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CHAPTER 4

The pandas Library—An 
Introduction

This chapter gets into the heart of this book: the pandas library. This fantastic Python library is a perfect tool 
for anyone who wants to perform data analysis using Python as a programming language.

First you’ll learn about the fundamental aspects of this library and how to install it on your system, and 
then you’ll become familiar with the two data structures, called series and dataframes. During the course of 
the chapter, you’ll work with a basic set of functions provided by the pandas library, in order to perform the 
most common data processing tasks. Getting familiar with these operations is a key goal of the rest of the 
book. This is why it is very important to repeat this chapter until you feel comfortable with its content.

Furthermore, with a series of examples, you’ll learn some particularly new concepts introduced 
in the pandas library: indexing data structures. You’ll learn how to get the most of this feature for data 
manipulation in this chapter and in the next chapters.

Finally, you’ll see how to extend the concept of indexing to multiple levels at the same time, through the 
process called hierarchical indexing.

 pandas: The Python Data Analysis Library
pandas is an open-source Python library for highly specialized data analysis. It is currently the reference 
point that all professionals using the Python language need to study for the statistical purposes of analysis 
and decision making.

This library was designed and developed primarily by Wes McKinney starting in 2008. In 2012, Sien 
Chang, one of his colleagues, was added to the development. Together they set up one of the most used 
libraries in the Python community.

pandas arises from the need to have a specific library to analyze data that provides, in the simplest 
possible way, all the instruments for data processing, data extraction, and data manipulation.

This Python package is designed on the basis of the NumPy library. This choice was critical to the 
success and the rapid spread of pandas. In fact, this choice not only makes this library compatible with most 
other modules, but also takes advantage of the high quality of the NumPy module.

Another fundamental choice was to design ad hoc data structures for data analysis. In fact, instead of 
using existing data structures built into Python or provided by other libraries, two new data structures were 
developed.

These data structures are designed to work with relational data or labeled data, thus allowing you to 
manage data with features similar to those designed for SQL relational databases and Excel spreadsheets.
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Throughout the book in fact, you will see a series of basic operations for data analysis, which are 
normally used on database tables and spreadsheets. pandas in fact provides an extended set of functions 
and methods that allow you to perform these operations efficiently.

So pandas’ main purpose is to provide all the building blocks for anyone approaching the data 
analysis world.

 Installation of pandas
The easiest and most general way to install the pandas library is to use a prepackaged solution, that is, 
installing it through an Anaconda distribution. In fact, over the years this distribution has developed more 
and more around the data analysis environment, becoming the reference platform for those who work 
in this area. In addition to pandas, in fact, there are many other libraries available that specialize in data 
analysis, machine learning, and data visualization. It also provides useful development and analysis tools, as 
well as Jupyter Notebook.

 Installation from Anaconda
For those who choose to use the Anaconda distribution, managing the installation is very simple. The 
simplest way is the graphical one, activating Anaconda Navigator and then selecting from the Environments 
panel the virtual environment on which you want to install the library, as shown in Figure 4-1. This will 
activate the Python virtual environment on which to install pandas and then run the examples in the book.

Figure 4-1. Selection and activation of the Python virtual environment with Anaconda Navigator
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Once the desired virtual environment is activated, go to the right side of Anaconda Navigator and select 
All from the top drop-down menu. This will display the list of all available packages (installed and not) with 
their version corresponding to the chosen Python version. Search for pandas (see Step 1 in Figure 4-2). 
Almost instantly, all the pandas-related packages should appear. Select the one corresponding to the pandas 
library (as shown in Step 2 of Figure 4-2). At this point, start the installation of the package by clicking the 
Apply button at the bottom right (as shown in Point 3 of Figure 4-2).

Figure 4-2. Search and select the pandas package and then start the installation with Anaconda Navigator

After a few seconds a window will appear with the list of packages to install and their versions (pandas 
and dependencies), as shown in Figure 4-3. Click the Apply button to confirm the installation. A scroll bar at 
the bottom will show the progress of the installation.
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Figure 4-3. List of packages to install and their versions shown when installing a package in Anaconda 
Navigator

If you prefer, even within the Anaconda distribution, there is a console from which to check and 
install packages. Still from Anaconda Navigator, in the Home panel, select the CMD.exe Prompt to open 
a command console (as shown in Figure 4-4). Another window will open with the console related to the 
virtual environment you activated, from which you can enter all the commands manually.
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Figure 4-4. Launching the Python virtual environment command console from Anaconda Navigator

In my case, because I’m currently on a Windows system and I’m working on a Python virtual 
environment that I called Edition3, I get the following prompt.

(Edition3) C:\Users\nelli>

First you have to see if the pandas module is installed and, if so, which version. To do this, type the 
following command from the terminal:

conda list pandas

Because I have the module installed on my PC (Windows), I get the following result:

# packages in environment at C:\Users\nelli\anaconda3\envs\Edition3:
#
# Name                    Version                   Build  Channel
pandas                     1.5.3                        py311heda8569_0

If you do not have pandas installed, you need to install it. Enter the following command to do so:

conda install pandas
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Anaconda will immediately check all dependencies, managing the installation of other modules, 
without you having to worry too much.

## Package Plan ##

  environment location: C:\Users\nelli\anaconda3\envs\Edition3

  added / updated specs:
    - pandas

The following NEW packages will be INSTALLED:

  bottleneck         pkgs/main/win-64::bottleneck-1.3.5-py311h5bb9823_0 None
  numexpr            pkgs/main/win-64::numexpr-2.8.4-py311hffd1eac_0 None
  pandas             pkgs/main/win-64::pandas-1.5.3-py311heda8569_0 None
  pytz               pkgs/main/win-64::pytz-2022.7-py311haa95532_0 NoneProceed ([y]/n)?

Enter y to continue with the installation.
If you want to upgrade your package to a newer version, the command to do so is very simple and 

intuitive:

conda update pandas

The system will check the version of pandas and the version of all the modules on which it depends and 
then suggest any updates. It will then ask if you want to proceed with the update.

 Installation from PyPI
If you are not using the Anaconda platform, the easiest way to install the pandas library on your Python 
environment is via PyPI using the pip command. From the console, enter the following command:

pip install pandas

 Getting Started with pandas
As you saw during installation, there are several approaches on how to work with pandas. You can choose 
to open a Jupyter notebook, work with the QtConsole (IPython GUI), or more simply open a session on a 
simple Python console and enter the instructions one at a time. There is no absolute best way to proceed; 
all of these methods have strengths and weaknesses depending on the case. The most important thing is to 
work with the code interactively, by entering a command one by one. This way, you have the opportunity to 
become familiar with the individual functions and data structures that are explained in this chapter.

Furthermore, the data and functions defined in the various examples remain valid throughout the 
chapter, which means you don’t have to define them each time. You are invited, at the end of each example, 
to repeat the various commands, modify them if appropriate, and control how the values in the data 
structures vary during operation. This approach is great for getting familiar with the different topics covered 
in this chapter, leaving you the opportunity to interact freely with what you are reading.
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 ■ Note this chapter assumes that you have some familiarity with python and numpy in general. if you have 
any difficulty, read Chapters 2 and 3 of this book.

First, open a session on the Python shell and then import the pandas library. The general practice for 
importing the pandas module is as follows:

>>> import pandas as pd
>>> import numpy as np

Thus, in this chapter and throughout the book, every time you see pd and np, you’ll make reference to 
an object or method referring to these two libraries, even though you will often be tempted to import the 
pandas module in this way:

>>> from pandas import *

Thus, you no longer have to reference a function, object, or method with pd; this approach is not 
considered good practice by the Python community in general. If you are working on Jupyter, import the two 
libraries into the first cell of the notebook and run it, as shown in Figure 4-5.

Figure 4-5. Importing the NumPy and pandas libraries into a Jupyter Notebook

From now on, any line of code inserted in the examples in the book will correspond to a cell in the 
notebook. Just as you click ENTER on the Python console to immediately see the result of the entered 
command, in the same way you write the command into a single cell of the Notebook and execute it.

 Introduction to pandas Data Structures
The heart of pandas is the two primary data structures on which all transactions, which are generally made 
during the analysis of data, are centralized:

• Series

• Dataframes
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The series, as you will see, constitutes the data structure designed to accommodate a sequence of one-
dimensional data, while the dataframe, a more complex data structure, is designed to contain cases with 
several dimensions.

Although these data structures are not the universal solution to all problems, they do provide a valid 
and robust tool for most applications. In fact, they remain very simple to understand and use. In addition, 
many cases of more complex data structures can still be traced to these simple two cases.

However, their peculiarities are based on a particular feature—integration in their structure of index 
objects and labels. You will see that this feature causes these data structures to be easily manipulated.

 The Series
The series is the object of the pandas library designed to represent one-dimensional data structures, 
similar to an array but with some additional features. Its internal structure is simple (see Figure 4-6) and is 
composed of two arrays associated with each other. The main array holds the data (data of any NumPy type) 
to which each element is associated with a label, contained within the other array, called the index.

Figure 4-6. The structure of the series object

 Declaring a Series
To create the series specified in Figure 4-1, you simply call the Series() constructor and pass as an 
argument an array containing the values to be included in it.

>>> s = pd.Series([12,-4,7,9])
>>> s
0    12
1    -4
2     7
3     9
dtype: int64

As you can see from the output of the series, on the left there are the values in the index, which is a 
series of labels, and on the right are the corresponding values.

If you do not specify any index during the definition of the series, by default, pandas will assign 
numerical values increasing from 0 as labels. In this case, the labels correspond to the indexes (position in 
the array) of the elements in the series object.
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Often, however, it is preferable to create a series using meaningful labels in order to distinguish and 
identify each item regardless of the order in which they were inserted into the series.

In this case it will be necessary, during the constructor call, to include the index option and assign an 
array of strings containing the labels.

>>> s = pd.Series([12,-4,7,9], index=['a','b','c','d'])
>>> s
a    12
b    -4
c     7
d     9
dtype: int64

If you want to individually see the two arrays that make up this data structure, you can call the two 
attributes of the series as follows: index and values.

>>> s.values
array([12, -4,  7,  9], dtype=int64)
>>> s.index
Index(['a', 'b', 'c', 'd'], dtype='object')
)

 Selecting the Internal Elements
You can select individual elements as ordinary NumPy arrays, specifying the key.

>>> s[2]
7

Or you can specify the label corresponding to the position of the index.

>>> s['b']
-4

In the same way you select multiple items in a NumPy array, you can specify the following:

>>> s[0:2]
a    12
b    -4
dtype: int64

In this case, you can use the corresponding labels, but specify the list of labels in an array.

>>> s[['b','c']]
b   -4
c    7
dtype: int64
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 Assigning Values to the Elements
Now that you understand how to select individual elements, you also know how to assign new values to 
them. In fact, you can select the value by index or by label.

>>> s[1] = 0
>>> s
a    12
b     0
c     7
d     9
dtype: int64
>>> s['b'] = 1
>>> s
a    12
b     1
c     7
d     9
dtype: int64

 Defining a Series from NumPy Arrays and Other Series
You can define a new series starting with NumPy arrays or with an existing series.

>>> arr = np.array([1,2,3,4])
>>> s3 = pd.Series(arr)
>>> s3
0    1
1    2
2    3
3    4
dtype: int64
>>> s4 = pd.Series(s)
>>> s4
a    12
b     4
c     7
d     9
dtype: int64

Always keep in mind that the values contained in the NumPy array or in the original series are not 
copied, but are passed by reference. That is, the object is inserted dynamically within the new series object. 
If it changes, for example its internal element varies in value, those changes will also be present in the new 
series object.

>>> s3
0    1
1    2
2    3
3    4
dtype: int64
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>>> arr[2] = -2
>>> s3
0    1
1    2
2   -2
3    4
dtype: int64

As you can see in this example, by changing the third element of the arr array, the code also modified 
the corresponding element in the s3 series.

 Filtering Values
Thanks to the choice of the NumPy library as the base of the pandas library and, as a result, for its data 
structures, many operations that are applicable to NumPy arrays are extended to the series. One of these is 
filtering values contained in the data structure through conditions.

For example, if you need to know which elements in the series are greater than 8, you write the 
following:

>>> s[s > 8]
a    12
d     9
dtype: int64

 Operations and Mathematical Functions
Other operations such as operators (+, -, *, and /) and mathematical functions that are applicable to NumPy 
array can be extended to series.

You can simply write the arithmetic expression for the operators.

>>> s / 2
a    6.0
b   -2.0
c    3.5
d    4.5
dtype: float64

However, with the NumPy mathematical functions, you must specify the function referenced with np 
and the instance of the series passed as an argument.

>>> np.log(s)
a    2.484907
b    0.000000
c    1.945910
d    2.197225
dtype: float64
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 Evaluating Vales
There are often duplicate values in a series. Then you may need to have more information about the 
samples, including existence of any duplicates and whether a certain value is present in the series.

In this regard, you can declare a series in which there are many duplicate values.

>>> serd = pd.Series([1,0,2,1,2,3], index=['white','white','blue','green','green','yellow'])
>>> serd
white     1
white     0
blue      2
green     1
green     2
yellow    3
dtype: int64

To know all the values contained in the series, excluding duplicates, you can use the unique() function. 
The return value is an array containing the unique values in the series, although not necessarily in order.

>>> serd.unique()
array([1, 0, 2, 3], dtype=int64)

A function that’s similar to unique() is value_counts(), which not only returns unique values but also 
calculates the occurrences within a series.

>>> serd.value_counts()
2    2
1    2
3    1
0    1
dtype: int64

Finally, isin() evaluates the membership, that is, the given list of values. This function tells you if the 
values are contained in the data structure. Boolean values that are returned can be very useful when filtering 
data in a series or in a column of a dataframe.

>>> serd.isin([0,3])
white     False
white      True
blue      False
green     False
green     False
yellow     True
dtype: bool
>>> serd[serd.isin([0,3])]
white     0
yellow    3
dtype: int64
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 NaN Values
The previous case tried to run the logarithm of a negative number and received NaN as a result. This specific 
value NaN (Not a Number) is used in pandas data structures to indicate the presence of an empty field or 
something that’s not definable numerically.

Generally, these NaN values are a problem and must be managed in some way, especially during 
data analysis. These data are often generated when extracting data from a questionable source or when 
the source is missing data. Furthermore, as you have just seen, the NaN values can also be generated in 
special cases, such as calculations of logarithms of negative values, or exceptions during execution of some 
calculation or function. In later chapters, you see how to apply different strategies to address the problem of 
NaN values.

Despite their problematic nature, however, pandas allows you to explicitly define NaNs and add them 
to a data structure, such as a series. Within the array containing the values, you enter np.NaN wherever you 
want to define a missing value.

>>> s2 = pd.Series([5,-3,np.NaN,14])
>>> s2
0     5.0
1    -3.0
2   NaN
3    14.0
dtype: float64

The isnull() and notnull() functions are very useful for identifying the indexes without a value.

>>> s2.isnull()
0    False
1    False
2     True
3    False
dtype: bool
>>> s2.notnull()
0     True
1     True
2    False
3     True
dtype: bool

In fact, these functions return two series with Boolean values that contain the True and False values, 
depending on whether the item is a NaN value or less. The isnull() function returns True for NaN values 
in the series; inversely, the notnull() function returns True if they are not NaN. These functions are often 
placed inside filters to make a condition.

>>> s2[s2.notnull()]
0     5.0
1    -3.0
3    14.0
dtype: float64
>>> s2[s2.isnull()]
2   NaN
dtype: float64
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 Series as Dictionaries
An alternative way to think of a series is to think of it as an object dict (dictionary). This similarity is 
also exploited during the definition of an object series. In fact, you can create a series from a previously 
defined dict.

>>> mydict = {'red': 2000, 'blue': 1000, 'yellow': 500,
 'orange': 1000}
>>> myseries = pd.Series(mydict)
>>> myseries
red       2000
blue      1000
yellow     500
orange    1000
dtype: int64

As you can see from this example, the array of the index is filled with the keys, while the data are filled 
with the corresponding values. You can also define the array indexes separately. In this case, controlling 
correspondence between the keys of the dict and labels array of indexes will run. If there is a mismatch, 
pandas will add the NaN value.

>>> colors = ['red','yellow','orange','blue','green']
>>> myseries = pd.Series(mydict, index=colors)
>>> myseries
red       2000.0
yellow     500.0
orange    1000.0
blue      1000.0
green      NaN
dtype: float64

 Operations Between Series
You have seen how to perform arithmetic operations between series and scalar values. The same thing is 
possible by performing operations between two series, but in this case even the labels come into play.

In fact, one of the great potentials of this type of data structures is that series can align data addressed 
differently between them by identifying their corresponding labels.

In the following example, you add two series having only some elements in common with the label.

>>> mydict2 = {'red':400,'yellow':1000,'black':700}
>>> myseries2 = pd.Series(mydict2)
>>> myseries + myseries2
black      NaN
blue       NaN
green      NaN
orange     NaN
red       2400.0
yellow    1500.0
dtype: float64
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You get a new object series in which only the items with the same label are added. All other labels 
present in one of the two series are still added to the result but have a NaN value.

 The Dataframe
The dataframe is a tabular data structure very similar to a spreadsheet. This data structure is designed to 
extend series to multiple dimensions. In fact, the dataframe consists of an ordered collection of columns (see 
Figure 4-7), each of which can contain a value of a different type (numeric, string, Boolean, etc.).

Figure 4-7. The dataframe structure

Unlike series, which have an index array containing labels associated with each element, the dataframe 
has two index arrays. The first index array, associated with the lines, has very similar functions to the index 
array in series. In fact, each label is associated with all the values in the row. The second array contains a 
series of labels, each associated with a particular column.

A dataframe may also be understood as a dict of series, where the keys are the column names and the 
values are the series that form the columns of the dataframe. Furthermore, all elements in each series are 
mapped according to an array of labels, called the index.

 Defining a Dataframe
The most common way to create a new dataframe is to pass a dict object to the DataFrame() constructor. 
This dict object contains a key for each column that you want to define, with an array of values for each 
of them.

>>> data = {'color' : ['blue','green','yellow','red','white'],
                     'object' : ['ball','pen','pencil','paper','mug'],
                     'price' : [1.2,1.0,0.6,0.9,1.7]}
>>> frame = pd.DataFrame(data)
>>> frame
    color  object price
0    blue    ball   1.2
1   green     pen   1.0
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2  yellow  pencil   0.6
3     red   paper   0.9
4   white     mug   1.7

If you are working with Jupyter and run this command, you will not get the classic output identical 
to the one you get with a Python console. Instead, you get a graphical representation of the dataframe, as 
shown in Figure 4-8.

Figure 4-8. Graphical representation of the dataframe as a result on a Jupyter Notebook

If the dict object from which you want to create a dataframe contains more data than you are interested 
in, you can make a selection. In the constructor of the dataframe, you can specify a sequence of columns 
using the columns option. The columns will be created in the order of the sequence regardless of how they 
are contained in the dict object.

>>> frame2 = pd.DataFrame(data, columns=['object','price'])
>>> frame2
   object price
0    ball   1.2
1     pen   1.0
2  pencil   0.6
3   paper   0.9
4     mug   1.7

Even for dataframe objects, if the labels are not explicitly specified in the index array, pandas 
automatically assigns a numeric sequence starting from 0. Instead, if you want to assign labels to the indexes 
of a dataframe, you have to use the index option and assign it an array containing the labels.

>>> frame2 = pd.DataFrame(data, index=['one','two','three','four','five'])
>>> frame2
        color  object  price
one      blue    ball    1.2
two     green     pen    1.0
three  yellow  pencil    0.6
four      red   paper    0.9
five    white     mug    1.7
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Now that I have introduced the two new options called index and columns, it is easy to imagine an 
alternative way to define a dataframe. Instead of using a dict object, you can define three arguments in 
the constructor, in the following order—a data matrix, an array containing the labels assigned to the index 
option, and an array containing the names of the columns assigned to the columns option.

In many examples, as you will see from now on in this book, to create a matrix of values quickly and 
easily, you can use np.arange(16).reshape((4,4)), which generates a 4x4 matrix of numbers increasing 
from 0 to 15.

>>> frame3 = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame3
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

 Selecting Elements
If you want to know the name of all the columns of a dataframe, you can specify the columns attribute on the 
instance of the dataframe object.

>>> frame.columns
Index(['colors', 'object', 'price'], dtype='object')

Similarly, to get the list of indexes, you should specify the index attribute.

>>> frame.index
RangeIndex(start=0, stop=5, step=1)

You can also get the entire set of data contained within the data structure using the values attribute.

>>> frame.values
array([['blue', 'ball', 1.2],
       ['green', 'pen', 1.0],
       ['yellow', 'pencil', 0.6],
       ['red', 'paper', 0.9],
       ['white', 'mug', 1.7]], dtype=object)

Or, if you are interested in selecting only the contents of a column, you can write the name of 
the column.

>>> frame['price']
0    1.2
1    1.0
2    0.6
3    0.9
4    1.7
Name: price, dtype: float64
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As you can see, the return value is a series object. Another way to do this is to use the column name as 
an attribute of the instance of the dataframe.

>>> frame.price
0    1.2
1    1.0
2    0.6
3    0.9
4    1.7
Name: price, dtype: float64

For rows within a dataframe, it is possible to use the loc attribute with the index value of the row that 
you want to extract.

>>> frame.loc[2]
color     yellow
object    pencil
price        0.6
Name: 2, dtype: object

The object returned is again a series in which the names of the columns have become the label of the 
array index, and the values have become the data of series.

To select multiple rows, you specify an array with the sequence of rows to insert:

>>> frame.loc[[2,4]]
    color  object  price
2  yellow  pencil    0.6
4   white     mug    1.7

If you need to extract a portion of a dataframe, selecting the lines that you want to extract, you can use 
the reference numbers of the indexes. In fact, you can consider a row as a portion of a dataframe that has the 
index of the row as the source (in the next 0) value and the line above the one you want as a second value (in 
the next one).

>>> frame[0:1]
  color object  price
0  blue   ball    1.2

As you can see, the return value is an object dataframe containing a single row. If you want more than 
one line, you must extend the selection range.

>>> frame[1:3]
    color  object  price
1   green     pen    1.0
2  yellow  pencil    0.6

Finally, if what you want to achieve is a single value within a dataframe, you first use the name of the 
column and then the index or the label of the row.

>>> frame['object'][3]
'paper'
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 Assigning Values
Once you understand how to access the various elements that make up a dataframe, you follow the same 
logic to add or change the values in it.

For example, you have already seen that within the dataframe structure, an array of indexes is 
specified by the index attribute, and the row containing the name of the columns is specified with the 
columns attribute. Well, you can also assign a label, using the name attribute, to these two substructures to 
identify them.

>>> frame.index.name = 'id'
>>> frame.columns.name = 'item'
>>> frame
item   color  object  price
id
0       blue    ball    1.2
1      green     pen    1.0
2     yellow  pencil    0.6
3        red   paper    0.9
4      white     mug    1.7

One of the best features of the data structures of pandas is their high flexibility. In fact, you can always 
intervene at any level to change the internal data structure. For example, a very common operation is to add 
a new column.

You can do this by simply assigning a value to the instance of the dataframe and specifying a new 
column name.

>>> frame['new'] = 12
>>> frame
   colors  object price  new
0    blue    ball   1.2   12
1   green     pen   1.0   12
2  yellow  pencil   0.6   12
3     red   paper   0.9   12
4   white     mug   1.7   12

As you can see from this result, there is a new column called new with the value within 12 replicated for 
each of its elements.

If, however, you want to update the contents of a column, you have to use an array.

>>> frame['new'] = [3.0,1.3,2.2,0.8,1.1]
>>> frame
    color  object  price  new
0    blue    ball    1.2  3.0
1   green     pen    1.0  1.3
2  yellow  pencil    0.6  2.2
3     red   paper    0.9  0.8
4   white     mug    1.7  1.1

You can follow a similar approach if you want to update an entire column, for example, by using the np.
arange() function to update the values of a column with a predetermined sequence.
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The columns of a dataframe can also be created by assigning a series to one of them, for example by 
specifying a series containing an increasing series of values through the use of np.arange().

>>> ser = pd.Series(np.arange(5))
>>> ser
0    0
1    1
2    2
3    3
4    4
dtype: int32
>>> frame['new'] = ser
>>> frame
    color  object  price  new
0    blue    ball    1.2    0
1   green     pen    1.0    1
2  yellow  pencil    0.6    2
3     red   paper    0.9    3
4   white     mug    1.7    4

Finally, to change a single value, you simply select the item and give it the new value. The operation 
seems very simple and intuitive. To access the element, I could think of inserting the column and then the 
row indexes and thus obtaining the current value.

And in fact if I write the following command:

>>> frame['price'][2]
0.6

I actually get the value of the corresponding element of the dataframe. But if I go to make an assignment 
on this element, in order to modify its value, I get a warning message.

>>> frame['price'][2] = 3.3
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

If check inside the dataframe, however, I see that the element has changed its value.

>>> frame
    color  object  price  new
0    blue    ball    1.2    0
1   green     pen    1.0    1
2  yellow  pencil    3.3    2
3     red   paper    0.9    3
4   white     mug    1.7    4

In reality, the message warns you that this nomenclature could lead to assignment errors in the passage 
between internal slices that generate copies or views. In this simple case it doesn’t happen, but in more 
complex cases where you do more complex index assignments (with index lists and conditions), it could 
happen. So the most correct and cleanest way to write the previous command is to define the indexes of the 
dataframe section to select/assign through the loc() function

>>> frame.loc[ 2, 'price'] = 3.3
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 Membership of a Value
You have already seen the isin() function applied to the series to determine the membership of a set of 
values. Well, this feature is also applicable to dataframe objects.

>>> frame.isin([1.0,'pen'])
   color object  price  new
0  False  False  False  False
1  False   True   True  True
2  False  False  False  False
3  False  False  False  False
4  False  False  False  False

You get a dataframe containing Boolean values, where True indicates values that meet the membership. 
If you pass the value returned as a condition, you’ll get a new dataframe containing only the values that 
satisfy the condition.

>>> frame[frame.isin([1.0,'pen'])]
  color object  price  new
0   NaN    NaN    NaN  NaN
1   NaN    pen    1.0  1.0
2   NaN    NaN    NaN  NaN
3   NaN    NaN    NaN  NaN
4   NaN    NaN    NaN  NaN

 Deleting a Column
If you want to delete an entire column and all its contents, use the del command.

>>> del frame['new']
>>> frame
   colors  object price
0    blue    ball   1.2
1   green     pen   1.0
2  yellow  pencil   3.3
3     red   paper   0.9
4   white     mug   1.7

 Filtering
Even with a dataframe, you can apply filtering through the application of certain conditions. For example, 
say you want to get all elements that have a column value below a certain limit, for example, where the 
prices are less than 1.2. You simply need to insert this condition into the index of the dataframe.

>>> frame[frame['price'] < 1.2]
>>> frame
   colors  object price
1   green     pen   1.0
3     red   paper   0.9
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You will get a dataframe containing only elements with prices less than 1.2, keeping their original 
position. You have thus carried out a filtering operation on the elements of the dataframe.

 Dataframe from a Nested dict
A very common data structure used in Python is a nested dict, as follows:

nestdict = { 'red': { 2012: 22, 2013: 33 },
                     'white': { 2011: 13, 2012: 22, 2013: 16},
                     'blue': {2011: 17, 2012: 27, 2013: 18}}

This data structure, when it is passed directly as an argument to the DataFrame() constructor, will be 
interpreted by pandas to treat external keys as column names and internal keys as labels for the indexes.

During the interpretation of the nested structure, it is possible that not all fields will find a successful 
match. pandas compensates for this inconsistency by adding the NaN value to the missing values.

>>> nestdict = {'red':{2012: 22, 2013: 33},
...             'white':{2011: 13, 2012: 22, 2013: 16},
...             'blue': {2011: 17, 2012: 27, 2013: 18}}
>>> frame2 = pd.DataFrame(nestdict)
>>> frame2
       red  white  blue
2012  22.0     22    27
2013  33.0     16    18
2011   NaN     13    17

 Transposition of a Dataframe
An operation that you might need when you’re dealing with tabular data structures is transposition (that is, 
columns become rows and rows become columns). pandas allows you to do this in a very simple way. You 
can get the transposition of the dataframe by adding the T attribute to its application.

>>> frame2.T
       2012  2013  2011
red    22.0  33.0   NaN
white  22.0  16.0  13.0
blue   27.0  18.0  17.0

 The Index Objects
Now that you know what the series and the dataframe are and how they are structured, you can likely 
perceive the peculiarities of these data structures. Indeed, the majority of their excellent characteristics are 
due to the presence of an Index object that’s integrated in these data structures.

The Index objects are responsible for the labels on the axes and other metadata as the name of the axes. 
You have already seen how an array containing labels is converted into an Index object and that you need to 
specify the index option in the constructor.

>>> ser = pd.Series([5,0,3,8,4], index=['red','blue','yellow','white','green'])
>>> ser.index
Index(['red', 'blue', 'yellow', 'white', 'green'], dtype='object')
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Unlike all the other elements in the pandas data structures (series and dataframes), the Index objects 
are immutable. Once declared, they cannot be changed. This ensures their secure sharing between the 
various data structures.

Each Index object has a number of methods and properties that are useful when you need to know the 
values they contain.

 Methods on Index
There are specific methods that enable you to get information about indexes from a data structure. For 
example, idmin() and idmax() are two functions that return, respectively, the index with the lowest value 
and the index with the highest value.

>>> ser.idxmin()
'blue'
>>> ser.idxmax()
'white'

 Index with Duplicate Labels
So far, you have seen all cases in which indexes within a single data structure have a unique label. Although 
many functions require this condition to run, this condition is not mandatory on the data structures 
of pandas.

This example defines, by way of an example, a series with some duplicate labels.

>>> serd = pd.Series(range(6), index=['white','white','blue','green','green','yellow'])
>>> serd
white     0
white     1
blue      2
green     3
green     4
yellow    5
dtype: int64

Regarding the selection of elements in a data structure, if there are more values with the same label, you 
get a series in place of a single element.

>>> serd['white']
white    0
white    1
dtype: int64
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The same logic applies to the dataframe, with duplicate indexes that will return the dataframe.
With small data structures, it is easy to identify duplicate indexes, but if the structure becomes gradually 

larger, this starts to become difficult. In this respect, pandas provides you with the is_unique attribute 
belonging to the Index objects. This attribute will tell you if there are indexes with duplicate labels inside the 
structure data (both series and dataframe).

>>> serd.index.is_unique
False
>>> frame.index.is_unique
True

 Other Functionalities on Indexes
Compared to data structures commonly used with Python, you saw that pandas, as well as taking advantage 
of the high-performance quality offered by NumPy arrays, has chosen to integrate indexes in them.

This choice has proven somewhat successful. In fact, despite the enormous flexibility given by the 
dynamic structures that already exist, using the internal reference to the structure, such as that offered by the 
labels, allows developers who must perform operations to carry them out in a simpler and more direct way.

This section analyzes in detail a number of basic features that take advantage of this mechanism.

• Reindexing

• Dropping

• Alignment

 Reindexing
It was previously stated that once it’s declared in a data structure, the Index object cannot be changed. This 
is true, but by executing a reindexing, you can also overcome this problem.

In fact it is possible to obtain a new data structure from an existing one where indexing rules can be 
defined again.

>>> ser = pd.Series([2,5,7,4], index=['one','two','three','four'])
>>> ser
one      2
two      5
three    7
four     4
dtype: int64

In order to reindex this series, pandas provides you with the reindex() function. This function creates a 
new series object with the values of the previous series rearranged according to the new sequence of labels.

During reindexing, it is possible to change the order of the sequence of indexes, delete some of them, 
and add new ones. In the case of a new label, pandas adds NaN as the corresponding value.

>>> ser.reindex(['three','four','five','one'])
three     7.0
four      4.0
five      NaN
one       2.0
dtype: float64
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As you can see from the value returned, the order of the labels has been completely rearranged. The 
value corresponding to the label two has been dropped and a new label called five is present in the series.

However, to measure the reindexing process, defining the list of the labels can be awkward, especially 
with a large dataframe. You can use a method that allows you to fill in or interpolate values automatically.

To better understand this mode of automatic reindexing, define the following series.

>>> ser3 = pd.Series([1,5,6,3],index=[0,3,5,6])
>>> ser3
0    1
3    5
5    6
6    3
dtype: int64

As you can see in this example, the index column is not a perfect sequence of numbers; in fact there 
are some missing values (1, 2, and 4). A common need would be to perform interpolation in order to obtain 
the complete sequence of numbers. To achieve this, you use reindexing with the method option set to ffill. 
Moreover, you need to set a range of values for indexes. In this case, to specify a set of values between 0 and 
5, you can use range(6) as an argument.

>>> ser3.reindex(range(6),method='ffill')
0    1
1    1
2    1
3    5
4    5
5    6
dtype: int64

As you can see from the result, the indexes that were not present in the original series were added. By 
interpolation, those with the lowest index in the original series have been assigned as values. In fact, the 
indexes 1 and 2 have the value 1, which belongs to index 0.

If you want this index value to be assigned during the interpolation, you have to use the bfill method.

>>> ser3.reindex(range(6),method='bfill')
0    1
1    5
2    5
3    5
4    6
5    6
dtype: int64

In this case, the value assigned to the indexes 1 and 2 is the value 5, which belongs to index 3.
Extending the concepts of reindexing with series to the dataframe, you can have a rearrangement not 

only for indexes (rows), but also with regard to the columns, or even both. As previously mentioned, adding 
a new column or index is possible, but since there are missing values in the original data structure, pandas 
adds NaN values to them.

>>> frame.reindex(range(5), method='ffill',columns=['colors','price','new','object'])
   colors price  new     object
0    blue   1.2  blue    ball
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1   green   1.0  green   pen
2  yellow   3.3  yellow  pencil
3     red   0.9  red     paper
4   white   1.7  white   mug

 Dropping
Another operation that is connected to Index objects is dropping. Deleting a row or a column becomes 
simple, due to the labels used to indicate the indexes and column names.

Also in this case, pandas provides a specific function for this operation, called drop(). This method will 
return a new object without the items that you want to delete.

For example, take the case where you want to remove a single item from a series. To do this, define a 
generic series of four elements with four distinct labels.

>>> ser = pd.Series(np.arange(4.), index=['red','blue','yellow','white'])
>>> ser
red       0.0
blue      1.0
yellow    2.0
white     3.0
dtype: float64

Now say, for example, that you want to delete the item corresponding to the label yellow. Simply 
specify the label as an argument of the function drop() to delete it.

>>> ser.drop('yellow')
red      0.0
blue     1.0
white    3.0
dtype: float64

To remove more items, just pass an array with the corresponding labels.

>>> ser.drop(['blue','white'])
red       0.0
yellow    2.0
dtype: float64

Regarding the dataframe instead, the values can be deleted by referring to the labels of both axes. 
Declare the following frame by way of example.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
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To delete rows, you just pass the indexes of the rows.

>>> frame.drop(['blue','yellow'])
       ball  pen  pencil  paper
red       0    1       2      3
white    12   13      14     15

To delete columns, you always need to specify the indexes of the columns, but you must specify the axis 
from which to delete the elements, and this can be done using the axis option. So to refer to the column 
names, you should specify axis = 1.

>>> frame.drop(['pen','pencil'],axis=1)
        ball  paper
red        0      3
blue       4      7
yellow     8     11
white     12     15

 Arithmetic and Data Alignment
Perhaps the most powerful feature involving the indexes in a data structure is that pandas can align indexes 
coming from two different data structures. This is especially true when you are performing an arithmetic 
operation on them. In fact, during these operations, not only can the indexes between the two structures be 
in a different order, but they also can be present in only one of the two structures.

As you can see from the examples that follow, pandas proves to be very powerful in aligning indexes 
during these operations. For example, you can start considering two series in which they are defined, 
respectively, two arrays of labels not perfectly matching each other.

>>> s1 = pd.Series([3,2,5,1],['white','yellow','green','blue'])
>>> s2 = pd.Series([1,4,7,2,1],['white','yellow','black','blue','brown'])

Now among the various arithmetic operations, consider the simple sum. As you can see from the two 
series just declared, some labels are present in both, while other labels are present only in one of the two. 
When the labels are present in both operators, their values will be added, while in the opposite case, they 
will also be shown in the result (new series), but with the value NaN.

>>> s1 + s2
black    NaN
blue     3.0
brown    NaN
green    NaN
white    4.0
yellow   6.0
dtype: float64

In the case of the dataframe, although it may appear more complex, the alignment follows the same 
principle, but is carried out both for the rows and for the columns.

>>> frame1 = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
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>>> frame2 = pd.DataFrame(np.arange(12).reshape((4,3)),
...                   index=['blue','green','white','yellow'],
...                   columns=['mug','pen','ball'])
>>> frame1
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> frame2
        mug  pen  ball
blue      0    1     2
green     3    4     5
white     6    7     8
yellow    9   10    11
>>> frame1 + frame2
        ball  mug  paper  pen  pencil
blue     6.0  NaN    NaN  6.0     NaN
green    NaN  NaN    NaN  NaN     NaN
red      NaN  NaN    NaN  NaN     NaN
white    20.0 NaN    NaN  20.0    NaN
yellow   19.0 NaN    NaN  19.0    NaN

 Operations Between Data Structures
Now that you are familiar with the data structures such as series and dataframe and you have seen how 
various elementary operations can be performed on them, it’s time to go to operations involving two or more 
of these structures.

For example, in the previous section, you saw how the arithmetic operators apply between two of these 
objects. This section deepens the topic of operations that can be performed between two data structures.

 Flexible Arithmetic Methods
You’ve just seen how to use mathematical operators directly on the pandas data structures. The same 
operations can also be performed using appropriate methods, called flexible arithmetic methods.

• add()

• sub()

• div()

• mul()

In order to call these functions, you need to use a different specification than what you’re used to 
dealing with when using mathematical operators. For example, instead of writing a sum between two 
dataframes, such as frame1 + frame2, you have to use the following format:

>>> frame1.add(frame2)
         ball  mug  paper   pen  pencil
blue      6.0  NaN    NaN   6.0     NaN
green     NaN  NaN    NaN   NaN     NaN
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red       NaN  NaN    NaN   NaN    NaN
white    20.0  NaN    NaN  20.0    NaN
yellow   19.0  NaN    NaN  19.0    NaN

As you can see, the results are the same as what you’d get using the addition operator +. You can also 
note that if the indexes and column names differ greatly from one series to another, you’ll find yourself with 
a new dataframe full of NaN values. You’ll see later in this chapter how to handle this kind of data.

 Operations Between Dataframes and Series
Coming back to the arithmetic operators, pandas allows you to make transactions between different 
structures, such as between a dataframe and a series. For example, you can define these two structures in the 
following way.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> ser = pd.Series(np.arange(4), index=['ball','pen','pencil','paper'])
>>> ser
ball      0
pen       1
pencil    2
paper     3
dtype: int64

The two newly defined data structures have been created specifically so that the indexes of series match 
the names of the columns of the dataframe. This way, you can apply a direct operation.

>>> frame - ser
        ball  pen  pencil  paper
red        0    0       0      0
blue       4    4       4      4
yellow     8    8       8      8
white     12   12      12     12

As you can see, the elements of the series are subtracted from the values of the dataframe 
corresponding to the same index on the column. The value is subtracted for all values of the column, 
regardless of their index.

If an index is not present in one of the two data structures, the result will be a new column with that 
index and all its elements will be NaN.

>>> ser['mug'] = 9
>>> ser
ball      0
pen       1
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pencil    2
paper     3
mug       9
dtype: int64
>>> frame - ser
        ball  mug  paper  pen  pencil
red        0  NaN      0    0       0
blue       4  NaN      4    4       4
yellow     8  NaN      8    8       8
white     12  NaN     12   12      12

 Function Application and Mapping
This section covers the pandas library functions.

 Functions by Element
The pandas library is built on the foundations of NumPy and then extends many of its features by adapting 
them to new data structures as series and dataframes. Among these are the universal functions, called ufunc. 
This class of functions operates by element in the data structure.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

For example, you can calculate the square root of each value in the dataframe using the NumPy 
np.sqrt().

>>> np.sqrt(frame)
            ball       pen    pencil     paper
red     0.000000  1.000000  1.414214  1.732051
blue    2.000000  2.236068  2.449490  2.645751
yellow  2.828427  3.000000  3.162278  3.316625
white   3.464102  3.605551  3.741657  3.872983

 Functions by Row or Column
The application of the functions is not limited to the ufunc functions, but also includes those defined by the 
user. The important point is that they operate on a one-dimensional array, giving a single number as a result. 
For example, you can define a lambda function that calculates the range covered by the elements in an array.

>>> f = lambda x: x.max() - x.min()
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It is possible to define the function this way as well:

>>> def f(x):
...    return x.max() - x.min()
...

Using the apply() function, you can apply the function just defined on the dataframe.

>>> frame.apply(f)
ball      12
pen       12
pencil    12
paper     12
dtype: int64

The result this time is one value for the column, but if you prefer to apply the function by row instead of 
by column, you have to set the axis option to 1.

>>> frame.apply(f, axis=1)
red       3
blue      3
yellow    3
white     3
dtype: int64

It is not mandatory that the apply() method return a scalar value. It can also return a series. A useful 
case is to extend the application to many functions simultaneously. In this case, you have two or more values 
for each feature applied. This can be done by defining a function in the following manner:

>>> def f(x):
...     return pd.Series([x.min(), x.max()], index=['min','max'])
...

Then, you apply the function as before. But in this case, as an object returned, you get a dataframe 
instead of a series, in which there will be as many rows as the values returned by the function.

>>> frame.apply(f)
     ball  pen  pencil  paper
min     0    1       2      3
max    12   13      14     15

 Statistics Functions
Most of the statistical functions for arrays are still valid for dataframe, so using the apply() function is no 
longer necessary. For example, functions such as sum() and mean() can calculate the sum and the average, 
respectively, of the elements contained within a dataframe.

>>> frame.sum()
ball      24
pen       28
pencil    32
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paper     36
dtype: int64
>>> frame.mean()
ball      6.0
pen       7.0
pencil    8.0
paper     9.0
dtype: float64

There is also a function called describe() that allows you to obtain summary statistics at once.

>>> frame.describe()
            ball        pen     pencil      paper
count   4.000000   4.000000   4.000000   4.000000
mean    6.000000   7.000000   8.000000   9.000000
std     5.163978   5.163978   5.163978   5.163978
min     0.000000   1.000000   2.000000   3.000000
25%     3.000000   4.000000   5.000000   6.000000
50%     6.000000   7.000000   8.000000   9.000000
75%     9.000000  10.000000  11.000000  12.000000
max    12.000000  13.000000  14.000000  15.000000

 Sorting and Ranking
Another fundamental operation that uses indexing is sorting. Sorting the data is often a necessity and it is 
very important to be able to do it easily. pandas provides the sort_index() function, which returns a new 
object that’s identical to the start, but in which the elements are ordered.

Let’s start by seeing how you can sort items in a series. The operation is quite trivial since the list of 
indexes to be ordered is only one.

>>> ser = pd.Series([5,0,3,8,4],
...     index=['red','blue','yellow','white','green'])
>>> ser
red       5
blue      0
yellow    3
white     8
green     4
dtype: int64
>>> ser.sort_index()
blue      0
green     4
red       5
white     8
yellow    3
dtype: int64
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As you can see, the items were sorted in ascending alphabetical order based on their labels (from 
A to Z). This is the default behavior, but you can set the opposite order by setting the ascending option 
to False.

>>> ser.sort_index(ascending=False)
yellow    3
white     8
red       5
green     4
blue      0
dtype: int64

With the dataframe, the sorting can be performed independently on each of its two axes. So if you 
want to order by row following the indexes, you just continue to use the sort_index() function without 
arguments as you’ve seen before. Or if you prefer to order by columns, you need to set the axis options to 1.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> frame.sort_index()
        ball  pen  pencil  paper
blue       4    5       6      7
red        0    1       2      3
white     12   13      14     15
yellow     8    9      10     11
>>> frame.sort_index(axis=1)
        ball  paper  pen  pencil
red        0      3    1       2
blue       4      7    5       6
yellow     8     11    9      10
white     12     15   13      14

So far, you have learned how to sort the values according to the indexes. But very often you may need to 
sort the values contained in the data structure. In this case, you have to differentiate depending on whether 
you have to sort the values of a series or a dataframe.

If you want to order the series, you need to use the sort_values() function.

>>> ser.sort_values()
blue      0
yellow    3
green     4
red       5
white     8
dtype: int64
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If you need to order the values in a dataframe, use the sort_values() function seen previously but with 
the by option. Then you have to specify the name of the column on which to sort.

>>> frame.sort_values(by='pen')
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

If the sorting criteria will be based on two or more columns, you can assign an array containing the 
names of the columns to the by option.

>>> frame.sort_values(by=['pen','pencil'])
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

The ranking is an operation closely related to sorting. It mainly consists of assigning a rank (that is, a 
value that starts at 0 and then increases gradually) to each element of the series. The rank will be assigned 
starting from the lowest value to the highest.

>>> ser.rank()
red       4.0
blue      1.0
yellow    2.0
white     5.0
green     3.0
dtype: float64

The rank can also be assigned in the order in which the data are already in the data structure (without a 
sorting operation). In this case, you just add the method option with the first value assigned.

>>> ser.rank(method='first')
red       4.0
blue      1.0
yellow    2.0
white     5.0
green     3.0
dtype: float64

By default, even the ranking follows an ascending sort. To reverse this criteria, set the ascending option 
to False.

>>> ser.rank(ascending=False)
red       2.0
blue      5.0
yellow    4.0
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white     1.0
green     3.0
dtype: float64

 Correlation and Covariance
Two important statistical calculations are correlation and covariance, expressed in pandas by the corr() 
and cov() functions. These kinds of calculations normally involve two series.

>>> seq2 = pd.Series([3,4,3,4,5,4,3,2],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq = pd.Series([1,2,3,4,4,3,2,1],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq.corr(seq2)
0.7745966692414835
>>> seq.cov(seq2)
0.8571428571428571

Covariance and correlation can also be applied to a single dataframe. In this case, they return their 
corresponding matrices in the form of two new dataframe objects.

>>> frame2 = pd.DataFrame([[1,4,3,6],[4,5,6,1],[3,3,1,5],[4,1,6,4]],
...                     index=['red','blue','yellow','white'],
...                     columns=['ball','pen','pencil','paper'])
>>> frame2
        ball  pen  pencil  paper
red        1    4       3      6
blue       4    5       6      1
yellow     3    3       1      5
white      4    1       6      4
>>> frame2.corr()
            ball       pen    pencil     paper
ball    1.000000 -0.276026  0.577350 -0.763763
pen    -0.276026  1.000000 -0.079682 -0.361403
pencil  0.577350 -0.079682  1.000000 -0.692935
paper  -0.763763 -0.361403 -0.692935  1.000000
>>> frame2.cov()
            ball       pen    pencil     paper
ball    2.000000 -0.666667  2.000000 -2.333333
pen    -0.666667  2.916667 -0.333333 -1.333333
pencil  2.000000 -0.333333  6.000000 -3.666667
paper  -2.333333 -1.333333 -3.666667  4.666667

Using the corrwith() method, you can calculate the pairwise correlations between the columns or 
rows of a dataframe with a series or another DataFrame().

>>> ser = pd.Series([0,1,2,3,9],
...                   index=['red','blue','yellow','white','green'])
>>> ser
red       0
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blue      1
yellow    2
white     3
green     9
dtype: int64
>>> frame2.corrwith(ser)
ball      0.730297
pen      -0.831522
pencil    0.210819
paper    -0.119523
dtype: float64
>>> frame2.corrwith(frame)
ball      0.730297
pen      -0.831522
pencil    0.210819
paper    -0.119523
dtype: float64

 “Not a Number” Data
In the previous sections, you saw how easily missing data can be formed. They are recognizable in the data 
structures by the NaN (Not a Number) value. So, having values that are not defined in a data structure is quite 
common in data analysis.

However, pandas is designed to better manage this eventuality. In fact, in this section, you learn how 
to treat these values so that many issues can be obviated. For example, in the pandas library, calculating 
descriptive statistics excludes NaN values implicitly.

 Assigning a NaN Value
If you need to specifically assign a NaN value to an element in a data structure, you can use the np.NaN (or np.
nan) value of the NumPy library.

>>> ser = pd.Series([0,1,2,np.NaN,9],
...                   index=['red','blue','yellow','white','green'])
>>> ser
red      0.0
blue     1.0
yellow   2.0
white    NaN
green    9.0
dtype: float64
>>> ser['white'] = None
>>> ser
red      0.0
blue     1.0
yellow   2.0
white    NaN
green    9.0
dtype: float64

Chapter 4 ■ the pandas Library—an introduCtion



109

 Filtering Out NaN Values
There are various ways to eliminate the NaN values during data analysis. Eliminating them by hand, element 
by element, can be very tedious and risky, and you’re never sure that you eliminated all the NaN values. This 
is where the dropna() function comes to your aid.

>>> ser.dropna()
red     0.0
blue    1.0
yellow  2.0
green   9.0
dtype: float64

You can also directly perform the filtering function by placing notnull() in the selection condition.

>>> ser[ser.notnull()]
red     0.0
blue    1.0
yellow  2.0
green   9.0
dtype: float64

If you’re dealing with a dataframe, it gets a little more complex. If you use the dropna() function on this 
type of object, and there is only one NaN value on a column or row, it will eliminate it.

>>> frame3 = pd.DataFrame([[6,np.nan,6],[np.nan,np.nan,np.nan],[2,np.nan,5]],
...                        index = ['blue','green','red'],
...                        columns = ['ball','mug','pen'])
>>> frame3
       ball  mug  pen
blue    6.0  NaN  6.0
green   NaN  NaN  NaN
red     2.0  NaN  5.0
>>> frame3.dropna()
Empty DataFrame
Columns: [ball, mug, pen]
Index: []

Therefore, to avoid having entire rows and columns disappear completely, you should specify the how 
option, assigning a value of all to it. This tells the dropna() function to delete only the rows or columns in 
which all elements are NaN.

>>> frame3.dropna(how='all')
      ball  mug  pen
blue   6.0  NaN  6.0
red    2.0  NaN  5.0
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 Filling in NaN Occurrences
Rather than filter NaN values within data structures, with the risk of discarding them along with values 
that could be relevant in the context of data analysis, you can replace them with other numbers. For most 
purposes, the fillna() function is a great choice. This method takes one argument, the value with which to 
replace any NaN. It can be the same for all cases.

>>> frame3.fillna(0)
       ball  mug  pen
blue    6.0  0.0  6.0
green   0.0  0.0  0.0
red     2.0  0.0  5.0

Or you can replace NaN with different values depending on the column, specifying one by one the 
indexes and the associated values.

>>> frame3.fillna({'ball':1,'mug':0,'pen':99})
       ball  mug   pen
blue    6.0  0.0   6.0
green   1.0  0.0  99.0
red     2.0  0.0   5.0

 Hierarchical Indexing and Leveling
Hierarchical indexing is a very important feature of pandas, as it allows you to have multiple levels of indexes 
on a single axis. It gives you a way to work with data in multiple dimensions while continuing to work in a 
two-dimensional structure.

Let’s start with a simple example, creating a series containing two arrays of indexes, that is, creating a 
structure with two levels.

>>> mser = pd.Series(np.random.rand(8),
...        index=[['white','white','white','blue','blue','red','red',
           'red'],
...               ['up','down','right','up','down','up','down','left']])
>>> mser
white  up       0.461689
       down     0.643121
       right    0.956163
blue   up       0.728021
       down     0.813079
red    up       0.536433
       down     0.606161
       left     0.996686
dtype: float64
>>> mser.index
Pd.MultiIndex(levels=[['blue', 'red', 'white'], ['down',
'left', 'right', 'up']],
...        labels=[[2, 2, 2, 0, 0, 1, 1, 1],
           [3, 0, 2, 3, 0, 3, 0, 1]])
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Through the specification of hierarchical indexing, selecting subsets of values, is in a certain way, 
simplified.

In fact, you can select the values for a given value of the first index, and you do it in the classic way:

>>> mser['white']
up       0.461689
down     0.643121
right    0.956163
dtype: float64

Or you can select values for a given value of the second index, in the following manner:

>>> mser[:,'up']
white    0.461689
blue     0.728021
red      0.536433
dtype: float64

Intuitively, if you want to select a specific value, you specify both indexes.

>>> mser['white','up']
0.46168915430531676

Hierarchical indexing plays a critical role in reshaping data and group-based operations such as a pivot-
table. For example, the data could be rearranged and used in a dataframe with a special function called 
unstack(). This function converts the series with a hierarchical index to a simple dataframe, where the 
second set of indexes is converted into a new set of columns.

>>> mser.unstack()
           down      left     right        up
blue   0.813079       NaN       NaN  0.728021
red    0.606161  0.996686       NaN  0.536433
white  0.643121       NaN  0.956163  0.461689

If you want to perform the reverse operation, which is to convert a dataframe to a series, use the 
stack() function.

>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> frame.stack()
red     ball       0
        pen        1
        pencil     2
        paper      3
blue    ball       4
        pen        5
        pencil     6
        paper      7
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yellow  ball       8
        pen        9
        pencil    10
        paper     11
white   ball      12
        pen       13
        pencil    14
        paper     15
dtype: int32

With dataframes, it is possible to define a hierarchical index both for the rows and for the columns. At 
the time the dataframe is declared, you have to define an array of arrays for the index and columns options.

>>> mframe = pd.DataFrame(np.random.randn(16).reshape(4,4),
...      index=[['white','white','red','red'], ['up','down','up','down']],
...      columns=[['pen','pen','paper','paper'],[1,2,1,2]])
>>> mframe
                 pen               paper
                   1         2         1         2
white up   -1.964055  1.312100 -0.914750 -0.941930
      down -1.886825  1.700858 -1.060846 -0.197669
red   up   -1.561761  1.225509 -0.244772  0.345843
      down  2.668155  0.528971 -1.633708  0.921735

 Reordering and Sorting Levels
Occasionally, you might need to rearrange the order of the levels on an axis or sort for values at a 
specific level.

The swaplevel() function accepts as arguments the names assigned to the two levels that you want to 
interchange and returns a new object with the two levels interchanged between them, while leaving the data 
unmodified.

>>> mframe.columns.names = ['objects','id']
>>> mframe.index.names = ['colors','status']
>>> mframe
objects             pen               paper
id                    1         2         1         2
colors status
white  up     -1.964055  1.312100 -0.914750 -0.941930
       down   -1.886825  1.700858 -1.060846 -0.197669
red    up     -1.561761  1.225509 -0.244772  0.345843
       down    2.668155  0.528971 -1.633708  0.921735
>>> mframe.swaplevel('colors','status')
objects             pen               paper
id                    1         2         1         2
status colors
up     white  -1.964055  1.312100 -0.914750 -0.941930
down   white  -1.886825  1.700858 -1.060846 -0.197669
up     red    -1.561761  1.225509 -0.244772  0.345843
down   red     2.668155  0.528971 -1.633708  0.921735
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Instead, the sort_index() function orders the data considering only those of a certain level 
by specifying it as parameter
>>> mframe.sort_index(level='colors')
objects             pen               paper
id                    1         2         1         2
colors status
red    down    2.668155  0.528971 -1.633708  0.921735
       up     -1.561761  1.225509 -0.244772  0.345843
white  down   -1.886825  1.700858 -1.060846 -0.197669
       up     -1.964055  1.312100 -0.914750 -0.941930

 Summary Statistics with groupby Instead of with Level
Many descriptive statistics and summary statistics performed on a dataframe or on a series have still a 
level option, with which you can determine at what level the descriptive and summary statistics should be 
determined.

Until now, if you wanted to create a row-level statistic, you simply had to specify the level option by 
passing it the name of the level.

>>> mframe.sum(level='colors')
objects       pen               paper
id              1         2         1         2
colors
red      1.106394  1.754480 -1.878480  1.267578
white   -3.850881  3.012959 -1.975596 -1.139599

Unfortunately, if you run this command, you get a correct result, but the operation is deprecated and 
signals a warning message.

Future Warning: Using the level keyword in dataframe and series aggregations is deprecated and will 
be removed in a future version.

If, on the other hand, you want to work in line with new and future pandas versions, you need to change 
your approach. Instead of applying the selection level, you group the part on which you have to apply the sum 
operation in the following way:

>>>mframe.groupby('colors').sum()
objects       pen               paper
id              1         2         1         2
colors
red      1.106394  1.754480 -1.878480  1.267578
white   -3.850881  3.012959 -1.975596 -1.139599

The result is the same but no warning messages are obtained.
You must do the same thing when you want to make a statistic at a certain level of the columns, for 

example id. Instead of specifying the following command, which uses the level option:

>>> mframe.sum(level='id', axis=1)
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You define a group on the second axis (axis=1) and on the index id. Again, you do this instead of 
specifying it in the level option, which has been the practice up to now. If you run the command, you get 
the same result, but without warning messages.

>>> mframe.groupby('id', axis=1).sum()
id                    1         2
colors status
white  up     -2.878806  0.370170
       down   -2.947672  1.503189
red    up     -1.806532  1.571352
       down    1.034447  1.450706

 Conclusions
This chapter introduced the pandas library. You learned how to install it and saw a general overview of its 
characteristics.

You learned about the two basic data structures, called the series and dataframes, along with their 
operation and their main characteristics. Especially, you discovered the importance of indexing within these 
structures and how best to perform operations on them. Finally, you looked at the possibility of extending 
the complexity of these structures by creating hierarchies of indexes, thus distributing the data contained in 
them into different sublevels.

In the next chapter, you learn how to capture data from external sources such as files, and inversely, 
how to write the analysis results on them.
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