
403

CHAPTER 14

Image Analysis and Computer
Vision with OpenCV

In the previous chapters, the analysis of data was centered entirely on numerical and tabulated data, while in
the previous chapter, you saw how to process and analyze data in textual form. This book rightfully closes by
introducing the last aspect of data analysis: image analysis.

This chapter introduces topics such as computer vision and face recognition. You will see how
the techniques of deep learning are at the base of this kind of analysis. Furthermore, another library is
introduced, called openCV, which has always been the reference point for image analysis.

�Image Analysis and Computer Vision
Throughout the book, you have seen how the purpose of the analysis is to extract new information, to draw
new concepts and characteristics from a system under investigation. You did it with numerical and textual
data, but the same can be done with images.

This branch of analysis is called image analysis and it is based on calculation techniques applied to
images (called image filters), which you will see in the next sections.

In recent years, especially because of the development of deep learning, image analysis has experienced
huge development in solving problems that were previously impossible, giving rise to a new discipline called
computer vision.

In Chapter 9, you learned about artificial intelligence, which is the branch of calculation that deals
with solving problems of pure “human relevance.” Computer vision is part of this, since its purpose is to
reproduce the way the human brain perceives images.

In fact, seeing is not just the acquisition of a two-dimensional image—above all it is the interpretation
of the content of that area. The captured image is decomposed and elaborated into levels of representation
that are gradually more abstract (contours, figures, objects, and words) and therefore recognizable by the
human mind.

In the same way, computer vision intends to process a two-dimensional image and extract the same
levels of representation from it. This is done through various operations that can be classified as follows:

•	 Detection: Detect shapes, objects, or other subjects of investigation in an image (for
example, finding cars)

•	 Recognition: The identified subjects are then led back to generic classes (for example,
subdividing cars by brands and types)

•	 Identification: An instance of the previous class is identified (for example,
find my car)

© Fabio Nelli 2023
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-9532-8_14

https://doi.org/10.1007/978-1-4842-9532-8_9
https://doi.org/10.1007/978-1-4842-9532-8_14#DOI

404

�OpenCV and Python
OpenCV (Open Source Computer Vision) is a library written in C ++ that is specialized for computer
vision and image analysis (https://opencv.org/). This powerful library, designed by Gary Bradsky,
was born as an Intel project. The first version was released in 2000. Then with the passage of time, it
was released under an open source license, and since then has gradually becoming more widespread,
reaching version 4.8 (June 2023). At this time, OpenCV supports many algorithms related to computer
vision and machine learning and is expanding day by day.

Its usefulness and spread is due precisely to its antagonist: matlab. In fact, those who need to work with
image analysis have two choices: purchase matlab packages or compile and install the open source version
of OpenCV. Well, it is easy to see why many have opted for the second choice.

�OpenCV and Deep Learning
There is a close relationship between computer vision and deep learning. Since 2017 was a significant year
for the development of deep learning (read my article about it at www.meccanismocomplesso.org/en/2017-
the-year-of-deep-learning-frameworks/), the release of the new version of OpenCV 3.3 has seen the
enhancement of the library, with many new features of deep learning and neural networks in general. In
fact, the library has a module called dnn (deep neural networks) dedicated to this aspect. This module has
been specifically developed for use with many deep learning frameworks, including Caffe2, TensorFlow, and
PyTorch (for information on these frameworks, see Chapter 9).

�Installing OpenCV
You can install a OpenCV package on many operating systems (Windows, iOS, and Android) through the
official website (https://opencv.org/releases/).

If you use Anaconda as a distribution medium, I recommend using this approach. The installation is
very simple and clean.

conda install opencv

Unfortunately for Linux systems, there is no official PyPI package (with pip to be clear) to be installed.
Manual installation is required and may vary depending on the distribution and version used. Many
procedures are present on the Internet, some more or less valid.

�First Approaches to Image Processing and Analysis
This section familiarizes you with the opencv library. First, you start to see how to upload and view images.
Then you pass some simple operations to them, add and subtract two images, and see an example of
image blending. All these operations are very useful, as they serve as a basis for many other image analysis
operations.

�Before Starting
Once the opencv library is installed, you can open an IPython session on the Jupyter QtConsole or in a
Jupyter Notebook.

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

https://opencv.org/
http://www.meccanismocomplesso.org/en/2017-the-year-of-deep-learning-frameworks/
http://www.meccanismocomplesso.org/en/2017-the-year-of-deep-learning-frameworks/
https://doi.org/10.1007/978-1-4842-9532-8_9
https://opencv.org/releases/

405

Before you start programming, you need to import the openCV library.

import numpy as np
import cv2

�Load and Display an Image
First, mainly because OpenCV works on pictures, it is important to know how to load images in a program in
Python, manipulate them again, and finally view them to see the results.

The first thing you need to do is read the file containing the image using the openCV library. You can
do this using the imread() method. This method reads the file in a compressed format such as JPG and
translates it into a data structure that’s made of a numerical matrix corresponding to color gradations and
position.

■■ Note Y ou can find the images and files in the source code of this book.

img = cv2.imread('italy2018.jpg')

If you are interested in more details, you can see the content of an image directly. You will notice an
array of arrays, each corresponding to a specific position of the image, and each characterized by numbers
between 0 and 255.

In fact, if you look at the contents of the first element of the image, you get the following.

img[0]
Out []:
array([[38, 43, 11],
 [37, 42, 10],
 [36, 41, 9],
 ...,
 [24, 37, 15],
 [22, 36, 12],
 [23, 36, 12]], dtype=uint8)

Continuing with the code, you now use the matplotlib library to show the image loaded in the img
variable. First import what you need for plotting from the matplotlib library:

from matplotlib import pyplot as plt

Now you can use pyplot’s imshow() method to display the loaded image. Because by default the color
format in OpenCV is BGR (blue, green, red), it is important to specify the conversion to RGB format via cv2.
COLOR_BGR2RGB. Also, since pyplot is set up for plotting, you need to remove the axes and ticks from the
display, so disable them by setting plt.axis to off.

plt.axis('off')
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

406

When you execute this command, a new window opens and shows the image in Figure 14-1.

Figure 14-1.  The photo of the Italian national football team during training

�Work with Images
Now that you’ve seen how to view existing images in your file system, you can proceed to the next step:
processing an image by performing an operation on it and saving the result to a new file.

Continuing with the previous example, you will use the same code. This time, however, you will
perform a simple image manipulation, for example, by decomposing the three RGB channels. Then you will
exchange the channels to form a new image. This new image will have all altered colors.

After loading the image, decompose it into the three RGB channels. You can do this easily by using the
split() method.

b,r,g = cv2.split(img)

Now reassemble the three channels, but change the order, for example by exchanging the red channel
with the green channel. You can easily recombine the channels using the merge() method.

img2 = cv2.merge((b,g,r))

The new image is contained in the img2 variable. Display it along with the original in a new window.

plt.axis('off')
plt.imshow(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))
plt.show()

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

407

By running the program, a new window appears with altered colors (as shown in Figure 14-2).

Figure 14-2.  The processed image has altered colors

�Save the New Image
Finally you have to save your new image by saving the file system.

At the end of the program, add an imwrite() method with the name of the new file that you want to
save, which can also be of another format, such as PNG.

cv2.imwrite('italy2018altered.png', img2)
Out []:
True

Execute this command and you will notice a new italy2018altered.png file in the workspace.

�Elementary Operations on Images
The most basic operation is the addition of two images. With the openCV library, this operation is very simple
and you can do it using the cv2.add() function. The result obtained will be a combination of the two images.

But do not forget that the two images must have the same dimensions to be added together. In this case,
the images are both 512x331 pixels.

The first thing you need to do is load a second image with the same dimensions, in this case soccer.jpg
(you can find it in the source code).

img2 = cv2.imread('soccer.jpg')
plt.axis('off')
plt.imshow(img2)
plt.show()

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

408

By executing the code, you will get the image shown in Figure 14-3.

Figure 14-3.  A new image that’s the same size (512x331 pixels)

Now you add the two images using the add() function.

img3 = cv2.add(img,img2)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

By executing this code, you will receive a combination of the two images (as shown in Figure 14-4).
Unfortunately, the effect is not very appealing.

Figure 14-4.  A new image obtained by adding the two images

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

409

The result is not what you might expect. The prevalence of white is in fact the result of the simple
arithmetic sum of the three RGB values, which is calculated for each individual pixel.

In fact, you know that each of the three RGB components takes values from 0 to 255. Therefore, if
the sum of the values of a given pixel is greater than 255 (which is quite likely), the value will still be 255.
Therefore, the simple task of adding the images does not lead to an image that’s a merger of the two, but
instead shifts gradually more and more toward white.

Later you learn how to add two images to create a new image that is half of the two (it is not the
arithmetic sum).

You can do the same thing by subtracting two images. This operation can be performed with the cv2.
subtract() function. This time you would expect an image that will tend more and more toward the black.
Replace the cv2.add() function with the following.

img3 = cv2.subtract(img, img2)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

By running the program, you will get a much darker image (even if you do not see much), as shown in
Figure 14-5.

Figure 14-5.  A new image obtained by subtracting one image from another

Note that this effect is even worse if you do the reverse and subtract the second image from the first.

img3 = cv2.subtract(img2, img)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

410

You get a blackish image, as shown in Figure 14-6.

Figure 14-6.  A new image obtained by subtracting one image from another

However, this is useful to know that the order of the operators is important for the result.
More concretely, you have already seen that an image created with the opencv library is nothing more

than an array of arrays that responds perfectly to the canons of NumPy. Thus, you can use the operations
between matrices provided by NumPy, such as the addition of matrices. But be careful, because the result
will certainly not be the same.

img = img1 + img2

In fact, the cv2.add() and cv2.subtract() functions maintain the values between 0 and 255, regardless
of the value of the operators. If the sum exceeds 255, the result is interpreted differently, thus creating a very
strange color effect (maybe as a module of 255). The same thing happens when the removal produces a
negative value; the result would be 0. Arithmetic operations do not have this feature.

However, you can try this directly.

img3 = img + img2
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

Executing this code, you will get an image with a very strong color contrast (which are the points over
255), as shown in Figure 14-7.

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

411

Figure 14-7.  An image obtained by adding two images as two NumPy matrices

�Image Blending
In the previous example, you saw that the addition or subtraction of two images does not produce an
intermediate image between the two, but instead changes the coloration toward white or black.

The correct operation is called blending. That is, you can consider the operation of superimposing the
two images, one above the other, making the one placed above gradually more and more transparent. By
adjusting the transparency gradually, you get a mixture of the two images, creating a new one that is the
intermediate.

The blending operation does not correspond to a simple addition; the formula corresponds to the
following equation.

img = α · img1 + (1 – α) · img2 with 0 ≥ α ≥ 1

As you can see from this equation, the two images have two numerical coefficients that take values
between 0 and 1. With the growth of the α parameter, you will have a smooth transition from the first image
to the second.

The opencv library provides the blending operation with the cv2.addWeighted() function.
Therefore, if you want to create an intermediate image between two source images, you can use the

following code.

img3 = cv2.addWeighted(img, 0.3, img2, 0.7, 0)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

412

The result will be an image like the one shown in Figure 14-8.

Figure 14-8.  An image obtained with image blending

�Image Analysis
The purpose of the examples in the previous section was to understand that images are nothing but
NumPy arrays. As such, these numerical matrices can be processed. Therefore, you can implement many
mathematical functions that will process the numbers within these matrices to get new images. These new
images, obtained from operations, will serve to provide new information.

This is the concept underlying image analysis. The mathematical operations carried out by a starting
image (matrix) to a resultant image (matrix) are called image filters (see Figure 14-9). To understand this
process, you will certainly have to deal with photo editing applications (like Photoshop). In any case,
you have certainly seen that filters that can be applied to photos. These filters are nothing more than
algorithms (sequences of mathematical operations) that modify the numerical values in the matrix of the
starting image.

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

413

Figure 14-9.  A representation of the image filters that are the basis of image analysis

�Edge Detection and Image Gradient Analysis
In the previous sections, you learned how to perform some basic operations that are useful for image
analysis. In this section, you start with a real case of image analysis, called edge detection.

�Edge Detection
While analyzing an image, and especially during computer vision, one of the fundamental operations is to
understand the content of the image, such as objects and people. It is first necessary to understand what
possible forms are represented in the image. To understand the geometries represented, it is necessary to
recognize the outlines that delimit an object from the background or from other objects. This is precisely the
task of edge detection.

In edge detection, a great many algorithms and techniques have been developed and they exploit
different principles in order to determine the contours of objects. Many of these techniques are based on the
principle of color gradients, and they exploit the image gradient analysis process.

�The Image Gradient Theory
Among the various operations that can be applied to images, there are the convolutions of an image in which
certain filters are applied to edit the image in order to obtain information or some other utility. You have
already seen that an image is represented as a large numerical matrix in which the colors of each pixel are
represented by a number from 0 to 255 in the matrix. The convolutions process all these numerical values by
applying a mathematical operation (image filter) to produce new values in a new matrix of the same size.

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

414

One of these operations is the derivative. In simple words, the derivative is a mathematical operation
that allows you to get the numerical values indicating the speed at which a value changes (in space,
time, etc.).

How could the derivative be important in the case of the images? It has to do with color variation, called
a gradient.

Being able to calculate the gradient of a color is an excellent tool to calculate the edges of an image. In
fact, your eye can distinguish the outlines of a figure present in an image, thanks to the jumps between one
color to another. In addition, your eye can perceive the depths thanks to the various shades of color ranging
from light to dark, which is the gradient.

From all this, it is quite clear that measuring a gradient in an image is crucial to being able to detect the
edges of the image. It’s done with a simple operation (a filter) that is carried out on the image.

To get a better look at this from a mathematical point of view, look at Figure 14-10.

Figure 14-10.  The image gradient theory representation

As you can see in Figure 14-10, an edge is no more than a quick transition from one hue to another. To
simplify, 0 is black and 1 is white. All shades of gray are floating values between 0 and 1.

If you chart all corresponding values to the gradient values, you get the function f(). As you can see,
there is a sudden transition from 0 to 1, which indicates the edge.

The derivative of the function f() results in the function f'(). As you can see, the maximum variation
of the hue leads to values close to 1. So when converting colors, you will get a figure in which white will
indicate the edge.

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

415

�A Practical Example of Edge Detection with the Image
Gradient Analysis
Moving on to the practical part, you will use two images created specifically to test the analysis of the
contours, since they have several important characteristics in them.

The first image (shown in Figure 14-11) consists of two arrows in black and white and corresponds to
the blackandwhite.jpg file. In this image, the color contrast is very strong and the contours of the arrows
have all the possible orientations (horizontal, vertical, and diagonal). This test image will evaluate the effect
of edge detection in a black-and-white system.

Figure 14-11.  A black-and-white image representing two arrows

The second image, gradients.jpg, shows different gradients of gray, which, when placed next to each
other, create rectangles whose edges have all the possible gradations and combinations of shades (as shown
in Figure 14-12). This image is a good test to evaluate the true edge detection capabilities of the system.

Figure 14-12.  A set of gray gradients placed next to each other

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

416

Now you can start to develop the code needed for edge detection. You will use matplotlib to display
different images in the same window. In this test, you will use two different types of image filters provided by
OpenCV: sobel and laplacian. In fact, their names correspond to the name of the mathematical operations
performed on the matrices (images). The openCV library provides cv2.Sobel() and cv2.Laplacian() to
apply these two calculations.

First it starts by analyzing the edge detection applied to the blackandwhite.jpg image.

from matplotlib import pyplot as plt
img = cv2.imread('blackandwhite.jpg',0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()

When you run this code, you get a window with four boxes (as shown in Figure 14-13). The first box is
the original image in black and white, while the other three boxes are the result of the three filters applied to
the image.

Figure 14-13.  The result from the edge detection applied to the blackandwhite.jpg image

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

417

Regarding the Sobel filters, edge detection is perfect, even if limited horizontally or vertically. The
diagonal lines are visible in both cases, since they have both horizontal and vertical components, but the
horizontal edges in the Sobel X and those in the vertical Sobel Y are not detected in any way.

Combining the two filters (the calculation of two derivatives) to obtain the Laplacian filter, the
determination of the edges is omnidirectional but has some loss of resolution. In fact, you can see that the
ripples corresponding to the edges are more subdued.

The coloring in gray is very useful for detecting edges and gradients, but if you are interested in only
detecting edges, you have to set as output an image file in cv2.CV_8U.

Therefore, you can change the type of output data from cv2.CV_64F to cv2.CV_8U in the filters function
of the previous code. Replace the arguments passed to the two image filters as follows.

laplacian = cv2.Laplacian(img, cv2.CV_8U)
sobelx = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_8U,0,1,ksize=5)

By running the code, you will get similar results (as shown in Figure 14-14), but this time only in black
and white, where the edges are displayed in white on a black background.

Figure 14-14.  The result from the edge detection applied to the blackandwhite.jpg image

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

418

If you look carefully at the panels of the Sobel filter X and Y, you will notice right away that something is
wrong. Where are the missing edges? Note this issue in Figure 14-15.

Figure 14-15.  Missing edges in the blackandwhite.jpg image

In fact, there was a problem while converting the data. The gradients reported in the grayscale with
cv2.CV_64F values are represented by positive values (positive slope) when changing from black to white.
However, they are represented by negative values (negative slope) when switching from white to black. In
the conversion from cv2.CV_64F to cv2.CV_8U, all negative slopes are reduced to 0, and then the information
relating to those edges is lost. When the program displays the image, the edges from white to black are
not shown.

To overcome this, you should keep the data in the output of the filter in cv2.CV_64F (instead of cv2.
CV_8U), then calculate the absolute value, and finally do the conversion in cv2.CV_8U.

Make these changes to the code:

laplacian64 = cv2.Laplacian(img, cv2.CV_64F)
sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian = np.uint8(np.absolute(laplacian64))
sobelx = np.uint8(np.absolute(sobelx64))
sobely = np.uint8(np.absolute(sobely64))
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

419

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()

Now, if you execute it, you will get the right representation in white on the black edges of the arrows (as
shown in Figure 14-16). As you can see, the edges do not appear in Sobel X and Sobel Y because they are
parallel to the direction of detection (horizontal and vertical).

Figure 14-16.  The result from the edge detection applied to the blackandwhite.jpg image

In addition to the edges, you see that the Laplacian and Sobel filters can also detect the level of
gradients across a grayscale. Apply what you’ve seen to the gradient.jpg image. You have to make some
changes to the previous code, leaving only one image (Laplacian) visible.

from matplotlib import pyplot as plt
img = cv2.imread('gradients.jpg',0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian64 = cv2.Laplacian(img, cv2.CV_64F)
sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian = np.uint8(np.absolute(laplacian64))
sobelx = np.uint8(np.absolute(sobelx64))
sobely = np.uint8(np.absolute(sobely64))

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

420

plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.show()

By executing this code, you will get an image showing the white borders on a black background (as
shown in Figure 14-17).

Figure 14-17.  The result from the edge detection applied to the gradients.jpg image

�A Deep Learning Example: Face Detection
In this last section of the chapter, you shift your attention to another highly studied and used case in
computer vision, face detection.

This is a far more complex case than edge detection, and it is based on identifying human faces in an
image. Given the complexity of the problem, face detection uses deep learning. In fact at the base of this
technique, there are neural networks that are specially designed to recognize different subjects, including
the faces of a person, in a photo. Object detection techniques also work very similarly. This example is very
useful to fully understand the heart of computer vision, that of interpreting the subjects present in a photo.

In this example, you use an already learned neural network. In fact, educating a neural network for this
kind of problem can be a complex operation and require a great deal of time and resources.

Fortunately, there are neural networks on the web already trained to perform these kinds of operations,
and for this test you will use a model developed using the Caffe2 framework (see Chapter 9 for more
information).

When you want to use a deep neural network module with Caffe models in the OpenCV environment,
you need two types of files, as follows:

•	 A prototxt file, which defines the model architecture (i.e., the layers themselves).
You will use a deploy.prototxt.txt file downloaded from the web (https://
github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.
prototxt).

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

https://doi.org/10.1007/978-1-4842-9532-8_9
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt

421

•	 A caffemodel file, which contains the weights for the actual layers in the deep neural
network. This file is the most important because it contains all the “learning” of
that neural network to perform a given task. For your purposes, a caffemodel file is
available at https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_
face_detector_20170830.

■■ Note Y ou can also find these files in the source code of this book.

Now that you have everything you need, start by uploading the neural network model and all the
information about your learning.

The opencv library supports many deep learning frameworks, and it has many features in it that help
you with this. In particular (mentioned at the beginning of the chapter), OpenCV has the dnn module, which
specializes in these kinds of operations.

To load a learned neural network, you can use the dnn.readNetFromCaffe() function.

net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt', 'res10_300x300_ssd_iter_140000.
caffemodel')

As a test image, you can use the photo of the players of the Italian national team, italy2018.jpg. This
image is a great example, as there are many faces inside.

image = cv2.imread('italy2018.jpg')
(h, w) = image.shape[:2]

Another function, called dnn.blobFromImage(), takes care of preprocessing the image to be adapted to
neural networks. For example, resize the image to 300x300 pixels so that it can be used by the caffemodel file
that has been trained for images of this size.

blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0,
177.0, 123.0))

Then define a confidence threshold with an optimal value of 0.5.

confidence_threshold = 0.5

And finally, perform the face detection test.

net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2]):
 confidence = detections[0, 0, i, 2]
 if confidence > confidence_threshold:
 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
 (startX, startY, endX, endY) = box.astype("int")
 text = "{:.2f}%".format(confidence * 100)
 y = startY - 10 if startY - 10 > 10 else startY + 10
 cv2.rectangle(image, (startX, startY), (endX, endY),(0, 0, 255), 2)
 �cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45,

(0, 0, 255), 2)

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_face_detector_20170830
https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_face_detector_20170830

422

plt.axis('off')
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()

By executing the code, a window will appear with the results of processing the face detection (shown
in Figure 14-18). The results are incredible, since the faces of all the players have been detected. You can
see the faces surrounded by a red square that highlights them in the image with a percentage of confidence.
Confidence percentages are all greater than 50 percent for the confidence_threshold parameter that you
specified at the start of the test.

Figure 14-18.  The faces of the national football players have all been accurately recognized

�Conclusions
In this chapter, you saw some simple examples of techniques that form the basis of image analysis and in
particular of computer vision. In fact, you saw how images are processed through image filters, and how
some complex techniques can be built using edge detection. You also saw how computer vision works by
using deep learning neural networks to recognize faces in an image (called face detection).

I hope this chapter has been a good starting point for your further insights on the subject.
If you are interested, you can find in-depth information on this topic on my website at https://
meccanismocomplesso.org.

 Chapter 14 ■ Image Analysis and Computer Vision with OpenCV

https://meccanismocomplesso.org
https://meccanismocomplesso.org

	Chapter 14: Image Analysis and Computer Vision with OpenCV
	Image Analysis and Computer Vision
	OpenCV and Python
	OpenCV and Deep Learning
	Installing OpenCV
	First Approaches to Image Processing and Analysis
	Before Starting
	Load and Display an Image
	Work with Images
	Save the New Image
	Elementary Operations on Images
	Image Blending

	Image Analysis
	Edge Detection and Image Gradient Analysis
	Edge Detection
	The Image Gradient Theory
	A Practical Example of Edge Detection with the Image Gradient Analysis

	A Deep Learning Example: Face Detection
	Conclusions

