practice to remove code smells when you

find them as they will incur technical debt if you leave them (they may also

make it more painful for other people to maintain your code when you have

to hand it off to someone else or fix it yourself in the future).

A good practice is to always assume you yourself will have to maintain

the code in 6 months or even a year from now and to make sure your code

can be clearly understood even after you’ve forgotten the details of how

it works.

�Documentation for Data Science Teams

Most data science projects, like other software projects, are lacking in

documentation. Documentation for projects can come in a number of

different formats and doesn’t necessarily have to mean a formal technical

document; it depends on your team and the standards that have been

established (if they exist). However, if coding standards don’t exist, here are

some recommendations for creating awesome technical documentation:

•	 Use doc strings without hesitation.

•	 Create a central repository for documentation.

•	 Create an acceptance criterion in tickets if you’re using

a board like JIRA or Azure DevOps.

•	 Socialize changes and ensure team members know

how and where to add new documentation.

Chapter 3 Tools for Data Science Developers

84

You’ve seen a few doc strings in the lab from the previous chapter

already. We can use triple quotes underneath the function signature to

describe briefly what the function does.

These doc strings are valuable because they can describe the following

information:

•	 What your function does: If you find yourself trying

hard to describe what your function does or realize

it does more than one thing, you may want to break

it up; therefore, going through this exercise of having

doc strings for every function can improve quality of

your code.

•	 Description input, outputs, and data types: Since

languages like Python are dynamically typed, we can

run into trouble by being too flexible with our data

types. When you train a model on training data and

forget it can take on a certain value in production, it

could cause your program to crash. It’s good practice

to carefully consider the data types for any function

arguments and, if not using type annotations, at least

include the data type in the doc string.

Last but not least, make sure to update your documentation as

requirements change. This leads us to the next tool in the toolkit for future

proofing our code: TDD (test driven development).

�Test Driven Development for Data Scientists
In data science projects especially, requirements can be fuzzy or ill-defined or

missing all together in some cases. This can lead to surprises when there are

huge gaps between what the user of the model or software expect and what

you as the data scientist create and lead to longer release cycles or heavy re-

factoring down the line especially with feature engineering libraries.

Chapter 3 Tools for Data Science Developers

85

One way to future-proof your code is to include tests with each function

in your feature library. Of course this is time consuming, and on a real project,

you may not have the time but it is strongly recommended. It only takes an

hour or two to set up tests in Pytest or Hypothesis and create fixtures, and

if you’re using asserts already in your code, you can use these as the basis

for your tests, and it will save you time if you need to debug your code in

production. Figure 3-12 shows how to select a testing framework for TDD.

Figure 3-12.  Selecting a testing framework

You may get import errors shown in Figure 3-13.

Figure 3-13.  Import errors are common when setting up Pytest in
Visual Studio Code

Chapter 3 Tools for Data Science Developers

86

Once you fix the import errors, you can see tests by clicking the Testing

icon in the Activity Bar and clicking run. A test that passes will have a green

check mark to the left. You can run multiple tests at the same time. In the

MLOps toolkit lab, you can create your own unit tests and fixtures (a way

of passing data to tests) and play with this feature to incorporate testing

into your own data science projects. Figure 3-14 shows how to run tests in

Visual Studio Code.

Figure 3-14.  Running tests in Visual Studio Code

Chapter 3 Tools for Data Science Developers

87

�From Craftsmanship to Clean Code
There are many guidelines and principles for writing “clean code,” and

as you become better developers, you will come to recognize code when

it is clean. In data science, clean code is often an afterthought and often

only comes after translating an ad hoc analysis into something worthy for

production. However, here are several principles that a data scientist can

use to reduce technical debt and write cleaner, more readable code:

•	 Be consistent! Consistency is key especially when it

comes to naming variables.

•	 Use separate folders for feature engineering, data

engineering, models, training, and other parts of the

workflow.

•	 Use abstraction: Wrap low level code in a function.

•	 If your functions are too long, break them up; they

probably do more than one thing violating the SOLID

principle of single responsibility.

•	 Reduce the number of parameters you use in your

functions if possible (unless maybe if you’re doing

hyper-parameter tuning).

•	 Wrap lines and set a max line length in your editor.

�Model Packages and Deployment
Data science software consists of a number of independent modules that

work together to achieve a goal. For example, you have a training module,

a feature engineering module, maybe several packages you use for missing

values, or LightGBM for ranking and regression. All of these modules share

something in common: You can install them, deploy them, and import

them as individual deployable units called packages.

Chapter 3 Tools for Data Science Developers

88

�Choosing a Package Manager
Packages can consist of bundles of many modules, files, and functionality

that are maintained together and are usually broader in scope than a single

file, function, or module. In Python, you can use packages using a Conda

or Pip or other package manager, but it’s important to understand how to

create your own python packages.

Setting up Packages in VS Code, use the command palette—CTRL +

SHIFT + P keyboard shortcut (ensure to hold down CTRL, SHIFT, and P at

the same time)—and select Python Create Environment. This is part of the

Python extension package you installed earlier. Figures 3-15 through 3-18

show the detailed steps for configuring a Python environment in Visual

Studio Code including selecting a package manager.

Figure 3-15.  Creating a Python environment

Figure 3-16.  Choosing between Conda and Virtual environment.
Both are options in Visual Studio Code

Chapter 3 Tools for Data Science Developers

89

Figure 3-17.  Visual Studio Code creating a new environment

�Anaconda

What is Anaconda? Well, it’s not a snake. Anaconda instead is bigger than

any one tool and is an ecosystem unto itself. There’s a virtual environment

tool called Conda which is extremely popular on data science teams.

It provides several commands for package management including the

following:

•	 conda create

•	 conda install

•	 conda update

•	 conda remove

•	 conda info

•	 conda search

•	 conda config

•	 conda list

Figure 3-18.  Once the environment is activated, you can install
packages using your chosen package manager

Chapter 3 Tools for Data Science Developers

90

The command you’ll use most often to create an environment with

packages is given in Listing 3-2:

Listing 3-2.  Conda create command for creating a new Conda

environment

 conda create --prefix ./envs matplotlib=3.5 numpy=1.2

For MLOPs, we want to go a step further and take a look at some more

general package managers and their features.

Pipenv: Pipenv, which we’ll use in our MLOps toolkit lab, tries to

bring best in breed (bundler, composer, npm, yarn, and cargo) in package

management to Python. Pipenv also treats Windows as a first class citizen

which makes it ideal for some business environments. You don’t have to

worry about low level details of creating a virtualenv for your projects as

pipenv handles this for you and even auto-generates the Pipfile describing

package versions and Pipfile.lock which is used for deterministic builds.

Since reproducibility of experiments is an important aspect of MLOps,

deterministic builds are ideal especially for large projects where you have

to juggle multiple versions of packages.

An example installing the Pandas package would be given in Listing 3-3.

Listing 3-3.  pipenv command for creating a new Python environment

pipenv install pandas

You will then notice Pandas has been added to the Pipfile.

�Installing Python Packages Securely

Have you ever been working on a model and realized you need to install

xgboost or PyTorch or some other library? It worked before but this time

the computer beeps and dumps a massive error log on your screen. You

spend 3 hours debugging and searching on Stackoverflow for a solution

only to realize the recipe only works for Windows, not Mac!

Chapter 3 Tools for Data Science Developers

91

What should you do? Use Python environments. Python environments

can save you a headache by providing isolation between software

dependencies. We’ll show you how to set this up in the next chapter. Once

you set up a Python environment, you may notice you spend less time

installing and managing Python package dependencies which frees up

more time to work on data science tasks.

�Navigating Open Source Packages for Data Scientists

Open source software packages are released under a license (typically

permissive or copyleft like GPL) that allows its users to maintain control

over using and accessing the software as well as distributing, studying, and

changing. Many projects you use in data science are open source such as

Scikit-Learn, PyTorch, and TensorFlow and can be found on GitHub.

Technical consideration when using open source software packages in

data science are the following:

•	 PyPi and similar repositories can contain malware,

and so packages should be trusted or scanned first

(see Snyk4).

•	 Open source may be maintained by a community of

dedicated volunteers so patches and updates may be at

whim of the maintainer.

•	 Copyleft and other licensing may pose challenges for

building enterprise software since you need to release

the software under the same license (since software is

often distributed as binaries).

4 You can read more about the Snyk project at https://docs.snyk.io/
manage-issues/introduction-to-snyk-projects

Chapter 3 Tools for Data Science Developers

https://docs.snyk.io/manage-issues/introduction-to-snyk-projects
https://docs.snyk.io/manage-issues/introduction-to-snyk-projects

92

�Common Packages for MLOps
Finally, we have enough knowledge to cover the central topic of this

chapter which is packages specific to MLOps. Each of these packages

provides pieces of the MLOps lifecycle such as experimentation,

orchestration, training acceleration, feature engineering, or hyper-

parameter tuning. We can broadly separate these packages into two

camps: ModelOps and DataOps.

�DataOps Packages

DataOps is a collection of best practices, processes, and technologies

borrowed from Agile software engineering that are designed to improve

metrics like data quality, efficient data management, and continuous data

delivery for data science and more broadly analytics. We need DataOps

practices and experts when we’re in the data engineering part of the

MLOps lifecycle. Still, there are many concepts unique to MLOps such as

feature groups and model registries that typical data engineering solutions

do not have. In the following, we’ve compiled some of the tools you might

encounter when working in the first stages of the MLOps lifecycle: data

collection, data cleaning, feature engineering, and feature selection.

�Jupyter Notebook

Jupyter notebooks as mentioned are a useful alternative to a local code

editor like Visual Studio Code. You can use notebooks for prototyping

code and running experiments. However, for MLOps, a Python script is

preferable to a notebook for code for a number of reasons. For example,

when you source control a Jupyter notebook, it is actually a JSON file that

contains a combination of source code, text, and media output. This makes

it more difficult to read the raw file compared to a Python script where you

can read line by line.

Chapter 3 Tools for Data Science Developers

93

Python scripts are also a standard way to represent code outside of

data science, and you can use many different code editors from Visual

Studio Code to text-based source code editors like Sublime Text, but

beyond maintaining and readability, writing code as a script enables you

to create larger software projects because your code can be organized

into modules, packages. This structure is very important and enables you

to understand the way the project is organized, reuse code, set up tests,

and use automated tools like linters that make the software development

process more efficient. Therefore, I hope you will consider using Python

scripts with a code editor of your choice as opposed to Jupyter notebooks

for production code.

�JupyterLab Server

If you do insist on using Jupyter notebooks, there are a number of

environments available. One environment we already mentioned was

Google Colab, but if you want to run your notebook locally and have a

customizable environment that could also be deployed as a service, you

might consider JupyterLab.

JupyterLab server is a Python package that sits between JupyterLab

and Jupyter Server and provides RESTful APIs and utilities that can be used

with JupyterLab to automate a number of tasks for data science and so is

useful for MLOps. This also leads us to another widely used platform for

MLOps that also comes with a notebook-based environment.

�Databricks

Databricks was created by the founders of Apache Spark, an open source

software project for data engineering that allows training machine learning

models at scale by providing abstractions like the PySpark dataframe for

distributed data manipulation.

Chapter 3 Tools for Data Science Developers

94

Databricks provides notebooks, personas, SQL endpoints, feature

stores, and MLFlow within its PaaS offering which is also available in

multiple cloud vendors including Azure and AWS with their own flavor of

Databricks.

Besides MLFlow, a vital tool for an MLOps engineer to track model

metrics and training parameters as well as register models and compare

experiments, Databricks has a concept of a delta lakehouse where you can

store data in parquet format with a delta log that supports features like

time travel and partitioning.

We’ll mention this briefly, but it could have its own chapter since this is

a massive topic. Koalas is a drop-in solution although not 100% backward

compatible with Pandas (of course, there’s a lag between when a feature is

supported in Pandas and when it becomes generally available in Pandas

for Spark), but this is a great tool to add to your toolkit when you need to

scale your workflow. While doing development in PySpark, you don’t have

to re-write all of your code; you use following import at the top of your file

and use it like you would Pandas.

Dask: Dask is another drop-in solution for data wrangling similar to

Pandas except with better support for multiprocessing and large data sets.

The API is very similar to Pandas, but unlike Koalas or Pandas API for

Spark, it is not really a drop-in solution

Modin: While Dask is a library that supports distributed computation,

Modin supports scaling Pandas. It supports various backends including

ray and Dask. Again, it’s not 100% backward compatible and has a much

smaller community than Pandas, so use with caution on a real project.

�ModelOps Packages
ModelOps is defined by Gartner as “ focused primarily on the governance

and lifecycle management of a wide range of operationalized artificial

intelligence and decision models, including machine learning, knowledge

graphs, rules, optimization, linguistic, and agent-based models.” Managing

Chapter 3 Tools for Data Science Developers

95

models is difficult in part because there’s code and data and many different

types of models as we’ve seen from reinforcement learning to deep

learning to shallow models in scikit-learn and bespoke statistical models.

We list some of the most popular tools for ModelOps in the following

that you may encounter when you work in the later half of the MLOps

lifecycle which includes model training, hyper-parameter tuning, model

selection, model deployment, model management, and monitoring.

Ray5: Ray is a great tool for reinforcement learning; it is based on the

actor model of distributed computation, in computer science,6 and allows

you to use decorators to scale out functions which is convenient when you

don’t want to rewrite a lot of code.

KubeFlow7: KubeFlow is another open source machine learning tool

for end to end workflows. It is built on top of Kubernetes and provides

cloud-native interfaces for building pipelines and containerizing various

steps of the machine learning lifecycle from training to deployment.

Seldon8: Have you ever been asked to deploy your machine learning

models to production? First of all, what does that even mean? There are

many ways to deploy a model. You could put it in a model registry, and you

could containerize your model and deploy it to Ducker Hub or another

container registry, but for some use cases especially if an end user is going

to be interacting with your model on demand, you’ll be asked to expose

the model as an API.

Building an API is not a trivial task. You need to understand gRPC or

REST and at least be familiar with a framework like Flask if you’re using

Python. Fortunately, there are tools like Seldon that allow you to shortcut

5 The Ray framework documentation can be found at https://docs.ray.io/
en/latest/
6 Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed
Systems. https://apps.dtic.mil/sti/pdfs/ADA157917.pdf
7 The KubeFlow project documentation can be found at www.kubeflow.org/docs/
8 The Sledon project documentation can be found at https://docs.seldon.io/
projects/seldon-core/en/latest/index.html

Chapter 3 Tools for Data Science Developers

https://docs.ray.io/en/latest/
https://docs.ray.io/en/latest/
https://apps.dtic.mil/sti/pdfs/ADA157917.pdf
http://www.kubeflow.org/docs/
https://docs.seldon.io/projects/seldon-core/en/latest/index.html
https://docs.seldon.io/projects/seldon-core/en/latest/index.html

96

some of these steps and deploy models as gRPC or REST endpoints. Seldon

in particular offers two models for servers: reusable and nonreusable. The

definition of each is stated in the following.

•	 Reusable model servers: These are prepackaged model

servers. You can deploy a family of models that are

similar to each other, reusing the server. You can host

models in an S3 bucket or blob storage account.

•	 Nonreusable model servers: This option doesn’t require

a central model repository, but you need to build a

new image for each model as it’s meant to serve a

single model.

This leads us to the standard solution right now for registering your

model, MLFlow. You had to create your own model storage and versioning

system and way to log metrics and keep track of experiments. All of

these important model management tasks (ModelOps) are made easier

with MLFlow.

�Model Tracking and Monitoring
MLFlow9 is the standard when it comes to creating your own

experimentation framework. If you’ve ever developed loss plots and kept

track of model metrics and parameters during hyper-parameter tuning,

then you need to incorporate MLFlow into your project.

You can set up the MLFlow infrastructure as a stand-alone or part

of Databricks (the original developers). We’ll see this in action in later

chapters.

9 MLFlow project documentation can be found at https://mlflow.org/docs/
latest/index.html

Chapter 3 Tools for Data Science Developers

https://mlflow.org/docs/latest/index.html
https://mlflow.org/docs/latest/index.html

97

HyperOpt10: Hyperopt is a framework for Bayesian hyper-parameter

tuning, often done after the cross validation step but before training a

model on the entire data set. There are also many algorithms available

depending on the type of parameter search you need to do including the

following:

•	 Random search

•	 Tree of Parzen Estimators

•	 Annealing

•	 Tree

•	 Gaussian Process Tree

Horovod11: Horovod is a distributed deep learning framework for

TensorFlow, Keras, PyTorch, and Apache’s MXNet. When you need to

accelerate the time it takes to train a model, you have the choice between

GPU accelerated training and distributed training. Horovod is also

available on Databricks and can be a valuable tool for machine learning

at scale.

�Packages for Data Visualization and Reporting
If you’ve ever had to do a rapid EDA or exploratory data analysis, you

know how tedious it can be to have to write code for visualizations. Some

people like writing algorithms and don’t like visualization, whereas others

who are good at libraries like Matplotlib or Seaborn become the de facto

visualization experts on the team.

10 The Hyperopt project can be found on GitHub at https://github.com/
hyperopt/hyperopt
11 The Horovod project source code can be found at https://github.com/
horovod/horovod

Chapter 3 Tools for Data Science Developers

https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/horovod/horovod
https://github.com/horovod/horovod

98

From an MLOps perspective, visualizations can be an “odd one out”

in a code base and are difficult to deploy since creating interactive plots

and dashboards requires special knowledge and tools. You should at least

be familiar with a couple tools beyond Matplotlib for exploratory data

analysis including the following:

•	 Dash12: Python library for creating interactive

dashboards

•	 PowerBI: Visualization software from Microsoft. Useful

for data science since you can embed Python and

deploy to cloud

�Lab: Developing an MLOps Toolkit Accelerator
in CookieCutter
This lab is available on the Apress GitHub repository associated with

this book. You will see in Chapter 3 the mlops_toolkit folder. We will

use a package called cookiecutter to automate the process of setting up

tests, train, data, models, and other folders needed in future chapters.

Figure 3-19 shows the toolkit folders.

12 The Dash project can be found on GitHub at https://github.com/plotly/dash

Chapter 3 Tools for Data Science Developers

https://github.com/plotly/dash

99

Figure 3-19.  MLOps toolkit folder structure

You might be wondering what the point of having a template like this

is. The primary reason is it goes toward establishing standards and code

structure that borrows from experience across several industries. This pattern

is tried and proven, and although it is slightly opinionated on use of testing

framework and names of folders, you can easily customize it to your purposes.

We’ll do exactly this by installing several packages that can support

other stages of the MLOps lifecycle such as model training, validation,

hyper-parameter tuning, and model deployment. The steps for setting up

the lab are as follows:

Step 1. Clone the project locally and run the following command to

open vs code:

Chapter 3 Tools for Data Science Developers

100

Listing 3-4.  Shortcut for opening Visual Studio Code13

code .

Step 2. Start a new vs. code terminal session (here we’re using

PowerShell but you can also use Bash) and cd into the mlops_toolkit

directory. Figure 3-20 shows the root directory.

Figure 3-20.  Root directory for MLOps toolkit supplementary
material

Step 3. Clear the screen with the clear command and type as shown in

Listing 3-5.

Listing 3-5.  Installing Pandas package with a specific version

number using Pipenv

pipenv install pandas~=1.3

Step 4. Check the Pipfile containing the following lines.

Step 5. Repeat steps 2–3 for the following packages: numpy, pytest,

hypothesis, sckit-learn, pyspark, and mlflow. By default, the latest versions

will be installed, but we recommend using the ~ operator with a major.

minor version to allow security patches to come through. The output is

shown in Figure 3-21.

13 Tips and Tricks for Visual Studio Code https://code.visualstudio.com/docs/
getstarted/tips-and-tricks

Chapter 3 Tools for Data Science Developers

https://code.visualstudio.com/docs/getstarted/tips-and-tricks
https://code.visualstudio.com/docs/getstarted/tips-and-tricks

101

Figure 3-21.  The result of installing some Python packages
with pipenv

Step 6. CTRL + SHIFT + P to open the vs code command palette. Type

python and choose pytest in the dropdown and select/tests folder.

Step 7. Click the tests icon in the Activity Bar and run all tests by

clicking the “run” button.

Step 8. Run the following command with the custom name of your

project.

Step 9. Cd into the folder you created and customize it to your own

data science project. Here I used main_orchestrator.py for the file name.

Step 10. Python main_orchestrator.py should print a message to the

screen as shown in Figure 3-22.

Figure 3-22.  Running the main orchestrator should print a message
to your screen

Step 11. Go through the Git fundamentals lab again if necessary, and

add code and data version control by running two commands in a terminal

(works both in PowerShell and Bash) as given in Listing 3-6:

Chapter 3 Tools for Data Science Developers

102

Listing 3-6.  Initializing source and data version control commands

in a repo14

git init

dvc init

That’s it! Not so bad and we’ve already set up tests, our very own

custom monorepo, installed packages to support various stages of the

lifecycle, and know how to set up code version control and data version

control. In the next chapters, we’ll go through the gritty details of MLOps

infrastructure, model training, model inference, and model deployment,

developing our toolkit further.

�Summary
In this chapter, we gave an introduction to several tools for MLOps and data

science including version control both for source code and data. We also

talked about the differences between Jupyter notebooks and Python scripts

and why Python scripts are the preferred format for MLOps. We looked

at code editors like Visual Studio Code for working with Python scripts

and talked about some of the tools, packages, and frameworks you may

encounter in an MLOps workflow. Here is a summary of what we learned:

•	 Data and Code Version Control Systems

•	 Model Development and Training

•	 Model Packages and Deployment

•	 Model Tracking and Monitoring

In the next chapter, we will shift our attention to infrastructure and

look at how we can begin to use some of the tools discussed in this chapter

to build services to support the various stages of the MLOps lifecycle.

14 DVC User Guide: https://dvc.org/doc/user-guide

Chapter 3 Tools for Data Science Developers

https://dvc.org/doc/user-guide

103

CHAPTER 4

Infrastructure
for MLOps
This chapter is about infrastructure. You might think of buildings and

roads when you hear the word infrastructure, but in MLOps, infrastructure

refers to the most fundamental services we need to build more complex

systems like training, inference, and model deployment pipelines. For

example, we need a way to create data stores that can store features for

model training and servers with compute and memory resources for

hosting training pipelines. In the next section, we will look at a way we

can simplify the process of creating infrastructure by using containers

to package up software that can easily be maintained, deployed, and

reproduced.

�Containerization for Data Scientists
Containers have had a profound impact on the way data scientists code; in

particular, it makes it possible to quickly and easily spin up infrastructure

or run code inside a container that has all of the software, runtimes, tools,

and packages you need to do data science bundled inside.

Why is this a big deal? As you’ve probably experienced in the previous

chapter where we used Python environments to isolate packages and

dependencies, a lot of problems with configuring and managing multiple

packages become manageable with containerization. With simple

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_4

https://doi.org/10.1007/978-1-4842-9642-4_4

104

environments like Conda, you could manage multiple versions and with

package managers like Pipenv, you had access to a Pipfile which contained

all of the configuration you needed to manage your environment.

Now imagine you need more than just Python; you might have

different runtime requirements. For example, maybe parts of your data

science workflow require R packages and so you need the R runtime.

Maybe you also have to manage multiple binaries from CRAN and have

your code “talk” to a database which itself has dependencies like a JVM

(Java virtual machine) or specific configuration that needs to be set.

Unless you have a strong background in IT, managing all of these

configurations, runtimes, toolchains, compilers, and other supporting

software becomes tedious and takes away from time you can spend on

data science.

There’s another problem: portability. Imagine you have a package that

requires Mac but you’re on Windows. Do you install an entire OS just to

run that software? Containers solve this problem by allowing you to build

once and run anywhere. They also make it pull new containers and swap

out components of your machine learning system with ease. Let’s take a

deep dive into one of the most popular container technologies: Docker.

�Introduction to Docker
Docker is a platform as a service that uses OS-level virtualization to

encapsulate software as packages called containers. The software that

hosts the containers is called the Docker Engine and is available for a

number of platforms including Linux, Windows, and MacOS with both

free and paid licensing. Figure 4-1 shows how containers run on top of the

Docker Engine using OS-level virtualization.

Chapter 4 Infrastructure for MLOps

105

Figure 4-1.  How containers run using OS-level virtualization

�Anatomy of the Docker File
Okay, so we know what Docker is but how do we use it? Let’s say you want

to create our own Jupyter based data science lab. You’ve probably installed

Jupyter before, but could you write down a recipe that is reproducible? You

might start by noting what operating system (OS) you’re using, installing

dependencies like Python and pip, and then using pip to install Jupyter

lab. If you’ve read the Jupyter lab documentations, then you probably also

know you need to expose some default ports so you can launch and access

your notebook from a web browser. If you wanted to do a deep learning

workflow using GPU, you might consider installing NVIDIA drivers as well.

This is a lot of work but we can write it as a series of steps:

•	 From your host OS, install specific software packages.

•	 Install drivers and low level package managers.

Chapter 4 Infrastructure for MLOps

106

•	 Install Python and Python package managers.

•	 Use package managers to install Python packages.

•	 Run Jupyter lab.

•	 Expose ports so we can access Notebooks in our web

browser.

In Docker, we can encode these steps as a sequence of instructions or

commands in a text file called a Docker File. Each instruction or command

gets executed in the Docker environment in the order it’s read starting

from the first instruction. The first instruction usually looks something like

the following:

FROM nvidia/cuda:12.0.1-base-ubuntu20.04

This creates what is known in Docker as a layer containing the Ubuntu

OS with NVIDA’s cuda drivers in case we need GPU support (if you only

have a CPU on your laptop, you can still build this docker container).

Other layers get installed on top of this layer. In our example of

installing a deep learning library, we would need to install Cuda and

Nvidia drivers to have GPU accelerated training (covered in the next

section). Fortunately, in Ubuntu, these are available in the form of Ubuntu

packages. Next, we might want to create a dedicated working dir for all of

our notebooks. Docker comes with a WORKDIR instruction. We’ll call our

directory /lab/

WORKDIR /lab/

We need to install data science specific Python packages for our

lab environment and most important the Jupyter lab packages. We can

combine this step into a single command with the RUN instruction.

RUN pip install \

 numpy \

 pandas \

Chapter 4 Infrastructure for MLOps

107

 tensorflow \

 torch \

 Jupyterlab

Finally we’ll need to launch our Jupyter server and expose port 8080

so we can access our notebook in a browser. It’s good practice to change

the default port, but ensure it’s not one that is reserved by the operating

system. These steps can be accomplished using the CMD and EXPOSE

instructions:

CMD ["jupyter", "lab", "--ip=0.0.0.0", "--port=8080",

"--allow-root", "--no-browser"]

EXPOSE 8080

In the next section, we will apply this theoretical knowledge of Docker

by packaging all of these steps into a Docker file in the next lab and build

the image. Once we build the image (a binary file) we can then run the

image, creating a container. This distinction between an image and

container might be confusing if it’s the first time you’ve encountered the

terms, but you should understand the difference before proceeding to the

lab. We summarize the difference in the following since it is very important

for understanding containers.

Docker file: A docker file is a blueprint for a Docker image; it contains

a series of instructions in plain text describing how a docker image should

be built. You need to first build the docker file.

Docker image: A docker image is a binary file that can be stored in

the cloud or on disk. It is a lightweight, self-contained (hence the name

container), executable piece of software that includes everything needed

to run an application including the application code, application runtime,

interpreters, compilers, system tools, package managers, and libraries.

Docker container: A docker container is a live piece of software; it’s

a runtime instance of a Docker image created when you run the image

through the Docker run command.

Chapter 4 Infrastructure for MLOps

108

Now that we’ve clarified the difference between a Docker image and a

Docker container, we’re ready to start building some containers. In this lab,

you’ll go through the previous steps in detail to create your own data science

lab environment, an important addition to any MLOps engineer’s toolkit.

�Lab 1: Building a Docker Data Science Lab
for MLOps
Step 1. We first need to install the Docker engine. Proceed to Install Docker

Desktop on Windows and select your platform. We’ll be using Windows 10.

Download the Docker Desktop Installer for Windows. We recommend the

latest version but we’ll use 4.17.1.

Step 2. Right-click the Docker Desktop Installer run as admin. Ensure

to check the install WSL and Desktop shortcut options in the first menu,

and click next. Figure 4-2 shows Docker Desktop for Windows.

Figure 4-2.  Docker Desktop for Windows

Chapter 4 Infrastructure for MLOps

https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/

109

Step 3. Launch Docker Desktop from the Desktop icon and accept the

service level agreement. Figure 4-3 shows the Docker license agreement.

Figure 4-3.  Docker license agreement

Step 4. Use the Git clone command to clone the repo provided along

with the supplementary resources. Start a new terminal session in vs code

and cd into Chapter 4 Labs where you will find a file called Dockerfile (this

is where you’ll find the sequence of plain text instructions or recipe for

building your data science lab environment).

Step 5. Run docker build -t data_science_lab . inside the directory

with Dockerfile. The period at the end is important; it’s called the Docker

context.

Step 6. Build your image. Assign it the name jupyter_lab with the

 -t option and run the container. You can also pass in a token (we used

mlops_toolkit) which will be your password for authenticating with Jupyter

notebook.

Chapter 4 Infrastructure for MLOps

110

docker build -t jupyter_lab .

docker run --rm -it -p 8080:8080 -e JUPYTER_TOKEN=mlops_toolkit

jupyter_lab

Did you notice anything? You should see the following splash screen.

Figure 4-4 shows a general view of what you can expect to see, but note

that your splash screen may look slightly different especially if you are not

using Powershell.

Figure 4-4.  Splash screen for Jupyter Lab

Note T he PyTorch and TensorFlow wheels are around 620 and 586
MB, respectively, at the time of writing, so these are pretty large.
Sometimes this can be a problem if disk space is limited. Although
we won’t cover it in this lab, optimizing the size of a Docker image
is an interesting problem and an area of specialization within MLOps
especially when working with deep learning frameworks.

Step 7. Navigate to localhost:8080/lab in a browser (note we exposed

port 8080 in the Dockerfile; this is where the number comes from). Enter

your token (“mlops_toolkit”) and you should be redirected to the lab

environment pictured in Figure 4-5.

Chapter 4 Infrastructure for MLOps

111

Figure 4-5.  The Jupyter lab environment

Finally, click Python Kernel in your Lab environment to launch a

Jupyter notebook. We’ll use this environment in subsequent labs if you

need a Jupyter notebook environment. Optionally you can also use Google

Colab (Figure 4-6).

Figure 4-6.  Examples of cells in a Jupyter notebook

You can now run notebooks inside docker and you have a reproducible

data science lab environment you can use and share. We’ll talk about how

you can deploy this environment to the cloud in future chapters enabling

you to have a shared lab environment and collaborate on projects. This is

an amazing first step toward mastering data science infrastructure, and

Chapter 4 Infrastructure for MLOps

112

we can now talk about particular kinds of data infrastructure used by data

scientists. In the next section, we’ll look at the feature store pattern, a

pattern for data infrastructure used for supporting robust, scalable feature

engineering pipelines.

�The Feature Store Pattern
Going back to the MLOps lifecycle, after data collection and basic data

cleansing, our goal is to build features from this data. In the real world,

you’ll frequently deal with 100s of features. It is not uncommon to have

data science projects where 100, 200, or even 1000 or more features are

constructed. These features eventually will be fed into a feature selection

algorithm, for example, when we have a prediction problem using a

supervised data, we can reduce these hundreds of features to a reasonable

number in many ways, for example, using Lasso or a bagging algorithms

like random forest to rank features by importance for our particular

problem, filtering out the ones that have little predictive value.

The feature selection process, unlike most other parts of the machine

learning lifecycle, may not be automated. One reason for this is feature

selection is dependent on what you’re trying to model, and there may be

specific features like demographic data and PII that need to be excluded

even if those features have predictive value.

Although feature selection can reduce the number of features used

in a model, we still need to maintain the complete gambit of features for

future problems. Additionally, model accuracy deteriorates over time, the

business definitions can change, and you may have to periodically rerun

feature selection as you add new data sources.

So how do we store all of these features: manage different versions

of features to support feature selection, hyper-parameter tuning, model

retraining, and future modeling tasks that might make use of these

hundreds of features at different points in the lifecycle? This is where the

concept of a feature store comes into play.

Chapter 4 Infrastructure for MLOps

113

Feature store: A feature store is a design pattern in MLOps that is used

to centralize the storage, processing, and access to features. Features in

a feature store are organized into logical groups called feature groups,

ensuring the features are reusable and experiments are reproducible.

�Implementing Feature Stores: Online vs. Offline
Feature Stores
A feature store and feature groups may be implemented using a variety of

data infrastructure. A model is trained on features which typically involve

joining multiple normalized, disparate data sources together. These joins

are expensive and, sometimes since data is not well-defined, may involve

semi-joints, range joins, or window analytic functions in the mix. These

queries, which are executed on remote data store infrastructure, need to

support both low latency queries at prediction time and high throughput

queries on years of historical data at training time.

To make matters more complex, features may not be available at

prediction time or may need to be computed on the fly, possibly using the

same code as in the training pipeline. How do we keep these two processes

in sync and have data infrastructure support both online and offline

workflows requiring low latency and high throughput?

This is a hard problem in MLOps but understanding the types of data

infrastructure used to implement a feature store. Let’s look at some of this

data infrastructure we can use for implementing feature stores.

�Lab: Exploring Data Infrastructure with Feast
Feast is an open source project (Apache License 2.0 free for commercial

use) that can be used to quickly set up a feature store. Feast supports both

model training and online inference and allows you to decouple data from

Chapter 4 Infrastructure for MLOps

114

ML infrastructure, ensuring you can move from model training to model

serving without rewriting code. Feast also supports both online and offline

feature stores.

You can also build your own feature store using docker and installing

the underlying database services yourself. At the end of this lab, there is

also an exercise so you aren’t just following instructions, but first run the

following commands:

Step 1. Open code and start a new terminal session in PowerShell or

Bash. Install Feast:

pipenv install feast

pipenv shell

Step 2. Run the following command to initialize the Feast project. We

will call our feature store pystore:

feast init pystore

cd pystore/feature_repo

Step 3. Look at the files created:

data/ are parquet files used for training pipeline.

example_repo.py contains demo feature definitions.

feature_store.yaml contains data source configuration.

test_workflow.py showcases how to run all key Feast commands,

including defining, retrieving, and pushing features.

Step 4. You can run this with python test_workflow.py. Note on

Windows we had to convert our paths to raw strings to get this to work

(see the code for Chapter 4). Figure 4-7 shows the result of running the

test script.

Chapter 4 Infrastructure for MLOps

115

Figure 4-7.  Running the test script locally

Step 5. Run Feast apply (inside pystore directory); this will register

entities with Feast. Figure 4-8 shows the result of running this command.

Figure 4-8.  Running Feast apply command

Note, you should see two components with temperature and pressure

measurements generated in your final feature store pictured in the

following. That’s it! You’ve created your first feature store for an IoT data

set. Figure 4-9 shows the expected output.

Figure 4-9.  Expected output for pressure and temperature readings

Chapter 4 Infrastructure for MLOps

116

Now as promised, here is an exercise you can do to get a feel for a real

MLOps workflow.

�Exercise
Being able to iterate and make changes to feature definitions is a part of

MLOps since features rarely stay static. In a production environment, these

types of anomalies should be caught automatically.

Exercise 1. Modify the notebook and rerun the lab to fix the pressure

and temperature features so that they’re in a more reasonable range for

pressure (measured in Kilopascals) and temperature (measured on the

Kelvin scale).

Hint  You may need to do some research on what the right range
looks like and figure out where in the code you should make
the change.

�Dive into Parquet Format
You also may have noticed the format we are storing our data. We used

the parquet extension as opposed to the more common csv which you’re

probably already familiar with. So what is the difference between a parquet

and a csv and why might we prefer to store files in parquet format at all?

The difference is in the size and efficiency of the format. While parquet

is highly efficient at data compression (it is a binary file) meaning the file

sizes are much smaller, unlike csv, parquet format encodes the data and

schema for fast storage and retrieval. You might also use Parquet format

with libraries like Apache Arrow which can make reading a large csv file

several times faster. There is also a difference in how the data is stored.

Chapter 4 Infrastructure for MLOps

117

In parquet format, data is stored in a columnar format, whereas csv is

row oriented. For data science code, columnar data store is preferred

since only a small subset of columns are used for filtering, grouping, or

aggregating the data.

Although knowledge of every possible data format isn’t required, you

should be aware as an MLOps engineer that you can optimize your code

for speed and efficiency simply by changing the format to one that better

matches your workflow. In the next section, we’ll take a look at another

way to optimize for speed: hardware accelerated training.

We just took a deep dive into containers and data infrastructure, but

if you’re a pure data scientist without a background in IT, then you might

be wondering do I really need to know how to work with low level data

infrastructure and become an expert in containers to do MLOps for my

own projects?

The answer depends on the use case, but in general, there are cloud

services available for each stage of the MLOPs lifecycle. For example, you

can use Databricks if you want an end-to-end machine learning platform

and add components as needed by integrating with other cloud services,

for example, PowerBI, if you need a reporting solution, Azure DevOps if

you need to build CI/CD pipelines to deploy your code, and maybe even

an external data storage like AWS or Azure data lake to store your models,

artifacts, and training data sets. You technically should know about

parquet, but in this example, you could use Delta table format which in

uses Parquet under the hood for storing data but also gives you a delta

log and APIs for working with this format, so the low level details are

abstracted for you, leaving more time for data science. In the next section,

we’ll take a deeper dive into some of the cloud services available while

trying to remain agnostic about specific platforms like AWS, Azure, and

Google Cloud.

Chapter 4 Infrastructure for MLOps

118

�Hardware Accelerated Training
Many times in data science, we are dealing with big data sets. Training sets

can total gigabytes, terabytes, and with the rise of IoT data even petabytes

of data. In addition to big data, many workflows, especially ones requiring

deep learning like transfer learning, can be extremely intensive and require

GPU accelerated training.

Training or even fine-tuning a large language model like BERT on

commodity hardware using only a CPU can take days. Even if you’re not

training a large language model from scratch, some model architectures

like recurrent neural networks take a long time to train. How do we

accelerate this training? We have two options: distributed training and

GPU accelerated training. First, let’s discuss some of the major cloud

service providers before jumping into distributed training.

�Cloud Service Providers
There are several major cloud service providers. The big 3 are Azure, Amazon

Web Services, and Google Cloud. Each of the three has machine learning

service offerings and provides compute, networking, and data storage

services. For example, Amazon Web Services has s3 buckets and Azure

has blob storage. For end-to-end machine learning, Amazon Web Services

offer SageMaker, while Azure has Azure Machine Learning service. There

are other services for end-to-end machine learning as well and distributed

training like Databricks which is offered in all three of the cloud service

providers. There are differences between the different services, for example,

Databricks integrates with MLFlow, whereas SageMaker has its own Model

registry, but there is a difference in the platform: not the cloud service

provider. You can also deploy your own containers in all three cloud service

providers. For example, if you want to deploy your own Airflow instance to

Kubernetes, all three offer their own version of Kubernetes with differences

in cost for compute, storage, and tooling. In the next section, we’ll take a look

at distributed computing in some of these cloud service providers.

Chapter 4 Infrastructure for MLOps

119

�Distributed Training
All of the code we’ve run so far has been executed on a single machine.

If you’re using a laptop or workstation, you can interact with the physical

hardware, but if you’re running inside a cloud environment like Google

Cloud, Azure, AWS (Amazon Web Services), Google Colab, or Databricks,

the hardware infrastructure on the backend may not be so obvious and may

actually be hidden from you. For example, in Databricks, you can configure a

cluster, a collection of worker nodes and driver nodes which are themselves

individual virtual machines complete with their own CPU or GPU for compute

and a certain configurable amount of working memory and disk space.

The advantage of using multiple VMs when training is straightforward:

More VMs mean more CPU or GPUs available which means model training

can be accelerated. If you’ve ever written Pandas code that attempted to

read in a large csv file and experienced out of memory errors, then you’ve

probably already thought about increasing the memory available through

out of core (spilling to disk) like Dask, but another option is to run your

code on a distributed environment like Databricks.

You can take a look at the supplementary code provided with this

chapter for an example of configuring Horovod for distributed training.

You can make a free account on Databricks community edition to try

out Databricks, but we recommend you use an Azure cloud subscription

for full functionality. The steps to get a Databricks account (which you can

later convert to a full featured account) are as follows:

	 1.	 In a browser, navigate to https://community.

cloud.databricks.com/login.html.

	 2.	 Click sign up and create a free account. Figure 4-10

shows how to register a Databricks account.

Chapter 4 Infrastructure for MLOps

https://community.cloud.databricks.com/login.html
https://community.cloud.databricks.com/login.html

120

Figure 4-10.  Registering a Databricks account

Click continue and make sure to select community

edition at the bottom; otherwise, choose a cloud

provider (AWS, Azure, or Google Cloud as shown in

Figure 4-11):

Chapter 4 Infrastructure for MLOps

121

Figure 4-11.  Choosing a cloud provider

	 3.	 In the workspace, create a job cluster. Databricks

distinguishes between two types of clusters: all

purpose (interactive) and job clusters.

	 4.	 Click the cluster creation and edit page; select

the Enable autoscaling checkbox in the Autopilot

Options box (Figure 4-12).

Chapter 4 Infrastructure for MLOps

122

Figure 4-12.  Enable autoscaling is an option for elastic workflows

Note T his step is similar for all-purpose clusters except you will
want to include a terminate clause after 120 minutes (or a timeout
that fits your use case) to force the cluster to terminate after a period
of inactivity. Forgetting this step can be costly since like many cloud
services you are charged for what you use, and this detail is an
important consideration when choosing to use cloud services. The
timeout option is shown in Figure 4-13.

Figure 4-13.  Enabling timeout after 2 hours of cluster inactivity

To attach a cluster to a notebook in Databricks, follow these steps:

	 1.	 Create a new notebook in your workspace.

	 2.	 Click the “Connect” button in the top-right corner of

the notebook (Figure 4-14).

Chapter 4 Infrastructure for MLOps

123

Figure 4-14.  Connect button to attach a notebook to a cluster

Select the cluster you just created in the previous step.

Once the cluster is attached, you are able to run your code on the cluster,

taking advantage of the many workers available for distributed workflows. You

can configure the number of workers in your cluster and enable autoscaling

for larger workflows. The notebook will connect to the cluster automatically.

You can also detach the cluster from the notebook by clicking the “Detach”

button in the top-right corner of the notebook. You can optionally copy paste

code provided in the next section if you want to try this out.

�Optional Lab: PaaS Feature Stores in the Cloud
Using Databricks
You may have noticed when using Feast there were a lot of steps and you

had to dive deep into the gritty details of data engineering infrastructure

and even understand different types of data formats like parquet vs. csv.

Chapter 4 Infrastructure for MLOps

124

If you’re a data scientist who wants some of those details abstracted

from you, you may consider a Platform as a Service for building your

feature store.

Databricks provides a machine learning workspace where feature

stores are available without having to configure infrastructure. These

feature stores use delta tables in the backend which rely on the open

source Parquet format, a column oriented format for big data. Delta tables

also come with a delta log that can keep track of transactions on the data,

bringing atomicity, consistency, isolation, and durability to machine

learning workflows (so-called ACID properties). You can build a feature

store by creating a cluster with the ML runtime1 (12.1 is the latest at the

time of writing).

The feature store client allows you to interact with the feature store,

register data frames as feature tables, and create training sets consisting of

labeled data and training data for use in training pipelines. Databricks also

has online feature stores for low latency inference pipelines.

�Scaling Pandas Code with a Single Line

If you use Pandas regularly for data wrangling tasks, you may have

encountered memory errors. Typically dataframes blow up in memory

up at least 2x and sometimes more compared to their size on disk which

means if you have a very large csv file, reading that csv file may trigger

some out of memory errors if your workflow relies on Pandas. Fortunately,

the Pandas on Spark library (formerly Koalas) allows you to write Pandas

code to create Spark dataframes and register them in the feature store

without having to learn the Spark API. You can import this library in

Databricks with the following line (called a drop-in solution).

from pyspark import pandas as ps

1 Databricks ML runtime documentation can be found at https://docs.
databricks.com/runtime/mlruntime.html

Chapter 4 Infrastructure for MLOps

https://docs.databricks.com/runtime/mlruntime.html
https://docs.databricks.com/runtime/mlruntime.html

125

We’ve provided an option notebook lab for you called Chapter 4 Lab:

Scaling Pandas Workflows provided with this chapter. You can import your

notebook into your Databricks workspace and execute the code to get

hands-on experience with scaling Pandas code.

Since Databricks requires a cloud subscription, you don’t need to

complete this lab to understand the rest of the material in this chapter

or the rest of the book; however, many organizations use Databricks for

MLOps, and knowledge of PySpark, the Pandas on Spark library, clusters,

and notebooks may be valuable in an MLOps role. You can import a

notebook by clicking Workspace or a user folder and selecting Import as

pictured (Figure 4-15):

Figure 4-15.  Importing a notebook in your workspace

�GPU Accelerated Training

GPU accelerated training means using a GPU to help reduce the runtime

in training deep learning algorithms. While CPUs are latency optimized,

GPUs are bandwidth optimized. Since deep learning involves tensor

operations and matrix multiplications which can be implemented on a

GPU, these operations can be sped up by using a framework that is GPU

aware both because of the data parallelism and the higher bandwidth

afforded by a GPU.

Chapter 4 Infrastructure for MLOps

126

One exciting change to the TensorFlow package is that since version

2.1, TensorFlow and TensorFlow-gpu have merged. If you require a

version of the TensorFlow package with version <= 2.1, then you can

install TensorFlow-gpu as per the following otherwise you may substitute

TensorFlow-gpu with TensorFlow.

In your Jupyter lab environment, you can make your notebook GPU

aware by using TensorFlow’s TensorFlow-gpu package (other deep

learning frameworks such as PyTorch require code changes). The steps for

configuring GPU awareness in TensorFlow are listed in the following:

	 1.	 Uninstall your old TensorFlow.

	 2.	 Edit your Dockerfile and add the TensorFlow package

to the RUN pip install command (note if for backward

compatibility, you require TensorFlow < 2.1, and

then use the older TensorFlow-gpu package instead).

Figure 4-16 shows the informational message.

Figure 4-16.  Deprecated packages can cause problems in workflows

	 3.	 Run the docker image with GPU support using

docker run.

	 4.	 Finally in a Jupyter notebook in your lab

environment, you can check install using

import tensorflow as tf tf.config.list_physical_

devices('GPU').

Chapter 4 Infrastructure for MLOps

127

You should now be able to run GPU accelerated code in TensorFlow

without additional code changes. In the following chapter, we’ll look at

a detailed example of GPU accelerated training using the MNIST data

set and the GPU enabled lab environment we just built (optionally, you

can use Google Colab if you don’t have a physical GPU device). Okay,

so we have talked about using hardware to accelerate training, but what

about processing large amounts of data? In the next section, we will look

at how we can coordinate the processing of massive amounts of data

using multiple processors in parallel. These types of databases are called

massively parallel analytic databases or MPP.

�Databases for Data Science
The distinction between an analytical system and a transactional system

is an important one in data science. Transactional systems, also called

“online” or operational systems, are designed to handle a large number of

very small transactions (e.g., update one row in a table based on a primary

key). These types of systems may support business processes like point of

sales systems or other operationally critical parts of the business where

speed and precision are nonnegotiable.

In contrast, analytical systems are designed to support offline

workloads, large volumes of data, and queries over the entire historical

data set. These analytical systems are usually implemented as a MPP

(massively parallel processing) database. The types of queries that these

databases can handle include large CTEs (common table expressions),

window analytical functions, and range joins for point in time data sets.

Snowflake is one such choice of MPP database. An example of a complex

query that uses common table expressions and window analytic functions

is given in Listing 4-1.

Chapter 4 Infrastructure for MLOps

128

Listing 4-1.  A Common table expression with a window analytic

function

-- Use a common table expression to deduplicate data

WITH cte AS (

 �SELECT id, component, date, value, ROW_NUMBER() OVER

(PARTITION BY id, component ORDER BY date DESC) AS rn

 FROM sensor_data

)

SELECT id, component, date, value

FROM cte

WHERE rn = 1;

In this example, we first create a mock sensor data table “sensor_ data”

with four columns: id, component, date, and value. We then insert some

sample data into this table.

Next, we define a common table expression (CTE) and give it a name.

This code is available as part of Chapter 4 (see example_deduplicate_data.

sql). You can optionally run it by creating a cloud service account on

Snowflake. Similar to the Databricks community edition, you can get a free

trial using the self-service form on the Snowflake website; however, this

is optional and the query will likely run with some modification on most

MPP database that supports ANSI SQL since window analytic functions

are a part of the standard since 2003. Let’s break this query apart into its

component pieces to understand how to write a query:

The SELECT statement is used to select all four columns from the

sensor_data table, and we use ROW_NUMBER() window analytic function

to assign a unique row number for each row. The PARTITION BY clause

ensures that each row number gets reset for each combination of id and

component.

Finally, the other SELECT statement selects four columns from our

CTE but filters only on rows where the row number is equal to 1. This has

the effect of de-duplicating our sensor_data table. You may find queries

Chapter 4 Infrastructure for MLOps

129

like this or even more complex CTEs in typical data science workflows

which, for example, in this case may be used to de-duplicate a data set

prior to running a train-test-split algorithm, avoiding data leakage. Of

course, this is only a simple example.

Snowflake (a type of MPP database) SQL supports a wide range of

window analytic and statistical functions for data science tasks such as

ranking rows within a partition, calculating running totals, and finding the

percentiles of a set of values.

Here are some examples of the types of functions that are commonly

used in feature engineering.

•	 Ranking functions: ROW_NUMBER(), RANK(),

DENSE_RANK()

•	 Aggregate functions: SUM(), AVG(), MIN(),

MAX(), COUNT()

•	 Lead and lag functions: LEAD(), LAG()

•	 Percentile functions: PERCENT_RANK(), PERCENTILE_

CONT(), PERCENTILE_DISC()

•	 Cumulative distribution functions: CUME_DIST()

•	 Window frame functions: ROWS BETWEEN,

RANGE BETWEEN

•	 Date and time functions: DATE_TRUNC(), DATE_

PART(), DATEDIFF()

•	 String functions: CONCAT(), SUBSTRING(), REGEXP_

REPLACE()

In the next section, we will briefly detail patterns for enterprise grade

database projects so we can get familiar with common architectural

patterns.

Chapter 4 Infrastructure for MLOps

130

�Patterns for Enterprise Grade Projects
Data lake: A data lake is centralized repository, typically separated into

bronze, silver, and gold layers (called the medallion architecture2). The

central repository allows you to store both structured and unstructured

data, contrasting with a traditional relational database. If you use a cloud

storage account like blob storage or s3 buckets, the bronze, silver, and

gold layers can map to containers or buckets where you can administer

permissions and assign users or service principals access to each container

or bucket. The bronze layer is the ingestion layer and should be as close to

the raw data sources as possible (you can, e.g., organize raw data sources

in folders, but it is important to have a consistent naming convention

across the data lake). The silver layer is most important for data science

and contains cleaned and conformed data that is still close enough to the

source that it can be used for predictive modeling and other data science

activities. The gold layer is used for enterprise grade reporting and should

contain business-level aggregates.

Data warehouses: Data warehouses are an older pattern and are a

centralized repository of data. Data can be integrated from a variety of

sources and is loaded using ELT or ETL patterns. The data warehouse can

contain dimensional data (slowly changing dimensions) and other tables.

This architectural pattern is not well-suited for data science workflows

which require flexibility and have to handle schema drift but can be used

as a valuable data source for many projects.

Data mesh: A data mesh is a decentralized approach to building data

stores that uses self-service design and borrows from domain-oriented

design and software development practices. Each domain is responsible

for their own data sources, requiring a shift in responsibility, while the data

platform team provides a domain-agnostic data platform.

2 www.databricks.com/glossary/medallion-architecture

Chapter 4 Infrastructure for MLOps

http://www.databricks.com/glossary/medallion-architecture

131

Databases are not only used for feature stores (to organize features

for model training) but also for model versioning and artifact storage; in

fact, MLFlow also uses a database. Databases are also used for logging and

monitoring. This is an important fact that is often overlooked in MLOps.

In the next section, we will look at No-SQL databases and how we leverage

meta-data in our data science workflows to adapt to change.

�No-SQL Databases and Metastores
Relational databases can represent structured data in tables with

relationships (foreign keys) between tables. However, not all data can

be forced into this pattern. Some data, especially web data (JSON and

XML), are semi-structured having nested hierarchies, and text-based data

common in NLP problems are unstructured. There is also binary data

(common when you have to deal with encrypted columns), and having

to store, process, and define the relationships between structured, semi-

structured, and unstructured data can be cumbersome and inefficient in

a relationship database creating technical complexity. This complexity is

compounded by schema evolution common to data science workflows.

Hence, there is a need for an efficient way to represent, store, and process

semi-structured and unstructured data while meeting nonfunctional

requirements like availability, consistency, and other criteria important

to the data model. In this section, we will introduce both No-SQL and

relational databases that you can use to build data models and meet

nonfunctional requirements without having to pigeonhole your solution

into a relational database.

•	 Cassandra: Cassandra is a No-SQL distributed database

that supports high availability and scalability which

makes it ideal as an online feature store.

Chapter 4 Infrastructure for MLOps

132

•	 Hive: Hive is a distributed, fault-tolerant data warehouse

system for data analytics at scale. Essentially a data

warehouse is a central store of data that you can run

queries against. Behind the scenes, these SQL queries

are converted into MapReduce jobs, so Hive is an

abstraction over MapReduce and is not itself a database.

•	 Hive metastore: Hive metastore is a component you

can add to your feature store. It contains names about

features such as names of features, data types (called

a “schema”). It is also a commonly used component

in cloud services like Databricks delta tables, so even

if you aren’t building your own feature store directly,

you should have some knowledge of this important

piece of data infrastructure.

�Relational Databases
•	 Postgresql: Postgres is a relational database system that

can support gigabytes, terabytes, and even petabytes of

data. We can also configure PostGres to work with Hive

metastore. In Feast (in version greater than 0.21.0),

Postgres is supported as a registry, online and offline

feature store.

�Introduction to Container Orchestration
We learned about Docker and even created a Dockerfile which was a series

of instructions used to build an image. The image, a binary containing

layers of software, could be run like a lightweight virtual machine on our

host operating system. But what if we have to run multiple services, each

with their own Docker images? For example, we might have a service that

Chapter 4 Infrastructure for MLOps

133

hosts a Jupyter notebook where we type in our Python code, but we might

want to have another service for storing data in a database and have our

notebook interact with this database.

One subtlety you will encounter is networking. How can we get these

two services to “talk” to each other and create the network infrastructure to

support this communication between services?

Also since containers are ephemeral in nature, how do we spin these

services up when we need them and spin them down when they’re no

longer needed while persisting the data we need? This is what container

orchestration deals with, and the standard tool for orchestrating containers

is Docker Compose.

We’ll be using Docker Compose in the next chapter to set up MLFlow

and get it to “talk” to our Jupyter lab which we will need to set up

experiment tracking for our training pipeline. You can look at the docker-

compose.yml file included with this chapter (but don’t run any commands

just yet). Figure 4-17 shows an example YML file.

Figure 4-17.  A Docker Compose YML file

Chapter 4 Infrastructure for MLOps

134

�Commands for Managing Services
in Docker Compose
Container orchestration is a large topic, and as we mentioned, you will be

using it in the next chapter to set up MLFlow and build a training pipeline.

We’ll cover MLFlow in depth, but Docker Compose has commands for

managing the entire lifecycle of services and applications.

Here are some important commands useful for managing services:

•	 Start services: docker-compose up

•	 Stop services: docker-compose down

•	 Start a specific service: docker-compose up

<service name>

•	 Check the version of Docker Compose: docker-

compose-v

•	 Build all services: docker-compose up --build

While Docker Compose simplifies the process of creating services, you

still need to define multi-container applications in a single file. Imagine a

scenario where you have infrastructure that spans across different cloud

providers or is multitenant in nature. This kind of multitenancy contrasts

with multi instance architectures and having a tool that can completely

describe infrastructure as code can help with the complexity in these

environments.

•	 Infrastructure as Code

Infrastructure as code (IaC) is a DevOps

methodology for defining and deploying

infrastructure as if it were source code. We have

already seen an example of this when we spun up

our data science lab environment by defining the

Chapter 4 Infrastructure for MLOps

135

image, binaries, and runtime needed inside the

Dockerfile. Since the Dockerfile itself is a series

of instructions that can be source controlled and

treated like any other source code, we can use it to

generate the exact same environment every time

we build the image and run the container from the

image. The ability to have the same environment

each time is called reproducibility and is an essential

component for data science because experiments

need to be reproducible.

It’s worth mentioning that there are specific tools and specialties

within DevOps for managing infrastructure as code. One tool that is widely

used in industry is Terraform. Terraform is an open source infrastructure-

as-code tool for provisioning and managing cloud infrastructure such

as Databricks. It works with multiple cloud providers and allows MLOps

professionals to codify infrastructure in source code that describes the

desired end state of the system. An example configuration file is given

in the following, but these files can get very complex, and you can use

Terraform and similar tools to configure and manage notebooks, clusters,

and jobs within Databricks. Figure 4-18 shows a very simple example of

infrastructure as code in Terraform.

Figure 4-18.  Infrastructure can be described as code

Chapter 4 Infrastructure for MLOps

136

�Making Technical Decisions
We’ve come a long way in this chapter from introducing Docker, applying

what we learned to create our own data science lab environment complete

with Jupyter notebook, and getting our hands dirty with Feast, creating our

own feature store from an IoT data set.

We’ve also talked about the philosophy of having infrastructure as code

and why it’s important for the reproducibility of data science experiments.

The final piece of the puzzle is how we can use our knowledge of

infrastructure to make better technical decisions. Here are a few key points

you should consider when making decisions around infrastructure in your

own projects:

•	 Solve problems using a divide-and-conquer strategy,

breaking services and parts of applications into

functional components.

•	 Ask yourself if there is a cloud service or a docker

container you might want to use for each functional

component in your system.

•	 Understand the performance requirements for your

workload. Do you need a lot of memory? Or do you

need dedicated CPUs and GPUs for model training?

Understanding the hardware requirements for different

models can help you decide.

•	 Run code profilers on your code to identify bottlenecks

in a data-driven way. A great profiler that comes with

Python is cProfiler. It’s often not enough to “guess”;

you should strive to make data-driven decisions by

performance testing your code.

Chapter 4 Infrastructure for MLOps

137

•	 Strive to make your experiments reproducible, and

deploying by using Docker and adopting a mentality of

infrastructure as code can help to manage changes and

different versions of infrastructure.

•	 Decide between PaaS (Platform as a Service) and

Infrastructure as a Service. Sometimes, spinning

up your own dedicated server and worrying about

upgrades, updates, and security batches can be

overkilled when a good PaaS meets infrastructure

requirements.

�Summary
In this chapter, we’ve learned the fundamentals of infrastructure for

MLOps. We’ve covered sufficient prerequisites for understanding

containerization, cloud services, hardware accelerated training, and

container orchestration and how we can use our knowledge to become

better technical decision-makers on data science projects. At this point,

you should understand what a container is and how to build containers

and be able to define what container orchestration means and why it

is useful for MLOps. Although this chapter covered a lot of ground and

you’re not expected to know everything about containerization, we

hope this chapter has peaked your curiosity as we start to build on these

fundamentals and apply what we learned to some real data science

problems in the coming chapters. Here is a summary of the topics we’ve

covered:

•	 Containerization for Data Scientists

•	 Hardware Accelerated Training

•	 Feature Store Pattern and Feast

Chapter 4 Infrastructure for MLOps

138

•	 GPU Accelerated Training

•	 MPP Databases for Data Science

•	 Introduction to Container Orchestration

•	 Cloud Services and Infrastructure as Code

•	 Making Technical Decisions

Chapter 4 Infrastructure for MLOps

139

CHAPTER 5

Building Training
Pipelines
In this chapter, you will build your own toolkit for model training. We will

start by discussing the training and how it relates to the other stages of the

MLOps lifecycle including the previous stage feature engineering. We’ll

consider several different problems that make this part of the lifecycle

challenging such as identifying runtime bottlenecks, managing features

and schema drift, setting up infrastructure for reproducible experiment

tracking, and how to store and version the model once it’s trained. We’ll

also look at logging metrics, parameters, and other artifacts and discuss

how we can keep the model, code, and data in sync. Now, let’s start by

talking at defining the general problem of building training pipelines.

�Pipelines for Model Training
Building pipelines are a critical part of the MLOps lifecycle and arguably

the most essential part of the development and deployment of machine

learning systems since training the model is the process that allows you to

determine what combination of weights, biases, and other parameters best

fit your training data. If model training is done correctly, meaning we’ve

correctly minimized a cost function that maps to our business problem,

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_5

https://doi.org/10.1007/978-1-4842-9642-4_5

140

then our end result of this process will be a model capable of generalizing

beyond our training set, to unseen data, making predictions that can be

actioned upon by decision-makers.

In this chapter, we will take a step back looking at model training

instead as a process. We’ll learn how to represent this process in a natural

way as a machine learning pipeline. We’ll also consider what can go wrong

in this critical step of the MLOps lifecycle including what happens when

we can’t train our model in a reasonable amount of time, what happens

when our model doesn’t generalize, and how we can bring transparency

and reproducibility into the training process by setting up experiment

tracking. We’ll also consider a part of model training that is often

overlooked: model explainability and bias elimination. Let’s look at some

high level steps you might encounter in a training pipeline.

�ELT and Loading Training Data
Model training typically occurs after you’ve already collected your data

and, preferably, you have a feature engineering pipeline in place to

refresh the data. This is a complicated step. We looked at some of the data

infrastructure you can use for building feature stores in the last chapter

such as relational databases, massively parallel databases, and Feast and

Databricks, but if you’ve ever had to build an ETL (extract, transform,

and load) or ELT (extract, load, and transform) pipeline, you know that

it involves setting up connection strings to databases and writing SQL

queries to read data, transform it, and load it into a target database. You

need to set up tables, handle schema drift, and decide what tools to use for

scheduling your pipeline. This is a large topic within data engineering, and

we can’t possibly cover every detail of this process, but we can provide you

with knowledge of a few tools for building feature engineering pipelines:

Chapter 5 Building Training Pipelines

141

�Tools for Building ELT Pipelines
Data science projects need a solid foundation of data engineering in order

to support the feature engineering process. Challenges exist around the

part of the MLOps lifecycle between when data is collected and when that

data is cleansed, transformed, and stored for downstream model training

tasks. The steps that go into this are commonly called ELT or ETL (extract,

transform, load), and there are data specialists that focus on this area

alone. ELT is the preferred choice for data science teams since we want to

first extract and then load the data in a database. Once the data is loaded,

the data science team is free to transform the data as they wish without

having to specify the transformation beforehand. With the ETL pattern,

you need to transform the data on the fly before it is loaded which can

become difficult. In the ELT pattern, the data science team can select the

features that they want with data already loaded in the database and run

experiments on raw data or iterate toward the feature engineering required

for building the models. We also want to separate our extract, transform,

and load steps, and we need a tool that is capable of passing data between

steps and comes with monitoring, scheduling, logging, and ability to create

parameterized pipelines. More specifically for data science, we also want

to support both Python and SQL in our pipeline. Let’s take a look at a few

of these tools for ELT in data science.

Airflow v2: Airflow (version 2) provides an abstraction called a DAG

(directed acyclic graph) where you can build pipelines in Python, specify

dependencies between steps (e.g., read data, transform data, and load data),

have steps run in parallel (this is why we use a DAG to represent the pipeline

as opposed to a more linear data structure), and provide a convenient web

interface for monitoring and scheduling pipeline runs. You will want to use

at least version 2 of Airflow since version 1 requires you pass data between

steps using xargs. You can build full end-to-end training pipelines in Airflow

locally, but when it comes time to deploy your models in production

(we’ll talk about this in depth in a coming chapter), you might want to

Chapter 5 Building Training Pipelines

142

set up Airflow as a cloud service. There are a couple options available for

production Airflow workflows in the cloud such as Astronomer or Google

Cloud Composer (based on Google Kubernetes Engine).

The other much more difficult option is to deploy your own Airflow

instance to Kubernetes. This option is not recommended for the data

scientist that wants to manage their own end-to-end lifecycle because

setting up your own Airflow instance in production on Kubernetes does

require knowledge of infrastructure and there are many cloud services

available that provide high availability and reliability, so if you are

managing the entire lifecycle end to end, it’s recommended you choose a

cloud platform like Astrologer provides Airflow as a service, so you don’t

have to deal with the low level details required to configure Airflow.

�Azure Data Factory and AWS Glue

If you’ve worked on ETL or ELT pipelines in the cloud before, you’ve

probably heard of AWS Glue or Azure Data Factory depending on your

choice of cloud provider. Both of these options can be used especially

in combination with PySpark since Azure Data Factory has an “activity”

(pipeline step) for running notebook Databricks, and AWS Glue can also

run PySpark for extract, transform, and load steps. One thing to consider

when choosing an ELT tool is which dialect of Python is supported since

for data science, you will likely be writing your extract, load, and transform

steps in a combination of Python and SQL. Although this isn’t a hard

requirement, if the rest of your workflow is written in Python such as the data

wrangling or feature engineering steps, you would need to figure out how

to operationalize this code as part of your pipeline, and if you choose a low

code or visual ELT tool that doesn’t support Python, you will have to have the

additional step of translating your entire workflow which may not be possible

especially if you have complicated statistical functions. This also leads to

the second consideration for choosing an ELT tool for feature engineering

pipelines: Does the tool support statistical functions required by your

workflow? If the tool supports Python scripts, then the answer is probably

Chapter 5 Building Training Pipelines

143

yes, but you should still consider what kind of packages can be installed.

The same applies if your data science workflow is in another language other

than Python, for example, Julia or R, and you need to consider how much

community support there is for your language, and using a language that

isn’t widely used may restrict the options you have for building your pipeline.

Another option for ELT is choosing a tool that supports the entire

machine learning lifecycle end to end such as Databricks. The advantage

of having a single platform is reduced effort and fewer integrations

compared to a component-based system, but you still need to consider

many questions such as how you’re going to organize your feature

engineering pipeline, what does the folder structure look like? Where will

the ELT scripts live? How can I add Git integration and set up jobs to run

these scripts to refresh and update data required for the model?

The last piece of advice for this section is to have as much explicit

logging and error handling as possible baked into your pipeline. Although

as data scientists, we might be more focused on accuracy of our scripts,

when you go to deploy your pipeline to production and it breaks, you will

wish you had more information in the logs and spent more time handling

errors in a graceful way. Adding some basic retry logic, try-except blocks,

and basic logging can go a long way to making your feature engineering

pipelines robust and reliable.

�Using Production Data in Training Pipeline

It goes without saying that you need production data in your training

pipeline. It makes very little sense to train a model if the data is not accurate

and up to date. This may pose some challenges for teams that have strict

security protocols. You may need to communicate your need for production

data and the business need for requiring daily or real-time refreshes of this

data. For most workflows, daily frequency should be adequate, but know

that if you require low latency data refreshes, it may require additional

infrastructure and code changes to support this. You may have to consider

using an event driven architecture rather than a batch ELT pipeline.

Chapter 5 Building Training Pipelines

144

�Preprocessing the Data
Okay so you have your ELT pipeline, and you’ve decided how you’re going

to refresh the data and the frequency of updates and have chosen your

feature store where your features will live. Your pipeline runs daily. You

have code to read this data into a dataframe, maybe a Pandas dataframe or

a PySpark dataframe if you’re working on a structured data set, or maybe

you use some other libraries like Spacy for processing text based data in an

unstructured format.

The point is, whether the data is structured or unstructured, the

shape, volume, quality of the data, and type of machine learning problem

determine how it will be processed. There are many variables here so your

preprocessing steps may be different.

What matters is how you are going to translate your assumptions

about your model into code. Your data may have many missing values,

and your model might require a value so you will have a preprocessing

step to handle missing values. You may be solving a classification problem

and found your data set is imbalanced, so you may have another step that

resamples your data to handle this. Other steps might include scaling

the data and getting the data in a shape the model expects. Take a look at

Listing 5-1 for an example.

Listing 5-1.  A code snippet showing preprocessing steps

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

X = df.drop('label', axis=1)

y = df['label'']

Chapter 5 Building Training Pipelines

145

train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.3)

scaler = StandardScaler()

fit transform on X_train

X_train = scaler.fit_transform(X_train)

transform X_test

scaler.transform(X_test

So how do we handle all of these preprocessing steps? It’s really

important to keep them all in sync, and this is why you need to use a

pipeline. Although your ELT pipeline should be deployed using something

like Airflow, for the complex sequence of transforms, most machine

learning frameworks have a concept of a pipeline you can leverage for the

transformations. For example, in sklearn, you can import pipeline from

sklearn;pipeline as shown in Listing 5-2.

Listing 5-2.  Importing sklearn’s pipeline class

from sklearn.pipeine import Pipeline

�Handling Missing Values
Missing values in data can have many root causes. It is important to assess

the reason why data is missing before building your training pipeline.

Why? The reason is simple: Missing values mean you do not have all of the

information available for prediction, but it could also indicate a problem

with the data generating process itself, human error, or inaccurate data.

Missing at random (MAR) is a term used in data analysis and statistics

to indicate that the missing data can be predicted from other observed

values in the data set. While not completely random, data that is missing at

random or MAR can be handled using techniques like multiple imputation

Chapter 5 Building Training Pipelines

146

and other model based approaches to predict the missing value, so it’s

important to understand if the data qualifies as MAR or not. An example

in finance would be a stock market forecast. Let’s suppose you are tasked

to build an LSTM model to forecast the price of a stock. You notice data

is missing. Upon further investigation, you realize the missing data is

correlated with another variable that indicates the stock market was closed

or it was a holiday. Knowing these two indicator variables can be used to

predict if the value was missing, so we say the price of the stock is missing

at random. We might consider multiple imputation as a technique in our

preprocessing steps to replace this missing value, or maybe it makes more

sense to drop these values entirely from our model if the loss of data won’t

impact the accuracy of our forecast too much.

In addition to MAR, there is also MCAR (missing completely at

random) and MNAR (missing not at random). With MCAR we assume that

the missing data is unrelated (both to covariate and response variables).

Both MCAR and MAR are ignorable; however, MNAR is not ignorable

meaning the pattern of missing values is related to other variables in

the data set. An example of MNAR would be an insurance survey where

respondents fail to report their health status when they have a health

status that might impact the insurance premium.

�Knowing When to Scale Your Training Data
Scaling is applied when we have different units and scales in our training

data and we want to make unbiased comparisons. Since some machine

learning models are sensitive to scale, knowing when to include scaling in

your training pipeline is important. Some guidelines for knowing when to

scale your training data are as follows:

	 1.	 Do variables have different units, for example,

kilograms and miles?

Chapter 5 Building Training Pipelines

147

	 2.	 Are you using regularization techniques such as

Ridge or Lasso? You should scale your data so that

the regularization penalty is applied fairly, or you

may have a situation where variables with larger

ranges are penalized more than variables with

smaller ranges.

	 3.	 Are you using a clustering algorithm that is distance

based? Euclidean distance is highly sensitive to outliers

and scale, so scaling your training data is necessary to

avoid some variables dominating the computation

A general rule of thumb is to apply scaling to the numerical variables

in your data since from an MLOPs perspective, even if the model does not

require it, you can improve the numerical stability and efficiency. Now that

we’ve covered some of the preprocessing steps you might encounter in a

training pipeline, let’s talk about a problem you will face when features

change: schema drift.

�Understanding Schema Drift
Let us suppose you are a data scientist at a large financial institution.

You are creating a model to predict customer churn but need to consider

demographic and macroeconomic data. You recently were asked to add

another variable to you model: the pricing and subscription type for each

level of customer. You have five variables to add, one for each subscription

type; however, you will have to adjust your entire training pipeline to

accommodate them. This situation is called schema drift.

There are many ways to deal with schema drift, but as a general rule,

you should build your training pipeline in a way that is flexible enough

to accommodate future changes in variables since they will inevitably

happen. This might be as simple as altering a table to add a new column

or as complex as dynamically generating SQL including variable names

Chapter 5 Building Training Pipelines

148

and data types, creating the table on the fly as part of the training pipeline.

How you deal with schema drift is up to you, and some frameworks like

Databricks provide options such as the “mergeSchema” option when

writing to delta tables, so if you are using an end-to-end machine learning

platform or feature store, you should consult the documentation to check if

there is anything related to schema drift before building out a mechanism

yourself.

�Feature Selection: To Automate or Not
to Automate?
Feature selection is important from an MLOps perspective because it

can dramatically reduce the size of your training data. If you are working

on a prediction problem, you may want to discard variables that are not

correlated with your target variable

An interesting question is how much of this process needs to be

automated? Should your training pipeline automatically add drop

variables as needed? This is likely very unsafe and could lead to disastrous

consequences, for example, if someone adds a field by accident that

contains PII (personally identifiable information), demographic data that

violates regulatory constraints on the model or introduces data leakage

into your model. In general, your training pipeline should be able to

handle adding and removing features (schema drift), and you should

monitor features for data and model drift, but having a human as part of

the feature selection process, understanding the business implication of

the features that go into your model is a safer bet than taking a completely

hands-off approach.

Chapter 5 Building Training Pipelines

149

�Building the Model
Once we have preprocessed the data, the next step is to build the machine

learning model. In our case, we will be using scikit-learn’s logistic

regression model. We can define the model and fit it to the training data, as

shown in Listing 5-3:

Listing 5-3.  Fitting a model in Sklearn

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

model.fit(X_train, y_train)

�Evaluating the Model
Once we have built the model, the next step is to evaluate the model. We

will use scikit-learn’s accuracy_score function to calculate the accuracy of

our model on the test data, as shown in Listing 5-4.

Listing 5-4.  Evaluating the model

from sklearn.metrics import accuracy_score

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print('Accuracy:', accuracy)

It’s important here that model evaluation can be a complex process

that happens both during hyper-parameter tuning and after tuning when

comparing the performance of tuned models. The former is commonly

called the “inner validation loop” and is used on a subset of training data

before being retested on another subset. The purpose of this procedure is

to find the best hyper-parameters for the model. Once our model is tuned,

Chapter 5 Building Training Pipelines

150

we can compare tuned models, and this is called the “outer validation

loop” where you may choose the best model. Optionally you may choose

tore-train the best model on the combined train and test sets in hope of

getting better generalization. In the lab, you will build a training pipeline

and see how some of this process works in practice.

�Automated Reporting
Recall when we defined the MLOps maturity model, we said the

differentiator between the first and second phase was an automated

training pipeline as well as automated reporting. While we will cover

performance metrics and monitoring in the next chapter, it is imperative

to have infrastructure set up for reporting during the training phase;

otherwise, the model can be trained, and we need to make decisions on

model performance. While many MLOps professionals consider reporting

to be important, reporting on model performance, model drift, and feature

drift or tying in the model output from the training phase with business

KPIs is a difficult process. At minimum your team should have a dashboard

so you can discuss the results of trained models with stakeholders.

Examples include Power BI which can be deployed to a cloud service or

rolling your own such as Dash in Python and hosting it on a web server in

the cloud.

�Batch Processing and Feature Stores
When training a model, you need to decide if you want to store all of

the data in memory or process the data in a batch, updating the weights

of the model for each batch. Although gradient descent is widely used,

theoretically there are alternative methods for optimization, for example,

Newton’s method. However, one practical advantage of gradient descent

based algorithms is it allows you to train the model in a distributed

Chapter 5 Building Training Pipelines

151

fashion, breaking up the training set into batches. You should be aware

if there are batch versions of your algorithm available. Gradient descent

usually refers to batch gradient descent which trains on the entire data set

in one go, but there are two modes for batch training you can code yourself

when using gradient descent as an optimization algorithm, and they’re

available in most deep learning frameworks: mini-batch and stochastic

gradient descent.

�Mini-Batch Gradient Descent:
Mini-batch gradient descent is a tweak to the regular gradient descent

algorithm that allows you to train your model on batches of data. The

size of these batches of data can be tuned to fit in memory but is usually

a power of 2 such as 64 or 512 to align with computer memory. Since the

gradients are calculated over the entire mini-batch, the model weights get

updated for each batch. This kind of divide and conquer strategy has many

performance advantages, the most obvious one is the ability to run your

computations on a smaller subset of data rather than than the entire data

set in one shot. This translates into reduced memory footprint and faster

computations. The trade-off you should be aware of is, unlike the regular

batch gradient descent on the full training data, with mini-batch gradient

descent, you are only approximating the true gradient. For most cases, this

is acceptable, and for larger scale machine learning projects, training on

the entire data set for several thousand epochs may not be feasible.

�Stochastic Gradient Descent
Stochastic gradient descent is another variation of the classical gradient

descent algorithm, this time using a randomly selected sample point

to compute the gradients. The gradient of the loss function is used to

update the model weights for each randomly selected sample point. The

advantage, like mini-batch gradient descent, is less memory usage and

Chapter 5 Building Training Pipelines

152

possibly faster convergence. However, since the points are randomly

selected from the training data, we are still only approximating the true

gradient, and this approximation can be particularly noisy. Therefore,

stochastic gradient descent sometimes combines with mini-batch gradient

descent, so the noise term gets averaged out over many samples, leading to

a smoother approximation of the true gradient.

Implementing stochastic gradient descent in a deep learning

framework like PyTorch is as simple as importing the SGD optimizer.1

�Online Learning and Personalization
The definition of an online learning method is a scenario where you

don’t want to train on the entire data set but still have a need to update

the weights of the model as new data flows in. This is intuitive if we

understand Bayes’ rule which provides one such mechanism for updating

a probability distribution, but when it comes to classical machine learning,

we need to use gradient descent.

Linear classifiers (SVM, logistic regression, linear regression, and so

on) with SGD training may come with a function that can have online or

mini-batch mode supporting delta data or both online and batch mode

supporting both delta data and a full data set.

Linear estimators in Sklearn, for example, implement regularized

linear models with stochastic gradient descent learning. In this case, the

gradient of the loss is estimated for each data point that the weights are

updated by computing the partial derivative (take a look at Chapter 2 for

an example of working with partial derivatives and loss functions in code).

An optimization that is used with stochastic gradient descent is decreasing

the learning rate (impacting the model’s ability to update its weights in

response to new data) as well as scaling the training data with zero mean

1 PyTorch SGD optimizer documentation https://pytorch.org/docs/stable/
generated/torch.optim.SGD.html

Chapter 5 Building Training Pipelines

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

153

and unit variance (we talked a bit about this earlier in the chapter). This

method is called feature scaling and can improve the time it takes for the

algorithm to converge (sometimes at the cost of changing the output as

with an SVM).

While online learning through methodologies like the partial fit

function can be used to reduce training time, you might ask first if it is

necessary since you need to build mechanisms for incremental data load,

support partial fit, fine-tune the last layer of the model, and freeze the rest

or some other methodology for updating the weights on a small subset of

data. This can complicate the training process, so unless there is a good

reason for doing it, you might be better to consider hardware accelerated

training or distributed training on a full data set. However, there are still

great reasons to consider online learning other than performance, one

being the ability to fine-tune a model and personalize the prediction and

in such cases. In the next section, we’ll take a look at another important

aspect of model training: model explainability.

�Shap Values and Explainability at Training Time
Machine learning algorithms are often viewed as “black boxes” that accept

labels and input data and give some output. As we know from Chapter 2,

most algorithms are not “black boxes”; they’re built up from mathematical

abstractions, and although these abstractions can be powerful, they’re also

low bias machines, ultimately trading interpretability for a higher variance

(see bias-variance trade-off). Neural networks, especially deep neural

networks consisting of several layers of neurons stacked, are an example

with both high variance and low explainability.

Fortunately, solving the problem of model explainability has come a

long way, and some of the most widely used tools are LIME and SHAP.

LIME: LIME is an acronym for local interpretable model-agnostic

explanations. The goal of LIME is to show how each variable is used in the

prediction. In order to achieve this, LIME perturbed each observation and

Chapter 5 Building Training Pipelines

154

fits a local model to these perturbations. The model’s coefficients are then

used to assign a weighting to the feature importance of each variable. This

weighting can then be interpreted as how much each variable contributed

to the prediction, allowing the data scientist to explain the model. LIME is

typically more performant than SHAP.

SHAP: Shapley Additive Explanations or SHAP relies on the concept

of a Shapley value, a mathematical construct that uniquely satisfies

some theoretical properties (from cooperative game theory) of an ideal

model-agnostic explainability algorithm. The Shapley values can be

interpreted as how much each feature contributed to the prediction. An

interesting consequence of using Shapley values, which are available for

each observation, is you can use it for model fairness as well, for example,

to estimate the demographic parity of features in your model. SHAP

aims to approximate the model globally and gives more accurate and

consistent results, whereas LIME, which approximates the model locally, is

much faster.

�Feedback Loops: Augmenting Training Pipelines
with User Data
One way to evaluate the maturity of an MLOps solution is by asking if it

can incorporate output of the model back into the model training process,

creating a simple kind of feedback loop. Feedback loops are ubiquitous

throughout engineering.

�Hyper-parameter Tuning
The final section we need to cover is hyper-parameter tuning and how it

relates to the entire training pipeline. We know that models have hyper-

parameters which are exactly that extra parameters like depth of a tree,

number of leaves for tree based models, regularization parameters, and

Chapter 5 Building Training Pipelines

155

many other parameters that can do a variety of things from preventing

model-overfitting to changing the architecture or efficiency of the model.

If you look at a boosting model like gradient boosting machines,

you may have many hyper-parameters, and knowing details about how

the algorithm works, for example, does it grow leaf-wise or level-wise,

is essential to using the model correctly and tuning it to your business

problem.

How do we search through a search space? We face a problem of

combinatorial explosion if we try to do a brute force approach. We might

try random search which reduces the search space, but then we might

randomly miss important parameters and not have the best model at

the end. A common approach is to use Bayesian optimization for hyper-

parameter search. With the Bayesian approach, the best combination of

hyper-parameters is learned as the model is trained, and we can update

our decisions on which parameters to search as the process progresses,

leading to a much better chance of finding the best model.

How do we implement Bayesian hyper-parameter search? One library

that you will likely run into is HyperOpt. One important point is that you

can set up MLFlow’s experiment tracking inside the Hyperopt objective

function. This powerful combination of MLFlow and Hyperopt can be

an invaluable piece of your workflow. If you run the lab, you can see this

pattern implemented and integrate it into your own MLOps toolkit. In

the next chapter, we’ll build on top of this foundation and look at how we

can leverage MLFlow for finding the “best model” to make predictions on

unseen data and use this model and data as part of an inference pipeline,

but first let’s take a look at how hardware can help to accelerate the model

training process.

So what can go wrong in the model training process? One problem

is that of all the steps in the MLOps lifecycle, model training can take

the most time to complete. In fact, it may never complete if we are only

running on a CPU. Hardware acceleration, which as we discussed, refers

Chapter 5 Building Training Pipelines

156

to the process of using GPUs (or TPUs) to speed up the training process

for machine learning models, reducing the runtime by parallelizing

matrix and tensor operations in an efficient way. Fortunately, there is a

straightforward way to know when you might need to consider hardware

accelerated training; you only need to ask yourself two questions:

•	 How long does it take to train my model?

•	 Is this training time reasonable given the business

requirements?

If the answer to the second question is no, you will need to use

hardware accelerated training. For example, if your model takes 3 days to

train on your laptop, this is probably not acceptable, but in some cases,

it may be less obvious, and you will need to consider other variables like

if you can run the training pipeline automatically outside of business

hours; maybe a few hours of training time is acceptable to you. You might

also consider how fast the data is growing and if you will need to share

resources with additional models in the future. In this case, although a few

hours of training time might technically be feasible in the short term, long

term you will need to consider solutions like hardware accelerated training

to speed up the process, so you can accommodate the scale that you need

in terms of volume of data or number of models.

Model architecture is also a critical variable to consider since, for

example, deep learning models are often very expensive to train, requiring

hours or days to fine-tune the models. Long short term models (LSTMs),

large language models, and many generative models like generative

adversarial networks are best trained on a GPU, whereas if your problem

only requires decision trees or linear regression models, you may have

more leeway in what hardware you use.

Chapter 5 Building Training Pipelines

157

�Hardware Accelerated Training Lab
Open the Hardware Accelerated Training Jupyter notebook in your MLOPs

toolkit Jupyter notebook lab environment (named Chapter_5_gpu_

accelerated_training_lab) or, optionally, in Google Colab if you do not have

access to a GPU on your laptop.

In the example we’ve set up, you’ll be using a slightly different deep

learning framework than we’ve seen so far. You’ll use this framework,

TensorFlow, to train a simple neural network on the MNIST data set. As

part of the training pipeline, you’ll need to preprocess the data, define the

model architecture, compile the model, and set up the models’ optimizer

and loss function.

The most important part of this lab is the line of code that sets the GPU

explicitly, using GPU using the with tf.device(“/GPU:0”) context manager.

This tells TensorFlow to use the first available GPU either on your laptop or

in Google Colab to accelerate the training process.

�Experimentation Tracking
Experiment Tracking software is a broad class of software used to collect,

store, organize, analyze, and compare results of experiments across

different metrics, models, and parameters.

Experiment tracking allows researchers and practitioners to better

understand the cause and effect relationships that contribute to

experimental outcomes, compare experiments to determine common

factors that influence results, make complex decisions on how to improve

models and metrics to improve experiment results, and also reproduce

these results during model training.

Remember, model training is a process that involves data and code.

We need a way to keep track of the different versions of code and models

and what hyper-parameters, source code, and data went into this training

process. If we don’t log this information somewhere, we risk losing it,

Chapter 5 Building Training Pipelines

158

and this means we’re not able to reproduce the results of the experiment,

keep track of which experiments were actually successful or even worse,

and answer even the most basic questions around why an experiment

went wrong.

One tool that is arguably the gold standard when it comes to

experiment tracking in machine learning is MLFlow. MLFlow allows you to

store models; increment model version numbers, log metrics, parameters,

source code, and other artifacts; and use these artifacts at a later stage such

as in a model serving pipeline.

MLFlow is itself designed for end-to-end machine learning and can be

used in several stages of the MLOps lifecycle from training to deployment.

It can even be used in a research context when there is a need to quickly

iterate on results ad hoc and keep track of experiments across different

frameworks, significantly speeding up your research.

�MLFlow Architecture and Components
Experiment tracking: This component is used for logging metrics,

parameters, and artifacts under a single experiment. The tracking

component comes with a Tracking API which you can use in your training

pipeline to log these metrics, parameters, and artifacts during the training

process. In practice, experiment tracking can be set up in the hyper-

parameter tuning step and used in combination with other frameworks

like HyperOpt.

Projects: The MLFlow projects component is less of a traditional

software component and more of a format for packaging data science

code, data, and configuration. You might use projects to increase the

reproducibility of your experiments by keeping data, code, and config in

sync and deploying code to the cloud.

Chapter 5 Building Training Pipelines

159

Model registry: The model registry component enables data scientists

to store models with a version number. Each time the training pipeline

runs, you can increment this version number and subsequently use the

model API to pull a specific version number from the registry for use in a

downstream model serving or deployment pipeline.

Model serving: The MLFlow model serving component allows you

to expose your trained models as a RESTFul API for real-time inference

or batch inference modes. You can also deploy models to a number

of different environments including Docker and Kubernetes. We will

cover model deployment in a subsequent chapter, but this is a vast topic

that requires the deployment of not just the model itself but additional

monitoring, authentication, and infrastructure to support the way in which

the model is used by the end user.

Now that we’ve covered the basic components of MLFlow, how do

we begin to use it and set up our own experiment tracking framework?

Although we’ve worked with services in our MLOps toolkit like Feast and

Jupyter labs, standing up these services as stand-alone Docker images and

Python packages, MLFlow is a complex service with multiple components.

For example, the model registry may need to support models that can get

quite large and require either an external artifact store. We’ll be using an

s3 bucket for this. Technically, since we want to keep everything running

locally, we’ll be using another service called MinIO which emulates an s3

bucket for us where we will store our models.

Fortunately, since the docker-compose file is built for you in the last

chapter, you only need to run. Go to Chapter 5 folder and run docker-

compose up (Do you remember what this command does?). Listing 5-5

shows how to build all services from scratch.

Listing 5-5.  Running docker-compose up with –build option

docker-compose up -d --build

Chapter 5 Building Training Pipelines

160

You should notice this command spun up several services for you

including MinIO (our cloud storage emulator for model storage), our

MLFlow server (we use a relational database called MySQL for experiment

tracking), and MLFlow web server where we’ll be able to view our

experiments and models once they’re registered. You’ll also notice our

Jupyter lab notebook exists as a service and can talk to MLFlow through

the docker-compose network backbone.

Okay, that’s a lot of technical details, but how do we actually start using

these services? If you look at the docker-compose file, you’ll notice we

exposed several ports. MLFlow web server is running on port 5000, our MinIO

cloud storage service runs at port 9000, and our Jupyter lab server runs on

port 8080 like before. If you open a browser and enter localhost:8080, you’ll

be able to access your Jupyter lab. This is where we’ll run all of our code in this

chapter. Table 5-1 summarizes these services and where you can access them.

Table 5-1.  Table of service endpoints used in this chapter

Service Endpoint Description Credentials

MLFlow web

service

localhost:5000 View all experiments and

registered models

None

Cloud storage

service

localhost:9000 You need to access this once to

create an s3 bucket called “mlflow”

MinIO

MinIO123

Jupyter lab localhost:8080 Where we’ll be building our training

pipeline

None

You should open a browser and navigate to each of these services.

Now that we have built and evaluated our machine learning model, the

final step is to track our experiments using MLFlow.

Next, we need to import the mlflow package on PyPi and set the name

of our experiment (we’ve already installed Mlflow for you as part of the

Jupyter lab service but it is available as a stand-alone Python package).

Chapter 5 Building Training Pipelines

161

When you set an experiment, all runs are grouped under this

experiment name (each time you run your notebook, you are executing

code and this is what is referred to as a run). You might want to establish a

naming convention for experiments. For example, if you use a notebook,

you could use some combination of notebook name, model types, and other

parameters that define your experiment. An example code in Listing 5-6

shows similar code to what you’ll find in the lab.

Listing 5-6.  Creating an experiment in MLFlow using mlflow package

import mlflow

Start an MLFlow experiment

mlflow.set_experiment('logistic-regression-mlflow')

Log the parameters and metrics

with mlflow.start_run():

 mlflow.log_param('model', 'LogisticRegression')

 mlflow.log_param('test_size', 0.3)

 mlflow.log_metric('train_loss', train_loss)

 # Log the model as an artifact

 mlflow.sklearn.log_model(logistic_model, 'logistic_model')

What is this code doing? First, we start an MLFlow experiment by

calling the set_experiment function and passing in the name of our

experiment. MLFlow also comes in different flavors. For example, we can

use the MLFlow lightgbm flavor to log a lightgbm model or sklearn flavor

to log a sklearn model like logistic regression (we’ll build on our logistic

regression example from previous chapters).

Knowing which flavor of model API we’re using is important when we

deserialize the model (a fancy way of saying, loading the model back from

the model registry) as we want the predict_proba and predict methods to

be available. However, it can be challenging to handle different types of

models in a general way.

Chapter 5 Building Training Pipelines

162

You now have enough background knowledge to start the lab where

you will build an end-to-end training pipeline and log model to MLFlow.

�MLFlow Lab: Building a Training Pipeline
with MLFlow
If you haven’t done this already, now is time to run docker-compose up in

the Chapter 5 folder and confirm all services are started by navigating to

the service endpoints in Figure 5-1.

Step 1. Navigate to MinIO cloud storage service located at

localhost:9000 and enter the credentials provided in Figure 5-1.

Figure 5-1.  MinIO Cloud Storage bucket

Step 2. You need to create an s3 bucket where we’ll store all of

our models. Create a bucket called mlflow. If you’re unfamiliar with

cloud storage, you can think of this as an external drive, which we’ll be

referencing in our code. Figure 5-2 shows what the create bucket page

looks like in MinIO.

Chapter 5 Building Training Pipelines

163

Figure 5-2.  Creating a bucket called mlflow in MinIO

Step 3. Navigate to Jupyter lab service located at localhost:8080 in a

browser, and import the notebook for Chapter_5_model_training_mlflow_

lab. Read through all of the code first before running.

Step 4. Run all cells in the notebook, and navigate to the MLFlow web

service located at localhost:5000. Confirm that you can see your experiment,

runs, models, metrics, and parameters logged in the experiment tracking

server. Figure 5-3 shows where MLFlow logs experiments.

Figure 5-3.  MLFlow experiment component

Chapter 5 Building Training Pipelines

164

That is it! You’ve built an end-to-end training pipeline that trains a

model and logs it to MLFlow, and you’re able to search for the best run.

Figure 5-4 shows the MLFlow model component.

Figure 5-4.  MLFlow model registry component

Notice the last cell uses HyperOpt’s hyper-parameter tuning

framework to fine-tune the model. The important detail is how we define

our search space and then set MLFlow’s experiment tracking inside the

hyperopt objective function.

�Summary
In this chapter, we learned about training pipelines, discussing how

model training fits into the MLOps lifecycle, after we have made technical

decisions around ELT and feature stores and we looked at some of the

high level steps you might encounter as part of the transformation and

data preprocessing steps. We looked at why we need to build a pipeline

Chapter 5 Building Training Pipelines

165

and how we can make our pipelines more reliable and robust. We also

discussed many of the technical aspects around setting up experiment

tracking and hyper-parameter tuning. Here is a list of what you’ve learned

up to this point.

•	 Tools for Building ELT Pipelines

•	 Preprocessing Data

•	 Hardware Accelerated Training

•	 Experimentation Tracking Using MLFlow

•	 Feature Stores and Batch Processing

•	 Shap Values and Explainability at Training Time

•	 Hyper-parameter Search

•	 Online Learning

•	 Setting Up an End-to-End Training Pipeline

Using MLFlow

In the next chapter, we will build one some of the core ideas we learned

to deploy models and build inference pipelines.

Chapter 5 Building Training Pipelines

167

CHAPTER 6

Building Inference
Pipelines
If you’ve made it this far, you’ve already created MLOps infrastructure,

build a feature store, designed and built an end to end training pipeline

complete with MLFlow experiment tracking for reproducibility and model

storage in the MLFlow model registry, and tried monitoring and logging. It

might seem like you’re almost done; however, we’re still missing a critical

piece of the MLOps puzzle: Once you’ve trained your model, what do you

do with it?

This is such a critical piece of the MLOps lifecycle that it’s surprising

so many data scientists leave the design and construction of the inference

pipeline to the last minute or bury it away as a backlog item. The reality

is, the inference pipeline is one of the most important parts of any

stochastic system because it’s where you will actually use your model to

make a prediction. The success or failure of your model depends on how

well stakeholders are able to use your model and action upon it to make

business decisions; when they need it and without an understanding of this

stage of the lifecycle, your project is doomed to failure. Not only that, but it’s

the inference pipeline where you will store the model output to incorporate

feedback loops and add monitoring and data drift detection, so you can

understand the output of your model and be able to analyze its results.

A lot can go wrong as well, and if you aren’t aware of how to measure

data drift and production-training skew, then your model may fail when it

hits production data.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_6

https://doi.org/10.1007/978-1-4842-9642-4_6

168

In this chapter, we will look at how we can reduce the negative

consequences of production-training skew and monitor the output of

our model to detect changes in problem definition or changes in the

underlying distribution of features. We will also take a detailed look at

performance considerations for real-time and batch inference pipelines

and design an inference API capable of supporting multi-model

deployments and pulling models from a central model repository similar

to an architecture described in Figure 6-1.

Figure 6-1.  Inference pipeline supporting multi-model deployment

Chapter 6 Building Inference Pipelines

169

�Reducing Production-Training Skew
Your model was trained on data that was carefully collected and curated

for your specific problem. At this stage, you likely have a good idea of the

distribution of features that go into your model, and you’ve translated

certain assumptions about your model into the training pipeline, dealing

with issues like imbalanced data and missing values.

But what happens when your model hits production and needs to

make a prediction on unseen data? How can we guarantee that the new

data follows the same distribution as the training data? How can we

guarantee the integrity of the model output so that stakeholders can trust

the output enough to action on the insights the model provides? This is

where the concept of production-training skew comes into our vocabulary

and starts to impact the technical decisions we make around model

deployment.

Production-training skew can be formally defined as a difference in

model performance during production and training phases. Performance

here can mean the accuracy of the model itself (e.g., the unseen data has a

different probability distribution than expected or can be caused by failing

to handle certain edge cases in our training pipeline that crop up when we

go to production).

It’s worth noting that sometimes issues happen in production that

are not anticipated even if we have a really good understanding of the

assumptions of our data and models. For example, we might expect certain

features to be available at inference time because they were available at

training time, but some features might need to be computed on the fly and

the data just may not be available.

In general, it is best practice to ensure your inference pipeline has

safeguards in place to check our assumptions prior to using the model,

and if features are not available, or if certain statistical assumptions are not

met, we can have a kill switch in the inference to prevent the model from

making an erroneous prediction.

Chapter 6 Building Inference Pipelines

170

This highlights an important difference between stochastic systems

and traditional software systems because the consequences of actioning

on a bad model output may be disastrous. As I’ve mentioned, stakeholders

may lose trust in your model, or the model may be used as part of a

decision process that impacts real people in a negative way. Therefore, it’s

not enough to fail gracefully or ensure our model always has an output;

as an MLOps practitioner, you need to put model safety first and foremost

and ensure that if critical assumptions are not met, then what went wrong

gets logged and the inference pipeline fails.

Let’s take a look at how we can set up monitoring and alerting to

ensure the safety and integrity of our model.

�Monitoring Infrastructure Used in
Inference Pipelines
Although we have a firm grasp of infrastructure, we need to take a brief

moment to talk about the type of infrastructure you will need to set up

for monitoring your inference pipelines. There are various cloud-based

monitoring services in all of the major cloud platforms such as Amazon

CloudWatch, Azure Monitor, or Google Cloud Monitoring. These tools

provide monitoring and alerting capabilities that can be integrated

with data pipelines. Your organization may have their own monitoring

infrastructure set up already in which case you should consider leveraging

this instead of creating new services.

There are also specific monitoring tools for data pipelines and ELT

frameworks; for example, AWS Glue and Airflow both have built-in

monitoring, and you can use this to build your own custom data drift

detection solution by creating a separate pipeline and setting up hooks

that can talk to other infrastructure.

Chapter 6 Building Inference Pipelines

171

The difference between the data specific monitoring tools and the

more general cloud monitoring tools is the more general cloud monitoring

tools also can monitor resource utilization and you can use this to get a

sense of where performance bottlenecks exist in your code. You may have

to read the documentation for these cloud services and learn the SDK

(software development kit), so you integrate these tools with your own

code base. Whether you choose a stand-alone cloud monitoring service

or leverage an existing one or one built-in with your ELT framework will

depend on your project and the specific problem you’re trying to solve.

Okay, so once you have made the technical decision on what type

of monitoring service you want to use for your data drift and model drift

detection, then we can talk about how you can implement monitoring

in your inference pipeline and some of the challenges that you might

encounter.

�Monitoring Data and Model Drift
Monitoring is an essential part of nearly every IT operational system. It

also happens to be one of the ways we can make data-driven decisions

about our production models. Monitoring is a way of collecting data

(strictly speaking, this is logging) and the capability of observing data over

a period of time, for example, to check if certain conditions are met that

are actionable. The action is usually called an alert.

It’s important to realize that when working with monitoring systems,

this data is collected in the form of logs, but the logs need not be

centralized and are typically streamed via standard output and standard

error and then consolidated using some logging service. Services include

cloud services like Data Dog or Azure Monitoring or open source solutions

like Ganglia, ElasticSearch.

Chapter 6 Building Inference Pipelines

172

In the context of machine learning and stochastic systems, monitoring

means monitoring the model specifically for data drift and model drift

and ensures the reliability and integrity of our model. We define these

related terms.

Data drift: Data drift is related to the statistical properties and the

probability distribution that underlies the features that go into training

the model. When the underlying distributions of features shift in terms

of mean, variance, skewness, or other statistical properties we can track,

then it may invalidate assumptions we have made in the training pipeline

and render model output invalid. A way to continuously monitor these

statistical properties needs to be implemented.

How do you measure the difference between the distribution of

features 6 months ago and at the present time? There are several ways

to approach this, and one way is to measure the “distance” between two

probability distributions such as with KL divergence or Mahalanobis

distance. The important detail here is that we need to first measure a

baseline and we compute this distance against the baseline, usually by

defining a threshold value. If the divergence between our observed and

baseline exceeds this threshold, then we can choose to send out an alert

(e.g., an email to relevant stakeholders). It’s important we actually send out

an alert and build out the code to do this, for example, if your team uses

Slack, you may consider building a slack bot to alert your data drift has

occurred since important decisions need to be made on whether to retrain

the model and understand the root cause of the shift.

Another approach to data drift is hypothesis testing. We can set the

null hypothesis to the features that have not changed or come from a well-

known distribution like the normal distribution if your data is normally

distributed. One commonly employed hypothesis test is the Kolmogorov-

Smirnov test where the null hypothesis is that the data comes from the

normal distribution.

Chapter 6 Building Inference Pipelines

173

Once we have confirmed that data drift has occurred, we have to

make a technical decision: Should we retrain our model? This is the first

kind of feedback we can introduce into the training pipeline and is more

sophisticated than the alternative which is periodically retraining on a set

schedule (which may be a waste of resources if data drift has not occurred

or is within the SLA threshold).

Model drift: Model drift is a slightly different concept than data drift

and can indicate that the business problem has changed. It’s important to

define the business problem and the definitions of features as part of the

feature engineering step so that you can validate if model drift has actually

occurred once detected.

Detecting possible model drift is fairly straightforward but verifying

it is not. In order to detect model drift, we only need to monitor the

predicted values (or more generally, the output of the model) and

compare them to the expected values over time. For example, if we have

a multi-class classification problem, we might record the total number of

predictions made for each class and the breakdown of our predictions by

each class, counting the number of predictions made for each class. We

could visualize this as a simple histogram where the bins are the classes in

our model, and if we find this histogram changes too dramatically from the

baseline (using since threshold we define for the specific problem), then

we have data drift and suspected model drift (performance of our model

may have degraded over time).

We may also keep track of accuracy and other performance metrics

and keep track of the performance of our model over time and a baseline

and confidence intervals if possible.

Once we have found that either the model output has changed or the

model performance metrics are degrading, then we need to investigate if

model drift is actually concept drift, meaning the business problem has

shifted in some way. This may lead us not only to retrain the model but

possibly to have to add new features, revise features, or even change the

model and its assumptions entirely to match the new business problem.

Chapter 6 Building Inference Pipelines

174

In order to keep track of the model output, we need a reliable way to

make predictions with our model (if the mechanism isn’t reliable or at

least as reliable as the model output, then we won’t be able to tell when we

model drift has occurred). Creating the API for inference is not only about

user experience but also ensuring the accuracy and reliability of the model

output. In the next section, we’ll go over some of the considerations that go

into designing a reliable inference API.

�Designing Inference APIs
Okay so let’s say we have the most reliable inference API, we trust the

data and the output of our model, and our stakeholders and users trust

the output. The next focus needs to be on performance. We’ve noted

previously there are technical trade-offs between accuracy and model

performance, and while we should always consider performance early,

it’s important not to sacrifice accuracy or fairness of the model for

performance. On the other hand, if we don’t consider scalability and

optimize our inference pipeline for performance, then the output may

be rendered completely invalid by the time the prediction is made (e.g.,

delivering the prediction the next day if there is a hard requirement on

the latency of the system). Due to this performance-accuracy, trade-off in

some sense performance is a two-sided problem in machine learning.

In the next section, we’ll take a detailed look at what we mean by

performance in the context of inference pipelines in terms of both

scalability and latency but also accuracy and validity and some of the

important performance metrics we should be tracking in our monitoring

solution. We’ll also discuss the important problem of alignment in data

science and how it plays a role in deciding what performance metrics

to track.

Chapter 6 Building Inference Pipelines

175

�Comparing Models and Performance
for Several Models
In Chapter 5, we looked at model training and talked about the model

tuning step. On a real-world problem, you may have many different types

of models that you need to compare. You may have to dynamically select

the best model, and we need a way to compare models for a problem type

to choose the best model we should use for model inference.

One approach is once our models are tuned, we evaluate their

performance using k-fold cross-validation and by selecting the model

that has the best performance, for example, accuracy of F-1 score. This

“outer validation loop” may use cross-validation but is done after hyper-

parameter tuning since we need to compare models once they are already

tuned; it would make little sense to make a decision on what is the best

model if we haven’t even gone through the effort of fine-tuning the model.

Since we’ll typically be working to solve one problem type like

classification or regression or anomaly detection, there are common

performance metrics we can use to decide objectively what the best

model should be, and there needs to be code that can handle this

part of the process. Let’s take a detailed look at some of these metrics

and performance considerations used for comparing models across

problem types.

�Performance Considerations
Model performance can refer to the accuracy and validity of our model or

scalability, throughput and latency. In terms of accuracy and validity, there

are many metrics, and it’s important to choose the metrics that are aligned

with the goals of the project and the business problem we want to solve.

Chapter 6 Building Inference Pipelines

176

Here are some examples; in this table, we try to break them down by

type of problem to emphasize that we need to consider the alignment of

the model with the goal. We call Table 6-1 the alignment table for data

science.

Table 6-1.  Alignment table for data science

Problem type Metrics

Classification Accuracy

Classification Precision/recall

Classification F1 score

Regression RMSE/MAE

Recommendation Precision at k

Recommendation Recall at k

Clustering Davies-Bouldin Index

Clustering Silhouette distance

Anomaly detection Area under curve (AUC)

All problem types listed Cyclomatic complexity

Of course this is not an exhaustive list since we can’t possibly list every

problem type you may encounter. I hope it provides a good starting point

for designing your inference pipeline. In the next section, we’ll take a deep

dive into the other side of performance: scalability and latency.

�Scalability
How can your machine learning system handle increasing amounts of

data? Typically, data collection, one of the first phases of the MLOps

lifecycle, grows over time. Without further information, we don’t know

Chapter 6 Building Inference Pipelines

177

at what rate this data collection process grows, but even if we assume

logarithmic growth, over time, we need to scale with the increasing

data volume.

You might have heard the word scalability before in the context of

machine learning, the ability of your system to adapt to changes in data

volume. Actually, scalability goes in both directions; in fact, cloud services

are often described as being “elastic,” when you don’t use them they

should scale down and during peak periods of activity, they scale up.

What does it mean to scale up and down? We usually speak of

horizontal scalability and vertical scalability.

Vertical scalability: Vertical scalability means we add additional

memory, CPU, and GPUs or in the case of cloud services increase these

physical resources on the virtual machine or compute we are running.

By vertically scaling, we’re adding more horsepower to a single worker

machine, not adding new machines. This gets expensive after a while

since as your memory or compute needs grow, at some point it is no

longer feasible to upgrade the machine, and this is why for data science,

we consider horizontally scaling workflows rather than vertically so we

can leverage several inexpensive worker machines (often commodity

hardware) to reach our compute and memory needs.

Horizontal scalability: Horizontal scalability means we add additional

worker machines and consider the total compute (number of cores)

or total memory of the entire cluster together. Usually, this comes with

hidden complexity such as how we can network the machines together

and shard the data across workers. Algorithms like map reduce are used to

process big data sets across workers.

We mentioned in the previous chapter that we could use this

horizontal scaling pattern for distributed training, but what about

inference? When it comes to inference, we usually consider two types of

patterns: batch mode inference and real-time inference.

Chapter 6 Building Inference Pipelines

178

Both of these patterns require different architectures and

infrastructure but which one you choose depends on your particular use

case (remember, we should always try and align technical decisions with

our use case). Here is the definition of both batch inference and real-time

inference.

Batch inference: Batch inference means we break our feature set into

batches and use our model to run predictions on each batch. This type of

pattern can be scaled out horizontally and also has the advantage of not

requiring an API, load balancer, caching, API throttling, and other kinds

of considerations that come with designing an API. If you only need to

populate a table for a dashboard, for example, you might consider using

batch inference. However, this pattern might be ill-suited for use cases

requiring real-time or near real-time inference or on demand predictions.

Real-time inference: If your requirement is to have sub-second latency

in your inference pipeline and event driven prediction or allowing the end

user to make on demand predictions, then you may want to move away

from batch mode and consider building an API. Your API can still be scaled

horizontally using a load balancer, but you will need to set up additional

infrastructure and an online feature store. If your requirement is sub-

second latency, you may also need to use GPUs to make the prediction (or

distributed pipelines). This is a complicated topic, and so in the next lab

we’ll discuss some of the components that go into building an inference

API, and then you’ll use MLFlow to register a model in production, pull

it from the model registry, and explore how you might expose the model

using an gRPC or RESTful API.

�What Is a RESTful API?
A RESTful API is an interface between containers (or even remote servers)

used to facilitate communication over the Internet (the communication

protocol is called the HTTP protocol). RESTful APIs are created in

frameworks like Flask to exchange data.

Chapter 6 Building Inference Pipelines

179

When an API endpoint is called either programmatically via a POST

request (we can also do this manually using tools like Postman) or in the

web browser (e.g., through a GET request), data (usually in the form of

JSON) is serialized (converted to bytes) and sent across the Internet in a

process called marshaling. The bytes are then converted back into artifacts

like a model using a load function that is called deserialization. All of this

happens transparently when you use a framework like Flask, and you can

define endpoints (e.g., localhost:80/predict) which can be called either by

other APIs or by applications that want to use your API (you could do this

using Python’s request library; you just need to specify the endpoint, the

data, and if it’s a POST or GET request you need to make).

APIs are one of the many ways to build inference pipelines that the

user can interact with and are particularly suited as mentioned before for

on demand use cases (you can just call the endpoint when you need it) or

when you need a sophisticated application that uses your model (these

applications are often built as microservices).

Although building a full API is beyond the scope of this book, it is

worth being aware of a few technologies that are used in building large

scale applications often called microservices.

�What Is a Microservice?
A microservice architecture is an architectural pattern for software

development that organizes applications (e.g., APIs) into collections

of independent (in software development parlance, this is often called

loosely coupled) components called services. We’ve already seen examples

of services when we used docker-compose to build our Jupyter lab service

and MLFlow service, but you can also build your own services. In practice,

these services are self-contained API endpoints written in a framework like

Flask. Since the services are loosely coupled, they will need to talk to each

other by sending data in the form of messages. These messages are usually

Chapter 6 Building Inference Pipelines

180

sent by calling an API. Since the services are loosely coupled docker

containers, they can be scaled horizontally by adding more containers and

distributing the load over several containers using a component called a

load balancer. Figure 6-2 shows a typical REST API endpoint for prediction

in Flask. The function predict exposes a route called /predict and expects

features to be passed in as JSON strings in the body of a POST request

(a standard way HTTP endpoints accept data). The model is loaded or

deserialized and then used to make a prediction on the input data. The

prediction is then returned as a json string, called a response.

Figure 6-2.  Flask API prediction endpoint

Chapter 6 Building Inference Pipelines

181

If you want to learn more about Flask, it’s recommended you read

the Flask documentation or several books available on microservice

architecture in Flask. For most data scientists, building a microservice

would be overkill, require teams of developers, and if attempted yourself

would open up your project to security vulnerabilities and problems with

scalability. Remember, you need to have additional components like

load balancers and container orchestration frameworks like Kubernetes

(docker-compose was the container orchestration tool we learned, but

Kubernetes requires specific expertise to use effectively).

However, the pattern in Figure 6-2 is called a scoring script, and if you

choose a cloud service that supports model inference, it will likely have

support for creating your own inference scoring scripts which allow you

to wrap the prediction logic in a function and expose a REST endpoint.

Examples of cloud services that support these scoring or inference scripts

include Databricks, AWS SageMaker, and Azure Machine Learning Service

and MLFlow. In the lab, we’ll look at how to build your own inference API

and some of the details involved in registering a model, loading a model,

and exposing an API endpoint in enough detail that you will have the

hands-on skill to work with many different cloud services.

�Lab: Building an Inference API
In the hands-on lab, you will take the code we wrote for training and adapt

it for model inference. First, let’s look at some of the components of an

inference API. You’re encouraged to do the supplementary reading before

continuing to the hands-on Jupyter notebook for this chapter (I’ve already

included them when you start the Jupyter lab for convenience, but you

should try to import them yourself.).

Step 1. Run docker-compose up to start MLFlow and Jupyter lab

services.

Chapter 6 Building Inference Pipelines

182

Step 2. Open your Chapter 6 lab notebook called Chapter_6_model_

inference_lab.

Step 3. Run all cells to register the model and increment the model

version number.

Step 4. Pull the registered model from MLFlow model registry. An

example is given in Figure 6-3.

Step 5. Use the model to make a prediction.

Step 6. Open the deployment notebook (called Chapter_6_model_

inference_api_lab) to see how MLFlow serve can be used to expose your

model as an inference API.

Keeping Model Training and Inference Pipelines in Sync

In Chapter 1, we talked about how technical debt could build up in a

data science project. In fact, data science projects have been described as

the high interest credit card of technical debt. One subtle way projects can

accumulate technical debt at the inference stage of the lifecycle is by not

keeping the training and inference pipelines in sync.

Figure 6-3.  Pulling a model from MLFlow registry for use in an
inference pipeline

Chapter 6 Building Inference Pipelines

183

The same features the model was trained on are required at time

of prediction. So there we must generate those features somehow. It’s

convenient to think we could reuse the exact same code, but sometimes

not all features will be available at prediction time and additional pipelines

are necessary. A great example is a feature like customer tenure, very

common in finance which technically changes every instant. This should

be recomputed at inference time before being fed into the model especially

if there’s a large lag between when the features get refreshed and when

the model is applied. Keeping training and inference pipelines in sync via

shared libraries and the feature store pattern can shave off technical debt.

While the problem of keeping pipelines in sync is a software engineering

problem, some problems cannot be solved with software engineering since

the root cause of the problem is a lack of data. One such example is the so-

called “cold-start” problem.

�The Cold-Start Problem
The cold-start problem is something we see in recommender systems

but more generally when we’re working with transactional data, for

example, customer or product data in retail, finance, or insurance. The

cold-start problem is a scenario where we don’t have all of the history for

a customer or we want to make predictions about something completely

new. Since we may not have any information about a customer or product,

our model won’t be able to make a prediction without some adjustment.

Collaborative filtering, an approach in machine learning to filter on

“similar” customers or products where we do have information available,

can be used to solve the cold-start problem and make predictions on

completely new data points1.

1 In situations where there is no data, collaborative filtering may need to be
supplemented with approaches such as content-based filtering.

Chapter 6 Building Inference Pipelines

184

Although we’ve covered quite a few things that could go wrong in

our inference pipeline, we can’t anticipate every possibility, and while

continuous monitoring plays a crucial role in making our inference

pipelines more robust, sometimes things go wrong, code gets handed off

to other teams, and we need to dig deeper into the system for technical

specifics. This is where documentation can be a lifesaver.

�Documentation for Inference Pipelines
If you’re a data scientist, you probably have copious amounts of

documentation for features and statistical properties of those features, but

one area where documentation may be lacking is around the assumptions

that go into building an inference pipeline.

For example, do you have a naming convention for models in

production? How about model versioning? Can you explain the process

for updating a model or what to do if your inference pipeline breaks

in production and your model isn’t able to generate a prediction? All

of these steps should be documented somewhere, usually in the form

of a run book. It is also critical to have internal documentation such

as a wiki that gets updated regularly. This documentation can be used

for onboarding and hands-offs and to improve the quality of code

and can save you when something inevitable breaks in production.

Since documentation tends to only be used when things go wrong

and stakeholders usually don’t like reading large volumes of technical

documentation, we also need a way of reporting performance metrics to

stakeholders.

Chapter 6 Building Inference Pipelines

185

�Reporting for Inference Pipelines
Reporting is another critical component of machine learning and in

particular building the inference and training pipeline. With respect to the

inference pipeline and model output, reporting is particularly important

because the model output needs to be translated into business language

using familiar terms that the stakeholders understand.

Since the ultimate purpose of the model was to solve a business

problem, reporting could arguably be the most important piece of the

puzzle as far as determining the value of your model.

Reporting can contribute to understanding the model, how the users

are interacting with the model, and understanding areas of improvement

and should be seen as a communication tool.

Reporting can take many forms from simple automated emails

(remember we discussed one form of this for use in data drift and model

drift monitoring) but also more sophisticated solutions like dashboards.

Dashboards themselves should be viewed as operational systems that

provide accurate data to an end user, bringing together multiple disparate

data systems. Such systems may include the model output, feature store,

user interaction with the model output (feedback loops), as well as other

transactional or analytic database systems used by the business.

The type of dashboard you build depends on the business problem

and how end users will ultimately interact with your models, but one

dashboard that can add immediate value and prevent your model from

ending up in the model graveyard is an explainability dashboard.

The ability to explain your model results with stakeholders is a crucial

part of any data scientists’ day to day role and information about model

training, and what features are important when making a prediction (such

as Shap value or lime) can serve as an invaluable communication tool.

Some common use cases for reporting in MLOps include the following:

•	 Reporting on performance metrics

•	 Reporting on model explainability

Chapter 6 Building Inference Pipelines

186

•	 Reporting on model fairness for model bias reduction

•	 Reporting on feature importance

•	 Reporting on how the model output translates into key

business KPIs

Reporting on how your model translates into key business KPIs is a

critical exercise that should be taken into account from the beginning of

the project before you even build the model, but keeping in mind that you

need to translate this into a deliverable in the form of a dashboard at the

end of the project can contribute to project planning help data scientists

work backward from the dashboard through to the types of data and code

needed to support the dashboard so a critical path for the project can be

well-defined. Since data science projects have a tendency to suffer from

lack of requirements or ambiguity, having a concrete deliverable in mind

can reduce ambiguity and help to prioritize what is important in the

project throughout the entire MLOps lifecycle.

�Summary
We’ve come a long way in this chapter. We discussed how to build

inference pipeline code examples along the way, and we actually built

an inference pipeline with MLFlow and Sklearn in our hands-on lab. You

should have a thorough understanding of the challenges that exist at this

stage of the lifecycle from model monitoring, data drift, and model drift

detection, aligning our problem to performance metrics and figuring out

how to keep track of all of these performance metrics in a sane way. We

discussed how to choose the best model when we have several different

types of models. We gave some examples of performance metrics you

Chapter 6 Building Inference Pipelines

187

may encounter in the real world for various problem types like anomaly

detection, regression, and classification. We also discussed the importance

of reporting, documentation, and keeping our training and inference

pipelines in sync. Some of the core topics you should now have expertise

include the following:

•	 Reducing Production-Training Skew

•	 Monitoring Data and Model Drift

•	 Designing Inference APIs

•	 Performance Considerations

In the next chapter, we’ll look at the final stage of the MLOps lifecycle

and formally define the lifecycle, taking a step back from the technical and

developing a more holistic approach to MLOps.

Chapter 6 Building Inference Pipelines

189

CHAPTER 7

Deploying Stochastic
Systems
If you’ve made it this far, you already have the skills to build a complete

end to end data science system. Data science of course is more than

machine learning and code which are really only tools, and to build end to

end systems, we need to understand people, processes, and technology,

so this chapter will take a step back and give you a bird’s-eye view of the

entire MLOps lifecycle, tying in what we’ve learned in previous chapters

to formally define each stage. Once we have the lifecycle defined, we’ll

be able to analyze it to understand how we can reduce technical debt

by considering the interactions between the various stages from data

collection and data engineering through to model development and

deployment. We’ll cover some philosophical debates between model-

centric vs. data-centric approaches to MLOps and look at how we can

move toward continuous delivery, the ultimate litmus test for how much

value your models are creating in production. We will also discuss how

the rise of generative AI may impact data science development in general,

build a CI/CD pipeline for our toolkit, and talk about how we can use

pre-build cloud services to deploy your models. Without further ado, let’s

explore the stages of the ML lifecycle again and introduce the spiral ML

lifecycle formally.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_7

https://doi.org/10.1007/978-1-4842-9642-4_7

190

�Introducing the Spiral MLOps Lifecycle
Although we hinted at the ML lifecycle throughout this book and

even talked about the “spiral” MLOps lifecycle in Chapter 1 (shown in

Figure 7-1), we lacked the context to really define the lifecycle completely

and to understand the big picture from a holistic point of view. Although

you might see the machine learning lifecycle or MLOps lifecycle (to

me the difference between the two is that MLOps takes into account

the business and IT environment the models live in), the reality is a lot

messier. It’s always been a pet peeve of mine that there’s infographics

used in data science that summarize complex ideas very concisely but

don’t map very well to real-world problems. Essentially these infographics

are communication tools but not structures that can be mathematically

defined or reasoned upon without a lot of imagination. Therefore, it’s my

goal to take the MLOps lifecycle infographic we saw in Chapter 1 to the

level where you can actually recognize it in a real project or even adapt it to

your own custom project since not all data science problems are the same

across industries (maybe this is a kind of meta transfer learning problem in

itself).

Chapter 7 Deploying Stochastic Systems

191

Figure 7-1.  The spiral MLOps lifecycle

So what is a lifecycle? In the context of biology, a lifecycle is a series of

changes in the life of an organism. It’s in itself a model for understanding

change and a way of identifying the phases that come to define the

organism over time.

Although MLOps is not a living organism, your IT environment is

in many ways like a living, breathing organism. When we throw models

and code into the mix, we legitimately have a kind of chaotic system,

that although may not be technically living changes over time and is best

understood by breaking it down into distinct phases.

The phases which include developing, deploying, and maintaining

models can further be segmented into more granular stages that go into

creating a useful machine learning model that solves a business problem.

Chapter 7 Deploying Stochastic Systems

192

�Problem Definition
We want to start with the problem definition and requirements for the

problem. This is the initial step of the lifecycle, where we define the

initial conditions and involve gathering of information in the form of

requirements. This is vitally important because if you can’t define the

problem or the requirements (a step often skipped in data science projects

and justified in hand-wavy ways), then this ambiguity can trickle down

into the user stories and individual developer tasks, creating chaos.

�Problem Validation
The next phase of the lifecycle is validating the model. Some people

confuse this with exploratory data analysis which is sometimes used as

justification for finding a problem, but the goal should be to understand

the problem better, what we’re looking at, and the types of data sources

available and validate whether or not we can solve the problem in the

first phase. Problem validation is different than exploratory analysis

though. Although this phase may be tedious, it saves a lot of time because

it’s relatively cheap to validate a problem but costly to implement a full

solution that ends up missing the mark in the end.

�Data Collection or Data Discovery
Once we have validated a problem, we can collect data. Collecting data

is expensive. Even if you don’t collect the data, there is still a lot of data

discovery that has to take place. You may leverage metadata if you have a

catalog built already, but if not, you may have to build the metadata catalog

yourself and discover the name, variable names, data types, and statistical

properties of the data.

Chapter 7 Deploying Stochastic Systems

193

�Data Validation
At this stage, a decision needs to be made whether there is enough value

in the discovered data sources or if you need to go back to the first stage to

refine your problem. This is another example of a feedback loop or what

we’re calling a “spiral” since the process may be continuous and hopefully

converge to a performance model at the end of the process.

�Data Engineering
After data collection and data validation, the next step is data engineering.

MLOps requires a solid data engineering foundation to support modeling

activities, and this is not trivial. If you’re the data engineering and MLOps

practitioner on the team, then you might struggle to build this foundation

before you’re able to make use of MLOps.

You will set up feature stores, build feature pipelines, decide on

a schedule for your pipeline (refresh rate), and ensure you’re using

production data sources. You have to decide which data sources are most

valuable to operationalize. If the data sources are normalized (3NF or

2NF), you may have to join them together into a centralized repository.

At this stage, you may have a data architecture in mind such as a Data

Warehouse or a Data Lake or Data Vault and build robust ELT pipelines.

The goal of this phase is to have feature stores that are accessible, secure,

and centralized and to ensure that there’s enough data to support model

training.

You may start feature engineering, building a library of features for

model training, to support a variety of problem types.

If you are truly dealing with a prediction problem, you may only keep

features with predictive value, but you may also have to deal with issues of

multicollinearity and interpretability.

Chapter 7 Deploying Stochastic Systems

194

�Model Training
Model development starts. You may start with a model baseline like simple

linear regression or logistic regression; the simpler the model, the better

the baseline. You might gradually increase the variance of the model.

The boundary between the previous phase, data engineering, and model

training will be blurred as you refine your model and require new features

be added to the feature store and deal with schema drift and the curse

of dimensionality. Eventually you’ll have to create a way to reduce the

number of features and may struggle to keep track of the entire library of

features as business demand grows.

Since the lifecycle is a continuous process, after several iterations,

the architecture of the model itself may change, and if enough data is

available, you might consider deep learning at some point. This stage may

start simple but also grow horizontally in terms of the number of models

you need to support and the number of problem types and performance

metrics that need to be tracked. As your MLOps process gets more

advanced, the model training phase will eventually require MLFlow or

similar experiment tracking software, hyper-parameter tuning frameworks

like HyperOpt, hardware accelerated or distributed training, and

eventually full training automation, registering your models in a model

registry and having some kind of versioning system.

�Diagnostic Plots and Model Retraining
Depending on the problem type, there are specific visual tools for

evaluating models called diagnostic plots. For example, if you have a

classification problem, you might consider plotting a decision surface

for your model to evaluate its strengths and weaknesses. For a linear

regression problem, you may be interested in plotting residuals vs. fitted

values or some other variation to decide if it’s a good or bad model.

Chapter 7 Deploying Stochastic Systems

195

Some of these plots may be used as diagnostic tools but not traditional

monitoring tools which may not be able to accommodate images, so

you could, for example, have a Jupyter notebook that’s source controlled

a part of the project and can generate these images on a schedule, for

example, once a week, or another option is to build a separate monitoring

dashboard using tools like Dash or PowerBI; the choice of reporting

software really depends on your project and how you’re comfortable

creating the visuals, but it probably needs to support Python and libraries

used like Pandas.

For model retraining, you can have more complex triggers such as if

the distribution of features changes or if model performance over time is

trending downward, but a simple solution to start is to retrain the model

monthly. Note that these are two different types of triggers and both are

needed to determine when to retrain the model since model performance

can degrade over time but also the distribution of features themselves

can change.

You should also consider how you write features to a table. For

example, you might want to add a timestamp column and append features

to a table so you have a complete history available for model retraining.

These types of technical decisions around how frequently data needs to

be updated, whether historical data needs to be maintained for model

retraining, and how to operationalize diagnostic plots and other visuals are

complex decisions that may require several team discussions.

�Model Inference
In this phase, you’ll select the best model, pulling the model from the

model registry for use in an inference pipeline. You may decide to go

through another round of cross-validation to evaluate the best model.

You will need to have an inference pipeline that compiles your features

and makes them available at prediction time. The runtime, model, and

features will all need to be available at the same time for the model to

Chapter 7 Deploying Stochastic Systems

196

make a prediction. Your inference pipeline may be as complicated as a

full application or microservice or as simple as an API endpoint or batch

inference pipeline depending on the requirements gathered during

requirements gathering.

One commonality between model training and model inference is

schema drift. Schema drift is also a factor in choosing a data architecture

that can adapt to the demands of data science workloads since features

that are used in both training and inference can change. The implication

is that we either need to have complex code flows, updates, and frequent

release cycles to accommodate changes in feature definition, or we need

to create our tables dynamically using metadata. Since data types of each

feature determine how the data is physically stored, changes in data type

can impact our ability to store historical data required for model training.

In the next section, I will talk about the various levels of schema drift.

�The Various Levels of Schema Drift in
Data Science
Schema drift is a different issue than data drift and is common to virtually

all data science projects of sufficient complexity since features fed into the

model may change. We have talked about schema drift before but post-

deployment features can still change. It’s interesting to note that there is no

one size fits all solution to the problem of schema drift and actually there

are various levels of schema drift. For example, you may have additive

changes where you are only adding features and you may be able to simply

set an option to allow the dataframe’s schema to merge with the target

table schema. You can implement this solution manually as well with a

DDL SQL command like ALTER TABLE to avoid loss of historical data that

may be required for model training.

Chapter 7 Deploying Stochastic Systems

197

However, what do you do when the order of columns changes, the data

types are incompatible, for example, string to a float (casting a string to a

float would lead to a loss of information), or there are other destructive

operations on the table schema that are fundamentally not compatible

with the target table? In this case, you may have to drop the table entirely.

Many databases have a CREATE OR REPLACE TABLE statement, but

you can implement this yourself by checking if the table exists and if

it does dropping it and then recreating it. You should be careful to use

atomic operations though if you’re deploying this code to a distributed

environment since race conditions and a source of strange errors in

production are possible.

Traditional ways of handling schema drift like slowly changing

dimensions don’t work well for data science since features can change

rapidly and the entire table structure may change this actually has

consequences for model training since you could risk wiping out historical

data required at a future point in time for training the model so running

an ALTER TABLE statement on specific columns may be the safest bet

along with regular backups of the data if possible. The schema itself, the

metadata that describes the data types and structure of the table, needs to

be stored as well with each version since of course this will change as well.

�The Need for a More Flexible Table in
Data Science
We talked about schema drift, and if you have actually worked as a data

scientist, you might have encountered the problem of features being

added or subtracted, names changing, data types changing regularly, and

having to constantly update your tables. Traditional wisdom in database

management assumes that the table structure is fixed which doesn’t work

well for data science.

Chapter 7 Deploying Stochastic Systems

198

While No-SQL databases and columnar storage address the problems

of having a more flexible API and how to store data for analytical queries,

you still need to handle schema drift. It’s interesting to note that traditional

SQL is based on relational algebra, and the equivalence with relational

calculus under certain conditions such as domain independence is known

as Codd’s theorem.

While relational algebra and relational calculus are equivalent,

relational calculus focuses on what to retrieve rather than how to retrieve

it and so is more flexible. In relational calculus, there is no description

of how to evaluate a query but instead a description (very similar to a

prompt) of what information needs to be retrieved.

Whether a new kind of database is needed for data science that can

better handle schema drift on a foundational level while maintaining

performance for analytical queries is an open question that remains to be

answered, but perhaps this technology could come from a fusion of large

language models and the decades of wisdom built into relational database

engineers (“optimizers”). In the next section, we will take all of the pieces

of the lifecycle we have learned so far and discuss model deployment in

general and ways to integrate all of the pieces of the puzzle into an existing

business ecosystem.

�Model Deployment
The model needs to be integrated into an existing business process. This

seems like a technical problem but largely depends on your organization

and industry. In the next section, we will look at how you can integrate

your model into your business process as part of a larger system involving

people, processes, and technology.

Chapter 7 Deploying Stochastic Systems

199

�Deploying Model as Public or Private API
In the previous chapter, we talked about inference pipelines and

microservices but for simple use cases where you only want to deploy a

model, so it can be consumed as a private or public API endpoint, and

there are many cloud services for doing this type of task; these types of

cloud offerings are often called model as a service or inference as a service.

Hugging Face, for example, provides inference endpoints to easily

deploy transformers, diffusers, or custom models to dedicated fully

managed infrastructure in the cloud. This offering is a platform as a service

where Hugging Face handles the security, load balancing, and other low

level details, and you can choose your cloud provider and region if you

have data compliance requirements. You can also choose public or private

endpoints (intra-region secured AWS or Azure PrivateLink to VPC) that are

not accessible over the Internet.

�Integrating Your Model into a Business System
For stakeholders, one strategy for hedging against the vicissitudes

of business is improving operational efficiency, reducing costs, and

identifying opportunities to improve decision-making processes through

models and innovate on insights found through data science. However,

integrating a model into an established business system is a challenging

problem and one that might be glossed over by data scientists and other

technical leaders. The challenge is magnified when the machine learning

system requires input from multiple departments and teams within those

departments that have conflicting goals.

One way you can start to bring a model into an established business

environment is by thinking incrementally and identifying opportunities

where machine learning could bring the most value. Start with the pain

points; are there repetitive tasks that could be automated? Are there tasks

that nobody wants to do and may be a quick win? A good example would

Chapter 7 Deploying Stochastic Systems

200

be cleaning data. Nobody enjoys data cleaning, but it’s a business necessity

and if that process is still done in spreadsheets, it may be a good candidate

for automation.

Once you’ve identified a task that could be automated, you can

investigate the data sources and look for ways the process could be

improved. At this stage, it’s critical to create a strategy and secure

stakeholder buy-in for the first few phases of your project. Once you’ve

proven you can bring value, adding multiple data sources, testing

algorithms, training models, adding monitoring, and alerting can naturally

add value and provide a segway into the next phases of the project.

�Developing a Deployment Strategy
There are several established frameworks for data science and data mining

that you might want to consider when building a business strategy and

executing against that strategy. Although this book is meant to cover the

technical aspects of the MLOps lifecycle, model deployment involves

people and processes, and having a set of tools for execution can serve as

a kind of checklist and mitigate risk of forgetting a step. Here are a couple

frameworks you might incorporate into your own model deployment

strategy.

CRISP-DM: The CRISP-DM (Cross-Industry Standard Process for Data

Mining) is a standard framework originally developed for data mining

but applies equally well to machine learning and data science. One of its

advantages is it applies across multiple industries (we will look at specific

case studies in a later chapter but it’s worthwhile to have a framework that

applies to multiple industries in mind). It has six phases which broadly

correspond to phases in the MLOps lifecycle including model deployment:

	 1.	 Business understanding

	 2.	 Data understanding

Chapter 7 Deploying Stochastic Systems

201

	 3.	 Data preparation

	 4.	 Modeling

	 5.	 Evaluation

	 6.	 Deployment

Each of these phases consists of tasks, and phases follow sequentially

with arrows between data preparation and modeling (unlike the spiral we

talked about earlier), but this gives a very structured approach to data science

and you can use it as a deployment checklist to make sure you’re not missing

steps. For nontechnical stakeholders, this may be a good way to communicate

the various phases in a linear way. In the next section, we will look at ways in

which these frameworks can be used to reduce technical debt.

�Reducing Technical Debt in your Lifecycle
Technical debt can appear in many forms and can come about in different

ways from working too fast to using suboptimal algorithms to forgetting

how code works and making changes without updating old code and

documentation. At the model deployment phase, it’s critical to have

standards in place to reduce technical debt across all stages of the lifecycle.

Here are some deployment checklists you can use to ensure you’re paying

down technical debt in a timely manner:

	 1.	 Implement quality checks and linters before

deployment. Friction between teams can often be

reduced by doing something as simple as installing

a code linter to ensure code is formatted in a

standard way, eliminating arguments over what

style is the best (since most data scientists have

their own style). This can be done, for instance,

on the main branch of the shared repository your

team uses.

Chapter 7 Deploying Stochastic Systems

202

	 2.	 Hold regular code reviews and designate someone

in charge of merging PRs (or you could implement

this in a round-robin style).

	 3.	 Periodically reassess model performance post-

deployment, and keep up to date with alerts and

errors that are generated once the model goes to

production.

	 4.	 Automate testing and monitoring as much as

possible.

By following some of the preceding strategies, you can minimize

technical debt post-deployment. At this point, you might be asking,

I’ve already deployed my model, I’ve set up monitoring and automated

testing, is it all hands-off from here? The answer is unfortunately, no.

Data changes, environments change, and this does not stop after you

deploy your model. Remember, the lifecycle is a continuous process. In

the following section, we will look at what this process and how you can

apply Agile principles in data science to make the process more efficient

for you and your team. One way that you can reduce technical debt is with

generative AI. In the next section, we will briefly look at how you can use

generative AI to reduce technical debt by automating code reviews.

�Generative AI for Code Reviews
and Development
Generative AI leverages large language models which use reinforcement

learning and the quadratic complexity of the transformer architecture at

scale to billions of parameters. It can automate common tasks in coding

and provide feedback through prompt-based development. With the rise

of tools like AutoGPT, even prompt engineering is slowly being replaced.

Chapter 7 Deploying Stochastic Systems

203

Will this be a good thing for data scientists? I think so, as it can automate

the boring stuff. Even for software developers, if you’re a creative builder,

you will be able to be more productive.

One way generative AI could improve the data scientist development

cycle is through automated code reviews, getting feedback on their

code before it is deployed. Some other ways but this list is by no means

exhaustive.

•	 Automated code reviews

•	 Optimizing code (focus on accuracy)

•	 Translating between SQL and Python or other

languages (removes translation bottlenecks)

•	 Generating tests for test-driven development

However, focus needs to be on validation. Output of generative models

cannot be trusted, and data scientists will play a vital role in ensuring

the validity, accuracy, and quality of model output when generative AI is

mis-used. We should also be mindful of the cost per token and the license

requirements before using this in your data science development cycle.

We’ll talk a lot more about these ethical issues in the next chapter, but

generative AI has potential to reduce technical debt and free up time for

doing data science.

�Adapting Agile for Data Scientists
You may have heard of Agile before especially if you have worked on

software projects in the last 20 years. Agile is a project management

methodology, and although some developers have a love-hate relationship

with Agile, some principles can be adapted to data science, and others fail

miserably.

Chapter 7 Deploying Stochastic Systems

204

One principle of Agile that can be adapted is the principle of regular

communication. Data science and software development share a common

thread in that it’s really all about communication. There’s even a term for

this called Conway’s law which states

Any organization that designs a system will produce a design whose

structure is a copy of the organization's communication structure

What does this mean? It means, if you fail to communicate effectively

with other data scientists, the structure of your project will reflect this

chaos and the system you end up creating will be a mess. Setting up a side

channel for communication, for example, via Microsoft Teams, can help to

dissipate this risk.

How about another conundrum often faced in real-world projects:

conflicting requirements. In data science, stakeholders can be incredibly

demanding, and requirements you gathered in the early phase of the lifecycle

will change and you will face conflicts. We can borrow from another principle

of Agile development to help in this scenario, namely, prioritizing tasks.

Another important principle of both agile and other methodologies like

Twelve-Factor App is the notion of clean code that can be run in separate

build, run and deploy stages and that can be easily adapted. While clean

code and code management is an important tenet of Agile, in data science,

it’s all about the data. By emphasizing proper data management, we can

ensure our models are accurate. For example, developing and prioritizing

a process to improve the consistency of our labeled data set could have a

massive impact on the accuracy of our models.

You may want to consider applying test-driven development to data

science especially in early-stage development. While testing data heavy

workflows is not easy, choosing a test framework, for example, Pytest or

Hypothesis, and developing data fixtures (preferably ones that use realistic

data from a database) can ensure models and code are performing as you

expect even after you’ve deployed your model. These tests from the early

development stage can easily be added to a CI/CD pipeline as well and

become part of the model deployment process.

Chapter 7 Deploying Stochastic Systems

205

One area where Agile fails miserably in data science is regular sprints.

Since the lifecycle has feedback into previous phases, for example,

retraining models due to data drift may require reengineering some of the

features or collecting more data. How do you anticipate these changes

and fit them into a regular sprint? This is a difficult question as urgent and

important tasks can get added to the board mid sprint and cause havoc on

data science teams. Understanding the difference between model-centric

and data-centric workflows may help to align teams and reduce some of

the pain points in trying to pigeonhole data science into regular sprints.

�Model-Centric vs. Data-Centric Workflows
When we talk about model deployment, there are two main approaches we

could take to the overall process: a model-centric approach and a data-

centric approach. What do I mean by model-centric and data-centric?

In order to illustrate this somewhat philosophical concept, let’s

suppose you are working on an NLP problem. You’re trying to classify

unstructured data collected from a free form response field on a survey

into categories that can help the support team quickly prioritize issues.

For example, the text “I have a problem with my Internet connection” may

be classified as “connectivity issue”. In fact you’ve done an exploratory

analysis of the data, and you know 90% of the training data falls into the

buckets of “connectivity issue,” “hardware issue,” and “authentication

issue,” corresponding to labels in your training set. However, there’s a lot

of training data, several gigabytes, and there’s some ambiguity. You also

had to label a lot of the data by hand, and you’re not sure if it’s completely

consistent, and 10% of the data may be classified into new buckets.

Your model accuracy is only 70%, and you decide to improve this

accuracy by changing the type of model and its architecture. Eventually

you decide to try transfer learning, fine-tuning the last layers of a large

language model on your specific data set, and this improves the accuracy

Chapter 7 Deploying Stochastic Systems

206

to 85%. Since you primarily focused on the model and how you could

improve the model, you’ve taken a model-centric approach to this

problem, but is there another way?

In fact you could have taken a data-centric approach to improving

model accuracy by focusing more on the data. You could have improved

the consistency of the labeled data or developed a process to label the

10% of the data that was unlabeled. This would have been a data-centric

approach.

In reality, you could mix the two and use semi-supervised learning,

developing a model or rule to label the remaining 10% of data and then

working to increase the consistency of the data, taking both a model- and

data-centric approach to improving model accuracy.

So which approach is better? There is some debate, and both

approaches can have their advantages and disadvantages, but when the

problem is well-understood, optimizing the model makes sense. When

the problem is less well-understood, there’s ambiguity or complexity

in the data or we’re working with a very large amount of data, and

then a data-centric approach may be the best option since the focus

would be on capturing the variability and complexity of the data to

move performance metrics in the right direction. Like most things in

engineering, there are guiding principles and rules of thumb but with

no clear-cut answer that applies universally in all cases. Regardless

of the approach you take for your specific problem, you will want

to automate the process of deployment as much as possible, and in

the next section, we’ll borrow from a DevOps concept of continuous

delivery and continuous deployment and see how it applies to

stochastic systems.

Chapter 7 Deploying Stochastic Systems

207

�Continuous Delivery for Stochastic Systems
In the previous three chapters, we discussed several types of pipelines. We

talked about ETL and ELT pipelines for refreshing our feature stores, we

talked about training pipelines and actually built an end to end training

pipeline, and we talked about inference pipelines that automated the

model prediction. How about model deployment? Is there a pipeline we

can create for this process? The answer is yes and it even has a name; these

types of pipelines are called CI/CD pipelines.

CI/CD (continuous integration and continuous deployment) are a type

of pipeline with several steps to guarantee that each time there’s a code,

model, or data change, that change gets tested and deployed to the right

environment.

You may have several types of environments including development,

testing, staging, and production consisting of databases, configuration,

code, and data that need to be deployed to these environments. The CI/CD

pipeline will consist of several steps:

	 1.	 Version control: The pipeline can be “triggered”

whenever there’s a commit to the main branch. This

could, for example, be a pull request after a code

review and cause the pipeline to start.

	 2.	 Automated tests: After starting, several tests will be

run. As a data scientist, you can define what tests

get run; for example, you may want to check if your

features have the statistical properties you expect

before deploying. These tests can include security

tests, data quality and code quality checks, as well as

formatting like linking.

Chapter 7 Deploying Stochastic Systems

208

	 3.	 Build step: After the tests have passed, the next

step of the pipeline will take the code, data, and

models and package them up into an environment

and runtime. This may be a docker container, for

example, which can be deployed.

	 4.	 Deployment: Once the changes are packaged

and containerized, the container is deployed to

the target environment. This environment could

be production, releasing your changes to a live

environment with end users (do you see why we

need tests first?)

�Introducing to Kubeflow for Data Scientists
Kubeflow is an open source tool for data scientists that makes it relatively

straightforward for both data scientists and MLOps engineers to build,

deploy, and manage workflows at scale. Kubeflow provides several

features for deploying models that are particularly useful for data scientists

like Jupyter notebook server (similar to the one we build ourselves) for

managing and deploying models and code.

Kubeflow is designed to work on top of Kubernetes, so it may be

overkill for your project. In the lab, you’ll be able to optionally remove

the Kubeflow step of the CI/CD pipeline if you only want to say host your

project on GitHub or push your code and models to a docker container

and host it on a docker registry. However, knowledge of Kubeflow is

worthwhile for data scientists because you may encounter it in the wild,

and knowing that a tool exists that abstracts away some of the details

required to work with Kubernetes is enough to get you started on the

right path.

Chapter 7 Deploying Stochastic Systems

209

For data scientists, you can use Kubeflow in several ways to do

machine learning at scale.

	 1.	 Kubeflow provides a Jupyter notebook server for

developing and test models. In combination with

MLFlow, this can be a powerful tool for setting up

experiments and hyper-parameter tuning

	 2.	 Scaling workflows: Data scientists can leverage

Kubeflow to do model training at scale. Kubeflow

can be used to provision resources like clusters

required for distributed training on GPUs or CPUs

and takes care of scheduling, orchestration, and

managing cluster resources.

	 3.	 Model deployment and serving: Data scientist can

use Kubeflow to deploy models to production and

serve production models to end users by deploying

them as Kubernetes services (remember, this is for

a full-blown application or inference API). You can

manage or fine-tune the Kubernetes deployment as

well add load balancers and other services so you

can scale up or scale down to match demand.

I’ve also said this several times before; but, for some projects using

Kubernetes, it is not necessary, and you may choose a batch oriented

workflow for the deployment step in which case you only need to build a

batch inference pipeline and use your model to make predictions in batch.

This is a completely valid way to deploy models. In the lab, we’ll look at

creating a CI/CD pipeline that you can modify to match your particular

deployment needs.

Chapter 7 Deploying Stochastic Systems

210

�Lab: Deploying Your Data Science Project
This is the final hands-on lab of the book, and you’re going to build your

own CI/CD pipeline. The goal of this lab is to have a CI/CD pipeline that is

part of the toolkit and that you can modify to deploy your own projects to

the cloud by adding steps as necessary. We’ll be using GitHub actions in

this lab. You can follow along with the following steps to understand how

the pipeline is constructed or look at the finished CI/CD pipeline located

in the .github folder of the final MLOps toolkit included with this chapter.

Before you proceed with the lab, you should know that YAML is

another data format for configuration files consisting of key value pairs that

can be arranged in a hierarchy. It’s a human-readable format (actually it’s a

superset of JSON) and is a widely used standard for defining infrastructure

as code, CI/CD pipelines, and a range of other configurations used

in MLOps.

	 1.	 Create a new GitHub repository for your data

science project (if you need help with this, refer to

the lab from Chapter 3 on setting up source control).

	 2.	 Create a .github/workflows folder in the project root.

In our case, this folder already exists.

	 3.	 Create a new YAML file in the .github/workflows

folder and name it, for example, cicd_model_

deployment.yml.

	 4.	 Edit the YAML file as needed for your specific

data science project. For example, you may need

to update the name of the Docker image and

the name of the container registry or remove the

step to deploy to Kubernetes if you are not using

Kubernetes with your project.

Chapter 7 Deploying Stochastic Systems

211

	 5.	 Commit the changes and push these changes to the

repository created in the first step.

	 6.	 Add two secrets to the repository settings:

REGISTRY_USERNAME and REGISTRY_

PASSWORD. These secrets should be kept

confidential and correspond to the username and

password for the container registry (e.g., Docker

Hub or Azure Container Registry) that you are using.

	 7.	 Try to push changes to the main branch of the

repository; the pipeline will automatically be

triggered.

This CI/CD pipeline performs the following steps:

•	 Checkout the code from the repository.

•	 Set up a Python environment with the specified version

of Python.

•	 Install pipenv and the project dependencies.

•	 Convert notebooks to Python scripts.

•	 Run Pytest to test the code.

•	 Build and push a Docker image with the latest changes.

•	 Deploy the Docker image to Kubeflow using kfctl.

You can modify this lab to fit your needs; you now have a full CI/

CD pipeline with automated tests and a way to deploy your models to

Kubeflow whenever a change is pushed to main. Remember, you should go

through a PR process to ensure code quality before pushing to main. We’ve

also included all of the notebooks from previous labs in the toolkit as a

complete package.

Chapter 7 Deploying Stochastic Systems

212

�Open Source vs. Closed Source in Data Science
Machine learning software can be open and closed, and if you’ve been

following industry trends, there is a battle between the two philosophies

as companies seek to establish a data moat; the open source community

continues to develop open source versions of tools, models, and software

packages.

Somewhere between the two are composed of both open and closed

components (maybe we could refer to this as “clopen” software). This is

further complicated by models that significantly transform the input like

generative AI. When deploying models that use open source components

you have to make a technical decision whether to open source or closed

source your software at the end of the day and which components you

choose and accompanying licensing impacts this decision. This adds even

more complexity to the problem of MLOps placing a premium on MLOps

practitioners to make ethical decisions when it comes to the decision

systems they are deploying, regardless of the underlying technology

behind the models. In the next chapter, we’ll look at some of these ethical

decisions and how they impact the MLOps role.

�Monolithic vs. Distributed Architectures
Architecture is about trade-offs, and although we’ve covered many rules

of thumb in this book like SOLID principles, distributed architectures

for more event driven and real-time workstreams vs. batch oriented

architectures that tend to be more monolithic, there is no one perfect

architecture for each project, and you need to understand the trade-offs

and the type of performance, security, data, and process requirements

to decide what is the best architecture. Once you are committed to an

architecture or platform, it can be difficult to change though, so you should

do this ground work up front and commit to one type of architecture and

platform.

Chapter 7 Deploying Stochastic Systems

213

�Choosing a Deployment Model
In data science, there are several types of deployment models that can be

used, and in some cases, you need to support multi-model deployment.

Choosing a deployment model that best suits your needs is key to a

smooth transition from development to deployment.

On-premises deployment: In this deployment mode, you utilize your

own servers or IT environment (physical hardware, e.g., your own GPU

enabled server running Jupyter labs). Although this gives you maximum

control over the hardware, you are responsible for patching, updates, any

upgrades, and regular maintenance as well as the inbound and outbound

network connectivity and security.

Public cloud deployment: This may be a cloud service provider like

Azure, for instance, with your own resource groups and cloud services

such as Databricks. Cloud deployment may also include public services

like releasing packages to PyPi or hosting packages on web servers or

even GitHub.

Mobile deployment: Creating machine learning for smartphones or

mobile devices is becoming more popular lately. Since these devices

have limited memory compared to servers, you need to choose between

hosting your models in the cloud and connecting to them from the device

or reducing the size of the model. There is ongoing research to reduce the

size of large language models and other models, for example, quantization1

(representing the model weights as fewer bits) and knowledge distillation

(“distilling a model2”) to achieve a smaller size.

1 Kohonen, T. (1998). Learning Vector Quantization. In Springer series in
information sciences (pp. 245–261). Springer Nature. https://doi.org/10.1007/
978-3-642-56927-2_6
2 Yuan, L., Tay, F. E. H., Li, G., Wang, T., & Feng, J. (2020). Revisiting Knowledge
Distillation via Label Smoothing Regularization. https://doi.org/10.1109/
cvpr42600.2020.00396

Chapter 7 Deploying Stochastic Systems

https://doi.org/10.1007/978-3-642-56927-2_6
https://doi.org/10.1007/978-3-642-56927-2_6
https://doi.org/10.1109/cvpr42600.2020.00396
https://doi.org/10.1109/cvpr42600.2020.00396

214

�Post-deployment
The post-deployment, although not technically a phase since it’s an

ongoing continuous process so it is not formerly part of the lifecycle, refers

to the stage where the trained model is deployed to production and being

used. Some of the considerations during this phase are communicating

with stakeholders, soliciting user feedback, regular maintenance, and

monitoring (e.g., of an API you rely on is deprecated and it must be

updated, or if you find a CVE or common vulnerability exposure that

impacts a PyPi package you’re using, you need to patch it).

Beyond security and stakeholder feedback, collecting user feedback

and monitoring how the users are interacting with your model can be

invaluable for future projects and be used to train the model and augment

existing data sources. Post-deployment monitoring ensures that all of the

models deployed to production continue to provide business value and are

used in an ethical way.

�Deploying More General Stochastic Systems
Can we use the principles in this book to deploy more general stochastic

systems such as Bayesian machine learning models? The answer is yes, but

we should discuss some of the caveats.

If you use a library like PyMC3 (we used this in the second chapter

to create a Bayesian logistic regression model), you can still save your

model, but you should choose a custom serialization framework to match

the model architecture, for example, ONNX, an open standard for neural

network architectures, but others include HDF5 and Python’s pickle (e.g.,

this works well with Bayesian models from PyMC3).

You may also need to consider the types of performance metrics you

want to track, for example, Bayesian information criterion for feature

selection or Bayesian credibility interval along with a prediction.

Chapter 7 Deploying Stochastic Systems

215

The other problem is you’ll need to carefully consider sampling

methods you use and may have to have hardware to ensure you have

sufficient entropy for random sampling. Some of the algorithms may not

scale well to large data sets or be intractable, so you may have a need to

use Monte Carlo methods as opposed to a “big data” solution that may be a

necessary approach for some algorithms.

There may be other stochastic algorithms that you may encounter

that need to productionize. For example, reinforcement learning could be

applied as part of a training pipeline to do hyper-parameter search or in

specific use cases in healthcare, finance, and energy to simulate physical

systems and make recommendations, dynamic planning, and natural

language processing.

If you use a reinforcement learning algorithm like Q-learning, you

will have to think about how to represent your environment and agents

and how to update a Q-table and choose a framework that can handle

interacting with the environment between learning steps, so you may

choose a framework like Ray RLlib framework that offers support for highly

distributed workflows.

Understanding the problem type may help you to identify the

frameworks available since you should not reinvent the wheel (e.g.,

reinforcement learning frameworks, deep learning frameworks,

frameworks for Bayesian inference). Other times, you may be able

to achieve similar results with another approach where a library of

framework exists (e.g., many problems can be reframed to use a different

methodology, like how you can solve the multiarmed bandit problem

using reinforcement learning or Bayesian sampling, and this is a kind of

equifinality prosperity of many stochastic systems).

Still, you may one day encounter a bespoke stochastic algorithm that has

never been used before in the wild, where no Python wrapper exists, and in

that case, you would have to build your own from scratch. In this scenario,

you would require knowledge of a low level language like C++, compilers,

hardware, distributed systems, and APIs like MPI, OpenMP, or CUDA.

Chapter 7 Deploying Stochastic Systems

216

�Summary
In this chapter, we looked at the spiral MLOps lifecycle and its different

phases. We took another look at reducing technical debt from a holistic

point of view after understanding each phase of the lifecycle. We discussed

the philosophy behind taking a model-centric vs. a data-centric view of

MLOps and why when working with big data, a data-centric view that

encapsulates variability and complexity in the data may be preferable.

We took a look at continuous delivery for stochastic systems and how we

could adapt principles in this chapter to deploying Bayesian systems or

more general types of stochastic systems along with some of the technical

challenges. Finally, you did a hands-on lab, designing a CI/CD pipeline for

the final toolkit that is a part of this book. Here is a summary of some of the

topics we covered.

•	 Introducing the Spiral MLOps Lifecycle

•	 Reducing Technical Debt in Your Lifecycle

•	 The Various Levels of Schema Drift in Data Science

•	 Model Deployment

•	 Continuous Delivery for Stochastic Systems

In the final two chapters, we will diverge from the technical and

hands-on components and instead take a deep dive into the ethical

considerations around using AI and machine learning responsibly. We’ll

focus on model fairness, bias reduction, and policy that can minimize

technical risk.

Chapter 7 Deploying Stochastic Systems

217

CHAPTER 8

Data Ethics
The panopticon is a design that originated with the English philosopher

and social theorist Jeremy Bentham in the eighteenth century. The device

would allow prisoners to be observed by a single security guard, without

the prisoners knowing they were being watched. Today, the panopticon

is used as a metaphor to highlight the threat to privacy and personal

autonomy that comes with the collection, processing, and analysis of

big data and shows the need to protect personal information in the face

of increasing technological advancement. For example, multinational

businesses face increasing scrutiny over how to store, process, and transfer

private user data across geographic boundaries1.

In this chapter, we will discuss data ethics (derived from the Greek

word ethos meaning habit or custom); the principles that govern the

way we use, consume, collect, share, and analyze data; and how as

practitioners of data science can ensure the decision systems we build

adhere to ethical standards.

Although this might seem like a diversion from the technical into

the realm of applied philosophy, what separates the data scientist from

traditional software engineers is that we work with data and that data

can represent real people or it may be used to make decisions about

entire groups of people, for example, loan applications or to deny

someone a loan.

1 Increasing uncertainty over how businesses transfer data across geographic
boundaries is a current issue in data ethics.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_8

https://edition.cnn.com/2023/05/22/tech/meta-facebook-data-privacy-eu-fine/index.html
https://edition.cnn.com/2023/05/22/tech/meta-facebook-data-privacy-eu-fine/index.html
https://doi.org/10.1007/978-1-4842-9642-4_8

218

If we don’t consider what type of data goes into those decisions when

we train a model, we may be responsible for building systems that are

unethical. In the age of big data, where organizations collect vast amounts

of data including demographic data which may be particularly sensitive,

how that data is collected, stored, and processed is increasingly being

regulated by policies and laws like the GDPR data protection act in the

European Union and similar legislation in countries.

You may be a technical wizard at statistics or data analysis or

software development, but without a solid understanding of data ethics,

you may be doing more harm than good with your work, and your work

may end up being a net negative to society as a whole. It is my opinion

that what separates a scientist from a nonscientist or an engineer from

a nonengineer isn’t just knowledge but ethics. In this chapter, we will

give a definition of data ethics and clarify some of the guiding principles

you can use to shape your technical decision-making into ethical

decision-making.

While this is not a book on generative AI, due to recent events,

generative AI is set to shape a lot of the regulation around data ethics in

the coming years. We will also cover some of the ethical implications of

generative AI in this chapter, so you can understand the implications to

your own organization if you incorporate generative AI into your data

science projects.

Finally, we’ll provide some recommendations for you how you can

implement safeguards in your data science project such as retention

policies to mitigate some of the risks that come with working with PII and

other types of sensitive data.

Chapter 8 Data Ethics

219

�Data Ethics
Data ethics is a branch of applied philosophy concerned with the

principles that distinguish “good” decisions from “bad” decisions in

the context of data and personal information. Unlike morality, which

may determine individual behavior, ethics applies more broadly to a

professional set of standards that is community driven.

Some of the ethical questions that data ethicists are concerned with

include the following:

•	 Who owns data, the person it describes or the

organizations that collect it?

•	 Does the organization or person processing the data

have informed consent (important in the healthcare

industry)?

•	 Are reasonable efforts made to safeguard personal

privacy when the data is collected and stored?

•	 Should data that has a significant impact to society as a

whole be open sourced?

•	 Can we measure algorithmic bias in the models we use

to make decisions?

All of these questions are important as data scientists since we have

access to vast amounts of personal data, and if this data is not handled

properly, harm can be done to large groups of individuals. For example,

an application that is meant to reduce bias in human decision-making but

then exposes personal information of the groups it’s trying to help may end

up doing more harm than good.

Chapter 8 Data Ethics

220

Avoiding algorithmic bias and discrimination, improving the

transparency and accountability of the data collection and analysis

process, and upholding professional ethical standards are critical to the

long term success of data scientists and MLOps and ensuring your models

are valuable and sustainable.

�Model Sustainability
I want to define the concept of model sustainability which I think is

valuable to keep in mind when considering the role data ethics plays in

data science and technical decision-making. What does it mean for a

model to be sustainable? To be sustainable, it needs to adapt to change but

not just technical change, change in society as a whole.

The fact is some data is political in nature; the boundaries between

data and the individuals or group’s data represents can be fuzzy, and

when we start adding feedback loops into our model and complex chains

of decision-making, how our models impact others may be difficult to

measure. The other problem is social change is something not often

considered by technical decision-makers, and a lot of software engineering

is creating methodologies that protect against technical change but not

social change. As data scientists, we need to be cognizant of both and have

methodologies for making our models robust to social change as well

which may come in the form of regulatory requirements or internal policy.

So how do we decide whether our model is able to adapt to regulatory

requirements and social change? In the next section, we’ll define data

ethics as it applies to data science and discuss many issues around privacy,

handling personal information, and how we can factor ethical decisions

when making technical trade-offs.

Chapter 8 Data Ethics

221

�Data Ethics for Data Science
How can we improve our ethical decision-making? In the real world, you

may encounter trade-offs; for example, you may have data available that

could improve the accuracy of your model. You may even have a functional

requirement to achieve a certain accuracy threshold with your model.

However, it’s not acceptable to increase accuracy at the cost of algorithmic

bias in the model. It is simplistic to assume just because a variable is

“important” from a prediction point of view that it should be included

automatically. This is also part of the reason why feature selection

shouldn’t be fully automated.

There are many ways to monitor bias, and this should be a part of the

continuous monitoring process at minimum. A plan should be made to

reduce algorithmic bias either by finding substitutes for variables that are

sensitive, removing them all together. How the data was collected is also

important; if the data was inferred without the user’s informed consent,

then it may not be ethical.

It’s also possible stakeholders may not understand the implications of

algorithmic bias in a model or the ethical implications of using sensitive

PII in a model. In this case, it’s the responsibility of the data scientist to

explain the problem just as they would any other technical blocker.

Since data ethics is a rapidly evolving field, there are laws and

regulations such as GDPR that can provide guidelines for making ethical

decisions. In the next section, we will cover some of the most common

legislation from around the world that may have impact to your projects.

�GDPR and Data Governance
The General Data Protection Regulation (GDPR) is Europe’s latest

framework for data protection and was written in 2016 but became

enforceable on May 25, 2018, replacing the previous 1995 data protection

Chapter 8 Data Ethics

222

directive. The GDPR document has 11 chapters around general provisions,

data rights, duties of controllers and processors of data, and liabilities for

data breaches. One of the biggest impacts of the GDPR is its improvements

in the way organizations handle personal data, reducing organization’s

ability to store and collect personal data in some circumstances and

making the entire data collection process more expensive.

Personal data is any data which identifies or could identify a person

and includes genetic data, biometric data, data processed for the purposes

of identifying a human being, health-related data sets, and any kind of data

that could be discriminatory or used for discriminatory purposes.

As a data scientist, if you do business with clients located in the

European Union, you may have to abide by the GDPR. How does this

translate into technical decision-making? You will likely have to set up

separate infrastructure for the storage of data using a data center that is

physically located in a particular geographic region. You will also have to

ensure that when data is processed and analyzed, it does not cross this

boundary, for example, moving data between geographic zones may have

regulatory implications.

Similar legislation has been passed in several other countries since the

GDPR such as Canada’s Digital Charter Implementation Act on November

17, 2020. Although GDPR is a general data protection regulation (hence

the name GDPR), there are regulations that apply to specific industries

especially in healthcare and finance.

HIPAA: HIPAA or the Health Insurance Portability and Accountability

Act is a 1996 act of the US Congress and protects patient data and health

information from being disclosed. Since HIPAA is an American law, it

only applies to American companies and when working with American

customers, but if your organization does business with US citizens, you

need to be aware of this law. The equivalent legislation in Canada is

PIPEDA (Personal Information Protection and Electronic Documents

Act) and is much broader than HIPAA, covering personal information in

addition to health and patient data.

Chapter 8 Data Ethics

223

�Ethics in Data Science
There are some guiding principles data scientists can use to make more

ethical decisions. These principles include the following:

•	 Identify sensitive features and columns in a database

and apply appropriate levels of encryption to PII

(personally identifiable information).

•	 Set up mechanisms to decrypt PII if necessary but

ensure that appropriate security and access controls

are in place such as row level security and that only the

information necessary to a job is made available.

•	 Add continuous monitoring to identify bias in model

output for demographic data using metrics such as

demographic parity.

•	 Assess the data set to understand if sensitive

information could be inferred from any of the

attributes, and take measures to remove these

attributes or put in place appropriate safeguards to

ensure this information is not misused.

•	 Understand how the models you develop will be used

by business decision-makers and whether your model

introduces any kind of unfairness or bias into the

decision-making process either through the way the

data is collected and processed or in the output of the

model itself.

While these are not an exhaustive list, it should serve as a starting point

for further discussion with your team to set standards for ethical decision-

making and to highlight the importance data ethics plays in our own work.

In the next section, we will look at an area that poses some risk for data

scientists: the rise of generative AI.

Chapter 8 Data Ethics

224

�Generative AI’s Impact on Data Ethics
In 2023, Databricks released an ai_generate_text function in public

preview that returns text generated by a large language model (LLM)

given a prompt. The function is only available with Databricks SQL and

Severless but can be used, for example, when creating a SQL query against

a feature store. A data scientist could use this function to add generative AI

to their project, and this is only one early example of how generative AI is

increasingly making its way into data science tools.

The risk of being incorrect when discussing an event that is currently

unfolding is relatively high, but this chapter wouldn’t be complete without

discussing the impact generative AI is having on data ethics. One of the

biggest challenges generative AI poses to data ethics is related to data

ownership.

How generative AI will impact how we view data ownership is still

speculative as of 2023, but observers are already starting to see the profound

impact it is having. A lot of the debate is around whether a human input

into a model still owns the output of that model after it is sufficiently

transformed. This is an incredibly interesting question that is poised to

disrupt a lot of the current thinking that exists around data ownership, and

if you use generative AI in your data science project, you need to be aware

of the implications. I would suggest for the time being at least label output

generated by a generative AI so you can identify it in your code base if you

need to remove it in the future. Setting up a tagging system to this would be a

clean way to implement a strategy in your own organization.

�Safeguards for Mitigating Risk
We could spend years studying data ethics, and we still would never cover

every scenario you might encounter. A compromise is needed between

theory and practice to allow the reality of working with sensitive data

Chapter 8 Data Ethics

225

attributes and PII and planning for the worst-case scenario such as a data

breach or misuse of this information. Here are some safeguards you can

implement in your own data science projects to mitigate this risk.

•	 Implement data retention policy, for example,

removing data that is older than 30 days.

•	 Only collect data that is necessary to the model at hand

and don’t store data that is not relevant to the model

especially if it contains PII.

•	 Encrypt all features that are considered PII such as

email addresses, account numbers, customer numbers,

phone numbers, and financial information such as

credit card numbers.

•	 Consider implementing row level security and using

data masking for tables and views that contain PII.

•	 Rotate access keys regularly and ensure data is

encrypted in transit and at rest using latest encryption

standards.

•	 Check PyPi packages and third party software before

using them in a project in case they contain malicious

software.

•	 Work with the security team to create a plan to monitor

and protect data assets and minimize the risk of

data breach.

•	 Implement continuous bias monitoring for models that

use demographic data to ensure that the output is fair.

•	 Consider tagging anything created with generative AI

during development.

Chapter 8 Data Ethics

226

�Data Governance for Data Scientists
Data governance in the context of data science refers to a set of policies,

procedures, and standards that govern the collection, management,

analysis, processing, sharing, and access to data within an organization.

Data governance is vital to provide guarantees that data is used responsibly

and ethically and that decisions that come about as a result of a data

analysis whether it be an ad hoc analysis or the output of an automated

system are reliable, accurate, and ethical and are well-aligned with the

ethical goals of the organization.

Data quality management is a part of data governance that implements

data quality checks to ensure data is reliable. This goes beyond basic data

cleaning and preprocessing and may include business initiatives in master

data management and total data quality to maximize the quality of data

across the entire organization rather than within a specific department.

Data security is another component of data governance and ensures

that it is protected from unauthorized access and that the organization is

taking steps to mitigate the risk of data breach. Policies such as requiring

de-identification, anonymization, and encryption of data systems both at

rest and in transit may be enforced by the data governance and security

teams depending on the organization’s threat model. The role of a data

scientist and MLOps practitioner is to ensure the policies are implemented

in accordance with these policies and to provide recommendations on

how to mitigate risk of data breaches. Unfortunately, many data science

tools are not secure, and malicious software is all too common in PyPi

packages. A common attack is changing the name of a PyPi package to a

name used internally by a data science team and hosting the malicious

software on a public PyPi server. Such attacks are only the tip of the iceberg

because security is often an afterthought in analytics and not a priority,

even in Enterprise analytics software that should come with an assumption

of security.

Chapter 8 Data Ethics

227

Data stewardship is another area of data governance related to data

ownership but is more concerned with defining roles within different data

teams such as data analyst, data engineer, MLOPs, and data scientist. In a

RBAC or role based access control security model, each role would have

well-defined permissions and responsibilities that can be enforced to

protect data assets.

Finally, an organization should have a document defining and

describing its data lifecycle. We talked about the MLOps lifecycle, but

data also has a lifecycle, as it’s created, and it’s transformed into other

data, creating new data sources, and these data sources are used but

ultimately at some point are either deleted or archived and stored long

term (requiring special consideration in terms of security). This entire

lifecycle should be a part of the data governance process within your team

to minimize risk of data loss and data breach and guarantee the ethical use

of data across the entire data lifecycle.

�Privacy and Data Science
Privacy concerns arise in the collection, storage, and sharing of personal

information and data sources containing PII as well as in the use of data

for purposes such as surveillance, voice and facial recognition technology,

and other use cases where data is applied to identify individuals or features

of individuals.

The history of data privacy can be traced back to the early days of

computing. In 1973, some of the first laws on privacy were created with the

passing of the Fair Credit Reporting Act which regulated the use of credit

reports by credit reporting agencies to ensure not only accuracy but also

the privacy of customer data. The following year, the United States also

passed the Privacy Act which required federal agencies to protect privacy

and personal information. Similar laws were passed in Europe in the

1980s, and by the 1990s with the rise of the Internet, data privacy concerns

became an even bigger part of the public conscience.

Chapter 8 Data Ethics

228

Data science teams should only collect data that is necessary to the

model at hand or future models and should ensure they have consent

from the users whose data they’re collecting. Not being transparent about

the data collection process or how long data is stored means a risk to the

reputation of the organization.

�How to Identify PII in Big Data
When we’re working with big data sets, these can be big in terms of volume

but also in terms of the number of features, so-called “wide” data. It’s not

uncommon to have hundreds or even thousands of features.

One way to identify PII is to write some code that can dynamically

churn through all of the features and verify columns like “gender,” “age,”

“birthdate,” “zip code,” and any kind of demographic features that doesn't

uniquely identify a person. While primary keys may be an obvious type of

PII if they can be used to identify a person (e.g., a customer account key),

for other features whether or not they can identify a person may require

some more thought.

You may have to do some math around this; for example, if you

have a combination of age or birth date and zip code, you might be

able to identify a person depending on how many people live in a

certain zip code. You could actually go through the calculation by

using the Birthday Problem that states in a random group of 23 people,

the probability of 2 people in that group having the same birthday is

0.5 or 50%.

We could generalize this heuristic and ask for any subset of

demographic features in a big data set: What is the probability of a pair

or combination of those features uniquely identifying a person? If the

probability is high, you may have a hidden ethical trade-off between using

Chapter 8 Data Ethics

229

the feature and increasing accuracy of your model and dropping the

feature from your data set. At what specific threshold is acceptable to you

and your problem depends on the problem, how the model is used, and

your strategy for handling the PII.

This illustrates two important points when identifying PII: It’s the

combination of features that might uniquely identify someone rather

than any one feature on its own, so when you’re working with big data

sets in particular, this is something to consider. Additionally, we can

mathematically quantify the risk of identifying a particular person in a data

set in some circumstances and actually quantify the risk.

�Using Only the Data You Need
We’ve talked about PII but also there’s a common sense approach here:

We should only be using the data we actually need for the model at

hand. Given, there may be an auxiliary need to use demographic data for

marketing purposes, and that may be the reason why you need to include

it in your feature set, but as much as possible, you should try to trim the

fat and reduce the amount of data you’re using. This also helps with

performance; you don’t want to bring in ten columns that are not needed

since that’s going to be a waste of space and bandwidth.

One question you can ask to trim the fat is are the features correlated

with the response variable? This is a relatively common sense approach

and may not work in all situations, but identifying the variables in your

model that have no correlation with your target variable(s), you can create

a shortlist of variables that could be removed. In the next section, we’ll

take a step back and look at data ethics from the point of view of data

governance and the big picture impact of our models on the environment

and society.

Chapter 8 Data Ethics

230

�ESG and Social Responsibility
for Data Science
Social responsibility and ESG (environmental, social, and governance) are

increasingly becoming a part of organization strategies and future goals.

Since data scientists seek to unlock value in data, understanding ESG and

the role social responsibility plays in their organizations’ long term goals

will become increasingly important to the role of data science and MLOps.

Social responsibility in data science means the use of data to make

decisions that benefit society, promote social good, and prevent harm to

individuals or groups of individuals. An example is that data can be used

to identify patterns of bias in big data and inform decision-makers on

how these patterns of bias can be reduced. In industries such as energy,

ESG involves a more concrete tracking of carbon emissions and the

impact of the business on climate change and the environment and is a

new opportunity for data scientists to drive positive change by coming up

with innovative ways to measure ESG impact and make ESG initiatives

data-driven.

�Data Ethics Maturity Framework
If you remember way back in Chapter 1, we defined the MLOps maturity

model and discussed different phases of maturity and how we could

evaluate the maturity of a data science project. We can develop a similar

framework for ethics in data science based on many data governance

maturity frameworks used across industries.2 Take a look at Table 8-1.

2 Al-Ruithe, M., & Benkhelifa, E. (2017). Cloud data governance maturity model.
https://doi.org/10.1145/3018896.3036394

Chapter 8 Data Ethics

https://doi.org/10.1145/3018896.3036394

231

Ta
bl

e
8-

1.
 D

at
a

et
hi

cs
 m

at
u

ri
ty

 fr
am

ew
or

k

Di
m

en
si

on
Qu

es
tio

ns
De

fin
iti

on
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

Pr
iv

ac
y

Is
 p

er
so

na
l d

at
a

co
lle

ct
ed

, s
to

re
d,

an
d

us
ed

?

Pe
rs

on
al

 Id
en

tif
ia

bl
e

In
fo

rm
at

io
n

(PII
)

 is

de
fin

ed
 a

s
in

fo
rm

at
io

n

re
la

te
d

to
 a

n
id

en
tif

ia
bl

e

pe
rs

on
(s

) s
uc

h
as

 e
m

ai
l

ad
dr

es
s,

 c
re

di
t c

ar
d,

 a
nd

pe
rs

on
al

 a
dd

re
ss

Ph
ys

ic
al

 lo
ck

s
or

ph
ys

ic
al

ly
 p

ro
te

ct
ed

PII
,

fo
r e

xa
m

pl
e,

in
 a

 s
af

e
or

 lo
ck

ed

ca
bi

ne
t.

PII
 m

ay
 e

xi
st

on
 p

ap
er

Di
gi

tiz
at

io
n

an
d

di
gi

ta
l s

af
eg

ua
rd

su
ch

 a
s

RB
AC

or
 A

CL
. F

ile

le
ve

l e
nc

ry
pt

io
n

or
 d

at
ab

as
e

en
cr

yp
tio

n
ap

pl
ie

d

to
 PII

co

lu
m

ns

Bo
th

te
ch

no
lo

gi
ca

l

an
d

po
lic

y

sa
fe

gu
ar

ds
.

Ad
m

in
is

tra
tiv

e

po
lic

y
an

d

go
ve

rn
an

ce

to
 p

ro
te

ct

pr
iv

ac
y

Bi
as

(n
on

st
at

is
tic

al
)

Do
 m

od
el

s
m

ak
e

di
ffe

re
nt

 d
ec

is
io

ns

fo
r d

iff
er

en
t

de
m

og
ra

ph
ic

gr
ou

ps
?

Co
ul

d
th

es
e

de
ci

si
on

s
tra

ns
la

te

in
to

 u
nf

ai
r t

re
at

m
en

t

fo
r d

iff
er

en
t g

ro
up

s

or
 is

 th
e

m
od

el
 fa

ir?

Bi
as

 re
fe

rs
 to

 d
iff

er
en

t

m
od

el
 o

ut
pu

t f
or

di
ffe

re
nt

 d
em

og
ra

ph
ic

gr
ou

ps
 a

nd
 n

ot
 b

ia
s

in
 a

st
at

is
tic

al
 s

en
se

Bi
as

 id
en

tif
ie

d

in
 m

od
el

 b
ut

 n
o

co
nc

re
te

 s
af

eg
ua

rd
s

Bi
as

 id
en

tif
ie

d
an

d

ha
s

be
en

 a
na

ly
ze

d

an
d

m
ea

su
re

d.

Pl
an

 to
 re

du
ce

bi
as

 in
 m

od
el

s

Co
nt

in
uo

us

m
on

ito
rin

g

an
d

ac
tiv

e

bi
as

 re
du

ct
io

n

in
 m

od
el

s

(c
on

ti
n

u
ed

)

Chapter 8 Data Ethics

232

Ta
bl

e
8-

1.
 (

co
n

ti
n

u
ed

)

Di
m

en
si

on
Qu

es
tio

ns
De

fin
iti

on
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

Tr
an

sp
ar

en
cy

Is
 th

e
da

ta
 s

ci
en

ce

te
am

 tr
an

sp
ar

en
t

ab
ou

t h
ow

 d
at

a
w

as

co
lle

ct
ed

?

Da
ta

 tr
an

sp
ar

en
cy

 re
fe

rs

to
 d

at
a

be
in

g
us

ed
 fa

irl
y,

la
w

fu
lly

, a
nd

 fo
r v

al
id

pu
rp

os
es

W
ha

t d
at

a
so

ur
ce

s

ar
e

us
ed

 is
 c

le
ar

ly

do
cu

m
en

te
d

Bu
si

ne
ss

 is
 a

w
ar

e

of
 a

ll
da

ta
 s

ou
rc

es

us
ed

 a
nd

 w
ho

 h
as

ac
ce

ss
 to

 it

In
di

vi
du

al
s

an
d

bu
si

ne
ss

es

kn
ow

 w
hi

ch

da
ta

 s
ou

rc
es

ar
e

be
in

g

us
ed

 a
nd

 d
at

a

in
te

gr
ity

 is

pr
ot

ec
te

d

Chapter 8 Data Ethics

233

How might you use Table 8-1 on your own project? Although we could

add more dimensions such as social responsibility, data accessibility,

and data security, understanding the impact of your data and models on

transparency, privacy, and bias is a good starting point for understanding

the ethical considerations around your problem.

Why a framework? It may seem like overkill but can help you to

reduce technical risks associated with unethical use of data by providing

a measurable and pragmatic method for evaluating and monitoring the

project across these various dimensions.

This framework is not theoretical, and the process should also start

early before data is collected since collecting and storing PII may already

violate laws and regulations without having to have processed it. While

transparency and privacy may also be qualitative dimensions that can’t be

measured directly, bias (not bias in the statistical sense) meaning whether

the model is fair or not actually can be measured quantitatively using

metrics like demographic parity (a kind of conditional probability). How

you measure bias is different for each type of problem. For example, for

a multi-class classification problem, you might compute bias differently

than for regression, but continuous monitoring and active bias reduction

would be what differentiates a level 3 and level 2 solution in this maturity

framework. In the next section, we’ll look at responsible use of AI and how

some of the ideas around AI might apply to data science as a whole.

�Responsible Use of AI in Data Science
Data science is not artificial intelligence, but data scientists may use

AI such as generative AI both as developers to make themselves more

productive and to generate features for even entire data sets. For example,

one application of generative AI is you can sample from a generative

model to “query” it, and this might be as simple as feeding in a prompt

but could actually involve complex statistical sampling methods with

applications from recommendation to data augmentation.

Chapter 8 Data Ethics

234

While the applications of generative AI in data science are without

bound, there are ethical challenges posed by generative AI, and these are

multifaceted challenges at the intersection of society, technology, and

philosophy. It is not even known at this time whether emergent properties

such as consciousness itself could arise from certain types of AI, and this

creates a moral quandary.

With increasing attention on the responsible use of AI, the ethics

of artificial intelligence is becoming a mainstay in many data science

discussions across all types of industries and organizations, even those not

traditionally seen as technology companies.

Topics like bias in large language models whether or not language

models or other types of AI can have emergent properties like

consciousness and the existential threat posed by AI will continue to push

our understanding of data ethics.

Staying on top of the rapid advancements in AI almost requires a

superhuman AI itself to digest the vast amounts of information available,

but there are some resources available.

�Further Resources
Data ethics is a rapidly evolving field and multidisciplinary field at the

intersection of technology, society, and philosophy, so it’s important to

stay current. Some ways you can stay up to date with data ethics include

the following:

	 1.	 Subscribing to industry publications including

journals, magazines, and blogs and following news,

for example, setting an alert for GDPR or similar

data regulation. This may help to stay up to date on

current debates and emergent news.

Chapter 8 Data Ethics

235

	 2.	 Joining reputable professional organizations.

Although there is no centralized body for data

ethics, finding like-minded professionals can

provide guidance and practical experience that

you may not find elsewhere especially if there is

controversy around a particular ethical question.

	 3.	 Taking courses and reading the history of data ethics

can help to make more informed decisions when

working with data and personal information.

Data scientists and MLOps professionals that understand data

ethics will help to standardize this body of knowledge and keep the data

ecosystem free from long term negative consequences of making unethical

choices when working with data.

In the final lab for this book, we will look at how you can integrate

practical bias reduction into your project to reduce the risk of unethical

use of the models you create, and the lab will provide some starter code

you can use in your own project.

�Data Ethics Lab: Adding Bias Reduction
to Titanic Disaster Dataset
If you’ve done any kind of machine learning, you’re probably familiar with

this Titanic data set, but it’s always struck me how people go through the

example without thinking about the types of features used in the example,

so it’s always felt incomplete. In the lab, you’ll add the necessary code to

compute demographic parity to decide if the model is fair or not using the

Shap library.

Here is the recipe for this lab.

Step 1. You’ll first need to install the Shap library from PyPi preferably

in your virtual environment.

Chapter 8 Data Ethics

236

Step 2. Run the python file chapter_8_data_ethics_lab.py.

Step 3. Decide if the model is biased or not based on the demographic

parity. Feel free to change the data to make the model unbiased.

�Summary
In this chapter, we defined data ethics and discussed why ethics are

important for professionals that work with data including the following:

•	 Ethics for Data Science Projects

•	 GDPR and Data Governance

•	 Ethics in Data Science

•	 Further Resources

We looked at some guiding principles for applying ethical decision-

making in data science and some case studies and examples of specific

regulation that governs the ethical standards within the data ecosystem

today. While technology and ethics are extremely important, it is only half

the picture, and both regulation regarding data ethics and the technology

we in MLOps are spared by domain knowledge and the intricacies of each

individual industry. In the next chapter, we will look at specific industries

from energy to finance and healthcare.

Chapter 8 Data Ethics

237

CHAPTER 9

Case Studies
by Industry
In this chapter, we will finally look at the most important aspect of data

science: domain knowledge. You can think of this chapter as providing a

kind of ladder, as you won’t be a domain expert reading this chapter alone

but maybe you will be able to get to where you want to go by asking the

right questions. After all, data science is not about technology or code,

but it’s about the data and, more specifically, the domain knowledge and

concepts that data represents. Each industry has unique problems that

may not be well understood outside of that industry.

So what is data? Data in some sense is more general than even

numbers since it can be both quantitative and qualitative. Numerical

data is a type of data, while categorical or natural language-based data

represent raw concepts. Domain and industry knowledge is really the

“soul” behind the data, the elusive part of any data science project that

gives the data meaning.

While many modeling problems are considered solved especially in

supervised machine learning where basic classification and regression

problems can be repurposed over and over again possibly with very little

domain knowledge, to actually drive performance metrics and solve novel

problems that will bring a competitive advantage to your industry and

even to be able to identify which problems are actually “hard” will require

domain knowledge.

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4_9

https://doi.org/10.1007/978-1-4842-9642-4_9

238

This is the last chapter in the book because unlike previous chapters,

domain knowledge is not easy to learn; it has to be earned through years

of experience. Mathematics can be learned and technology can be learned

to some degree, but domain knowledge is purely experience based,

knowing what to measure, how to measure it, what is noise, what features

to throw away and what to keep, how to sample the data to avoid bias, how

to treat missing values, how to compute features (code that encodes all

of this business logic to eliminate bias in data can get very complex), and

knowing what algorithms are currently used and why for the particular

domain are all something that needs to be learned from experience. It also

changes, and unless you’re working in a domain, it can be hard to even get

an understanding of what problems are important and what models are

considered solved.

It’s the goal of this chapter to discuss some of the problems across

different industries and look at ways in which MLOps can improve the lives

of domain experts in those areas or to provide some further information

for data scientists that have experience in one industry and are looking

to transfer that knowledge to another industry. We’ll also take a look at

how we can use this knowledge, store and share it across industries, and

leverage it for strategic advantage for our organization by using the MLOps

lifecycle.

�Causal Data Science and
Confounding Variables
One of the things that makes data science difficult is confounding

variables and illustrates why we need to have domain knowledge to

truly understand the dependence structure in our data. Without a solid

understanding of our data, we won’t be able to identify confounding

variables, and we may introduce spurious correlations into our results, and

our models won’t be an accurate representation of reality.

Chapter 9 Case Studies by Industry

239

What is a confounding variable? A confounding variable is a third

variable that influences both the independent and dependent variables in

a model. This is a causal concept meaning we can’t just use correlations

to identify confounders, but we need a solid understanding of the data

domain and the causal factors that underlie the model; after all, correlation

does not imply causation. A visual representation of a confounding

variable is shown in Figure 9-1.

Figure 9-1.  A confounding variable influences both the independent
and dependent variables

For example, you might look at the impact of a variable like amount of

alcohol consumed on a daily basis on mortality rate. However, there are

many confounding variables like age that may be considered confounding

variables since age can have an effect on both alcohol consumption and

mortality rate. Another good example is the placebo effect where you

might have a randomized experiment with two groups but one group was

administered a placebo. Since the belief that the treatment is effective may

Chapter 9 Case Studies by Industry

240

influence the outcome of the treatment (e.g., believing a treatment will give

you more energy may cause you to feel less tired), the experiment needs to

be controlled to account for the placebo effect by splitting participants into

two randomized groups.

So how can we identify confounding variables? There is no known

algorithm for learning all of the cause and effect relationships and

identifying confounding variables (although causal data science is an

active area of research with promising techniques like Bayesian networks

and counterfactual inference). We can’t rely on correlation to help us here

since correlation is not causation and you need to develop a mental model

of the cause and effect relationships you’re studying to truly avoid spurious

results.

This understanding of cause and effect can only come from domain

experience and is the main motivation for understanding the domain

we’re modeling. In the next section, we’ll take a bottom-up approach and

look at domain specific problems broken down by industry from energy,

finance, manufacturing, healthcare, and more and try to get a better

understanding of each industry’s problem domains.

�Energy Industry
One use of data science in the energy industry is in upstream oil and

gas. Geostatistics, which takes into account spatial dependencies in data

(data points that are close together on the Earth’s surface are assumed to

be similar), leads to important applications like Kriging and geospatial

sampling.

Collecting data on well reservoirs is costly, and having techniques

that can infer unknown data without directly measuring it is an important

application. Another area is in midstream oil and gas, where energy needs

to be physically transpired in pipelines or, in the case of utilities, physically

transported over a distribution network. How do we detect anomalies and

make this process more efficient?

Chapter 9 Case Studies by Industry

241

Safety is also critical in this area, and using data science to identify

leakages and other anomalies to reduce outages or, in the case of oil and

gas, to prevent shutdowns is a focus of a lot of modeling applications.

�Manufacturing
Manufacturing is becoming increasingly data-driven as organizations

recognize the potential of data analytics to optimize their operations and

increase operational efficiency. An increase in operational efficiency of just

0.1% can translate into large cost savings in absolute terms since that 0.1%

is relative to EBITDA or operating income.

The use of data science and MLOps can help manufacturing

executives gain insight into production processes, reduce waste, develop

lean processes, improve quality control, and forecast equipment and

component failures before they happen.

A concrete example is predictive maintenance or forecasting the time

to failure or similar variable from sensor data. Sensor data may be from

entire fleets of equipment or production equipment from manufacturers

and can help predict which components are likely to fail. This may aid in

scheduling maintenance, reducing downtime, and increasing output.

Statistical quality control is another area of operational research where

data science can lead to innovative improvements. Identifying trends in

product defects can help manufacturers analyze root causes of defects and

adjust their processes to reduce future defects or to adjust inventory levels

and lead times on the fly.

�Transportation
Transportation and manufacturing have many overlaps in terms of data

science use cases. Transportation itself is a huge industry that is best

broken down into different subindustries that include railways, shipping,

Chapter 9 Case Studies by Industry

242

aviation, and more. Striking the right balance between safety and

efficiency is one of the drivers of using data science in transportation, and

again predictive maintenance has many applications.

Edge devices that may be attached to entire fleets of vehicles emit

various sensor readings like pressure and temperature (we looked at an

example of this in our feature engineering lab) and can be analyzed to

forecast time to failure and improve scheduling efficiency. It’s important

to note here that these sensor data sets are massive data sets especially if

they come from entire fleets of vehicles and may include real-time data,

so MLOps play a critical role in transportation data science especially

in scheduling off-peak hours and minimizing scheduling conflicts and

complex route planning.

For example, how do you determine the best routes to take when

your loss function includes information on fuel consumption and other

transportation costs and you have to minimize this loss over a massive

data set of sensor readings? To make matters more complicated, the

fleet of vehicles may extend across broad geographical boundaries and

include different units that need to be normalized, and all of this data

has to be processed in a way that takes into account operational safety

as well as efficiency. Safety data itself can be multimodal coming from

traffic cameras, sensors, and other sources to identify areas with high

incidence rate.

�Retail
Retail is an industry that has been completely transformed by data

science in the last 20 years, from recommender systems and customer

segmentation to pricing optimization and demand forecasting for new

productions.

Chapter 9 Case Studies by Industry

243

Customer segmentation (looking at the customer along dimensions

like geography, psychology, demographic, buying patterns, purchasing

preferences, and other traits) helps to personalize messages and product

offerings and can be used in combination with a recommender system.

Demand forecasting can help retailers analyze historical sales and

transactional data to study variables such as weather, promotions,

holidays, and macroeconomic data to predict demand for new productions

and decide where to allocate resources and marketing efforts. Demand

forecasting is primarily used for reducing inventory levels and increasing

sales by anticipating spikes in sales volumes. Demand forecasting can also

be applied to optimize supply chains by adapting to spikes and decreases

in demand.

Related to sales, price optimization is a classical use case for retail data

science. Data science can help optimize pricing strategies based on current

market trends like inflation and interest rates. Customer demand forecasts

can also be fed into these models with competitor pricing to maximize

profit margins year over year. Developing pricing strategy is necessary in

competitive markets like retail where pricing may be a key differentiator of

the product.

Recommender systems can be created by querying models to

recommend new products and services to customer segments based on

past purchases (when available) or other data like browsing history for

online retailers.

�Agritech
Agricultural communities developed over 10,000 years ago, so it’s not every

day agriculture gets a major overhaul, but data science has tremendous

potential in the intersection of agriculture and technology called agritech

to improve agricultural processes and increase yields and overall efficiency

in precision farming.

Chapter 9 Case Studies by Industry

244

Precision farming in particular uses data science to collect data from

sensors, drones, and other sources to optimize crop yields and reduce

use of fertilizers and pesticides that can harm the environment and

reduce yield. The main factors that influence crop yield include weather,

agricultural land, water, and harvest frequency, and data collected from

sensors can be used to maximize yield.

�Finance Industry
Finance is one of the most interesting industries for data science

applications. Fraud detection (a kind of anomaly detection problem)

seeks to detect fraudulent transactions and prevent financial crime. Fraud

detection is possible in part because of our ability to process vast amounts

of data and to measure a baseline behavior in the transactions to detect

patterns of fraud even if they’re less than 1% of the entire sample.

Risk management is another area where data scientists build predictive

models, to quantify risk and the likelihood and frequency of occurrence.

Predicting which customers might default on a loan, for instance, is an

important problem in predictive modeling. MLOps can help to streamline

risk management problems by bringing transparency and explainability

into the modeling process, introducing mathematical methods like SHAP

or LIME to report on which attributes went into a particular loan decision.

Model explainability and fairness are particularly important in credit

risk scoring where demographic features (income, geographic location),

payment history, and other personal information are fed into the model

in hope of getting a more accurate picture of someone’s credit risk at the

current time.

Metrics like net promoter score and customer lifetime value are

frequently used in modeling. Industry standards are extremely important

in the finance industry especially when it comes to data science. Risk

modeling, for instance, is important because if we can calculate risk of

Chapter 9 Case Studies by Industry

245

churn or risk of default, we can concentrate resources around preventing

those customers from churning provided they have sufficient customer

lifetime value.

However, how you approach the risk model in finance may be different

than other industries. Continuous features are often discretized, meaning

the features are placed into buckets. One of the reasons for this is so we

can create a scorecard at the end since there are often laws and regulations

around reporting credit risk and the models need to be interpretable by

someone without advanced knowledge of the model. There’s also the

assumption of monotonicity with credit risk. This is difficult to include in

some models.

�Healthcare Industry
We can look at applications of data science in healthcare and predict

where MLOps can impact healthcare. One area that is very active is in

medical image analysis and, more generally, preventative medicine.

Preventative medicine uses X-rays, CT scans, MRI scans, and

healthcare data to detect abnormalities and diagnose disease and malities

faster than a human doctor or even a traditional lab test could. Imagine

you could diagnose disease years in advance and treat them before they

become a problem that threatens the health of the patient.

While X-rays, CT scans, and other types of medical imaging would

require computer vision models such as convolutional neural networks,

preventative medicine may also look at the entire history of the patient

to summarize it for medical professionals (e.g., autoencoders or topic

analysis algorithms) require natural language processing and domain

knowledge of medicine. These will be vast data sets and require

infrastructure to support big data as well as require security and data

privacy safeguards to protect patient data (e.g., this data may be regulated

by HIPAA or similar regulation).

Chapter 9 Case Studies by Industry

246

Predictive analytics can ultimately be used to reduce hospital

readmissions and reduce patient risk factors over the long term, but

moving these metrics requires reporting, monitoring, and ability to feed

patient outcomes back into the model for retraining.

Two emerging areas of research in healthcare are drug discovery and

clinical decision support systems. Causal inference can be applied to

discover new combinations of drugs and build new treatments or even

speed up the clinical trials or augment data sources that are too expensive

to collect.

Monitoring infrastructure can be set up to monitor patients in real

time and provide healthcare practitioners with real-time data on patients

that can be used to make better healthcare decisions resulting in better

patient outcomes and reduced hospital visits. The potential to increase the

efficiency and optimize resource allocation in the healthcare space will be

one of the most important applications of MLOps in the twenty-first century.

�Insurance Industry
If you’re a data scientist in this field, then there’s a lot of opportunity for

innovation. One unique example is preventative maintenance. We might

not think of preventative maintenance having applications in something

like insurance, but what if insurance companies could use sensor data

to predict when vehicles need to be maintained, preventing breakdowns

before they happen and keeping claims at a minimum. This would benefit

both the drive of the vehicle and the insurance company.

Data science is playing an increasingly vital role within the insurance

industry, enabling insurers to make more accurate assessments of risk

and personalize policies. Most people know there are large volumes of

customer data available to predict the likelihood of claims behind made,

for example, insurers could use customer demographic data, credit scores,

and historical claim data and develop personalized risk strategy models.

Chapter 9 Case Studies by Industry

247

Fraudulent claims are expensive to insurers and lead to bottlenecks

and inefficiencies in the process as insurers seek to eliminate fake claims

with strict policy rules and procedures for underwriting. However,

analyzing patterns in customer data, we can use anomaly detection to

identify fraudulent claims without the additional cost.

Customer experience is another area within the insurance industry

that could use some improvements. Although we don’t usually think of

insurance companies as being in the customer service industry, with

increasing competition in this space, using data science to fine-tune policy

to customer needs would lead to new business opportunities. All of these

types of models require big data, and MLOps can make the insurance

industry much more operationally efficient, to automate the underwriting

process and make personalized policy recommendations based on

customer risk profiles and other factors.

�Product Data Science
Each of the industries mentioned continue to be disrupted by innovative

technology companies that are increasingly becoming data and analytics

companies that leverage data to improve traditional business processes.

A great example is in healthcare where machine learning is being applied

to preventative medicine to diagnose disease and infections before

they become advanced or untreatable. By developing new diagnostic

techniques with machine learning, countless lives can be saved.

Another area ripe for disruption is in the financial industry where

customers that would not traditionally qualify for a loan may be

considered because there’s data available to evaluate the risk of default.

While product data science is different in the sense that you need to

understand the product end to end rather than building a model to make

an existing process more efficient, your model needs to have product-

market fit. Understanding the customer or end user of the group across

Chapter 9 Case Studies by Industry

248

various dimensions such as demographic, psychological, behavioral,

and geographic data sets can help to segment customers and provide

insight into what kind of model may best meet the needs of each customer

segment.

Customer segmentation may be an invaluable approach to product

data scientists and, also, the ability to ask questions to establish and

uncover novel ways of modeling a problem since, unlike in industry,

the modeling problem itself may not be a solved problem. This is why

advanced knowledge of statistics and experience with research are

required to be an effective product data scientist.

�Research and Development Data Science:
The Last Frontier
Data science at the edge is a rugged landscape, a mixture of many different

disciplines that are constantly evolving. In fact, some industries may not

even be invented yet. You might wonder how data science might look in

50 years. While predicting something like how data science will evolve

50 years out is clearly not possible, if we want to predict how we might

better position ourselves to understand the massive amount of change

in this field, we might want to look at research and development and the

kind of impact data science has had on scientific research and business

innovation.

In particular, we can look at areas from applied research to

commercialization to new lines of business in various industries. Data

science has increasingly become important in science and engineering,

and although we can’t predict the future, we can look at fields like

genomics, neuroscience, environmental science, physics, mathematics,

and biomedical research to gain an understanding of some global trends.

We summarize these trends in the following.

Chapter 9 Case Studies by Industry

249

•	 Genomics: Data science is used to analyze genomic

and proteomic data to identify patterns, sequences,

and mutations in genes and proteins. Deep learning

systems like AlphaFold can accurately predict 3D

models of protein structures and are accelerating

research in this area.

•	 Neuroscience: Data science is increasingly being

combined with brain imaging such as fMRI and EEG to

unlock structure and function in the brain and provide

new treatments for brain diseases.

•	 Environmental science: Data science is being used

to analyze climate data, satellite imagery, and

oceanographic and seismic data to understand how

human activities impact our environment and to create

new climate adaption technologies.

•	 Physics: Data science is used in physics to analyze big

data sets and identify complex patterns in data from

particle accelerators, telescopes, and scans of the

universe. This information can be used to find new star

systems and planets (data-driven astronomy) and to

even develop new theories and models of the universe.

•	 Mathematics: Most of the focus on large language

models has been on training these models to

understand natural language and not formal

languages like mathematics. While AI may not replace

mathematicians completely, generative AI may be used

to generate proofs, while formal verification may be

used to validate these proofs. Building a system that

uses both generative AI and formal verification systems

Chapter 9 Case Studies by Industry

250

like automated theorem provers as components will

lead to groundbreaking results and the first proofs

completely generated by AI mathematicians.

•	 Biomedical research: Data science is used to analyze

clinical trial data, biomedical data, and data from drug

trials to develop new treatments and interventions

for debilitating diseases. Causal data science is an

emerging area within data science that has tremendous

potential to expedite biomedical research.

Although we can list many active areas of research where data science

has had an impact or will have an impact in the future, this relationship

goes in both directions. While branches of mathematics like statistics

and linear algebra have had the biggest impact on data science so far,

other areas of mathematics like topology continue to find its way into

mainstream data science through manifold learning techniques like t-SNE

belonging to the emerging field of topological data analysis.

Other areas of mathematics are slowly making their way into data

science, and people find new ways to apply old mathematical techniques

to data processing. One interesting area is in algebraic data analysis where

age-old techniques like Fourier transforms and wavelets are being used

to change the way we analyze data. I mentioned this in Chapter 2, but

if you take the Fourier transform of a probability distribution, you get

the characteristic function of that distribution. Characteristic functions

are a kind of algebraic object, and they’ve been applied in many proofs

in mathematical statistics like proof of the central limit theorem. While

other applications of Fourier transforms like wavelet signal processing are

being used in some areas of data science, there are many mathematical

techniques that will eventually find their way into mainstream data

science.

In the next few sections, we’ll pivot back to more concrete use cases of

data in industry and how you can apply them in your own organization.

Chapter 9 Case Studies by Industry

251

�Building a Data Moat for Your Organization
A data moat is a competitive advantage where data itself is treated as

a business asset. By leveraging data as an asset, businesses can create

barriers to entry for competition and use data as a strategic advantage.

The key to building a data moat is using data in a way that cannot easily be

replicated. As a data scientist, you know what data is valuable, but as an

MLOps practitioner, you can use this knowledge to build a data moat.

The first step would be to collect as much data as possible but to

implement quality gates to safeguard the quality of the collection. This

may require an investment in IT systems and tools to collect and process

data effectively to determine what should be kept and what is noise.

The next phase is to identify what data cannot be replicated. This is the

most valuable asset for a business and might be customer data, industry

data, or data that was extremely difficult to collect.

Once you have identified enough quality data sources that cannot

be easily replicated, you can analyze this data to leverage it in your

operations. The full MLOps lifecycle applies at this stage, and you may

start with a single data science project and slowly, iteratively build toward

becoming a data-driven organization where you can offer new innovative

service lines and products from this data.

Finally, after you’ve integrated a certain level of MLOps maturity

meaning you’re able to create feedback into your data collecting process

to create more data, insights, services, and products, you need to

safeguard the data and protect it like any other highly valuable asset by

implementing proper data governance policies. This entire process may

happen over a number of years.

One of the difficulties in building your organization’s data moat is

lack of domain expertise and capturing domain expertise in your MLOps

process. In the next section, we’ll look at the history of domain experts

and how organizations have attempted to capture domain expertise when

building their data moats.

Chapter 9 Case Studies by Industry

252

�The Changing Role of the Domain Expert
Through History
Throughout history, there have been many AI winters and many attempts

to capture domain expertise and store it. Expert systems were formally

around as early as the 1960s and were designed to mimic expert decision-

making ability in a specific domain. The first commercial expert system

called Dendral was invented to help organic chemists identify unknown

organic molecules by analyzing mass spectra. This and subsequent

expert systems were rule based, and by the 1980s, they were able to make

use of some simple machine learning algorithms. In the 1990s, expert

systems were used in industries ranging from finance to healthcare and

manufacturing to provide specialist support for complex tasks, but there

was a problem: These expert systems were difficult to maintain, requiring

human experts to update the knowledge base and rules.

Today, chatbots use a different approach: generative AI creating new

data from old data that are far less brittle than expert systems. However,

currently there is no way to update these chatbots in real time (requiring

layers of reinforcement learning), and if data used to train these models

is insufficient, the knowledge will be inaccurate. These models are also

expensive to train with a fixed cost per token, and you have to train one

model per domain; there is little to no transfer between domains leading

to knowledge silos. This leads to an interesting question: What is the role of

the domain expert in data science in the face of this change?

A challenging problem is there are many different kinds of data

scientists not just differentiated by role and skill but domain expertise:

knowing what tools are useful and what problems have been solved before

and being able to communicate that knowledge.

Mathematics is a universal language. Data visualization can be used

to communicate results of data analysis but hides the details of how you

arrived at that problem. To make things worse, each industry has its own

Chapter 9 Case Studies by Industry

253

vocabulary, standards, and ways of measuring. That being said, there

are still a couple ways to store domain knowledge and maybe share that

knowledge across industry and teams.

•	 Documentation: This is a straightforward way to store

domain knowledge and share it across teams and

industries. This may include books, technical manuals,

research blogs from leading companies, academic

journals, and trade journals.

•	 Knowledge graphs: Knowledge graphs are a way

to organize domain knowledge into relationships

between concepts. For domain knowledge that is highly

relationship driven like social networks, this may be a

good tool to represent knowledge.

•	 Expert systems: Expert systems were an attempt to

represent expertise in a rule based system but have

many limitations.

•	 Ontologies: Ontologies are a formal way to store

academic domain knowledge by representing

knowledge as a set of concepts and relationships

between concepts. This differs from knowledge graphs

in that ontologies are full semantic models for an entire

domain while knowledge graphs are specific to a task.

•	 Generative AI: Large language models are increasingly

being used to store domain knowledge. At this time,

training large language models on custom data is an

expensive process, but as the cost per token decreases

over time, generative AI may become the standard way

to share domain knowledge.

Chapter 9 Case Studies by Industry

254

•	 Code: An example of this is the toolkit we created, but

open source projects are good way to share knowledge

across domains, for example, developing an R library

to solve a problem in one industry and sharing it on

CRAN so it can be applied in another industry.

•	 Metadata: Defining standard vocabulary for your

industry and developing a metadata dictionary, for

example, to annotate features in a feature store.

While we have many ways to share domain expertise from simple

documentation to more formal methods to represent entire domains,

sharing knowledge is only one piece of the puzzle. Data and the knowledge

it represents grow over time and need to be processed not just stored.

The situation where data outpaces processing capabilities may become a

limiting factor in some domains.

�Will Data Outpace Processing Capabilities?
IoT data is increasing at an alarming rate. This scenario is often called data

deluge and happens when data grows faster than our ability to process it?

While exascale computing promises to provide hardware capable of 1018

IEEE 754 Double Precision (64-bit) operations (multiplications and/or

additions) per second, data is much easier to produce than it is to process.

So-called dark data is produced when organizations have collected data

but do not have the throughput to process it. While MLOps can help

in unlocking some of this dark data, new systems, technologies, and

hardware may have to be incorporated into the MLOps lifecycle to handle

increasing volumes of data.

Chapter 9 Case Studies by Industry

255

�The MLOps Lifecycle Toolkit
The reader of this book is encouraged to use the MLOps lifecycle toolkit

that is provided with the code for this chapter. I have added MLFlow and

Jupyter lab components that use containers to the Infrastructure folder

and added the model fairness code to the fairness folder so you can use

it in your own projects. The accompanying software (“the toolkit”) suit

their own needs. The idea for an agnostic toolkit that can be used as a

starter project or accelerator for MLOps can facilitate data science in your

organization in combination with this book that serves as documentation

for the toolkit.

Building a toolkit that is agnostic that includes tools for

containerization, model deployment, feature engineering, and model

development in a cookie cutter template means it’s highly customizable

to the needs of your particular industry and project as a way to share

knowledge and provide a foundation for domain experts doing data

science.

The field of data science is very fast-paced encompassing not

only machine learning but nonparametric algorithms and statistical

techniques, big data, and most importantly domain knowledge that shapes

the field as a whole. As domain knowledge changes, the toolkit may evolve,

but the invariants like mathematical knowledge, algorithmic thinking, and

principles for engineering large-scale systems will only be transformed

and applied to new problems. Figure 9-2 shows the end-to-end MLOps

lifecycle components used in the toolkit as an architectural diagram.

Chapter 9 Case Studies by Industry

256

Figure 9-2.  Relationships between MLOps lifecycle components

Chapter 9 Case Studies by Industry

257

�Summary
In this chapter, we looked at various applications of data science by

industry. Some of the industries we discussed include the following:

•	 Energy Industry

•	 Finance Industry

•	 Healthcare Industry

•	 Insurance Industry

We concentrated on broad problems within each industry and

emphasized the importance of industry standard techniques, vocabulary,

and domain knowledge in data science. We looked at the changing role

of the domain expert throughout history including attempts to capture

knowledge and store it as expert systems and in generative AI. We

discussed the hypothetical point where our ability to produce data may

outpace our ability to process data and how this may impact the MLOps

lifecycle in the future. Finally, we talked about contributing to the MLOps

toolkit, the accompanying piece of software that comes with this book,

providing the final version in the code that comes with this chapter with

all the previous labs and infrastructure components used in previous

chapters.

Chapter 9 Case Studies by Industry

259

Index
A
Ad hoc statistical analysis, 9–10
Amazon Web Services (AWS),

94, 117–120, 142–143,
170, 199

Application programming
interface (API)

designing interfaces, 174
high-velocity data, 23
inference pipelines, 181–183
JupyterLab server, 93
keras, 64
model deployment, 199
multi-model deployments/

pulling models, 168
POST request, 179
PySpark, 63
RESTful, 178, 179

B
Bayesian model

approaches, 41
Bayes’ rule, 40
frequentist model, 39
frequentist position, 41
frequentist statistics, 40

likelihood function, 40
logistic regression, 39
parameters, 40
probability, 39
trace plot, 39

Bayesian networks, 7, 38, 240
Building training pipelines

automated reporting, 150
batch processing/feature stores

feedback loops, 154
gradient descent, 150
LIME/SHAP, 153
mini-batch, 151
model explainability,

153, 154
online learning method,

152, 153
personalization, 153
stochastic gradient

descent, 151
ELT, 140–142
feature selection, 148
handling missing values,

145, 146
hyper-parameters

boosting model, 155
docker-compose file, 159

© Dayne Sorvisto 2023
D. Sorvisto, MLOps Lifecycle Toolkit, https://doi.org/10.1007/978-1-4842-9642-4

https://doi.org/10.1007/978-1-4842-9642-4

260

experiment tracking
software, 157, 158

hardware accelerated
training, 156, 157

Hyperopt objective
function, 155

LSTMs, 156
MAR, 145, 146
MinIO, 160
MLFlow architecture/

components, 158–162
mlflow package, 160, 161
model architecture, 156
model registry

component, 159
model training process, 155
parameters, 154
search space, 155
service endpoints, 160
serving component, 159

MCAR/MNAR, 146
meaning, 139
mergeSchema, 148
MLFlow Lab

experiment component, 163
MinIO cloud storage

service, 162
mlflow, 162, 163
model registry

component, 164
model evaluation, 149, 150
preprocessing steps, 144
processing text, 144, 145

scaling data, 146, 147
schema drift, 147, 148
scikit-learn’s model, 149
sklearn’s pipeline class, 145

C
Common table expressions (CTEs),

58, 127–129
Computational foundation

control flow/boolean
expressions, 51, 52

Einsum notation, 52
loops, 50
resources, 64, 65
tensor operations, 52, 53
variables/statements/

expressions, 51
vectorization, 50

Containerization
data scientists code, 103
Docker platform

anatomy, 105–108
blueprint, 107
CMD/EXPOSE

instructions, 107
data science, 108–112
definition, 104, 106
desktop, 108
Jupyter notebook, 109
lab environment, 111, 112
license agreement, 109
NVIDIA drivers, 105
OS-level virtualization, 104

Building training pipelines (cont.)

INDEX

261

RUN instruction, 106
runtime instance, 107
splash screen, 110

orchestration
definition, 132
environments, 134
managing services, 134–136
networking, 133
performance testing, 136
reproducibility, 135
technical decisions, 136, 137
terraform, 135
YML file, 133

portability problem, 104
Python environments, 103

Continuous integration and
continuous
deployment (CI/CD)

automated tests, 207
definition, 207
deployment, 208, 210, 211
deployment models, 213
Kubeflow, 208, 209
Kubernetes, 209
MLOps configuration, 210
model deployment/serving,

209, 213
monolithic vs. distributed

architectures, 212
on-premises deployment, 213
open vs. closed sources, 212
post-deployment, 214
public cloud deployment, 213
scaling workflows, 209

steps, 207
version control, 207

Cross-Industry Standard Process
for Data Mining
(CRISP-DM), 200

D
Data ethics

algorithmic bias and
discrimination, 220

artificial intelligence, 233
bias reduction/titanic dataset,

235, 236
big data sets, 228, 229
data governance, 222, 223,

226, 227
decision-making, 221
definition, 217
demographic data, 229
demographic parity, 233
GDPR, 222, 223
generative AI, 224
generative model, 233, 234
LLM, 224
maturity framework, 230–233
mitigating risk, 225, 226
model sustainability, 220
monitor bias, 221
principles, 219, 223
privacy concerns, 227, 228
professionals, 236
PyPi packages, 226
quality management, 226

INDEX

262

resources, 234, 235
social responsibility and

ESG, 230
technical wizard, 218

Data science projects, 30
databases

analytical systems, 127
common table

expression, 128
data warehouses, 130
enterprise grade projects,

130, 131
feature engineering, 129
medallion architecture, 130
mesh, 130
No-SQL databases/meta

stores, 131, 132
SELECT statement, 128
transactional systems, 127

data scientist
Bayesians and

frequentists, 13
business analysts, 12
communication gap, 11
geospatial statistics, 13
Hackerlytics, 14
roles, 12
schema drift, 13
specialized roles, 12

ELT pipelines, 141
engineering project, 11
Git commands, 69–77

industry, 237
measuring quality

business insights, 33
KPIs types, 30–32
maintainability, 33
measurement, 32
reliability, 32

MLOps packages, 92–96
model packages/deployment

Anaconda, 89, 90
command palette, 88
Conda/virtual

environment, 88
definition, 87
environment, 89
open source packages, 91
Pipfile package versions, 90
Python environment, 88
Python packages, 91
technical consideration, 91

statistical modeling, 11
supervised machine

learning, 8–10
TDD, 84
version system (see Version

control systems)
Data science system, 4, 189
Data version control (DVC)

binary format, 76
lab, 77
versioning data, 76

Directed acyclic graphs
(DAGs), 57, 141

Data ethics (cont.)

INDEX

263

E, F
Environmental, social, and

governance (ESG), 230
Exploratory data analysis (EDA), 2,

9, 97, 98, 192
Extract, load, and transform

(ELT), 140
Airflow V2, 141
Azure data factory/AWS Glue,

142, 143
CI/CD pipelines, 207
definition, 140, 141
monitoring infrastructure, 170
production data, 143

G
Gaussian mixture model (GMM),

42–43, 45
General Data Protection

Regulation (GDPR), 8, 218,
221–222, 234

Generalized additive models
(GAMs), 43–45

Git internals
branching strategy, 73, 74
data version control, 76
HEAD, 70, 71
lab, 76, 77
Plumbing/Porcelain

commands, 70
pull requests, 74, 75
repos, 69

repository, 72
source control, 75
Sourcetree, 69, 71–73

H
Health Insurance Portability and

Accountability Act (HIPAA),
2, 222, 245

I
Industry

agricultural communities
(agritech), 243, 244

confounding variables, 238–240
customer segmentation, 243
data deluge, 254
data moat, 251
data/modeling problems, 237
data visualization, 252
demand forecasting, 243
domain knowledge, 237,

238, 253
edge devices, 242
energy, 240
expert systems, 252, 253
finance, 244, 245
generative AI, 253
healthcare, 245, 246
history, 252–254
insurance company, 246, 247
knowledge graphs, 253

INDEX

264

manufacturing, 241
metadata dictionary, 254
metrics, 244
MLOps lifecycle toolkit, 255, 256
monitoring infrastructure, 246
ontologies, 253
predictive analytics, 246
preventative medicine, 245
product data science, 247, 248
recommender systems, 243
reinforcement learning, 252
research/development

biomedical research, 250
environmental science, 249
frontier, 248
genomic and proteomic

data, 249
mathematical

techniques, 250
mathematics, 249
neuroscience, 249
physics, 249
topological data

analysis, 250
trends, 248

retail, 242, 243
risk management, 244
sensor data, 241
statistical quality control, 241
transportation, 241, 242

Inference pipelines
accuracy and model

performance, 174

cold-start problem, 183, 184
compare models/performance

alignment table, 176
batch inference, 178
horizontal scalability, 177
k-fold cross validation, 175
performance considerations,

175, 176
real-time inference, 178
scalability, 176–178
vertical scalability, 177

documentation, 184
marshaling/deserialization, 179
microservices

architecture, 179–181
definition, 179
Flask documentation, 181
lab building

process, 181–183
load balancer, 180
MLFlow model registry, 182
prediction endpoint, 180
scoring script, 181
services, 179

monitoring, 170 (see Monitoring
infrastructure)

multi-model deployment, 168
production-training skew,

169, 170
reporting, 185, 186
RESTful API, 178, 179
stochastic systems, 167, 170
traditional software

systems, 170

Industry (cont.)

INDEX

265

Infrastructure
containers (see

Containerization)
hardware accelerated training

Autopilot Options box, 121
BERT, 118
cloud provider, 121
cloud service providers, 118
cluster inactivity, 122, 123
Databricks, 124–128
Databricks account,

119, 120
distributed training,

119–123
supplementary code, 119

store pattern
binary file, 116
feast, 113–116
feature selection, 112
Lasso/bagging

algorithms, 112
online vs. offline

process, 113
parquet extension, 116, 117
pressure and temperature

readings, 115
production

environment, 116
Infrastructure as code (IaC), 7, 21,

134–138, 210

J
Java virtual machine (JVM), 104

K
Kernel methods

definition, 44
embed features, 44
kriging, 44
logistic regression, 45
logistic sigmoid curve, 45, 46
probability distributions, 45

Key performance indicators (KPIs),
1, 12, 19, 21, 30, 31, 33,
150, 186

L
Large language model (LLM), 36,

67, 118, 156, 198, 202, 224,
234, 253

Linear algebra, 36–37, 62, 65, 66, 250
Local interpretable model-agnostic

explanations (LIME), 153,
154, 244

Long short term models (LSTMs),
146, 156

M
Machine Learning

Operations (MLOps)
data discovery, 25
data infrastructure (see

Infrastructure)
data science, 1
data science projects (see Data

science projects)

INDEX

266

definition, 1, 3, 4
deployment/Ops, 27
evaluation, 27
exploratory analyses, 2
feature selection, 26
hackerlytics, 33
inference pipelines, 167
insight generation, 25, 26
lifecycle

collection/data discovery, 192
components, 256
continuous process, 194
data validation, 193
definition, 190, 192
diagnostic plots, 194, 195
engineering, 193
inference pipeline, 195, 196
model training, 194
phases, 24
retraining model, 195
spiral learning, 191
toolkit, 255, 256
validation, 192

logistic regression model, 35
mathematical/computational

foundations (see
Mathematical and
computational
foundations)

maturity model
CI/CD pipelines, 7
data science/engineering, 7

history, 6
software development, 5, 6

measuring quality, 30–33
MLFlow, 96–102
ModelOps packages, 94–96
model training, 26
model transparency, 4
monitoring models, 28
NoSQL databases, 29
packages

Databricks, 93, 94
DataOps, 92
JupyterLab serrver, 93
Jupyter notebooks, 92, 93
lifecycle, 92

poisson regression model, 2
production, 29
regulatory constraints, 2
reliability and

maintainability, 32
rigorous approach, 3
tools/technology, 67
tracking/monitoring model

CookieCutter, 98
data version control, 102
exploratory data analysis, 98
Horovod, 97
Hyperopt, 97
MLFlow, 96
orchestrator.py, 101
Python packages, 101
root directory, 100
toolkit folder structure, 99
visualization/reporting, 97

Machine Learning Operations
(MLOps) (cont.)

INDEX

267

training pipelines, 140
transportation sector, 4
version control, 67

Massively parallel processing
(MPP), 127–129, 138

Mathematical and computational
foundations

algorithm, 59
Bayesian version, 39–41
characteristic functions, 48, 49
ChatGPT/BERT, 36
computation (see

Computational
foundation)

data science
deep learning/frameworks, 63
Deplyr, 62
executable code, 60
interoperability/scalability

issues, 62
Keras, 64
libraries/packages, 60
MATLAB/OCTAVE, 62
Numpy/Pandas, 61
PyMc3 library, 61
PySpark, 63
PyTorch, 64
R packages, 61
ShinyR, 62
TensorFlow, 63
Theano, 64

data structures/science, 53
GAMs, 43, 44
GMM, 42, 43

high dimensions, 46–48
kernel methods, 44–46
Lasso regression/models, 48
linear algebra, 36, 37
non-determinism system, 49
probability distribution

conditional probability
distributions, 37

definition, 37
discriminative model, 38
generative model, 38
logistic regression, 38

regularization, 47
resources, 65
ridge regression, 48
sets

array/lists, 54
binary trees, 56
definition, 53
directed acyclic graphs, 57
hash maps, 55
trees/graphs, 55

SQL statement, 57, 58
technical decision-makers, 66
technical decision making, 59

McCulloch-Pitts neuron/
perceptron, 36

Missing at random (MAR), 145, 146
ModelOps packages, 94

definition, 95
KubeFlow, 95
ray, 95
reusable/nonreusable, 96
Seldon, 95

INDEX

268

Monitoring infrastructure
cloud monitoring tools, 171
cloud platforms, 170
data/model drift, 171–174
data pipelines/ELT

frameworks, 170
hypothesis testing, 172
technical decision, 171

N, O
Natural language processing

(NLP), 8, 25, 131, 205,
215, 245

P, Q, R
Panopticon, 217
Personal Information Protection

and Electronic Documents
Act (PIPEDA), 222

Personally identifiable information
(PII), 2, 112, 148, 218, 221,
225, 227–229, 231

Platform as a Service (PaaS), 94,
104, 123, 124, 137, 199

S
Schema drift (data science)

Codd’s theorem, 198
database, 198
data types, 197
definition, 196

destructive operations, 197
No-SQL databases, 198
relational algebra/calculus, 198
table structure, 197

Shapley Additive Explanations
(SHAP), 154

Software development kit
(SDK), 171

Stochastic systems
algorithm, 215
Bayesian MLOps, 214
CI/CD pipelines (see

Continuous integration
and continuous
deployment (CI/CD)

deployment, 198
business system, 199, 200
CRISP-DM, 200
development, 200, 201

deployment, private/public
API, 199

frameworks, 215
productionize, 215
PyMC3, 214
reinforcement learning

algorithm, 215
sampling methods, 215
technical debt

advantages and
disadvantages, 206

Agile adaptation, 203–205
code reviews/

development, 203
connectivity issue, 205

INDEX

269

deployment checklists, 201
generative AI, 202, 203
model-centric vs. data centric

approaches, 205, 206
strategies, 202

Structured query language (SQL)
Cassandra, 131
Hive, 132
nonfunctional requirements, 131
Postgres, 132
relational databases, 131, 132
statements, 57, 58

Supervised machine learning
Ad hoc analysis, 9–10
classification/regression, 8
probabilistic programming, 9
reinforcement learning, 9
semi-supervised problems, 8
transformer model, 8

Support vector machine
(SVM), 44–46

T, U
Test driven development (TDD)

import errors, 85
requirements, 84
run tests, 86
stochastic systems, 204
testing framework, 85

V, W, X, Y, Z
Version control systems

clean code/craftsmanship, 87
data/code/models, 68
definition, 68
Git, 69
model development/

training, 77
cloud notebooks/Google

Colab, 80–82
craftsmanship, 82
Spyder, 77
Visual Studio Code

editor, 78–80
naming conventions/

standards
code smells, 83
doc strings, 84
documentation, 83, 84
guidelines, 82
technical documentation, 83

TDD, 84–87
Visual Studio code

activity bar, 78
code command, 78
code editor, 78
extensions, 79
Python extensions, 80
source control editor, 79

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing MLOps
	What Is MLOps?
	Defining MLOps
	MLOps Maturity Model
	Brief History of MLOps
	Defining the Relationship Between Data Science and Engineering

	What Are the Types of Data Science Projects?
	Supervised Machine Learning
	Semi-supervised Machine Learning
	Reinforcement Learning
	Probabilistic Programming
	Ad Hoc Statistical Analysis

	The Two Worlds: Mindset Shift from Data Science to Engineering
	What Is a Type A Data Scientist?
	Types of Data Science Roles

	Hackerlytics: Thinking Like an Engineer for Data Scientists
	Anti-pattern: The Brittle Training Pipeline
	Future-Proofing Data Science Code
	What Is Technical Debt?
	Hidden Technical Trade-Offs in MLOps
	How to Protect Projects from Change
	Drivers of Change in Data Science Projects
	Choosing a Programming Language for Data Science
	MapReduce and Big Data
	Big Data a.k.a. “High Volume”
	High-Velocity Data
	High-Veracity Data
	Types of Data Architectures

	The Spiral MLOps Lifecycle
	Data Discovery
	Data Discovery and Insight Generation
	Data and Feature Engineering
	Model Training
	Model Evaluation
	Deployment and Ops
	Monitoring Models in Production

	Example Components of a Production Machine Learning System
	Measuring the Quality of Data Science Projects
	Measuring Quality in Data Science Projects
	Importance of Measurement in MLOps
	What Is Reliability?
	What Is Maintainability?
	Moving the Needle: From Measurement to Actionable Business Insights

	Hackerlytics: The Mindset of an MLOps Role
	Summary

	Chapter 2: Foundations for MLOps Systems
	Mathematical Thinking
	Linear Algebra
	Probability Distributions
	Understanding Generative and Discriminative Models

	Bayesian Thinking
	Gaussian Mixture Models
	General Additive Models
	Kernel Methods
	Higher Dimensional Spaces
	Lab: Mathematical Statistics
	Programming Nondeterministic Systems
	Programming and Computational Concepts
	Loops
	Variables, Statements, and Mathematica Expressions
	Control Flow and Boolean Expressions
	Tensor Operations and Einsums

	Data Structures for Data Science
	Sets
	Arrays and Lists
	Hash Maps
	Trees and Graphs
	Binary Tree
	DAGs

	SQL Basics
	Algorithmic Thinking for Data Science
	Core Technical Decision-Making: Choosing the Right Tool
	Translating Thoughts into Executable Code
	Understanding Libraries and Packages
	PyMc3 Package

	Numpy and Pandas
	R Packages
	Important Frameworks for Deep Learning
	TensorFlow
	PyTorch
	Theano
	Keras

	Further Resources in Computer Science Foundations
	Further Reading in Mathematical Foundations
	Summary

	Chapter 3: Tools for Data Science Developers
	Data and Code Version Control Systems
	What Is Version Control?
	What Is Git?

	Git Internals
	Plumbing and Porcelain: Understanding Git Terminology
	How Git Stores Snapshots Internally
	Sourcetree for the Data Scientist
	Branching Strategy for Data Science Teams
	Creating Pull Requests
	Do I Need to Use Source Control?
	Version Control for Data
	Git and DVC Lab

	Model Development and Training
	Spyder
	Visual Studio Code
	Cloud Notebooks and Google Colab
	Programming Paradigms and Craftsmanship
	Naming Conventions and Standards in Data Science
	Code Smells in Data Science Code
	Documentation for Data Science Teams

	Test Driven Development for Data Scientists
	From Craftsmanship to Clean Code

	Model Packages and Deployment
	Choosing a Package Manager
	Anaconda
	Installing Python Packages Securely
	Navigating Open Source Packages for Data Scientists

	Common Packages for MLOps
	DataOps Packages
	Jupyter Notebook
	JupyterLab Server
	Databricks

	ModelOps Packages

	Model Tracking and Monitoring
	Packages for Data Visualization and Reporting
	Lab: Developing an MLOps Toolkit Accelerator in CookieCutter

	Summary

	Chapter 4: Infrastructure for MLOps
	Containerization for Data Scientists
	Introduction to Docker
	Anatomy of the Docker File
	Lab 1: Building a Docker Data Science Lab for MLOps

	The Feature Store Pattern
	Implementing Feature Stores: Online vs. Offline Feature Stores
	Lab: Exploring Data Infrastructure with Feast
	Exercise
	Dive into Parquet Format

	Hardware Accelerated Training
	Cloud Service Providers
	Distributed Training
	Optional Lab: PaaS Feature Stores in the Cloud Using Databricks
	Scaling Pandas Code with a Single Line
	GPU Accelerated Training

	Databases for Data Science
	Patterns for Enterprise Grade Projects
	No-SQL Databases and Metastores
	Relational Databases

	Introduction to Container Orchestration
	Commands for Managing Services in Docker Compose
	Making Technical Decisions

	Summary

	Chapter 5: Building Training Pipelines
	Pipelines for Model Training
	ELT and Loading Training Data
	Tools for Building ELT Pipelines
	Azure Data Factory and AWS Glue
	Using Production Data in Training Pipeline

	Preprocessing the Data
	Handling Missing Values
	Knowing When to Scale Your Training Data
	Understanding Schema Drift
	Feature Selection: To Automate or Not to Automate?
	Building the Model
	Evaluating the Model
	Automated Reporting

	Batch Processing and Feature Stores
	Mini-Batch Gradient Descent:
	Stochastic Gradient Descent
	Online Learning and Personalization
	Shap Values and Explainability at Training Time
	Feedback Loops: Augmenting Training Pipelines with User Data

	Hyper-parameter Tuning
	Hardware Accelerated Training Lab
	Experimentation Tracking

	MLFlow Architecture and Components
	MLFlow Lab: Building a Training Pipeline with MLFlow
	Summary

	Chapter 6: Building Inference Pipelines
	Reducing Production-Training Skew
	Monitoring Infrastructure Used in Inference Pipelines
	Monitoring Data and Model Drift

	Designing Inference APIs
	Comparing Models and Performance for Several Models
	Performance Considerations

	Scalability
	What Is a RESTful API?
	What Is a Microservice?
	Lab: Building an Inference API
	The Cold-Start Problem
	Documentation for Inference Pipelines
	Reporting for Inference Pipelines
	Summary

	Chapter 7: Deploying Stochastic Systems
	Introducing the Spiral MLOps Lifecycle
	Problem Definition
	Problem Validation
	Data Collection or Data Discovery
	Data Validation
	Data Engineering
	Model Training
	Diagnostic Plots and Model Retraining
	Model Inference

	The Various Levels of Schema Drift in Data Science
	The Need for a More Flexible Table in Data Science

	Model Deployment
	Deploying Model as Public or Private API
	Integrating Your Model into a Business System
	Developing a Deployment Strategy

	Reducing Technical Debt in your Lifecycle
	Generative AI for Code Reviews and Development
	Adapting Agile for Data Scientists
	Model-Centric vs. Data-Centric Workflows

	Continuous Delivery for Stochastic Systems
	Introducing to Kubeflow for Data Scientists
	Lab: Deploying Your Data Science Project
	Open Source vs. Closed Source in Data Science
	Monolithic vs. Distributed Architectures
	Choosing a Deployment Model
	Post-deployment
	Deploying More General Stochastic Systems

	Summary

	Chapter 8: Data Ethics
	Data Ethics
	Model Sustainability
	Data Ethics for Data Science
	GDPR and Data Governance
	Ethics in Data Science
	Generative AI’s Impact on Data Ethics
	Safeguards for Mitigating Risk
	Data Governance for Data Scientists
	Privacy and Data Science
	How to Identify PII in Big Data
	Using Only the Data You Need
	ESG and Social Responsibility for Data Science
	Data Ethics Maturity Framework
	Responsible Use of AI in Data Science
	Further Resources
	Data Ethics Lab: Adding Bias Reduction to Titanic Disaster Dataset
	Summary

	Chapter 9: Case Studies by Industry
	Causal Data Science and Confounding Variables
	Energy Industry
	Manufacturing
	Transportation
	Retail
	Agritech
	Finance Industry
	Healthcare Industry
	Insurance Industry
	Product Data Science
	Research and Development Data Science: The Last Frontier
	Building a Data Moat for Your Organization
	The Changing Role of the Domain Expert Through History
	Will Data Outpace Processing Capabilities?
	The MLOps Lifecycle Toolkit
	Summary

	Index

