
149

CHAPTER 6

pandas in Depth: Data
Manipulation

In the previous chapter, you saw how to acquire data from data sources such as databases and files. Once
you have the data in the dataframe format, they are ready to be manipulated. It’s important to prepare the
data so that they can be more easily subjected to analysis and manipulation. Especially in preparation for the
next phase, the data must be ready for visualization.

This chapter goes in depth into the functionality that the pandas library offers for this stage of data
analysis. The three phases of data manipulation are treated individually, illustrating the various operations
with a series of examples and explaining how best to use the functions of this library to carry out such
operations. The three phases of data manipulation are:

• Data preparation

• Data transformation

• Data aggregation

 Data Preparation
Before you start manipulating data, it is necessary to prepare the data and assemble them in the form of data
structures so that they can be manipulated later with the tools made available by the pandas library. The
different procedures for data preparation are listed here.

• Loading

• Assembling

• Merging

• Concatenating

• Combining

• Reshaping (pivoting)

• Removing

© Fabio Nelli 2023
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-9532-8_6

https://doi.org/10.1007/978-1-4842-9532-8_6#DOI

150

The previous chapter covered loading. In the loading phase, there is also that part of the preparation
that concerns the conversion from many different formats into a data structure such as a dataframe. But
even after you have the data, probably from different sources and formats, and unified it into a dataframe,
you need to perform further operations of preparation. In this chapter, and in particular in this section, you
see how to perform all the operations necessary to get the data into a unified data structure.

The data contained in the pandas objects can be assembled in different ways:

• Merging—The pandas.merge() function connects the rows in a dataframe based on
one or more keys. This mode is very familiar to those who are confident with the SQL
language, since it also implements join operations.

• Concatenating—The pandas.concat() function concatenates the objects along
an axis.

• Combining—The pandas.DataFrame.combine_first() function allows you to
connect overlapped data in order to fill in missing values in a data structure by taking
data from another structure.

Furthermore, part of the preparation process is also pivoting, which consists of the exchange between
rows and columns.

 Merging
The merging operation, which corresponds to the JOIN operation for those who are familiar with SQL,
consists of a combination of data through the connection of rows using one or more keys.

In fact, anyone working with relational databases usually uses the JOIN query with SQL to get data from
different tables using some reference values (keys) shared between them. On the basis of these keys, it is
possible to obtain new data in a tabular form as the result of the combination of other tables. This operation
with the library pandas is called merging, and the merge() function performs this kind of operation.

First, you have to import the pandas library and define two dataframes that will serve as examples for
this section.

>>> import numpy as np
>>> import pandas as pd
>>> frame1 = pd.DataFrame({'id':['ball','pencil','pen','mug','ashtray'],
... 'price': [12.33,11.44,33.21,13.23,33.62]})
>>> frame1
 id price
0 ball 12.33
1 pencil 11.44
2 pen 33.21
3 mug 13.23
4 ashtray 33.62
>>> frame2 = pd.DataFrame({'id':['pencil','pencil','ball','pen'],
... 'color': ['white','red','red','black']})
>>> frame2
 color id
0 white pencil
1 red pencil
2 red ball
3 black pen

Chapter 6 ■ pandas in depth: data Manipulation

151

Carry out the merging by applying the merge() function to the two dataframe objects.

>>> pd.merge(frame1,frame2)
 id price color
0 ball 12.33 red
1 pencil 11.44 white
2 pencil 11.44 red
3 pen 33.21 black

As you can see from the result, the returned dataframe consists of all rows that have an ID in common.
In addition to the common column, the columns from the first and the second dataframe are added.

In this case, you used the merge() function without specifying any column explicitly. In fact, in most
cases you need to decide which column on which to base the merging.

To do this, add the on option with the column name as the key for the merging.

>>> frame1 = pd.DataFrame({'id':['ball','pencil','pen','mug','ashtray'],
... 'color': ['white','red','red','black','green'],
... 'brand': ['OMG','ABC','ABC','POD','POD']})
>>> frame1
 id color brand
0 ball white OMG
1 pencil red ABC
2 pen red ABC
3 mug black POD
4 ashtray green POD
>>> frame2 = pd.DataFrame({'id':['pencil','pencil','ball','pen'],
... 'brand': ['OMG','POD','ABC','POD']})
>>> frame2
 id brand
0 pencil OMG
1 pencil POD
2 ball ABC
3 pen POD

Now, in this case, you have two dataframes with columns of the same name. So if you launch a merge,
you do not get any results.

>>> pd.merge(frame1,frame2)
Empty DataFrame
Columns: [id, color, brand]
Index: []

It is necessary to explicitly define the criteria for merging that pandas must follow, specifying the name
of the key column in the on option.

>>> pd.merge(frame1,frame2,on='id')
 id color brand_x brand_y
0 ball white OMG ABC
1 pencil red ABC OMG
2 pencil red ABC POD
3 pen red ABC POD

Chapter 6 ■ pandas in depth: data Manipulation

152

>>> pd.merge(frame1,frame2,on='brand')
 id_x color brand id_y
0 ball white OMG pencil
1 pencil red ABC ball
2 pen red ABC ball
3 mug black POD pencil
4 mug black POD pen
5 ashtray green POD pencil
6 ashtray green POD pen

As expected, the results vary considerably depending on the criteria of merging.
Often, however, the opposite problem arises, that is, you have two dataframes in which the key columns

do not have the same name. To remedy this situation, you have to use the left_on and right_on options,
which specify the key column for the first and for the second dataframe. Here is an example.

>>> frame2.columns = ['sid','brand']
>>> frame2
 sid brand
0 pencil OMG
1 pencil POD
2 ball ABC
3 pen POD
>>> pd.merge(frame1, frame2, left_on='id', right_on='sid')
 id color brand_x sid brand_y
0 ball white OMG ball ABC
1 pencil red ABC pencil OMG
2 pencil red ABC pencil POD
3 pen red ABC pen POD

By default, the merge() function performs an inner join; the keys in the result are the result of an
intersection.

Other possible options are the left join, the right join, and the outer join. The outer join produces the
union of all keys, combining the effect of a left join with a right join. To select the type of join you have to use
the how option.

>>> frame2.columns = ['id','brand']
>>> pd.merge(frame1,frame2,on='id')
 id color brand_x brand_y
0 ball white OMG ABC
1 pencil red ABC OMG
2 pencil red ABC POD
3 pen red ABC POD
>>> pd.merge(frame1,frame2,on='id',how='outer')
 id color brand_x brand_y
0 ball white OMG ABC
1 pencil red ABC OMG
2 pencil red ABC POD
3 pen red ABC POD
4 mug black POD NaN
5 ashtray green POD NaN

Chapter 6 ■ pandas in depth: data Manipulation

153

>>> pd.merge(frame1,frame2,on='id',how='left')
 id color brand_x brand_y
0 ball white OMG ABC
1 pencil red ABC OMG
2 pencil red ABC POD
3 pen red ABC POD
4 mug black POD NaN
5 ashtray green POD NaN
>>> pd.merge(frame1,frame2,on='id',how='right')
 id color brand_x brand_y
0 pencil red ABC OMG
1 pencil red ABC POD
2 ball white OMG ABC
3 pen red ABC POD

To merge multiple keys, you simply add a list to the on option.

>>> pd.merge(frame1,frame2,on=['id','brand'],how='outer')
 id color brand
0 ball white OMG
1 pencil red ABC
2 pen red ABC
3 mug black POD
4 ashtray green POD
5 pencil NaN OMG
6 pencil NaN POD
7 ball NaN ABC
8 pen NaN POD

 Merging on an Index
In some cases, instead of considering the columns of a dataframe as keys, indexes could be used as keys for
merging. Then in order to decide which indexes to consider, you set the left_index or right_index options
to True to activate them, with the ability to activate them both.

>>> pd.merge(frame1,frame2,right_index=True, left_index=True)
 id_x color brand_x id_y brand_y
0 ball white OMG pencil OMG
1 pencil red ABC pencil POD
2 pen red ABC ball ABC
3 mug black POD pen POD

But the dataframe objects have a join() function, which is much more convenient when you want to do
the merging by indexes. It can also be used to combine many dataframe objects having the same indexes but
with no columns overlapping.

In fact, if you launch the following:

>>> frame1.join(frame2)

Chapter 6 ■ pandas in depth: data Manipulation

154

You will get an error code because some columns in frame1 have the same name as frame2. You need to
rename the columns in frame2 before launching the join() function.

>>> frame2.columns = ['id2','brand2']
>>> frame1.join(frame2)
 id color brand id2 brand2
0 ball white OMG pencil OMG
1 pencil red ABC pencil POD
2 pen red ABC ball ABC
3 mug black POD pen POD
4 ashtray green POD NaN NaN

Here you've performed a merge, but based on the values of the indexes instead of the columns. This
time there is also the index 4 that was present only in frame1, but the values corresponding to the columns of
frame2 report NaN as a value.

 Concatenating
Another type of data combination is referred to as concatenation. NumPy provides a concatenate() function
to do this kind of operation with arrays.

>>> array1 = np.arange(9).reshape((3,3))
>>> array1
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
>>> array2 = np.arange(9).reshape((3,3))+6
>>> array2
array([[6, 7, 8],
 [9, 10, 11],
 [12, 13, 14]])
>>> np.concatenate([array1,array2],axis=1)
array([[0, 1, 2, 6, 7, 8],
 [3, 4, 5, 9, 10, 11],
 [6, 7, 8, 12, 13, 14]])
>>> np.concatenate([array1,array2],axis=0)
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [6, 7, 8],
 [9, 10, 11],
 [12, 13, 14]])

With the pandas library and its data structures like series and dataframes, having labeled axes allows
you to further generalize the concatenation of arrays. The concat() function is provided by pandas for this
kind of operation.

>>> ser1 = pd.Series(np.random.rand(4), index=[1,2,3,4])
>>> ser1
1 0.636584
2 0.345030

Chapter 6 ■ pandas in depth: data Manipulation

155

3 0.157537
4 0.070351
dtype: float64
>>> ser2 = pd.Series(np.random.rand(4), index=[5,6,7,8])
>>> ser2
5 0.411319
6 0.359946
7 0.987651
8 0.329173
dtype: float64
>>> pd.concat([ser1,ser2])
1 0.636584
2 0.345030
3 0.157537
4 0.070351
5 0.411319
6 0.359946
7 0.987651
8 0.329173
dtype: float64

By default, the concat() function works on axis = 0, having as a returned object a series. If you set
axis = 1, the result will be a dataframe.

>>> pd.concat([ser1,ser2],axis=1)
 0 1
1 0.636584 NaN
2 0.345030 NaN
3 0.157537 NaN
4 0.070351 NaN
5 NaN 0.411319
6 NaN 0.359946
7 NaN 0.987651
8 NaN 0.329173

The problem with this kind of operation is that the concatenated parts are not identifiable in the result.
For example, you want to create a hierarchical index on the axis of concatenation. To do this, you have to use
the keys option.

>>> pd.concat([ser1,ser2], keys=[1,2])
1 1 0.636584
 2 0.345030
 3 0.157537
 4 0.070351
2 5 0.411319
 6 0.359946
 7 0.987651
 8 0.329173
dtype: float64

Chapter 6 ■ pandas in depth: data Manipulation

156

In the case of combinations between series along axis = 1, the keys become the column headers of the
dataframe.

>>> pd.concat([ser1,ser2], axis=1, keys=[1,2])
 1 2
1 0.636584 NaN
2 0.345030 NaN
3 0.157537 NaN
4 0.070351 NaN
5 NaN 0.411319
6 NaN 0.359946
7 NaN 0.987651
8 NaN 0.329173

So far you have seen the concatenation applied to the series, but the same logic can be applied to the
dataframe.

>>> frame1 = pd.DataFrame(np.random.rand(9).reshape(3,3),
... index=[1,2,3],
... columns=['A','B','C'])

>>> frame2 = pd.DataFrame(np.random.rand(9).reshape(3,3),
... index=[4,5,6],
... columns=['A','B','C'])
>>> pd.concat([frame1, frame2])
 A B C
1 0.400663 0.937932 0.938035
2 0.202442 0.001500 0.231215
3 0.940898 0.045196 0.723390
4 0.568636 0.477043 0.913326
5 0.598378 0.315435 0.311443
6 0.619859 0.198060 0.647902
>>> pd.concat([frame1, frame2], axis=1)
 A B C A B C
1 0.400663 0.937932 0.938035 NaN NaN NaN
2 0.202442 0.001500 0.231215 NaN NaN NaN
3 0.940898 0.045196 0.723390 NaN NaN NaN
4 NaN NaN NaN 0.568636 0.477043 0.913326
5 NaN NaN NaN 0.598378 0.315435 0.311443
6 NaN NaN NaN 0.619859 0.198060 0.647902

 Combining
There is another situation in which there is combination of data that cannot be obtained either with merging
or with concatenation. Take the case in which you want the two datasets to have indexes that overlap in their
entirety or at least partially.

One applicable function to series is combine_first(), which performs this kind of operation along with
data alignment.

Chapter 6 ■ pandas in depth: data Manipulation

157

>>> ser1 = pd.Series(np.random.rand(5),index=[1,2,3,4,5])
>>> ser1
1 0.942631
2 0.033523
3 0.886323
4 0.809757
5 0.800295
dtype: float64
>>> ser2 = pd.Series(np.random.rand(4),index=[2,4,5,6])
>>> ser2
2 0.739982
4 0.225647
5 0.709576
6 0.214882
dtype: float64
>>> ser1.combine_first(ser2)
1 0.942631
2 0.033523
3 0.886323
4 0.809757
5 0.800295
6 0.214882
dtype: float64
>>> ser2.combine_first(ser1)
1 0.942631
2 0.739982
3 0.886323
4 0.225647
5 0.709576
6 0.214882
dtype: float64

Instead, if you want a partial overlap, you can specify only the portion of the series you want to overlap.

>>> ser1[:3].combine_first(ser2[:3])
1 0.942631
2 0.033523
3 0.886323
4 0.225647
5 0.709576
dtype: float64

 Pivoting
In addition to assembling the data to unify the values collected from different sources, another fairly
common operation is pivoting. In fact, arrangement of the values by row or by column is not always suited to
your goals. Sometimes you might want to rearrange the data by column values on rows or vice versa.

Chapter 6 ■ pandas in depth: data Manipulation

158

 Pivoting with Hierarchical Indexing
You have already seen that a dataframe can support hierarchical indexing. This feature can be exploited to
rearrange the data in a dataframe. In the context of pivoting, you have two basic operations:

• Stacking—Rotates or pivots the data structure, converting columns to rows

• Unstacking—Converts rows into columns

>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),
... index=['white','black','red'],
... columns=['ball','pen','pencil'])
>>> frame1
 ball pen pencil
white 0 1 2
black 3 4 5
red 6 7 8

Using the stack() function on the dataframe, you will pivot the columns in rows, thus producing
a series:

>>> ser5 = frame1.stack()
>>> ser5
white ball 0
 pen 1
 pencil 2
black ball 3
 pen 4
 pencil 5
red ball 6
 pen 7
 pencil 8
dtype: int32

From this hierarchically indexed series, you can reassemble the dataframe into a pivoted table by use of
the unstack() function.

>>> ser5.unstack()
 ball pen pencil
white 0 1 2
black 3 4 5
red 6 7 8

Chapter 6 ■ pandas in depth: data Manipulation

159

You can also do the unstack on a different level, specifying the number of levels or its name as the
argument of the function.

>>> ser5.unstack(0)
 white black red
ball 0 3 6
pen 1 4 7
pencil 2 5 8

 Pivoting from “Long” to “Wide” Format
The most common way to store datasets is produced by the punctual registration of data that will fill a line of
the text file, for example, CSV, or a table of a database. This happens especially when you have instrumental
readings, calculation results iterated over time, or the simple manual input of a series of values. A similar
case of these files is for example the logs file, which is filled line by line by accumulating data in it.

The peculiar characteristic of this type of dataset is to have entries on various columns, often duplicated
in subsequent lines. Always remaining in tabular format, this data is referred to as long or stacked format.

To get a clearer idea about that, consider the following dataframe.

>>> longframe = pd.DataFrame({ 'color':['white','white','white',
... 'red','red','red',
... 'black','black','black'],
... 'item':['ball','pen','mug',
... 'ball','pen','mug',
... 'ball','pen','mug'],
... 'value': np.random.rand(9)})
>>> longframe
 color item value
0 white ball 0.091438
1 white pen 0.495049
2 white mug 0.956225
3 red ball 0.394441
4 red pen 0.501164
5 red mug 0.561832
6 black ball 0.879022
7 black pen 0.610975
8 black mug 0.093324

This mode of data recording has some disadvantages. One, for example, is the multiplicity and
repetition of some fields. Considering the columns as keys, the data in this format will be difficult to read,
especially in fully understanding the relationships between the key values and the rest of the columns.

Instead of the long format, there is another way to arrange the data in a table that is called wide. This
mode is easier to read, allowing easy connection with other tables, and it occupies much less space. So in
general it is a more efficient way of storing the data, although less practical, especially if during the filling of
the data.

As a criterion, select a column, or a set of them, as the primary key; then, the values contained in it must
be unique.

Chapter 6 ■ pandas in depth: data Manipulation

160

In this regard, pandas gives you a function that allows you to transform a dataframe from the long type
to the wide type. This function is pivot() and it accepts as arguments the column, or columns, which will
assume the role of key.

Starting from the previous example, you choose to create a dataframe in wide format by choosing the
color column as the key, and item as a second key, the values of which will form the new columns of the
dataframe.

>>> wideframe = longframe.pivot(index='color',columns='item')
>>> wideframe
 value
item ball mug pen
color
black 0.879022 0.093324 0.610975
red 0.394441 0.561832 0.501164
white 0.091438 0.956225 0.495049

As you can now see, in this format, the dataframe is much more compact and the data contained in it
are much more readable.

 Removing
The last stage of data preparation is the removal of columns and rows. You have already seen this part in
Chapter 4. However, for completeness, the description is reiterated here. Define a dataframe by way of
example.

>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),
... index=['white','black','red'],
... columns=['ball','pen','pencil'])
>>> frame1
 ball pen pencil
white 0 1 2
black 3 4 5
red 6 7 8

In order to remove a column, you simply apply the del command to the dataframe with the column
name specified.

>>> del frame1['ball']
>>> frame1
 pen pencil
white 1 2
black 4 5
red 7 8

Instead, to remove an unwanted row, you have to use the drop() function with the label of the
corresponding index as an argument.

>>> frame1.drop('white')
 pen pencil
black 4 5
red 7 8

Chapter 6 ■ pandas in depth: data Manipulation

https://doi.org/10.1007/978-1-4842-9532-8_4

161

 Data Transformation
So far you have seen how to prepare data for analysis. This process in effect represents a reassembly of the
data contained in a dataframe, with possible additions by other dataframe and removal of unwanted parts.

Now you begin the second stage of data manipulation: the data transformation. After you arrange the
form of data and their disposal within the data structure, it is important to transform their values. In fact, in
this section, you see some common issues and the steps required to overcome them using functions of the
pandas library.

Some of these operations involve the presence of duplicate or invalid values, with possible removal or
replacement. Other operations relate instead by modifying the indexes. Other steps include handling and
processing the numerical values of the data and strings.

 Removing Duplicates
Duplicate rows might be present in a dataframe for various reasons. In dataframes of enormous size, the
detection of these rows can be very problematic. In this case, pandas provides a series of tools to analyze the
duplicate data present in large data structures.

First, create a simple dataframe with some duplicate rows.

>>> dframe = pd.DataFrame({ 'color': ['white','white','red','red','white'],
... 'value': [2,1,3,3,2]})
>>> dframe
 color value
0 white 2
1 white 1
2 red 3
3 red 3
4 white 2

The duplicated() function applied to a dataframe can detect the rows that appear to be duplicated. It
returns a series of Booleans where each element corresponds to a row, with True if the row is duplicated (i.e.,
only the other occurrences, not the first), and with False if there are no duplicates in the previous elements.

>>> dframe.duplicated()
0 False
1 False
2 False
3 True
4 True
dtype: bool

Having a Boolean series as a return value can be useful in many cases, especially for filtering. In fact, if
you want to know which rows are duplicated, just type the following:

>>> dframe[dframe.duplicated()]
 color value
3 red 3
4 white 2

Chapter 6 ■ pandas in depth: data Manipulation

162

Generally, all duplicated rows are to be deleted from the dataframe; to do that, pandas provides the
drop_duplicates() function, which returns the dataframes without the duplicate rows.

>>> dframe[dframe.duplicated()]
 color value
3 red 3
4 white 2

 Mapping
The pandas library provides a set of functions which, as you see in this section, exploit mapping to perform
some operations. Mapping is nothing more than the creation of a list of matches between two different
values, with the ability to bind a value to a particular label or string.

To define mapping, there is no better object than dict objects.

map = {
 'label1' : 'value1,
 'label2' : 'value2,
 ...
}

The functions that you see in this section perform specific operations, but they all accept a dict object.

• replace()—Replaces values

• map()—Creates a new column

• rename()—Replaces the index values

 Replacing Values via Mapping
Often in the data structure that you have assembled there are values that do not meet your needs. For
example, the text may be in a foreign language, or may be a synonym of another value, or may not be
expressed in the desired shape. In such cases, a replace operation of various values is often a necessary
process.

Define, as an example, a dataframe containing various objects and colors, including two colors that are
not in English. Assembly operations are likely to keep maintaining data with values in an undesirable form.

>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],
... 'color':['white','rosso','verde','black','yellow'],
 'price':[5.56,4.20,1.30,0.56,2.75]})
>>> frame
 item color price
0 ball white 5.56
1 mug rosso 4.20
2 pen verde 1.30
3 pencil black 0.56
4 ashtray yellow 2.75

Chapter 6 ■ pandas in depth: data Manipulation

163

To replace the incorrect values with new values, it is necessary to define a mapping of correspondences,
containing as a key the new values.

>>> newcolors = {
... 'rosso': 'red',
... 'verde': 'green'
... }

Now the only thing you can do is use the replace() function with the mapping as an argument.

>>> frame.replace(newcolors)
 item color price
0 ball white 5.56
1 mug red 4.20
2 pen green 1.30
3 pencil black 0.56
4 ashtray yellow 2.75

As you can see from the result, the two colors have been replaced with the correct values within the
dataframe. A common case, for example, is the replacement of NaN values with another value, for example 0.
You can use replace(), which performs its job very well.

>>> ser = pd.Series([1,3,np.nan,4,6,np.nan,3])
>>> ser
0 1.0
1 3.0
2 NaN
3 4.0
4 6.0
5 NaN
6 3.0
dtype: float64
>>> ser.replace(np.nan,0)
0 1.0
1 3.0
2 0.0
3 4.0
4 6.0
5 0.0
6 3.0
dtype: float64

Chapter 6 ■ pandas in depth: data Manipulation

164

 Adding Values via Mapping
In the previous example, you saw how to substitute values by mapping correspondences. In this case you
continue to exploit the mapping of values with another example. In this case you are exploiting mapping to
add values in a column depending on the values contained in another column. The mapping will always be
defined separately.

>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],
... 'color':['white','red','green','black','yellow']})
>>> frame
 item color
0 ball white
1 mug red
2 pen green
3 pencil black
4 ashtray yellow

Suppose you want to add a column to indicate the price of the item shown in the dataframe. Before you
do this, it is assumed that you have a price list available somewhere, in which the price for each type of item
is described. Define then a dict object that contains a list of prices for each type of item.

>>> prices = {
... 'ball' : 5.56,
... 'mug' : 4.20,
... 'bottle' : 1.30,
... 'scissors' : 3.41,
... 'pen' : 1.30,
... 'pencil' : 0.56,
... 'ashtray' : 2.75
... }

The map() function, when applied to a series or to a column of a dataframe, accepts a function or an
object containing a dict with mapping. So in this case, you can apply the mapping of the prices on the
column item, making sure to add a column to the price dataframe.

>>> frame['price'] = frame['item'].map(prices)
>>> frame
 item color price
0 ball white 5.56
1 mug red 4.20
2 pen green 1.30
3 pencil black 0.56
4 ashtray yellow 2.75

 Rename the Indexes of the Axes
In a manner very similar to what you saw for the values contained within the series and the dataframe,
even the axis label can be transformed in a very similar way using mapping. So to replace the label indexes,
pandas provides the rename() function, which takes the mapping as an argument, that is, a dict object.

Chapter 6 ■ pandas in depth: data Manipulation

165

>>> frame
 item color price
0 ball white 5.56
1 mug red 4.20
2 pen green 1.30
3 pencil black 0.56
4 ashtray yellow 2.75
>>> reindex = {
... 0: 'first',
... 1: 'second',
... 2: 'third',
... 3: 'fourth',
... 4: 'fifth'}
>>> frame.rename(reindex)
 item color price
first ball white 5.56
second mug red 4.20
third pen green 1.30
fourth pencil black 0.56
fifth ashtray yellow 2.75

As you can see, by default, the indexes are renamed. If you want to rename columns, you must use the
columns option. This time you assign various mapping explicitly to the two index and columns options.

>>> recolumn = {
... 'item':'object',
... 'price': 'value'}
>>> frame.rename(index=reindex, columns=recolumn)
 object color value
first ball white 5.56
second mug red 4.20
third pen green 1.30
fourth pencil black 0.56
fifth ashtray yellow 2.75

Also here, for the simplest cases in which you have a single value to be replaced, you can avoid having to
write and assign many variables.

>>> frame.rename(index={1:'first'}, columns={'item':'object'})
 object color price
0 ball white 5.56
first mug red 4.20
2 pen green 1.30
3 pencil black 0.56
4 ashtray yellow 2.75

Chapter 6 ■ pandas in depth: data Manipulation

166

So far you have seen that the rename() function returns a dataframe with the changes, leaving
unchanged the original dataframe. If you want the changes to take effect on the object on which you call the
function, set the inplace option to True.

>>> frame.rename(columns={'item':'object'}, inplace=True)
>>> frame
 object color price
0 ball white 5.56
1 mug red 4.20
2 pen green 1.30
3 pencil black 0.56
4 ashtray yellow 2.75

 Discretization and Binning
A more complex process of transformation that you see in this section is discretization. Sometimes it can be
used, especially in some experimental cases, to handle large quantities of data generated in sequence. To
carry out an analysis of the data, however, it is necessary to transform this data into discrete categories, for
example, by dividing the range of values of such readings into smaller intervals and counting the occurrence
or statistics in them. Another case might be when you have a huge number of samples due to precise
readings on a population. Even here, to facilitate analysis of the data, it is necessary to divide the range of
values into categories and then analyze the occurrences and statistics related to each.

In this case, for example, you may have a reading of an experimental value between 0 and 100. These
data are collected in a list.

>>> results = [12,34,67,55,28,90,99,12,3,56,74,44,87,23,49,89,87]

You know that the experimental values have a range from 0 to 100; therefore you can uniformly divide
this interval, for example, into four equal parts, that is, bins. The first contains the values between 0 and 25,
the second between 26 and 50, the third between 51 and 75, and the last between 76 and 100.

To do this binning with pandas, first you have to define an array containing the values of
separation of bin:

>>> bins = [0,25,50,75,100]

Then you use a special function called cut() and apply it to the array of results, also passing the bins.

>>> cat = pd.cut(results, bins)
>>> cat
[(0, 25], (25, 50], (50, 75], (50, 75], (25, 50], ..., (75, 100], (0, 25], (25, 50], (75,
100], (75, 100]]
Length: 17
Categories (4, interval[int64, right]): [(0, 25] < (25, 50] < (50, 75] < (75, 100]]

The object returned by the cut() function is a special object of Categorical type. You can consider it
as an array of strings indicating the name of the bin. Internally it contains a categories array indicating
the names of the different internal categories and a codes array that contains a list of numbers equal to the
elements of results (i.e., the array subjected to binning). The number corresponds to the bin to which the
corresponding element of results is assigned.

Chapter 6 ■ pandas in depth: data Manipulation

167

>>> cat.categories
IntervalIndex([(0, 25], (25, 50], (50, 75], (75, 100]], dtype='interval[int64, right]')
>>> cat.codes
array([0, 1, 2, 2, 1, 3, 3, 0, 0, 2, 2, 1, 3, 0, 1, 3, 3], dtype=int8)

Finally, to know the occurrences for each bin, that is, how many results fall into each category, you have
to use the value_counts() function.

>>> pd.value_counts(cat)
(75, 100] 5
(0, 25] 4
(25, 50] 4
(50, 75] 4
dtype: int64

As you can see, each class has the lower limit indicated with a bracket and the upper limit indicated
with a parenthesis. This notation is consistent with mathematical notation that is used to indicate the
intervals. If the bracket is square, the number belongs to the range (limit closed), and if it is round, the
number does not belong to the interval (limit open).

You can give names to various bins by calling them first in an array of strings and then assigning to the
labels options inside the cut() function that you have used to create the Categorical object.

>>> bin_names = ['unlikely','less likely','likely','highly likely']
>>> pd.cut(results, bins, labels=bin_names)
['unlikely', 'less likely', 'likely', 'likely', 'less likely', ..., 'highly likely',
'unlikely', 'less likely', 'highly likely', 'highly likely']
Length: 17
Categories (4, object): ['unlikely' < 'less likely' < 'likely' < 'highly likely']

If the cut() function is passed as an argument to an integer instead of explicating the bin edges, this will
divide the range of values of the array into the number of intervals you specify.

The limits of the interval will be taken by the minimum and maximum of the sample data, namely, the
array subjected to binning.

>>> pd.cut(results, 5)

[(2.904, 22.2], (22.2, 41.4], (60.6, 79.8], (41.4, 60.6], (22.2, 41.4], ..., (79.8, 99.0],
(22.2, 41.4], (41.4, 60.6], (79.8, 99.0], (79.8, 99.0]]
Length: 17
Categories (5, interval[float64, right]): [(2.904, 22.2] < (22.2, 41.4] < (41.4, 60.6] <
(60.6, 79.8] < (79.8, 99.0]]
)

In addition to cut(), pandas provides another method for binning: qcut(). This function divides the
sample directly into quintiles. In fact, depending on the distribution of the data sample, by using cut(),
you will have a different number of occurrences for each bin. Instead, qcut() ensures that the number of
occurrences for each bin is equal, but the edges of each bin vary.

>>> quintiles = pd.qcut(results, 5)
>>> quintiles

Chapter 6 ■ pandas in depth: data Manipulation

168

[(2.999, 24.0], (24.0, 46.0], (62.6, 87.0], (46.0, 62.6], (24.0, 46.0], ..., (62.6, 87.0],
(2.999, 24.0], (46.0, 62.6], (87.0, 99.0], (62.6, 87.0]]
Length: 17
Categories (5, interval[float64, right]): [(2.999, 24.0] < (24.0, 46.0] < (46.0, 62.6]
< (62.6, 87.0] < (87.0, 99.0]]
>>> pd.value_counts(quintiles)
(2.999, 24.0] 4
(62.6, 87.0] 4
(24.0, 46.0] 3
(46.0, 62.6] 3
(87.0, 99.0] 3
dtype: int64

As you can see, in the case of quintiles, the intervals bounding the bin differ from those generated by
the cut() function. Moreover, if you look at the occurrences for each bin, you will find that qcut() tried to
standardize the occurrences for each bin, but in the case of quintiles, the first two bins have an occurrence in
more because the number of results is not divisible by five.

 Detecting and Filtering Outliers
During data analysis, the need to detect the presence of abnormal values in a data structure often arises. By
way of example, create a dataframe with three columns of 1,000 completely random values:

>>> randframe = pd.DataFrame(np.random.randn(1000,3))

With the describe() function, you can see the statistics for each column.

>>> randframe.describe()
 0 1 2
count 1000.000000 1000.000000 1000.000000
mean 0.021609 -0.022926 -0.019577
std 1.045777 0.998493 1.056961
min -2.981600 -2.828229 -3.735046
25% -0.675005 -0.729834 -0.737677
50% 0.003857 -0.016940 -0.031886
75% 0.738968 0.619175 0.718702
max 3.104202 2.942778 3.458472

For example, you might consider outliers those that have a value greater than three times the standard
deviation. To have only the standard deviation of each column of the dataframe, use the std() function.

>>> randframe.std()
0 1.045777
1 0.998493
2 1.056961
dtype: float64

Chapter 6 ■ pandas in depth: data Manipulation

169

Now you apply the filtering of all the values of the dataframe, applying the corresponding standard
deviation for each column. Thanks to the any() function, you can apply the filter to each column.

>>> randframe[(np.abs(randframe) > (3*randframe.std())).any(axis=1)]
 0 1 2
69 -0.442411 -1.099404 3.206832
576 -0.154413 -1.108671 3.458472
907 2.296649 1.129156 -3.735046

 Permutation
The operations of permutation (random reordering) on a series or on the rows of a dataframe are easy to do
using the numpy.random.permutation() function.

For this example, create a dataframe containing integers in ascending order.

>>> nframe = pd.DataFrame(np.arange(25).reshape(5,5))
>>> nframe
 0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24

Now create an array of five integers from 0 to 4, arranged in random order with the permutation()
function. This will be the new order in which to set the values of a row of the dataframe.

>>> new_order = np.random.permutation(5)
>>> new_order
array([2, 3, 0, 1, 4])

Now apply it to the dataframe on all lines, using the take() function.

>>> nframe.take(new_order)
 0 1 2 3 4
2 10 11 12 13 14
3 15 16 17 18 19
0 0 1 2 3 4
1 5 6 7 8 9
4 20 21 22 23 24

As you can see, the order of the rows has changed; now the indices follow the same order as indicated in
the new_order array.

You can submit even a portion of the entire dataframe to a permutation. It generates an array that has a
sequence limited to a certain range, for example, in this case from 2 to 4.

>>> new_order = [3,4,2]
>>> nframe.take(new_order)
 0 1 2 3 4
3 15 16 17 18 19
4 20 21 22 23 24
2 10 11 12 13 14

Chapter 6 ■ pandas in depth: data Manipulation

170

 Random Sampling
You have just seen how to extract a portion of the dataframe determined by subjecting it to permutation.
Sometimes, when you have a huge dataframe, you may need to sample it randomly, and the quickest way to
do that is by using the np.random.randint() function.

>>> sample = np.random.randint(0, len(nframe), size=3)
>>> sample
array([1, 4, 4])
>>> nframe.take(sample)
 0 1 2 3 4
1 5 6 7 8 9
4 20 21 22 23 24
4 20 21 22 23 24

As you can see from this random sampling, you can get the same sample even more often.

 String Manipulation
Python is a popular language thanks to its ease of use in the processing of strings and text. Most operations
can easily be made by using built-in functions provided by Python. For more complex cases of matching and
manipulation, it is necessary to use regular expressions.

 Built-in Methods for String Manipulation
In many cases, you have composite strings in which you want to separate the various parts and then assign
them to the correct variables. The split() function allows you to separate parts of the text, taking as a
reference point a separator, for example, a comma.

>>> text = '16 Bolton Avenue , Boston'
>>> text.split(',')
['16 Bolton Avenue ', 'Boston']

As you can see in the first element, you have a string with a space character at the end. To overcome this
common problem, you have to use the split() function along with the strip() function, which trims the
whitespace (including newlines).

>>> tokens = [s.strip() for s in text.split(',')]
>>> tokens
['16 Bolton Avenue', 'Boston']

The result is an array of strings. If the number of elements is small and always the same, a very
interesting way to make assignments may be this:

>>> address, city = [s.strip() for s in text.split(',')]
>>> address
'16 Bolton Avenue'
>>> city
'Boston'

Chapter 6 ■ pandas in depth: data Manipulation

171

So far you have seen how to split text into parts, but often you also need the opposite, namely
concatenate various strings to form longer text.

The most intuitive and simplest way is to concatenate the various parts of the text with the + operator.

>>> address + ',' + city
'16 Bolton Avenue, Boston'

This can be useful when you have only two or three strings to be concatenated. If you have many parts
to be concatenated, a more practical approach is to use the join() function assigned to the separator
character, with which you want to join the various strings.

>>> strings = ['A+','A','A-','B','BB','BBB','C+']
>>> ';'.join(strings)
'A+;A;A-;B;BB;BBB;C+'

Another category of operations that can be performed on the string is searching for pieces of text in
them, that is, substrings. Python provides the keyword that represents the best way of detecting substrings.

>>> 'Boston' in text
True

However, there are two functions that can serve this purpose: index() and find().

>>> text.index('Boston')
19
>>> text.find('Boston')
19

In both cases, the function returns the number of the corresponding characters in the text where you
have the substring. The difference in the behavior of these two functions can be seen, however, when the
substring is not found:

>>> text.index('New York')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: substring not found
>>> text.find('New York')
-1

In fact, the index() function returns an error message, and find() returns -1 if the substring is not
found. In the same area, you can know how many times a character or combination of characters (substring)
occurs within the text. The count() function provides you with this number.

>>> text.count('e')
2
>>> text.count('Avenue')
1

Chapter 6 ■ pandas in depth: data Manipulation

172

Another operation that can be performed on strings is replacing or eliminating a substring (or a single
character). In both cases, you use the replace() function, where if you are prompted to replace a substring
with a blank character, the operation is equivalent to the elimination of the substring from the text.

>>> text.replace('Avenue','Street')
'16 Bolton Street , Boston'
>>> text.replace('1', '')'16 Bolton Avenue, Boston'

 Regular Expressions
Regular expressions provide a very flexible way to search and match string patterns within text. A single
expression, generically called regex, is a string formed according to the regular expression language. There is
a built-in Python module called re, which is responsible for the operation of the regex.

First of all, when you want to use regular expressions, you need to import the module:

>>> import re

The re module provides a set of functions that can be divided into three categories:

• Pattern matching

• Substitution

• Splitting

Let's start with a few examples. For example, the regex for expressing a sequence of one or more
whitespace characters is \s+. In the previous section, to split text into parts through a separator character,
you used split(). There is a split() function even for the re module that performs the same operations,
but it can accept a regex pattern as the criteria of separation, which makes it considerably more flexible.

>>> text = "This is an\t odd \n text!"
>>> re.split('\s+', text)
['This', 'is', 'an', 'odd', 'text!']

Let’s analyze more deeply the mechanism of re module. When you call the re.split() function, the
regular expression is first compiled, then it subsequently calls the split() function on the text argument.
You can compile the regex function with the re.compile() function, thus obtaining a reusable object regex
and so gaining CPU cycles.

This is especially true in the operations of iterative search of a substring in a set or an array of strings.

>>> regex = re.compile('\s+')

If you create a regex object with the compile() function, you can apply split() directly to it in the
following way.

>>> regex.split(text)
['This', 'is', 'an', 'odd', 'text!']

To match a regex pattern to any other business substrings in the text, you can use the findall()
function. It returns a list of all the substrings in the text that meet the requirements of the regex.

Chapter 6 ■ pandas in depth: data Manipulation

173

For example, if you want to find in a string all the words starting with “A” uppercase, or for example,
with “a” regardless of whether it's upper- or lowercase, you need to enter the following:

>>> text = 'This is my address: 16 Bolton Avenue, Boston'
>>> re.findall('A\w+',text)
['Avenue']
>>> re.findall('[A,a]\w+',text)
['address', 'Avenue']

There are two other functions related to the findall() function—match() and search(). While
findall() returns all matches within a list, the search() function returns only the first match. Furthermore,
the object returned by this function is a particular object:

>>> re.search('[A,a]\w+',text)
<_sre.SRE_Match object; span=(11, 18), match='address'>

This object does not contain the value of the substring that responds to the regex pattern, but it returns
its start and end positions within the string.

>>> search = re.search('[A,a]\w+',text)
>>> search.start()
11
>>> search.end()
18
>>> text[search.start():search.end()]
'address'

The match() function performs matching only at the beginning of the string; if there is no match to
the first character, it goes no farther in research within the string. If you do not find a match, then it will not
return any objects.

>>> re.match('[A,a]\w+',text)

If match() has a response, it returns an object identical to what you saw for the search() function.

>>> re.match('T\w+',text)
<_sre.SRE_Match object; span=(0, 4), match='This'>
>>> match = re.match('T\w+',text)
>>> text[match.start():match.end()]
'This'

 Data Aggregation
The last stage of data manipulation is data aggregation. Data aggregation involves a transformation that
produces a single integer from an array. In fact, you have already made many operations of data aggregation,
for example, when you calculated the sum(), mean(), and count(). In fact, these functions operate on a set of
data and perform a calculation with a consistent result consisting of a single value. However, a more formal
manner and the one with more control in data aggregation is that which includes the categorization of a set.

Chapter 6 ■ pandas in depth: data Manipulation

174

The categorization of a set of data carried out for grouping is often a critical stage in the process of
data analysis. It is a process of transformation since, after dividing the data into different groups, you apply
a function that converts or transforms the data in some way, depending on the group they belong to. Very
often the two phases of grouping and applying a function are performed in a single step.

Also for this part of the data analysis, pandas provides a tool that’s very flexible and high performance:
GroupBy.

Again, as in the case of join, those familiar with relational databases and the SQL language can find
similarities. Nevertheless, languages such as SQL are quite limited when applied to operations on groups.
In fact, given the flexibility of a programming language like Python, with all the libraries available, especially
pandas, you can perform very complex operations on groups.

 GroupBy
This section analyzes in detail the process of GroupBy and how it works. Generally, it refers to its internal
mechanism as a process called split-apply-combine. In its pattern of operation you may conceive this process
as divided into three phases expressed by three operations:

• Splitting—Division into groups of datasets

• Applying—Application of a function on each group

• Combining—Combination of all the results obtained by different groups

Analyze the three different phases (see Figure 6-1). In the first phase, that of splitting, the data contained
within a data structure, such as a series or a dataframe, are divided into several groups, according to given
criteria, which is often linked to indexes or to certain values in a column. In the jargon of SQL, values
contained in this column are reported as keys. Furthermore, if you are working with two-dimensional
objects such as a dataframe, the grouping criterion may be applied both to the line (axis = 0) for that
column (axis = 1).

Figure 6-1. The split-apply-combine mechanism

The second phase, that of applying, consists of applying a function, or better a calculation expressed
precisely by a function, which produces a new and single value that’s specific to that group.

The last phase, that of combining, collects all the results obtained from each group and combines them
to form a new object.

Chapter 6 ■ pandas in depth: data Manipulation

175

 A Practical Example
You have just seen that the process of data aggregation in pandas is divided into various phases called split-
apply-combine. With these phases, pandas are not expressed explicitly with the functions as you would
expect, but by a groupby() function that generates a GroupBy object, which is the core of the whole process.

To better understand this mechanism, let’s switch to a practical example. First define a dataframe
containing numeric and string values.

>>> frame = pd.DataFrame({ 'color': ['white','red','green','red','green'],
... 'object': ['pen','pencil','pencil','ashtray','pen'],
... 'price1' : [5.56,4.20,1.30,0.56,2.75],
... 'price2' : [4.75,4.12,1.60,0.75,3.15]})
>>> frame
 color object price1 price2
0 white pen 5.56 4.75
1 red pencil 4.20 4.12
2 green pencil 1.30 1.60
3 red ashtray 0.56 0.75
4 green pen 2.75 3.15

Suppose you want to calculate the average of the price1 column using group labels listed in the color
column. There are several ways to do this. You can for example access the price1 column and call the
groupby() function with the color column.

>>> group = frame['price1'].groupby(frame['color'])
>>> group
<pandas.core.groupby.generic.SeriesGroupBy object at 0x000001942131D110>

The object that you get is a GroupBy object. In the operation that you just did, there was not really any
calculation; there was just a collection of all the information needed to calculate the average. What you have
done is group all the rows with the same value of color into a single item.

To analyze in detail how the dataframe was divided into groups of rows, you call the attribute groups’
GroupBy object.

>>> group.groups
{'green': [2, 4], 'red': [1, 3], 'white': [0]}

As you can see, each group is listed and explicitly specifies the rows of the dataframe assigned to each of
them. Now it is sufficient to apply the operation on the group to obtain the results for each individual group.

>>> group.mean()
color
green 2.025
red 2.380
white 5.560
Name: price1, dtype: float64
>>> group.sum()
color
green 4.05
red 4.76
white 5.56
Name: price1, dtype: float64

Chapter 6 ■ pandas in depth: data Manipulation

176

 Hierarchical Grouping
You have seen how to group the data according to the values of a column as a key choice. The same thing
can be extended to multiple columns, that is, make a grouping of multiple keys hierarchical.

>>> ggroup = frame['price1'].groupby([frame['color'],frame['object']])
>>> ggroup.groups
{('green', 'pen'): [4], ('green', 'pencil'): [2], ('red', 'ashtray'): [3], ('red',
'pencil'): [1], ('white', 'pen'): [0]}
>>> ggroup.sum()
color object
green pen 2.75
 pencil 1.30
red ashtray 0.56
 pencil 4.20
white pen 5.56
Name: price1, dtype: float64

So far you have applied the grouping to a single column of data, but in reality it can be extended to
multiple columns or to the entire dataframe. If you do not need to reuse the object GroupBy several times, it
is convenient to combine in a single passing all of the grouping and calculation to be done, without defining
any intermediate variable.

>>> frame[['price1','price2']].groupby(frame['color']).mean()
 price1 price2
color
green 2.025 2.375
red 2.380 2.435
white 5.560 4.750
>>> frame.groupby(frame['color']).mean(numeric_only=True) price1 price2
color
green 2.025 2.375
red 2.380 2.435
white 5.560 4.750

 Group Iteration
The GroupBy object supports an iteration to generate a sequence of two tuples containing the name of the
group together with the data portion.

>>> for name, group in frame.groupby('color'):
... print(name)
... print(group)
...
green
 color object price1 price2
2 green pencil 1.30 1.60
4 green pen 2.75 3.15

Chapter 6 ■ pandas in depth: data Manipulation

177

red
 color object price1 price2
1 red pencil 4.20 4.12
3 red ashtray 0.56 0.75
white
 color object price1 price2
0 white pen 5.56 4.75

This example only applied the print variable for illustration. In fact, you replace the printing operation
of a variable with the function to be applied to it.

 Chain of Transformations
From these examples, you have seen that for each grouping, when subjected to some function calculation
or other operations in general, regardless of how it was obtained and the selection criteria, the result will be
a data structure series (if you selected a single column data) or a dataframe, which then retains the index
system and the name of the columns.

>>> result1 = frame['price1'].groupby(frame['color']).mean()
>>> type(result1)
pandas.core.series.Series
>>> result2 = frame.groupby(frame['color']).mean(numeric_only=True)
>>> type(result2)
pandas.core.frame.DataFrame

It is therefore possible to select a single column at any point in the various phases of this process. Here
are three cases in which the selection of a single column in three different stages of the process applies. This
example illustrates the great flexibility of this system of grouping provided by pandas.

>>> frame['price1'].groupby(frame['color']).mean()
color
green 2.025
red 2.380
white 5.560
Name: price1, dtype: float64
>>> frame.groupby(frame['color'])['price1'].mean()
color
green 2.025
red 2.380
white 5.560
Name: price1, dtype: float64
>>> (frame.groupby(frame['color']).mean(numeric_only=True))['price1']
color
green 2.025
red 2.380
white 5.560
Name: price1, dtype: float64

Chapter 6 ■ pandas in depth: data Manipulation

178

In addition, after an operation of aggregation, the names of some columns may not be very meaningful.
In fact it is often useful to add a prefix to the column name that describes the type of business combination.
Adding a prefix, instead of completely replacing the name, is very useful for keeping track of the source data
from which they derive aggregate values. This is important if you apply a process of transformation chain
(a series or dataframe is generated from another), because it is important to keep some reference with the
source data.

>>> means = frame.groupby('color').mean(numeric_only=True).add_prefix('mean_')>>> means
 mean_price1 mean_price2
color
green 2.025 2.375
red 2.380 2.435
white 5.560 4.750

 Functions on Groups
Although many methods have not been implemented specifically for use with GroupBy, they actually work
correctly with data structures as the series. You saw in the previous section how easy it is to get the series
by a GroupBy object, by specifying the name of the column and then by applying the method to make the
calculation. For example, you can use the calculation of quantiles with the quantiles() function.

>>> group = frame.groupby('color')
>>> group['price1'].quantile(0.6)
color
green 2.170
red 2.744
white 5.560
Name: price1, dtype: float64

You can also define your own aggregation functions. Define the function separately and then pass it as
an argument to the mark() function. For example, you can calculate the range of the values of each group.

>>> def range(series):
... return series.max() - series.min()
...
>>> group['price1'].agg(range)
color
green 1.45
red 3.64
white 0.00
Name: price1, dtype: float64

You can also use more aggregate functions at the same time, with the mark() function passing an array
containing the list of operations to be done, which will become the new columns.

>>> group['price1'].agg(['mean','std',range])
 mean std range
color
green 2.025 1.025305 1.45
red 2.380 2.573869 3.64
white 5.560 NaN 0.00

Chapter 6 ■ pandas in depth: data Manipulation

179

 Advanced Data Aggregation
This section introduces the transform() and apply() functions, which allow you to perform many kinds of
group operations, some of which are very complex.

Now suppose you want to bring together in the same dataframe the following: the dataframe of origin
(the one containing the data) and that obtained by the calculation of group aggregation, for example,
the sum.

>>> frame = pd.DataFrame({ 'color':['white','red','green','red','green'],
... 'price1':[5.56,4.20,1.30,0.56,2.75],
... 'price2':[4.75,4.12,1.60,0.75,3.15]})
>>> frame
 color price1 price2
0 white 5.56 4.75
1 red 4.20 4.12
2 green 1.30 1.60
3 red 0.56 0.75
4 green 2.75 3.15
>>> sums = frame.groupby('color').sum().add_prefix('tot_')
>>> sums
 tot_price1 tot_price2
color
green 4.05 4.75
red 4.76 4.87
white 5.56 4.75
>>> pd.merge(frame,sums,left_on='color',right_index=True)
 color price1 price2 tot_price1 tot_price2
0 white 5.56 4.75 5.56 4.75
1 red 4.20 4.12 4.76 4.87
3 red 0.56 0.75 4.76 4.87
2 green 1.30 1.60 4.05 4.75
4 green 2.75 3.15 4.05 4.75

Thanks to merge(), you can add the results of the aggregation in each line of the dataframe to start.
But there is another way to do this type of operation. That is by using transform(). This function performs
aggregation as you have seen before, but at the same time, it shows the values calculated based on the key
value on each line of the dataframe to start.

>>> frame.groupby('color').transform(np.sum).add_prefix('tot_')
 tot_price1 tot_price2
0 5.56 4.75
1 4.76 4.87
2 4.05 4.75
3 4.76 4.87
4 4.05 4.75

As you can see, the transform() method is a more specialized function that has very specific
requirements: the function passed as an argument must produce a single scalar value (aggregation) to be
broadcasted.

Chapter 6 ■ pandas in depth: data Manipulation

180

The method to cover more general GroupBy is applicable to apply(). This method applies in its
entirety the split-apply-combine scheme. In fact, this function divides the object into parts in order to
be manipulated, invokes the passage of functions on each piece, and then tries to chain together the
various parts.

>>> frame = pd.DataFrame({ 'color':['white','black','white','white','black','black'],
... 'status':['up','up','down','down','down','up'],
... 'value1':[12.33,14.55,22.34,27.84,23.40,18.33],
... 'value2':[11.23,31.80,29.99,31.18,18.25,22.44]})
>>> frame
 color status value1 value2
0 white up 12.33 11.23
1 black up 14.55 31.80
2 white down 22.34 29.99
3 white down 27.84 31.18
4 black down 23.40 18.25
>>> frame.groupby(['color','status']).apply(lambda x: x.max())
 color status value1 value2
color status
black down black down 23.40 18.25
 up black up 18.33 31.80
white down white down 27.84 31.18
 up white up 12.33 11.23
5 black up 18.33 22.44
>>> frame.rename(index=reindex, columns=recolumn)
 color object value
first white ball 5.56
second red mug 4.20
third green pen 1.30
fourth black pencil 0.56
fifth yellow ashtray 2.75
>>> temp = pd.date_range('1/1/2015', periods=10, freq= 'H')
>>> temp
DatetimeIndex(['2015-01-01 00:00:00', '2015-01-01 01:00:00',
 '2015-01-01 02:00:00', '2015-01-01 03:00:00',
 '2015-01-01 04:00:00', '2015-01-01 05:00:00',
 '2015-01-01 06:00:00', '2015-01-01 07:00:00',
 '2015-01-01 08:00:00', '2015-01-01 09:00:00'],
 dtype='datetime64[ns]', freq='H')
Length: 10, Freq: H, Timezone: None
>>> timeseries = pd.Series(np.random.rand(10), index=temp)
>>> timeseries
2015-01-01 00:00:00 0.368960
2015-01-01 01:00:00 0.486875
2015-01-01 02:00:00 0.074269
2015-01-01 03:00:00 0.694613
2015-01-01 04:00:00 0.936190
2015-01-01 05:00:00 0.903345
2015-01-01 06:00:00 0.790933
2015-01-01 07:00:00 0.128697
2015-01-01 08:00:00 0.515943
2015-01-01 09:00:00 0.227647

Chapter 6 ■ pandas in depth: data Manipulation

181

Freq: H, dtype: float64
>>> timetable = pd.DataFrame({'date': temp, 'value1' : np.random.rand(10),
... 'value2' : np.random.rand(10)})
>>> timetable
 date value1 value2
0 2015-01-01 00:00:00 0.545737 0.772712
1 2015-01-01 01:00:00 0.236035 0.082847
2 2015-01-01 02:00:00 0.248293 0.938431
3 2015-01-01 03:00:00 0.888109 0.605302
4 2015-01-01 04:00:00 0.632222 0.080418
5 2015-01-01 05:00:00 0.249867 0.235366
6 2015-01-01 06:00:00 0.993940 0.125965
7 2015-01-01 07:00:00 0.154491 0.641867
8 2015-01-01 08:00:00 0.856238 0.521911
9 2015-01-01 09:00:00 0.307773 0.332822

You then add to the dataframe a column that represents a set of text values that you will use as
key values.

>>> timetable['cat'] = ['up','down','left','left','up','up','down','right','right','up']
>>> timetable
 date value1 value2 cat
0 2015-01-01 00:00:00 0.545737 0.772712 up
1 2015-01-01 01:00:00 0.236035 0.082847 down
2 2015-01-01 02:00:00 0.248293 0.938431 left
3 2015-01-01 03:00:00 0.888109 0.605302 left
4 2015-01-01 04:00:00 0.632222 0.080418 up
5 2015-01-01 05:00:00 0.249867 0.235366 up
6 2015-01-01 06:00:00 0.993940 0.125965 down
7 2015-01-01 07:00:00 0.154491 0.641867 right
8 2015-01-01 08:00:00 0.856238 0.521911 right
9 2015-01-01 09:00:00 0.307773 0.332822 up

The example shown here, however, has duplicate key values.

 Conclusions
In this chapter, you saw the three basic parts that divide the data manipulation phase: preparation,
processing, and data aggregation. Thanks to a series of examples, you learned about a set of library functions
that allow pandas to perform these operations.

You saw how to apply these functions on simple data structures so that you can become familiar with
how they work and understand their applicability to more complex cases. You now have the knowledge you
need to prepare a dataset for the next phase of data analysis: data visualization.

The next chapter presents the Python library matplotlib, which can convert data structures in
any chart.

Chapter 6 ■ pandas in depth: data Manipulation

	Chapter 6: pandas in Depth: Data Manipulation
	Data Preparation
	Merging
	Merging on an Index

	Concatenating
	Combining
	Pivoting
	Pivoting with Hierarchical Indexing
	Pivoting from “Long” to “Wide” Format

	Removing

	Data Transformation
	Removing Duplicates
	Mapping
	Replacing Values via Mapping
	Adding Values via Mapping
	Rename the Indexes of the Axes

	Discretization and Binning
	Detecting and Filtering Outliers

	Permutation
	Random Sampling

	String Manipulation
	Built-in Methods for String Manipulation
	Regular Expressions

	Data Aggregation
	GroupBy
	A Practical Example
	Hierarchical Grouping

	Group Iteration
	Chain of Transformations
	Functions on Groups

	Advanced Data Aggregation
	Conclusions

