CHAPTER 11

Embedding the JavaScript D3
Library in the IPython Notebook W,

In this chapter, you will learn how to extend the capabilities of the graphical representation including the
JavaScript D3 library in your Jupyter Notebook. This library has enormous potential graphics and allows you
to build graphical representations that even the matplotlib library cannot represent.

In the course of the various examples, you will see how to implement JavaScript code in a Python
environment, using the large capacity of the integrative Jupyter Notebook. You'll also see different ways to
use the data contained in pandas dataframes and representations based on JavaScript code.

The Open Data Source for Demographics

In this chapter, you use demographic data as the dataset on which to perform the analysis. This chapter
uses the United States Census Bureau site (www. census .gov) as the data source for the demographics
(see Figure 11-1).

CUmled States® Partners Researchers Educators Survey Respondents Mews NAICS Codes Jobs AboutUs ContactUs Help

eI'IS S Topi:: Data & Surveys & Resource
Maps Programs Library

Search dala, events, resources, an.. @

Measurlng Americas People Pl _-

Economy

We Believe in the Power of Quality Data to Impact Public Life

Learn Mora °

Figure 11-1. This is the home page of the United States Census Bureau

© Fabio Nelli 2023 349
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-9532-8_11

http://www.census.gov
https://doi.org/10.1007/978-1-4842-9532-8_11#DOI

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

The United States Census Bureau is part of the United States Department of Commerce, and it is
officially in charge of collecting demographic data on the U.S. population and reporting statistics about it.
Its site provides a large amount of data as CSV files, which, as you have seen in previous chapters, are easily
imported in the form of pandas dataframes.

For the purposes of this chapter, you want the data that estimates the population of the states and
counties in the United States. On the site there is a series of datasets made available for studies at the link
WWW2 . census.gov/programs-surveys/popest/datasets/. Among the available datasets, look for the
most recent one and download it to your computer. This example uses the CSV file called co-est2022-
alldata.csv.

Now, open a Jupyter Notebook and import all the necessary libraries for this kind of analysis in the
first cell.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

You can start by importing data from Census.gov in your Notebook. You need to upload the co-
est2022--alldata.csv file directly in the form of a pandas dataframe. The pd.read _csv() function will
convert tabular data contained in a CSV file to a pandas dataframe, which you should name pop2022. Using
the dtype option, you can force some fields that could be interpreted as numbers to be interpreted as strings
instead.

pop2022 =pd.read csv('co-est2022-alldata.csv' ,encoding="'latin-1',dtype={'STATE': 'str',
"COUNTY': 'str'})

Once you have acquired and collected data in the pop2022 dataframe, you can see how the data are
structured by simply writing:

pop2022

You will obtain an image like the one shown in Figure 11-2.

SUMLEV REGION DIVISION STATE COUNTY STNAME CTYNAME ESTIMATESBASE2020 POPESTIMATE2020 POPESTIMATEZ021 .. RDEATH2021 RDEATH2022 RNATURALCHGZ021

o A0 3 3 o 00 Alabarna Alsbama 5024355 503136 5049845 BE9045

3190 50 ‘ B 5 037 Wyoming ~enwate 22267 21382 10422714
3191 50 4 3 % 039 Wyeming ety 23323 233 23622 4476753 £ 404370

3192

1103 = 3 - cg D43 Wyoming =~ 'Yasnale — i 14313508 14805081 satasTe

3194 50 4 : 45 Wyeming bkt 24 531 i 1295641 14677822 -4 55418

Figure 11-2. The pop2022 dataframe contains all demographics for the years 2020, 2021, and 2022

350

http://www2.census.gov/programs-surveys/popest/datasets/

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

Carefully analyzing the nature of the data, you can see how they are organized within the dataframe.
The SUMLEV column contains the geographic level of the data; for example, 40 indicates a state and 50

indicates data covering a single county.
The REGION, DIVISION, STATE, and COUNTY columns contain hierarchical subdivisions of all areas in

which the U.S. territory has been divided. STNAME and CTYNAME indicate the name of the state and the county,
respectively. The following columns contain the data on population. POPESTIMATE2020 is the column that
contains the population estimate for 2020, followed by those for 2021 and 2022.

You will use these values of population estimates as data to be represented in the examples discussed in

this chapter.
The pop2022 dataframe contains a large number of columns and rows that you are not interested in,

so it is smart to eliminate unnecessary information. First, you are interested in the values of the people who
relate to entire states, and so you can extract only the rows with SUMLEV equal to 40. Collect these data within
the pop2022_by state dataframe.

pop2022_by state = pop2022[pop2022.SUMLEV == 40]
pop2022_by state

You get a dataframe like the one shown in Figure 11-3.

SUMLEV REGION DIVISION STATE COUNTY STHNAME CTYNAME ESTIMATESBASE2020 POPESTIMATE2020 POPESTIMATE2021 RDEATH2021 RDEATH2022 RNATURALCH(

Figure 11-3. The pop2022_by_state dataframe contains all demographics related to the states

The dataframe just obtained still contains too many columns with unnecessary information. Given
the large number of columns, instead of removing them with the drop() function, it is more convenient to
perform an extraction.

states = pop2022_by state[['STNAME','POPESTIMATE2020', 'POPESTIMATE2021',
'POPESTIMATE2022"]]

Now that you have the essential information, you can start to make graphical representations. For
example, you could determine the five most populated states in the country.

states.sort values(['POPESTIMATE2022'], ascending=False)[:5]

Listing them in descending order, you will receive the dataframe shown in Figure 11-4.

351

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

STNAME POPESTIMATE2020 POPESTIMATE2021 POPESTIMATE2022

191 California 39501653 39142991 39029342
2568 Texas 29232474 29558864 30029572
331 Florida 21589602 21828069 22244823
1862 New York 20108296 19857492 19677151
2284 Pennsylvania 12994440 13012059 12972008

Figure 11-4. The five most populous states in the United States

For example, you could use a bar chart to represent the five most populous states in descending
order. This work is easily achieved using matplotlib, but in this chapter, you take advantage of this simple
representation to see how you can use the JavaScript D3 library to create the same representation.

The JavaScript D3 Library

D3 is a JavaScript library that allows direct inspection and manipulation of the DOM object (HTML5), but it
is intended solely for data visualization and it does its job excellently. In fact, the name D3 is derived from
the three Ds contained in “data-driven documents.” D3 was entirely developed by Mike Bostock.

This library is proving to be very versatile and powerful, thanks to the technologies upon which it
is based: JavaScript, SVG, and CSS. D3 combines powerful visualization components with a data-driven
approach to the DOM manipulation. In so doing, D3 takes full advantage of the capabilities of the modern
browser.

Given that even Jupyter Notebooks are web objects and use the same technologies that are the basis of
the current browser, the idea of using this library in a notebook is not as preposterous as it may seem at first,
even though it’s a JavaScript library.

For those not familiar with the JavaScript D3 library and want to know more about this topic, I
recommend reading another book, entitled Create Web Charts with D3, by F. Nelli (Apress, 2014).

Indeed, Jupyter Notebook has the magic function called %% javascript that integrates JavaScript code
into Python code.

But the JavaScript code, in a manner similar to Python, requires you to import some libraries. The
libraries are available online and must be loaded each time you launch the execution. In HTML, the process
of importing a library has a particular construct:

<script src="https://cdnjs.cloudflare.com/ajax/1ibs/d3/3.5.5/d3.min.js"></script>

This is an HTML tag. To make the import within an Jupyter Notebook, you should use this different
construct:

%%javascript
require.config({

paths: {
d3: '//cdnjs.cloudflare.com/ajax/1libs/d3/3.5.5/d3.min'
}

};

352

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

Using require.config(), you can import all the necessary JavaScript libraries.

In addition, if you are familiar with HTML code, you will know for sure that you need to define CSS
styles if you want to strengthen the capacity of visualization of an HTML page. In parallel, also in the Jupyter
Notebook, you can define a set of CSS styles. To do this, you can write HTML code, thanks to the HTML()
function belonging to the IPython.core.display module. Therefore, make the appropriate CSS definitions
as follows:

from IPython.display import display, Javascript, HTML

display(HTML("""
<style>
.bar {
fill: steelblue;
}
.bar:hover{
fill: brown;
}
.axis {
font: 10px sans-serif;
}
.axis path,
.axis line {
fill: none;
stroke: #000;
}

.x.axis path {
display: none;
}

</style>
<div id="chart_d3" />
IIIIII))

At the bottom of the previous code, note that the <div> HTML tag is identified as chart_d3. This tag
identifies the location where it will be represented.

Now you have to write the JavaScript code by using the functions provided by the D3 library. Using the
Template object provided by the Jinja2 library, you can define dynamic JavaScript code, where you can
replace the text depending on the values contained in a pandas dataframe.

If there is still not a Jinjaz2 library installed on your system, you can always install it with Anaconda.

conda install jinja2

Or by using this
pip install jinja2

After you have installed this library, you can define the template.
import jinja2
myTemplate = jinja2.Template(
require(["d3"], function(d3){

var data = []
{% for row in data %}

353

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

data.push({ 'state': "{{ row[1] }}', 'population': '{{ row[4] }}' 1});
{% endfor %}
d3.select("#chart_d3 svg").remove()
var margin = {top: 20, right: 20, bottom: 30, left: 40},

width = 800 - margin.left - margin.right,

height = 400 - margin.top - margin.bottom;
var x = d3.scale.ordinal()

.rangeRoundBands ([0, width], .25);
var y = d3.scale.linear()

.range([height, 0]);
var xAxis = d3.svg.axis()

.scale(x)

.orient("bottom");
var yAxis = d3.svg.axis()

.scale(y)

.orient("left")

.ticks(10)

.tickFormat(d3.format('.1s"'));
var svg = d3.select("#chart_d3").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
x.domain(data.map(function(d) { return d.state; }));
y.domain([0, d3.max(data, function(d) { return d.population; })1);
svg.append("g")

.attr("class", "x axis"

.attr("transform", "translate(o," + height + ")")

.call(xAxis);
svg.append("g")

.attr("class", "y axis")

.call(yAxis)

.append("text")

.attr("transform", "rotate(-90)")

.attr("y", 6)

.attr("dy", ".71em")

.style("text-anchor", "end")

.text("Population");
svg.selectAll(".bar")

.data(data)

.enter().append("rect")

.attr("class", "bar")

.attr("x", function(d) { return x(d.state); })

.attr("width", x.rangeBand())

.attr("y", function(d) { return y(d.population); })

.attr("height", function(d) { return height - y(d.population); });

1);
")

354

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

You aren’t finished. Now is the time to launch the representation of the D3 chart you just defined. You
also need to write the commands needed to pass data contained in the pandas dataframe to the template, so
they can be directly integrated into the JavaScript code written previously. The representation of JavaScript
code, or rather the template just defined, is executed by launching the render () function.

display(Javascript(myTemplate.render(
data=states.sort values(['POPESTIMATE2022'], ascending=False)[:10].itertuples()
)))

The bar chart will appear in the previous frame in which the <div> was placed, as shown in Figure 11-5,
which shows all the population estimates for the year 2022.

Mew York Pennsylvania Ninois Georgia Horth Carclina

40M

30M

30M

20M +

20M

10M —

M

=4
L

Figure 11-5. The five most populous states of the United States represented by a bar chart relative to 2022

Drawing a Clustered Bar Chart

So far you have relied broadly on what had been described in the fantastic article written by Barto. However,
the type of data that you extracted has given you the trend of population estimates in the last four years for
the United States. A more useful chart for visualizing data would be to show the trend of the population of
each state over time.

To do that, a good choice is to use a clustered bar chart, where each cluster is one of the five most
populous states and each cluster will have four bars that represent the population in a given year.

At this point you can modify the previous code or write new code in your Jupyter Notebook.

display(HTML("""
<style>
.bar2020 {

fill: steelblue;

355

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

.bar2021 {
fill: red;
}

.bar2022 {
fill: yellow;
}

.axis {
font: 10px sans-serif;
}

.axis path,

.axis line {
fill: none;
stroke: #000;

}

.x.axis path {
display: none;

}

</style>
<div id="chart_d3" />

")

You have to modify the template as well, by adding the other three sets of data corresponding to the
years 2020 and 2021. These years will be represented by a different color on the clustered bar chart.

import jinja2
myTemplate = jinja2.Template(
require(["d3"], function(d3){
var data = []
var data2 = []
var data3 = []

{% for row in data %}
data.push ({ 'state': '{{ row[1]
data2.push({ 'state': "{{ row[1]
data3.push({ 'state': "{{ row[1]
{% endfor %}
d3.select("#chart_d3 svg").remove()
var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 800 - margin.left - margin.right,
height = 400 - margin.top - margin.bottom;
var x = d3.scale.ordinal()
.rangeRoundBands ([0, width], .25);
var y = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(10)
.tickFormat(d3.format("'.1s"));

1}, 'population’: '{{ row[2] }}' });
1}, 'population’: '{{ row[3] }}' });
}}'s 'population’: '{{ row[4] }}' });

356

1

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

var svg = d3.select("#chart_d3").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
x.domain(data.map(function(d) { return d.state; }));
y.domain([0, d3.max(data, function(d) { return d.population; })1);
svg.append("g")

.attr("class", "x axis"

.attr("transform", "translate(o," + height + ")")

.call(xAxis);
svg.append("g")

.attr("class", "y axis")

.call(yAxis)

.append("text")

.attr("transform", "rotate(-90)")

.attr("y", 6)

.attr("dy", ".71em")

.style("text-anchor", "end")

.text("Population");
svg.selectAll(".bar2020")

.data(data)

.enter().append("rect")

.attr("class", "bar2020")

.attr("x", function(d) { return x(d.state); })

.attr("width", x.rangeBand()/4)

.attr("y", function(d) { return y(d.population); })

.attr("height", function(d) { return height - y(d.population); });
svg.selectAll(".bar2021")

.data(data2)

.enter().append("rect")

.attr("class", "bar2021")

.attr("x", function(d) { return (x(d.state)+x.rangeBand()/3); })

.attr("width", x.rangeBand()/3)

.attr("y", function(d) { return y(d.population); })

.attr("height", function(d) { return height - y(d.population); });
svg.selectAll(".bar2022")

.data(data3)

.enter().append("rect")

.attr("class", "bar2022")

.attr("x", function(d) { return (x(d.state)+2*x.rangeBand()/3); })

.attr("width", x.rangeBand()/3)

.attr("y", function(d) { return y(d.population); })

.attr("height", function(d) { return height - y(d.population); });

")

The series of data to be passed from the dataframe to the template are now four, so you have to refresh

the data and the changes that you just made to the code. Therefore, you need to rerun the code of the
render () function.

357

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

display(Javascript(myTemplate.render(
data=states.sort values(['POPESTIMATE2022'], ascending=False)[:5].itertuples()
)))

Once you launch the render () function again, you get a chart like the one shown in Figure 11-6.

c
<
i
oMo 8
30M
30M ~
20M
20M
10M

SM

Pennsylvania

Figure 11-6. A clustered bar chart representing the populations of the five most populous states from
2020 to 2022

The Choropleth Maps

In the previous sections, you saw how to use JavaScript code and the D3 library to represent a bar chart. Well,
these achievements would have been easy with matplotlib and perhaps implemented in an even better
way. The purpose of the previous code was only for educational purposes.

Something quite different is the use of much more complex views that are unobtainable by matplotlib.
This section illustrates the true potential made available by the D3 library. The choropleth maps are very
complex types of representations.

The choropleth maps are geographical representations where the land areas are divided into portions
characterized by different colors. The colors and the boundaries between a portion geographical and
another are themselves representations of data.

This type of representation is very useful for representing the results of data analysis carried out on
demographic or economic information, and this is also the case for data that correlates to their geographical
distributions.

The representation of choropleth is based on a particular file called TopoJSON. This type of file contains
all the inside information representing a choropleth map, such as the United States (see Figure 11-7).

358

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

) S

Figure 11-7. The representation of a choropleth map of U.S. territories with no value related to each county
or state

A good link to find such material is the U.S. Atlas TopoJSON (https://github.com/mbostock/
us-atlas), but a lot of literature about it is available online.

A representation of this kind is not only possible but is also customizable. Thanks to the D3 library, you
can correlate the geographic portions based on the value of particular columns contained in a dataframe.

First, start with an example already on the Internet, in the D3 library, http://bl.ocks.org/
mbostock/4060606, but fully developed in HTML. So now you learn how to adapt a D3 example in HTML in
an IPython Notebook.

If you look at the code shown on the web page of the example, you can see that there are three necessary
JavaScript libraries. This time, in addition to the D3 library, you need to import the queue and TopoJSON libraries.

<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/1libs/queue-async/1.0.7/queue.min.
js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/topojson.min.
js"></script>

You have to use require.config() asyou did in the previous sections.

%%javascript
require.config({
paths: {
d3: '//cdnjs.cloudflare.com/ajax/1libs/d3/3.5.5/d3.min",
queue: '//cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/queue.min’,
topojson: '//cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/topojson.min’

};
359

https://github.com/mbostock/us-atlas
https://github.com/mbostock/us-atlas
http://bl.ocks.org/mbostock/4060606
http://bl.ocks.org/mbostock/4060606

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

The pertinent part of the CSS is shown again, all within the HTML() function.

from IPython.display import display, Javascript, HTML
display (HTML("""
<style>
.counties {
fill: none;
}
.states {
fill: none;
stroke: #fff;
stroke-linejoin: round;
}
{ fill:rgb(247,251,255);
{ fill:rgb(222,235,247);
{ fill:rgb(198,219,239);
{ fill:rgh(158,202,225);
{
{

fill:rgh(107,174,214); }
fill:rgb(66,146,198); }
{ fill:rgh(33,113,181); }
.q7-9 { fill:rgb(8,81,156); }
.q8-9 { fill:rgb(8,48,107); }
</style>
<div id="choropleth" />

"))

Here is the new template that mirrors the code shown in the Bostock example, with some changes:

import jinja2
choropleth = jinja2.Template(
require(["d3","queue", "topojson"], function(d3,queue,topojson){
d3.select("#choropleth svg").remove()
var width = 960,
height = 600;
var rateById = d3.map();
var quantize = d3.scale.quantize()
.domain([0, .15])
.range(d3.range(9).map(function(i) { return "gq" + i + "-9"; }));
var projection = d3.geo.albersUsa()
.scale(1280)
.translate([width / 2, height / 2]);
var path = d3.geo.path()
.projection(projection);
//row to modify
var svg = d3.select("#choropleth").append("svg")
.attr("width", width)
.attr("height", height);
queue()
.defer(d3.json, "us.json")
.defer(d3.tsv, "unemployment.tsv", function(d) { rateById.set(d.id, +d.rate); })
.await(ready);

360

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

function ready(error, us) {
if (error) throw error;
svg.append("g")
.attr("class", "counties")
.selectAll("path")
.data(topojson.feature(us, us.objects.counties).features)
.enter().append("path")
.attr("class", function(d) { return quantize(rateById.get(d.id)); })
.attr("d", path);
svg.append("path")
.datum(topojson.mesh(us, us.objects.states, function(a, b) { return a !==b; }))
.attr("class", "states")
.attr("d", path);
}
1);
")

Now you launch the representation, this time without any value for the template, since all the values are
contained in the us. json and unemployment.tsv files (you can find them in the source code of this book).

display(Javascript(choropleth.render()))

The results are identical to those shown in the Bostock example (see Figure 11-8).

Figure 11-8. The choropleth map of the United States with the coloring of the counties based on the values
contained in the file TSV

361

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

The Choropleth Map of the U.S. Population in 2022

Now that you have seen how to extract demographic information from the U.S. Census Bureau and you can
create a choropleth map, you can unify both things to represent a choropleth map showing the population
values. The more populous the county, the deeper blue it will be. In counties with very low population levels,
the hue will tend toward white.

In the first section of the chapter, you extracted information about the states using the pop2022
dataframe. This was done by selecting the rows of the dataframe with SUMLEV values equal to 40. In this
example, you instead need the values of the populations of each county. Therefore, you have to take out a
new dataframe by taking pop2022 using only lines with a SUMLEV of 50.

You must instead select the rows to level 50.

pop2022 by county = pop2022[pop2022.SUMLEV == 50]
pop2022_by county

You get a dataframe that contains all U.S. counties, as shown in Figure 11-9.

SUMLEV REGION DIVISION STATE COUNTY STMAME CTYNAME ESTIMATESBASE2020 POPESTIMATE2020 POPESTIMATEZ021 ... RDEATH2021 RI
1 50 3 6 01 001 Alabama "“c”:::#: 58802 58902 56210 .. 11.548361
2 50 3 6 01 003 Alabama Bcacl,?n1-: 231761 233219 239261 12.882475
3 50 3 6 o 005 Alabama Eg;ﬁ“; 25224 24960 24539 15.475060
4 0 3 & 01 007 Alabama CUE?:? 22300 22183 22370 14275133
5 50 3 6 o1 009 Alabama CB;‘;;"’ 59130 59102 59085 14.637820
3190 50 4 8 56 037 Wyoming S"‘eit‘o‘ﬁne_r 42267 42190 21562 10122714
3191 50 4 8 56 039 Wyoming clﬁfh? 23323 23377 23622 3957531
3192 50 4 8 56 041 Wyoming COJL":':‘ 20446 20457 20655 . 8.999805
3193 50 s 8 56 043 Viyoming ""'ﬁ‘égﬁ';',f. 7682 7658 7712 14.313598
3194 50 4 8 56 045 Wyoming ‘éssuf?: 6840 6818 5766 12.956419

3144 rows x 51 columns

Figure 11-9. The pop2022_by_county dataframe contains all demographics of all U.S. counties

You must use your data instead of the TSV previously used. Inside it, there are the ID numbers
corresponding to the various counties. You can use a file on the web to determine their names. You can
download it and turn it into a dataframe.

USJISONnames = pd.read table('us-county-names.tsv')
USJSONnames

Thanks to this file, you see the codes with the corresponding counties (see Figure 11-10).

362

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

id name

0 1000 Alabama
1 1001 Autauga
1003 Baldwin
1005 Barbour

E I)

1007 Bibb

3349 78222 Ngardmau
3350 78224 Ngatpang
3351 78226 Ngchesar
3352 78350 Peleliu
3353 78370 Sonsorol

Figure 11-10. The codes of the counties are contained in the TSV file

If you take for example the Baldwin county:
USJSONnames[USJSONnames["‘name'] == 'Baldwin’]

You can see that there are actually two counties with the same name, but they are identified by two
different identifiers (Figure 11-11).

id name

2 1003 Baldwin
399 13009 Baldwin

Figure 11-11. There are two Baldwin counties

You get a table and see that there are two counties and two different codes. Now you see this in your
dataframe with data taken from the data source at census.gov (see Figure 11-12).

pop2022_by county[pop2022_by county['CTYNAME'] == 'Baldwin County']

363

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

SUMLEV REGION DIVISION STATE COUNTY STNAME CTYNAME ESTIMATESBASE2020 POPESTIMATE2020 POPESTIMATE2021 ..

2 50 3 6 o1 003 Aabama A 231761 233219 239361 ...
cunty
404 50 3 5 13 008 Georgia Bgé“un};‘ 43795 43794 43671 ...

Figure 11-12. The ID codes in the TSV files correspond to the combination of the values contained in the
STATE and COUNTY columns

You can recognize that there is a match. The ID contained in TOPOJSON matches the numbers in the
STATE and COUNTY columns if combined, but removing the 0 when it is the digit at the beginning of the
code. So now you can reconstruct all the data needed to replicate the TSV example of choropleth from the
counties dataframe. The file will be saved as population.csv.

counties = pop2022_by county[['STATE', 'COUNTY','POPESTIMATE2022"']]
counties.is_copy = False

counties['id'] = counties['STATE'].str.lstrip('0") + "" + counties['COUNTY']
del counties['STATE']

del counties['COUNTY']

counties.columns = ['pop','id']

counties = counties[['id", 'pop']]

counties.to _csv('population.csv')

Now you rewrite the contents of the HTML () function by specifying a new <div> tag with the ID as
choropleth2.

from IPython.display import display, Javascript, HTML
display(HTML("""
<style>
.counties {
fill: none;
}
.states {
fill: none;
stroke: #fff;
stroke-linejoin: round;
}
{ fill:rgb(247,251,255);
{ fill:rgb(222,235,247);
{ fill:rgh(198,219,239);
{ fill:rgb(158,202,225);
{
{

e N

fill:rgb(107,174,214);
fill:rgb(66,146,198); }
{ fill:rgh(33,113,181); }
.q7-9 { fill:rgb(8,81,156); }
.q8-9 { fill:rgb(8,48,107); }
</style>
<div id="choropleth2" />

"))

364

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

You also have to define a new Template object.
choropleth2 = jinja2.Template("""
require(["d3","queue","topojson"], function(d3,queue,topojson){

var data = []
d3.select("#choropleth2 svg").remove()
var width = 960,

height = 600;
var rateById = d3.map();
var quantize = d3.scale.quantize()

.domain([0, 1000000])

.range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));
var projection = d3.geo.albersUsa()

.scale(1280)

.translate([width / 2, height / 2]);
var path = d3.geo.path()

.projection(projection);
var svg = d3.select("#choropleth2").append("svg")

Jattr("width", width)

.attr("height", height);
queue()

.defer(d3.json, "us.json")

.defer(d3.csv, "population.csv", function(d) { rateById.set(d.id, +d.pop); })

.await(ready);
function ready(error, us) {

if (error) throw error;
svg.append("g")
.attr("class", "counties")

.selectAll("path")

.data(topojson.feature(us, us.objects.counties).features)

.enter().append("path")

.attr("class", function(d) { return quantize(rateById.get(d.id)); })
.attr("d", path);
svg.append("path")

.datum(topojson.mesh(us, us.objects.states, function(a, b) { return a !==b; }))
.attr("class", "states")
.attr("d", path);

}

1);

")

Finally, you can execute the render () function to get the chart.
display(Javascript(choropleth2.render()))

The choropleth map will be shown with the counties differently colored depending on their population,
as shown in Figure 11-13.

365

CHAPTER 11 © EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

r= y
| ad £ »
a e
4 & ¢ N
- = a ¥
a2
L)
L
)

" Thh 2
- .
] ¥

Figure 11-13. A choropleth map of the United States showing the density of the population of all counties

Conclusions

In this chapter, you learned how it is possible to further extend the ability to display data using a JavaScript
library called D3. Choropleth maps are just one of many examples of advanced graphics that are used to
represent data. This is also a very good way to see the Jupyter Notebook in action. The world does not revolve
around Python alone, but Python can provide additional capabilities for your work.

In the next chapter, you learn how to apply data analysis to images. You also see how easy it is to build a
model that can recognize handwritten numbers.

366

	Chapter 11: Embedding the JavaScript D3 Library in the IPython Notebook
	The Open Data Source for Demographics
	The JavaScript D3 Library
	Drawing a Clustered Bar Chart
	The Choropleth Maps
	The Choropleth Map of the U.S. Population in 2022
	Conclusions

