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CHAPTER 9

Deep Learning with TensorFlow

This chapter introduces an overview of the world of deep learning and the artificial neural networks on 
which its techniques are based. Furthermore, among the Python frameworks for deep learning, you will use 
TensorFlow, which is an excellent tool for research and development of deep learning analysis techniques. 
With this library, you will see how to develop different models of neural networks that are the basis of deep 
learning. In particular, in this third edition, the explanations and example codes are based on the new 
TensorFlow 2.x version, which has seen the incorporation of Keras and a complete upheaval in the modules 
and implementation paradigms.

 Artificial Intelligence, Machine Learning, and Deep Learning
For anyone dealing with the world of data analysis, these three terms are ultimately very common on the 
web, in text, and on seminars related to the subject. But what is the relationship between them? And what do 
they really consist of?

In this section you read detailed definitions of these three terms. You discover how in recent decades, 
the need to create more and more elaborate algorithms, and to be able to make predictions and classify data 
more and more efficiently, has led to machine learning. Then you discover how, thanks to new technological 
innovations, and in particular to the computing power achieved by the GPU, deep learning techniques have 
been developed based on neural networks.

 Artificial Intelligence
The term artificial intelligence was first used by John McCarthy in 1956, at a time full of great hope and 
enthusiasm for the technology world. They were at the dawn of electronics and computers as large as whole 
rooms that could do a few simple calculations, but they did so efficiently and quickly compared to humans. 
They had glimpsed possible future developments of electronic intelligence.

But without going into the world of science fiction, the current definition best suited to artificial 
intelligence, often referred to as AI, can be summarized briefly with the following sentence:

Automatic processing on a computer capable of performing operations that would seem to 
be exclusively relevant to human intelligence.
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Hence the concept of artificial intelligence is a variable concept that varies with the progress of the 
machines themselves and with the concept of “exclusive human relevance.” While in the 60s and 70s, we saw 
artificial intelligence as the ability of computers to perform calculations and find mathematical solutions 
of complex problems “of exclusive relevance of great scientists,” in the 80s and 90s, AI matured in its ability 
to assess risks, resources, and make decisions. In the year 2000, with the continuous growth of computer 
computing potential, the possibility of these systems to learn with machine learning was added to the 
definition.

Finally, in the last few years, the concept of artificial intelligence has focused on visual and auditory 
recognition operations, which until recently were thought of as “exclusive human relevance.”

These operations include:

• Image recognition

• Object detection

• Object segmentation

• Language translation

• Natural language understanding

• Speech recognition

These problems are still under study, thanks to deep learning techniques.

 Machine Learning Is a Branch of Artificial Intelligence
In the previous chapter you saw machine learning in detail, with many examples of the different techniques 
for classifying or predicting data.

Machine learning (ML), with all its techniques and algorithms, is a large branch of artificial intelligence. 
In fact, you refer to it, while remaining within the ambit of artificial intelligence, when you use systems that 
are able to learn (learning systems) to solve various problems that shortly before had been “considered 
exclusive to humans.”

 Deep Learning Is a Branch of Machine Learning
Within the machine learning techniques, a further subclass can be defined, called deep learning. You saw in 
Chapter 8 that machine learning uses systems that can learn, and this can be done through features inside 
the system (often parameters of a fixed model) that are modified in response to input data intended for 
learning (the training set).

Deep learning techniques take a step forward. In fact, deep learning systems are structured so as not to 
have these intrinsic characteristics in the model, but these characteristics are extracted and detected by the 
system automatically as a result of learning itself. Among these systems that can do this, this chapter refers in 
particular to artificial neural networks.

 The Relationship Between Artificial Intelligence, Machine Learning, 
and Deep Learning
To sum up, in this section you have seen that machine learning and deep learning are actually subclasses of 
artificial intelligence. Figure 9-1 shows a schematization of classes in this relationship.
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Figure 9-1. Schematization of the relationship between artificial intelligence, machine learning, and deep 
learning

 Deep Learning
In this section, you learn about some significant factors that led to the development of deep learning and see 
how, in the last few years, there have been many steps forward.

 Neural Networks and GPUs
In the previous section, you learned that in the field of artificial intelligence, deep learning has become 
popular only in the last few years precisely to solve problems of visual and auditory recognition.

In the context of deep learning, a lot of calculation techniques and algorithms have been developed in 
recent years, making the most of the potential of the Python language. But the theory behind deep learning 
actually dates back many years. In fact, the concept of the neural network was introduced in 1943, and the 
first theoretical studies on artificial neural networks and their applications were developed in the 60s.

The fact is that only in recent years the neural networks, with the related deep learning techniques that 
use them, have proved useful to solve many problems of artificial intelligence. This is due to the fact that 
only now are there technologies that can be implemented in a useful and efficient way.

In fact, at the application level, deep learning requires very complex mathematical operations that 
require millions or even billions of parameters. The CPUs of the 90s, even if they were powerful, were not 
able to perform these kinds of operations efficiently. Even today, the calculation with the CPUs, although 
considerably improved, requires long processing times. This inefficiency is due to the particular architecture 
of the CPUs, which have been designed to efficiently perform mathematical operations not required by 
neural networks.

A new kind of hardware has developed in recent decades, the Graphics Processing Unit (GPU), thanks to 
the enormous commercial drive of the video game market. In fact, this type of processor has been designed 
to manage more and more efficient vector calculations, such as multiplications between matrices, which is 
necessary for 3D reality simulations and rendering.

Thanks to this technological innovation, many deep learning techniques have been realized. In fact, to 
realize the neural networks and their learning, tensors (multidimensional matrices) are used, carrying out 
many mathematical operations. It is precisely this kind of work that GPUs can do more efficiently. Thanks to 
their contribution, the processing speed of deep learning is increased by several orders of magnitude (days 
instead of months).

Chapter 9 ■ Deep Learning with tensorFLow



292

 Data Availability: Open Data Source, Internet of Things, and Big Data
Another very important factor affecting the development of deep learning is the huge amount of data that 
can be accessed. In fact, the data are the fundamental ingredient for the functioning of neural networks, 
both for the learning phase and for the verification phase.

Thanks to the spread of the Internet all over the world, now everyone can access and produce data. 
While a few years ago only a few organizations were providing data for analysis, today, thanks to the IoT 
(Internet of Things), many sensors and devices acquire data and make them available on networks. Not only 
that, even social networks and search engines (like Facebook, Google, and so on) can collect huge amounts 
of data, analyzing in real time millions of users connected to their services (called Big Data).

Today a lot of data related to the problems you want to solve with the deep learning techniques are 
easily available, many of them in free form (as open data source).

 Python
Another factor that contributed to the great success and diffusion of deep learning techniques was the 
Python programming language.

In the past, planning neural network systems was very complex. The only language able to carry out 
this task was C ++, a very complex language, difficult to use and known only to a few specialists. Moreover, 
in order to work with the GPU (necessary for this type of calculation), it was necessary to know CUDA 
(Compute Unified Device Architecture), the hardware development architecture of NVIDIA graphics cards 
with all their technical specifications.

Today, thanks to Python, the programming of neural networks and deep learning techniques has 
become high level. In fact, programmers no longer have to think about the architecture and the technical 
specifications of the graphics card (GPU), but can focus exclusively on the part related to deep learning. 
Moreover, the characteristics of the Python language enable programmers to develop simple and intuitive 
code. You have already tried this with machine learning in the previous chapter, and the same applies to 
deep learning.

 Deep Learning Python Frameworks
Over the past two years, many developer organizations and communities have been developing Python 
frameworks that are greatly simplifying the calculation and application of deep learning techniques. There is 
a lot of excitement about it, and many of these libraries perform the same operations almost competitively, 
but each of them is based on different internal mechanisms.

Among these frameworks available today for free, it is worth mentioning some that are gaining some 
success.

• TensorFlow is an open source library for numerical calculation that bases its use on 
data flow graphs. These are graphs where the nodes represent the mathematical 
operations and the edges represent tensors (multidimensional data arrays). Its 
architecture is very flexible and can distribute the calculations on multiple CPUs and 
on multiple GPUs.

• Caffe2 is a framework developed to provide an easy and simple way to work on deep 
learning. It allows you to test model and algorithm calculations using the power of 
GPUs in the cloud.

• PyTorch is a scientific framework completely based on the use of GPUs. It works in a 
highly efficient way and was recently developed and is still not well consolidated. It is 
still proving a powerful tool for scientific research.

Chapter 9 ■ Deep Learning with tensorFLow



293

• Theano is the most used Python library in the scientific field for the development, 
definition, and evaluation of mathematical expressions and physical models. 
Unfortunately, the development team announced that new versions will no longer 
be released. However, it remains a reference framework thanks to the number of 
programs developed with this library, both in literature and on the web.

 Artificial Neural Networks
Artificial neural networks are a fundamental element for deep learning and their use is the basis of many, if 
not almost all, deep learning techniques. In fact, these systems can learn, thanks to their particular structure 
that refers to the biological neural circuits.

In this section, you see in more detail what artificial neural networks are and how they are structured.

 How Artificial Neural Networks Are Structured
Artificial neural networks are complex structures created by connecting simple basic components that are 
repeated in the structure. Depending on the number of these basic components and the type of connections, 
more and more complex networks will be formed, with different architectures, each of which will present 
peculiar characteristics regarding the ability to learn and solve different problems of deep learning.

Figure 9-2 shows an example of how a generic artificial neural network is structured.

Figure 9-2. A schematization of how a generic artificial neural network is structured

The basic units are called nodes (the darker circles shown in Figure 9-2), which in the biological model 
simulate the functioning of a neuron within a neural network. These artificial neurons perform very simple 
operations, similar to their biological counterparts. They are activated when the total sum of the input 
signals they receive exceeds an activation threshold.

These nodes can transmit signals between them by means of connections, called edges, which simulate 
the functioning of biological synapses (the arrows shown in Figure 9-2). Through these edges, the signals 
sent by a neuron pass to the next one, behaving as a filter. That is, an edge converts the output message 
from a neuron, into an inhibitory or excitant signal, decreasing or increasing its intensity, according to 
preestablished rules (a different weight is generally applied for each edge).
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The neural network has a certain number of nodes used to receive the input signal from the outside 
(see Figure 9-2). This first group of nodes is usually represented in a column at the far left end of the 
neural network schema. This group of nodes represents the first layer of the neural network (input layer). 
Depending on the input signals received, some (or all) of these neurons will be activated by processing the 
received signal and transmitting the result as output to another group of neurons, through edges.

This second group is in an intermediate position in the neural network, and it is called the hidden layer. 
This is because the neurons of this group do not communicate with the outside, neither in input nor in 
output, and are therefore hidden. As you can see in Figure 9-2, each of these neurons has lots of incoming 
edges, often with all the neurons of the previous layer. Even these hidden neurons will be activated whether 
the total incoming signal will exceed a certain threshold. If affirmative, they will process the signal and 
transmit it to another group of neurons (in the right direction of the scheme shown in Figure 9-2). This group 
can be another hidden layer or the output layer, that is, the last layer that will send the results directly to the 
outside.

In general, you have a flow of data that will enter the neural network (from left to right), will be 
processed in a more or less complex way depending on the structure, and will produce an output result.

The behavior, capabilities, and efficiency of a neural network will depend exclusively on how the nodes 
are connected and the total number of layers and neurons assigned to each of them. All these factors define 
the neural network architecture.

 Single Layer Perceptron (SLP)
The Single Layer Perceptron (SLP) is the simplest neural network model and was designed by Frank 
Rosenblatt in 1958. Its architecture is represented in Figure 9-3.

Figure 9-3. The Single Layer Perceptron (SLP) architecture

The Single Layer Perceptron (SLP) structure is very simple; it is a two-layer neural network, without 
hidden layers, in which a number of input neurons send signals to an output neuron through different 
connections, each with its own weight. Figure 9-4 shows in more detail the inner workings of this type of 
neural network.

Chapter 9 ■ Deep Learning with tensorFLow



295

Figure 9-4. A more detailed Single Layer Perceptron (SLP) representation with the internal operation 
expressed mathematically

The edges of this structure are represented in this mathematic model by means of a weight vector 
consisting of the local memory of the neuron.
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The output neuron receives an input vector signals, xi, each coming from a different neuron.
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This is the simplest activation function (see function A in Figure 9-5), but you can also use other more 
complex ones, such as the sigmoid (see function D in Figure 9-5).
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Figure 9-5. Some examples of activation functions

Now that you’ve seen the structure of the SLP neural network, you can now see how they can learn.
The learning procedure of a neural network, called the learning phase, works iteratively. That is, a 

predetermined number of cycles of operation of the neural network are carried out. The weights of the wi 
synapses are slightly modified in each cycle. Each learning cycle is called an epoch. In order to carry out 
the learning, you have to use appropriate input data, called the training sets (you have already used them in 
depth in Chapter 8).

In the training sets, for each input value, the expected output value is obtained. By comparing the 
output values produced by the neural network with the expected ones, you can analyze the differences 
and modify the weight values, and you can also reduce them. In practice this is done by minimizing a 
cost function (loss) that is specific of the problem of deep learning. In fact, the weights of the different 
connections are modified for each epoch in order to minimize the cost (loss).

In conclusion, supervised learning is applied to neural networks.
At the end of the learning phase, you pass to the evaluation phase, in which the learned SLP perceptron 

must analyze another set of inputs (test set) whose results are also known here. By evaluating the differences 
between the obtained and expected values, the degree of ability of the neural network to solve the problem 
of deep learning will be known. Often the percentage of cases guessed compared to the wrong ones is used 
to indicate this value, and it is called accuracy.

 Multilayer Perceptron (MLP)
A more complex and efficient architecture is Multilayer Perceptron (MLP). In this structure, there are one or 
more hidden layers interposed between the input layer and the output layer. The architecture is represented 
in Figure 9-6.
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Figure 9-6. The Multilayer Perceptron (MLP) architecture

At the end of the learning phase, you pass to the evaluation phase, in which the learned SLP perceptron 
must analyze another set of inputs (test set) whose results are also known here. By evaluating the differences 
between the obtained and expected values, the degree of ability of the neural network to solve the problem 
of deep learning will be known. Often, the percentage of cases guessed compared to the wrong ones is used 
to indicate this value, and it is called accuracy.

Although more complex, the models of MLP neural networks are based primarily on the same concepts 
as the models of the SLP neural networks. Even in MLPs, weights are assigned to each connection. These 
weights must be minimized based on the evaluation of a training set, much like the SLPs. Here, too, each 
node must process all incoming signals through an activation function, even if this time the presence of 
several hidden layers makes the neural network capable of learning more, adapting more effectively to the 
type of problem deep learning is trying to solve.

On the other hand, from a practical point of view, the greater complexity of this system requires more 
complex algorithms both for the learning phase and for the evaluation phase. One of these is the back 
propagation algorithm, which is used to effectively modify the weights of the various connections to minimize 
the cost function, in order to converge the output values quickly and progressively with the expected ones.

Other algorithms are used specifically for the minimization phase of the cost (or error) function and are 
generally referred to as gradient descent techniques.

The study and detailed analysis of these algorithms is outside the scope of this text, which has only an 
introductory function of the argument, with the goal of trying to keep the topic of deep learning as simple 
and clear as possible. If you are so inclined, I suggest you go deeper into the subject, both in various books 
and on the Internet.

 Correspondence Between Artificial and Biological Neural Networks
So far you have seen how deep learning uses basic structures, called artificial neural networks, to simulate 
the functioning of the human brain, particularly in the way it processes information.

There is also a real correspondence between the two systems at the highest reading level. In fact, you’ve 
just seen that neural networks have structures based on layers of neurons. The first layer processes the 
incoming signal, then passes it to the next layer, which in turn processes it and so on, until it reaches a final 
result. For each layer of neurons, incoming information is processed in a certain way, generating different 
levels of representation of the same information.
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In fact, the whole operation of elaboration of an artificial neural network is nothing more than the 
transformation of information to ever more abstract levels.

This functioning is identical to what happens in the cerebral cortex. For example, when the eye receives 
an image, the image signal passes through various processing stages (such as the layers of the neural 
network), in which, for example, the contours of the figures are first detected (edge detection), then the 
geometric shape (form perception), and then to the recognition of the nature of the object with its name. 
Therefore, there has been a transformation at different levels of conceptuality of an incoming information, 
passing from an image, to lines, to geometrical figures, to arrive at a word.

 TensorFlow
In a previous section of this chapter, you saw that there are several frameworks in Python that allow you 
to develop projects for deep learning. One of these is TensorFlow. In this section, you learn know in detail 
about this framework, including how it works and how it is used to realize neural networks for deep learning.

 TensorFlow: Google’s Framework
TensorFlow (www.tensorflow.org) is a library developed by the Google Brain Team, a group of Machine 
Learning Intelligence, a research organization headed by Google.

The purpose of this library is to have an excellent tool in the field of research for machine learning and 
deep learning.

The first version of TensorFlow was released by Google in February 2017, and in a year and a half, 
many updates have been released, in which the potential, stability, and usability of this library are greatly 
increased. This is mainly thanks to the large number of users among professionals and researchers who 
are fully using this framework. At the present time, TensorFlow is already a consolidated deep learning 
framework, rich in documentation, tutorials, and projects available on the Internet.

In addition to the main package, there are many other libraries that have been released over time, 
including:

• TensorBoard—A kit that allows the visualization of internal graphs of TensorFlow 
(https://github.com/tensorflow/tensorboard).

• TensorFlow Fold—Produces beautiful dynamic calculation charts (https://github.
com/tensorflow/fold)

• TensorFlow Transform—Creates and manages input data pipelines (https://
github.com/tensorflow/transform)

 TensorFlow: Data Flow Graph
TensorFlow (www.tensorflow.org) is a library developed by the Google Brain Team, a group of Machine 
Learning Intelligence, a research organization headed by Google.

TensorFlow is based entirely on the structuring and use of graphs and on the flow of data through them, 
exploiting them in such a way as to make mathematical calculations.

The graph created internally in the TensorFlow runtime system is called Data Flow Graph and it is 
structured in runtime according to the mathematical model that is the basis of the calculation you want to 
perform. In fact, Tensor Flow allows you to define any mathematical model through a series of instructions 
implemented in the code. TensorFlow will take care of translating that model into the Data Flow Graph 
internally.
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When you go to model your deep learning neural network, it will be translated into a Data Flow Graph. 
Given the great similarity between the structure of neural networks and the mathematical representation of 
graphs, it is easy to understand why this library is excellent for developing deep learning projects.

TensorFlow is not limited to deep learning and can be used to represent artificial neural networks. 
Many other methods of calculation and analysis can be implemented with this library, since any physical 
system can be represented with a mathematical model. In fact, this library can also be used to implement 
other machine learning techniques, for the study of complex physical systems through the calculation of 
partial differentials, and so on.

The nodes of the Data Flow Graph represent mathematical operations, while the edges of the graph 
represent tensors (multidimensional data arrays). The name TensorFlow derives from the fact that these 
tensors represent the flow of data through graphs, which can be used to model artificial neural networks.

 Start Programming with TensorFlow
Now that you have seen in general what the TensorFlow framework consists of, you can start working with 
this library. In this section, you see how to install this framework, understand the differences between the 
old 1.x version and the new one, and the key features of the latter.

 TensorFlow 2.x vs TensorFlow 1.x
As anticipated at the beginning of the chapter, in this third edition, the text and example code related to 
the use of TensorFlow for deep learning have been completely rewritten. This is because the new version of 
TensorFlow 2.x has been introduced since 2019. There are many changes that have been made. Many of the 
modules present in the TensorFlow 1.x release have been removed or moved. Keras has been completely 
incorporated as a neural network management module, and therefore most of the previous programming 
mechanisms and paradigms (for example, those present in the second edition with TensorFlow 1.x) are no 
longer compatible.

Given the large amount of programs developed in recent years with TensorFlow 1.x, it’s important 
that these programs continued to compatible, and therefore usable. Rushing to address this issue, Google 
enabled a way to continue using the old code without having to rewrite much.

At the beginning of the code, you simply replace the classic import line:

import tensorflow as tf

with the following line:

import tensorflow.compat.v1 as tf

This replacement should guarantee in most cases the perfect execution of code developed with 
TensorFlow 1.x, even if your current version is TensorFlow 2.x.

As for present projects, if you are about to develop a new deep learning project with TensorFlow, the 
only reasonable path is to follow the TensorFlow 2.x paradigms. That’s why this chapter only mentions this 
latest version, without transcribing the old code.
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 Installing TensorFlow
Before starting work, you need to install this library on your computer.

If the TensorFlow library is already installed, it’s useful to determine which version is present, especially 
regarding the differences between TensorFlow 1.x and TensorFlow 2.x. You can easily find that out by 
opening a Python session and inserting the following lines of code:

import tensorflow as tf
tf.__version__

If the 1.x version is present, the best thing to do is create a new virtual environment on which to install 
the 2.x version without compromising the configuration of modules installed on your system. If the library 
is not present on your system, you can easily install TensorFlow 2.x. As in the previous chapters, the optimal 
solution is to have the Anaconda platform and graphically install the TensorFlow package from Navigator. If 
you prefer to use the command line, still on Anaconda, you can enter the following:

conda install tensorflow

If, on the other hand, you don’t have (or don’t want) the Anaconda platform, you can safely install 
TensorFlow via PyPI.

pip install tensorflow

 ■ Note at the time of this writing, i found some incompatibility issues in anaconda between tensorFlow and 
other libraries for virtual environments based on python 3.10 and 3.11. i then created a virtual environment with 
python 3.9 and didn't encounter any problems.

 Programming with the Jupyter Notebook
Once TensorFlow is installed, you can start programming with this library. The examples in this chapter use 
Jupyter Notebook, but you can do the same things by opening a normal Python session.

With the latest versions of TensorFlow, the demand for resources becomes more and more 
preponderant. Deep learning with applications like IPython and Jupyter Notebook may not be possible 
without proper precautions. So in this case it is necessary to add the following lines of code in the first cell of 
the Notebook before starting to work (also in IPython):

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

In particular, by varying this environment variable, the OpenMP API active in the system on which you 
are operating is informed not to create problems if another instance of it is created (a case that leads to the 
crash of Jupyter Notebook).

 Tensors
The basic element of the TensorFlow library is the tensor. In fact, the data that follow the flow within the Data 
Flow Graph are tensors (see Figure 9-7).
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Figure 9-7. Some representations of the tensors according to the different dimensions

A tensor is identified by three parameters:

• rank—Dimension of the tensor (a matrix has rank 2, a vector has rank 1)

• shape—Number of rows and columns (e.g., (3.3) is a 3x3 matrix)

• type—The type of tensor elements

type of tensor elements and columns (eg (3.3) is a 3x3 matrix)has rank 2, a vector has 
rank 1)s ic

Tensors are nothing more than multidimensional arrays. In previous chapters, you saw how easy it is to 
get them, thanks to the NumPy library. You can start by defining one with this library.

import numpy as np
t = np.arange(9).reshape((3,3))
t
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
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You can convert this multidimensional array into a TensorFlow tensor very easily, thanks to the tf.
convert_to_tensor() function, which takes as a parameter the array to convert.

tensor = tf.convert_to_tensor(t)
tensor
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=int64, numpy=
    array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])>

During the conversion from array to tensor, it is also possible to change the data type. In this case, 
you add the second optional parameter dtyle, specifying the new data type. For example, if you wanted to 
convert the integer input into floating numbers, you would write:

tensor2 = tf.convert_to_tensor(t, dtype='float64')
tensor2
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float64, numpy=
array([[0., 1., 2.],
           [3., 4., 5.],
           [6., 7., 8.]])>

As you can see, you have a tensor containing the same values and the dimensions as the 
multidimensional array defined with NumPy. This approach is very useful for calculating deep learning, 
since many input values are in the form of NumPy arrays.

But tensors can be built directly from TensorFlow, without using the NumPy library. There are a 
number of functions that make it possible to enhance the tensors quickly and easily.

For example, if you want to initialize a tensor with all 0 values, you can use the tf.zeros() method.

t0 = tf.zeros((3,3),'float64')
t0
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float64, numpy=
array([[0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.]])>

Likewise, if you want a tensor with all values of 1, you use the tf.ones() method.

t1 = tf.ones((3,3),'float64')
t1
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float64, numpy=
array([[1., 1., 1.],
           [1., 1., 1.],
           [1., 1., 1.]])>

Finally, it is also possible to create a tensor containing random values, which follow a uniform 
distribution (all the values within a range are equally likely to exist), thanks to the tf.random_uniform() 
function.
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For example, if you want a 3x3 tensor with float values between 0 and 1, you can write:

trand = tf.random.uniform((3, 3), minval=0, maxval=1, dtype=tf.float32)
trand
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.99075377, 0.7289959 , 0.6183866 ],
           [0.51800334, 0.49188066, 0.01087034],
           [0.21716583, 0.29331267, 0.91550064]], dtype=float32)>

It can often be useful to create a tensor containing values that follow a normal distribution with a choice 
of mean and standard deviation. You can do this with the tf.random_normal() function.

For example, if you want to create a tensor of 3x3 size with mean of 0 and standard deviation of 3, you 
will write:

tnorm = tf.random.normal((3, 3), mean=0, stddev=3)
tnorm
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[-1.2079163 , -0.88857937, 5.041537 ],
           [-3.7309105 , 3.157123 , -3.4958515 ],
           [ 4.219907 , 1.7997034 , -5.020906 ]], dtype=float32)>

 Loading Data Into a Tensor from a pandas Dataframe
So far you’ve seen how to manually define the data within a tensor, or how to convert a NumPy array to 
a tensor. But a much more common operation in data analysis is having to insert the data present in a 
dataframe into a tensor. In fact, dataframes are one of the most commonly used formats during the data 
analysis process in Python. As you will see now, this operation is very simple in TensorFlow.

First import the pandas library into your Notebook.

import pandas as pd

Now define a simple dataframe as a basic example.

df = pd.DataFrame(np.array([[1, 2, 3],
                           [4, 5, 6],
                           [7, 8, 9]]),
                   columns=['a', 'b', 'c'])
df

For the output, you will get a dataframe like the one shown in Figure 9-8.
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Figure 9-8. A simple example of a pandas dataframe

To convert the data inside the dataframe into a tensor, you can use the tf.convert_to_tensor() 
function that you used previously. This in fact also accepts a pandas dataframe as an argument.

tensor_df = tf.convert_to_tensor(df)
tensor_df
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=int64, numpy=
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])>

As you can see from the result, the conversion was very easy. Rarely, however, will you have to load 
all the data present within a dataframe, but rather the values of one or more columns. So you will use 
the following form more often, making a selection of the columns (or data) that interest you within the 
dataframe.

tensor_df = tf.convert_to_tensor(df[['a','b']])
tensor_df

Out[ ]:
<tf.Tensor: shape=(3, 2), dtype=int64, numpy=
array([[1, 2],
       [4, 5],
       [7, 8]])>

 Loading Data in a Tensor from a CSV File
Another format in which the data to be analyzed is often available is within files, especially CSV files. Also in 
this case the data of a CSV file can be loaded into a tensor using pandas. In fact, the pandas library provides 
many functions for loading data contained in CSV files (and other formats) within the dataframe. These can 
then be converted into tensors using the procedure seen earlier with the tf.convert_to_tensor() function.

For example, you can load the data present in the training_data.csv file containing the training 
data that you will use in the following examples of the chapter during the development and study of some 
models. To do this, you use the pandas function called read_csv().

df = pd.read_csv('training_data.csv')
df
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By loading the data contained in the CSV, you will obtain as a result a dataframe like the one shown in 
Figure 9-9.

Figure 9-9. The pandas dataframe containing the training dataset

The training dataset contained in the dataframe is composed of three columns. The first two represent 
the X,Y coordinates of the points on a Cartesian plane, while the third column contains the labels, that is, 
the classes to which the correlated points belong. As you learned for machine learning (Chapter 8), training 
datasets are composed of two parts—the features and the labels. The same rule applies to deep learning, 
and therefore you have to extract two distinct tensors from the dataframe, one for the features and one for 
the labels.

df_features = df.copy()
df_labels = df_features.pop('label')
data_features = tf.convert_to_tensor(df_features)
data_features
Out [ ]:
<tf.Tensor: shape=(11, 2), dtype=float64, numpy=
array([[1. , 3. ],
       [1. , 2. ],
       [1. , 1.5],
       [1.5, 2. ],
       [2. , 3. ],
       [2.5, 1.5],
       [2. , 1. ],
       [3. , 1. ],
       [3. , 2. ],
       [3.5, 1. ],
       [3.5, 3. ]])>
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Run the same operation for the tensor of the labels.

data_labels = tf.convert_to_tensor(df_labels)
data_labels
Out [ ]:
<tf.Tensor: shape=(11,), dtype=int32, numpy=array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])>

Using the tf.conver_to_tensor() function, you now have two tensors: one for the features containing 
the X,Y coordinates of the points and one for the labels containing the classes to which the points belong.

 Operation on Tensors
Once the tensors have been defined, it will be necessary to carry out operations on them. Most mathematical 
calculations on tensors are based on the sum and multiplication between tensors.

Define two tensors, t1 and t2, that you will use to perform the operations between tensors.

t1 = tf.random.uniform((3, 3), minval=0, maxval=1, dtype=tf.float32)
t1
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.29003692, 0.92972696, 0.41073143],
           [0.46694946, 0.46367037, 0.11636639],
           [0.31574678, 0.70260215, 0.0642364 ]], dtype=float32)>

t2 = tf.random.uniform((3, 3), minval=0, maxval=1, dtype=tf.float32)
t2
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.23392928, 0.7185135 , 0.64518535],
           [0.6719583 , 0.7983806 , 0.10201716],
           [0.92533255, 0.32889807, 0.4179113 ]], dtype=float32)>

To sum these two tensors, you use the tf.add() function. To perform multiplication, you use the tf.
matmul() function.

sum = tf.add(t1,t2)
sum
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.5239662 , 1.6482404 , 1.0559168 ],
           [1.1389078 , 1.262051 , 0.21838355],
           [1.2410793 , 1.0315002 , 0.4821477 ]], dtype=float32)>

mul = tf.matmul(t1,t2)
mul
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1.0726491 , 1.0857601 , 0.453625 ],
         [0.5284779 , 0.7439676 , 0.39720213],
         [0.6054218 , 0.8089395 , 0.3022378 ]], dtype=float32)>
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Another very common operation with tensors is the calculation of the determinant. TensorFlow 
provides the tf.linalg.det() method for this purpose:

det = tf.linalg.det(t1)
det
Out [ ]:
<tf.Tensor: shape=(), dtype=float32, numpy=0.06581897>

The new tf.linalg module (introduced in TensorFlow 2.x) contains, in addition to the determinant 
calculation, many other algebraic operations on matrices, which are very useful during tensor calculations. 
These functions, along with the basic operations, allow you to implement many mathematical expressions 
that use tensors.

 Developing a Deep Learning Model with TensorFlow
Once you have seen the tensors that are the basis of the data to be used in TensorFlow, you can proceed 
further, analyzing in brief the fundamental steps to create a deep learning model with neural networks and 
its training and testing phases with TensorFlow 2.x. Those steps are as follows:

 – Definition of tensors (training and testing sets)

 – Model building

 – Model compiling

 – Model training

 – Model testing

 – Predictions making

You learned about the first part, the one related to the preparation of tensors from the training and 
testing datasets, in the previous section. The next section covers model building.

 Model Building
Regarding the construction of the model based on a neural network, you must define how the layers 
will be configured. As you saw in the first part of the chapter, each neural network is composed of one or 
more layers of neurons. With TensorFlow 2.x, it is not necessary to define each neuron and the individual 
connections that compose the network. But you can use one of the layers that’s predefined in Keras.

For example:

tf.keras.layers.Dense

This corresponds to a layer of neurons where all the connections are made with the adjacent layer of 
neurons, called a “regular densely-connected NN layer.”

Another widely used layer is as follows:

tf.keras.layers.Flatten

This layer is typically used at the beginning of the neural network, when the feature dataset is not one-
dimensional. This allows you to flatten the data, making them single-dimensional and thus usable by the 
subsequent layers of the neural network.

Chapter 9 ■ Deep Learning with tensorFLow



308

To better understand, if you wanted to submit an image to a neural network, this would be composed 
of (nxn) pixels and therefore would be two-dimensional. Inserting a Flatten layer would make this training 
dataset one-dimensional.

Another widely used layer is as follows:

tf.keras.layers.Normalization

This layer, like the previous one, is also placed as the first layer of the neural network and is used to 
normalize the input data. This practice is very common in machine learning, making the data more easily 
actionable.

Therefore, thanks to the integration of Keras in TensorFlow 2.x, the building of the model can have 
many predefined layers, with a whole series of learning parameters inside that will vary during the training 
phase. These are already defined and therefore the model building operation is much easier.

In fact, to build a simple neural network like the ones you saw at the beginning of the chapter, it is 
sufficient to define tf.keras.Sequential() with the various predefined layers inside, in the order of 
construction.

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape(128,128)),
    tf.keras.layers.Dense(128),
    tf.keras.layers.Dense(12)
])

The model just described therefore represents a two-layer neural network (without hidden layers) in 
which two-dimensional tensors, such as 128x128 pixel images, are made one-dimensional in the first layer, 
to then be passed to the first layer composed of 128 neurons. These in turn are connected to another layer of 
12 neurons, which will probably correspond to 12 classes of belonging (as you will see later).

 Model Compiling
Now that a model has been defined, it is necessary to compile it. This second step requires the choice of 
functions and training parameters:

 – Loss function: Measures how accurate the model has to be during the training phase.

 – Optimizer: Takes care of how and which parameters should be updated during the 
training phase.

 – Metrics: The parameters used to monitor the progress of the training (and testing) 
of the model.

All these elements are already available within the Keras module, thus already providing a set of tools 
ready to use in a model.

Thus, compiling the model is reduced to a simple compile() function, in which these three elements 
are defined as arguments.

model.compile( optimizer = 'adam',
                loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
               metrics = ['accuracy']
)
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As you can see, in the new version of TensorFlow 2.x, the construction of a model and its compilation 
are very fast and high-level operations, contrary to the previous version, which required the detailed 
definition of most of these elements.

 Model Training and Testing
Now that the model is compiled, you can move on to training and testing it. For these two phases, a dataset 
is used in which there are features (a series of variables that describe the subject under study) and labels (the 
solutions such as, for example, the classes to which they belong). This is very similar to what you saw with 
machine learning in the previous chapter (Chapter 8). The dataset is divided into a training dataset and a 
testing dataset, with the former being much larger.

Each feature is then subdivided into two tensors, until four tensors are obtained:

 – train_features

 – train_labels

 – test_features

 – test_labels

The first two tensors are used for model learning, using the fit() function.

model.fit(train_features, train_labels, epochs=100)

The number of epochs is the third parameter, which is the number of times the learning phase is 
performed. At each of these stages, the accuracy metrics should improve, thus signaling successful model 
learning. Once done, you need to have an educated model ready for testing. Here, you use the other 
two tensors (test_features and test_labels) to evaluate the model’s ability to make predictions. The 
difference between these and the values contained in test_labels will provide the accuracy of these 
predictions.

For the testing phase, the evaluate() function is used.

test_loss, test_acc = model.evaluate( test_features, test_labels, verbose=2)

This function returns the loss and accuracy of the model as values.

 Prediction Making
The last phase submits the model to the purpose for which it was created, making predictions on input data 
whose solution you do not know (for example, the class it belongs to).

During this phase, an additional layer is often added to the model, called Softmax. This is placed at the 
end of the neural network and is used to convert the output of the last layer (logits) into probability values. In 
this case, it is not necessary to recompile the newly trained model again, but this can be extended by adding 
this layer at the end. You have thus defined a new extended model.

probability_model = tf.keras.Sequential([
       model,
       tf.keras.layers.Softmax()
])
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To complete the deep learning steps, the model makes predictions from data whose solutions you do 
not know. You create a new tensor and submit it to the predict() function.

predictions = probability_model.predict(samples_features)

An array with all predictions divided by the percentage is obtained as the returned value. It can be used 
to obtain the class to which it belongs.

np.argmax(prediction[i])

i is the ith element of the dataset.

 Practical Examples with TensorFlow 2.x
At this point, in theory, you should have acquired enough basic knowledge to be able to start working with 
real examples. Let’s put into practice what you have seen so far with different types of neural networks.

 – Single Layer Perceptron (SLP)

 – Multilayer Neural Network with One Hidden Layer

 – Multilayer Neural Network with Two Hidden Layers

 Single Layer Perceptron with TensorFlow
To better understand how to develop neural networks with TensorFlow, you will begin to implement a Single 
Layer Perceptron (SLP) neural network that is as simple as possible. You will use the tools made available in 
the TensorFlow library. By using the concepts you learned during the chapter and gradually introducing new 
ones, you can implement a Single Layer Perceptron (SLP) neural network.

 Before Starting
Before starting, open a new Jupyter Notebook or shut down and start the kernel again. Once the session is 
open it imports all the necessary modules:

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

 Data To Be Analyzed
For the examples that you consider in this chapter, you will use a series of data that you used in Chapter 8, in 
particular in the section entitled “Support Vector Machines (SVMs).”

The set of data that you will study is a set of 11 points distributed in a Cartesian axis, divided into two 
classes of membership. The first six belong to the first class, the other five to the second. The coordinates (x, 
y) of the points are contained within a NumPy inputX array, while the class to which they belong is indicated 
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in inputY. This is a list of two-element arrays, with an element for each class they belong to. The value 1 in 
the first or second element indicates the class to which it belongs.

If the element has value [1.0], it will belong to the first class. If it has value [0,1], it belongs to the second 
class. The fact that they are floating point values   is due to the optimization calculation of deep learning. You 
will see later that the test results of the neural networks are floating numbers, indicating the probability that 
an element belongs to the first or second class.

Suppose, for example, that the neural network will give you the result of an element that will have the 
following values:

[0.910, 0.090]

This result will mean that the neural network considers that the element under analysis belongs 91 
percent to the first class and 9 percent to the second class. You will see this in practice at the end of the 
section, but it is important to explain the concept to better understand the purpose of some values.

Based on the values taken from the example of SVMs in Chapter 8, you can define the following values.

#Training set
inputX = np.array([[1.,3.],[1.,2.],[1.,1.5],
                   [1.5,2.],[2.,3.],[2.5,1.5],
                   [2.,1.],[3.,1.],[3.,2.],
                   [3.5,1.],[3.5,3.]])
inputY = [[1.,0.]]*6+ [[0.,1.]]*5
print(inputX)
print(inputY)
Out [ ]:
[[1.  3. ]
 [1.  2. ]
 [1.  1.5]
 [1.5 2. ]
 [2.  3. ]
 [2.5 1.5]
 [2.  1. ]
 [3.  1. ]
 [3.  2. ]
 [3.5 1. ]
 [3.5 3. ]]
[[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 
1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

In reality, you have already seen these values previously, when we talked about how to import data from 
a CSV file by converting it to a pandas dataframe. Here, you use the NumPy array version (the same one used 
for machine learning, in particular in the section about the Support Vector Machines technique) to give an 
additional version of the starting data to be converted into tensors. Feel free to choose the format you prefer 
for the initial datasets.

To better see how these points are arranged spatially and which classes they belong to, there is no better 
approach than to plot everything with matplotlib.

yc = [0]*5 + [1]*6
print(yc)
plt.scatter(inputX[:,0],inputX[:,1],c=yc, s=50, alpha=0.9)
plt.show()
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Out [ ]:
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

You will get the graph in Figure 9-8 as a result.

To help in the graphic representation (as shown in Figure 9-8) of the color assignment, the inputY array 
has been replaced with the yc array.

As you can see, the two classes are easily identifiable in two opposite regions. The first region covers 
the upper-left part, and the second region covers the lower-right part. All this would seem to be simply 
subdivided by an imaginary diagonal line, but to make the system more complex, there is an exception with 
the point 6 that is internal to the other points.

It will be interesting to see how and if the neural networks that you implement can correctly assign the 
class to points of this kind.

You then convert the values of the training arrays into tensors, as you have seen done previously.

train_features = tf.convert_to_tensor(inputX)
train_labels = tf.convert_to_tensor(inputY)
train_features
Out [ ]:
<tf.Tensor: shape=(11, 2), dtype=float64, numpy=
array([[1. , 3. ],
       [1. , 2. ],
       [1. , 1.5],
       [1.5, 2. ],
       [2. , 3. ],
       [2.5, 1.5],
       [2. , 1. ],
       [3. , 1. ],
       [3. , 2. ],
       [3.5, 1. ],
       [3.5, 3. ]])>

Figure 9-10. The training set is a set of Cartesian points divided into two classes of membership (light 
and dark)
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train_labels
Out [ ]:
<tf.Tensor: shape=(11, 2), dtype=float32, numpy=
array([[1., 0.],
       [1., 0.],
       [1., 0.],
       [1., 0.],
       [1., 0.],
       [1., 0.],
       [0., 1.],
       [0., 1.],
       [0., 1.],
       [0., 1.],
       [0., 1.]], dtype=float32)>

Now you can build the Single Layer Perceptron model based on the neural network in Figure 9-11, 
adding the various Keras layers to the model definition.

Figure 9-11. The Single Layer Perceptron model used in this example

model = tf.keras.Sequential([
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2)
])

As you can see, it is a very simple model, but more than sufficient for making predictions in simple 
cases such as the one in question.

Because this is a binary classification problem, you can choose BinaryCrossentropy as the function 
loss for the compilation.

model.compile(optimizer='SGD',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])
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Once the model is compiled, you can move on to training it. Choose 200 epochs, assuming more than 
enough time for the model to learn.

h = model.fit(train_features, train_labels, epochs=2000)
Out [ ]:
Epoch 1/2000
1/1 [==============================] - 1s 637ms/step - loss: 2.0271 - accuracy: 0.5455
Epoch 2/2000
1/1 [==============================] - 0s 4ms/step - loss: 1.9807 - accuracy: 0.5455
Epoch 3/2000
1/1 [==============================] - 0s 5ms/step - loss: 1.9356 - accuracy: 0.5455
Epoch 4/2000
1/1 [==============================] - 0s 9ms/step - loss: 1.8918 - accuracy: 0.5455
Epoch 5/2000
1/1 [==============================] - 0s 8ms/step - loss: 1.8493 - accuracy: 0.5455
Epoch 6/2000
1/1 [==============================] - 0s 6ms/step - loss: 1.8079 - accuracy: 0.5455
Epoch 7/2000
...

In the output, you will have all the learning situations epoch by epoch, through a scroll bar that shows 
the completion for each of them. The loss and accuracy value will then be shown next to each line of output.

However, it is clear that this output is not the easiest way to understand how this neural network model 
behaved during the learning phase. For this purpose, I have saved the output in the return value h (for 
history), which you can use for graphical visualizations that can help you.

Extract from the history variable the loss values corresponding to the various periods.

acc_set = h.history['loss']
epoch_set = h.epoch

Arrange these values in a plotting chart to see the learning progress graphically, thanks to the 
matplotlib library.

# return list of every 100th item in a larger list
plt.plot(epoch_set[0::100],acc_set[0::100], 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

As a result, you will obtain a graph similar to the one shown in Figure 9-12.
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Figure 9-12. The less value decreases during the learning phase (less optimization)

Now move on to the testing phase, defining the other two tensors.

testX = np.array([[1.,2.25],[1.25,3.],
                  [2,2.5],[2.25,2.75],
                  [2.5,3.],[2.,0.9],
                  [2.5,1.2],[3.,1.25],
                  [3.,1.5],[3.5,2.],
                  [3.5,2.5]])
testY = [[1.,0.]]*5 + [[0.,1.]]*6

test_features = tf.convert_to_tensor(testX)
test_labels = tf.convert_to_tensor(testY)

Evaluate the accuracy of the newly educated SLP model.

test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
Out [ ]:
1/1 - 0s - loss: 0.1812 - accuracy: 1.0000 - 233ms/epoch - 233ms/step

As you can see, the accuracy is at best, given the simplicity of the classification. So you can expect a very 
good level of prediction of the newly educated model.

Now move on to the proper classification, passing to the neural network a very large amount of data 
(points on the Cartesian plane) without knowing to which class they belong. This is, in fact, the moment that 
the neural network informs you about the possible classes.

To this end, the program simulates experimental data, creating points on the Cartesian plane that are 
completely random. For example, you can generate an array containing 1,000 random points.

exp_features = 3*np.random.random((1000,2))

Now you extend the model with Softmax to obtain an output of the probability of the different points 
belonging to the two classes.
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probability_model = tf.keras.Sequential([
    model,
    tf.keras.layers.Softmax()
])

Now make the predictions of the experimental data with the model you just extended.

predictions = probability_model.predict(exp_features)

Let’s determine the probability of a single point belonging to the two classes. For example, the first:

predictions[0]
Out [ ]:
array([0.073105 , 0.9268949], dtype=float32)

If, on the other hand, we want to know directly which of the two classes it belongs to, we write the 
following code obtaining the class it belongs to (0 for the first and 1 for the second):

np.argmax(predictions[0])
Out [ ]:
1

Instead of analyzing point by point in a textual way, there is a graphical way to visualize the result of 
these predictions. In the previous scatterplots, you classified the points on the Cartesian plane with two 
colors (yellow and purple). Now that you considered the probability of a point belonging to these two 
classes, for all intermediate probabilities, an intermediate color of the gradient will be displayed. It will fade 
from yellow to purple depending on how close it is to one of the two classes.

yc = predictions[:,1]
plt.scatter(exp_features[:,0],exp_features[:,1],c=yc, s=50, alpha=1)
plt.show()

Running the code, you will get a scatterplot like the one shown in Figure 9-13.

Figure 9-13. A scatterplot with all the experimental points and the estimate of the classes to which they belong
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As you can see according to the shades, two areas of classification are delimited on the plane, with a 
color gradient in the central part (green color) indicating the zones of uncertainty.

The classification results can be made more comprehensible and clearer by deciding to establish 
based them on the probability of the point belonging to one or the other class. If the probability of a point 
belonging to a class is greater than 0.5, it will belong to it.

You can modify the previous scatterplot by requiring that each point belong to one or another class, 
according to the most probable option.

yc = np.round(predictions[:,1])
plt.scatter(exp_features[:,0],exp_features[:,1],c=yc, s=50, alpha=1)
plt.show()

Running the code, you will get a scatterplot similar to the one shown in Figure 9-14.

Figure 9-14. The points delimit the two regions corresponding to the two classes

In the scatterplot shown in Figure 9-14, you can clearly see the two regions of the Cartesian plane that 
characterize the two classes of belonging.

 Multilayer Perceptron (with One Hidden Layer) with TensorFlow
In this section, you deal with the same problem as in the previous section, but using an MLP (Multilayer 
Perceptron) neural network.

Start a new Jupyter Notebook, or continue with the same one, but reset the kernel.
As you saw earlier in the chapter, an MLP neural network differs from an SLP neural network in that it 

can have one or more hidden layers.
To build this model, which compared to the previous one has a hidden layer of two neurons, you define 

a model similar to the previous one, but with an intermediate Dense layer.

model = tf.keras.Sequential([
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2)
])
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The next step is to compile the model, choosing an optimization method. For MLP neural networks, a 
good choice is the Adam optimization method. Instead, keep the loss function and the metrics unchanged.

model.compile(optimizer='Adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])

As with the previous SLP model, train it using the same training dataset.

h = model.fit(train_features, train_labels, epochs=2000)
Out [ ]:
Epoch 1/2000
1/1 [==============================] - 0s 426ms/step - loss: 1.8568 - accuracy: 0.4545
Epoch 2/2000
1/1 [==============================] - 0s 3ms/step - loss: 1.8473 - accuracy: 0.4545
Epoch 3/2000
1/1 [==============================] - 0s 3ms/step - loss: 1.8378 - accuracy: 0.4545
Epoch 4/2000
1/1 [==============================] - 0s 646us/step - loss: 1.8284 - accuracy: 0.4545
Epoch 5/2000
1/1 [==============================] - 0s 0s/step - loss: 1.8190 - accuracy: 0.4545
Epoch 6/2000
1/1 [==============================] - 0s 0s/step - loss: 1.8097 - accuracy: 0.4545
Epoch 7/2000
1/1 [==============================] - 0s 14ms/step - loss: 1.8004 - accuracy: 0.4545
Epoch 8/2000
...

Extract the training history and create the same graph showing the behavior of the model during the 
training process.

acc_set = h.history['loss']
epoch_set = h.epoch# return list of every 50th item in a larger list
plt.plot(epoch_set[0::50],acc_set[0::50], 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

Running the previous code, you will get a chart like the one shown in Figure 9-15.
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Figure 9-15. The learning curve of the MLP model shows two distinct optimization phases

As you can see, even a more complex neural network shows different stages of learning. In this case, the 
choice of 2,000 epochs was fundamental to obtain an increase in the forecasting capacity of the model. If you 
had stopped at 1,000 epochs, the loss would have been 0.7 instead of 0.2.

As the result of testing this last model, you get an accuracy of 100 percent and a loss value of 01.

test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
Out [ ]:
1/1 - 0s - loss: 0.1602 - accuracy: 1.0000 - 105ms/epoch - 105ms/step

 Multilayer Perceptron (with Two Hidden Layers) with TensorFlow
In this section, you extend the previous structure by adding two neurons to the first hidden layer (four in all) 
and adding a second hidden layer with two neurons.

As you did previously, start a new Jupyter Notebook and write the necessary code of the previous 
examples, or restart the kernel and execute the cells with the necessary code.

).
model = tf.keras.Sequential([
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(4),
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2)
])
model.compile(optimizer='Adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])
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Then train the new two hidden layer MLP model with the same training dataset you used previously.

h = model.fit(train_features, train_labels, epochs=2000)
Out [ ]:
Epoch 1/2000
1/1 [==============================] - 1s 826ms/step - loss: 0.6980 - accuracy: 0.4545
Epoch 2/2000
1/1 [==============================] - 0s 3ms/step - loss: 0.6970 - accuracy: 0.4545
Epoch 3/2000
1/1 [==============================] - 0s 3ms/step - loss: 0.6961 - accuracy: 0.4545
Epoch 4/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6953 - accuracy: 0.4545
Epoch 5/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6945 - accuracy: 0.4545
Epoch 6/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6938 - accuracy: 0.4545
Epoch 7/2000
1/1 [==============================] - 0s 3ms/step - loss: 0.6931 - accuracy: 0.4545
Epoch 8/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6925 - accuracy: 0.4545
...

Also for this model, you can analyze the learning phase of the neural network by displaying the loss 
values as the epochs increase in a chart.

acc_set = h.history['loss']
epoch_set = h.epoch
# return list of every 50th item in a larger list
plt.plot(epoch_set[0::50],acc_set[0::50], 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

Running the code, you will get a plot like the one in Figure 9-16.
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Figure 9-16. The trend of the loss during the learning phase for an MLP with two hidden layers

From what you can see in Figure 9-16, learning in this case is much faster than the previous case (at 
1,000 epochs, you would be fine).

test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
Out [ ]:
1/1 - 0s - loss: 0.0951 - accuracy: 1.0000 - 124ms/epoch - 124ms/step

The optimized loss is the best of those obtained so far, and only at 700 epochs (0.0951 versus 0.16 in the 
previous case, at 2,000 epochs). It is clear that adding the hidden layer of four neurons has made the model 
faster and more efficient.

 Conclusions
In this chapter, you learned about the branch of machine learning that uses neural networks as a computing 
structure, called deep learning. You read an overview of the basic concepts of deep learning, which involves 
neural networks and their structure. Finally, thanks to the TensorFlow library, you implemented different 
types of neural networks, such as Perceptron Single Layer and Perceptron Multilayer.

Deep learning, with all its techniques and algorithms, is a very complex subject, and it is practically 
impossible to treat it properly in one chapter. However, you have now become familiar with deep learning 
and can begin implementing more complex neural networks.
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