
73

CHAPTER 4

The pandas Library—An
Introduction

This chapter gets into the heart of this book: the pandas library. This fantastic Python library is a perfect tool
for anyone who wants to perform data analysis using Python as a programming language.

First you’ll learn about the fundamental aspects of this library and how to install it on your system, and
then you’ll become familiar with the two data structures, called series and dataframes. During the course of
the chapter, you’ll work with a basic set of functions provided by the pandas library, in order to perform the
most common data processing tasks. Getting familiar with these operations is a key goal of the rest of the
book. This is why it is very important to repeat this chapter until you feel comfortable with its content.

Furthermore, with a series of examples, you’ll learn some particularly new concepts introduced
in the pandas library: indexing data structures. You’ll learn how to get the most of this feature for data
manipulation in this chapter and in the next chapters.

Finally, you’ll see how to extend the concept of indexing to multiple levels at the same time, through the
process called hierarchical indexing.

 pandas: The Python Data Analysis Library
pandas is an open-source Python library for highly specialized data analysis. It is currently the reference
point that all professionals using the Python language need to study for the statistical purposes of analysis
and decision making.

This library was designed and developed primarily by Wes McKinney starting in 2008. In 2012, Sien
Chang, one of his colleagues, was added to the development. Together they set up one of the most used
libraries in the Python community.

pandas arises from the need to have a specific library to analyze data that provides, in the simplest
possible way, all the instruments for data processing, data extraction, and data manipulation.

This Python package is designed on the basis of the NumPy library. This choice was critical to the
success and the rapid spread of pandas. In fact, this choice not only makes this library compatible with most
other modules, but also takes advantage of the high quality of the NumPy module.

Another fundamental choice was to design ad hoc data structures for data analysis. In fact, instead of
using existing data structures built into Python or provided by other libraries, two new data structures were
developed.

These data structures are designed to work with relational data or labeled data, thus allowing you to
manage data with features similar to those designed for SQL relational databases and Excel spreadsheets.

© Fabio Nelli 2023
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-9532-8_4

https://doi.org/10.1007/978-1-4842-9532-8_4#DOI

74

Throughout the book in fact, you will see a series of basic operations for data analysis, which are
normally used on database tables and spreadsheets. pandas in fact provides an extended set of functions
and methods that allow you to perform these operations efficiently.

So pandas’ main purpose is to provide all the building blocks for anyone approaching the data
analysis world.

 Installation of pandas
The easiest and most general way to install the pandas library is to use a prepackaged solution, that is,
installing it through an Anaconda distribution. In fact, over the years this distribution has developed more
and more around the data analysis environment, becoming the reference platform for those who work
in this area. In addition to pandas, in fact, there are many other libraries available that specialize in data
analysis, machine learning, and data visualization. It also provides useful development and analysis tools, as
well as Jupyter Notebook.

 Installation from Anaconda
For those who choose to use the Anaconda distribution, managing the installation is very simple. The
simplest way is the graphical one, activating Anaconda Navigator and then selecting from the Environments
panel the virtual environment on which you want to install the library, as shown in Figure 4-1. This will
activate the Python virtual environment on which to install pandas and then run the examples in the book.

Figure 4-1. Selection and activation of the Python virtual environment with Anaconda Navigator

Chapter 4 ■ the pandas Library—an introduCtion

75

Once the desired virtual environment is activated, go to the right side of Anaconda Navigator and select
All from the top drop-down menu. This will display the list of all available packages (installed and not) with
their version corresponding to the chosen Python version. Search for pandas (see Step 1 in Figure 4-2).
Almost instantly, all the pandas-related packages should appear. Select the one corresponding to the pandas
library (as shown in Step 2 of Figure 4-2). At this point, start the installation of the package by clicking the
Apply button at the bottom right (as shown in Point 3 of Figure 4-2).

Figure 4-2. Search and select the pandas package and then start the installation with Anaconda Navigator

After a few seconds a window will appear with the list of packages to install and their versions (pandas
and dependencies), as shown in Figure 4-3. Click the Apply button to confirm the installation. A scroll bar at
the bottom will show the progress of the installation.

Chapter 4 ■ the pandas Library—an introduCtion

76

Figure 4-3. List of packages to install and their versions shown when installing a package in Anaconda
Navigator

If you prefer, even within the Anaconda distribution, there is a console from which to check and
install packages. Still from Anaconda Navigator, in the Home panel, select the CMD.exe Prompt to open
a command console (as shown in Figure 4-4). Another window will open with the console related to the
virtual environment you activated, from which you can enter all the commands manually.

Chapter 4 ■ the pandas Library—an introduCtion

77

Figure 4-4. Launching the Python virtual environment command console from Anaconda Navigator

In my case, because I’m currently on a Windows system and I’m working on a Python virtual
environment that I called Edition3, I get the following prompt.

(Edition3) C:\Users\nelli>

First you have to see if the pandas module is installed and, if so, which version. To do this, type the
following command from the terminal:

conda list pandas

Because I have the module installed on my PC (Windows), I get the following result:

packages in environment at C:\Users\nelli\anaconda3\envs\Edition3:
#
Name Version Build Channel
pandas 1.5.3 py311heda8569_0

If you do not have pandas installed, you need to install it. Enter the following command to do so:

conda install pandas

Chapter 4 ■ the pandas Library—an introduCtion

78

Anaconda will immediately check all dependencies, managing the installation of other modules,
without you having to worry too much.

Package Plan

 environment location: C:\Users\nelli\anaconda3\envs\Edition3

 added / updated specs:
 - pandas

The following NEW packages will be INSTALLED:

 bottleneck pkgs/main/win-64::bottleneck-1.3.5-py311h5bb9823_0 None
 numexpr pkgs/main/win-64::numexpr-2.8.4-py311hffd1eac_0 None
 pandas pkgs/main/win-64::pandas-1.5.3-py311heda8569_0 None
 pytz pkgs/main/win-64::pytz-2022.7-py311haa95532_0 NoneProceed ([y]/n)?

Enter y to continue with the installation.
If you want to upgrade your package to a newer version, the command to do so is very simple and

intuitive:

conda update pandas

The system will check the version of pandas and the version of all the modules on which it depends and
then suggest any updates. It will then ask if you want to proceed with the update.

 Installation from PyPI
If you are not using the Anaconda platform, the easiest way to install the pandas library on your Python
environment is via PyPI using the pip command. From the console, enter the following command:

pip install pandas

 Getting Started with pandas
As you saw during installation, there are several approaches on how to work with pandas. You can choose
to open a Jupyter notebook, work with the QtConsole (IPython GUI), or more simply open a session on a
simple Python console and enter the instructions one at a time. There is no absolute best way to proceed;
all of these methods have strengths and weaknesses depending on the case. The most important thing is to
work with the code interactively, by entering a command one by one. This way, you have the opportunity to
become familiar with the individual functions and data structures that are explained in this chapter.

Furthermore, the data and functions defined in the various examples remain valid throughout the
chapter, which means you don’t have to define them each time. You are invited, at the end of each example,
to repeat the various commands, modify them if appropriate, and control how the values in the data
structures vary during operation. This approach is great for getting familiar with the different topics covered
in this chapter, leaving you the opportunity to interact freely with what you are reading.

Chapter 4 ■ the pandas Library—an introduCtion

79

 ■ Note this chapter assumes that you have some familiarity with python and numpy in general. if you have
any difficulty, read Chapters 2 and 3 of this book.

First, open a session on the Python shell and then import the pandas library. The general practice for
importing the pandas module is as follows:

>>> import pandas as pd
>>> import numpy as np

Thus, in this chapter and throughout the book, every time you see pd and np, you’ll make reference to
an object or method referring to these two libraries, even though you will often be tempted to import the
pandas module in this way:

>>> from pandas import *

Thus, you no longer have to reference a function, object, or method with pd; this approach is not
considered good practice by the Python community in general. If you are working on Jupyter, import the two
libraries into the first cell of the notebook and run it, as shown in Figure 4-5.

Figure 4-5. Importing the NumPy and pandas libraries into a Jupyter Notebook

From now on, any line of code inserted in the examples in the book will correspond to a cell in the
notebook. Just as you click ENTER on the Python console to immediately see the result of the entered
command, in the same way you write the command into a single cell of the Notebook and execute it.

 Introduction to pandas Data Structures
The heart of pandas is the two primary data structures on which all transactions, which are generally made
during the analysis of data, are centralized:

• Series

• Dataframes

Chapter 4 ■ the pandas Library—an introduCtion

https://doi.org/10.1007/978-1-4842-9532-8_2
https://doi.org/10.1007/978-1-4842-9532-8_3

80

The series, as you will see, constitutes the data structure designed to accommodate a sequence of one-
dimensional data, while the dataframe, a more complex data structure, is designed to contain cases with
several dimensions.

Although these data structures are not the universal solution to all problems, they do provide a valid
and robust tool for most applications. In fact, they remain very simple to understand and use. In addition,
many cases of more complex data structures can still be traced to these simple two cases.

However, their peculiarities are based on a particular feature—integration in their structure of index
objects and labels. You will see that this feature causes these data structures to be easily manipulated.

 The Series
The series is the object of the pandas library designed to represent one-dimensional data structures,
similar to an array but with some additional features. Its internal structure is simple (see Figure 4-6) and is
composed of two arrays associated with each other. The main array holds the data (data of any NumPy type)
to which each element is associated with a label, contained within the other array, called the index.

Figure 4-6. The structure of the series object

 Declaring a Series
To create the series specified in Figure 4-1, you simply call the Series() constructor and pass as an
argument an array containing the values to be included in it.

>>> s = pd.Series([12,-4,7,9])
>>> s
0 12
1 -4
2 7
3 9
dtype: int64

As you can see from the output of the series, on the left there are the values in the index, which is a
series of labels, and on the right are the corresponding values.

If you do not specify any index during the definition of the series, by default, pandas will assign
numerical values increasing from 0 as labels. In this case, the labels correspond to the indexes (position in
the array) of the elements in the series object.

Chapter 4 ■ the pandas Library—an introduCtion

81

Often, however, it is preferable to create a series using meaningful labels in order to distinguish and
identify each item regardless of the order in which they were inserted into the series.

In this case it will be necessary, during the constructor call, to include the index option and assign an
array of strings containing the labels.

>>> s = pd.Series([12,-4,7,9], index=['a','b','c','d'])
>>> s
a 12
b -4
c 7
d 9
dtype: int64

If you want to individually see the two arrays that make up this data structure, you can call the two
attributes of the series as follows: index and values.

>>> s.values
array([12, -4, 7, 9], dtype=int64)
>>> s.index
Index(['a', 'b', 'c', 'd'], dtype='object')
)

 Selecting the Internal Elements
You can select individual elements as ordinary NumPy arrays, specifying the key.

>>> s[2]
7

Or you can specify the label corresponding to the position of the index.

>>> s['b']
-4

In the same way you select multiple items in a NumPy array, you can specify the following:

>>> s[0:2]
a 12
b -4
dtype: int64

In this case, you can use the corresponding labels, but specify the list of labels in an array.

>>> s[['b','c']]
b -4
c 7
dtype: int64

Chapter 4 ■ the pandas Library—an introduCtion

82

 Assigning Values to the Elements
Now that you understand how to select individual elements, you also know how to assign new values to
them. In fact, you can select the value by index or by label.

>>> s[1] = 0
>>> s
a 12
b 0
c 7
d 9
dtype: int64
>>> s['b'] = 1
>>> s
a 12
b 1
c 7
d 9
dtype: int64

 Defining a Series from NumPy Arrays and Other Series
You can define a new series starting with NumPy arrays or with an existing series.

>>> arr = np.array([1,2,3,4])
>>> s3 = pd.Series(arr)
>>> s3
0 1
1 2
2 3
3 4
dtype: int64
>>> s4 = pd.Series(s)
>>> s4
a 12
b 4
c 7
d 9
dtype: int64

Always keep in mind that the values contained in the NumPy array or in the original series are not
copied, but are passed by reference. That is, the object is inserted dynamically within the new series object.
If it changes, for example its internal element varies in value, those changes will also be present in the new
series object.

>>> s3
0 1
1 2
2 3
3 4
dtype: int64

Chapter 4 ■ the pandas Library—an introduCtion

83

>>> arr[2] = -2
>>> s3
0 1
1 2
2 -2
3 4
dtype: int64

As you can see in this example, by changing the third element of the arr array, the code also modified
the corresponding element in the s3 series.

 Filtering Values
Thanks to the choice of the NumPy library as the base of the pandas library and, as a result, for its data
structures, many operations that are applicable to NumPy arrays are extended to the series. One of these is
filtering values contained in the data structure through conditions.

For example, if you need to know which elements in the series are greater than 8, you write the
following:

>>> s[s > 8]
a 12
d 9
dtype: int64

 Operations and Mathematical Functions
Other operations such as operators (+, -, *, and /) and mathematical functions that are applicable to NumPy
array can be extended to series.

You can simply write the arithmetic expression for the operators.

>>> s / 2
a 6.0
b -2.0
c 3.5
d 4.5
dtype: float64

However, with the NumPy mathematical functions, you must specify the function referenced with np
and the instance of the series passed as an argument.

>>> np.log(s)
a 2.484907
b 0.000000
c 1.945910
d 2.197225
dtype: float64

Chapter 4 ■ the pandas Library—an introduCtion

84

 Evaluating Vales
There are often duplicate values in a series. Then you may need to have more information about the
samples, including existence of any duplicates and whether a certain value is present in the series.

In this regard, you can declare a series in which there are many duplicate values.

>>> serd = pd.Series([1,0,2,1,2,3], index=['white','white','blue','green','green','yellow'])
>>> serd
white 1
white 0
blue 2
green 1
green 2
yellow 3
dtype: int64

To know all the values contained in the series, excluding duplicates, you can use the unique() function.
The return value is an array containing the unique values in the series, although not necessarily in order.

>>> serd.unique()
array([1, 0, 2, 3], dtype=int64)

A function that’s similar to unique() is value_counts(), which not only returns unique values but also
calculates the occurrences within a series.

>>> serd.value_counts()
2 2
1 2
3 1
0 1
dtype: int64

Finally, isin() evaluates the membership, that is, the given list of values. This function tells you if the
values are contained in the data structure. Boolean values that are returned can be very useful when filtering
data in a series or in a column of a dataframe.

>>> serd.isin([0,3])
white False
white True
blue False
green False
green False
yellow True
dtype: bool
>>> serd[serd.isin([0,3])]
white 0
yellow 3
dtype: int64

Chapter 4 ■ the pandas Library—an introduCtion

85

 NaN Values
The previous case tried to run the logarithm of a negative number and received NaN as a result. This specific
value NaN (Not a Number) is used in pandas data structures to indicate the presence of an empty field or
something that’s not definable numerically.

Generally, these NaN values are a problem and must be managed in some way, especially during
data analysis. These data are often generated when extracting data from a questionable source or when
the source is missing data. Furthermore, as you have just seen, the NaN values can also be generated in
special cases, such as calculations of logarithms of negative values, or exceptions during execution of some
calculation or function. In later chapters, you see how to apply different strategies to address the problem of
NaN values.

Despite their problematic nature, however, pandas allows you to explicitly define NaNs and add them
to a data structure, such as a series. Within the array containing the values, you enter np.NaN wherever you
want to define a missing value.

>>> s2 = pd.Series([5,-3,np.NaN,14])
>>> s2
0 5.0
1 -3.0
2 NaN
3 14.0
dtype: float64

The isnull() and notnull() functions are very useful for identifying the indexes without a value.

>>> s2.isnull()
0 False
1 False
2 True
3 False
dtype: bool
>>> s2.notnull()
0 True
1 True
2 False
3 True
dtype: bool

In fact, these functions return two series with Boolean values that contain the True and False values,
depending on whether the item is a NaN value or less. The isnull() function returns True for NaN values
in the series; inversely, the notnull() function returns True if they are not NaN. These functions are often
placed inside filters to make a condition.

>>> s2[s2.notnull()]
0 5.0
1 -3.0
3 14.0
dtype: float64
>>> s2[s2.isnull()]
2 NaN
dtype: float64

Chapter 4 ■ the pandas Library—an introduCtion

86

 Series as Dictionaries
An alternative way to think of a series is to think of it as an object dict (dictionary). This similarity is
also exploited during the definition of an object series. In fact, you can create a series from a previously
defined dict.

>>> mydict = {'red': 2000, 'blue': 1000, 'yellow': 500,
 'orange': 1000}
>>> myseries = pd.Series(mydict)
>>> myseries
red 2000
blue 1000
yellow 500
orange 1000
dtype: int64

As you can see from this example, the array of the index is filled with the keys, while the data are filled
with the corresponding values. You can also define the array indexes separately. In this case, controlling
correspondence between the keys of the dict and labels array of indexes will run. If there is a mismatch,
pandas will add the NaN value.

>>> colors = ['red','yellow','orange','blue','green']
>>> myseries = pd.Series(mydict, index=colors)
>>> myseries
red 2000.0
yellow 500.0
orange 1000.0
blue 1000.0
green NaN
dtype: float64

 Operations Between Series
You have seen how to perform arithmetic operations between series and scalar values. The same thing is
possible by performing operations between two series, but in this case even the labels come into play.

In fact, one of the great potentials of this type of data structures is that series can align data addressed
differently between them by identifying their corresponding labels.

In the following example, you add two series having only some elements in common with the label.

>>> mydict2 = {'red':400,'yellow':1000,'black':700}
>>> myseries2 = pd.Series(mydict2)
>>> myseries + myseries2
black NaN
blue NaN
green NaN
orange NaN
red 2400.0
yellow 1500.0
dtype: float64

Chapter 4 ■ the pandas Library—an introduCtion

87

You get a new object series in which only the items with the same label are added. All other labels
present in one of the two series are still added to the result but have a NaN value.

 The Dataframe
The dataframe is a tabular data structure very similar to a spreadsheet. This data structure is designed to
extend series to multiple dimensions. In fact, the dataframe consists of an ordered collection of columns (see
Figure 4-7), each of which can contain a value of a different type (numeric, string, Boolean, etc.).

Figure 4-7. The dataframe structure

Unlike series, which have an index array containing labels associated with each element, the dataframe
has two index arrays. The first index array, associated with the lines, has very similar functions to the index
array in series. In fact, each label is associated with all the values in the row. The second array contains a
series of labels, each associated with a particular column.

A dataframe may also be understood as a dict of series, where the keys are the column names and the
values are the series that form the columns of the dataframe. Furthermore, all elements in each series are
mapped according to an array of labels, called the index.

 Defining a Dataframe
The most common way to create a new dataframe is to pass a dict object to the DataFrame() constructor.
This dict object contains a key for each column that you want to define, with an array of values for each
of them.

>>> data = {'color' : ['blue','green','yellow','red','white'],
 'object' : ['ball','pen','pencil','paper','mug'],
 'price' : [1.2,1.0,0.6,0.9,1.7]}
>>> frame = pd.DataFrame(data)
>>> frame
 color object price
0 blue ball 1.2
1 green pen 1.0

Chapter 4 ■ the pandas Library—an introduCtion

88

2 yellow pencil 0.6
3 red paper 0.9
4 white mug 1.7

If you are working with Jupyter and run this command, you will not get the classic output identical
to the one you get with a Python console. Instead, you get a graphical representation of the dataframe, as
shown in Figure 4-8.

Figure 4-8. Graphical representation of the dataframe as a result on a Jupyter Notebook

If the dict object from which you want to create a dataframe contains more data than you are interested
in, you can make a selection. In the constructor of the dataframe, you can specify a sequence of columns
using the columns option. The columns will be created in the order of the sequence regardless of how they
are contained in the dict object.

>>> frame2 = pd.DataFrame(data, columns=['object','price'])
>>> frame2
 object price
0 ball 1.2
1 pen 1.0
2 pencil 0.6
3 paper 0.9
4 mug 1.7

Even for dataframe objects, if the labels are not explicitly specified in the index array, pandas
automatically assigns a numeric sequence starting from 0. Instead, if you want to assign labels to the indexes
of a dataframe, you have to use the index option and assign it an array containing the labels.

>>> frame2 = pd.DataFrame(data, index=['one','two','three','four','five'])
>>> frame2
 color object price
one blue ball 1.2
two green pen 1.0
three yellow pencil 0.6
four red paper 0.9
five white mug 1.7

Chapter 4 ■ the pandas Library—an introduCtion

89

Now that I have introduced the two new options called index and columns, it is easy to imagine an
alternative way to define a dataframe. Instead of using a dict object, you can define three arguments in
the constructor, in the following order—a data matrix, an array containing the labels assigned to the index
option, and an array containing the names of the columns assigned to the columns option.

In many examples, as you will see from now on in this book, to create a matrix of values quickly and
easily, you can use np.arange(16).reshape((4,4)), which generates a 4x4 matrix of numbers increasing
from 0 to 15.

>>> frame3 = pd.DataFrame(np.arange(16).reshape((4,4)),
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])
>>> frame3
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15

 Selecting Elements
If you want to know the name of all the columns of a dataframe, you can specify the columns attribute on the
instance of the dataframe object.

>>> frame.columns
Index(['colors', 'object', 'price'], dtype='object')

Similarly, to get the list of indexes, you should specify the index attribute.

>>> frame.index
RangeIndex(start=0, stop=5, step=1)

You can also get the entire set of data contained within the data structure using the values attribute.

>>> frame.values
array([['blue', 'ball', 1.2],
 ['green', 'pen', 1.0],
 ['yellow', 'pencil', 0.6],
 ['red', 'paper', 0.9],
 ['white', 'mug', 1.7]], dtype=object)

Or, if you are interested in selecting only the contents of a column, you can write the name of
the column.

>>> frame['price']
0 1.2
1 1.0
2 0.6
3 0.9
4 1.7
Name: price, dtype: float64

Chapter 4 ■ the pandas Library—an introduCtion

90

As you can see, the return value is a series object. Another way to do this is to use the column name as
an attribute of the instance of the dataframe.

>>> frame.price
0 1.2
1 1.0
2 0.6
3 0.9
4 1.7
Name: price, dtype: float64

For rows within a dataframe, it is possible to use the loc attribute with the index value of the row that
you want to extract.

>>> frame.loc[2]
color yellow
object pencil
price 0.6
Name: 2, dtype: object

The object returned is again a series in which the names of the columns have become the label of the
array index, and the values have become the data of series.

To select multiple rows, you specify an array with the sequence of rows to insert:

>>> frame.loc[[2,4]]
 color object price
2 yellow pencil 0.6
4 white mug 1.7

If you need to extract a portion of a dataframe, selecting the lines that you want to extract, you can use
the reference numbers of the indexes. In fact, you can consider a row as a portion of a dataframe that has the
index of the row as the source (in the next 0) value and the line above the one you want as a second value (in
the next one).

>>> frame[0:1]
 color object price
0 blue ball 1.2

As you can see, the return value is an object dataframe containing a single row. If you want more than
one line, you must extend the selection range.

>>> frame[1:3]
 color object price
1 green pen 1.0
2 yellow pencil 0.6

Finally, if what you want to achieve is a single value within a dataframe, you first use the name of the
column and then the index or the label of the row.

>>> frame['object'][3]
'paper'

Chapter 4 ■ the pandas Library—an introduCtion

91

 Assigning Values
Once you understand how to access the various elements that make up a dataframe, you follow the same
logic to add or change the values in it.

For example, you have already seen that within the dataframe structure, an array of indexes is
specified by the index attribute, and the row containing the name of the columns is specified with the
columns attribute. Well, you can also assign a label, using the name attribute, to these two substructures to
identify them.

>>> frame.index.name = 'id'
>>> frame.columns.name = 'item'
>>> frame
item color object price
id
0 blue ball 1.2
1 green pen 1.0
2 yellow pencil 0.6
3 red paper 0.9
4 white mug 1.7

One of the best features of the data structures of pandas is their high flexibility. In fact, you can always
intervene at any level to change the internal data structure. For example, a very common operation is to add
a new column.

You can do this by simply assigning a value to the instance of the dataframe and specifying a new
column name.

>>> frame['new'] = 12
>>> frame
 colors object price new
0 blue ball 1.2 12
1 green pen 1.0 12
2 yellow pencil 0.6 12
3 red paper 0.9 12
4 white mug 1.7 12

As you can see from this result, there is a new column called new with the value within 12 replicated for
each of its elements.

If, however, you want to update the contents of a column, you have to use an array.

>>> frame['new'] = [3.0,1.3,2.2,0.8,1.1]
>>> frame
 color object price new
0 blue ball 1.2 3.0
1 green pen 1.0 1.3
2 yellow pencil 0.6 2.2
3 red paper 0.9 0.8
4 white mug 1.7 1.1

You can follow a similar approach if you want to update an entire column, for example, by using the np.
arange() function to update the values of a column with a predetermined sequence.

Chapter 4 ■ the pandas Library—an introduCtion

92

The columns of a dataframe can also be created by assigning a series to one of them, for example by
specifying a series containing an increasing series of values through the use of np.arange().

>>> ser = pd.Series(np.arange(5))
>>> ser
0 0
1 1
2 2
3 3
4 4
dtype: int32
>>> frame['new'] = ser
>>> frame
 color object price new
0 blue ball 1.2 0
1 green pen 1.0 1
2 yellow pencil 0.6 2
3 red paper 0.9 3
4 white mug 1.7 4

Finally, to change a single value, you simply select the item and give it the new value. The operation
seems very simple and intuitive. To access the element, I could think of inserting the column and then the
row indexes and thus obtaining the current value.

And in fact if I write the following command:

>>> frame['price'][2]
0.6

I actually get the value of the corresponding element of the dataframe. But if I go to make an assignment
on this element, in order to modify its value, I get a warning message.

>>> frame['price'][2] = 3.3
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

If check inside the dataframe, however, I see that the element has changed its value.

>>> frame
 color object price new
0 blue ball 1.2 0
1 green pen 1.0 1
2 yellow pencil 3.3 2
3 red paper 0.9 3
4 white mug 1.7 4

In reality, the message warns you that this nomenclature could lead to assignment errors in the passage
between internal slices that generate copies or views. In this simple case it doesn’t happen, but in more
complex cases where you do more complex index assignments (with index lists and conditions), it could
happen. So the most correct and cleanest way to write the previous command is to define the indexes of the
dataframe section to select/assign through the loc() function

>>> frame.loc[2, 'price'] = 3.3

Chapter 4 ■ the pandas Library—an introduCtion

93

 Membership of a Value
You have already seen the isin() function applied to the series to determine the membership of a set of
values. Well, this feature is also applicable to dataframe objects.

>>> frame.isin([1.0,'pen'])
 color object price new
0 False False False False
1 False True True True
2 False False False False
3 False False False False
4 False False False False

You get a dataframe containing Boolean values, where True indicates values that meet the membership.
If you pass the value returned as a condition, you’ll get a new dataframe containing only the values that
satisfy the condition.

>>> frame[frame.isin([1.0,'pen'])]
 color object price new
0 NaN NaN NaN NaN
1 NaN pen 1.0 1.0
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN

 Deleting a Column
If you want to delete an entire column and all its contents, use the del command.

>>> del frame['new']
>>> frame
 colors object price
0 blue ball 1.2
1 green pen 1.0
2 yellow pencil 3.3
3 red paper 0.9
4 white mug 1.7

 Filtering
Even with a dataframe, you can apply filtering through the application of certain conditions. For example,
say you want to get all elements that have a column value below a certain limit, for example, where the
prices are less than 1.2. You simply need to insert this condition into the index of the dataframe.

>>> frame[frame['price'] < 1.2]
>>> frame
 colors object price
1 green pen 1.0
3 red paper 0.9

Chapter 4 ■ the pandas Library—an introduCtion

94

You will get a dataframe containing only elements with prices less than 1.2, keeping their original
position. You have thus carried out a filtering operation on the elements of the dataframe.

 Dataframe from a Nested dict
A very common data structure used in Python is a nested dict, as follows:

nestdict = { 'red': { 2012: 22, 2013: 33 },
 'white': { 2011: 13, 2012: 22, 2013: 16},
 'blue': {2011: 17, 2012: 27, 2013: 18}}

This data structure, when it is passed directly as an argument to the DataFrame() constructor, will be
interpreted by pandas to treat external keys as column names and internal keys as labels for the indexes.

During the interpretation of the nested structure, it is possible that not all fields will find a successful
match. pandas compensates for this inconsistency by adding the NaN value to the missing values.

>>> nestdict = {'red':{2012: 22, 2013: 33},
... 'white':{2011: 13, 2012: 22, 2013: 16},
... 'blue': {2011: 17, 2012: 27, 2013: 18}}
>>> frame2 = pd.DataFrame(nestdict)
>>> frame2
 red white blue
2012 22.0 22 27
2013 33.0 16 18
2011 NaN 13 17

 Transposition of a Dataframe
An operation that you might need when you’re dealing with tabular data structures is transposition (that is,
columns become rows and rows become columns). pandas allows you to do this in a very simple way. You
can get the transposition of the dataframe by adding the T attribute to its application.

>>> frame2.T
 2012 2013 2011
red 22.0 33.0 NaN
white 22.0 16.0 13.0
blue 27.0 18.0 17.0

 The Index Objects
Now that you know what the series and the dataframe are and how they are structured, you can likely
perceive the peculiarities of these data structures. Indeed, the majority of their excellent characteristics are
due to the presence of an Index object that’s integrated in these data structures.

The Index objects are responsible for the labels on the axes and other metadata as the name of the axes.
You have already seen how an array containing labels is converted into an Index object and that you need to
specify the index option in the constructor.

>>> ser = pd.Series([5,0,3,8,4], index=['red','blue','yellow','white','green'])
>>> ser.index
Index(['red', 'blue', 'yellow', 'white', 'green'], dtype='object')

Chapter 4 ■ the pandas Library—an introduCtion

95

Unlike all the other elements in the pandas data structures (series and dataframes), the Index objects
are immutable. Once declared, they cannot be changed. This ensures their secure sharing between the
various data structures.

Each Index object has a number of methods and properties that are useful when you need to know the
values they contain.

 Methods on Index
There are specific methods that enable you to get information about indexes from a data structure. For
example, idmin() and idmax() are two functions that return, respectively, the index with the lowest value
and the index with the highest value.

>>> ser.idxmin()
'blue'
>>> ser.idxmax()
'white'

 Index with Duplicate Labels
So far, you have seen all cases in which indexes within a single data structure have a unique label. Although
many functions require this condition to run, this condition is not mandatory on the data structures
of pandas.

This example defines, by way of an example, a series with some duplicate labels.

>>> serd = pd.Series(range(6), index=['white','white','blue','green','green','yellow'])
>>> serd
white 0
white 1
blue 2
green 3
green 4
yellow 5
dtype: int64

Regarding the selection of elements in a data structure, if there are more values with the same label, you
get a series in place of a single element.

>>> serd['white']
white 0
white 1
dtype: int64

Chapter 4 ■ the pandas Library—an introduCtion

96

The same logic applies to the dataframe, with duplicate indexes that will return the dataframe.
With small data structures, it is easy to identify duplicate indexes, but if the structure becomes gradually

larger, this starts to become difficult. In this respect, pandas provides you with the is_unique attribute
belonging to the Index objects. This attribute will tell you if there are indexes with duplicate labels inside the
structure data (both series and dataframe).

>>> serd.index.is_unique
False
>>> frame.index.is_unique
True

 Other Functionalities on Indexes
Compared to data structures commonly used with Python, you saw that pandas, as well as taking advantage
of the high-performance quality offered by NumPy arrays, has chosen to integrate indexes in them.

This choice has proven somewhat successful. In fact, despite the enormous flexibility given by the
dynamic structures that already exist, using the internal reference to the structure, such as that offered by the
labels, allows developers who must perform operations to carry them out in a simpler and more direct way.

This section analyzes in detail a number of basic features that take advantage of this mechanism.

• Reindexing

• Dropping

• Alignment

 Reindexing
It was previously stated that once it’s declared in a data structure, the Index object cannot be changed. This
is true, but by executing a reindexing, you can also overcome this problem.

In fact it is possible to obtain a new data structure from an existing one where indexing rules can be
defined again.

>>> ser = pd.Series([2,5,7,4], index=['one','two','three','four'])
>>> ser
one 2
two 5
three 7
four 4
dtype: int64

In order to reindex this series, pandas provides you with the reindex() function. This function creates a
new series object with the values of the previous series rearranged according to the new sequence of labels.

During reindexing, it is possible to change the order of the sequence of indexes, delete some of them,
and add new ones. In the case of a new label, pandas adds NaN as the corresponding value.

>>> ser.reindex(['three','four','five','one'])
three 7.0
four 4.0
five NaN
one 2.0
dtype: float64

Chapter 4 ■ the pandas Library—an introduCtion

97

As you can see from the value returned, the order of the labels has been completely rearranged. The
value corresponding to the label two has been dropped and a new label called five is present in the series.

However, to measure the reindexing process, defining the list of the labels can be awkward, especially
with a large dataframe. You can use a method that allows you to fill in or interpolate values automatically.

To better understand this mode of automatic reindexing, define the following series.

>>> ser3 = pd.Series([1,5,6,3],index=[0,3,5,6])
>>> ser3
0 1
3 5
5 6
6 3
dtype: int64

As you can see in this example, the index column is not a perfect sequence of numbers; in fact there
are some missing values (1, 2, and 4). A common need would be to perform interpolation in order to obtain
the complete sequence of numbers. To achieve this, you use reindexing with the method option set to ffill.
Moreover, you need to set a range of values for indexes. In this case, to specify a set of values between 0 and
5, you can use range(6) as an argument.

>>> ser3.reindex(range(6),method='ffill')
0 1
1 1
2 1
3 5
4 5
5 6
dtype: int64

As you can see from the result, the indexes that were not present in the original series were added. By
interpolation, those with the lowest index in the original series have been assigned as values. In fact, the
indexes 1 and 2 have the value 1, which belongs to index 0.

If you want this index value to be assigned during the interpolation, you have to use the bfill method.

>>> ser3.reindex(range(6),method='bfill')
0 1
1 5
2 5
3 5
4 6
5 6
dtype: int64

In this case, the value assigned to the indexes 1 and 2 is the value 5, which belongs to index 3.
Extending the concepts of reindexing with series to the dataframe, you can have a rearrangement not

only for indexes (rows), but also with regard to the columns, or even both. As previously mentioned, adding
a new column or index is possible, but since there are missing values in the original data structure, pandas
adds NaN values to them.

>>> frame.reindex(range(5), method='ffill',columns=['colors','price','new','object'])
 colors price new object
0 blue 1.2 blue ball

Chapter 4 ■ the pandas Library—an introduCtion

98

1 green 1.0 green pen
2 yellow 3.3 yellow pencil
3 red 0.9 red paper
4 white 1.7 white mug

 Dropping
Another operation that is connected to Index objects is dropping. Deleting a row or a column becomes
simple, due to the labels used to indicate the indexes and column names.

Also in this case, pandas provides a specific function for this operation, called drop(). This method will
return a new object without the items that you want to delete.

For example, take the case where you want to remove a single item from a series. To do this, define a
generic series of four elements with four distinct labels.

>>> ser = pd.Series(np.arange(4.), index=['red','blue','yellow','white'])
>>> ser
red 0.0
blue 1.0
yellow 2.0
white 3.0
dtype: float64

Now say, for example, that you want to delete the item corresponding to the label yellow. Simply
specify the label as an argument of the function drop() to delete it.

>>> ser.drop('yellow')
red 0.0
blue 1.0
white 3.0
dtype: float64

To remove more items, just pass an array with the corresponding labels.

>>> ser.drop(['blue','white'])
red 0.0
yellow 2.0
dtype: float64

Regarding the dataframe instead, the values can be deleted by referring to the labels of both axes.
Declare the following frame by way of example.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])
>>> frame
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15

Chapter 4 ■ the pandas Library—an introduCtion

99

To delete rows, you just pass the indexes of the rows.

>>> frame.drop(['blue','yellow'])
 ball pen pencil paper
red 0 1 2 3
white 12 13 14 15

To delete columns, you always need to specify the indexes of the columns, but you must specify the axis
from which to delete the elements, and this can be done using the axis option. So to refer to the column
names, you should specify axis = 1.

>>> frame.drop(['pen','pencil'],axis=1)
 ball paper
red 0 3
blue 4 7
yellow 8 11
white 12 15

 Arithmetic and Data Alignment
Perhaps the most powerful feature involving the indexes in a data structure is that pandas can align indexes
coming from two different data structures. This is especially true when you are performing an arithmetic
operation on them. In fact, during these operations, not only can the indexes between the two structures be
in a different order, but they also can be present in only one of the two structures.

As you can see from the examples that follow, pandas proves to be very powerful in aligning indexes
during these operations. For example, you can start considering two series in which they are defined,
respectively, two arrays of labels not perfectly matching each other.

>>> s1 = pd.Series([3,2,5,1],['white','yellow','green','blue'])
>>> s2 = pd.Series([1,4,7,2,1],['white','yellow','black','blue','brown'])

Now among the various arithmetic operations, consider the simple sum. As you can see from the two
series just declared, some labels are present in both, while other labels are present only in one of the two.
When the labels are present in both operators, their values will be added, while in the opposite case, they
will also be shown in the result (new series), but with the value NaN.

>>> s1 + s2
black NaN
blue 3.0
brown NaN
green NaN
white 4.0
yellow 6.0
dtype: float64

In the case of the dataframe, although it may appear more complex, the alignment follows the same
principle, but is carried out both for the rows and for the columns.

>>> frame1 = pd.DataFrame(np.arange(16).reshape((4,4)),
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])

Chapter 4 ■ the pandas Library—an introduCtion

100

>>> frame2 = pd.DataFrame(np.arange(12).reshape((4,3)),
... index=['blue','green','white','yellow'],
... columns=['mug','pen','ball'])
>>> frame1
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15
>>> frame2
 mug pen ball
blue 0 1 2
green 3 4 5
white 6 7 8
yellow 9 10 11
>>> frame1 + frame2
 ball mug paper pen pencil
blue 6.0 NaN NaN 6.0 NaN
green NaN NaN NaN NaN NaN
red NaN NaN NaN NaN NaN
white 20.0 NaN NaN 20.0 NaN
yellow 19.0 NaN NaN 19.0 NaN

 Operations Between Data Structures
Now that you are familiar with the data structures such as series and dataframe and you have seen how
various elementary operations can be performed on them, it’s time to go to operations involving two or more
of these structures.

For example, in the previous section, you saw how the arithmetic operators apply between two of these
objects. This section deepens the topic of operations that can be performed between two data structures.

 Flexible Arithmetic Methods
You’ve just seen how to use mathematical operators directly on the pandas data structures. The same
operations can also be performed using appropriate methods, called flexible arithmetic methods.

• add()

• sub()

• div()

• mul()

In order to call these functions, you need to use a different specification than what you’re used to
dealing with when using mathematical operators. For example, instead of writing a sum between two
dataframes, such as frame1 + frame2, you have to use the following format:

>>> frame1.add(frame2)
 ball mug paper pen pencil
blue 6.0 NaN NaN 6.0 NaN
green NaN NaN NaN NaN NaN

Chapter 4 ■ the pandas Library—an introduCtion

101

red NaN NaN NaN NaN NaN
white 20.0 NaN NaN 20.0 NaN
yellow 19.0 NaN NaN 19.0 NaN

As you can see, the results are the same as what you’d get using the addition operator +. You can also
note that if the indexes and column names differ greatly from one series to another, you’ll find yourself with
a new dataframe full of NaN values. You’ll see later in this chapter how to handle this kind of data.

 Operations Between Dataframes and Series
Coming back to the arithmetic operators, pandas allows you to make transactions between different
structures, such as between a dataframe and a series. For example, you can define these two structures in the
following way.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])
>>> frame
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15
>>> ser = pd.Series(np.arange(4), index=['ball','pen','pencil','paper'])
>>> ser
ball 0
pen 1
pencil 2
paper 3
dtype: int64

The two newly defined data structures have been created specifically so that the indexes of series match
the names of the columns of the dataframe. This way, you can apply a direct operation.

>>> frame - ser
 ball pen pencil paper
red 0 0 0 0
blue 4 4 4 4
yellow 8 8 8 8
white 12 12 12 12

As you can see, the elements of the series are subtracted from the values of the dataframe
corresponding to the same index on the column. The value is subtracted for all values of the column,
regardless of their index.

If an index is not present in one of the two data structures, the result will be a new column with that
index and all its elements will be NaN.

>>> ser['mug'] = 9
>>> ser
ball 0
pen 1

Chapter 4 ■ the pandas Library—an introduCtion

102

pencil 2
paper 3
mug 9
dtype: int64
>>> frame - ser
 ball mug paper pen pencil
red 0 NaN 0 0 0
blue 4 NaN 4 4 4
yellow 8 NaN 8 8 8
white 12 NaN 12 12 12

 Function Application and Mapping
This section covers the pandas library functions.

 Functions by Element
The pandas library is built on the foundations of NumPy and then extends many of its features by adapting
them to new data structures as series and dataframes. Among these are the universal functions, called ufunc.
This class of functions operates by element in the data structure.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])
>>> frame
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15

For example, you can calculate the square root of each value in the dataframe using the NumPy
np.sqrt().

>>> np.sqrt(frame)
 ball pen pencil paper
red 0.000000 1.000000 1.414214 1.732051
blue 2.000000 2.236068 2.449490 2.645751
yellow 2.828427 3.000000 3.162278 3.316625
white 3.464102 3.605551 3.741657 3.872983

 Functions by Row or Column
The application of the functions is not limited to the ufunc functions, but also includes those defined by the
user. The important point is that they operate on a one-dimensional array, giving a single number as a result.
For example, you can define a lambda function that calculates the range covered by the elements in an array.

>>> f = lambda x: x.max() - x.min()

Chapter 4 ■ the pandas Library—an introduCtion

103

It is possible to define the function this way as well:

>>> def f(x):
... return x.max() - x.min()
...

Using the apply() function, you can apply the function just defined on the dataframe.

>>> frame.apply(f)
ball 12
pen 12
pencil 12
paper 12
dtype: int64

The result this time is one value for the column, but if you prefer to apply the function by row instead of
by column, you have to set the axis option to 1.

>>> frame.apply(f, axis=1)
red 3
blue 3
yellow 3
white 3
dtype: int64

It is not mandatory that the apply() method return a scalar value. It can also return a series. A useful
case is to extend the application to many functions simultaneously. In this case, you have two or more values
for each feature applied. This can be done by defining a function in the following manner:

>>> def f(x):
... return pd.Series([x.min(), x.max()], index=['min','max'])
...

Then, you apply the function as before. But in this case, as an object returned, you get a dataframe
instead of a series, in which there will be as many rows as the values returned by the function.

>>> frame.apply(f)
 ball pen pencil paper
min 0 1 2 3
max 12 13 14 15

 Statistics Functions
Most of the statistical functions for arrays are still valid for dataframe, so using the apply() function is no
longer necessary. For example, functions such as sum() and mean() can calculate the sum and the average,
respectively, of the elements contained within a dataframe.

>>> frame.sum()
ball 24
pen 28
pencil 32

Chapter 4 ■ the pandas Library—an introduCtion

104

paper 36
dtype: int64
>>> frame.mean()
ball 6.0
pen 7.0
pencil 8.0
paper 9.0
dtype: float64

There is also a function called describe() that allows you to obtain summary statistics at once.

>>> frame.describe()
 ball pen pencil paper
count 4.000000 4.000000 4.000000 4.000000
mean 6.000000 7.000000 8.000000 9.000000
std 5.163978 5.163978 5.163978 5.163978
min 0.000000 1.000000 2.000000 3.000000
25% 3.000000 4.000000 5.000000 6.000000
50% 6.000000 7.000000 8.000000 9.000000
75% 9.000000 10.000000 11.000000 12.000000
max 12.000000 13.000000 14.000000 15.000000

 Sorting and Ranking
Another fundamental operation that uses indexing is sorting. Sorting the data is often a necessity and it is
very important to be able to do it easily. pandas provides the sort_index() function, which returns a new
object that’s identical to the start, but in which the elements are ordered.

Let’s start by seeing how you can sort items in a series. The operation is quite trivial since the list of
indexes to be ordered is only one.

>>> ser = pd.Series([5,0,3,8,4],
... index=['red','blue','yellow','white','green'])
>>> ser
red 5
blue 0
yellow 3
white 8
green 4
dtype: int64
>>> ser.sort_index()
blue 0
green 4
red 5
white 8
yellow 3
dtype: int64

Chapter 4 ■ the pandas Library—an introduCtion

105

As you can see, the items were sorted in ascending alphabetical order based on their labels (from
A to Z). This is the default behavior, but you can set the opposite order by setting the ascending option
to False.

>>> ser.sort_index(ascending=False)
yellow 3
white 8
red 5
green 4
blue 0
dtype: int64

With the dataframe, the sorting can be performed independently on each of its two axes. So if you
want to order by row following the indexes, you just continue to use the sort_index() function without
arguments as you’ve seen before. Or if you prefer to order by columns, you need to set the axis options to 1.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])
>>> frame
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15
>>> frame.sort_index()
 ball pen pencil paper
blue 4 5 6 7
red 0 1 2 3
white 12 13 14 15
yellow 8 9 10 11
>>> frame.sort_index(axis=1)
 ball paper pen pencil
red 0 3 1 2
blue 4 7 5 6
yellow 8 11 9 10
white 12 15 13 14

So far, you have learned how to sort the values according to the indexes. But very often you may need to
sort the values contained in the data structure. In this case, you have to differentiate depending on whether
you have to sort the values of a series or a dataframe.

If you want to order the series, you need to use the sort_values() function.

>>> ser.sort_values()
blue 0
yellow 3
green 4
red 5
white 8
dtype: int64

Chapter 4 ■ the pandas Library—an introduCtion

106

If you need to order the values in a dataframe, use the sort_values() function seen previously but with
the by option. Then you have to specify the name of the column on which to sort.

>>> frame.sort_values(by='pen')
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15

If the sorting criteria will be based on two or more columns, you can assign an array containing the
names of the columns to the by option.

>>> frame.sort_values(by=['pen','pencil'])
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15

The ranking is an operation closely related to sorting. It mainly consists of assigning a rank (that is, a
value that starts at 0 and then increases gradually) to each element of the series. The rank will be assigned
starting from the lowest value to the highest.

>>> ser.rank()
red 4.0
blue 1.0
yellow 2.0
white 5.0
green 3.0
dtype: float64

The rank can also be assigned in the order in which the data are already in the data structure (without a
sorting operation). In this case, you just add the method option with the first value assigned.

>>> ser.rank(method='first')
red 4.0
blue 1.0
yellow 2.0
white 5.0
green 3.0
dtype: float64

By default, even the ranking follows an ascending sort. To reverse this criteria, set the ascending option
to False.

>>> ser.rank(ascending=False)
red 2.0
blue 5.0
yellow 4.0

Chapter 4 ■ the pandas Library—an introduCtion

107

white 1.0
green 3.0
dtype: float64

 Correlation and Covariance
Two important statistical calculations are correlation and covariance, expressed in pandas by the corr()
and cov() functions. These kinds of calculations normally involve two series.

>>> seq2 = pd.Series([3,4,3,4,5,4,3,2],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq = pd.Series([1,2,3,4,4,3,2,1],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq.corr(seq2)
0.7745966692414835
>>> seq.cov(seq2)
0.8571428571428571

Covariance and correlation can also be applied to a single dataframe. In this case, they return their
corresponding matrices in the form of two new dataframe objects.

>>> frame2 = pd.DataFrame([[1,4,3,6],[4,5,6,1],[3,3,1,5],[4,1,6,4]],
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])
>>> frame2
 ball pen pencil paper
red 1 4 3 6
blue 4 5 6 1
yellow 3 3 1 5
white 4 1 6 4
>>> frame2.corr()
 ball pen pencil paper
ball 1.000000 -0.276026 0.577350 -0.763763
pen -0.276026 1.000000 -0.079682 -0.361403
pencil 0.577350 -0.079682 1.000000 -0.692935
paper -0.763763 -0.361403 -0.692935 1.000000
>>> frame2.cov()
 ball pen pencil paper
ball 2.000000 -0.666667 2.000000 -2.333333
pen -0.666667 2.916667 -0.333333 -1.333333
pencil 2.000000 -0.333333 6.000000 -3.666667
paper -2.333333 -1.333333 -3.666667 4.666667

Using the corrwith() method, you can calculate the pairwise correlations between the columns or
rows of a dataframe with a series or another DataFrame().

>>> ser = pd.Series([0,1,2,3,9],
... index=['red','blue','yellow','white','green'])
>>> ser
red 0

Chapter 4 ■ the pandas Library—an introduCtion

108

blue 1
yellow 2
white 3
green 9
dtype: int64
>>> frame2.corrwith(ser)
ball 0.730297
pen -0.831522
pencil 0.210819
paper -0.119523
dtype: float64
>>> frame2.corrwith(frame)
ball 0.730297
pen -0.831522
pencil 0.210819
paper -0.119523
dtype: float64

 “Not a Number” Data
In the previous sections, you saw how easily missing data can be formed. They are recognizable in the data
structures by the NaN (Not a Number) value. So, having values that are not defined in a data structure is quite
common in data analysis.

However, pandas is designed to better manage this eventuality. In fact, in this section, you learn how
to treat these values so that many issues can be obviated. For example, in the pandas library, calculating
descriptive statistics excludes NaN values implicitly.

 Assigning a NaN Value
If you need to specifically assign a NaN value to an element in a data structure, you can use the np.NaN (or np.
nan) value of the NumPy library.

>>> ser = pd.Series([0,1,2,np.NaN,9],
... index=['red','blue','yellow','white','green'])
>>> ser
red 0.0
blue 1.0
yellow 2.0
white NaN
green 9.0
dtype: float64
>>> ser['white'] = None
>>> ser
red 0.0
blue 1.0
yellow 2.0
white NaN
green 9.0
dtype: float64

Chapter 4 ■ the pandas Library—an introduCtion

109

 Filtering Out NaN Values
There are various ways to eliminate the NaN values during data analysis. Eliminating them by hand, element
by element, can be very tedious and risky, and you’re never sure that you eliminated all the NaN values. This
is where the dropna() function comes to your aid.

>>> ser.dropna()
red 0.0
blue 1.0
yellow 2.0
green 9.0
dtype: float64

You can also directly perform the filtering function by placing notnull() in the selection condition.

>>> ser[ser.notnull()]
red 0.0
blue 1.0
yellow 2.0
green 9.0
dtype: float64

If you’re dealing with a dataframe, it gets a little more complex. If you use the dropna() function on this
type of object, and there is only one NaN value on a column or row, it will eliminate it.

>>> frame3 = pd.DataFrame([[6,np.nan,6],[np.nan,np.nan,np.nan],[2,np.nan,5]],
... index = ['blue','green','red'],
... columns = ['ball','mug','pen'])
>>> frame3
 ball mug pen
blue 6.0 NaN 6.0
green NaN NaN NaN
red 2.0 NaN 5.0
>>> frame3.dropna()
Empty DataFrame
Columns: [ball, mug, pen]
Index: []

Therefore, to avoid having entire rows and columns disappear completely, you should specify the how
option, assigning a value of all to it. This tells the dropna() function to delete only the rows or columns in
which all elements are NaN.

>>> frame3.dropna(how='all')
 ball mug pen
blue 6.0 NaN 6.0
red 2.0 NaN 5.0

Chapter 4 ■ the pandas Library—an introduCtion

110

 Filling in NaN Occurrences
Rather than filter NaN values within data structures, with the risk of discarding them along with values
that could be relevant in the context of data analysis, you can replace them with other numbers. For most
purposes, the fillna() function is a great choice. This method takes one argument, the value with which to
replace any NaN. It can be the same for all cases.

>>> frame3.fillna(0)
 ball mug pen
blue 6.0 0.0 6.0
green 0.0 0.0 0.0
red 2.0 0.0 5.0

Or you can replace NaN with different values depending on the column, specifying one by one the
indexes and the associated values.

>>> frame3.fillna({'ball':1,'mug':0,'pen':99})
 ball mug pen
blue 6.0 0.0 6.0
green 1.0 0.0 99.0
red 2.0 0.0 5.0

 Hierarchical Indexing and Leveling
Hierarchical indexing is a very important feature of pandas, as it allows you to have multiple levels of indexes
on a single axis. It gives you a way to work with data in multiple dimensions while continuing to work in a
two-dimensional structure.

Let’s start with a simple example, creating a series containing two arrays of indexes, that is, creating a
structure with two levels.

>>> mser = pd.Series(np.random.rand(8),
... index=[['white','white','white','blue','blue','red','red',
 'red'],
... ['up','down','right','up','down','up','down','left']])
>>> mser
white up 0.461689
 down 0.643121
 right 0.956163
blue up 0.728021
 down 0.813079
red up 0.536433
 down 0.606161
 left 0.996686
dtype: float64
>>> mser.index
Pd.MultiIndex(levels=[['blue', 'red', 'white'], ['down',
'left', 'right', 'up']],
... labels=[[2, 2, 2, 0, 0, 1, 1, 1],
 [3, 0, 2, 3, 0, 3, 0, 1]])

Chapter 4 ■ the pandas Library—an introduCtion

111

Through the specification of hierarchical indexing, selecting subsets of values, is in a certain way,
simplified.

In fact, you can select the values for a given value of the first index, and you do it in the classic way:

>>> mser['white']
up 0.461689
down 0.643121
right 0.956163
dtype: float64

Or you can select values for a given value of the second index, in the following manner:

>>> mser[:,'up']
white 0.461689
blue 0.728021
red 0.536433
dtype: float64

Intuitively, if you want to select a specific value, you specify both indexes.

>>> mser['white','up']
0.46168915430531676

Hierarchical indexing plays a critical role in reshaping data and group-based operations such as a pivot-
table. For example, the data could be rearranged and used in a dataframe with a special function called
unstack(). This function converts the series with a hierarchical index to a simple dataframe, where the
second set of indexes is converted into a new set of columns.

>>> mser.unstack()
 down left right up
blue 0.813079 NaN NaN 0.728021
red 0.606161 0.996686 NaN 0.536433
white 0.643121 NaN 0.956163 0.461689

If you want to perform the reverse operation, which is to convert a dataframe to a series, use the
stack() function.

>>> frame
 ball pen pencil paper
red 0 1 2 3
blue 4 5 6 7
yellow 8 9 10 11
white 12 13 14 15
>>> frame.stack()
red ball 0
 pen 1
 pencil 2
 paper 3
blue ball 4
 pen 5
 pencil 6
 paper 7

Chapter 4 ■ the pandas Library—an introduCtion

112

yellow ball 8
 pen 9
 pencil 10
 paper 11
white ball 12
 pen 13
 pencil 14
 paper 15
dtype: int32

With dataframes, it is possible to define a hierarchical index both for the rows and for the columns. At
the time the dataframe is declared, you have to define an array of arrays for the index and columns options.

>>> mframe = pd.DataFrame(np.random.randn(16).reshape(4,4),
... index=[['white','white','red','red'], ['up','down','up','down']],
... columns=[['pen','pen','paper','paper'],[1,2,1,2]])
>>> mframe
 pen paper
 1 2 1 2
white up -1.964055 1.312100 -0.914750 -0.941930
 down -1.886825 1.700858 -1.060846 -0.197669
red up -1.561761 1.225509 -0.244772 0.345843
 down 2.668155 0.528971 -1.633708 0.921735

 Reordering and Sorting Levels
Occasionally, you might need to rearrange the order of the levels on an axis or sort for values at a
specific level.

The swaplevel() function accepts as arguments the names assigned to the two levels that you want to
interchange and returns a new object with the two levels interchanged between them, while leaving the data
unmodified.

>>> mframe.columns.names = ['objects','id']
>>> mframe.index.names = ['colors','status']
>>> mframe
objects pen paper
id 1 2 1 2
colors status
white up -1.964055 1.312100 -0.914750 -0.941930
 down -1.886825 1.700858 -1.060846 -0.197669
red up -1.561761 1.225509 -0.244772 0.345843
 down 2.668155 0.528971 -1.633708 0.921735
>>> mframe.swaplevel('colors','status')
objects pen paper
id 1 2 1 2
status colors
up white -1.964055 1.312100 -0.914750 -0.941930
down white -1.886825 1.700858 -1.060846 -0.197669
up red -1.561761 1.225509 -0.244772 0.345843
down red 2.668155 0.528971 -1.633708 0.921735

Chapter 4 ■ the pandas Library—an introduCtion

113

Instead, the sort_index() function orders the data considering only those of a certain level
by specifying it as parameter
>>> mframe.sort_index(level='colors')
objects pen paper
id 1 2 1 2
colors status
red down 2.668155 0.528971 -1.633708 0.921735
 up -1.561761 1.225509 -0.244772 0.345843
white down -1.886825 1.700858 -1.060846 -0.197669
 up -1.964055 1.312100 -0.914750 -0.941930

 Summary Statistics with groupby Instead of with Level
Many descriptive statistics and summary statistics performed on a dataframe or on a series have still a
level option, with which you can determine at what level the descriptive and summary statistics should be
determined.

Until now, if you wanted to create a row-level statistic, you simply had to specify the level option by
passing it the name of the level.

>>> mframe.sum(level='colors')
objects pen paper
id 1 2 1 2
colors
red 1.106394 1.754480 -1.878480 1.267578
white -3.850881 3.012959 -1.975596 -1.139599

Unfortunately, if you run this command, you get a correct result, but the operation is deprecated and
signals a warning message.

Future Warning: Using the level keyword in dataframe and series aggregations is deprecated and will
be removed in a future version.

If, on the other hand, you want to work in line with new and future pandas versions, you need to change
your approach. Instead of applying the selection level, you group the part on which you have to apply the sum
operation in the following way:

>>>mframe.groupby('colors').sum()
objects pen paper
id 1 2 1 2
colors
red 1.106394 1.754480 -1.878480 1.267578
white -3.850881 3.012959 -1.975596 -1.139599

The result is the same but no warning messages are obtained.
You must do the same thing when you want to make a statistic at a certain level of the columns, for

example id. Instead of specifying the following command, which uses the level option:

>>> mframe.sum(level='id', axis=1)

Chapter 4 ■ the pandas Library—an introduCtion

114

You define a group on the second axis (axis=1) and on the index id. Again, you do this instead of
specifying it in the level option, which has been the practice up to now. If you run the command, you get
the same result, but without warning messages.

>>> mframe.groupby('id', axis=1).sum()
id 1 2
colors status
white up -2.878806 0.370170
 down -2.947672 1.503189
red up -1.806532 1.571352
 down 1.034447 1.450706

 Conclusions
This chapter introduced the pandas library. You learned how to install it and saw a general overview of its
characteristics.

You learned about the two basic data structures, called the series and dataframes, along with their
operation and their main characteristics. Especially, you discovered the importance of indexing within these
structures and how best to perform operations on them. Finally, you looked at the possibility of extending
the complexity of these structures by creating hierarchies of indexes, thus distributing the data contained in
them into different sublevels.

In the next chapter, you learn how to capture data from external sources such as files, and inversely,
how to write the analysis results on them.

Chapter 4 ■ the pandas Library—an introduCtion

	Chapter 4: The pandas Library—An Introduction
	pandas: The Python Data Analysis Library
	Installation of pandas
	Installation from Anaconda
	Installation from PyPI

	Getting Started with pandas
	Introduction to pandas Data Structures
	The Series
	Declaring a Series
	Selecting the Internal Elements
	Assigning Values to the Elements
	Defining a Series from NumPy Arrays and Other Series
	Filtering Values
	Operations and Mathematical Functions
	Evaluating Vales
	NaN Values
	Series as Dictionaries
	Operations Between Series

	The Dataframe
	Defining a Dataframe
	Selecting Elements
	Assigning Values
	Membership of a Value
	Deleting a Column
	Filtering
	Dataframe from a Nested dict
	Transposition of a Dataframe

	The Index Objects
	Methods on Index
	Index with Duplicate Labels

	Other Functionalities on Indexes
	Reindexing
	Dropping
	Arithmetic and Data Alignment

	Operations Between Data Structures
	Flexible Arithmetic Methods
	Operations Between Dataframes and Series

	Function Application and Mapping
	Functions by Element
	Functions by Row or Column
	Statistics Functions

	Sorting and Ranking
	Correlation and Covariance
	“Not a Number” Data
	Assigning a NaN Value
	Filtering Out NaN Values
	Filling in NaN Occurrences

	Hierarchical Indexing and Leveling
	Reordering and Sorting Levels
	Summary Statistics with groupby Instead of with Level

	Conclusions

