
367

CHAPTER 12

Recognizing Handwritten Digits

So far you have seen how to apply the techniques of data analysis to pandas dataframes containing numbers
and strings. However, data analysis is not limited to numbers and strings, because images and sounds can
also be analyzed and classified.

In this short but no-less-important chapter, you will learn about handwriting recognition.

 Handwriting Recognition
Recognizing handwritten text is a problem that can be traced back to the first automatic machines that
needed to recognize individual characters in handwritten documents. Think about, for example, the
ZIP codes on letters at the post office and the automation needed to recognize these five digits. Perfect
recognition of these codes is necessary in order to sort mail automatically and efficiently.

Included among the other applications that may come to mind is OCR (Optical Character Recognition)
software. OCR software must read handwritten text, or pages of printed books, for general electronic
documents in which each character is well defined.

But the problem of handwriting recognition goes farther back in time, more precisely to the early 20th
century (1920s), when Emanuel Goldberg (1881–1970) began his studies regarding this issue and suggested
that a statistical approach would be an optimal choice.

To address this issue in Python, the scikit-learn library provides a good example. This library can
help you better understand this technique, the issues involved, and the possibility of making predictions.

 Recognizing Handwritten Digits with scikit-learn
The scikit-learn library (http://scikit-learn.org/) enables you to approach this type of data analysis
in a way that is slightly different from what you’ve used in the book so far. The data to be analyzed is closely
related to numerical values or strings, but can also involve images and sounds.

The problem you face in this chapter involves predicting a numeric value, and then reading and
interpreting an image that uses a handwritten font.

In this case, you have an estimator with the task of learning through a fit() function, and once it
reaches a degree of predictive capability (the model is sufficiently valid), it will produce a prediction with the
predict() function. The training and validation sets are created this time from a series of images.

This chapter uses Jupyter Notebook to run through the Python code examples, so open Jupyter and
create a new Notebook.

An estimator that is useful in this case is sklearn.svm.SVC, which uses the technique of Support Vector
Classification (SVC).

© Fabio Nelli 2023
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-9532-8_12

http://scikit-learn.org/
https://doi.org/10.1007/978-1-4842-9532-8_12#DOI

368

Thus, you have to import the svm module of the scikit-learn library. You can create an estimator of
SVC type and then choose an initial setting, assigning the values C and gamma generic values. These values
can then be adjusted in a different way during the course of the analysis.

from sklearn import svm
svc = svm.SVC(gamma=0.001, C=100.)

 The Digits Dataset
As you saw in Chapter 8, the scikit-learn library provides numerous datasets that are useful for testing
many problems of data analysis and prediction of the results. Also in this case there is a dataset of images
called Digits.

This dataset consists of 1,797 images that are 8x8 pixels in size. Each image is a handwritten digit in
grayscale, as shown in Figure 12-1.

Figure 12-1. One of 1,797 handwritten number images that make up the Digits dataset

Thus, you can load the Digits dataset into your Notebook.

from sklearn import datasets
digits = datasets.load_digits()

After loading the dataset, you can analyze the content. First, you can read lots of information about the
datasets by calling the DESCR attribute.

print(digits.DESCR)

For a textual description of the dataset, the authors who contributed to its creation and the references
appear as shown in Figure 12-2.

 Chapter 12 ■ reCognizing handwritten digits

https://doi.org/10.1007/978-1-4842-9532-8_8

369

Figure 12-2. Each dataset in the scikit-learn library has a field containing all the information

The images of the handwritten digits are contained in a digits.images array. Each element in this
array is an image that is represented by an 8x8 matrix of numerical values that correspond to grayscale array.
White has a value of 0 and black has a value of 15.

digits.images[0]

You will get the following result:

array([[0., 0., 5., 13., 9., 1., 0., 0.],
 [0., 0., 13., 15., 10., 15., 5., 0.],
 [0., 3., 15., 2., 0., 11., 8., 0.],
 [0., 4., 12., 0., 0., 8., 8., 0.],
 [0., 5., 8., 0., 0., 9., 8., 0.],

 Chapter 12 ■ reCognizing handwritten digits

370

 [0., 4., 11., 0., 1., 12., 7., 0.],
 [0., 2., 14., 5., 10., 12., 0., 0.],
 [0., 0., 6., 13., 10., 0., 0., 0.]])

You can visually check the contents of this result using the matplotlib library.

import matplotlib.pyplot as plt
plt.imshow(digits.images[0], cmap=plt.cm.gray_r, interpolation='nearest')

When you launch this command, you obtain the grayscale image shown in Figure 12-3.

Figure 12-3. One of the 1,797 handwritten digits

The numerical values represented by images, that is, the targets, are contained in the digits.target array.

digits.targetOut []:
array([0, 1, 2, ..., 8, 9, 8])

It was reported that the dataset is a training set consisting of 1,797 images. You can determine if that
is true.

digits.target.sizeOut []:
1797

 Learning and Predicting
Now that you have loaded the Digits dataset into your Notebook and have defined an SVC estimator, you can
start learning.

As you learned in Chapter 8, once you define a predictive model, you must instruct it with a training set,
which is a set of data in which you already know the class. Given the large quantity of elements contained in
the Digits dataset, you will certainly obtain a very effective model, that is, one that’s capable of recognizing
with good certainty the handwritten number.

 Chapter 12 ■ reCognizing handwritten digits

https://doi.org/10.1007/978-1-4842-9532-8_8

371

This dataset contains 1,797 elements, so you can consider the first 1,791 as a training set and use the last
6 as a validation set.

You can see in detail these six handwritten digits by using the matplotlib library:

import matplotlib.pyplot as plt
plt.subplot(321)
plt.imshow(digits.images[1791], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(322)
plt.imshow(digits.images[1792], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(323)
plt.imshow(digits.images[1793], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(324)
plt.imshow(digits.images[1794], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(325)
plt.imshow(digits.images[1795], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(326)
plt.imshow(digits.images[1796], cmap=plt.cm.gray_r, interpolation='nearest')

This will produce an image with six digits, as shown in Figure 12-4.

Figure 12-4. The six digits of the validation set

 Chapter 12 ■ reCognizing handwritten digits

372

Now you can train the svc estimator that you defined earlier.

svc.fit(digits.data[1:1790], digits.target[1:1790])

This will produce an image as shown in Figure 12-5.

Figure 12-5. The parameters of the SVC estimator

Now you have to test your estimator, making it interpret the six digits of the validation set.

svc.predict(digits.data[1791:1976])
Out []: array([4, 9, 0, 8, 9, 8])

If you compare them with the actual digits, as follows:

digits.target[1791:1976]
Out []:
array([4, 9, 0, 8, 9, 8])

You can see that the svc estimator has learned correctly. It recognizes the handwritten digits,
interpreting correctly all six digits of the validation set.

 Recognizing Handwritten Digits with TensorFlow
You have just seen an example of how machine learning techniques can recognize handwritten numbers.
Now the same problem is applied to the deep learning techniques that you used in Chapter 9. As was the
case in Chapter 9, the following section regarding TensorFlow has been completely rewritten from the
previous edition. In fact, here too you will use the new TensorFlow 2.x version, which is completely different
from TensorFlow 1.x. The code used here is therefore not present in older editions of this book.

Given the great value of the MNIST dataset, the TensorFlow library also contains a copy of it. It will
therefore be very easy to perform studies and tests on neural networks with this dataset, without having to
download or import them from other data sources.

In addition to TensorFlow, install the tensorflow-dataset package. You can do this either using
Anaconda Navigator or via the command console:

conda install tensorflow-dataset

If you don’t have the Anaconda platform, you can install the package through the PyPI system.

pip install tensorflow-dataset

 Chapter 12 ■ reCognizing handwritten digits

https://doi.org/10.1007/978-1-4842-9532-8_9
https://doi.org/10.1007/978-1-4842-9532-8_9

373

Importing the MNIST dataset into the Jupyter Notebook (in any Python session) is very simple. Indeed,
with the new version of TensorFlow 2.x, there is no need to import test datasets like MNIST from other
libraries, as they are available within Keras, which is integrated within the tensorflow module you already
imported. You can simply import the libraries like numpy and matplotlib along with tensorflow, which also
contains the MNIST dataset.

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
ì

Now load the dataset directly into your Notebook by simply writing the following line of code.

(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()

Then you can load the dataset directly into your Notebook.

x_validation = x_train[55000:]
x_train = x_train[:55000]
y_validation = y_train[55000:]
y_train = y_train[:55000]
len(x_train)
Out []:
55000

len(x_test)
Out []:
10000

len(x_validation)
Out []:
5000

The MNIST data is split into three parts: 55,000 data points of training data (x_train), 10,000 points of
test data (x_test), and 5,000 points of validation data (x_validation).

All this data will be submitted to the model: x is the feature dataset and y is the label dataset. As you
saw earlier, these are images of handwritten letters. You can look at the first image of the training dataset
(features).

x_train[0].shape
Out []:
(28, 28)

This is a square image of 28 pixels per side.

plt.imshow(x_train[0], cmap=plt.cm.gray_r, interpolation='nearest')

You will get the black and white image of a handwritten number, similar to the one shown in
Figure 12-6.

 Chapter 12 ■ reCognizing handwritten digits

374

Figure 12-6. A digit of the training set in the MNIST dataset provided by the TensorFlow library

To give you an idea of the contents of the MNIST dataset, a better visualization is the following:

fig, ax = plt.subplots(10, 10)
k = 0
for i in range(10):
 for j in range(10):
 ax[i][j].imshow(x_train[k].reshape(28, 28),
 cmap=plt.cm.gray_r,
 interpolation='nearest',
 aspect='auto')
 ax[i][j].set_xticks([])
 ax[i][j].set_yticks([])
 k += 1

Running the code, you will get a pattern of 100 numbers in the dataset, as shown in Figure 12-7.

 Chapter 12 ■ reCognizing handwritten digits

375

Figure 12-7. 100 digits of the training dataset from MNIST dataset provided by the TensorFlow library

Because these are images and therefore two-dimensional arrays, as you learned in Chapter 9, you have
to use a flatten layer at the beginning of the neural network to flatten the input data and make them one-
dimensional.

As for the types of values to be submitted to the neural network, you have integer values ranging from
0 to 255.

print(np.max(x_train))
np.min(x_train)
Out []:
255
0

In fact, these are grayscale images which, like RGB colors, are included in a range of values between 0
and 255. You therefore also have to add a normalization layer to the neural network model.

Now convert all the arrays to tensors for use in TensorFlow.

train_features = tf.convert_to_tensor(x_train)
train_labels = tf.convert_to_tensor(y_train)
test_features = tf.convert_to_tensor(x_test)
test_labels = tf.convert_to_tensor(y_test)
exp_features = tf.convert_to_tensor(x_validation)

 Chapter 12 ■ reCognizing handwritten digits

https://doi.org/10.1007/978-1-4842-9532-8_9

376

Let’s look at the characteristics of one of the tensors as an example.

train_features
Out []:
<tf.Tensor: shape=(55000, 28, 28), dtype=uint8, numpy=
array([[[0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 ...,
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0]],
...

The results obtained are what you would expect.

 Learning and Predicting with an SLP
Now that you’ve seen how to get the training set, the testing set, and the validation set with TensorFlow, it’s
time to do an analysis with a neural network, very similar to the one you used in Chapter 9. Let’s start by
using a Single Layer Perceptron (SLP).

First define a model with a single dense layer with ten outputs corresponding to the ten numerical digits
ranging from 0 to 9, and which correspond to the ten classes of membership of the handwritten digits to
be identified. To this single layer, you will add the two layers: Normalization and Flatten. The former will
normalize the pixel values of the images from 0 to 255 in the range of 0 to 1, and the latter will convert the
two-dimensional array of 28x28 images into a single one-dimensional array.

model = tf.keras.Sequential([
 tf.keras.layers.Normalization(),
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(10, activation='sigmoid')
])

Once the model has been defined, you can compile it, setting Adam as an optimizer and sparse_
categorical_crossentropy as a function. Then you can start learning the model with 20 epochs.

model.compile(
 optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])
h = model.fit(train_features, train_labels, epochs=20)
Out []:
Epoch 1/20
1719/1719 [==============================] - 3s 1ms/step - loss: 10.6817 - accuracy: 0.8341
Epoch 2/20
1719/1719 [==============================] - 2s 1ms/step - loss: 6.1368 - accuracy: 0.8759
Epoch 3/20
1719/1719 [==============================] - 3s 2ms/step - loss: 5.7782 - accuracy: 0.8798
Epoch 4/20
1719/1719 [==============================] - 3s 1ms/step - loss: 5.5405 - accuracy: 0.8824

 Chapter 12 ■ reCognizing handwritten digits

https://doi.org/10.1007/978-1-4842-9532-8_9

377

Epoch 5/20
1719/1719 [==============================] - 2s 1ms/step - loss: 5.4812 - accuracy: 0.8840
Epoch 6/20
1719/1719 [==============================] - 2s 1ms/step - loss: 5.3873 - accuracy: 0.8851
Epoch 7/20
1719/1719 [==============================] - 2s 1ms/step - loss: 5.3120 - accuracy: 0.8861
...

Now check the learning phase through the history by graphically monitoring the trend of the loss.

acc_set = h.history['loss']
epoch_set = h.epoch
plt.plot(epoch_set,acc_set, 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

Running the code, you get a plot like the one shown in Figure 12-8.

Figure 12-8. The loss trend during the learning phase of the SLP neural network

You can also evaluate the model numerically using the following line of code:

model.evaluate(test_features, test_labels)
Out []:
313/313 [==============================] - 1s 1ms/step - loss: 5.8654 - accuracy: 0.8925
[5.865407466888428, 0.8924999833106995]

As you can see from the numerical values, an accuracy of 0.89 is not optimal and the loss value does not
seem to drop too much, stabilizing at a value of 5.86.

 Chapter 12 ■ reCognizing handwritten digits

378

Let’s see how this model can recognize handwritten numbers that have not been used for learning or
for testing. For this purpose, a third dataset has been set aside: exp_features. You extend the model with the
Softmax layer to get the probabilities of belonging to the various classes as a result. You then let the newly
educated SLP model make the predictions.

probability_model = tf.keras.Sequential([
 model,
 tf.keras.layers.Softmax()
])
predictions = probability_model.predict(exp_features)
Out []:
157/157 [==============================] - 0s 981us/step

Now take the first image to be predicted, with the probabilities of recognition at each of the ten
numerical digits.

predictions[0]
Out []:
array([0.04717345, 0.12823072, 0.12823072, 0.12823072, 0.1282307 ,
 0.08905466, 0.04721416, 0.04717345, 0.12823072, 0.12823072],
 dtype=float32)

From the list of ten probabilities in the output, the situation is not so legible. If you use a graphical
approach, representing the various probabilities in a barplot, you get better results.

p = plt.bar(np.arange(10),predictions[0])
plt.xticks(np.arange(10))
predicted_label = np.argmax(predictions[0])
p[predicted_label].set_color('red')

Running the previous code will give you a barplot similar to the one shown in Figure 12-9.

Figure 12-9. The loss trend during the learning phase of the SLP neural network

 Chapter 12 ■ reCognizing handwritten digits

379

You can immediately see that many digits have the same probability of being the one represented in
the image. Although the barplot shows the most probable figure in red, in this case there is an error since
many other figures have the same probability (the graph shows only the first maximum in the case of parity
of values). So the forecast was not successful. Now determine the true value of the image submitted to
the model.

y_validation[0]
Out []:
1

You can also look at it graphically.

plt.imshow(x_validation[0], cmap=plt.cm.gray_r, interpolation='nearest')

Executing the previous code, you obtain the number shown in Figure 12-10.

Figure 12-10. The image shows the handwritten number 1

As you can see, it is the number 1, which is present among the most probable results. However, there are
too many probable options, so you cannot consider this a good prediction. Now take a number that is easier
to recognize and see if the SLP model can recognize it correctly.

Choose the 14th number, which is easily recognizable.

plt.imshow(x_validation[13], cmap=plt.cm.gray_r, interpolation='nearest')

By running the code, you will get the image of this easily recognizable number, as shown in
Figure 12-11.

 Chapter 12 ■ reCognizing handwritten digits

380

Figure 12-11. The image shows the handwritten number 9

The image clearly shows the number 9. Now check the corresponding label.

y_validation[13]
Out []:
9

Let’s see, in this very simple case, if the model recognized the number 9 clearly.

predictions[13]
Out []:
array([0.07372559, 0.07270355, 0.07317524, 0.07424378, 0.13360192,
 0.07305884, 0.07261127, 0.13158722, 0.09798288, 0.1973097],
 dtype=float32)

You can also look at this graphically.

p = plt.bar(np.arange(10),predictions[13])
plt.xticks(np.arange(10))
predicted_label = np.argmax(predictions[13])
p[predicted_label].set_color('red')

Running the code will result in a barplot like the one shown in Figure 12-12.

 Chapter 12 ■ reCognizing handwritten digits

381

Figure 12-12. The barplot shows the 9 digit as the most probable result (red bar)

Although it guessed the number correctly this time, giving it a probability of around 20 percent is
certainly not a good prediction. The number is easily recognizable, and it should have a much higher
probability of recognition than the other digits.

 Learning and Predicting with an MLP
Given the moderate success of the SLP model, this section builds a much more complex neural network,
with more layers and more neurons in play. This network uses a Multiple Layer Perceptron (MLP) model
with a hidden layer to predict handwritten digits. Furthermore, it brings the number of neurons of the first
layer to 256, to which you will add another 128 for the hidden layer. It leaves the output layer unchanged at
ten neurons (the ten digits to be classified).

model = tf.keras.Sequential([
 tf.keras.layers.Normalization(),
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(256, activation='sigmoid'),
 tf.keras.layers.Dense(128, activation='sigmoid'),
 tf.keras.layers.Dense(10, activation='sigmoid')
])

You can compile the model and train it with the same number of epochs as the previous one (20).

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])
h = model.fit(train_features, train_labels, epochs=20)
Out []:
Epoch 1/20
1719/1719 [==============================] - 4s 2ms/step - loss: 0.4885 - accuracy: 0.8658
Epoch 2/20
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3243 - accuracy: 0.9013

 Chapter 12 ■ reCognizing handwritten digits

382

Epoch 3/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2935 - accuracy: 0.9093
Epoch 4/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2630 - accuracy: 0.9171
Epoch 5/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2423 - accuracy: 0.9250
Epoch 6/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2370 - accuracy: 0.9268
Epoch 7/20
...

You can also graphically see the trend of the loss during the learning phase of the model.

acc_set = h.history['loss']
epoch_set = h.epoch
plt.plot(epoch_set,acc_set, 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

By executing the previous code, you obtain a plot like the one shown in Figure 12-13.

Figure 12-13. The image shows how the value of the loss is optimized during the training phase

You can also evaluate the model learning process numerically.

model.evaluate(test_features, test_labels)
Out []:
313/313 [==============================] - 1s 1ms/step - loss: 0.1537 - accuracy: 0.9511
[0.1537058800458908, 0.9510999917984009]

 Chapter 12 ■ reCognizing handwritten digits

383

As you can clearly see, this time the learning, in addition to being regular, also reaches a good accuracy
value and a low loss value. You could also increase the number of epochs during the training phase to
further increase the predictive power of this MLP model. However, leave things unchanged to compare the
performance of this model to the previous one.

Now you can see how this model recognizes numbers using the same two images that you submitted to
the SLP model.

probability_model = tf.keras.Sequential([
 model,
 tf.keras.layers.Softmax()
])
predictions = probability_model.predict(exp_features)
Out []:
157/157 [==============================] - 0s 1ms/step

First you saw how the model assigns the probabilities of belonging to the ten digits of the image with the
number 1.

predictions[0]
array([0.07896608, 0.21424502, 0.08096407, 0.07952367, 0.08464722,
 0.07919335, 0.08132026, 0.11285783, 0.10845622, 0.07982624],
 dtype=float32)

You can represent these graphically in a barplot.

p = plt.bar(np.arange(10),predictions[0])
plt.xticks(np.arange(10))
predicted_label = np.argmax(predictions[0])
p[predicted_label].set_color('red')

Running this code, you get the barplot shown in Figure 12-14.

Figure 12-14. The barplot shows the 1 digit as the most probable result (red bar)

 Chapter 12 ■ reCognizing handwritten digits

384

As you can see, this model guessed the number represented in the image, with a much higher
probability than the other digits. This time, the number 1 has been clearly identified.

If you carry out the same operations with the second image (representing the number 9), you will get a
similar result, as shown in the barplot in Figure 12-15.

Figure 12-15. The barplot shows the 1 digit as the most probable (red bar)

It is therefore clear that a more complex neural network model such, as the one used in the example, is
more efficient: it learns faster and is more adept at identifying the handwritten numbers in the images. But
it is not always true that a more complex neural network model leads to an increase in potential. Only an
adequate study of the various models, the optimizations used, the loss functions chosen, and all the other
parameters used can prove the accuracy of a model. I therefore invite you to study this topic further, if you
are fascinated by it.

 Conclusions
In this chapter, you learned how many application possibilities this data analysis process has. It is not limited
only to the analysis of numerical and textual data, but also can analyze images, such as the handwritten
digits read by a camera or a scanner.

Furthermore, you have seen that predictive models can provide optimal results, thanks to machine
learning and deep learning techniques, which are powerful analysis tools thanks to libraries such as
TensorFlow.

 Chapter 12 ■ reCognizing handwritten digits

	Chapter 12: Recognizing Handwritten Digits
	Handwriting Recognition
	Recognizing Handwritten Digits with scikit-learn
	The Digits Dataset
	Learning and Predicting
	Recognizing Handwritten Digits with TensorFlow
	Learning and Predicting with an SLP
	Learning and Predicting with an MLP
	Conclusions

