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Introduction

Operating Apache Kafka in production is no easy feat. As a high-performing, open-

source, distributed streaming platform, it includes powerful features. However, these 

impressive capabilities also introduce significant complexity, especially when deploying 

Kafka at high scale in production.

If you’re a Kafka admin—whether a DevOps, DataOps, SRE, or system 

administrator—you know all too well the hefty challenges that come with managing 

Kafka clusters in production. It’s a tough task, from unraveling configuration details to 

troubleshooting hard-to-pinpoint production issues. But don’t worry, this book is here to 

lend a helping hand.

This practical guide provides a clear path through the complex web of Kafka 

troubleshooting in production. It delivers tried and tested strategies, useful techniques, 

and insights gained from years of hands-on experience with both on-premises and 

cloud-based Kafka clusters processing millions of messages per second. The objective? 

To help you manage, optimize, monitor, and improve the stability of your Kafka clusters, 

no matter what obstacles you face.

The book delves into several critical areas. One such area is the instability that 

an imbalance or loss of leaders can bring to your Kafka cluster. It also examines CPU 

saturation, helping you understand what triggers it, how to spot it, and its potential 

effects on your cluster’s performance.

The book sheds light on other key aspects such as disk utilization and storage usage, 

including a deep dive into performance metrics and retention policies. It covers the 

sometimes puzzling topic of data skew, teaching you about Kafka’s various skew types 

and their potential impact on performance. The book also explains how adjusting 

producer configurations can help you strike a balance between distribution and 

aggregation ratio.

Additionally, the book discusses the role of RAM in Kafka clusters, including 

situations where you might need to increase RAM. It tackles common hardware failures 

usually found in on-premises data centers and guides you on how to deal with different 

disk configurations like RAID 10 and JBOD, among other Kafka-related issues.
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Monitoring, an essential part of any KafkaOps skill set, is addressed in detail. You’ll 

gain a deep understanding of producer and consumer metrics, learning how to read 

them and what they signify about your cluster’s health.

Whether you’re a DevOps, a DataOps, a system administrator, or a developer, this 

book was created with you in mind. It aims to demystify Kafka’s behavior in production 

environments and arm you with the necessary tools and knowledge to overcome Kafka’s 

challenges. My goal is to make your Kafka experience less overwhelming and more 

rewarding, helping you tap into the full potential of this powerful platform. Let’s kick off 

this exploration.

Introduction
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CHAPTER 1

Storage Usage in Kafka: 
Challenges, Strategies, 
and Best Practices
Kafka’s storage intricacies are vital to its operation, and this chapter dives into those 

details. It begins by exploring how Kafka can run out of available disk space for storing 

segments. Next, it discusses the challenges of handling data loss due to retention policies 

and how to manage consumer lag.

The chapter also looks at how to handle sudden data influxes from producers 

and the importance of understanding daily traffic variations. Compliance with batch 

durations is examined, followed by guidelines for adding more storage to a Kafka cluster. 

Finally, the chapter delves into strategies for extended retention.

Throughout the chapter, I break down practical implications, evaluate potential 

risks, and offer strategies. All of these elements are aimed at optimizing Kafka’s storage 

management.

�How Kafka Runs Out of Disk Space
One of the reasons that a Kafka cluster might halt or stop functioning is that the disks of 

one or more brokers get filled up. That’s why it’s important to prevent Kafka brokers from 

reaching a point at which the segments in their partitions fill up the disks.

There are several scenarios that can cause the disks of a Kafka broker to become full. 

In order to understand these scenarios, imagine you have the Kafka cluster shown in 

Table 1-1.

© Elad Eldor 2023 
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Note  For simplicity reasons, I assume that all the topics in this cluster have the 
same characteristics:

•	 Size on disk

•	 Retention

•	 Replication factor

•	 Number of partitions

Table 1-1.  An Example of a Kafka Cluster

Number of Brokers 3 Notes

Broker Type i3en.xlarge (running on AWS)

Disk Configuration JBOD

Disk Size in Each Broker 2.5TB

Total Disk Size 7.5TB

Storage to Use 6.3TB Assuming you don’t use more 

than 85% of the given storage, to 

allow 15% of the disk space free

Replication Factor 2

Number of Topics 10

Number of Partitions per Topic 5

Retention 5 hours

Topic Size on Disk 300GB The size of the topic, after 

compression, but before the 

replication factor

Topic Size on disk, After 

Replication

600GB

Used Storage (in GB) 6GB

Used Storage (in %) 80%

Chapter 1  Storage Usage in Kafka: Challenges, Strategies, and Best Practices
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Let’s look at some of the reasons that Kafka disks can become full:

•	 Increasing the replication factor (RF) of existing topics: Increasing the 

RF from 2 to 3 will increase the topic size on-disk (after replication) 

by 300GB (from 600GB to 900GB).

•	 Increasing retention for existing topics: Increasing the retention from 

5 to 10 hours will gradually increase the topic size on-disk in the 

following manner:

–– Before replication: By 300GB, from 300GB to 600GB

–– After replication: By 600GB, from 600GB to 1200GB

•	 Adding partitions to existing topics: In general, adding more 

partitions to a topic can enhance the concurrency of producers 

and consumers. For example, if the number of partitions in a topic 

increases from 90 to 100, this allows producers and consumers to 

potentially handle more simultaneous operations. This enhancement 

is tied to the overall capability of handling more parallel tasks in both 

producing and consuming from that topic.

However, if a topic has a size-based retention policy and segments are 

deleted when they reach the size limit, adding more partitions will also 

increase the total size usage.

–– Before replication: By 60GB, from 300GB to 360GB

–– After replication: By 120GB, from 600GB to 720GB

•	 Adding topics: A new topic will add 600GB of storage on-disk, after 

replication.

•	 Disk failures: When at least one disk fails on at least one broker in the 

cluster, and the following conditions apply:

–– The disks are configured in JBOD (instead of RAID).

–– The replication factor is at least 2.

Chapter 1  Storage Usage in Kafka: Challenges, Strategies, and Best Practices
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Then:

–– The data that resided on the failed disk will need to be replicated 

to some other disk.

–– The total available storage in the cluster is reduced while the used 

storage remains the same.

–– If the storage usage was high enough already, then even a single 

failed disk can cause the storage to become full, and the broker 

can fail.

In the previous example, each failed disk will reduce 2.5TB of 

disk space.

•	 Writing to the disks by other processes: If there are other processes 

writing to the disks where the log segments are stored, they will 

reduce the disk space needed to store these segments.

�A Retention Policy Can Cause Data Loss
Data loss happens when some messages aren’t read, because they were deleted from 

Kafka before the consumers had a chance to consume them.

There are several scenarios in which the retention policy can cause data loss for the 

consumers that consume data from that topic. We’ll go over each of them in more detail, 

but first let’s go over on how to configure retention for Kafka topics.

�Configuring a Retention Policy for Kafka Topics
In Kafka, a topic is represented at the disk level as a directory containing child 

directories, with each child directory representing a partition of that topic. These topics 

are housed under a directory specified by the log.dirs configuration parameter. 

The data being written to the topic is stored in log segment files within the partition 

directories. To avoid a situation where the directory that contains all the topics becomes 

full, two configuration parameters control the retention of the data in the topic: log.

retention.bytes and log.retention.hours. These settings help manage storage and 

ensure that old data can be purged in order to make room for new messages:

Chapter 1  Storage Usage in Kafka: Challenges, Strategies, and Best Practices
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•	 log.retention.bytes: This configuration sets the maximum size 

of all log segments inside a partition. Once that size is reached, 

the oldest log segments are deleted in order to free up space. This 

configuration applies per partition.

•	 log.retention.hours: This configuration sets the maximum number 

of hours a message will be retained in the partition before being 

deleted. It applies on a per-topic basis. Unlike the previous byte-

based retention policy, this time-based policy refers to individual 

messages rather than segments. A segment is considered to have 

passed its retention period only when all the messages in that 

segment have exceeded their retention period.

In order to learn how these retention policies control the storage usage inside a topic 

directory, imagine a topic with the characteristics shown in Table 1-2.

Table 1-2.  An Example of a Kafka Topic

Number of Partitions 50

log.retention.bytes 10GB

log.retention.hours 1

Message Size on Disk (After Compression) 1KB

Avg Produce Rate 10K/sec

Segment Size (Determined by log.segment.bytes) 1GB

Produce Rate 1K/sec

Replication Factor 2

In this case, segments will be deleted from the partition either when all the messages 

inside these segments are older than one hour or when the size of all the segments inside 

the partition reaches 10GB, whatever comes first.

After configuring this topic, let’s consider the chances of losing data.

Chapter 1  Storage Usage in Kafka: Challenges, Strategies, and Best Practices
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�Managing Consumer Lag and Preventing Data Loss
When consumers fall into lag, some of them can consume older messages at any given 

time. If this lag continues to grow and surpasses the threshold of one hour (as specified 

by the log.retention.hours value in the example), those consumers may attempt to 

read messages that have already been deleted due to the retention policy. When this 

occurs, these consumers lose all the deleted data, and if they are low-level consumers 

(like Apache Druid, Spark Streaming, or Spark Structured Streaming applications 

that consume from Kafka), they might crash. This crash happens because they try to 

consume a message from an offset that no longer exists in the partition they consume 

from. This situation might lead to downtime for the consumers between the time they 

crash until they restart. After restarting, they will only read messages from the oldest 

offset that exists in the partition.

To prevent this scenario, you should monitor the consumers’ lag and correlate 

between consumers and the topics they consume from. If the total time of the consumer 

lag approaches the topic retention, it’s essential to raise an alert.

To mitigate this scenario, you can increase the retention of the topic if its consumers 

are lagging. If the lagging application has fewer consumers than the number of partitions 

in the topic it consumes from, adding more consumers is advised. However, it’s crucial 

to distribute consumers evenly among the number of partitions. This doesn’t mean that 

the number of consumers and partitions must be equal, but rather that the number of 

partitions should be divisible without a remainder by the number of consumers in each 

consumer group.

�Handling Bursty Data Influx from Producers
Sometimes, producers may temporarily inject much more data into a Kafka topic. This 

can be due to a configuration change or because a sudden burst of data has arrived at the 

producer, such as when a producer recovers from downtime and writes all accumulated 

data at once.

In such cases, the partition’s configured size limit (log.retention.bytes, 10GB 

per partition in the current example) can be reached more quickly than usual. 

Consequently, the time that segments remain in the partition will be shorter. If there  

are any consumers lagging behind at that moment, this can lead to data loss.  

Chapter 1  Storage Usage in Kafka: Challenges, Strategies, and Best Practices
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To monitor such an issue, keep an eye on sudden increases in the producing rate into the 

topic, as this might signal an abnormal data influx. If the topic starts receiving more data, 

consider increasing its retention in order to give lagging consumers more time to catch 

up. If the lagging application has fewer consumers than the number of partitions in the 

topic it reads from, consider adding more consumers. Doing so can help distribute the 

load more evenly and prevent data loss.

�Balancing Consumer Throttling and Avoiding 
Unintended Lag
When consumers begin to lag behind (due to reasons such as an input rate higher than 

the processing rate, a sudden spike in traffic, a restart of the consumer, etc.), it may be 

wise to regulate the amount of data each consumer reads. This can be done by using the 

max.partition.fetch.bytes configuration, which limits the amount of data consumed 

by a consumer in each batch.

While this throttling can contribute to the stability of consumers, it may lead to 

additional lag if the consumption rate falls below the input rate into the topic. This can 

be a delicate balance to strike. In the hypothetical scenario, if the backlog of unread 

messages grows to an hour and the consumer subsequently attempts to read from an 

offset that’s older than one hour, it may fail to find the required data. This failure would 

occur because the messages at that offset would have already been deleted due to the 

topic’s retention policy.

�Understanding Daily Traffic Variations and Their Impact 
on Data Retention
In the previous example, the average input rate into the topic is 10K/sec, and the 

processing rate of consumers is 10K/sec. On paper, this means that consumers won’t get 

into lag, and unless they crash, it’s hard to see how they can lose data. However, if there’s 

a big variance of traffic during the day, there’s still a chance that consumers will have a 

backlog and might also lose data.
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For example, if the input rate to the topic behaves as following:

–– Low hours between 12 am-8 am, it’s 2K/sec

–– Medium hours between 9am-5pm, it’s 5K/sec

–– Peak hours between 7pm-11pm, it’s 18K/sec

then during the peak hours, the consumers might get into lag.

If, after peak time is over, some segments (that the consumers didn’t manage to 

consume) still exist in Kafka, then the consumer will manage to read all of these events. 

However, if for some reason, the consumers developed a lag of more than 60 minutes 

during peak time, there’s a chance that once peak time is over, the consumers will 

develop a delay that’s longer than the 60 minutes, and in such cases the consumers will 

lose that data.

�Ensuring Batch Duration Compliance with Topic Retention 
to Avoid Data Loss
Non real-time consumers often operate on a batch duration, which refers to the regular 

intervals at which they wake up and consume messages from the topic partitions. If the 

retention time for the topic they are reading from is, for example, 60 minutes, this can be 

risky. Once the consumers begin reading from the topic, older segments in the partitions 

may be deleted. If this happens, consumers may lose the data in those partitions, or 

even encounter errors because they are attempting to read from an offset that has been 

deleted. To avoid such problems, it’s vital to consider the topic’s retention time when 

configuring the batch interval for non-real-time consumers. Specifically, the retention 

period should be longer than the batch duration to ensure that no data is lost.

�Adding Storage to Kafka Clusters
When looking to provision a Kafka cluster with additional disk space, you generally 

have a couple of options: you can attach new disks to each of the existing brokers or add 

more brokers to the cluster. The decision between these options depends on various 

factors related to your specific setup and needs, and understanding the implications of 

each choice is key to making the right decision. The following sections delve into these 

options and explain when and why you might choose one over the other.
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�When the Cluster Is On-Prem
When you need to add more disk space to an on-premises Kafka cluster, there are 

various strategies to consider, each addressing different scenarios and needs. The 

primary options include scaling up the existing brokers or scaling out by adding new 

brokers to the cluster.

�Scaling Up

Scaling up refers to expanding the storage in the existing brokers. This can be done in 

several ways:

•	 Adding a drawer to a broker without drawers: For brokers that 

initially only use built-in disks and have no external drawers, adding 

a drawer can be a viable option if the broker configuration allows 

it. This involves selecting and attaching a compatible drawer, then 

migrating the data as necessary. This approach can provide a 

substantial increase in storage without the need to replace or modify 

the existing built-in disks.

•	 Replacing drawers with larger ones: If the existing disk drawer 

attached to the brokers is filled, you can replace it with a larger 

drawer that can accommodate more disks. The process involves 

substituting the existing drawer with a new, bigger one across all the 

brokers, connecting the new drawers, migrating the disks from the 

old drawers to the new ones, and adding additional disks if needed.

•	 Adding more drawers to the brokers: Alternatively, you may choose 

to attach more drawers to each broker, thus expanding the storage 

capacity. This option is available when the broker configuration 

supports additional drawer connections. The same migration 

process applies, moving Kafka’s data directories to the new disks and 

ensuring that the existing data remains accessible.
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�Scaling Out

Scaling out refers to the addition of new brokers to the cluster. This option helps when 

you need to substantially increase storage capacity. Adding more brokers inherently 

means adding more disks and storage to the cluster. Depending on the configuration 

and needs, this can be a viable option to manage a significant growth in data.

In all cases, care must be taken to properly manage the migration of data. When 

moving Kafka’s data directories to new disks, you’ll need to mount the appropriate 

directories on to the new disks and transfer all necessary data. This ensures that the 

existing data remains accessible to the Kafka brokers, effectively expanding the storage 

without risking data loss or unnecessary downtime.

�When the Cluster Is in the Cloud
The strategy for expanding storage in Kafka brokers in the AWS cloud without adding 

more brokers to the cluster differs depending on the type of disks used. The following 

sections explain the use of EBS and NVME disks.

�EBS Disks

If the brokers contain only EBS disks, there are two main options for increasing storage 

capacity:

•	 Scale up: This involves increasing the existing EBS size or attaching 

more EBS disks to the existing brokers. Since EBS disks can be resized 

without losing data, this process can be accomplished with minimal 

disruption. However, it may require stopping the associated instances 

temporarily to apply the changes, while maintaining data consistency 

throughout.

•	 Scale out: Scaling out is achieved by adding more brokers, each 

with their own EBS disks. This effectively increases the total storage 

capacity across the cluster. As new brokers are added, it’s crucial 

to ensure they are integrated correctly into the cluster without 

impacting existing data and performance.

Chapter 1  Storage Usage in Kafka: Challenges, Strategies, and Best Practices



11

�NVME Disks (Ephemeral Disks)

When the brokers contain ephemeral disks, such as NVME disks in AWS, scaling up or 

scaling out the Kafka cluster becomes possible. However, these options must be handled 

with care:

•	 Scale up: Scaling up keeps the same number of brokers in the cluster, 

but each broker will have more disks than before. The process 

typically involves stopping and starting a broker, which can cause 

data loss on that NVME device since a new one is assigned. To 

prevent this, a proper migration process must be followed. Data must 

be moved from the old NVME device to a persistent storage before 

the broker is stopped. Once the broker is started with the new NVME 

device, the data can be moved back.

•	 Scale out: Scaling out adds more brokers with the same number of 

disks as before. This can be done without the same risk of data loss 

as scaling up, but careful planning and coordination are required to 

ensure that the new brokers are correctly integrated into the cluster 

without impacting existing data and performance.

�Strategies and Considerations for Extended Retention 
in Kafka Clusters
In a Kafka cluster, retention policies need to balance various considerations, including 

operational recovery, business needs, and data replay requirements. Operational 

recovery considerations revolve around the time it takes for KafkaOps or development 

teams to manage consumers and producers. Whether recovering from consumer 

downtime or dealing with issues in the Kafka cluster, typical retention periods span 

around ±7-10 hours.

Business needs might also call for more extended retention periods. Customers 

with on-premises Kafka deployments without immediate KafkaOps support might 

need days of retention to account for logistical challenges, such as remote support 

and international communication. These needs become even more pronounced if 

troubleshooting becomes a prolonged process.
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Data replay introduces another dimension to retention. If something in the data 

was incorrect or corrupted after it was consumed from the Kafka topic, extended 

retention ensures that the data remains available to correct mistakes or adapt to new 

requirements. This necessity to replay data in specific scenarios further emphasizes the 

importance of having a thoughtfully planned retention policy.

You can manage extended retention in a Kafka cluster using several strategies. One 

method is to increase the cluster’s storage, as previously discussed. Another option is to 

create a custom streaming application that consumes data from topics needing lengthy 

retention and archives them in deep storage, such as AWS S3. This his allows consumers 

to retrieve old data when needed.

A promising alternative under development is Kafka’s Tiered Storage feature, which 

creates a two-tier system, using existing broker disks for local storage and systems like 

HDFS or S3 for remote storage of older log segments. This approach not only enables 

Kafka to function as a long-term storage solution, but also scales storage independent 

of memory and CPUs, thus reducing local retention time and removing the need for 

separate data pipelines to external locations.

�Calculating Storage Capacity Based 
on Time-Based Retention
When provisioning a Kafka cluster, one of the considerations that you need to consider 

is the required storage. There are several factors that need to be considered when 

calculating how much storage the Kafka cluster needs. All the factors are related to 

topics, so for each topic, you need to know the following:

–– Message size after compression

–– Number of events/sec during the hours of the day

–– Required retention

–– Replication factor

The amount of storage used by a topic can then be calculated using this formula:

Topic_size_on_disk = [average message size] X [average number 

of messages per sec] X [number of required retention hours] X 

[replication factor of the topic]/[compression rate]
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After performing this calculation for all the topics in the cluster, you get a number 

that represents the minimal required storage for the cluster. Since it’s hard to predict the 

compression rate, you’ll need to test for yourself to see the difference between the ingested 

data into Kafka and the data that’s actually stored in Kafka. That’s regardless of whether the 

compression is performed by the producer or by the Kafka brokers.

But that number is only a starting point, because we also need to add some extra 

storage due to the following reasons:

–– We don’t want the used storage to reach above ±85 percent storage use. This 

threshold should be determined by the KafkaOps team, since there’s no right 

or wrong value.

–– The storage requirements may change over time - e.g. the replication factor or 

the retention might increase

As an example, say you have five topics, as shown in Table 1-3.

Table 1-3.  An Example of Five Topics

Topic Average 

Message 

Size (in 

KB)

Average 

Number of 

Messages 

per Sec

Number of 

Required 

Retention 

Hours

Replication 

Factor

Compression 

Rate

Topic Size in 

GB (Before 

Compression

Topic Size 

in TB (After 

Compression)

Topic-1 0.5 100,000 7 2 80% 2.3 1.9

Topic-2 0.7 200,000 7 2 70% 6.6 4.6

Topic-3 0.4 200,000 5 2 60% 2.7 1.6

Topic-4 1 250,000 10 2 70% 16.8 11.7

Topic-5 1.2 150,000 8 2 80% 9.7 7.7

Total 

Storage 

of All 

Topics

38.0 27.5

In this case, the minimal required storage for the cluster is 27.5TB. On top of that, 

you need to add some storage so you won’t use more than 80 percent, so multiply that 

number by 1.25; you get 34TB.

To conclude, the cluster requires 34TB in order to store the required retention.
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�Retention Monitoring
There are certain alerts that should pop up in cases that could lead to the storage getting 

full in one of the brokers, or data loss for one of the consumers. The next sections 

discuss them.

�Data Skew in Partitions
If one partition gets more data than the others (this can occur when the producer uses a 

partition key that isn’t optimized for balancing the data among the partitions), and log.

retention.bytes is configured for its topic, in effect this partition has a lower retention 

(in terms of partition size) than the other partitions in that topic.

If that data skew is big enough, and the consumer of that partition lags, then it could 

get to a situation where all the data inside that partition is deleted.

Figure 1-1 shows an example of monitoring the data skew within the partitions of a 

specific topic.

Figure 1-1.  An example of data skew monitoring for a specific topic

The X axis is time, and the Y axis is the message rate per minute into each partition. 

Each line represents a partition, and the partitions in this case are sorted by percentiles 

according to the message rate that is produced into them. So the partition named P1 is 

the partition that gets the lowest number of messages, P50 is the median, and P99 is the 

partition that gets the most messages.
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�Message Rate Into Topic
If the message rate into a specific topic increases and you want to prevent consumers 

from losing data, you have the following options:

–– Adjust the retention policy of the topic

–– Increase the consumption rate of the consumers from that topic

–– If the topic increases by size but only the log.retention.hours is 

configured, this can cause the storage to become full.

–– If both time and based-retention policies are configured and the 

topic size increases, and if there’s a consumer that relies on the 

retention in order to read data from the topic, it could get into a 

situation where the data doesn’t exist since it was deleted.

It’s important to detect an increase in the message rate upfront and then adjust the 

retention policies accordingly.

�Don’t Write to the / Mount Point
In certain situations, the / mount point of one or more brokers may become full, causing 

the broker to halt. This problem manifests in various ways, including the operating 

system’s reduced functionality or even failure, consumers experiencing difficulties in 

consuming messages, producers encountering “queue full” errors due to full buffers, and 

the broker process falling into an uninterruptible state, indicated by a “D” in the state 

column of the top command.

This issue primarily stems from the / mount point filling up in one or more brokers, 

leading to the symptoms described previously.

There are a few different scenarios that can lead to this problem. If ZooKeeper (ZK) 

runs on the Kafka broker machine without retention on ZK backup files or if the purger 

doesn’t work, the backup files can fill the / mount point. Also, a user placing a large file 

like a log in a directory mounted to / or writing segments to the / directory can cause 

the same issue. To prevent these occurrences, it’s wise to take precautions such as not 

writing to / or any directory mounted to it, avoiding configuring ZK to write its backup 

files to /, and not deploying ZK on the Kafka broker’s machines.
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Careful monitoring is essential to detecting and mitigating this issue before it 

becomes critical. Notably, the load average may increase when / is full, as applications 

may become stuck trying to access files from directories mounted to /. Close monitoring 

of available disk space in / and watching consumer lag and producer queue full metrics 

can also provide early warning signs.

�Summary
This chapter delved into the critical role that disk storage plays in Kafka clusters, 

illuminating various aspects of Kafka’s storage usage. It began by exploring how the disks 

of Kafka brokers can become filled, causing the cluster to halt. Various scenarios were 

explored, from increasing the replication factor and retention of topics to disk failures 

and unintended writes by other processes.

The chapter further delved into the importance of retention policies in Kafka, 

exploring how they can cause data loss for consumers and the critical configuration 

parameters needed to avoid such situations. Several scenarios were analyzed, including 

consumer lag management, handling unexpected data influx, balancing consumer 

throttling, understanding traffic variations, and ensuring batch duration compliance.

Strategies for adding more storage to a Kafka cluster were also explored, focusing on 

different approaches depending on the cluster’s location (on-prem or in the cloud). The 

chapter concluded with an overview of considerations for extended retention in Kafka 

clusters and guidelines for calculating storage capacity based on time-based retention.

Overall, this chapter aimed to provide you with a comprehensive overview of storage 

usage in Kafka clusters and help you avoid common storage-related pitfalls.

The next chapter explores a range of producer adjustments, from partitioning 

strategies that balance even distribution and clustering of related messages, to the fine-

tuning of parameters like linger.ms and batch.size for enhanced speed and response 

time. We’ll also examine how data cardinality influences Kafka’s performance and 

uncover scenarios where duplicating data across multiple topics can be an intelligent 

strategy.
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CHAPTER 2

Strategies for 
Aggregation, Data 
Cardinality, and Batching
This chapter digs into various adjustments you can make to the Kafka producer that can 

notably increase your Kafka system’s speed, response time, and efficiency. The chapter 

starts by exploring the partitioning strategy, which aims for an equilibrium between 

distributing messages evenly and clustering related messages together. It will then 

dive into adjusting parameters like linger.ms and batch.size to improve speed and 

decrease response time. From there, we’ll learn how the uniqueness and spread of data 

values, known as data cardinality, impact Kafka’s performance. And finally, we’ll explore 

why, in some cases, duplicating data for different consumers can be a smart move.

�Balancing Message Distribution and Aggregation 
for Optimal Kafka Performance
The key to effective partitioning in Kafka revolves around finding the balance between 

equal message distribution and effective aggregation. An understanding of your 

consumers’ processing requirements is crucial in making this decision.

A popular and straightforward approach that is often implemented by producers 

is the round-robin method, which ensures an equal number of messages is sent to 

each partition. When your consumers don’t require message aggregation, this method 

is highly effective. It promotes stability of the Kafka brokers as each broker handles a 

balanced load of messages. Moreover, it simplifies message consumption when each 

message is handled independently.
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However, for certain consumers, such as Apache Druid or other stream-processing 

systems like Apache Flink or Apache Samza, this method might not be ideal. These 

systems often need to aggregate incoming messages, and for that, a round-robin strategy 

can lead to inefficient processing. Similar messages may end up being spread across 

different partitions, making aggregation more complicated and less efficient.

When dealing with consumers that require aggregation, it’s beneficial to use a 

partition key that can hash some fields of the message’s value. All messages with the 

same key will then be produced to the same partition, leading to similar messages being 

grouped together. This approach, however, might lead to uneven message distribution 

across partitions, as some partitions may end up with more messages than others.

When the consumer is a stream-processing system or a database that benefits from 

related data being grouped together, using a partition key becomes important. The 

partition key can ensure data relatedness—for instance, all clicks from a particular user 

session in a clickstream data scenario can end up in the same partition, making real-

time sessionization simpler and more efficient.

In the end, the choice of partitioning strategy—whether round-robin or using 

a partition key—boils down to the nature of your consumers and their processing 

requirements. The challenge is to find the sweet spot between two key needs: grouping 

related messages together for efficient aggregation and ensuring an even distribution of 

messages across all partitions to maintain Kafka’s performance and stability.

�Tuning Parameters to Increase Throughput 
and Reduce Latency
linger.ms and batch.size are two influential parameters that profoundly impact the 

behavior and performance of producers, Kafka brokers, and consumers.

When configuring the linger.ms parameter, a producer can intentionally delay 

sending messages by grouping them into larger batches if batching is enabled, or simply 

hold them for a specified time if batching is disabled. This waiting time is counted 

in milliseconds. On the other hand, the batch.size parameter allows the producer 

to manage the maximum size of these batches in bytes. These settings represent the 

delicate balance between latency and throughput, fundamental tradeoffs in messaging 

systems.
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�Optimizing Producer and Broker Performance: The Impact 
of Tuning linger.ms and batch.size in Kafka
The producer is the primary component that’s affected by changes in the linger.ms and 

batch.size parameters. By extending linger.ms, a producer can group more messages 

together in a batch (if batching is enabled) before dispatching it to Kafka, thereby 

lowering the number of network requests and increasing throughput. On the flip side, 

longer lingering can increase latency, which might cause delays in applications that 

require real-time responses.

Furthermore, a larger batch.size offers multiple benefits. It not only reduces 

network requests but also enables better compression, thereby making the data 

transfer more efficient. This improvement in compression can lead to reduced storage 

requirements and improved overall performance. However, larger batches also 

impact the producer’s buffer, occupying more buffer space. If the buffer fills up faster 

than messages can be sent, the producer might have to wait, affecting performance 

negatively.

At the Kafka brokers, tuning the linger.ms and batch.size configurations can lead 

to significant performance improvements. Larger batches from the producer translate 

to fewer network requests for the broker to manage. This decrease in network requests 

conserves the CPU, which can be utilized elsewhere.

Moreover, when it comes to disk storage, larger batches provide a dual benefit. 

Firstly, they enhance the efficiency of message compression (assuming it was performed 

by the producer) within the batch, allowing for more effective storage and potentially 

reducing disk I/O. Secondly, they improve disk utilization by filling disk blocks more 

efficiently.

However, these larger batches also affect the broker’s RAM use. Since Kafka utilizes 

the OS page cache for caching messages, larger batches can take up more space in the 

page cache, potentially reducing the available cache for messages arriving from other 

producers or other data.

�Understanding Compression Rate
When it comes to compression, it is essential to note that the process takes place at the 

producer before the messages are sent. The size of the batches significantly influences 

compression rates. For instance, a batch of 100 messages might achieve a compression 
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rate of 2x, while a larger batch of 1,000 similar messages might reach a compression rate 

of 10x. The key factor here is the number of similar messages in the batch, which when 

larger, provides a better scope for compression, reducing network and storage use.

Lastly, the way you partition your data can also influence compression rates. For 

example, when using a SinglePartitionPartitioner, where the producer writes only to a 

single, randomly selected partition, larger batches can enhance compression ratios by 

up to two times. This is because all messages in a batch belong to the same partition, 

and the likelihood of having similar messages in the batch increases, leading to better 

compression.

In conclusion, linger.ms and batch.size are both powerful knobs to tweak in your 

Kafka setup, allowing you to optimize throughput, latency, and resource use across 

producers, brokers, and consumers. Still, it is crucial to align these parameters with your 

specific use case so you avoid potential bottlenecks or inefficiencies that can emerge 

from misconfiguration.

�The Effect of Data Cardinality on Producers, 
Consumers, and Brokers
Data cardinality refers to the uniqueness and distribution of values in a dataset, and 

it has a significant impact on the operations and performance of Kafka’s ecosystem. 

This influence is felt across the producers, brokers, and consumers in different ways, 

from compression and storage handling to processing and querying information. 

This section explores the concept of data cardinality, detailing its effects on different 

Kafka components, and outlines practical ways to control and optimize it for improved 

performance and efficiency in Kafka operations.

�Defining Data Cardinality
Data cardinality, a concept referring to both the quantity of unique values (cardinality 

value) and their spread across a field (cardinality distribution), plays a pivotal role in the 

overall performance of Kafka’s producers, brokers, and consumers.

First, I explain the terms cardinality value and cardinality distribution using an 

example of an e-commerce website that logs user activities. One of the fields in the log 

data might be activity_type, which could have values like viewed_product, added_to_

cart, checked_out, and so on.
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In this case, the cardinality level would be the total number of unique activity types. 

The cardinality distribution, on the other hand, shows the frequency or proportion of 

each activity type in the overall data. For instance, you might find that 70 percent of 

the activities are viewed_product, 20 percent are added_to_cart, and 10 percent are 

checked_out. This distribution can significantly impact the processing and analysis of 

the data, especially when dealing with operations like compression and aggregation.

�Effects of High Data Cardinality
The interaction of data cardinality with Kafka components directly affects compression 

in both Kafka producers and brokers. High cardinality often results in a lower 

compression ratio because the diverse data has fewer repeated elements that 

compression algorithms can capitalize on. This decrease in compression ratio not only 

leads to larger batch sizes but also increases network bandwidth utilization, due to the 

transmission of these bigger messages. This rise in message sizes also has a downstream 

effect on Kafka brokers, demanding more disk space for storage.

At the same time, the CPU requirements may escalate on the producer or broker side 

if a CPU-intensive compression algorithm is employed. The additional computational 

demand is due to the increased complexity and reduced efficiency of compressing high-

cardinality data.

Furthermore, high data cardinality influences the performance of consumers that 

rely heavily on aggregation, such as Apache Spark Streaming, Apache Druid, Apache 

Flink, and Apache Samza. The aggregation ratio generally decreases as data cardinality 

increases, which can impact the throughput and overall efficiency of these consumers.

Beyond compression and aggregation, memory utilization in Kafka brokers and 

consumers can be affected by data cardinality. Particularly for consumer applications 

that employ in-memory structures like hashmaps to store unique keys, high cardinality 

implies a larger number of unique keys, thereby demanding more memory.

Moreover, high cardinality data may impact the performance of Kafka consumers 

that support querying—queries involving fields with high cardinality can be significantly 

slower due to the large amount of unique data points to process.

To wrap up, data cardinality deeply affects various aspects of Kafka’s performance, 

including but not limited to compression, aggregation, memory use, network utilization, 

and query performance. Hence, understanding your data and managing cardinality 

levels appropriately can lead to more efficient Kafka operations.
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�Reducing Cardinality Level and Distribution
In many data-processing scenarios, it becomes crucial to mitigate the high cardinality 

level or distribution of data for more efficient and manageable operations. High 

cardinality, characterized by a large number of unique values in a field, or an evenly 

distributed cardinality, where values appear with roughly equal frequencies, can pose 

challenges for data processing and analytics. This is due to increased memory use, 

network bandwidth consumption, and a more complex computational requirement. 

Consequently, devising strategies to reduce the cardinality level and distribution is a 

significant aspect of data optimization.

Imagine a situation where the data exhibits a high cardinality level but a low 

cardinality distribution. This is often the case when a field contains numerous unique 

values, but a handful of these values occur frequently, while the majority are infrequent. 

A practical approach to address this scenario involves bucketing or grouping infrequent 

values together. For instance, if you deal with data containing IP addresses and find 

that many of them occur sporadically, you could aggregate these rare IP addresses into 

a generic category like Other_IPs. This tactic effectively reduces the cardinality level 

without substantially altering the cardinality distribution.

On the other hand, the data might present both a high cardinality level and high 

cardinality distribution. This situation signifies that you have a vast range of unique 

values that are almost uniformly distributed. This poses a greater challenge. However, 

the problem can be tackled using bucketing, where values are grouped based on 

predetermined rules or ranges. Let’s consider timestamps as an example. Instead of 

using exact timestamps, which naturally results in high cardinality, you could use time 

ranges (like morning, afternoon, and evening) or even specific dates. This strategy 

reduces the number of unique values, thereby reducing the cardinality level while still 

preserving meaningful information for analysis.

By applying these strategic measures, you can effectively control and manage the 

level and distribution of data cardinality, thereby optimizing your data operations for 

improved performance and efficiency.
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�Duplicating Data to Reduce Latency
In scenarios where multiple consumers read from the same Kafka topic, and the 

relevance of the data differs among these consumers, it’s worthwhile for the producer 

to write to two distinct Kafka topics—one with all the data and the other with a specific 

subset of the data.

This approach comes into play when some consumers require the full range of data 

while others need only a subset. Instead of forcing those consumers who require only 

part of the data to sift through all the messages in a topic, a separate topic containing 

only the relevant subset of data can be created.

Separating the data into different topics can enhance processing speed, particularly 

for consumers that deal with real-time or near-real-time data ingestion. Without the 

overhead of filtering unnecessary data, these consumers can focus on the core task of 

processing and storing the relevant data, significantly improving overall performance.

In summary, by producing to two Kafka topics—one containing all the data and 

the other housing only a specific subset—the data pipeline becomes more efficient 

and tailored to the needs of different consumers. This reduces unnecessary resource 

consumption and optimizes processing speed, thereby enhancing the overall 

performance of the data processing system.

�Summary
This chapter first tackled the task of dividing data across Kafka partitions. The goal is to 

distribute data uniformly, yet also organize it strategically to meet user’s requirements.

Subsequently, the chapter explored the process of adjusting the linger.ms and 

batch.size settings. By fine-tuning these configurations, you can utilize Kafka broker’s 

disk space more efficiently, alter the data compression rate, and strike a balance between 

data transmission speed and volume.

Additionally, the chapter delved into the concept of data cardinality, which is 

related to the distribution and quantity of unique values in a field. We discussed why an 

abundance of unique data can negatively impact compression, consume excessive 

memory, and decelerate queries. As a result, we learned some methods to effectively 

handle this issue.
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Lastly, we learned that duplicating data across multiple topics can sometimes 

be beneficial. By establishing separate topics for distinct data subsets, we can see an 

improvement in processing speed for certain consumers. This tactic allows you to 

enhance the overall efficiency of your data processing system.

The following chapter navigates the intricate landscape of partition skew within 

Kafka clusters. From the subtleties of leader and follower skews to the far-reaching 

impacts on system balance and efficiency, the chapter explores what happens when 

brokers are unevenly loaded. This in-depth examination covers the consequences 

on production, replication, consumption, and even storage imbalances. Along with a 

detailed exploration of these challenges, I offer guidance on how to monitor and mitigate 

these issues, illuminated by real-world case studies.
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CHAPTER 3

Understanding and 
Addressing Partition 
Skew in Kafka
When partitions, be they leaders or followers, are distributed unevenly among 

brokers within a Kafka cluster, the equilibrium and efficiency of the cluster, as well as 

its consumers and producers, can be at risk. This inequality of distribution is called 

partition skew.

Partition skew leads to a corresponding imbalance in the number of production and 

consumption requests. A broker that hosts more partition leaders will inevitably serve 

more of these requests since the producers and consumers interact directly with the 

partition leaders.

This domino effect manifests in various ways. Replication on brokers hosting a 

higher number of partition leaders might become sluggish. At the same time, consumers 

connected to these brokers may experience delays. Producers might find it difficult to 

maintain the necessary pace for topic production on these specific brokers. Additionally, 

there might be a surge in page cache misses on these brokers, driven by increased cache 

eviction as a result of the higher traffic volume.

These symptoms illustrate how swiftly a mere partition skew can escalate into 

substantial production challenges within a Kafka cluster. In an ideal setting, all the 

topic partitions would be uniformly distributed across every broker in the Kafka cluster. 

Reality, however, often falls short of this perfection, with partition imbalance being a 

common occurrence.

This chapter is devoted to exploring various scenarios that can lead to such 

imbalances, providing insights into how to monitor and address these issues.
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Note that for the sake of clarity, throughout this chapter, the term partition leader 

describes a partition to which producers supply data and from which consumers retrieve 

it. This term can also describe the partition for which the hosting broker serves as its 

leader. Utilizing the term leaders for partitions rather than associating brokers with 

leadership of partitions offers a more intuitive understanding of the concept.

�Skew of Partition Leaders vs. Skew 
of Partition Followers
In a Kafka cluster, partitions come in two forms: leaders and followers. When examining 

partition skew, it’s essential to specify which type of skew you’re referring to—whether 

it’s a skew of leaders, followers, or both.

A leader skew occurs when a broker holds more partition leaders across all topics 

in the Kafka cluster. This means that it deals with more producer writes and consumer 

reads for these topics compared to other brokers that host fewer leaders across 

the topics.

A follower skew takes place when a broker holds more partition followers across the 

entire range of topics. In this scenario, the broker carries out more replication operations 

to keep the replicas in sync, regardless of which specific topic they belong to.

�Potential Problems with Brokers That Host Many 
Partition Leaders
When a broker hosts more partition leaders than other brokers, you first need to map the 

leaders to the topics they belong to. Once you find the topics, you need to go over them 

one by one and check for the issues discussed in the following sections.

�Message Rate (or Incoming Bytes Rate)
If a broker hosts more partition leaders of a specific topic than other brokers, and if 

that topic has a much higher message rate compared to other topics on that cluster, the 

resulting skew can lead to several challenges. This broker may experience increased disk 
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I/O operations, particularly if the page cache is unable to fulfill read requests. This would 

necessitate direct reads from the disk, which can lead to more disk IOPS (input/output 

operations per second).

Additionally, consumers attempting to read from leader partitions on the skewed 

broker may face delays, thus affecting the overall data processing times. The situation 

could also impact producers, who might find that they have more messages in their 

buffers when writing to the partition leaders on that broker. These delays in transmitting 

messages, if not managed appropriately, can even lead to data loss.

�Number of Consumers Consuming the Topic
The number of consumers that consume from a topic can greatly affect a broker’s 

behavior, regardless of whether the message rate into that topic is low. When a broker 

hosts more partition leaders than others, it’s more likely to experience issues like high 

disk I/O reads due to page cache misses. This, in turn, may cause consumers connected 

to that broker to lag and producers to generate fewer messages than needed because of 

the strain on the broker’s disks.

Therefore, if a particular topic has more consumers compared to others, it makes 

sense to first determine whether the number of consumers can be trimmed. Sometimes, 

there might be consumers that are no longer required, like those that are no longer 

relevant and developers or devops just forgot to shut them down. In other cases, the 

existing consumer count may simply exceed what’s necessary. An example is when an 

application unnecessarily creates 100 consumers for a topic when only 50 are needed 

to prevent consumer lag. By identifying and addressing these situations, the broker’s 

operation can be streamlined and optimized, ensuring efficient performance even with a 

low message rate.

�Number of Producers Producing to the Topic
If the number of producers that produce to this topic is higher than other topics, then 

the broker that hosts more partition leaders of this topic can suffer from higher context 

switches and possibly a higher CPU utilization (particularly the sy% and us% CPU 

metrics).

Chapter 3  Understanding and Addressing Partition Skew in Kafka



28

�Follower (Replica) Skew in the Broker
An uneven distribution of partition leaders among brokers can lead to a skew of 

followers as well. Consider the following cluster:

–– Three brokers: B1, B2, and B3

–– Two topics: T1 and T2

–– Both topics have 100 partitions

–– The replication factor is 3

Figure 3-1 shows a possible scenario in which there are more partition leaders on 

broker B1 compared to the other two brokers.

Figure 3-1.  Number of partitions per broker. While broker B1 hosts more partition 
leaders than brokers B2 and B3, these brokers host more partition followers than 
broker B1

In this case, all brokers host the same number of leaders and followers, but B1 holds 

more leaders, while B2 and B3 host more followers. So a broker with more partition 

leaders will cause the other brokers to host more partition followers.

This will lead to more fetch requests from the brokers (hosting the partition leaders 

replicas) into the broker that hosts these leaders (which is also the broker that hosts 

more leaders). A broker that deals with more fetch requests from other brokers might not 

be able to serve fetch requests from consumers at the same rate as other, non-skewed 

brokers.
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�Number of In-Sync Replicas in the Broker
A broker that hosts more partition leaders than its counterparts can find itself lagging 

in the replication of the follower partitions it also hosts, which means this broker might 

have less in-sync replicas than other brokers.

This happens because hosting more leaders means the broker has to handle 

an increased number of writes from producers and reads from consumers, adding 

substantial load to its operations.

Along with managing the leader partitions, the broker is tasked with replicating data 

for the follower partitions. This requires reading data from the leaders and writing it to 

the followers. This dual responsibility increases the broker’s workload significantly.

This higher load can create competition for the broker’s resources, including CPU, 

memory, network bandwidth, and disk I/O. Striking a balance between the tasks of 

serving reads and writes for the leader partitions and replicating data for the follower 

partitions becomes a complex challenge.

The struggle for resources and the heightened workload may cause the broker to 

fall behind in replicating data to the follower partitions. The process can slow down, 

particularly if the resources are mostly consumed in handling the leader partitions.

Such a slowdown in replication can become critical. If it becomes significant, the 

follower partitions on the broker may fall out of sync with their corresponding leaders, 

leading to a reduction in the number of in-sync replicas for those partitions.

�Checking for an Imbalance of Partition Leaders
When checking for an imbalance of partition leaders among the brokers, it’s sometimes 

not enough just to compare the total number of partition leaders between all the 

brokers. You should dive deeper and check per topic whether the partition leaders are 

balanced among all brokers. There are several reasons for that:

•	 There can be a partition leader skew while the brokers host the 

same number of partition leaders. Imagine a case when two big 

topics aren’t balanced among the brokers, but the first topic has 

more partition leaders on one broker while the other topic has more 

leaders on another broker. In total, the number of partition leaders 

per broker would be the same, while if you look per topic you would 

see an imbalance.
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•	 There can be a small difference in the number of partition leaders 

per broker, but this difference originates from a topic that has lots of 

traffic or many consumers.

The following example shows how even a slight skew can cause one broker to reach 

CPU saturation and cripple the Kafka cluster. Figure 3-2 shows a cluster with three 

brokers, one broker being very loaded (as can be seen from its load average).

Figure 3-2.  The load average (LA) of the blue broker is more than double than the 
LA of the other two brokers

The cause for the high load average is the high CPU user time (called us%) of this 

broker, as shown in Figure 3-3.
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Figure 3-3.  The CPU us% of the blue broker is more than double the us% of the 
other two brokers

In searching for the cause of the high CPU us% in this broker, you can first check 

whether this broker receives or sends more traffic. However, you realize that all brokers 

had the same incoming and outgoing traffic.

So you would then compare the number of partition leaders per broker. You 

determine that there is very little variance in the number of leaders between the brokers, 

as shown in Figure 3-4.
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Figure 3-4.  The number of partitions in all brokers is the same

When you look deeper—at the scope per topic and not just per broker—you see 

a topic with a single partition leader that resides on broker number 2, as shown in 

Figure 3-5.

Figure 3-5.  The number of partitions per topic and per broker. Topic D has a 
single partition that resides on broker 2

Chapter 3  Understanding and Addressing Partition Skew in Kafka



33

At first glance, there’s nothing special here—just a single partition leader that resides 

on some broker. However, that single partition leader was the only difference between 

the loaded broker and the other two brokers. 

After further analysis, you find that the topic (to which this partition leader belongs) 

has much more consumers compared to the other topics on this cluster, as shown in 

Figure 3-6.

Figure 3-6.  The number of consumers per topic and the throughput per topic

The moral of this production incident (in the scope of this particular chapter) isn’t 

that many consumers can cause high CPU and load average. Instead, the takeaway from 

this story is that when you’re looking for partition leaders skew, it’s not enough to just 

compare the number of partition leaders between all the brokers. You also need to check 

per topic whether their leaders are aligned among all the brokers. Otherwise, you can 

miss a case like the one illustrated here.
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�Reassigning Partitions to Achieve 
an Even Distribution
In order to distribute partitions (of leaders and followers) evenly across the brokers, you 

need to reassign the partitions among the brokers. There are some aspects you need to 

consider when performing such a reassignment procedure; otherwise, it can degrade the 

performance of the cluster:

•	 Network bandwidth: During the reassignment, data can move 

between brokers, which might increase the network traffic. If the 

network is already a performance bottleneck, this can cause a delay 

in the network and thus become a performance issue.

•	 Storage issue: If data is transferred into a broker and the storage use 

(in the mount points that store the Kafka log segments) becomes 

full (100% of the storage is used), then the broker will probably stop 

functioning.

•	 Disk I/O operations: When data is being transferred from one broker 

to another, there are spikes in both read and write operations. For 

example, if partition P1 moves from broker B1 to broker B2, then 

the segments of P1 are being read from the disks of B1 (resulting in 

increased read operations on B1 disks) and written to the disks of 

broker B2 (resulting in increased write operations on B2 disks).

•	 Consumer lags: The reassignment causes not only an increase in 

disk operations, but also fills the page cache with data that’s being 

transferred. For example, if partition P1 moves from broker B1 to 

broker B2, the segments of P1 are being read from the disks of B1 

and then loaded into the page cache of B1. Once the partitions 

arrive to broker B2, they’re written into the page cache of B2 and 

then flushed to the disks of B2. Usually, when the only data transfer 

between the brokers in the cluster is due to replication (there’s no 

data transfer caused by partition reassignment), the consumers read 
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at least part of the data from the page cache. The impact of this on 

the consumers of the Kafka cluster is that the real-time data that 

flows into both brokers read data that doesn’t exist in the page cache 

anymore (because it was flushed out by data that’s related to the 

reassignment).

•	 Transfer costs: If the partitions are moved from brokers that reside on 

different AZs, there are costs associated with the data transfer.

�Data Distribution Among Disks
When a broker has more than one disk, you can end up having an uneven distribution of 

the data among these disks.

The reason is that, for partitions of new topics, the brokers will place these partitions 

on the disks that host the least number of partitions, instead of on the disks that have the 

least amount of used disk space.

In a perfect scenario, at any point in time, per each broker, the storage usage per disk 

will be the same. However, if for some reason the partitions aren’t distributed evenly 

across the disks per broker (e.g., due to some partition reassignment that hasn’t gone 

well), then some disks will end up having more heavy partitions then other disks.

The next time a new topic is created, more partitions will be stored on disks with a 

fewer number of partitions, and not with less storage usage. This can make the already 

uneven distribution of data per disk become even more uneven. In the worst case, this 

can lead to at least one disk in the Kafka cluster being full.

In order to prevent this case, whenever brokers have more than a single disk and 

there’s a difference between the storage usage among the disks, check the distribution of 

partitions per topic among the disks. When you find a topic that has more partitions on 

those disks that have more used storage, perform partition reassignment for this topic.

�Summary
This chapter explored the complex problem of partition skew in a Kafka cluster, 

shedding light on the subtleties of both leader and follower skews and their effects on the 

system’s balance and efficiency.
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The chapter started by explaining what partition skew means, specifically focusing 

on leader and follower skews and the consequences of sending and receiving messages. 

When brokers are unevenly loaded, it can result in issues such as slow replication, 

consumption delays, and an increase in page cache misses.

The chapter then detailed the distinctions between leader and follower skews. 

Leader skew primarily affects the writing and reading of messages by producers and 

consumers, whereas follower skew has a significant influence on replication processes.

Next, the chapter looked into the problems that can occur when a broker manages 

too many partition leaders, such as higher disk I/O activities, delays in communication 

for both consumers and producers, an imbalance in followers, and a decrease in the 

number of synchronized copies.

We stressed the need to analyze skew not just on a broker-by-broker basis but also 

for individual topics. A case study was presented to demonstrate how just one partition 

leader skew can cause a CPU overload and substantial issues in the cluster.

The chapter also provided guidance on how to monitor and tackle skew challenges, 

taking into consideration aspects like the rate of messages, the number of consumers 

and producers, the status of in-sync replicas, and more.

Finally, the chapter delved into the particular concern of unequal data distribution 

among a broker’s disks, emphasizing the possibility of storage imbalances and outlining 

the measures that can be implemented to alleviate these difficulties.

The next chapter delves into the intricate issue of skewed or lost leaders in Kafka, 

an area that has significant implications for brokers, consumers, and producers alike. 

As you explore the mechanisms of Kafka, understanding how these leaders can become 

skewed or lost and the consequences of such irregularities becomes paramount. You’ll 

unravel the underlying factors that may lead to these problems, such as networking 

issues or challenges with partition leadership. Additionally, you’ll learn practical 

solutions and preventive strategies to ensure that the Kafka system operates smoothly 

and efficiently.

Chapter 3  Understanding and Addressing Partition Skew in Kafka



37

CHAPTER 4

Dealing with Skewed 
and Lost Leaders
This chapter explains how to detect and troubleshoot issues related to skewed or lost 

leaders. In Kafka, messages are produced into topics by producers. These messages are 

later consumed from these topics by consumers. Figure 4-1 shows a general sketch of 

this flow.

Figure 4-1.  The general flow of messages from producers into brokers and then to 
consumers

A topic is broken into multiple partitions, so you can think of the relationship 

between a topic and its partitions just like folders in a filesystem—a topic is a folder and 

inside this folder there are more folders, each a separate partition. Each partition has 

a leader broker. This leader broker is in charge of all the read and write operations for 

that partition. Also, each partition leader has one or more followers, depending on the 

replication factor of the topic that the partition belongs to.
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A leader skew has different meanings, depending on which scope you look at. It 

indicates a situation where certain brokers are leading a greater number of partitions 

compared to their counterparts. However, if you focus on a specific topic, a leader skew 

means that, for that particular topic, some brokers are leading more partitions than 

others. It’s important to note that in this scenario, the skew only pertains to the partitions 

related to that specific topic.

A partition leader can also get lost if the broker that serves as its leader stops serving 

as its leader for some reason. This becomes a stability issue for the cluster if many 

leaders lose their leadership at once, or when this occurs too frequently.

These two symptoms—leader skew and lost leaders—can adversely impact the 

brokers, consumers, and producers.

�When Partitions Lose Their Leadership
While working with Kafka consumers, there were multiple times in which I saw these 

consumers suffer from backlogs, crashes, or just hang. When correlating these symptoms 

with the Kafka logs, I noted that, just before these symptoms occurred, several leaders 

were lost.

Let’s first define a lost leader. Each partition in a topic has exactly one partition 

leader, which handles all the read/write requests of that partition. If that leader partition 

is no longer the leader, then another partition (out of the follower partitions of this 

leader) becomes the leader.

In this section we won’t deal with the issue of some partition leaders losing their 

leadership sporadically. Instead we’ll tackle the case in which many leader partitions 

from different topics lose their leadership at once, all in the span of a few seconds.

Why does this happen? At first, I tended to suspect a faulty broker; however that 

wasn’t the case, since the partitions that lost their leadership always resided on several 

brokers.

After a while, I found that the massive load of partitions losing their leaders was 

caused by one of two networking issues—related to the ZooKeeper or the NIC.

Before delving into each of these issues, let’s first elaborate on both components.
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�ZooKeeper
The ZooKeeper (aka ZK) appoints a leader to every partition, and it is in charge of 

managing all associated read and write requests. It also nominates a controller broker 

with the responsibility of overseeing changes in the state of brokers and partitions. 

Furthermore, It’s tasked with maintaining a continuously updated record of metadata for 

the Kafka cluster, encapsulating data on topics, partitions, and replicas.

This first networking issue relates to the session timeout of the ZooKeeper. There are 

several steps to determine and mitigate this problem.

•	 First, you need to check whether the ZooKeeper is suffering from high 

garbage collection (GC). If it is, you can address this by increasing the 

amount of RAM allocated to the ZooKeeper until these GC issues are 

resolved.

•	 If GC is not an issue, you can proceed to the next step, which involves 

examining the ZooKeeper’s session and connection timeouts. These 

timeouts may be too short, and if so, you can try to increase the 

session timeout.

Once you’ve made these changes, restart ZooKeeper and see if the leader partitions 

still lose their leadership. In my experience, once you increase the ZooKeeper’s 

session timeout, the frequency of leader partitions losing their leadership diminishes 

significantly. Consequently, the occasions when consumers hang due to lost leaders also 

decreases substantially.

�The Network Interface Card (NIC)
A Network Interface Card (NIC) is a hardware component that facilitates the connectivity 

of servers (and in this case, Kafka servers) with the network and enables the Kafka server 

to send and receive data over the network. The second networking issue pertains to NIC 

saturation.

This issue is something I’ve encountered exclusively on on-premises clusters, not 

on cloud environments. Although it’s less common than the ZooKeeper session timeout 

issue, it still happens occasionally. When the traffic causes saturation of the NIC on the 

Kafka brokers, the NIC can reset. So, when you witness a loss of leaders, it’s worthwhile 

to check the dmesg logs for any NIC-related errors. If the loss of leaders happens 
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exclusively on brokers in which their NIC was reset under load, you should examine your 

NIC configuration. In such scenarios, simply increasing the ZooKeeper session timeout 

wouldn’t be beneficial.

If your Kafka consumer application is either hanging, accumulating a backlog, 

or crashing when reading from a Kafka topic, or your Kafka producers are unable to 

produce into a Kafka topic, you might be experiencing issues with session timeouts or 

some other causes.

One of the common causes is that Kafka brokers cannot reach the ZooKeeper due to 

session timeouts. Alternatively, the issue might stem from the ZooKeeper dealing with 

long or frequent full garbage collection pauses. Occasionally, the NIC in some Kafka 

brokers might also reset when under a high load. There are other potential reasons, such 

as broker restarts/crashes and network partitioning, but we won’t get into their details in 

this section.

To prevent such scenarios, ensure that the ZooKeeper session timeout isn’t too short. 

Additionally, take steps to ensure that the NIC in the Kafka brokers does not reset under 

high load.

For optimal system health, you should continuously monitor full GC activity in the 

ZooKeeper, look out for resets of the NIC, and keep an eye out for errors related to lost 

leaders.

�Should Leader Skew Always Be Solved?
A Kafka cluster is said to have leader skew when there’s at least one broker with more 

partition leaders than the average number of partition leaders in the cluster (number of 

leaders divided by number of brokers). The popular recommendation in such a case is to 

reassign the leaders of all the skewed topics so that each broker has the same number of 

leaders.

However, there are several things to consider when there’s leader skew.

A cluster can suffer from leader skew even if all the brokers have the same number 

of leaders, since even in such a case there can be one topic with leader skew that’s offset 

by leader skew in the other direction. That’s why it’s important to check for leader skew 

not just in the scope of the whole cluster, but also in the scope of specific topics. In order 

to handle a leaders’ skew in such a case (when there’s no partition skew), you can run a 

manual leader election.
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In order to fix partition skew, you need to run a partition reassignment procedure, 

which not only takes time but also increases the CPU utilization of the brokers (due to 

the higher data transfer that occurs during the reassignment), especially with CPU user 

time (us%) and disk I/O time (io%). This can sometimes be problematic for Kafka 

clusters that already suffer from high CPU, so there are times when we’ll want to avoid 

partition reassignment even if there’s a leader skew. Alternatively, we can drop the 

retention on the topics that contribute to most of the traffic in the cluster in order to run 

the partition reassignment process more smoothly.

That’s why it’s important to emphasize that not all leaders’ skew should be dealt 

with. However, there are times when it’s crucial to solve the leaders’ skew, and these are 

the cases in which a leaders’ skew in some topic has a real effect on the Kafka clusters. 

There are two such issues—high traffic and a high number of consumers/producers 

from this topic. The following sections consider these two cases.

�When There Is High Traffic
When a topic has high incoming throughput, a leaders’ skew can cause the brokers 

that host more leaders of this topic to suffer from a higher CPU usage, which can 

subsequently cause high network threads usage in these brokers. The high CPU and 

network threads usage can in turn cause consumer backlog of stalled producers.

Consumers can backlog because when a Kafka broker experiences high CPU usage, 

it becomes less efficient at processing the requests it receives. This means it takes 

longer for the broker to respond to consumers’ fetch requests, which are the requests 

consumers make to retrieve messages from the broker.

On the consumer side, it expects to fetch messages at a certain rate. If the broker is 

slow to respond due to high CPU usage, the consumer won’t receive messages as quickly 

as it expects. As more messages are produced to the topic, and the broker continues to be 

slow to respond, the consumer will start to lag behind the production of new messages. 

This is what is meant by a consumer backlog—the consumer isn’t keeping up with the 

incoming data rate, so there’s a growing backlog of messages that the consumer hasn’t 

fetched and processed yet.

Similarly, for producers, if the broker is slow to acknowledge the receipt of 

new messages due to high CPU usage, the producers may be stalled waiting for the 

acknowledgements, which can slow the overall message production rate.
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�When There Is a Large Number of Consumers/Producers
Even a topic with small throughput that has many producers or consumers can cause the 

brokers that host more of its leaders to suffer from high CPU.

When a Kafka cluster has a leader skew, the recommendation is to perform a 

partition reassignment (or a manual leader election), but only for those topics that either 

have high traffic or high number of consumers and/or producers. In other cases, check 

whether the brokers that host most of the leaders suffer from either higher CPU usage 

or have more storage. If they don’t, you can leave the cluster as is without performing 

leader reassignment. Figure 4-2 shows an example of the distribution of partition leaders 

and followers for three partitions of a specific topic in a Kafka cluster.

Figure 4-2.  An example of the distribution of partition leaders and followers (P-0, 
P-1, P-2) between three brokers

�Understanding Leader Skew
The implications of leader skew were discussed in the previous section; however this 

section takes some time to better define leader skew.

Formally, leader skew is defined by a non-even distribution of leaders among the 

brokers, as shown in Figure 4-3.
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Figure 4-3.  A skew of partition leaders among the brokers

There’s a pitfall to using this approach to identify leader skew, since it’s not per topic 

but instead per broker.

Knowing the leader skew isn’t enough; you need to understand which topics 

contribute to this skew. When looking at the number of leader partitions per broker 

and per topic, as shown in Figure 4-4, you can see the following anomaly—Topic D has 

a single leader partition that resides on Broker 2. This was a real case in which topic D 

caused Broker 2 to reach high CPU user time due to many consumers reading from the 

leader partition of that topic.
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Figure 4-4.  The distribution of leader partitions per broker and per topic

Figure 4-5 shows another example of uneven distribution of leaders per brokers.

Figure 4-5.  An uneven distribution of leader partitions among brokers

This skew of leader partitions doesn’t tell you much until you dive deeper into which 

topics contribute to the skewed distribution, as shown in Figure 4-6.
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Figure 4-6.  The number of leader partitions per topic and per broker

In this case, you can see that most of the skew can be attributed to Topic D.

�Summary
This chapter explored the impact of skewed or lost leaders in Kafka on brokers, 

consumers, and producers. In Kafka, each partition has a leader broker responsible for 

read and write tasks, and these leaders can sometimes become skewed or lost. This skew 

or loss, depending on whether it’s across all topics or a specific one, can cause problems 

for both consumers and producers, like instability, crashes, and backlogs.

The root cause of these issues sometimes lies in networking problems related to 

ZooKeeper, which is the entity assigning partition leaders, or the Network Interface Card 

(NIC), which connects servers to the network. Potential solutions include increasing 

the RAM allocated for the ZooKeeper in order to mitigate high garbage collection (GC) or 

extending its session timeouts, and checking for NIC-related errors leading to necessary 

configuration adjustments.

Leader skew is a situation where one broker leads more partitions than the average. 

Although reassigning leaders for equal distribution is a common solution, it might not 

always be the best approach due to the increased CPU usage and time consumption.
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Nonetheless, addressing skew is crucial for topics with high traffic or many 

consumers/producers. High traffic and a large number of consumers/producers can 

lead to increased CPU usage in brokers hosting more leaders, causing issues such as 

consumer backlog and stalled producers. Therefore, partition reassignment or manual 

leader election is recommended in such cases.

The next chapter dives into the topic of CPU saturation in Kafka clusters. We’ll learn 

what CPU saturation is and how it differs from a fully engaged CPU, cover the various 

types of CPU usage, and explore how each one can affect Kafka. The chapter also 

discusses the influence of log compaction and the number of consumers per topic on 

CPU usage, including real-world examples and practical strategies. The goal is to provide 

a clear understanding of CPU utilization in Kafka, helping you spot potential issues and 

apply effective solutions.
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CHAPTER 5

CPU Saturation in Kafka: 
Causes, Consequences, 
and Solutions
There are cases in which CPU saturation can cause the Kafka cluster to delay consumers 

and/or producers, by either causing consumers to lag or causing producers to develop a 

bigger queue of messages before producing them to Kafka.

In such cases, it’s important to identify which kind of CPU saturation you’re dealing 

with, because this can provide clues to its cause.

We’ll start by describing what CPU saturation is and explain the different CPU usage 

types. We’ll include several examples, each causing a different type of CPU saturation.

�CPU Saturation
A Kafka cluster includes several machines, each of which runs a single Kafka process. 

When the Kafka process generates more tasks (tasks that require CPU) than the number 

of available CPU cores, these tasks will wait in the OS queue for their turn until the CPU 

cores become available. This waiting can cause latency for the brokers and its consumers 

and producers, leading to a performance degradation of the Kafka cluster.

The demand for CPUs is indicated by an OS metric called load average, which refers 

to the number of tasks that are either running or waiting to be run by the CPUs (once a 

thread is scheduled to run on the OS, its executable code is considered to be a task).

When the load average is higher than the number of CPUs, it means the CPUs are 

saturated. The runnable threads must wait for the CPUs to become available.
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The term normalized load average (NLA) describes the levels of saturation. For 

example, in a 16-core machine that has a load average of 16, the NLA is 1 (because 

16/16=1). In such a case, all runnable tasks are being served, and no runnable task is 

waiting in the queue. However, when the load average is 32, the NLA is 2 (since 32/16=2). 

In such a case, there are 16 tasks running on the CPUs; the other 16 tasks are in a 

runnable state and are waiting for a CPU to become available.

It’s important to distinguish between a fully engaged CPU and CPU saturation. CPU 

saturation is when all the processing units (cores) in a CPU are completely engaged and 

operating at maximum capacity.

When CPU utilization reaches 100 percent, this means that every core is actively 

processing tasks, and there is no idle time left for any new tasks to be assigned to the 

cores. In this situation, the CPU is fully engaged.

However, even when a CPU is fully engaged, that doesn’t necessarily imply CPU 

saturation. The CPU can still accommodate more tasks without causing any observable 

performance degradation if those tasks are not demanding or if they have a low priority. 

In other words, a fully engaged CPU is merely a CPU that is efficiently using all of its 

resources, not necessarily one that is overwhelmed or overworked.

When the Normalized Load Average (NLA) exceeds 1, this indicates CPU saturation 

as it represents the queueing of processes. The load average is a measure of the number 

of runnable tasks, including the tasks that are running and the ones that are waiting 

to run (i.e., queued). When the NLA is greater than 1, this implies that there are more 

runnable tasks than available cores. This waiting or queueing of tasks signifies CPU 

saturation, as the CPU doesn’t have enough resources to immediately accommodate 

all tasks. This means the tasks are waiting, which can potentially lead to slower system 

response and processing times.

The key difference is that a fully engaged CPU has all its cores actively working and 

can still process incoming tasks without delay, while CPU saturation occurs when there 

are more tasks to be processed than the CPU can handle at once, leading to queuing and 

potentially slowing down task processing.

I’ve noticed that when Kafka consumers and/or producers experience latency due to 

CPU saturation, it’s usually not because the CPUs have reached 100 percent utilization. 

Usually, it’s due to the NLA reaching a value higher than 1.

Given that, the more interesting question becomes this—what causes tasks to queue 

(which is equivalent to asking why the NLA is higher than 1) when CPU utilization is 

below 100 percent?
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To answer this question, let’s first overview the different CPU usage types, since 

detecting which type of CPU reaches a high utilization can assist in troubleshooting 

latency issues.

�CPU Usage Types
Linux CPU usage can be broken into several distinct categories:

•	 User time, represented as %us, measures the portion of CPU time 

engaged in executing processes in the user space, usually tied to 

application-related tasks.

•	 System time, denoted as %sy, indicates the part of CPU time spent in 

the kernel space, working on tasks vital to the system’s functioning.

•	 I/O wait time, or %wa, signifies the amount of CPU time spent waiting 

for input/output tasks, typically associated with disk operations.

•	 Software interrupts, labeled as %si, highlights the segment of CPU 

time dedicated to managing these types of system disturbances.

Now that we have an idea what CPU saturation is and know the different categories 

of CPU usage in Linux, the next section explains what causes Kafka brokers to use 

CPU time.

�Causes of High CPU User Times
This section covers the possible causes of high CPU user time, along with ways to 

monitor and potentially prevent these cases.

Exploring the factors leading to elevated CPU usage provides insights into how 

to monitor and mitigate such situations effectively. High CPU usage can result from 

numerous fetch requests coming from consumers or lots of produce requests from 

producers. Additionally, a high volume of fetch requests from other brokers, a part of the 

replication process, can also contribute to high CPU usage.

The brokers’ compression settings can further impact CPU usage. If brokers are set 

to compress or decompress messages, particularly when both producers and brokers 

utilize compression, this can increase CPU usage. Message encryption and decryption 

by brokers can also affect CPU usage.
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Garbage collection (GC) is another potential source of CPU stress. Frequent or 

lengthy GC pauses can significantly increase CPU usage.

To prevent high CPU usage, we can employ several strategies. We can experiment 

with different compression methods and observe their impact on the CPU. If brokers are 

configured for encryption, it is worth assessing whether this step is essential.

It is also advisable to verify whether the producers and/or consumers are already 

configured to compress or decompress. If so, there is no need for the Kafka brokers to 

perform the same function. Regarding GC, keep an eye on GC pauses and consider 

increasing the broker’s heap size if needed. Using the G1 garbage collector (enabled  

with -XX:+UseG1GC) can also be beneficial.

Monitoring should encompass the number of consumers and producers per topic, 

along with the GC log (enabled with the -XX:+PrintGC flag for the broker’s process). 

Look for frequent or long GC events. Moreover, it’s a good idea to set up an alert for 

instances when CPU usage exceeds 80 percent for durations longer than ten minutes.

�Causes of High CPU System Times
This section covers the possible causes of high CPU system times, along with ways to 

monitor and potentially prevent these cases.

High CPU system time, or sy%, can result due to several factors. For instance, when 

linger.ms and/or batch.size are set to low values, the number of produce requests 

coming into the cluster might increase. This is because smaller linger and batch values 

prompt the producer to send messages to the brokers more quickly, reducing the wait 

time for these messages in the producer’s buffer. Consequently, a surge in produce 

requests can lead to a hike in CPU system use.

Excessive access to disks and a high number of configured I/O threads in the cluster 

can also push the CPU sy% up. A general rule of thumb is to configure the I/O threads up 

to the number of mount points per broker used to store segments. In addition, hosting a 

compacted topic with high retention in the cluster can also escalate CPU use.

To prevent a high CPU sy%, examine the batch.size and linger.ms settings in the 

producers since they might be too low. Also, evaluate whether the number of disk I/O 

threads is overly high. Further, review your topics. If any are compacted, ensure their 

retention is not higher than necessary.
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For monitoring purposes, set an alert for situations when the CPU sy% exceeds 20 

percent for more than ten minutes. This can serve as a preventative measure against 

prolonged system stress, helping to maintain optimal system performance.

�Example of Kafka Brokers with High CPU %us and %sy
Here is an example of a spike in the CPU us% (user time) and sy% (system time) in all the 

brokers during peak times. The consumers suffered from lag due to the high CPU sy%. 

Note that the lag can also be caused by high CPU percent. Figures 5-1 and 5-2 illustrate 

this example.

Figure 5-1.  A spike in the CPU sy% during peak time

Figure 5-2.  A spike in the CPU us% during peak time

An example of a constantly high CPU sy% (of about 20 percent) is shown in 

Figure 5-3, in all the brokers of the Kafka cluster. The consumers of this cluster 

sometimes suffer from lag, but only during peak times. In this case, this high CPU sy% 

was caused by disk contention, which subsequently caused consumers to lag during 

peak time.
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Figure 5-3.  A constant high value of 20 percent in the CPU system time

�Causes of High CPU Wait Times
This section covers the possible causes of high CPU wait times, along with ways to 

monitor and potentially prevent these cases.

Several factors can lead to a high CPU wait time. For example, a sudden surge in 

read or write operations from the disk, surpassing the disk’s capacity in input/output 

operations per second (IOPS), can cause an increase in CPU wait time (wa%). Other 

potential causes include consumer lag, a malfunctioning disk, or a disk that cannot 

handle the required IOPS or throughput.

If you notice high CPU wa%, you should investigate two other metrics—disk 

utilization percentage and page cache miss ratio. A high value in either of these metrics 

could be the culprit behind the increased CPU wa%. If disk utilization is high, determine 

whether it’s caused by throughput or IOPS. On the other hand, if the page cache miss 

ratio is high and there are no lagging consumers, it may suggest that the broker machine 

needs more RAM.

In terms of monitoring, establish an alert for scenarios when the CPU wa% exceeds 

20 percent for more than ten minutes. This proactive measure can help you identify and 

mitigate potential system issues, maintaining the system’s overall performance.

�Causes of High CPU System Interrupt Times
This section covers the possible causes of high CPU system interrupt times, along with 

ways to monitor and potentially prevent these cases.

A few factors can result in high CPU system interrupt time. For instance, an excessive 

number of disk.io threads, faulty or outdated device drivers, or hardware issues like 

defective disks or network cards can all lead to an increased number of software 

interrupts.
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To prevent these issues, you should ensure that the number of disk.io threads is kept 

to a minimum, ideally no larger than the number of disks in the broker. A lower number 

of threads can help prevent system overload and unnecessary software interruptions.

For effective monitoring, consider setting an alert for scenarios where CPU software 

interrupt time (si%) surpasses 5 percent for more than ten minutes. This approach can 

help you promptly identify and address system performance issues, thereby enhancing 

overall efficiency.

�The Effect of Compacted Topics with High Retention 
on Disk and CPU Use
This section explains how a seemingly simple feature such as a topic’s log compaction 

can bring your Kafka cluster to a halt while the compaction runs.

�What Is Log Compaction?
Log compaction is a process in Kafka whereby, for each key, only the most recent value 

is retained. It can be configured per topic and runs periodically in the background. 

This mechanism of storing only the most recent value for each key effectively removes 

duplicate records. Moreover, it also removes keys associated with null values, commonly 

referred to as tombstone records.

Notably, log compaction operates at the segment level. Once a segment crosses 

a certain threshold, known as the dirty ratio, Kafka flags it for cleaning. The dirty 

ratio refers to the proportion of records in a log segment that are obsolete and can be 

discarded.

In this cleaning process, records, including tombstone records, are copied to a new 

and clean segment. Tombstone records are special messages produced by consumers to 

delete keys, not for updates. They have the same key, but a null value. These tombstone 

messages have a separate retention policy that allows consumers to read the old records 

for a certain duration after the key deletion.

After the copying process, the new, clean segment is swapped in place of the old one, 

which is subsequently deleted. This entire log compaction process requires RAM and 

CPU cycles on the brokers, emphasizing its influence on resource utilization.
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Through log compaction, Kafka ensures a more efficient storage utilization by 

maintaining only the most recent value for each key, while still enabling consumers to 

read old records during the tombstone retention period.

Figure 5-4 shows how log compaction works.

Figure 5-4.  A topic with log compaction enabled. After the log compaction runs, 
only a single value per each key is saved

Usually the log compaction process doesn’t cause a CPU burden on the cluster, 

but a compacted topic with large enough retention might cause all brokers in a cluster 

to saturate due to a high CPU usage for part of the time. This can cause the cluster to 

function poorly during those times. The following section describes such a scenario.

�Real Production Issues Due to Log Compaction
Consider a cluster that suffered from the following symptoms.

The utilization of all the cluster’s disks reached 100% and stayed there, as shown in 

Figure 5-5.
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Figure 5-5.  Disk utilization (a metric that was taken from the iostat tool) in all the 
brokers reached a value of 100% and stayed there. This means that all the disks in 
this cluster are saturated

The CPU’s system time (sy%) was ±15%, as shown in Figure 5-6.

Figure 5-6.  CPU sy% in all the brokers reached a value of 15% and stayed there. 
Such a value is high for Kafka clusters

The Load Average was higher than the number of cores, which means there are more 

Kernel tasks that are either in status waiting or running, as shown in Figure 5-7.

Figure 5-7.  Load Average reached a value of 40 and stayed there. Since the 
number of cores in the brokers is 32, at any given time tasks wait in the queue for 
the CPU to run them. The Normalized Load Average of all the brokers is 1.25 (since 
40/32 = 1.25)
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However, the CPU us% was low, as shown in Figure 5-8.

Figure 5-8.  The CPU us% was low on all the brokers

After several tries, the developer who created the cluster noticed that the retention 

of the compacted topic was 24 hours, which was much higher than required. Once the 

retention was reduced to 1 hour, the disk utility usage was drastically reduced, the CPU 

sy% was reduced by half, and the load average was reduced to less than the number 

of cores.

The conclusion is that when you use a large, compacted topic, pay attention to the 

retention. A high retention can be a possible cause for high disk utilization and high CPU 

sy% values during the time the compaction runs, which can cause consumer and/or 

producer lags due to the cluster struggling with the high load average.

�The Number of Consumers per Topic vs. CPU Use
I had a case in which consumers started lagging and messages started to queue in the 

producers. I looked at the Kafka cluster and saw a single broker that went rogue (out of a 

total of three brokers). The rogue broker suffered from these two symptoms:

•	 The Load Average was much higher compared to the other brokers, 

as shown in Figure 5-9.
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Figure 5-9.  Load Average reached a value of 40 only in the rogue broker, which 
was more than double the load average of the other two brokers in the cluster

•	 The CPU us% was much higher compared to the other brokers, as 

shown in Figure 5-10.

Figure 5-10.  CPU us% reached 100% in the rogue broker, which was more than 
double the us% of the other two brokers in the cluster

At first, I suspected that this broker either received and/or sent more traffic. 

However, it turns out the traffic was the same in all brokers, both in and out, as shown in 

Figures 5-11 and 5-12.
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Figure 5-11.  The number of bytes that were sent from all the brokers was almost 
the same

Figure 5-12.  The number of bytes that were received by all the brokers was almost 
the same

The next step was to suspect a partition skew—maybe this broker contained more 

partitions than the other brokers. However, it turned out that all the brokers had almost 

the same number of partitions, as shown in Figure 5-13.
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Figure 5-13.  The number of partitions in all the brokers was almost the same

At that point I was clueless, until a developer who was working on that cluster found 

the issue—there was a single topic, with low incoming traffic, that had many consumers.

What was more surprising is that the topic had only one partition, and that partition 

resided on… the rogue broker! Figure 5-14 shows that the single partition resided on the 

rogue brokers.

Figure 5-14.  The partition that belonged to the topic with a single partition 
resided on the rogue broker
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To fix this production issue, we did two things. First, we added two more partitions 

to this topic. This helped balance the number of partitions across all brokers. Second, we 

got rid of some of the consumers for this topic. We found out that many of them didn’t 

need to use that topic anymore. These two steps helped solve the issue.

This finding taught me a valuable lesson regarding partition skew—when checking 

for a partition skew among brokers, we need to check this skew not only in the scope 

of all the topics, but also in the scope of a single topic. As this production case shows, 

even a topic with a single partition that receives low traffic can cause a broker to 

become loaded.

This production issue can be summarized through its symptoms, potential causes, 

prevention measures, and monitoring options:

The symptom of this problem presents itself as a single broker with high CPU user 

time and high load average.

Potential causes for this issue might be that the broker was handling more incoming 

and/or outgoing traffic than other brokers. It could also be that this broker held a 

higher number of partitions (for all topics in the cluster) compared to other brokers. 

Additionally, this broker might host a topic that has a larger number of partitions on that 

broker, compared to the other brokers. Finally, it’s possible that the broker hosted a topic 

with one or more of the following characteristics: many consumers, a high frequency of 

consumer requests, numerous producers, or a high frequency of producer requests.

To prevent such issues:

•	 Make sure to balance the number of partitions per topic across all 

brokers.

•	 Evaluate topics with a large number of consumers and consider 

whether all of them are necessary.

•	 For topics with many consumer requests, assess if the frequency of 

consumption can be reduced.

•	 For topics with many producers, consider whether they are all 

necessary.

•	 For topics with a high number of producer requests, see if their 

frequency can be decreased by increasing the batch size, linger time, 

or both.
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Monitoring for this issue involves setting up alerts for the following scenarios: topics 

that their partitions are not balanced evenly among all brokers, topics with more than a 

certain number of consumers or consumer requests, and topics with more than a certain 

number of producers or producer requests.

�Summary
This chapter provided an in-depth exploration of CPU saturation in Kafka clusters, 

its causes, and potential solutions. It started by defining CPU saturation and a fully 

engaged CPU. Then it delved into the different types of CPU usage, including user time 

(%us), system time (%sy), I/O wait time (%wa), and software interrupts (%si). Each usage 

type was explained in the context of Kafka clusters and the potential reasons for their 

excessive utilization were discussed along with strategies for prevention and monitoring.

The chapter also emphasized the impact of log compaction on the CPU usage of the 

Kafka brokers and explained how this process, by retaining only the most recent value for 

each key, might require both RAM and CPU resources, potentially causing high resource 

utilization. A real production issue was presented where incorrect configurations for 

compacted topics resulted in system strain.

Lastly, the chapter discussed the impact of the number of consumers per topic on 

CPU usage, using a case study where a rogue broker caused lags and queuing.

Overall, this chapter serves as a comprehensive guide for understanding CPU 

utilization in Kafka clusters, helping you identify potential issues and implement 

effective strategies for prevention and monitoring.

The next chapter explores the important role of RAM in Kafka clusters. It explains 

why adding more RAM can be a critical improvement, sometimes even more so than 

adding CPU or disks, especially in reducing latency and boosting throughput. Cloud-

based and on-premises solutions are compared, along with practical guides on how to 

monitor and manage RAM effectively. From understanding page cache to preventing 

system crashes, the next chapter gives you a comprehensive look at how RAM affects 

Kafka’s performance, and how to optimize it.
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CHAPTER 6

RAM Allocation in Kafka 
Clusters: Performance, 
Stability, and Optimization 
Strategies
This chapter explores the significance of RAM for the performance and stability of 

Kafka clusters, as well as its impact on consumers and producers. While a Kafka cluster 

relies on various hardware resources such as CPU, disks, and NIC, RAM holds a distinct 

position due to its influence on cluster stability and performance.

Many of the production issues that I’ve encountered were resolved and could have 

been prevented by simply adding more RAM to the cluster. This is because insufficient 

RAM can lead to disk saturation (resulting from high IOPS use) and increased CPU sy% 

and wa%. In both cases, consumers and producers experience delays.

The chapter begins by discussing the situations where adding RAM is more 

advantageous than focusing on CPU or disks. Subsequently, it elaborates on how Kafka 

interacts with the Linux page cache and why the page cache is so important to Kafka, 

followed by exploring the impact of inadequate RAM on disks. Additionally, we highlight 

the differences between adding RAM to cloud-based Kafka clusters versus on-premises 

solutions. Finally, the chapter provides a non-Kafka-related example that demonstrates 

the consequences of insufficient RAM in the page cache.
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�Adding RAM to a Kafka Cluster
This section sheds light on why RAM isn’t just another hardware component but a 

strategic resource in a Kafka cluster’s operation. It explores how adding RAM can be 

a more effective solution than adding CPU cores or disks in some cases, and how this 

strategy varies between cloud and on-premises environments. With practical examples 

of how RAM affects performance, latency, throughput, and disk I/O, we’ll unravel 

the complexities of making informed decisions about resource provisioning in Kafka 

clusters.

�The Strategic Role of RAM Over CPU and Disks
RAM distinguishes itself from other hardware resources in a Kafka cluster due to its 

unique effectiveness in terms of over-provisioning. To illustrate this point, consider the 

following example.

Imagine you have a Kafka cluster that currently possesses sufficient CPU capacity 

and disk storage. You plan on introducing additional producers and consumers to 

this cluster. While you know that the cluster doesn’t require more CPU cores or disks 

to accommodate these new clients, the question arises: will more RAM benefit the 

consumers and producers?

This question is similar to asking whether the introduction of more consumers and 

producers would cause the brokers to read more data from the disks instead of utilizing 

the page cache. The true answer to this question can only be determined once these 

new consumers and producers are added to the cluster. At that point, you can evaluate 

whether additional RAM can prevent consumers from reading data directly from the 

disks. Monitoring disk reads/sec or employing tools like cachestat, which measure the 

miss and hit rates from the page cache, can assist in this analysis.

If you observe high disk utilization percentages due to increased read IOPS on the 

disks, the solution won’t involve adding more disks but rather augmenting the RAM. This 

distinction is one of the reasons why RAM differs from CPU cores and disks. Insufficient 

RAM can lead you to misinterpret the climbing metrics and mistakenly conclude that 

you need to either add more CPU cores (due to elevated total CPU usage resulting from 

higher CPU system or wait time percentages) or add more disks (due to increased disk 

utilization caused by higher disk IOPS resulting from more reads from the disks).
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A frequent dilemma faced by KafkaOps, especially when dealing with increased 

traffic or the need to accommodate more consumers and producers, is whether to 

scale the Kafka cluster up or out. While it may be tempting to say yes to one or both of 

these options, doing so can lead to over-provisioning of the Kafka cluster, unnecessarily 

driving up costs. In my experience, if the page cache is already highly utilized with the 

current traffic, scaling up the brokers by adding more RAM to each of them can often 

be more advantageous. Not only does this approach tend to address the immediate 

need, but it also typically offers a better return on investment compared to other scaling 

alternatives that might involve adding more disks or cores.

�Cloud vs. On-Prem RAM Expansion: Considerations 
and Constraints
There’s a major difference between adding more RAM to machines in clusters that run 

on cloud versus on-prem. This section discusses the implications of adding RAM to the 

cloud versus to on-prem clusters.

�Adding RAM to the Cloud

In order to increase the amount of RAM for an instance in GCP or AWS, you need to 

switch to a new instance type that has more RAM and also different amounts of CPU 

cores, disk storage, and disk IOPS. If the chosen instance type has less CPU or disk space, 

you could get into CPU or disk space saturation, in which case you’ll have to switch to an 

instance type with more RAM and also more CPU and/or disk space.

The same goes for switching to instance types with more RAM but also more CPU 

cores and disks—if you don’t need them, you’re just paying for resources that you don’t 

need in order to get a resource that you do need (RAM).

It’s important to choose the instance type that has the amount of RAM that you 

need while having the minimal amount of required CPU, disk space and IOPS. That’s 

not always feasible in the cloud, which is why sometimes you can end up with a cluster 

that has the required amount of RAM but also more CPU and/or disks than your Kafka 

cluster really needs.

From a maintenance perspective, the process of switching instance types can also 

result in a temporary disruption of service as instances are swapped out.
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�Adding RAM to On-Prem Kafka Clusters

Adding more RAM to an on-prem cluster is a different story than doing so on the cloud, 

since you have the freedom to add more RAM without adding other resources. However, 

there are limitations to the maximum amount of RAM that a machine can host, which 

depends on many factors (motherboard, processor, OS version, etc.).

In order to increase the amount of RAM in the broker machine, you need to consider 

not only the maximal amount of RAM it can host but also the number of memory slots in 

the machine, which determines the number of DIMMs the machine can contain. Each 

DIMM can be between 4-128GB RAM. So, for example, you could decide whether all the 

DIMMS will be in 16GB, 32GB, or more.

From a maintenance perspective, it’s important to note that while on-premises 

systems offer greater control over hardware, they also require more manual 

management. You need to purchase the correct type of RAM, ensure compatibility, 

physically install the RAM, and potentially upgrade other components like the 

power supply.

Note that the maximum amount of RAM a machine can host is much higher in an 

on-prem machine than what’s available in standard cloud instances. This could make 

on-premises systems more attractive options for certain high-memory workloads.

�Enhancing Kafka’s Performance: The Benefits 
of Increasing Broker RAM
The allocation of additional RAM to a Kafka broker can yield several beneficial 

outcomes, enhancing the overall performance of your Kafka cluster. The following 

sections discuss those benefits.

�Performance Boost

When a Kafka broker is allocated with more RAM, it can make more effective use of 

the Linux page cache by keeping a greater portion of data in memory. This minimizes 

the requirement for frequent disk access, thereby accelerating both read and write 

operations, which in turn enhances the overall performance.
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�Disk I/O Reduction

A larger amount of RAM allows Kafka to keep more messages in memory. Consequently, 

the frequency of disk I/O operations decreases, reducing disk latency. This can be 

particularly useful for alleviating potential bottlenecks in situations of high consumption 

or high throughput.

�Throughput Enhancement

By augmenting the available RAM, Kafka brokers can handle larger workloads from 

both consumers and producers. They can also process a higher number of messages 

concurrently. This leads to an improvement in throughput, enabling the broker to 

manage higher volumes of data more efficiently and support an increased number of 

consumers and producers.

�Latency Reduction

With increased RAM capacity, Kafka brokers can more frequently serve read requests 

directly from memory. This reduces the time it takes for consumers to access messages, 

leading to lower latency and quicker data retrieval. As a result, consumers experience a 

more responsive Kafka cluster.

�Understanding the Linux Page Cache
In Kafka’s architecture, the Linux page cache plays a pivotal role in boosting both read 

and write operations. This section explores how Kafka utilizes this in-memory cache 

to enhance performance, while also considering the inherent tradeoffs between speed 

and fault tolerance. It examines the process of data writing in Kafka, how the page cache 

contributes to efficiency, and introduces tools like cachestat for monitoring cache 

utilization. Understanding these dynamics is crucial for optimizing Kafka’s performance 

and reliability.
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�Page Cache in Kafka: Accelerating Writes and Reads
This section delves into the importance of the Linux page cache to the performance of 

Kafka. One of Kafka’s key performance optimizations lies in its efficient use of the Linux 

page cache, which serves as an in-memory cache provided by the operating system. This 

section explores how Kafka leverages this cache for improved performance and delves 

into the two-step process that Kafka employs when data is written into it. Furthermore, 

this section also discusses how this mechanism contributes to Kafka’s speed and 

scalability, and covers the necessary precautions to ensure data integrity and fault-

tolerance.

When data is written to Kafka, it goes through a two-step process. First, the data 

is written to the page cache, which acts as a cache layer in RAM. The page cache is 

a component of the operating system’s memory management subsystem; it stores 

frequently accessed data from files. In this case, the data being written are the Kafka 

messages.

Once the data is in the page cache, it is marked as “dirty” because it has been 

modified and is yet to be persisted to the underlying storage (such as the disk). The page 

cache allows Kafka to achieve high write performance since it writes data to the cache 

in memory without the need for synchronous disk I/O operations. This asynchronous 

behavior provides a significant speed advantage. By leveraging the Linux page cache, 

Kafka achieves high write performance by temporarily storing data in memory before 

persisting it to disk.

Beyond write performance, Kafka’s use of the page cache also improves read 

performance. When consumers read data from Kafka, the data is initially fetched 

from the disk and stored in the page cache, unless the data already existed in the page 

cache. Subsequent reads of the same data can be served directly from the page cache, 

significantly reducing disk I/O and improving read performance.

Figure 6-1 illustrates the flow of pages in the Kafka system, detailing how they are 

written by the producers and subsequently read by the consumers.
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Figure 6-1.  The flow of pages in the Kafka system

As Figure 6-1 illustrates, when producers write messages to a Kafka broker, the 

pages containing these messages are placed into the page cache before being flushed 

to the disk. When consumers request specific messages from the broker, the system first 

searches for the corresponding pages in the page cache. If found, they are sent directly to 

the consumer; if not, the page cache retrieves the pages from the disk and forwards them 

to the consumer. These pages may remain in the page cache for some time, depending 

on the cache policy and access patterns. If other consumers subsequently request the 

same pages, they can be served directly from the page cache, improving efficiency by 

avoiding repeated disk reads.

However, Kafka’s reliance on the page cache also comes with considerations. 

Over-reliance on the page cache without adequate memory can lead to excessive page 

swapping, causing a degradation in performance. Therefore, careful capacity planning 

and resource allocation are necessary to maintain optimal Kafka performance.

�Balancing Performance and Reliability: Kafka’s Page 
Cache Utilization
It’s important to note that the data residing in the page cache might not have been 

written to the underlying storage immediately. This introduces a tradeoff between 

performance and fault-tolerance. While Kafka benefits from faster writes due to the page 

cache, there is a slight risk of data loss if failures occur before the cache is flushed to disk.

Chapter 6  RAM Allocation in Kafka Clusters: Performance, Stability, and Optimization Strategies



70

To mitigate this risk, Kafka employs various strategies such as replication and 

acknowledgment mechanisms. Replication ensures that data is replicated across 

multiple Kafka brokers, providing fault-tolerance and data redundancy. The 

acknowledgment mechanisms, such as “acks” configuration, allow producers to receive 

confirmation of successful writes before considering them committed.

In the event of a failure where all Kafka replicas fail simultaneously, even with acks 

set to “all,” there is still a chance of losing updates. This is because the page cache may 

not have sufficient time to persist the changes to the underlying storage before the 

failure occurs. Therefore, it’s crucial to design Kafka deployments with fault-tolerance 

considerations and appropriate replication factors to minimize data loss risks.

�Monitoring Page Cache Usage Using the Cachestat Tool
As stated before, the Linux page cache plays a crucial role in Kafka’s performance, as 

Kafka relies heavily on it to cache data and reduce disk I/O. Monitoring the page cache 

hit and miss ratio can provide valuable insight into how effectively your Kafka cluster 

is utilizing the page cache. A high hit ratio indicates that most read requests are being 

served from the cache (fast), while a high miss ratio indicates that many read requests 

have to go to the disk (slow).

cachestat, which is part of the Perf-tools suite developed by Brendan Gregg, is 

a powerful tool for monitoring cache usage on Linux. It provides real-time statistics 

on cache hits, misses, and hit ratio, and you can use it to monitor these performance 

metrics on the Kafka cluster.

The output columns of cachestat are as follows:

–– HITS: The number of cache hits (read requests served from the 

page cache).

–– MISSES: The number of cache misses (read requests that had to go to 

the disk).

–– DIRTIES: The number of dirty pages (pages that have been modified 

and need to be written to disk).

–– READ_HIT%: The cache hit ratio for read requests.

–– WRITE_HIT%: The cache hit ratio for write requests.
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If you notice one or more of the following—high cache miss ratio, lower hit ratio, or 

high number of dirty pages—it could indicate that your Kafka brokers are not effectively 

utilizing the page cache. This could lead to increased disk I/O and potential latency 

issues, as read and write requests have to go to disk instead of being served from 

the cache.

Possible causes for a high cache miss ratio include a lack of available RAM, a high 

rate of data eviction from the cache (possibly due to other memory-intensive processes 

running on the same machine), or consumers trying to read data that is not in the cache 

(possibly due to a high consumer lag).

A lower hit ratio in cachestat also indicates that a higher proportion of read requests 

are missing the cache and therefore need to be fetched from disk. This can lead to higher 

disk utilization because your storage subsystem has to handle more I/O operations.

You can monitor disk utilization using tools like iostat and sar. If you observe 

that a decrease in cache hit ratio correlates to an increase in disk utilization, it suggests 

that your Kafka brokers cannot effectively utilize the page cache, forcing them to rely 

more heavily on disk I/O. This can lead to increased latency and reduced performance, 

especially if your disks cannot handle the increased I/O load.

To conclude, monitoring your cache usage with cachestat can help you diagnose 

these issues, and adjusting your Kafka and system configurations based on these insights 

can help improve your Kafka cluster’s performance.

�Lack of RAM and its Effect on Disks
When there is a lack of sufficient RAM for Kafka brokers, it will result in increased 

disk I/O, as Kafka cannot keep as much data in the page cache. This will make the 

performance of Kafka heavily reliant on the speed and configuration of your disks.

Figure 6-2 shows the output of the top command on one of the brokers of a Kafka 

cluster that suffers from lack of RAM in the machines.
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Figure 6-2.  The output of the top command shows a broker that has a high I/O 
wait time because it reads data from the disks instead of from the RAM, probably 
due to lack of RAM

In this example, the process of the Kafka broker uses about 5.7GB of memory, 

which is roughly 71.2 percent of the total available memory (8GB). The wa% value is 

20.3 percent, which is quite high. This indicates that the CPU is spending a significant 

amount of time waiting for I/O operations to complete. This is likely because the Kafka 

broker has to read data from disk, due to insufficient RAM for the OS (in this case, 

±2.3 GB of available RAM) to keep all the necessary data in the page cache.

The next section looks at how to optimize the disks in Kafka in order to allow the 

brokers to better handle a lack of RAM.

�Optimize Kafka Disks When the Cluster Lacks RAM
When operating a Kafka cluster with limited RAM, it’s essential to implement strategic 

disk optimizations to maintain performance. By carefully choosing the right disk types, 

distributing logs, tuning the OS scheduling algorithm, and adjusting Kafka’s specific policies, 

you can mitigate potential performance bottlenecks. The following sections explain some 

key recommendations to enhance Kafka’s efficiency in a constrained RAM environment.

�Use SSDs Instead of HDDs

Solid State Drives (SSDs) are significantly faster than traditional Hard Disk Drives 

(HDDs) and can handle high rates of I/O requests, which is critical for Kafka’s 

performance when RAM is insufficient.

�Distribute Logs Across Disks

Kafka enables the distribution of logs across multiple disks, enhancing I/O performance 

by spreading the load evenly. Through the use of the log.dirs configuration property, 

multiple directories can be specified, each residing on a separate disk. How Kafka 
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brokers spread the log segments across these disks is influenced by whether the disks 

are configured using RAID or JBOD. A subsequent chapter delves into this configuration, 

detailing its effects on the distribution of files and on the overall disk performance.

�Tune OS Disk Scheduling Algorithm

On Linux, the I/O scheduler may be set to a default value that is not optimal for Kafka’s 

access patterns. The deadline or noop schedulers are often better choices than the cfq 

scheduler for Kafka.

�Adjust Kafka’s Disk Flush Policies

Kafka has several settings that control how often data is flushed to disk, including log.

flush.interval.messages and log.flush.interval.ms. By adjusting these settings, 

you can reach a balance between durability and performance.

�Enable Log Compression

To reduce the amount of disk I/O, Kafka supports compressing message batches with 

different codecs (like Gzip, Snappy, LZ4, and Zstandard). This will reduce the amount of 

data written to and read from the disk.

�Enable OS Page Cache

Even if RAM is limited, ensure that you leave enough room for the OS page cache, as this 

can significantly reduce disk I/O. This can be done by verifying that the only process that 

runs on the broker that isn’t an OS process is the Kafka process itself.

�Monitor Disk Usage and I/O

Regularly monitor the disk utilization and I/O operations to detect and troubleshoot 

performance issues. Tools like iostat, vmstat, and dstat can be helpful.

�A Lack of RAM Can Cause Disks to Reach IOPS Saturation
In order to show the effect of a lack of RAM on the disks of the Kafka brokers, this section 

looks at a Kafka cluster in which some of its consumers were lagging. The root cause for 

that lag turned out to be a lack of RAM in the Kafka clusters.
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Figure 6-3 shows the consumer lag; all the consumers are lagging behind in all 

partitions.

Figure 6-3.  The sum of lag (in millions) in all the consumers over all the partitions 
over time. As time goes by, the lag continues to increase

When the consumer lag started to increase, you could see the following behaviors.

Figure 6-4 shows that the throughput of the reads from the Kafka disks increased 

until they reached the disks’ maximal throughput.

Figure 6-4.  The throughput of reads from disks in MB (rMB/s)

Figure 6-5 shows that the IOPS of reads from the disks also increased until they 

reached the maximal IOPS that the disks provide.

Figure 6-5.  The read IOPS from the disks (r/s)
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Figure 6-6 shows that the CPU I/O wait time increased until it stabilized at 10 

percent, which is pretty high for I/O wait.

Figure 6-6.  The wait time increased due to latency in the disks

When you look at the disk utilization and compare it to the page cache hit ratio, 

you’ll see a negative correlation—the lower the page cache hit ratio, the higher the disk 

utilization. See Figure 6-7.

Figure 6-7.  A negative correlation between hit ratio from the page cache and the 
disk utilization—as the hit ratio goes down, the disk utilization increases until it 
reaches IOPS saturation

To conclude, this example shows how a page cache hit ratio has an immediate effect 

on disk utilization. The higher the hit ratio, the lower the disk utilization and vice versa—

the higher the miss ratio, the higher the disk utilization and consequently the higher the 

CPU wait time.
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Here’s another example of a Kafka cluster (this time it is on-prem) where its 

consumers suffered from recurring lags. We decided to triple the amount of RAM in that 

cluster and measured the disk utilization before, during, and after the addition of RAM.

Figure 6-8 shows the effect of adding RAM on the disk utilization of the disks in the 

cluster.

Figure 6-8.  The disk utilization in a Kafka cluster that suffers from lack of 
RAM. There’s a correlation between the amount of RAM in the brokers and a 
reduction in the disk utilization

Note that the disk utilization dropped linearly based on the amount of RAM added—

from 43 to 13 percent. This is another indication that the cluster lacked RAM, and that 

lack of RAM and high disk utilization go hand in hand.

�Optimize Kafka in Terms of RAM Allocation
Optimizing Kafka’s performance in terms of RAM allocation requires careful adjustments 

to the operating system, the JVM settings, and the Kafka configuration itself. The 

following sections discuss some recommendations.
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�Set vm.swappiness to the Minimum Possible Value

The vm.swappiness parameter determines how aggressively the kernel will swap 

memory pages versus dropping pages from the page cache. A higher value increases 

swap aggressiveness, while a lower value tells the kernel to swap as little as possible.

For Kafka, where high I/O performance is critical, it is typically recommended to 

minimize swapping. Swapping can cause Kafka to pause, leading to high latency and 

potential timeouts. For example, if a Kafka broker is experiencing high latency and 

frequent pauses, and upon investigation, vm.swappiness is found to be set to a high 

value, lowering the value will reduce these issues.

Similarly, minimizing or disabling swappiness on the ZooKeeper servers is 

crucial. Swapping on ZooKeeper machines can create latency, leading to delays in 

synchronization and potential inconsistencies in the distributed operations. This could 

affect the Kafka cluster’s responsiveness, integrity, and reliability, emphasizing the need 

to control swappiness on both Kafka brokers and ZooKeeper servers.

�Increase the File Descriptor Limits

Kafka brokers maintain a file for each partition, and they have many connections to 

other brokers, producers, and consumers. Each open file or socket consumes a file 

descriptor, and there’s a finite limit to how many a Kafka broker can open. If the file 

descriptor limit is too low, Kafka may experience errors leading to potential broker 

failure. For instance, the broker might start rejecting new client connections or fail to 

open new log segments if it reaches the file descriptor limit. This limit can be modified 

using the ulimit command.

�Increase the Limit of Memory-Mapped Files

In addition to the file descriptor limit, Kafka brokers also deal with a limitation on the 

number of memory-mapped files, controlled by the kernel parameter vm.max_map_

count. The broker maps files into memory, and reaching this maximum count can lead 

to similar errors and broker failures as hitting the file descriptor limit.
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�GIVE at Least 32GB RAM to Your Kafka Brokers

Kafka uses the page cache to buffer reads and writes to disk, and the more memory 

you can give to the page cache, the better your I/O performance will be. If your brokers 

have insufficient memory, they may struggle to keep up with write and read requests, 

leading to increased latency and lower throughput. For example, if a Kafka cluster is 

experiencing slow message consumption rates, increasing the amount of RAM allocated 

to each broker might help improve the consumption rates.

�Monitor Garbage Collection Times Closely

Kafka runs on the JVM, which uses garbage collection (GC) to free up memory. However, 

GC pauses can impact Kafka’s performance. If GC is taking a significant amount of time, 

it may be necessary to adjust the JVM settings or upgrade to a newer JVM version with 

a more efficient garbage collector. If a Kafka broker is experiencing frequent full GC 

activity, it could lead to noticeable pauses in processing, resulting in increased message 

latency.

�Tuning JVM Options

The JVM settings can have a significant impact on Kafka’s performance. For example, 

you might want to adjust the heap size settings (-Xmx and -Xms) to ensure Kafka has 

enough heap space, but not so much that it causes excessive GC pauses.

�Using Appropriate Instance Types When Deploying 
on a Cloud Platform

If you’re deploying Kafka on a platform like AWS, choosing an instance type with a 

high memory-to-vCPU ratio can help ensure you’re getting the most out of your RAM 

allocation.

�Balancing Topics and Partitions Across Brokers

To prevent any one broker from becoming a bottleneck, it’s important to distribute 

topics and partitions evenly across the available brokers. This can help ensure that each 

broker’s RAM is used efficiently.
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�Dealing with Garbage Collection (GC) 
and Out-Of-Memory (OOM)
Like any system based on the Java platform, Kafka brokers are susceptible to the 

potential pitfalls of Java’s garbage collection (GC) processes. Mismanaged or poorly 

tuned garbage collection can significantly impact Kafka’s performance and reliability, 

undermining its ability to deliver messages promptly and reliably. As we delve deeper 

into this topic, we’ll explore the intricate workings of garbage collection within Kafka 

brokers, its implications for Kafka’s performance, and the potential consequences of 

high GC frequency or long GC pauses.

Kafka’s performance hinges on its ability to manage memory effectively. The Kafka 

brokers utilize two key types of memory: the Java Virtual Machine (JVM) heap and the 

page cache. The JVM heap is used for transient data structures and for operations such 

as log compaction and replication of log segments in partitions. The page cache, on the 

other hand, is managed by the operating system and is used to cache Kafka log files for 

faster access.

However, when the JVM heap becomes too populated, the garbage collector 

steps in to clear unused objects, a process that can be quite resource-intensive. High 

GC frequency or long GC pauses can significantly impact Kafka in several ways, 

discussed next.

�Latency Spikes
When the garbage collector kicks in, it can cause temporary pauses in Kafka’s processing. 

This GC pause can result in spikes in latency, negatively impacting the performance of 

the cluster and disrupting the smooth flow of message processing for both producers 

and consumers.

�Resource Utilization
The garbage collection process is CPU-intensive. High GC activity can consume 

significant CPU resources, limiting what’s available for other processes. This, in turn, 

can degrade overall cluster performance and affect other services running on the 

same nodes.
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�System Stability
GC activity is directly tied to system stability. If the garbage collector struggles to reclaim 

memory in a timely manner, it can lead to JVM out-of-memory errors. Such situations 

can cause Kafka brokers to crash, leading to potential service disruptions, data loss, and 

a cascading effect of rebalancing across the remaining brokers.

�Impact on ZooKeeper Heartbeat
Long GC pauses can cause Kafka brokers to miss their ZooKeeper heartbeat, resulting 

in the broker being marked as dead. This can trigger unnecessary partition rebalancing, 

causing additional load and reducing the overall throughput of the system.

Therefore, it’s crucial to monitor GC performance and tune the Kafka brokers to 

minimize the impact of GC on the system’s performance. Effective GC tuning and proper 

memory management can help maintain Kafka’s high performance and its promise of 

real-time data delivery.

�Measuring Kafka Memory Usage
This section discusses the Linux commands that measure the memory usage of the 

Kafka machine and Kafka process. Utilizing the appropriate Linux commands can 

provide a comprehensive view of how memory is being utilized, both at the machine 

level and specifically by the Kafka process itself. This understanding is crucial in 

diagnosing issues, planning capacity, and tuning the operating system and Kafka 

configurations for optimal performance.

The following list explains some valuable commands and methodologies that you 

can employ to analyze and interpret the memory consumption of your Kafka machine 

and Kafka process.

•	 top: Run top and look for the Kafka process. Check the RES (resident 

memory size) column to get an idea of how much memory the Kafka 

process is using. If you know the exact name of the Kafka process, you 

can use top -p $(pgrep -d',' -f kafka) to filter the top output 

specifically for Kafka.

Chapter 6  RAM Allocation in Kafka Clusters: Performance, Stability, and Optimization Strategies



81

•	 vmstat: Run vmstat -s to get a snapshot of various aspects of your 

system’s memory usage. Look for “used memory,” “free memory,” 

“buffer memory,” and “swap memory” to understand how memory is 

being used on your system.

•	 free: Run free -h to see a summary of your system’s memory usage 

in an easy-to-read format. This includes total, used, free, shared, 

buff/cache, and available memory.

•	 pidstat: Since with pgrep you get other PIDs that matched the Kafka 

world, first find the PID (process ID) of your Kafka process using 

pgrep -f kafka. Then run pidstat -r -p [PID] 1 to monitor the 

Kafka process’s memory usage at one-second intervals.

•	 sar: sar -r 1 will provide system memory usage stats (including 

RAM and swap) every second. If you have historical data enabled for 

sar, you can use sar -r -f /var/log/sa/sa[day] to view memory 

usage stats for a specific day.

•	 dstat: Run dstat -g -m 1 to see stats about memory usage and 

garbage collection at one-second intervals.

•	 jstat: If you’re specifically interested in JVM memory usage for 

Kafka you can use jstat. First, get the PID of the Kafka process using 

pgrep -f kafka, then run jstat -gc [PID] 1s to get garbage-

collected heap memory details at one-second intervals.

Note R emember to replace [PID] with the actual process ID of your Kafka 
process.

�The Crucial Role of RAM: Lessons 
from a Non-Kafka Cluster
The importance of RAM cannot be overstated. This was vividly illustrated when a cluster 

running an application written in Go language encountered a crippling issue.
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The application would gradually consume all available RAM on a machine in the 

cluster. Interestingly, each occurrence affected a different machine, leading to a game 

of “musical chairs” that ultimately caused the cluster to cease functioning. It was not 

because of high CPU usage or disk utilization; both metrics were surprisingly low. 

Instead, a high percentage of system CPU time (CPU sy%) became the telltale sign of 

trouble.

We finally concluded that each machine’s “death” (instances where AWS killed the 

machine) was directly linked to an available RAM count of zero. A single process was 

monopolizing most of the CPU time, but it was primarily wait time (wa%) rather than user 

time (us%).

Contrary to initial suspicions, this was not a garbage collection (GC) issue, as GC 

typically consumes user CPU time, not wait time. It’s crucial to note that this process had 

nearly all the machine’s RAM allocated to it, which could potentially lead to misses in the 

page cache.

CPU wait time (wa%) signifies the time the CPU is waiting for device I/O, which could 

involve block devices (disk) or network devices. In this instance, the disk seemed to be 

the bottleneck.

The machine was attempting to process an enormous volume of disk reads, reaching 

200MB/sec. This high level of disk activity might have been due to the lack of available 

RAM for the page cache. As the process was relentlessly reading from the disks, the disks 

reached their maximum capacity (100% utilization), and the I/O wait time soared to 50%. 

This was the root cause of this latency issue.

We contemplated several potential solutions:

•	 Allocate less RAM to the Go process (less than 14GB). Then, assess 

if the disk reads drop below 200MB/sec, and if this reduces the disk 

utilization and I/O wait time.

•	 Use a machine with more RAM, but keep the Go process’s heap size 

consistent with the current configuration. This would ensure more 

available RAM than the current situation, which is zero. Then, verify 

if the disk utilization falls below 100% and if the I/O wait time is 

significantly reduced.

•	 Use a machine with a disk that offers more I/O operations per second 

(IOPS) and the same RAM.
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Since we were operating in an AWS environment, a machine with more RAM would 

likely also provide more disk IOPS. Therefore, we decided to scale up the machine 

but made sure that the Go process didn’t consume more than half of the machine’s 

RAM. This experience underlines the critical role of RAM in maintaining system 

performance and stability.

�Summary
This chapter delved into the significant effects of RAM on Kafka clusters. It elaborated on 

why adding RAM can sometimes be more crucial than adding CPU or disks, as it reduces 

latency and improves throughput. The chapter further differentiated the impacts of 

adding RAM in cloud-based machines versus on-premises ones, emphasizing the 

scalability and cost-effectiveness of cloud solutions.

We then outlined the positive outcomes of adding more RAM to Kafka brokers, 

predominantly enhancing the brokers’ performance and increasing the page cache. We 

shed light on how the page cache significantly impacts Kafka’s read and write operations, 

with a larger cache leading to faster data retrieval and insertion. However, we also 

emphasized that this performance boost needs to be balanced with fault tolerance 

considerations.

We provided a practical guide to monitoring the page cache usage with the 

cachestat tool, enabling effective control over Kafka’s performance. We also 

emphasized the detrimental impact of a RAM shortage on disks, potentially causing the 

disks to reach IOPS saturation. In such a situation, I recommend optimizing Kafka disks 

to counteract the lack of RAM.

We then learned how to optimize Kafka in terms of RAM allocation, ensuring that 

the Kafka cluster runs smoothly and efficiently. We further explored the relationship 

between garbage collection (GC), out-of-memory (OOM) errors, and RAM, highlighting 

the importance of proper memory management to prevent system crashes.

We provided a guide to Linux commands that measure the memory usage of the 

Kafka machine and the Kafka process, enabling KafkaOps to monitor and manage RAM 

usage effectively. Lastly, we took a detour to read about the role of RAM in non-Kafka 

clusters, underlining the universal importance of RAM in all types of clusters.

In summary, this chapter serves as a thorough guide to understanding the impact of 

RAM on Kafka clusters, offering practical solutions to common problems related to RAM 

allocation, management, and optimization.
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The next chapter takes a closer look at disk I/O overload in Kafka clusters, focusing 

on how it affects consumers and producers. Starting with an introduction to key disk 

performance metrics, we’ll dive into practical applications, such as diagnosing latency 

issues and detecting faulty brokers. Real-life examples highlight the significance of 

careful adjustment and monitoring of disk.io threads to ensure optimal performance. 

Whether you’re interested in understanding how Kafka reads and writes to disks or 

seeking to improve efficiency and reliability, the next chapter offers valuable insights 

into the intricate world of disk utilization in Kafka.
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CHAPTER 7

Disk I/O Overload in 
Kafka: Diagnosing and 
Overcoming Challenges
Disk I/O overload can create significant challenges in Kafka clusters, affecting both 

consumers and producers. Consumers may accumulate a backlog leading to data loss, 

while producers might buffer data until the buffer overflows, also resulting in loss of 

data. Recognizing whether these problems stem from disk I/O activity is vital to prevent 

data loss.

This chapter explores various scenarios that can cause the disks in a Kafka cluster 

to halt or delay the functioning of consumers and producers. It starts by outlining the 

relevant disk performance metrics for evaluating disk usage and then discusses how to 

determine if disk latency is affecting Kafka brokers, consumers, or producers.

Following that, the chapter delves into real-life production problems that were 

diagnosed using these metrics. This includes the detection of a faulty Kafka broker 

through these metrics, the consequences of having too many disk.io threads, the 

importance of checking disk performance during peak usage times, and the effect of 

disk.io threads on the performance of brokers, producers, and consumers.

Through these insights, the chapter aims to equip you with the understanding 

needed to identify and address disk-related issues in Kafka clusters, enhancing the 

efficiency and reliability of your systems.
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�Disk Performance Metrics
In assessing potential disk I/O issues in your Kafka cluster, various disk performance 

metrics are indispensable. Most of these, except the last one, can be observed through 

the Linux iostat -x command.

•	 Among these metrics, IOPS (Input/Output Operations Per Second) 

provides insight into the number of read and write operations 

performed by a disk per second, serving as a gauge of the disk’s 

input/output efficiency. This encompasses the number of read 

requests (r/s) and write requests (w/s) issued to the device 

per second.

•	 Throughput refers to the volume of data that can be read or written 

to a disk per second, reflecting the disk’s data transfer rate. This can 

be broken into the number of megabytes read (rMB/s) and written 

(wMB/s) to the device each second.

•	 IOPS utilization signifies the proportion of time the disk is engaged 

in read and write operations, representing a measure of the disk’s 

workload. This can be expressed as the percentage of CPU time 

(CPU util%) during which I/O requests are directed at the device.

•	 The service time of a disk quantifies the time required for the disk to 

complete a read or write operation, and it’s indicative of the disk’s 

latency or response time. For instance, if the disk utilization is 80 

percent and IOPS is 400, the service time is calculated as 800 ms/400, 

or 2 ms.

•	 Another noteworthy metric is %iowait, though more related to 

applications. In Kafka, this value is typically attributed to disk latency 

rather than network devices. %iowait signifies the percentage of time 

the CPUs remained idle while awaiting a pending disk I/O request.

While these metrics are vital and effective for detecting latency induced by disks, 

they only represent a subset of available disk performance indicators. Other potentially 

helpful metrics, such as disk queue length, indicating the number of pending read and 

write requests, and disk average response time, denoting the average response duration 
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of the disks, are also valuable but not detailed in this chapter. These chosen metrics, 

however, provide a robust foundation for identifying and diagnosing disk-related latency 

issues in Kafka clusters.

�Detecting Whether Disks Cause Latency in Kafka 
Brokers, Consumers, or Producers
When Kafka brokers’ consumers or producers experience latency, investigating the disks 

can often help us to understand the root cause of that delay. Since disks frequently play 

a role in many latency issues, and sometimes even cause them, this section begins by 

explaining how Kafka utilizes its disks. Following that, we explore various symptoms 

that may lead to latency for consumers and/or producers, and learn how the previously 

described disk performance metrics can be leveraged to pinpoint the underlying causes.

�How Kafka Reads and Writes to the Disks
To determine if disk I/O performance is causing latency in Kafka brokers, consumers, 

or producers, we must first understand how Kafka interacts with its disks. The method 

Kafka uses to write to and read from the disks influences how disk utilization should be 

assessed. It’s essential to distinguish between the write and read processes since they 

represent two different flows, and the operating system responds differently to each case.

�Writes

The writes to the filesystem are performed by producers, which send messages to the 

brokers, and by the brokers themselves. The brokers write messages that they have 

fetched from other brokers, and then receive from these same brokers as part of the 

message replication process.

The flow of the writes to the disks of a broker is shown in Figure 7-1.
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Figure 7-1.  How messages are sent to the broker by producers or by other brokers 
within the cluster

As shown in Figure 7-1, the Kafka threads receive these messages and relay them 

to the OS filesystem cache for buffering (it’s important to note that Kafka itself doesn’t 

buffer the messages). Then, the OS threads intermittently flush these messages to the 

disks in bursts, resulting in periods of no writes at all, followed by instances where disk 

utilization spikes dramatically.

The phenomenon of these bursts is crucial to understand, as it’s a common 

misconception to equate high disk utilization in Kafka brokers with saturation. This view 

is flawed because the way that the OS flushes data to the disks creates periods where the 

disks in Kafka either rest (with low utilization) or work intensely (with high utilization) 

due to a burst of messages being flushed. Therefore, high utilization doesn’t necessarily 

mean that the disks are saturated.

Disk utilization can be influenced by various factors related to disk writes, including 

high throughput from the producers, replication factor, number of segments per 

partition, size of each segment within a partition, and the values of batch.size and 

linger.ms.
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�Reads

The reads from the filesystem are performed by the following:

–– Consumers that fetch messages from the brokers

–– Brokers that fetch messages from other brokers as part of the mes-

sage replication

Disk reads are performed whenever data doesn’t exist in the page cache, and since 

the reads aren’t buffered by the OS, reads aren’t performed in bursts.

The disk utilization is affected by several factors, which are related to disk reads:

•	 The number of consumers

•	 Any consumer lag: Consider the following case—a consumer reads 

10K per batch, and the max.poll.records parameter is configured 

to 10K. The consumer stops for some reason, and after an hour, 

it’s restarted. On that hour, there were 3.6M messages that weren’t 

consumed, so now that the consumer starts, it will read 10K messages 

per second until the lag is over, which will take 3.6M/10K = 360 seconds 

just to consuming that lag. In these six minutes, the consumption lag 

will be the same as usual, but messages containing this data might 

be read from the disks because they don’t exist in the page cache 

anymore.

•	 The amount of available RAM in the broker machine

�Disk Performance Detection
When encountering one or more of the following symptoms, one of the suspects can be 

disk I/O. The following sections list several symptoms, and for each symptom, we’ll go 

over the disk I/O performance metrics that can be used to detect the cause.

�Data Skew in the Scope of a Single Broker

A disk with higher IOPS or throughput can mean that data isn’t distributed well among 

all the disks in the broker.
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Figure 7-2 shows a skew in the IOPS per disk in a specific broker.

Figure 7-2.  These are the IOPS (read and write operations/sec) per disk in all the 
disks of a specific broker. The broker has four disks and Disk-1 has higher IOPS 
compared to the others

There can also be a skew in the throughput per disk in a specific broker, as shown in 

Figure 7-3.

Figure 7-3.  These are the write throughputs (wMB/s, or writes MB/sec) per disk 
of all the disks in a specific broker. The broker has four disks and Disk-1 has higher 
wMB/s compared to the others

In such a situation, if the disk utilization percentage is significantly higher than the 

rest, it can lead to latency issues that may affect the replication of partitions residing on 

that disk, consumers consuming from those partitions, and producers writing to the 

partitions located on that disk.
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�Data Skew in the Scope of a Kafka Cluster

If the average write throughput and IOPS utilization are higher in all the disks of one 

broker (compared to these metrics in the other brokers in the cluster), as shown in 

Figures 7-4 and 7-5, then this broker might receive more data than the other brokers.

Figure 7-4.  These are the IOPS (read and write operations/sec) per disk in all the 
disks of all the brokers in the cluster. There are three brokers in the cluster and each 
broker has four disks. The IOPS is twice as high in the disks of Broker-1 compared 
to the other brokers
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Figure 7-5.  These are the write throughput (wMB/s, or writes MB/sec) per disk in 
all the disks of all the brokers in the cluster. There are three brokers in the cluster 
and each broker has four disks. The wMB/sec is twice as high in the disks of 
Broker-1 compared to the other brokers

�Consumer Lag from a Specific Broker

If IOPS utilization is higher on the disks of one broker, this can be due to a consumer lag 

on partitions that reside on that broker. This lag can cause a higher IOPS count when 

some of these messages no longer exist in the page cache, which causes the OS kernel to 

fetch the data from the disks.

�Slow (Faulty) Disk

In the scenario where all disks have similar IOPS (input/output operations per second) 

and throughput, but one disk has a higher average utilization percentage than the others, 

this could signal a faulty disk, and it might be wise to consider replacing it. When dealing 

with a Kafka cluster deployed on the cloud, another possible explanation for a slow disk 

can be what’s known as a noisy neighbor.

In the context of a Kafka broker’s disk I/O, a noisy neighbor refers to another tenant 

or instance utilizing the same disk in a manner that hampers the broker’s performance. 

Since they share the I/O subsystem and access the same disk simultaneously, noisy 

neighbors can create contention for available I/O resources, leading to a cascade of 

problems, including increased latency, reduced throughput, and a general decline in 

overall disk performance.
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�Real Production Issue: Detecting a Faulty Broker 
Using Disk Performance Metrics
I encountered a production issue in which a broker with faulty disks caused an entire 

cluster to stop functioning—consumers started to lag and the buffers on the producers’ 

side started to increase. During that time, the traffic didn’t increase compared to every 

other day.

Then I saw the following disk I/O-related symptoms in the faulty broker (compared 

to the other brokers in the cluster):

The average read service time from a specific disk was higher, as shown in Figure 7-6.

Figure 7-6.  Average disk service time (per disk) is higher in the red disk compared 
to the other disks
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The average number of read bytes from that specific disk was also higher, as shown 

in Figure 7-7.

Figure 7-7.  Disk I/O read bytes (per disk) is higher in the red disk compared to the 
other disks

The size of the request queue on the broker that hosted that disk was higher (the 

request queue contains produce and fetch requests that are sent by clients to the 

brokers), as shown in Figure 7-8.
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Figure 7-8.  Request queue size (per broker) is higher in the broker that hosts the 
disk (the one with the high I/O read time and I/O read bytes) compared to the 
other disks

The produce latency was also higher, as shown in Figure 7-9.

Figure 7-9.  Produce latency 99th percentile (per broker) is higher in the broker 
that hosts the disk (the one with the high I/O read time and I/O read bytes) 
compared to the other disks
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�Discussion
This combination of disk and Kafka metrics helped us detect a faulty broker.

That broker had more reads from a single disk, which caused it to serve and 

consume requests slower compared to the other brokers. The size of the request queue 

that contains consume and produce requests was higher on that broker compared to the 

other brokers.

�The Effect of Too Many disk.io Threads
I/O threads take requests from the request queue and process them. The number of 

I/O threads is determined by the num.io.threads configuration parameter. In order to 

improve throughput, the general recommendation is to increase their number up to the 

number of disks. From my experience, the optimal num.io.threads is twice or three 

times the number of disks.

Figure 7-10 shows a cluster in which the normalized load average in all brokers 

started to rise during peak times and reached above 1.0.

Figure 7-10.  Normalized load average in all brokers started to climb and reached 
±1.3, which indicates there’s a saturation in some resource in the cluster

The problem was that we didn’t know which change caused the load average to 

grow, so we added new brokers to check whether they suffer from the same symptom, 

and spread the partitions evenly across the old and new brokers.
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Surprisingly, the load average of the new brokers was lower than the load average of 

the old brokers, as shown in Figure 7-11.

Figure 7-11.  Normalized load average in the old brokers was ±1.3, while in the 
new brokers it reached ±0.7. So while the old brokers remained saturated, the new 
brokers didn’t

When looking for a reason that the load average on the old brokers was high, we 

noticed that the server interruptions rate (which is the CPU %si shown in the top 

command) was almost twice that in the old brokers, as shown in Figure 7-12. This 

correlates with the normalized load average of ±1.3 in the old brokers compared to 0.7 in 

the new brokers.
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Figure 7-12.  Server interruptions rate (which is shown as %si in the top 
command) reached ±4K in the old brokers, while in the new brokers it was 2K

Since the server interruptions rate is related to the number of threads, we started 

looking for potential suspects and the number of I/O threads was one of these suspects.

Once we reduced the number of I/O threads from 6 to 2, the load average returned to 

normal in the old brokers, as shown in Figure 7-13.

Figure 7-13.  Once the number of I/O threads was reduced from 6 to 2 in the old 
brokers, the normalized load average in the old brokers was reduced and became 
almost the same as the normalized load average in the new brokers
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After that we removed the new brokers from the cluster, because the only reason we 

added them was to compare the configuration between the new and old brokers in order 

to find which configuration parameter caused the high load average.

�Discussion
I/O threads handle requests by picking them up from the request queue for processing. 

By adding more threads, throughput can be improved, but this decision is influenced 

by various other factors like the number of CPU cores, the number of disks, and disk 

bandwidth.

Increasing the number of threads requires careful monitoring of both the NLA 

(Normalized Load Average) and the CPU si% (software interrupt percentage). If the NLA 

exceeds 1.0 and/or the %si is above ±5%, it could indicate that the disk I/O parallelism 

has been increased excessively.

For clusters with multiple disks per broker, boosting the number of I/O threads 

generally makes more sense. However, in the context of brokers that have a single disk, 

we have found that setting the num.io.threads configuration to 2 provides an optimal 

balance. It allows for efficient request processing while maintaining a load average that is 

smaller than the number of CPU cores (thus the NLA is below 1.0), preventing potential 

overload.

�Looking at Disk Performance the Whole Time vs. 
During Peak Time Only
This issue will show why it’s sometimes important to look at performance metrics only 

during peak times, instead of averaging the whole time.

We encountered a production issue in which consumers were lagging during peak 

times. As the first step, we verified that the load was evenly distributed across all brokers, 

by checking the average read and write throughput and write IOPS, as can be seen in 

Figure 7-14.
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Figure 7-14.  Average sum of writes in MB/sec (wMB/s) in all the disks in a broker, 
per all the brokers in the cluster

We also checked the average rMB/s in all the brokers, as shown in Figure 7-15.

Figure 7-15.  Average sum of reads in MB/sec (rMB/s) in all the disks in a broker, 
per all the brokers in the cluster
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The average write IOPS/sec in all the brokers is shown in Figure 7-16.

Figure 7-16.  Average sum of write IOPS (W/s) in all the disks in a broker, per all 
the brokers in the cluster

The next step was to verify that the even distribution in the writes to the brokers’ 

disks is also reflected in the network throughput, and indeed that all brokers received 

and sent the same amount of network. This can be seen by the average bytes in all the 

brokers, as shown in Figure 7-17.

Figure 7-17.  The number of bytes sent to each broker through the network
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Figure 7-18 shows the average bytes in all the brokers.

Figure 7-18.  The number of bytes sent from each broker through the network

After verifying that the disk and network throughput were evenly distributed among 

the brokers, we proceeded to look at the disk IOPS metric. However, this time, we looked 

at the max values instead of average values, by checking both the read and write IOPS/

sec only during traffic peaks, when consumers lagged. Here, we found an interesting 

issue in one of the brokers:

Figure 7-19 shows the write IOPS/sec during traffic peaks.
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Figure 7-19.  Write IOPS/sec per each broker during peak traffic time

Figure 7-20 shows the read IOPS/sec during traffic peaks.

Figure 7-20.  Read IOPS/sec per each broker during peak traffic time
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As you can see, when looking at the disk IOPS only during peak times, there is a 

single broker that has significantly lower average read and write throughputs than the 

rest. It seemed that while other brokers were able to handle bursts, the problematic 

broker struggled to keep up and managed to perform only a third of the write operations 

compared to the other brokers.

Then we checked (in the disks of the problematic broker) the time it takes for write 

and read requests to wait in the queue before being serviced by the disk (using the 

r_await metric for reads and the w_await metric for writes, both provided by the iostat 

tool). We noticed that the wait time for read and write operations were ten and thirteen 

times slower on the problematic broker compared to the other brokers, respectively.

Figures 7-21 and 7-22 show the wait time for the read and write operations in all the 

brokers.

Figure 7-21.  Wait time for read operations on the disks of each broker during 
peak traffic time
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Figure 7-22.  Wait time for write operations on the disks of each broker during 
peak traffic time

After seeing the read and write processing times, we understood that the problematic 

broker’s disk was much slower than the disks of the other brokers.

Another interesting metric was the queue size for produce requests (which is a 

queue that serves incoming produce requests). This queue was much higher in the 

problematic broker compared to other brokers, and it was capped, possibly due to the 

latency on the slow disk.

Figure 7-23 shows the size of the produce request queue in all the brokers.

Figure 7-23.  Size of the produce requests queue in each broker during peak 
traffic time
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�Discussion
This issue shows the importance of looking at anomalies in a Kafka cluster during peak 

times, instead of looking at wider time ranges. In this case, we checked the maximum 

values of the read and write processing times (during the peak traffic time) in order to 

determine the root cause.

We started with consumers that lagged during peak time, and then the first thing we 

did was looking at the disk behavior during the whole time, which led to nothing. Only 

when we looked at the maximum values of disk behavior during the peak time (which 

has maximum traffic), did we find that the disk of a single broker provided much less 

write throughput, and that the queue size of writes to that disk was capped. This reduced 

the throughput of that disk dramatically.

That “slow” disk caused two problems during peak time:

–– Due to the high latency on that disk, producers that produced into 

the partitions that resided on the problematic disk developed an 

increasing queue of messages in their buffers.

–– Due to the low read IOPS, consumers from these partitions  

started lagging.

Replacing the disk (if the cluster is on-premises) or the broker (if the cluster is on the 

cloud) will solve this problem.

�The Effect of disk.io Threads on Broker, Producer, 
and Consumer Performance
This section illustrates an example of how an increase of disk.io threads can impact the 

cluster. The number of disk.io threads control the number of concurrent disk operations 

that can be performed on the brokers.

The cluster has six brokers of type i3en.6xlarge, each broker has 2x7500 NVMe SSD.

The figures in this section show the impact of increasing the disk.io threads 

from two to four on several important metrics of the Kafka cluster. These metrics 

are discussed next.
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�Request Queue Size
Request queue size, shown in Figure 7-24, was reduced by a third in all the brokers. 

This metric shows the number of client requests that wait in the request queue to be 

processed by the Kafka brokers.

Figure 7-24.  Size of the request queue per broker

The client requests include produce and consume requests:

–– Consumers create fetch request messages and send them to the 

Kafka broker.

–– Producers create request messages and send them to the 

Kafka broker.

When the broker receives these request messages, they’re added to the 

RequestQueue along with any other requests that are waiting to be processed. The broker 

then processes the requests in the RequestQueue in the order they are received

Note that requests from Kafka brokers to fetch data aren’t added to the 

RequestQueue, but instead are handled by the Kafka replication protocol, which doesn’t 

use the RequestQueue because it operates independently of client requests.
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�Produce Latency
Produce latency, shown in Figure 7-25, was decreased by a third in all the brokers. The 

produce latency metric measures the time it takes for a producer to successfully send a 

message to the broker. It’s measured from the time the message is sent by the producer 

until it’s acknowledged by the broker. This metric includes any network latency, the time 

the messages waits in the queue, and the processing time of the message.

Figure 7-25.  Produce latency (99% percentile) per broker

�Number of JVM Threads
The number of JVM threads, shown in Figure 7-26, increased two-fold in all the brokers. 

The increase in the number of disk.io threads reduced the overall latency in the cluster, 

and it therefore indirectly affected the number of JVM threads used by Kafka, since this 

allowed Kafka to increase the processing rate of messages and requests.

Figure 7-26.  Number of JVM threads per broker
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�Number of Context Switches
The number of context switches, shown in Figure 7-27, doubled. This increase can be 

attributed to the increase in the number of JVM threads, because as more threads run, 

there can be more CPU switches between them.

Figure 7-27.  Number of context switches per broker

�CPU User Time, System Time, and Normalized 
Load Average
The CPU user time, system time, and normalized load average, shown in Figures 7-28, 

7-29, and 7-30, all doubled. This increase can also be attributed to the increase in the 

number of JVM threads.

Figure 7-28.  CPU sy% (system time) per broker
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Figure 7-29.  CPU us% (user time) per broker

Figure 7-30.  Normalized Load Average (NLA) per broker

�Discussion
disk.io threads can have a dramatic impact on the overall latency of producers and 

consumers, and on the Kafka clusters’ utilization. In this case, when we switched from a 

ratio of 1:1 between disk.io threads and the number of disks per broker to a ratio of 2:1, 

the following occurred:

–– The processing rate of client requests (both producer and consumer 

requests) doubled (the processing rate of fetch requests increased 

more than that).

–– Requests waited much less time in the request queue (the size of the 

request queue was reduced by two thirds).

–– The time it took messages to be acknowledged was reduced by 

two thirds.

–– The CPU utilization of the cluster doubled, and so did the load 

average of the cluster.
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This case shows that tuning the disk.io threads can be beneficial for Kafka clusters 

when their clients suffer from high latency. However it’s important to carefully adjust 

the number of disk.io threads, since too many threads can cause the brokers to stop 

functioning. It’s also important to pay attention to the overall cluster utilization before 

trying to increase the diks.io threads, since a cluster that has high CPU utilization will 

probably not benefit from such an increase, even if its disk utilization is low.

�Summary
This chapter unraveled the intricacies of disk I/O overload and explained how it can 

impact consumers and producers in Kafka clusters. It began with an introduction to 

various relevant disk performance metrics, and then delved into how these metrics 

can be utilized to diagnose issues related to latency in Kafka brokers, consumers, and 

producers. The analysis provided a deep understanding of how Kafka reads and writes 

to the disks, shedding light on the factors affecting disk utilization and the symptoms 

indicating potential disk I/O problems.

The chapter illustrated real-life production issues and demonstrated the practical 

application of these metrics, such as detecting a faulty broker, and the effect of disk.io 

threads on the performance of the entire Kafka system. One notable example explored 

the impact of having too many disk.io threads, revealing the importance of careful 

adjustment of these threads to prevent overloads.

The chapter concluded by emphasizing the necessity of considering disk 

performance during peak usage times and the balanced tuning of disk.io threads. These 

insights should equip you with the knowledge you need to enhance the efficiency and 

reliability of your Kafka clusters, particularly in detecting and resolving disk-related 

latency.

The next chapter turns to the choice between RAID10 and JBOD for disk 

configuration in Kafka production environments. This decision has profound 

implications for data protection, write performance, storage usage, and disk failure 

tolerance. Through a thorough comparison of RAID10 and JBOD, we’ll examine the 

tradeoffs and unique benefits of each configuration, including write throughput and disk 

space considerations. Whether you are prioritizing data security or efficiency in storage 

and performance, the next chapter will guide you in selecting the option that best suits 

your Kafka brokers’ needs.
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CHAPTER 8

Disk Configuration:  
RAID 10 vs. JBOD
The decision to choose RAID 10 or JBOD for disk configuration when deploying Kafka 

clusters is crucial. This chapter thoroughly explores the advantages and disadvantages of 

both disk configurations in the context of Kafka production environments.

By comparing various aspects of these two configurations—such as disk 

failures, storage usage, write operation performance, disk failure tolerance, disk 

health monitoring, and balancing data between disks in the broker—you will gain 

a comprehensive understanding of the tradeoffs between RAID 10 and JBOD disk 

configurations.

Ultimately, you will be equipped with the necessary knowledge to make 

informed decisions as to which disk configuration to opt for in your Kafka production 

environments.

JBOD (just a bunch of disks) is a disk configuration whereby the server has internal 

disks that are controlled individually by the OS, as shown in Figure 8-1. The disks 

connect to a disk controller on the server, and the disks can be accessed and be seen 

by the OS.
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Figure 8-1.  Disks in JBOD configuration

RAID (Redundant Array of Independent Disks) presents the disks of the server as 

a single disk. It can be provided as hardware RAID (via a disk controller card) or as a 

software RAID. RAID disks are seen by the OS as a single virtual disk.

Before V1.0, Kafka didn’t tolerate disk failures, in which case using RAID 10 was 

almost mandatory since it mitigated the disk failure issue (unless of course two disks in 

the same mirroring failed). But even after Kafka 1.0, the RAID 10 option is mentioned by 

Confluent.

�RAID 10 and JBOD Terminology
Because choosing between RAID 10 and JBOD is a tradeoff between several storage-

related aspects, this section dives deeper into some of these aspects and presents the 

pros and cons for each option. In order to do this, the section starts by defining the 

following terms—RAID 0, RAID 1, RAID 10 (1+0), and JBOD.

�RAID 0 (aka Stripe Set)
RAID 0 distributes the data across the disks, as shown in Figure 8-2. If a file is written to 

a RAID 0 array that consists of five disks, a fifth of the file will reside on each of the five 

disks. The advantage of RAID 0 is the speed of writing and reading. In this case, the file 

can be written and read five times faster than with a single disk.
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Figure 8-2.  Disks in a RAID 0 configuration

�RAID 1 (aka Mirror Set)
RAID 1 mirrors the data across an even number of disks, as shown in Figure 8-3. Each 

pair consists of two disks, and each is an exact duplicate of the other. The write operations 

are directed to both disks in each pair, which guarantees that the two disks are always in 

sync. This provides protection against disk failure in case one disk in a pair fails.

Figure 8-3.  Disks in a RAID 1 configuration
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The storage volume will still be accessible even if half of the disks fail, assuming that 

each of the failed disks belongs to a different pair. If the two disks of the same pair fail, 

the volume won’t be accessible. The write performance of both RAID 1 and RAID 10 is 

cut in half (compared to RAID 0) due to the mirroring.

�RAID 1+0 (aka RAID 10)
RAID 1+0 consists of a single stripe set in which all the disks are mirrored pairs, as shown 

in Figure 8-4.

Figure 8-4.  Disks in a RAID 1+0 configuration

The decision to configure the disks in Kafka brokers as either RAID 10 or JBOD is 

influenced by two main factors—the level of data protection desired for the information 

stored in the brokers, and the quantity of storage and disks you are prepared to allocate 

for that purpose.
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�Comparing RAID 10 and JBOD
When it comes to handling disk failure in Kafka brokers, you must consider whether to 

adopt RAID 10 or JBOD. These configurations determine how the Kafka cluster responds 

to complete or partial disk malfunctions caused by wear, bad sectors, and other issues. 

Understanding the protection levels offered by each method is vital. This section 

examines how JBOD and RAID 10 address data protection, data skew, and storage usage.

�Disk Failure
The more disks are being used, the higher the chances that they’ll either partially or 

completely stop functioning due to some failure, wear out, bad sectors, and so on. Let’s 

consider the level of data protection these two methods provide:

•	 JBOD: There’s only one level of protection, which is the replication 

factor (assuming replication is configured in the Kafka brokers). If a 

partition leader exists on a disk that fails, one of the followers of that 

partition will become the leader.

•	 RAID 10: There are two levels of protection—the mirroring 

(provided by the RAID 1) and the replication within Kafka (assuming 

replication is configured in the Kafka brokers). In this case, the Kafka 

cluster can tolerate disk failure better since RAID 10 ensures that the 

data is replicated across two disks.

�Data Skew
When there is more than a single disk in a Kafka broker, there’s a chance for data skew 

between the disks. The skew can be caused by:

•	 JBOD: If there is more than a single disk per broker, in order to spread 

the data evenly across the disks per broker, you need to perform this 

yourself.

•	 RAID 10: Ensures that the data is spread evenly across all disks 

per broker.
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�Storage Use
Let’s assume the amount of data written to the brokers is 10GB, and the replication factor 

for all topics is 2. In that case, the brokers require the following storage:

•	 JBOD: 20GB

•	 RAID 10: 40GB

�Pros and Cons of RAID 10 and JBOD
Choosing between RAID 10 and JBOD isn’t a simple decision. To make the right choice, 

it’s essential to weigh the relative pros and cons of these configurations in terms of write 

operations, storage use, failure tolerance, and on-premises maintenance. This section 

compares the performance, availability, and manageability of RAID 10 and JBOD, 

presenting a detailed analysis of each aspect and the conclusions drawn from various 

tests and real-world experiences.

�Performance of Write Operations
There’s a big performance hit for write throughput in RAID 10 compared to JBOD. As a 

test, I wrote 1M events/sec (1KB in size) into two Kafka clusters—the disks of the first 

Kafka cluster were configured in RAID 10 and the disks of the second Kafka cluster were 

configured in JBOD.

The results showed there were 60 percent more writes/sec when using JBOD versus 

RAID 10. While the Kafka cluster with disks configured in JBOD managed to write 1M 

events/sec at 60 percent utilization, the same Kafka cluster when configured with RAID 

10 managed to write only 400K events/sec at the same disk utilization.

Conclusion: This is an advantage of JBOD over RAID 10.

�Storage Usage
When using RAID 10, the disk space being used is twice that compared to JBOD, 

assuming the replication factor remains the same.

Conclusion: This is an advantage of JBOD over RAID 10.

Chapter 8  Disk Configuration: RAID 10 vs. JBOD 



119

�Disk Failure Tolerance
The strategy to deal with disk failure significantly impacts the resiliency and overall 

performance of the system. JBOD and RAID 10 have different approaches to handle this:

•	 JBOD: The leaders and followers that reside on a failed disk must be 

moved to another broker.

•	 RAID 10: The leaders and followers that reside on a failed disk won’t be 

moved because there’s mirroring to a second disk, unless it also fails.

The chances of two disks that are part of a pair failing is much smaller than the chance 

of a single disk failing, which means that there will be less partition movement (whether 

they’re leaders or followers) due to disk failures in clusters configured with RAID 10.

Conclusion: This is an advantage of RAID 10 over JBOD.

�Considering the Maintenance Burden of Disk Failure 
in On-Premises Clusters
This section is relevant only for on-prem clusters, since the maintenance goes on the SREs 

on the site. There are several aspects to this issue: disk health monitoring, the frequency of 

replacing disks, and how easy it is to replace the disks. Let’s review them one by one.

�Disk Health Monitoring
Monitoring the health of the disks in a Kafka cluster is vital for timely detection and 

resolution of any underlying issues that might lead to failure. The ability to monitor disks 

differs between JBOD and RAID 10 configurations.

•	 JBOD: Each disk has its own mount point, and each mount point 

represents a real disk and not a RAID controller. So it’s easier to 

monitor disks in JBOD configuration.

•	 RAID 10: In the case of hardware RAID, it’s not possible to monitor 

the disks via the OS (e.g. using the SMART tool) because all the disks 

in the RAID are shown by the OS as one disk, since it’s a single mount 

point. Only by using RAID tools can you check the disk status. (Note: 

When using software RAID, the disks are visible to the OS.)

Chapter 8  Disk Configuration: RAID 10 vs. JBOD 



120

�Frequency of Replacing Disks

How often disks need to be replaced in a Kafka cluster depends on the configuration and 

the monitoring in place. JBOD and RAID 10 configurations have different characteristics 

that influence the frequency of disk replacement.

•	 JBOD: It’s much easier to detect a failed disk, so if there’s monitoring 

on disk failures then every time a disk fails, a new disk will replace 

the failed disk and mount to the same mount point. With JBOD, the 

frequency of disk replacement will usually be higher.

•	 RAID 10: It’s common that the SRE on site isn’t aware that a disk 

failed (due to the lack of disk failure monitoring). This causes failed 

disks to not be replaced until two disks of the same mirroring fail 

(which can cause a production issue).

�Kafka Availability During Disk Replacement

The availability of a Kafka cluster during disk replacement can be affected by the 

configuration you use:

•	 JBOD: Replacing a disk in a Kafka cluster whose disks are configured 

in JBOD requires only mounting the new disk without touching the 

other disks. 

•	 RAID 10: Replacing a disk in a RAID controller forces the RAID array 

to be rebuilt. The rebuilding of the RAID array is so I/O intensive that 

it effectively disables the server, so this does not provide much real 

availability improvement compared to JBOD. In fact, I witnessed a 

higher downtime when replacing disks in RAID than in JBOD.

Conclusion: This is an advantage of JBOD over RAID 10.

�Balancing the Data Between the Disks in the Broker

Ensuring that data is evenly spread across the disks in a Kafka broker is crucial 

for maintaining balanced I/O and optimal performance. Both JBOD and RAID 10 

configurations have unique challenges and solutions for balancing data.
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JBOD

It’s up to the KafkaOps to make sure data and partitions are spread evenly across the 

disks per the Kafka broker. If the broker has several data directories, each new partition is 

placed in the directory with the least number of stored partitions. If the data isn’t evenly 

balanced among the partitions, the data skew can increase.

The weakness of this approach is that it’s agnostic to the number of segments per 

partition. A partition P1 can have more segments than partition P2 due to several 

reasons. To list a few:

–– Assuming partition P1 belongs to topic T1 and partition P2 belongs to 

topic T2:

–– T1 and T2 have the same incoming traffic but T1 has a higher 

retention than T2

–– T1 has higher incoming traffic than T2

–– T1 isn’t a compressed topic and T2 is compressed

–– Assuming both partitions (P1 and P2) belong to the same topic:

–– There’s a data skew in the producers writing to both partitions, 

and P1 receives more traffic than P2.

In order to ensure that data is spread evenly across the disks, you can write a script 

that reassigns partitions among the brokers based on the number of segments per disk 

instead of the number of partitions per disk.

RAID 10

The RAID controller is (theoretically) in charge of balancing the data evenly between the 

disks. However, according to Confluent’s documentation, it doesn’t always balance the 

data evenly. I can’t verify Confluent’s stand on whether RAID 10 really balances the data 

evenly across the disks, since I never encountered a case in which the storage of a disk in 

RAID 10 became full (which is one of the symptoms of data imbalance among disks).
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�Managing Disk Health in Kafka Clusters 
with JBOD Configuration
Utilizing JBOD disks in a Kafka cluster presents unique considerations, particularly 

regarding disk health monitoring and fault handling. Although this configuration 

might offer benefits in certain contexts, it also introduces challenges that need careful 

management.

Kafka’s lack of built-in features to recognize problematic disks makes it crucial to 

understand how a disk’s faulty state can impact the cluster. Problems that may arise 

with disks include transitioning to read-only mode, having bad sectors, failing to mount 

to specific folders, reaching full storage capacity, and experiencing mechanical issues. 

Each of these issues requires awareness and appropriate responses to ensure continued 

cluster operation.

To safeguard the Kafka cluster’s reliability when disks in a JBOD configuration are 

faulty, you must take proactive measures. Since Kafka doesn’t inherently support disk 

health checks, specialized monitoring tools or manual processes may be needed to 

detect unhealthy disks through kernel messages that alert about disk failures.

One way to respond proactively to such messages is to implement a cron job, 

which is a scheduled task on UNIX-like operating systems. This cron job can filter these 

messages hourly, checking for the specific disk failures that need monitoring. If one or 

more issues are identified, the next step is to disconnect the faulty disk from the JBOD 

and prevent Kafka from using it. This may also involve procedures for replacing the disk, 

recovering lost data, or redistributing the load across other disks.

By adopting these measures, you can avoid interruptions in Kafka due to faulty 

disks and maintain the overall reliability of the Kafka cluster. This may also necessitate 

engaging with existing tools or third-party solutions for monitoring to ensure that Kafka 

brokers configured with JBOD function efficiently.

�Summary
This chapter discussed the decision to choose between RAID 10 and JBOD for disk 

configuration in Kafka production environments.
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JBOD is a disk configuration where the server has internal disks that are controlled 

individually by the OS, whereas RAID presents the disks of the server as a single disk. 

RAID 10 ensures that the data is replicated across two disks, while JBOD only provides 

one level of protection via the replication factor (assuming replication is configured in 

the Kafka brokers).

RAID 10 ensures that the data is spread evenly across all disks per broker, but 

when using it, there’s a big performance hit for write throughput compared to 

JBOD. Additionally, the disk space used with RAID 10 is double that of JBOD, assuming 

the replication factor remains the same.

This chapter compared the pros and cons of RAID 10 and JBOD from several angles, 

including performance of write operations, storage usage, and disk failure tolerance. 

Ultimately, the decision to opt for one disk configuration over the other depends on the 

amount of data protection you want for the data stored in the brokers and the amount of 

storage and disks you are willing to dedicate to that.

The next chapter delves into the essential aspects of monitoring producers in your 

Kafka cluster. This focused exploration is vital to balancing the relationship between 

Kafka brokers and producers, which in turn reduces broker load, cuts latency, and 

enhances throughput. From examining key metrics like network I/O rate and record 

queue time to investigating the importance of message compression, this next chapter 

aims to provide valuable insights into achieving optimal Kafka performance.
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CHAPTER 9

A Deep Dive Into  
Producer Monitoring
This chapter delves into the art of monitoring producers in your Kafka cluster. Producers 

play a pivotal role in the Kafka ecosystem, where their efficiency directly influences 

throughput, latency, and overall resource consumption. A well-tuned producer not 

only ensures rapid message generation but also sends message in a manner that 

harmoniously coexists with brokers, avoiding unnecessary disruptions or delays.

This chapter explains a set of metrics that can assist in estimating the stability and 

performance of Kafka producers, including Network I/O rate, Record Queue Time, 

Output Bytes, Input Bytes, Average Batch Size, Buffer Available Bytes, and Request 

Latency.

Additionally, an integral component of producer monitoring lies in the realm of 

message compression. Proper compression within a Kafka cluster optimizes throughput 

and minimizes latency while ensuring judicious use of resources. Central to this 

discussion is the Compression Rate metric, which can be used to estimate the efficiency 

of the compression strategy.

By the end of this chapter, you’ll have a strong grasp of how to monitor the stability 

and performance of Kafka producers, which will assist you in maintaining smooth data 

flow in your cluster.

�Producer Metrics
There are several monitoring metrics on the producer side that will assist you in 

diagnosing issues related to the effect of producers on the Kafka cluster and vice versa.
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�Network I/O Rate Metric
The Network I/O Rate metric signifies the rate at which data is transferred between the 

producer and the Kafka brokers. Essentially, it shows how much data is being sent over 

the network in a given timeframe.

�When Network I/O Rate Is High

When the Network I/O Rate of a Kafka producer becomes notably high, it suggests that 

the producer is transmitting large volumes of data to the Kafka brokers.

A persistently elevated rate might imply that the brokers are being inundated with 

data beyond their efficient processing capacity, which can cause an increase in several 

metrics, such as Consumer Lag, Request Queue, Number of Under-Replicated Partitions, 

Disk Util% and CPU Util%.

Additionally, it can also cause the network card to get saturated, thereby slowing 

down processing times and adversely impacting the overall performance of the Kafka 

cluster.

A High Network I/O Rate metric can be the consequence of several factors. One of 

the main reasons is the high activity from the producer. If the producer is generating 

messages at a significantly high rate, this results in a surge in network I/O operations.

Furthermore, the processing speed of the broker might also influence a high 

network I/O rate, but this influence is a multifaceted issue, shaped by several underlying 

factors and conditions. If a broker processes incoming messages slowly, the immediate 

effect might not automatically lead to more frequent network operations. Instead, the 

producer’s response, guided by its specific configuration and error-handling strategies, 

will define the outcome.

When a broker is slow to acknowledge a message, the producer’s reaction can vary. It 

may try to resend the message, potentially leading to additional network I/O operations. 

However, this pattern is not consistent across all setups. In some configurations, the 

producer may simply wait for the acknowledgment (ack) without resending the message, 

meaning there is no increase in network I/O.

The concept of retries and timeouts in the producer’s configuration adds another 

layer of complexity. More frequent network operations may occur if the producer is set 

to resend messages after a timeout period while waiting for the ack. Conversely, if the 

producer just waits without additional actions, the relationship between the broker’s 

processing speed and network operations becomes more nuanced.
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Buffer management in the producer also plays a critical role. If the broker’s 

acknowledgment is slow and the producer continues to send messages without receiving 

acks, the producer’s buffer may fill up, potentially leading to data loss if the buffer 

reaches capacity. This situation requires careful handling and an understanding of the 

producer’s buffering strategy.

To address a high network I/O rate, consider inspecting the producer’s 

configurations and rate of data production. It might be necessary to tune the producer’s 

settings, such as the batch size and linger time. However, note that increasing these 

settings can create a back pressure on the producers and even cause them to get OOM 

errors, so these values need to be tuned carefully.

�When Network I/O Rate Is Low

A low Network I/O Rate indicates that data is being sent from the producer to the brokers 

at a slower pace and that there’s more data to be sent. This can be due to various reasons 

like network issues, producer performance issues, the producer’s buffer not being filled 

quickly enough with data to send to the brokers, or that either the linger time or batch 

size are poorly configured, which is causing the producers to be idle.

�Importance of the Network I/O Rate Metric

In terms of maintaining high throughput and low latency in the producer, the Network 

I/O Rate metric acts as a throttle for the rate at which data enters the Kafka cluster from 

the producer while also serving as an indication of the required throughput. Too much 

data produced into the brokers can cause an increase in the latency due to processing 

delays, while too little data can lead to under-utilization of resources and lower 

throughput.

Therefore, it’s important to monitor this metric to ensure optimal use of resources 

and stability in the Kafka cluster. Figure 9-1 shows a real example of the average network 

I/O rate among producer pods over a two-week span, which shows a decrease in the 

network I/O rate after tuning the batch size and the linger time in the producers.
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Figure 9-1.  Average network I/O rate per producer pod. The X axis is the timeline, 
and the Y axis is the network I/O rate

�Record Queue Time Metric
The Record Queue Time metric indicates the duration for which a record lingers in the 

producer’s queue before being transmitted to the brokers, as can be seen in Figure 9-2. 

It’s also called record-queue-time-(avg/max) and is provided as part of the JMX metrics.

Figure 9-2.  The record queue time is the time the record waits in the buffer queue
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�When Record Queue Time Is High

When the Record Queue Time increases, it could indicate that records are lingering in 

the buffer for a prolonged duration.

A high Record Queue Time can be attributed to multiple potential causes.

Network latency might be one of the main factors. If the network between the 

producer and the broker is slow or congested, records may end up waiting in the buffer 

for longer periods before being dispatched. Also, the load on the broker can lead to high 

record queue time. If the broker is swamped with incoming traffic, the processing and 

dispatch of records to the appropriate partitions might be delayed.

Another contributing factor can be the size of the producer’s buffer. If it’s too small 

there can be several implications—messages can’t fit into the buffer, which can cause 

overflow errors; the producer may have to send additional requests to the broker in order 

to free up space in the buffer; and a reduced throughput due to more requests being sent 

in smaller batches.

�When Record Queue Time Is Low

A low value signifies that records are swiftly moving out of the producer’s buffer and are 

being sent to the broker, indicating efficient operation.

�Mitigating a High Record Queue Time

If the value is too high, strategies to alleviate this issue include increasing the producer’s buffer 

size, moderating the rate of record generation, or addressing any network bottlenecks.

Increasing the producer’s buffer in a Kafka system can have nuanced effects on 

the record queue time. While increasing the buffer size allows more messages in the 

queue, aiding in avoiding overflow errors and enhancing batching efficiency, it doesn’t 

necessarily reduce the time that messages remain in the queue. If network bottlenecks 

or broker overload issues continue, messages might still linger in the buffer, regardless 

of the buffer’s size. If the buffer becomes too large without balancing the record creation 

rate with the broker’s ability to process, it may inadvertently cause increased latency.

Next, moderating the rate of record generation is essential. Effective strategies 

to balance this rate include implementing a throttling mechanism to control record 

production, distributing the load across multiple producers to prevent system 

overwhelm, and employing adaptive algorithms that dynamically respond to various 

factors like network latency, broker load, and buffer status.
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Finally, addressing network bottlenecks forms a critical part of the solution. Regular 

monitoring and analysis of network performance can lead to actionable insights such as 

increasing bandwidth, optimizing routing, or scaling network resources.

�Importance of the Record Queue Time Metric

Monitoring the Record Queue Time metric is essential for maintaining a steady flow 

of data from the producer to the broker. Keeping this metric in check ensures that 

records are promptly processed, contributing to the stability and performance of your 

Kafka system. Figure 9-3 shows a real example of the average record queue time among 

producer pods over a two-week span.

Figure 9-3.  Average record queue time per producer pod. The X axis is the 
timeline, and the Y axis is the average record queue time

�Output Bytes Metric
The Output Bytes metric tracks the total number of bytes written to the network by the 

Kafka producer. It can serve as an indication of the throughput of your data pipeline. 

This includes the bytes of the messages themselves and the bytes of the protocol 

overhead.

�When Output Bytes Is High

A high value of the Output Bytes metric indicates a large amount of data being sent from 

the producer to the Kafka brokers. If this is higher than expected, it might be the result 

of larger messages (thus fewer messages per batch), more messages, or both. This can 

lead to network congestion and increased network latency. If the Kafka brokers become 

overloaded, they will throttle the activity of the producers, preventing them from sending 

more data than the broker can handle.
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�When Output Bytes Is Low

A low value indicates that very little data is being sent from the producer to the Kafka 

brokers. This reduced data transfer could arise from several reasons. Perhaps there are 

fewer messages being produced, which might be due to the producer sending messages 

at a slower rate or because there are fewer active producers.

Slow producers, taking longer to process and send data, can also contribute to fewer 

bytes being transmitted over time. Issues at the data source, such as disruptions in a 

logging system or database, might result in a decreased data feed to the Kafka producer.

Additionally, if there are any network constraints or if the Kafka brokers are 

intentionally slowing the producers to prevent overloading, the volume of messages sent 

might be limited, leading to a drop in output bytes.

�Mitigating the Output Bytes Value

The Output Bytes metric, whether high or low, isn’t inherently indicative of an issue 

in the Kafka cluster. Instead, it provides a measure of the data throughput into the 

cluster. Whether these values are problematic depends on the specific expectations and 

requirements set by administrators and developers.

For some setups, a surge in output bytes might be an expected behavior, while 

for others, a decline might align with their anticipated data flow. It’s crucial for those 

overseeing the system to determine the appropriateness of these values for their unique 

use case.

If, after consideration, you decide that the Output Bytes value is indeed problematic, 

several steps can be taken.

To address high value, you can evaluate the data being transmitted, filtering out non-

essential elements or implementing a data sampling strategy. Adjusting the message 

size or batch size might also be effective. Utilizing data compression before dispatching 

information to brokers can further optimize the data flow.

Conversely, if the value is lower than desired, it’s worth investigating potential causes 

such as decreased producer rates or smaller message size.

However, if these values align with the system’s requirements, no action is necessary.
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�Importance of the Output Bytes Metric

Monitoring this metric is crucial for maintaining optimal producer throughput, keeping 

the Kafka cluster stable, and preventing any potential network or broker overload. 

Figure 9-4 shows a real example of the outgoing bytes among producer pods over a two-

week span.

Figure 9-4.  Outgoing bytes per producer pod. The X axis is the timeline, and the Y 
axis is the outgoing bytes

�Input Bytes Metric
The Input Bytes metric represents the total number of bytes that a Kafka broker has 

received from the producers and from the brokers during the replication process. This 

metric is very similar to the Output Bytes metric (other than the fact that the output bytes 

include only the bytes sent by the producers without the bytes sent by the brokers during 

replication) and the same recommendations apply to both metrics.

�The Difference Between Output Bytes and Input Bytes

Before we continue to the next producer metrics to monitor, it’s important to understand 

the difference between output bytes and input bytes.

•	 The Output Bytes metric (when considered in the scope of 

producers) refers to the amount of data being sent from the producer 

to the Kafka brokers.

•	 The Input Bytes metric (when considered in the scope of brokers) 

is a measure of the total number of bytes that a Kafka broker has 

received from producers and from the brokers (during the replication 

process).
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Figure 9-5 shows the difference between these two metrics.

Figure 9-5.  The difference between num output bytes and num input bytes

�Average Batch Size Metric
The Average Batch Size metric refers to the mean size of batches in bytes that Kafka 

producers send to the same topic and partition. By grouping messages into batches, 

producers can enhance efficiency, as this minimizes the number of network requests, 

which in turn optimizes throughput and lessens the load on the Kafka brokers. Figure 9-6 

shows how messages are turned into batches.

Figure 9-6.  The flow of a message from its creation by the producer until it reaches 
its partition in the Kafka broker
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�When Average Batch Size Is High

A higher Average Batch Size metric indicates that the producer is bundling messages 

into larger batches. This leads to efficient network utilization, as the number of network 

requests decreases. However, a high Average Batch Size metric can also mean increased 

latency, as the producer needs to wait longer to aggregate messages into a batch before 

dispatching them. This is a tradeoff between throughput and latency.

Depending on your specific use case, you might need to adjust this balance. If low 

latency is a key priority, smaller batches dispatched more frequently can be beneficial. 

Conversely, if you’re prioritizing throughput and network efficiency, larger batches may 

be more suitable.

�When Average Batch Size Is Low

When Kafka producers have a low average batch size, this denotes that the batches 

of messages being sent to the same topic and partition are small in size. While small 

batches can lead to reduced latency, they also make less efficient use of network 

resources, leading to a larger number of network requests, potentially reducing 

throughput and increasing the load on the Kafka brokers.

A low average batch size can occur due to several reasons. It might be that the 

producer is not generating messages fast enough to fill the batches before they are sent. 

This could be due to insufficient system resources, such as CPU or memory, or it might 

be that the producer application is not designed to generate messages at a high rate.

Another possible reason is that the producer’s configuration settings are leading to 

smaller batches. For instance, the batch.size property in the producer configuration 

limits the size of the batch, and if this is set too low, it can result in smaller batches. 

Additionally, the linger.ms property controls how long the producer waits to fill the 

batch before sending. If this is set to a low value, batches may be sent before they are full, 

resulting in a lower average batch size.

Figures 9-7 and 9-8 show a summary of the potential reasons and negative effects of 

an average batch size that’s either too high or too low.
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Figure 9-7.  The potential reasons and negative effects of an average batch size 
that’s too high

Figure 9-8.  The potential reasons and negative effects of an average batch size 
that’s too small

�Mitigating the Average Batch Size Metric

If the Average Batch Size isn’t in line with your expectations, you might need to review 

your Kafka producer configuration. The batch.size property sets a byte-size limit for the 

batch and can be adjusted if necessary. Similarly, the linger.ms property can be fine-

tuned to impact the average batch size.

�Importance of the Average Batch Size Metric

Monitoring the Average Batch Size metric can provide insights into the efficiency of 

your Kafka producer batching. It helps maintain a balance between network efficiency 

and latency, which is crucial for the overall performance of your Kafka setup. Figure 9-9 

shows a real example of the average batch size among producer pods over a two-week 

span, during which several tweaks to the batch size and linger time were performed in 

order to increase the batch size.
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Figure 9-9.  Average batch size per producer pod. The X axis is the timeline, and 
the Y axis is the average batch size

�Buffer Available Bytes Metric
Buffer available bytes is the amount of free space in the producer’s buffer that’s available 

for new records.

�When Buffer Available Bytes Is High

A high value suggests the producer can send data to the broker as quickly as it’s being 

produced, resulting in an empty buffer ready to accept new records. This is typically a 

healthy sign, but it can also mean the cluster is over-provisioned.

�When Buffer Available Bytes Is Low

A significantly low value for the Buffer Available Bytes metric, especially if it approaches 

zero, signifies that the buffer is nearly full. This could suggest that the producer cannot 

dispatch data as rapidly as it’s being produced. The likely culprits in such a scenario 

could be network or broker issues or producer performance.

Several factors can contribute to a smaller Buffer Available Bytes metric. The rate at 

which the producer generates messages can be a major reason. If messages are being 

generated at an exceptionally high rate, it can drastically shrink the available buffer size. 

Additionally, the size of the messages is also a significant factor.

Oversized messages can fill up the available buffer space rapidly. A slow network 

might also be causing this issue. If the network is slow, it can delay the dispatch of 

messages from the producer to the broker, leading to an accumulation of messages in 

the buffer.

Another reason can be a slowdown in the broker that processes the incoming 

messages, which can result in a backlog in the producer’s buffer.
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�Mitigating the Buffer Available Bytes Metric

If the value is too low, consider increasing the buffer memory size in the producer 

configuration, or check for issues that are slowing down the producer’s send rate.

�Importance of the Buffer Available Bytes Metric

Monitoring the Buffer Available Bytes metric helps detect producer bottlenecks and 

ensures the smooth flow of data from the producer to the broker.

�Request Latency (Avg/Max) Metrics
The Request Latency (Avg/Max) metrics represent the average and maximum latencies 

for requests made to the broker.

�When Request Latency Is High

High request latency could be a sign of network complications or an overloaded broker, 

both of which can result in extended record send times and reduced throughput. High 

network latency could be a major reason, as it can increase the time taken for the 

request to travel from the producer to the broker and back. Furthermore, if the broker is 

overloaded with messages, it might take longer to process each request.

High throughput could also be a contributing factor. If the producer is pushing vast 

amounts of data, it can increase the request latency, since each request contains more 

data to process and the brokers can’t handle this amount of requests. Lastly, resource 

contention in a multi-tenant environment can be another reason. If other processes are 

consuming a substantial part of the resources (CPU, memory, disk I/O), this could lead 

to increased request latency.

�When Request Latency Is Low

A low value suggests the producer-broker communication is happening swiftly, 

indicating a healthy system.
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�Mitigating the Request Latency Metric

If the value is too high, check the network and the broker for potential issues.

�Importance of the Request Latency Metric

Monitoring the Request Latency Avg/Max metrics is crucial to ensuring timely data 

delivery and high system performance.

�Understanding the Impact of Multiple Producers 
and Consumers on the Kafka Cluster
In our exploration of producer metrics and Kafka cluster performance, it’s crucial to 

understand that a Kafka cluster doesn’t operate in isolation. The performance of an 

individual producer cannot be fully understood without considering the broader context 

of the ecosystem in which it operates.

Indeed, a Kafka cluster typically consists of multiple producers and consumers 

working in tandem. Each of these entities sends, receives, and processes data 

simultaneously, adding complexity to the dynamics of the cluster. This multi-actor 

environment can result in a scenario where high metric values observed for one 

producer might not necessarily stem from issues with that producer itself.

Let’s illustrate this with an example: Suppose your producer is experiencing 

elevated network I/O rate or record queue time values. While it’s tempting to attribute 

these anomalies directly to your producer’s configuration or workload, they might, in 

reality, be a consequence of a high traffic situation caused by other noisy producers or 

consumers in the cluster.

In this scenario, the busy and noisy neighbors are effectively saturating the brokers’ 

capacity to handle incoming traffic or requests, thus impacting all producers’ ability 

to efficiently dispatch their data. As a result, metrics for your producer could seem 

problematic, even if the producer is functions as expected.

The takeaway here is that effective Kafka cluster monitoring requires a holistic 

approach. While focusing on individual producer metrics is undoubtedly important, 

considering the wider context of the entire cluster—including the activities of other 

producers and consumers—is equally critical.
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�Compression Rate: A Special Kind 
of Producer Metric
Compression rate gets its own section due to the importance of compression of 

messages in a Kafka cluster. This section delves into who can and should perform 

compression in a Kafka cluster.

Compression can be performed either by the producers or by the brokers. However, 

the general best practice is for the producers to compress the messages before sending 

them, with the brokers simply passing on the compressed messages.

The reasoning behind this approach is efficiency and resource utilization. If 

producers compress the messages before sending, it reduces the amount of network 

bandwidth needed to transmit the messages. This can lead to better throughput and 

lower latency, which is particularly beneficial in high-volume environments.

Furthermore, performing compression at the producer level also reduces the load 

on the Kafka brokers. Instead of having to handle compression on top of their other 

responsibilities (like distributing messages to consumers), the brokers can focus more 

on these tasks, leading to better overall performance.

It’s worth noting that not all types of data compress well, so the effectiveness 

of compression can vary depending on the nature of the data you’re working with. 

Therefore, it’s best that you understand the characteristics of your data and perform 

testing to ensure that the benefits of compression outweigh its costs.

Remember that the choice of compression type (e.g., Gzip, Snappy, LZ4, or Zstd) can 

also impact both the compression rate and the CPU load of the producers and brokers. 

Different compression algorithms offer different tradeoffs between CPU usage and 

compression rate, so you should choose the one that best fits your specific use case and 

resources.

Finally, it’s important to monitor the Compression Rate metric, as it provides insight 

into the effectiveness of your compression strategy. A high Compression Rate means 

your compression strategy is working well, whereas a low rate could indicate that the 

compression algorithm isn’t effective for your particular data.
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�Configuring Compression on the Producer 
and Broker Levels
Configuring compression at the producer and the broker level is a common mistake, 

often rooted in a misunderstanding of how Kafka’s compression works. This approach 

can lead to unnecessary overhead and, paradoxically, may even reduce the performance 

benefits provided by compression.

Kafka uses a “write once, read many” model. When a message is produced, it’s 

written to a Kafka topic where it can be read by many consumers. This means that if a 

message is compressed before it is written to a topic, every consumer can benefit from 

that compression without needing to decompress and recompress the message. Thus, 

implementing compression at the producer level can maximize efficiency.

When compression is configured on both producers and brokers, the messages will 

be compressed by the producer, decompressed by the broker, and then compressed 

again before being sent to the consumers. This is a wasteful process that consumes 

unnecessary CPU resources for the additional decompression and recompression steps.

Therefore, it’s generally best practice to enable compression only at the producer 

level, while brokers are simply tasked with forwarding the already compressed messages 

to consumers. This approach optimizes resource usage and maintains the integrity of 

message order.

�Compression Rate
Compression rate is the ratio of compressed bytes to uncompressed bytes, measuring the 

effectiveness of the compression performed by the producer. This section assumes the 

compression is performed by the producers and not by the brokers. Figure 9-10 shows 

the flow of the compression process.

Figure 9-10.  The messages in the batch are compressed and then the batch is sent 
to the Kafka broker
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�When Compression Rate Is High
A high value indicates that the producer is efficiently compressing data, which can 

reduce the amount of network bandwidth needed and potentially save storage on 

the Kafka broker. However, higher compression also means increased CPU usage 

for compressing (on the producer side) and decompressing messages (on the 

consumer side).

�When Compression Rate Is Low
A low value indicates that the producer is not compressing message data very efficiently 

before sending it to the Kafka brokers. Compression can help reduce the size of the data 

being sent over the network, improving network utilization, and reducing the load on 

the Kafka brokers. However, it also requires additional CPU resources to compress and 

decompress the data.

A low compression rate might be due to the nature of the message data being sent by 

the producer. Some types of data are more easily compressible than others. For example, 

text data is typically highly compressible, while binary data or already compressed data 

may not be.

Alternatively, it could be due to the compression.type configuration setting in 

the producer. This setting determines the type of compression algorithm used by the 

producer, and different algorithms have different compression efficiencies. For instance, 

Gzip generally achieves a higher compression rate but uses more CPU resources, while 

Snappy and lz4 have lower compression rates but are faster and use less CPU.

In some cases, a low compression rate might be desirable if the goal is to minimize 

CPU usage at the expense of network utilization. However, in environments where 

network bandwidth is a limiting factor, it may be beneficial to adjust the producer 

configuration or message data to achieve a higher compression rate.

�Mitigating Compression Rate
If the Compression Rate value is too low, consider changing the compression type or 

adjusting the compression settings. If the value is too high and CPU usage is a concern, 

consider using a less CPU-intensive compression type.
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�Importance of the Compression Rate Metric
Monitoring the Compression Rate metric can help balance the tradeoffs among network 

usage, storage needs, and CPU usage.

�Summary
This chapter provided a comprehensive guide to monitoring producers in a Kafka 

cluster, since effectively monitoring the producers can reduce the load on the brokers, 

decrease latency in producers, and increase overall throughput.

The chapter discussed several key producer metrics, including Network I/O Rate, 

Record Queue Time, Output Bytes, and Average Batch Size.

Additionally, the chapter devoted a special section to the Compression Rate metric, 

highlighting the importance and effectiveness of message compression in a Kafka 

cluster.

The upcoming chapter turns your attention to consumer monitoring in the Kafka 

cluster. It dives deeper into the metrics and behaviors essential to consumers, ensuring 

smooth message flow and efficient processing. It explores essential consumer metrics, 

including Consumer Lag, Fetch Request Rate, and Bytes Consumed Rate, which 

together provide insights into the Kafka consumers’ functionality. It also delves into 

the relationships between consumer metrics and other Kafka components, as well as 

discusses the complexities of data skew and consumer lag. To bring these concepts to 

life, the chapter includes a case study highlighting how to pinpoint and address broker 

overload using metric correlations.
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CHAPTER 10

A Deep Dive Into 
Consumer Monitoring
This chapter thoroughly examines the important elements for monitoring Kafka 

consumers in Kafka clusters. It discusses specific metrics and their interplay, because 

understanding these dynamics is key to maintaining a well-balanced relationship 

between Kafka brokers and consumers. By focusing the efforts on reducing broker load, 

decreasing consumer latency, and enhancing overall throughput, you’ll be on the path 

toward increasing the performance and stability of your Kafka cluster.

Ensuring consumers efficiently receive and process messages is paramount to 

preventing data traffic congestion and maintaining smooth data flow throughout the 

cluster. Through vigilant monitoring and timely intervention, you can swiftly identify and 

address potential issues, enhancing the overall reliability of your Kafka cluster.

This chapter first focuses on the consumer metrics that need careful consideration. 

The chapter then discusses the relationship between data skew in partitions 

and consumer lag. This is a common scenario in Kafka clusters, whereby you 

might encounter different combinations of consumer lag and data skew across the 

topic’s partitions, which are being consumed by the consumers. Understanding these 

situations and knowing how to manage them can substantially boost the health of your 

data streaming pipeline.

Finally, the chapter presents a practical example of correlating consumer, producer, 

and broker metrics. I recount my experience with a Kafka cluster where one of the 

brokers was receiving significantly more write operations than the others. By correlating 

a set of specific metrics, I was able to pinpoint this issue and tackle it effectively.

© Elad Eldor 2023 
E. Eldor, Kafka Troubleshooting in Production, https://doi.org/10.1007/978-1-4842-9490-1_10

https://doi.org/10.1007/978-1-4842-9490-1_10


144

�Consumer Metrics
This section reviews several Kafka consumer metrics that provide essential information 

about message consumption rates, fetch details, latency, and various other aspects. 

These metrics are instrumental in ensuring the smooth functioning of consumers, and 

by extension, the producers and brokers in a Kafka setup. Furthermore, they provide 

insights into the system’s performance, efficiency, and reliability, enabling you to 

optimize resource usage, improve system responsiveness, and maintain high-quality 

data flow in your Kafka pipeline.

�Consumer Lag Metrics
Consumer Lag metrics represent the difference between the last produced message and 

the last consumed message by a specific consumer, as shown in Figure 10-1.

Figure 10-1.  As long as the number of produced messages is higher than the 
number of consumed messages, the consumer lag increases
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�When the Consumer Lag Metric Is High

A high consumer lag in Kafka is specific to each consumer and the topic it subscribes to. 

It indicates that a particular consumer is not processing messages as quickly as they are 

being added to the topic, leading to a growing backlog of unread messages.

This metric specifically measures the difference between the position of the latest 

message added to the topic and the last message read by the consumer. A growing gap 

implies that the consumer’s processing rate is lagging behind the message production 

rate for that topic.

There could be several reasons for a high consumer lag. It might be from slow 

consumer processing, due to factors like inefficient code, insufficient resources, or a 

misconfigured consumer setup.

Extended processing time in the consumer can also contribute. Persistently high 

consumer lag can hinder the timeliness and reliability of your Kafka-based systems, 

potentially causing outdated data processing or delays that might impact the real-time 

responsiveness of your application.

�When the Consumer Lag Metric Is Low

A low value suggests the consumers are successfully processing messages at or near 

real-time.

�Mitigating the Consumer Lag Metric

If the value is high, consider scaling up the consumers or optimizing their 

processing logic.

�Importance of the Consumer Lag Metric

Monitoring the Consumer Lag metric is essential to ensure real-time processing and 

identify potential bottlenecks.

Understanding how to monitor consumer lag depends on whether you’re dealing 

with low-level consumers or high-level consumers.

•	 Low-level consumers in Kafka manually manage the offsets, allowing 

them to decide when to move on to the next message. They also 

have the flexibility to replay or skip messages if desired. Monitoring 

consumer lag of low-level consumers can be challenging because it 
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necessitates manually keeping track of the offsets. The lag needs to 

be calculated by finding the difference between the highest message 

offset in the topic and the last offset read by the consumer for that 

specific topic partition.

•	 High-level consumers utilize Kafka’s built-in consumer groups 

to handle offsets. Kafka inherently tracks the highest offset the 

consumer group has processed, facilitating the computation of 

consumer lag by contrasting this value with the most recent message 

offset in the topic.

To sum it up, while monitoring consumer lag on high-level consumers is relatively 

straightforward due to built-in tracking, doing the same on low-level consumers 

demands additional manual oversight and computations.

�Fetch Request Rate Metric
The Fetch Request Rate metric indicates the number of fetch requests a consumer sends 

to a broker per second

�When the Fetch Request Rate Is High

A high fetch request rate suggests that the consumer is frequently requesting data from 

the broker.

•	 From the consumer’s perspective, a high fetch request rate might 

lead to higher network traffic and increased load on the consumer as 

it has to process the fetched data.

•	 From the broker’s perspective, it has to handle a large number of 

incoming fetch requests, which can potentially overload the broker 

and increase response time.

Potential causes for a high fetch request rate can be a high message production rate 

or a low fetch.min.bytes configuration on the consumer, which leads to more frequent 

requests, because the consumer fetches data as soon as the specified amount of data is 

available.
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�When the Fetch Request Rate Is Low

A low value may indicate under-utilization of the consumer’s fetch capacity or possible 

network problems.

�Mitigating the Fetch Request Rate

The fetch.max.bytes, fetch.min.bytes, and fetch.max.wait.ms configuration 

parameters play a critical role in optimizing the performance of consumers, and they 

directly impact the fetch requests made by the consumers.

The fetch.max.bytes parameter sets the maximum amount of data the server 

should return on a fetch request. Increasing the value of fetch.max.bytes will allow a 

consumer to pull more data in each request, reducing the overall number of requests, 

which could be beneficial when network overhead is high. However, it will also increase 

memory use, as more data will be held in memory.

The fetch.min.bytes parameter sets the minimum amount of data the server 

should return on a fetch request. If not enough data is available to meet this minimum, 

the request will wait until sufficient data is available. This can reduce the number of 

fetch requests when the data production rate is low, effectively saving CPU and network 

resources. However, setting fetch.min.bytes too high might lead to delays in message 

delivery when data production rate is not consistently high.

The fetch.max.wait.ms parameter determines the maximum amount of time, in 

milliseconds, that the broker will wait before answering a fetch request when there isn’t 

enough data to satisfy the fetch.min.bytes value. Essentially, it balances between 

latency and throughput. A shorter wait time can lead to quicker data delivery, but may 

result in more frequent, smaller fetches. Conversely, a longer wait time allows for larger 

batches of data to be fetched, which can be more efficient but might introduce a delay in 

data reception.

If you have a consumer in a Kafka cluster that’s making too many fetch requests, 

which is shown by a high fetch request rate, there are a few changes you can make.

•	 First, you can increase fetch.max.bytes, which lets each fetch 

request get more data at once. This means fewer fetch requests are 

needed, which can lower the fetch request rate.
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•	 Second, you can increase fetch.min.bytes if your data production 

rate changes a lot. This makes each fetch request wait until there’s 

enough data to send, which means you’ll have fewer fetch requests 

when your data production is low.

•	 Third, think about how big the messages you’re producing are. If 

they’re small, you’re going to have a lot of fetch requests. If your 

situation allows it, you might want to think about grouping smaller 

messages together to cut down on the number of fetch requests you 

need to make.

Figure 10-2 shows the effect of low and high values of fetch.min.bytes and fetch.

max.bytes in the consumer.

Figure 10-2.  How low or high values of fetch.min.bytes and fetch.max.bytes affect 
the load and memory use of the consumer

If your consumer makes frequent fetch requests but retrieves smaller amounts of 

data, or if you’re looking to manage the tradeoff between data delivery latency and fetch 

efficiency, adjusting fetch.max.wait.ms can be beneficial.

By increasing the wait time, the consumer allows for a potentially larger amount 

of data to accumulate before fetching, which could reduce the fetch request rate and 

improve overall fetch efficiency. However, you should be mindful, as setting this too high 

can introduce noticeable delays in data delivery, especially when the data production 

rate isn’t consistently high.

�Importance of the Fetch Request Rate

Monitoring the fetch request rate helps you optimize consumer performance and 

resource utilization.
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�Fetch Request Size (Avg/Max) Metrics
The Fetch Request Size Avg/Max metrics measure the size of the fetch requests made by 

a consumer.

�When the Fetch Request Size Is High

High values for these metrics suggest that the consumer is fetching large amounts of data 

with each request.

For the consumer, handling larger fetch requests means it requires more memory, 

as it must hold onto the incoming data for processing. If the consumer isn’t set up to 

manage such large volumes of data, several problems might arise.

Slower processing time can result from the challenges of managing and working 

on bigger datasets, especially when the consumer has other tasks to perform at the 

same time.

If the fetched data size exceeds the consumer’s memory limits, especially its heap 

memory, it might encounter out-of-memory errors.

Further, there’s an increased chance of higher latency. This can be due to the longer 

time needed to process substantial data chunks, delays in resource allocation for 

efficient data management, and increased garbage collection activity, as the consumer 

uses more memory.

Fetching larger data batches is often more efficient for the broker as it minimizes 

the strain of handling many smaller requests. Given the broker’s capacity, it can 

accommodate these heftier fetch requests without additional stress or compromising 

response time.

�When the Fetch Request Size Is Low

A low value suggests that the consumer is fetching smaller amounts of data more 

frequently. This can lead to inefficient use of network resources and can increase CPU 

cycles due to the constant processing of these smaller requests. Moreover, the system 

might experience more context switches as it has to frequently handle these requests, 

which can add overhead and reduce overall efficiency.
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�Mitigating the Fetch Request Size

The fetch.max.bytes and max.partition.fetch.bytes configuration parameters 

directly influence the fetch requests made by the consumers.

The fetch.max.bytes parameter is discussed in detail in the section about the Fetch 

Request Rate metric. It determines the maximum amount of data the consumer fetches 

in one request from the broker. Increasing this value allows a consumer to pull more data 

in each request, potentially reducing the number of fetch requests. This can be especially 

beneficial when network overhead is a concern. However, it’s crucial to balance this 

against consumer memory capacity and ensure that the consumer can handle larger 

batches of fetched data.

The max.partition.fetch.bytes parameter sets the maximum amount of data per 

partition that the broker returns. It should always be larger than the maximum message 

size the server allows, or the consumer may not be able to consume messages. When 

dealing with a high fetch request size, increasing this value allows consumers to pull 

more data per partition in each fetch request. However, this also means that a larger 

batch of data is kept in memory before being processed, which may impact consumer 

memory use.

If your consumer retrieves significant data volumes with each fetch request, as 

evidenced by a high fetch request size, these parameters can be tuned in order to reduce 

the fetch request size. However, it’s important to emphasize that fetch request size 

doesn’t have a universal optimum. The adjustments are about tailoring the consumer’s 

behavior to specific needs rather than rectifying a fundamental issue.

•	 First, if network resources and consumer memory usage are not 

an issue, increasing fetch.max.bytes can potentially decrease the 

number of fetch requests required to consume the same amount 

of data.

•	 Second, you could also consider increasing max.partition.fetch.

bytes if the data produced in each partition is large. This allows each 

fetch request to pull more data per partition, reducing the number 

of fetch requests required to consume the data across all partitions. 

However, always ensure your consumer has sufficient memory to 

hold the fetched data.
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�Importance of the Fetch Request Size Metrics

Monitoring the Fetch Request Size Avg/Max metrics assists in controlling network load 

and optimizing fetch performance.

�Consumer I/O Wait Ratio Metric
The Consumer I/O Wait Ratio metric measures the amount of time a consumer thread 

spends waiting for I/O operations to complete. This is typically time spent waiting for 

data from disk or over the network. It’s exposed in the JMX as io-wait-ratio-avg under 

the consumer-fetch-manager-metrics JMX type.

�When the Consumer I/O Wait Ratio Is High

The Consumer I/O Wait Ratio metric refers to the proportion of time the consumer 

threads spend waiting for I/O operations to complete. A high consumer I/O wait ratio 

suggests that consumers are spending an excessive amount of time waiting, which can 

result in slower processing of messages. This could be due to several potential causes, 

including network latency, disk I/O slowdown, or perhaps an overwhelmed broker 

unable to respond promptly to fetch requests. A high consumer I/O wait ratio might slow 

down the rate at which messages are consumed and processed, hampering the overall 

efficiency of your Kafka consumer.

�When the Consumer I/O Wait Ratio Is Low

A low value implies that the consumer is busy and efficiently utilizing its time.

�Mitigating the Consumer I/O Wait Ratio

When dealing with a high Consumer I/O Wait Ratio, certain fetch parameters can be 

modified for potential improvement. The fetch.min.bytes parameter, for instance, 

dictates the broker’s minimum data threshold that must be met before responding 

to a fetch request. Increasing this value can make the consumer wait longer before 

receiving a response, potentially reducing the frequency of I/O operations. However, this 

waiting time is based on data availability and might not strictly count as I/O wait in the 

traditional sense.
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Similarly, the fetch.max.wait.ms parameter, which determines the maximum delay 

before the broker answers a fetch request when sufficient data to satisfy fetch.min.

bytes isn’t available, can be increased when you have highly fluctuating data production 

rates. This modification allows fetch requests to wait a little longer for data availability, 

thereby reducing I/O wait occurrences.

In addition, adjusting the max.partition.fetch.bytes parameter, which sets the 

maximum data returned per partition, can also impact the consumer I/O wait ratio. 

This parameter essentially governs the amount of data fetched from multiple partitions 

concurrently. By limiting this value, data fetches from each partition occur more 

frequently, potentially minimizing I/O wait time.

However, you should remember that these adjustments require careful calibration. 

While increasing fetch.min.bytes and fetch.max.wait.ms might diminish the 

consumer I/O wait ratio, they can also inadvertently increase latency due to prolonged 

consumer waiting time for data. Likewise, decreasing max.partition.fetch.bytes can 

trigger more fetch requests, thereby raising network and CPU utilization. Therefore, it’s 

essential to strike a balance that satisfies both workload and performance requirements.

�Importance of the Consumer I/O Wait Ratio

Monitoring the Consumer I/O Wait Ratio metric is useful in understanding consumer 

efficiency and identifying under-utilization issues.

�Records per Request Avg Metric
The Records per Request Avg metric shows the average number of records fetched per 

request. It’s exposed in the JMX as records-per-request-avg under the consumer-

fetch-manager-metrics JMX type.

�When the Records per Request Metric Is High

A high value implies that each request made by a Kafka consumer to a Kafka broker is 

returning a large number of records.

For consumers, a high average number of records per request could mean that they 

are efficiently fetching data, especially if large fetches do not lead to a slowdown in 

processing the records. However, if the consumer cannot process this amount of data 

efficiently, it might lead to higher memory usage or slower processing time.
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On the broker’s side, a high number of records per request means that it’s serving a 

substantial volume of data with each request. If this data is cached in RAM (page cache), 

then the I/O impact is minimal. However, if the data needs to be retrieved from disk 

because it’s not in the cache, then it can lead to increased I/O operations, potentially 

resulting in longer response time, especially if there’s also a high request rate.

Potential causes can be a high rate of message production or a high fetch size 

configured in the consumer, which allows for more data to be fetched in each request.

�When the Records per Request Metric Is Low

A low value may indicate inefficient fetch operations.

�Mitigating the Records per Request Metric

Adjust the fetch.max.wait.ms and fetch.min.bytes parameters to influence batching 

efficiency. For more information on tuning these parameters, check out the section that 

describes how to deal with a high consumer I/O wait ratio.

�Importance of the Records per Request Metric

Monitoring the Records Per Request Avg metric helps optimize fetch operations and 

throughput.

�Fetch Latency Avg/Max Metrics
The Fetch Latency Avg/Max metrics reflect the average and maximum time taken to 

fetch data from the broker.

�When the Fetch Latency Metrics Are High

High average or maximum fetch latency indicates that consumers are experiencing 

delays when fetching messages. This can be due to network congestion or latency, slow 

or overloaded Kafka brokers, or potentially from fetching large volumes of data. High 

fetch latency can lead to lag in the processing of the consumer, as the consumer needs 

to wait longer to receive the messages before it can process them, affecting the real-time 

performance and throughput of your Kafka consumer.
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�When the Fetch Latency Metrics Are Low

A low value implies swift and efficient fetching of data, suggesting an optimized system.

�Mitigating the Fetch Latency Metrics

If values are high, you should investigate potential network problems, broker 

performance, and adjust fetch sizes.

�Importance of the Fetch Latency Metrics

Monitoring the Fetch Latency Avg/Max metrics can help you identify bottlenecks and 

ensure timely data fetches.

�Consumer Request Rate Metric
The Consumer Request Rate metric signifies the number of requests sent by the 

consumer to the broker per second

�When the Consumer Request Rate Metric Is High

A high Consumer Request Rate metric implies that a consumer is making a large number 

of requests to fetch data from the broker.

When the consumer request rate is high, it could lead to increased network traffic 

and potentially overload the broker with incoming requests, causing slower response 

time and potentially increased latency in message delivery. From the consumer’s 

perspective, a high request rate can also be an indication of increased load or high 

message consumption rate.

Potential causes for a high consumer request rate could be a high message 

production rate, leading to more data available for the consumer to fetch. Additionally, 

the consumer configuration can also influence the request rate. If the fetch.min.bytes 

configuration is set to a small value, the consumer will make more frequent requests.

�When the Consumer Request Rate Metric Is Low

A low value may imply under-utilization of the consumer’s capacity or potential network 

problems.
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�Mitigating the Consumer Request Rate Metric

If you’re seeing a high consumer request rate in your Kafka cluster, there are a few things 

you can change to bring it down. First, increase the value of fetch.min.bytes. This 

makes the server wait until there’s more data before responding to a fetch request, which 

can reduce the number of requests your consumer makes.

Next, increase fetch.max.wait.ms. This is the maximum amount of time your 

consumer will wait for a response to a fetch request if there’s not enough data to send 

right away. If you make this time longer, your consumer can wait a bit longer for data to 

be ready, which can also reduce the number of fetch requests it makes.

Finally, decrease max.poll.records. This is the maximum number of records your 

consumer will try to get in one poll. If you make this number smaller, your consumer will poll 

more often, but each poll will be smaller, which can help reduce the consumer request rate.

�Importance of the Consumer Request Rate Metric

Monitoring the Consumer Request Rate metric is essential for understanding consumer 

activity and optimizing performance.

�Bytes Consumed Rate Metric
The Bytes Consumed Rate metric in Kafka indicates how rapidly consumers are 

extracting data from the Kafka brokers.

�When the Bytes Consumed Rate Metric Is High

A high value for this metric can suggest that consumers are efficiently processing data, 

but it could also indicate pressure on network and storage resources. It might be due 

to an unusually high number of consumers in the cluster or some consumers drawing 

large amounts of data in a short duration. To alleviate this, you can adjust consumer 

configurations or enhance infrastructure to handle higher data consumption rates.

�When the Bytes Consumed Rate Metric Is Low

On the other hand, a low bytes consumed rate might imply under-utilization of 

resources, possibly due to slow consumers, network bottlenecks, or inadequate 

producer data generation. In such cases, it’s crucial to identify and address these 

underlying issues.
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�Mitigating the Bytes Consumed Rate Metric

If the consumers are processing data too fast, they can overload the brokers, which can 

cause problems in the data flow and make the whole system less efficient and reliable.

To manage this, you can adjust the fetch.max.bytes parameter, which limits how 

much data a consumer can fetch at one time. By reducing this, you slow down the rate of 

processing and make sure your consumers are not overwhelming the brokers.

Sometimes, even with this setting adjusted, the consumers might still be operating 

too fast. In these situations, you can use a Kafka feature called throttling. Throttling 

works by setting a maximum limit on the amount of data that a consumer or a group of 

consumers can use. This can prevent any one part of the system from monopolizing the 

data flow and creating imbalance.

To implement throttling, you can use Kafka’s quota API. This lets you set 

specific limits for each consumer or consumer group by setting the desired data 

consumption rate.

�Importance of the Bytes Consumed Rate Metric

Monitoring the Bytes Consumed Rate metric helps balance data flow in your Kafka 

cluster, ensuring optimal utilization of resources and maintaining system performance.

�The Relationship Between Data Skew in Partitions 
and Consumer Lag
In Kafka clusters, several combinations of consumer lag and data skew can occur among 

the partitions of the topic the consumers consume. Understanding these scenarios and 

knowing how to handle them can greatly improve the health of your data streaming 

pipeline.

If there’s no consumer lag and no data skew among the partitions, this is an ideal 

scenario. Consumers are keeping pace with producers, and data is evenly distributed 

across all partitions. In such a case, consistent monitoring is essential to ensure the 

system remains stable and performant.

In contrast, data skew among partitions can sometimes emerge even when there’s 

no consumer lag. Often, the root cause can be attributed to an uneven distribution 

of partition keys. The partition key, a specific data piece in a Kafka message, dictates 
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which partition the message should be directed to. By ensuring messages with identical 

keys land on the same partition, Kafka not only maintains order but also leverages the 

similarities between messages for better compression efficiency.

If you observe that the distribution of these keys is uneven, it is beneficial to 

investigate the producer’s key generation and distribution methodology. For situations 

where the keys aren’t paramount, opting for a round-robin partitioner can balance the 

message distribution.

However, adopting the round-robin method might sacrifice compression efficiency, 

because it doesn’t group similar messages. Grouping messages by their partition key 

allows for better compression, thanks to their shared content. Therefore, while round-

robin can mitigate the risk of data skew compared to partition key usage, it’s not always 

the optimal strategy.

Another limitation of the round-robin approach is its potential impact on the 

aggregation ratio. When consumers rely on aggregating specific message values, the 

broad distribution inherent to round-robin can hinder their efforts. For consumers 

emphasizing such aggregations, especially from a skewed topic, refining the partition 

key may be more beneficial than defaulting to the round-robin distribution.

When some consumers lag yet no data skew is present among the partitions, it could 

mean that certain consumers are slower or overwhelmed. Slower consumers can be 

caused by issues such as garbage collection pauses, slow processing logic, or resource 

constraints. Consider tuning the number of threads per consumer, adjusting the size of 

fetched data, or scaling out the consumer application.

A complex scenario arises when some consumers lag and there’s data skew among 

partitions. This indicates that not only are certain consumers slower, but specific 

partitions may also have more data than others. In such cases, the strategies mentioned 

previously need to be employed simultaneously.

In cases where all consumers lag, but there’s no data skew among partitions, the 

problem could lie with the consumer application itself or the infrastructure. The consumer 

applications might be struggling with issues such as garbage collection, resource 

contention, or slow processing logic. Alternatively, there could be infrastructure problems 

affecting network performance or disk I/O. Here, scaling out the consumer applications, 

improving consumer logic, or increasing consumer system resources might be necessary.

The most challenging situation is when all consumers lag and there’s data skew 

among partitions. In such case we need to investigate both the producer key distribution 

logic to address data skew and consumer application or infrastructure issues to tackle 

the consumer lag.
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Across all scenarios, a comprehensive monitoring setup is key. Using monitoring 

tools that provide visibility into Kafka cluster metrics, consumer group lag, and 

partition offsets is essential. Additionally, leveraging logs and application performance 

monitoring on the producer and consumer applications can help diagnose and rectify 

these issues more effectively.

To keep an eye on the volume of incoming data across all partitions of a specific 

topic, you could establish a monitoring strategy for partition skew. This method would 

display a graph with each line representing the inflow of messages for each partition. 

The graph’s lines consist of individual dots, where each dot signifies the count of events 

per partition on a minute-by-minute basis.

In this scenario, the P1 percentile corresponds to the partition that receives the 

smallest quantity of incoming events from all partitions belonging to that particular 

topic. Meanwhile, the P50 percentile marks the partition receiving the median volume of 

events. Lastly, the P99 percentile pertains to the partition that gets the most substantial 

influx of events.

If discrepancies arise between these various percentiles, it is indicative of a data skew 

concerning the incoming data for this topic.

Here are two examples—one of a topic without partition skew and one with 

partition skew.

Figure 10-3 shows the number of messages each partition of a specific topic receives 

per minute. The left Y axis represents the number of messages per minute for a specific 

partition, and the right Y axis represents the percentile of each partition. You can see that 

all partitions receive almost the same amount of messages per minute.
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Figure 10-3.  A topic with almost no data skew between its partitions

Figure 10-4 shows a different story—the partitions from the percentiles of P95 and 

above receive significantly more messages than the other partitions, which causes their 

consumers to lag, and potentially even lose data if the lag increases for a longer period of 

time than the topic’s retention.

Figure 10-4.  A topic with a data skew. At least two of its partitions (the P95 and 
P99 partitions) receive more messages than its other partitions
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�An Example of Correlating Between Consumer 
and Producer Metrics
This section explains how correlating between consumer, producer, and broker metrics 

can assist you in tracking down the root cause for a rogue broker. I handled a cluster 

whereby one of its brokers received much more write operations than the other brokers. 

I determined that by correlating the following metrics—io wait, network processor idle%, 

avg queue depth, produce latency, fetch consumer latency and log flush rate time.

To begin with, a high %wa CPU in the rogue broker (as seen in Figure 10-5) often 

indicates that the CPU is frequently waiting for I/O operations to complete. In the 

context of a broker experiencing frequent writes, this suggests that the disk I/O 

subsystem is finding it challenging to keep pace with the demands of writing data, 

causing increased CPU wait times.

Figure 10-5.  Spikes of high I/O wait time in the rogue broker (represented by the 
green line)

Similarly, the network processors can be heavily engaged in managing the influx of 

incoming write requests. This activity level is reflected in an elevated Network Processor 

Busy% metric, especially in the rogue broker, as seen in Figure 10-6, which shows the 

idle% of the network processors.

A drop in the idle% of the network threads means a spike in their busy%. Essentially, 

every write operation requires network communication, which, when performed at a 

high frequency, keeps network processors busy, which is reflected in the metric.
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Figure 10-6.  Drops of network processor idle% time (which is equivalent to spikes 
in their busy%) in all brokers but especially in the rogue broker (represented by the 
orange line)

As the broker grapples with a high volume of write operations, its disks become too 

busy, so the queue depth (the queue of pending I/O operations) grows, which causes the 

time that operations spend in the queue also to increase. Figure 10-7 shows the spikes 

in the number of write operations waiting in the queue in order to perform writes to the 

disks of the broker.

Figure 10-7.  Spikes in the number of write operations waiting in the queue of the 
brokers. The rogue broker is represented by the green line

Furthermore, the Produce Latency 99th Percentile metric captures the longer 

durations the broker takes to acknowledge write operations under this increased load. 

Higher latency is a common side-effect of the broker striving to manage high-frequency 

writes. Figure 10-8 shows the spikes of this metric in the rogue broker.
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Figure 10-8.  Spikes of the produce latency 99th percentile in the rogue broker 
(represented by the pink line)

In tandem with juggling write operations, the broker also has to serve fetch requests 

from consumers. As the load increases due to high-frequency writes, serving these fetch 

requests may get delayed, which in turn increases fetch consumer latency in the rogue 

broker, as can be shown in Figure 10-9.

Figure 10-9.  Spikes in the time it takes the rogue broker (represented by the green 
line) to serve fetch requests from the consumers

This Log Flush Rate metric refers to the frequency and amount of time it takes to 

flush data from Kafka’s in-memory log buffer to the disk. This metric increases with 

frequent writes, as data persistence demands more regular flushes of the log to the disk. 

Figure 10-10 shows the spikes in the log flush rate in the rogue broker.

Figure 10-10.  Spikes in the log flush rate in the rogue broker (represented by the 
red line)
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To summarize, I used various metrics related to the broker, consumer, and producer 

to get to the root of the problem with an overloaded broker. By looking at these metrics 

together, I could see that the broker was dealing with too many write operations. This 

showed up in metrics like increased CPU wait time, busier network processors, growing 

queue of operations waiting to be written to the disk, and slower time to acknowledge 

write operations.

I also saw that the broker was slower to handle fetch requests from consumers 

and had to flush data more often from its temporary memory storage to the disk. 

Understanding how these metrics interact helped me figure out why this specific broker 

was slower. This should remind you that it’s important to share the load evenly across all 

brokers in a Kafka cluster to avoid putting too much strain on one broker.

�Summary
This chapter explained Kafka consumer monitoring. It emphasized the importance 

of tracking key consumer metrics and drawing insights from their behavior to ensure 

smooth data flow in the Kafka cluster. The main objective was to enhance the proficiency 

of consumers in receiving and processing messages, which is pivotal in maintaining the 

robustness and reliability of the Kafka cluster.

The chapter detailed various consumer metrics, such as Consumer Lag, Fetch 

Request Rate, Consumer I/O Wait Ratio, and Bytes Consumed Rate, among others. These 

metrics provide essential insights into aspects like message consumption rates, latency, 

ensuring the smooth functioning of consumers, and ultimately, the Kafka brokers.

The relationship between data skew in partitions and consumer lag was also 

explored—understanding different combinations of consumer lag and data skew across 

the topic’s partitions can greatly enhance the health of the data streaming pipeline. An 

ideal scenario is when there’s no consumer lag and data is evenly distributed across all 

partitions. However, effective management is required when this is not the case.

The chapter also illustrated an example of how correlating between consumer, 

producer, and broker metrics can help track down issues, using a Kafka cluster as a 

case study. In this cluster, one broker received significantly more write operations than 

others. By correlating metrics related to the broker, consumer, and producer, the chapter 

highlighted how it was possible to identify and resolve the issue with the overloaded 

broker. The case study underscored the importance of evenly sharing the load across all 

brokers in a Kafka cluster to avoid overburdening any single broker.
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The next chapter delves into the stability of on-premises Kafka data centers. Chapter 

11 explores the various hardware components in a Kafka data center, identifying the 

risks and potential failures that can influence the stability of the system. From disks and 

RAM DIMMs failures to the challenges posed by Network Interface Cards (NICs), Power 

Supplies, Motherboards, and Disk Drawers or Racks, we will examine the multifaceted 

elements that ensure the smooth running of a Kafka cluster. The chapter breaks down 

the common causes for these hardware failures, the consequences they can have on 

a Kafka broker, and the strategies that can be implemented to minimize their impact. 

A special emphasis is on HDD disk failures, given their critical role in Kafka clusters, 

along with a look at often-overlooked elements like power supplies and motherboards. 

Additionally, the next chapter discusses how external factors like enabling firewalls and 

antiviruses can affect performance.
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CHAPTER 11

Stability Issues in 
On-Premises Kafka  
Data Centers
Kafka clusters can be separated into two deployment categories—cloud-based and 

on-premises. This chapter discusses the potential stability issues that may arise from 

hardware failures in Kafka clusters that are deployed on-premises. Such clusters are 

heavily dependent on their hardware components and might experience stability issues 

due to failures in these components. This can impact the cluster stability.

These hardware components specifically include disks, DIMMs, CPUs, network 

interface cards (NICs), power supplies, cooling systems, motherboards, disk drawers, 

and cabling and connectors. These components can experience failures for a variety of 

reasons, including natural wear and tear, manufacturing defects, environmental factors, 

and improper maintenance.

These failures can significantly degrade the overall performance and stability of 

the cluster, so we’ll investigate the reasons behind these hardware failures, ranging 

from aging and environmental conditions to manufacturing defects and maintenance 

issues. Here are some of the effects of these failures:

•	 Disk failures, either complete or subtle ones like latency and I/O 

errors, can disrupt Kafka’s operation due to its heavy reliance on disk 

I/O operations.

•	 DIMMs are central to Kafka’s in-memory operations, and their 

failures can lead to crashes or data corruption.

•	 CPU failures can reduce the throughput of the Kafka broker, 

slowing down message delivery. NIC failures can disrupt broker 

communication, causing delays or data loss. 

© Elad Eldor 2023 
E. Eldor, Kafka Troubleshooting in Production, https://doi.org/10.1007/978-1-4842-9490-1_11

https://doi.org/10.1007/978-1-4842-9490-1_11


166

•	 Power supply failures can lead to unexpected shutdowns, and cooling 

system failures can cause thermal shutdowns, both disrupting the 

operation of Kafka brokers.

•	 Motherboard failures can lead to complete system failure, shutting 

down the Kafka broker, and failures in disk drawers can cause 

multiple simultaneous disk failures.

•	 Lastly, failures in cabling and connectors can cause disruptions in 

data transmission, network connectivity, and power supply.

Given that these clusters are Linux-based, this chapter explores how to utilize Linux 

tools to monitor the health of these hardware components, with a particular emphasis 

on disk monitoring. Such tools can provide insights into disk performance, helping 

administrators identify potential issues before they escalate.

We’ll also discuss the impacts of these hardware failures, including data loss, 

disruption of replication protocols, and data distribution imbalances, all of which 

negatively affect Kafka cluster performance.

Understanding hardware failures and their effects on Kafka cluster stability, as well 

as how to use Linux tools for disk monitoring, will equip you with the skills to prevent, 

identify, and resolve these issues. The aim of this chapter is to simplify the task of 

maintaining a stable on-premises Kafka cluster and make it more effective.

�Common Failures in Hardware Components
Hardware components in an on-premises Kafka cluster can experience failures 

for a variety of reasons, including natural wear and tear, manufacturing defects, 

environmental factors, and improper maintenance. Here are the key hardware 

components that are prone to failures:

•	 Disks: Disks are central to Kafka’s operation, as they store all of the 

incoming data. Issues can include mechanical failures, firmware 

bugs, or problems caused by physical shock or environmental 

factors. Failures can be complete, preventing access to all data, or 

partial, causing increased latency or errors during data read/write 

operations.
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•	 DIMMs (memory): Memory is crucial for Kafka’s in-memory 

operations and buffering of data before it’s written to disk. Issues 

with memory can lead to crashes, performance degradation, or 

data corruption. Memory errors can be transient (a one-time error), 

intermittent (errors at irregular intervals), or solid (persistent errors).

•	 Network Interface Cards (NICs): NICs are responsible for data 

transmission between Kafka brokers and other components inside 

and outside the Kafka cluster. Failures can cause network slowdowns, 

loss of connectivity, and data corruption.

•	 Power supplies: A failure in the power supply can cause an 

unexpected shutdown of the hardware, leading to potential data loss 

or corruption and service unavailability.

•	 Motherboards: A motherboard hosts and interconnects all the 

hardware components. A failure here can cause the entire system to 

fail or malfunction.

•	 Disk drawers/racks: Drawers and racks house multiple disks. Power 

supply issues, improper cooling, and physical damage can lead to 

multiple disk failures simultaneously.

�The Effect of Hardware Failures on the Stability 
of On-Prem Kafka Clusters
This section elaborates on the effect of a failure in each of the hardware components that 

were described in the previous section on the stability of the Kafka cluster.

The impact of these failures can be mitigated by employing replication, failover, and 

backup strategies, as well as by proactively monitoring the health of the Kafka cluster 

and its hardware components.

•	 Disks: Disks store all Kafka messages. A disk failure could lead to 

loss of data if not properly replicated. Disk latency or I/O errors can 

lead to slow message processing, thereby increasing the end-to-end 

latency of messages.
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•	 DIMMs (memory): Kafka uses memory for buffering data before 

writing it to disk, and also for caching messages. A failure of a DIMM 

could lead to increased disk I/O, as more data needs to be read from 

disk, which could slow down message delivery.

•	 Network Interface Cards (NICs): NIC failures can disrupt the 

communication between Kafka brokers and between brokers and 

producers/consumers. This can cause delays in message delivery, 

replication, and in some cases, can cause data loss if the replication 

hasn’t been completed for some messages.

•	 Power supplies: A failure in the power supply can lead to an unexpected 

shutdown of a Kafka broker, leading to disruption in service. Messages 

in the process of being written to disk could be lost, and consumers/

producers connected to that broker would be disconnected.

•	 Motherboards: A motherboard failure is catastrophic, as it can lead 

to a complete system failure, shutting down the Kafka broker and 

leading to service disruption. If the failure isn’t detected and fixed 

quickly, it could lead to prolonged service disruption.

•	 Disk drawers/racks: Failures here can cause multiple disk failures 

simultaneously. This can lead to data loss if the disks contain unique 

data which isn’t replicated elsewhere, and can cause a significant 

increase in disk I/O on the remaining disks as they take over the data 

handling of the failed disks.

�HDD Disk Failures
One of the most common hardware problems in any on-prem cluster that works heavily 

with disks is disk failures. Kafka clusters in particular are not only affected by disk 

failures but are also more prone than other clusters to such failures because they work so 

heavily with their disks.

There’s a higher chance of hardware failures in disks that are used more frequently, 

especially when the disks are under heavy load or performing a large number of read/

write operations, such as Kafka clusters. That’s because the mechanical components 

of the disks are more likely to wear out over time with extended usage, which can 

eventually lead to hardware failures.
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This section discusses reasons for disks to fail and the effects of such failures. Note 

that I’ll refer only to 2.5-inch and 3.5 inch HDD disks, which are connected to Kafka 

brokers in either SATA or SAS interfaces which spin at 5400-15000 RPM, since these are 

the only disk types that I’ve had experience with in Kafka on-prem clusters.

�Common Reasons That Disks Fail
There are several common factors that can cause a disk to fail or to disfunction:

•	 Wear and tear: A disk may wear out due to the constant reads 

and writes.

•	 Power surge: Data centers may encounter power surges from time 

to time, due to equipment failures, severe weather, or just electricity 

being shut down in their region. Some data centers may even lack 

sufficient backup generators and UPS (uninterruptible power 

supplies), which prevent them from accessing power until the 

electricity gets back.

•	 Bad sectors: Bad sectors on a disk are typically created due to wear 

and tear on the disk surface. They’re caused by over-aging of the 

disks, over-heating, or a filesystem error.

�Potential Impacts of Disk Failure on a Kafka Broker
Consider the potential impact of disk failure on a Kafka broker:

•	 Data loss: If the failed disk contained partitions for one or more 

topics, data stored on those partitions may be lost and cannot be 

recovered.

•	 Increased latency: The broker may slow down as it tries to recover the 

partitions and re-replicate the data to other brokers in the cluster.

•	 Reduced throughput: The broker may become a bottleneck for 

the cluster as it struggles to keep up with incoming traffic and the 

increased load from recovery and re-replication.
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•	 Cluster imbalance: The failure of a disk on a broker can cause an 

imbalance in the distribution of partitions across the brokers in the 

cluster, potentially leading to further performance degradation.

It’s important to have a proper backup and disaster recovery plan in place to 

minimize the impact of a disk failure in a Kafka broker and to ensure high availability of 

the cluster.

�HDD Disks Lose Their Write Capability and Become 
Read-Only
Disks can lose their write capability due to a variety of reasons, including physical 

damage, wear and tear over time, faulty firmware, and software issues. Let’s delve into 

some of these reasons:

•	 Physical damage: Disks can sustain physical damage through 

excessive heat, water exposure, electrical surges, or any form of 

physical impact. Overheating may harm electronic components, 

while a physical collision could cause misalignment or damage to the 

read/write head or disk platters.

•	 Wear and tear: Hard disk drives (HDD) are particularly vulnerable 

to wear and tear since they contain moving parts. Over time, these 

components can deteriorate, hindering the disk’s ability to read or 

write data.

•	 Bad sectors: As disks age, certain areas (sectors) may become faulty 

and lose the ability to store data. While having a few bad sectors is 

considered normal, a significant number can signify a failing drive.

•	 Full disk: A disk that has reached its storage capacity will not have 

space available for writing additional data, effectively rendering it 

read-only.

•	 Incorrect mount options: The way a disk is mounted can have a 

direct impact on its write capabilities. If the mount options are 

set incorrectly, it can prevent users from writing to the disk. This 
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highlights the importance of properly configuring the mount options, 

defined in the /etc/fstab file, as part of the Linux filesystem 

configuration. Ensuring the accuracy of these settings is a crucial step 

before starting Kafka brokers.

�Monitoring Disk Health
Modern hard drives are equipped with self-monitoring, analysis, and reporting 

technology (SMART), a vital feature that can provide early warning signs of disk failure. 

Regular monitoring of SMART data helps you uncover potential issues before they 

escalate into data loss.

The SMART tool can be utilized to inspect disk devices using the following command, 

just remember to substitute /dev/sda with the path of the disk you need to inspect:

sudo smartctl -a /dev/sda

One indication of disk failure from the SMART tool might be:

SMART overall-health self-assessment test result: FAILED!

For Kafka systems, you can run this command on all devices to detect whether a disk 

is about to fail:

smartctl -a -d megaraid,0 /dev/sdb | grep Health | awk '{print $NF}' 

| grep OK

Additional verification information from the SMART tool might include:

–– Current disk drive temperature

–– Disk vendor (useful for replacing faulty disks)

–– Disk serial number

–– Number of hours powered up

–– Total uncorrected errors, indicating the total blocks with uncor-

rected data errors

–– Elements in the grown defect list

In the case of write failures, system logs (e.g., dmesg or /var/log/syslog) may reveal 

I/O errors.
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For those deploying on-premises servers, hardware-specific event monitoring 

tools like Dell’s iDRAC Event Monitor or HP’s iLO servers can oversee the health of 

the system’s hardware, alerting administrators if any issues arise. These tools operate 

similarly, providing invaluable insights into the disk’s health.

Kernel messages also serve as an additional approach to identify faulty or bad disks, 

since they might pinpoint problems that event monitoring tools overlook.

�Remedying Failed Disks
In a Kafka cluster which is deployed on-premises, disk failures can be not only disruptive 

but also potentially catastrophic, necessitating rapid and effective responses.

When detecting a disk failure in one of your Kafka brokers, the process generally 

begins with detecting the issue, utilizing tools like the SMART tool (smartctl) to swiftly 

identify if a disk is failing or faulty.

If the disk isn’t completely dead yet, you may be able to back up as much data as 

possible. However, in a production cluster with large disk capacities, backup might 

be unnecessary and even expensive. When a replication factor of 3 is in place, Kafka’s 

replication feature ensures that data is not lost, making the backup process less critical.

Furthermore, the smartctl tool can be used to identify the specifications of the 

failing disk, information that’s vital when choosing a suitable replacement.

Once this assessment is complete, the next step is to replace the faulty hard disk with 

a new one, ensuring that the new disk meets or exceeds the specifications of the old one.

Once the disk is replaced, format it using a filesystem (such as ext4 or xfs on Linux). 

Then mount the new disk in the appropriate directory so that it can be used by Kafka. 

Finally, restart the Kafka broker.

If the failed disk caused an imbalance in the distribution of the partitions across 

the brokers, it’s better to manually reassign the partitions using Kafka’s partition 

reassignment tool. Alternatively, if auto.leader.rebalance.enable=true, Kafka will 

handle it.

After you’ve replaced the disk and restarted Kafka, monitor the cluster closely for a 

while to ensure everything is functioning correctly.

You must take specific verification steps after disk replacement, including checking 

that broker leaders are balanced and assigned to the relevant topic’s partitions, 

confirming that there are no NONE or (-1) entries on leaders, validating that all replicas 

are in sync as shown in the output of the describe tool (in the row with Isr), and looking 

for any errors in the server.log.
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While this process can help you recover from a disk failure, preventing disk failures 

is always preferable. Regular monitoring of disk health (using SMART attributes, for 

instance) can help reduce the risk of disk failures. Moreover, ensuring that Kafka’s data 

replication is correctly configured can help prevent data loss when disk failures do occur.

�RAM DIMMs Failures
RAM DIMMs can sometimes stop functioning correctly due to various issues, including 

physical damage, manufacturing defects, and power surges. Errors in RAM can lead to 

system instability, crashes, and data corruption.

�Potential Causes of DIMMs Failures
Consider these potential causes of DIMMs failures:

•	 Physical damage: Such damage can occur due to mishandling, static 

discharge, excessive heat or humidity in the server room, or a sudden 

spike in the power supply (like from a lightning strike or power grid 

fluctuation). Anything that exceeds the voltage limits of the RAM 

module’s components can cause them to break down or function 

incorrectly. This is why it’s good practice to use a surge protector or 

an Uninterruptible Power Supply (UPS) with your critical hardware.

•	 Age and wear: Like any component, RAM can degrade over time. 

Repeated write cycles, in particular, can lead to memory wear.

In most cases, when a DIMM fails, it needs to be replaced. Unlike some components, 

RAM typically can’t be repaired, at least not without specialized equipment and 

expertise.

�Monitoring DIMMs Failures
Monitoring the health of RAM DIMMs is crucial to maintaining system stability and 

performance, and recognizing early signs of failure can prevent unexpected crashes and 

loss of data. Various methods exist to detect and diagnose DIMM issues.
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Machine event monitoring, such as Dell’s Integrated Dell Remote Access Controller 

(iDRAC) or HP’s Integrated Lights-Out (iLO), offers one such approach. These tools, 

provided by server manufacturers, continuously monitor the health of hardware 

components, including RAM. If they detect abnormalities or failures, they can send 

alerts or log entries. System administrators who keep an eye on these notifications can 

take preemptive measures before a faulty DIMM leads to serious problems.

Another avenue for monitoring DIMMs comes from the operating system itself. 

Kernel messages often detect issues with RAM, with error messages related to DIMMs 

found in system logs, like dmesg or /var/log/syslog in Linux systems. These messages 

can include details about specific memory addresses or other technical information, 

aiding in the diagnosis of the problem.

�Network Interface Cards (NICs) Failures
Network Interface Cards (NICs) are responsible for managing and maintaining the 

server’s connections to other systems. In the context of a Kafka cluster deployed on-

premises, NIC failures can lead to serious issues.

�Potential Causes of NIC Failures
Consider these potential causes of NIC failures:

•	 Physical damage: NICs can be damaged through mishandling, static 

discharge, and overheating.

•	 Hardware incompatibility: Sometimes a NIC might fail due to 

compatibility issues with the motherboard or other hardware 

components.

•	 Faulty or outdated drivers: NICs rely on software drivers to function. 

If these drivers are faulty or outdated, it can lead to failures.

•	 Configuration errors: Incorrect network configurations can cause the 

NIC to malfunction.
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�Implications of NIC Failures on a Kafka Cluster
Issues like these can pop up when you suffer a NIC failure on a Kafka cluster:

•	 Loss of connectivity: When a NIC fails, the broker loses its ability to 

communicate with other brokers in the Kafka cluster. This can make 

the broker unavailable, causing client requests to fail and disrupting 

data processing.

•	 Data loss: If a broker is offline due to a NIC failure and the topic 

replication factor is low, it could potentially lead to data loss.

�Detecting NIC Failures
There are several Linux tools that can help you diagnose and troubleshoot issues related 

to NICs. They allow you to understand if the NIC is recognized by the system, if the 

correct drivers are loaded, and if there are any error messages or other issues affecting 

the NIC.

•	 dmesg: dmesg is a command on UNIX-like operating systems that 

prints the message buffer of the kernel. It’s often used to diagnose 

issues with hardware, including NICs.

•	 lshw: This is a hardware listing tool that can provide detailed 

information on the hardware configuration of the system. For NICs, 

lshw -class network will display the configuration, driver, and 

status of each network interface. This can help identify any NICs that 

are not working or are not configured correctly.

•	 lsmod: This command shows the status of modules in the Linux 

kernel. If the driver for a NIC is loaded as a kernel module, lsmod can 

be used to check if that module is loaded. If the module is not listed 

in the lsmod output, that might explain why the NIC is not working.

�Resolving NIC Failures
There are several ways to resolve NIC failures, depending on the kind of failure. If the 

issue is software-related, you might need to update or reinstall the network driver. You 

may also need to fix any configuration errors that are causing the issue.
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If it’s a hardware issue with the NIC itself, consider replacing the NIC if it’s a physical 

card. For built-in NICs, it might be necessary to replace the entire motherboard, or 

disable the faulty NIC and install a new network card. For redundancy reasons, it’s 

recommended to set two separate network cards for each broker.

�Power Supply Failures
Power supplies are a critical component that can fail, either due to issues with the power 

supply unit itself or problems with the power source. Such a failure can have significant 

effects on a Kafka broker, so let’s look at the potential causes, implications, and ways to 

monitor and resolve such failures.

�Potential Causes of Power Supply Failures
Consider these potential causes of power supply failures:

•	 Power surges or dips: A sudden surge in power can damage the power 

supply unit. Conversely, voltage dips can cause the power supply to 

fail to provide the necessary power to components.

•	 Overheating: If the power supply’s cooling system (usually a built-in 

fan) fails, the unit can overheat and fail.

•	 Component failure: The power supply unit contains many different 

components, such as capacitors, which can fail over time.

•	 Poor quality or age: Lower-quality power supply units are more likely 

to fail, as are older units. Even high-quality power supplies can fail as 

they age.

�Implications of Power Supply Failures
Issues like these can pop up when you suffer a power supply failure on a Kafka cluster:
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•	 Unexpected shutdown: This could potentially lead to data loss or 

corruption if Kafka is in the middle of a write operation when the 

power is lost.

•	 Service unavailability: If a power supply fails in a server running a 

Kafka broker, that broker will go offline. Depending on the replication 

factor of the Kafka topics, this could lead to service disruption.

•	 Hardware damage: A failing power supply can potentially damage 

other hardware components in the broker, leading to further issues.

�Resolving Power Supply Failures
Resolving a power supply failure usually involves replacing the failed power supply unit. 

If you have a redundant power supply, you can replace the failed unit without bringing 

down the server. Otherwise, you’ll need to schedule downtime for the server to replace 

the power supply.

To avoid disruption due to power supply failures, consider using servers with 

redundant power supplies, and use a UPS (Uninterruptible Power Supply) to protect 

against power surges and dips. Also, make sure the server room is well-ventilated to 

avoid overheating. Regular preventive maintenance can also help detect potential issues 

before they cause a failure.

�Motherboard Failures
The motherboard is a critical component of any computer system, and its failure can 

have serious implications.

�Potential Causes of Motherboard Failures
Consider these potential causes of motherboard failures:

•	 Power fluctuations: Sudden power surges or outages can cause 

damage to the motherboard and other components.
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•	 Overheating: If the system cooling is not effective, the motherboard 

can overheat and potentially fail. This can be caused by a failure of 

the cooling fan or a buildup of dust.

•	 Physical damage: This could be due to mishandling of the system, for 

example during transport or maintenance.

•	 Component failures: Failures of other components, especially the 

power supply, can cause damage to the motherboard.

•	 Age: As with all hardware, motherboards can fail due to age.

�Implications of Motherboard Failures
Issues like these can pop up when you suffer a motherboard failure on a Kafka cluster:

•	 System failure: A motherboard failure can cause the broker to fail, 

leading to an unexpected shutdown. This can cause potential data 

loss or corruption and service unavailability. In a Kafka cluster, this 

would cause one of the brokers to go offline, potentially impacting 

data availability if the replication factor is not sufficient.

•	 Hardware damage: A failing motherboard can cause damage to other 

components, leading to further failures.

�Resolving Motherboard Failures
Resolving a motherboard failure usually requires replacing the motherboard, 

which requires a significant amount of downtime, as it involves disassembling and 

reassembling the server.

�Disk Drawer and Rack Failures
Disk drawers and racks are physical structures that house multiple disks. They play a 

crucial role in the organization, cooling, and supplying power to these disks. Failures 

associated with these components can lead to multiple simultaneous disk failures, which 

can have serious implications for your Kafka clusters.
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�Potential Causes of Disk Drawer and Rack Failures
Consider these potential causes of disk drawer and rack failures:

•	 Power supply issues: If the power supply to the disk drawer or rack 

fails, all the disks it houses can fail simultaneously. This could be 

due to a faulty power distribution unit (PDU), power cable, or even a 

power surge that damages the unit.

•	 Cooling issues: Disk drawers and racks often have built-in cooling 

mechanisms. If these fail, that can cause the disks to overheat 

and fail.

•	 Physical damage: This can be from accidents like dropping the rack, 

water damage, or even simple wear and tear over time.

•	 Connectivity issues: This can be due to faulty cables, connectors, or 

the failure of the host bus adapter (HBA) that connects the disks to 

the rest of the system.

�Implications of Disk Drawer and Rack Failures
Issues like these can pop up when you suffer disk drawer and rack failures on a Kafka 

cluster:

•	 Data loss or corruption: Multiple simultaneous disk failures can lead 

to data loss or corruption, especially if the replication factor in Kafka 

is not high enough to ensure data is stored on other brokers.

•	 Service unavailability: Since each Kafka broker typically runs on a 

separate machine, a full rack failure can lead to multiple brokers 

going offline, leading to a significant drop in the availability of your 

Kafka service.
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�Resolving Disk Drawer and Rack Failures
Try these methods to resolve disk drawer and rack failures:

•	 Replacement: If a disk drawer or rack fails, it often needs to be 

replaced. This can require significant downtime, especially if it 

involves moving multiple disks.

•	 Preventive maintenance: Regular preventive maintenance, including 

cleaning and physical inspection, can help prevent failures.

•	 Good Kafka configuration: An appropriate replication factor in the 

Kafka cluster can help mitigate the impact of disk or machine failures.

In summary, while disk drawer and rack failures can have serious implications, 

proper preventive measures and monitoring can help mitigate the risks associated with 

such failures.

�Potential Negative Effects of Enabling Firewalls 
and Antivirus on Kafka Brokers
Antiviruses scans files for malware, often in real-time while files are accessed, created, 

or modified. Firewalls monitor and control network traffic based on predefined security 

rules in order to prevent unauthorized access and protect against threats. Enabling 

antivirus and/or firewall software on the disks of a Kafka broker can potentially 

introduce latency and affect the consuming and producing rates. Here are some of the 

effects that they can have on a Kafka cluster:

•	 Disk I/O latency: If your AV is configured to scan the directories 

where Kafka is storing its log files, it could potentially cause a 

significant increase in disk I/O operations, as every write to a Kafka 

topic log file would also involve a read operation by the antivirus 

software. This added I/O overhead could result in higher disk latency, 

slowing down the rate at which Kafka can write to or read from its 

log files. This could in turn affect the latency for Kafka producers and 

consumers. If possible, it’s recommended to configure the antivirus 

software to scan only at specific times or to exclude the Kafka broker 

data directories from scanning.
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•	 System resources: If the AV is configured to run frequent scans, it can 

consume a significant amount of system resources and impact the 

performance of the Kafka broker.

•	 Network traffic: Kafka is a distributed system that relies heavily on 

network communication. Misconfigured or overly restrictive firewall 

rules can impede this communication, affecting the performance of 

the Kafka cluster.

•	 Inter-node communication: Kafka brokers communicate with each 

other (inter-broker communication), especially in replication 

scenarios. Firewalls need to be configured to allow this inter-broker 

communication.

•	 Impact on ZooKeeper: Kafka uses ZooKeeper to maintain and 

coordinate brokers. Firewall rules should allow traffic between Kafka 

and ZooKeeper processes.

It’s important to carefully consider the impact of firewalls and antivirus software on 

the performance of a Kafka broker before enabling them. Moreover, sometimes Kafka 

administrators just don’t notice that this software is installed on the Kafka broker, so it’s a 

good practice to develop a verification script that will run once in a while on the brokers 

and verify whether firewalls and antivirus programs are installed. If they are installed, 

the program should also ensure that they aren’t enabled.

�ZooKeeper Best Practices in On-Premises Kafka 
Data Centers
The efficiency and stability of an on-premises Kafka data center are inextricably 

linked to the underlying infrastructure and configuration practices. Among the critical 

components of this ecosystem is Apache ZooKeeper, a distributed coordination service 

that plays a pivotal role in managing the Kafka cluster. As it houses the metadata and 

provides synchronization across the cluster, its reliability is paramount for the proper 

functioning and stability of the entire Kafka system.

Ensuring that ZooKeeper is optimized, both in terms of hardware configuration and 

monitoring practices, can significantly contribute to the overall robustness of a Kafka 

deployment. This section delves into key best practices that cater to the specific needs 
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of ZooKeeper in a Kafka environment, including considerations for disk performance, 

the importance of dedicated machines, and strategies for continuous monitoring and 

assessment.

�Disk Performance
Ensuring optimal disk performance is vital for maintaining a healthy ZooKeeper cluster. 

Solid State Drives (SSDs) are strongly advised for ZooKeeper, as they offer the low-

latency disk writes required for optimal functioning. Since each request to ZooKeeper 

must be committed to disk on every server in the quorum before the result becomes 

available for reading, having efficient and fast storage is a non-negotiable requirement. 

Monitoring the I/O performance, disk latency, and write speeds can prevent bottlenecks 

that might otherwise hamper the overall system performance.

�Dedicated Machines
Another significant recommendation for ZooKeeper deployment is to host the servers 

on dedicated machines, separate from the Kafka broker cluster. This isolation ensures 

that ZooKeeper can function at its best without competing for resources with Kafka 

brokers. Such a setup allows for more precise tuning, monitoring, and maintenance of 

the ZooKeeper instances, which are crucial for stability.

�Monitoring ZooKeeper
To make sure the Kafka cluster remains stable, you must pay careful attention to 

several aspects of ZooKeeper. Keeping an eye on the up or down status of the nodes in 

the ZooKeeper quorum is vital, as is monitoring the response time for client requests 

to detect performance issues early on. It’s also essential to watch the data stored by 

ZooKeeper, ensuring it stays within healthy limits. Regular checks on the number of 

client connections to the ZooKeeper servers help you understand the load and potential 

stress on the system.
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�Developing a Dedicated Smoke Test for Kafka 
and ZooKeeper Stability
In a complex and dynamic environment such as Kafka, staying ahead of potential 

issues and inconsistencies is essential to maintaining the desired level of performance 

and stability. One robust way to accomplish this is by developing and implementing 

dedicated smoke tests. Smoke tests are quick preliminary tests that cover essential 

functions of a system. In the context of Kafka and ZooKeeper, they can be incredibly 

valuable in catching and addressing problems in a timely manner, before they escalate 

into more significant challenges.

The idea behind smoke testing in this environment is to create a script that can 

periodically run a series of checks and validations on the hardware and the Kafka cluster 

in production. Here’s a detailed look at the various validations that you can include:

•	 DIMM’s issues: Check for any RAM issues from kernel messages, as 

these can impact overall system stability.

•	 Disk issues: Analyze kernel messages or use tools like smartctl to 

inspect disks for any problems that might hinder performance.

•	 Network/NIC problems: Utilize kernel messages or dedicated tools 

like ethtool to ensure that the network interfaces are operating 

correctly.

•	 Available memory across Kafka machines: Ensure that there is 

enough memory available for smooth Kafka operation.

•	 Number of open files: Check that the number of open files has not 

reached a critical threshold, which could limit Kafka’s ability to 

function.

•	 Kafka disk usage: Monitor the disk space dedicated to storing Kafka 

topics across machines to avoid running out of space.

•	 /root and /var filesystem usage: Confirm that these filesystems 

have not reached critical usage levels, which can lead to storage-

related issues.

•	 Time synchronization: Ensure all machines are in sync with the NTP 

server, as inconsistent time-keeping can lead to various issues.
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•	 Disk balance across Kafka machines: Check that disk space usage 

is more or less balanced, to prevent certain machines from being 

overloaded.

•	 Out-of-memory problems on Kafka service: Monitor the kafka.err log 

for memory-related errors, which can impact Kafka’s performance.

•	 Service availability: Confirm that all Kafka broker services and 

ZooKeeper services are up and running.

•	 Max connections on ZooKeeper servers: Ensure that connections have 

not reached critical thresholds, especially when ZooKeeper serves 

other services.

•	 Disk mounting and read/write status: Check that all disks are 

mounted correctly and that none are in a read-only state, which 

could limit functionality.

•	 Broker IDs in ZooKeeper: Ensure that broker IDs are appropriately 

registered in ZooKeeper, which is essential for the correct operation 

of the cluster.

�Summary
This chapter delved into various factors that can influence the stability of on-premises 

Kafka data centers. It began by outlining the potential failures in key hardware 

components. These included disks, RAM DIMMs, NICs, power supplies, motherboards, 

and disk drawers or racks, which can all experience failures due to natural wear and tear, 

manufacturing defects, environmental factors, and improper maintenance.

Next, the chapter delved into the impact of these hardware failures on the stability of 

a Kafka cluster. It highlighted that the consequences of these failures could be lessened 

by employing strategies such as replication, failover, and backups, as well as proactively 

monitoring the health of the Kafka cluster and its hardware components.

A particular focus was given to HDD disk failures. We discussed the reasons for these 

failures and their effects on Kafka clusters. The discussion broke down common reasons 

for disk failures, their potential impacts on a Kafka broker, the process of monitoring disk 

health, and ways to resolve disk failure issues.
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We also looked at RAM DIMMs failures, learning potential causes such as physical 

damage or natural wear and tear. We learned about the effects of these failures on system 

stability and data integrity.

Then, we shifted focus to Network Interface Cards (NICs), which are vital for 

managing server connections. That section explored how failures in NICs, caused by 

factors like physical damage, hardware incompatibility, and faulty drivers, can lead to 

significant problems in on-premises Kafka clusters.

Power supplies, a critical but often overlooked component, were discussed next. 

That section explored the potential causes for power supply failures, their effects on a 

Kafka broker, and methods to monitor and resolve such issues.

The next section covered motherboards. As the backbone of a computer system, 

motherboard failures can have severe implications. That section covered potential 

causes, impacts, and solutions for these failures.

We then moved on to discuss disk drawers and racks, which house multiple disks. 

The section illustrated how a failure of any of these components could result in multiple 

simultaneous disk failures, and we looked into the causes, implications, and ways to 

mitigate such failures.

We also discussed the potential negative effects of enabling firewalls and antivirus 

programs on Kafka brokers. We touched upon potential latency issues and the impact 

on consuming and producing rates that may occur when enabling antivirus and firewall 

software on the disks of a Kafka broker.

We also explored ZooKeeper’s best practices in on-premises Kafka data centers 

and emphasized optimal disk performance, low-latency writes using SSDs, and 

the significance of dedicated machines for ZooKeeper. Comprehensive monitoring 

strategies were outlined, highlighting ZooKeeper’s role in Kafka cluster stability.

We concluded with an in-depth look at the development of dedicated smoke tests 

for maintaining Kafka and ZooKeeper stability. Detailed insights were provided on 

various tests for hardware and Kafka cluster validations, including RAM issues, disk 

problems, network functionality, memory availability, disk usage, and more. The section 

underscored the preventive role of smoke tests in identifying and addressing potential 

problems early.

The next chapter focuses on an aspect that can significantly impact the efficiency 

and cost-effectiveness of a Kafka cluster: optimizing hardware resources.
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While the stability and robustness of the Kafka cluster are of paramount importance, 

an equally critical consideration is ensuring that the system is not over-provisioned. 

Over-provisioning can lead to unnecessary costs and underutilized resources, resulting 

in an inefficient system.

Chapter 12 dissects the various metrics and considerations to accurately assess the 

cluster’s usage, such as RAM, CPU, disk storage, and disk IOPS. It explores the nuanced 

differences in scaling on-prem versus cloud-based clusters and investigates the pros 

and cons of different scaling alternatives from various perspectives, including technical, 

managerial, and financial. Through six illustrative examples, you will get a detailed guide 

on how to effectively implement scale-in and scale-down strategies to maximize cost 

savings without compromising the stability of your Kafka cluster.
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CHAPTER 12

Cost Reduction of  
Kafka Clusters
This chapter zeroes in on the pivotal aspect of reducing hardware costs in Apache Kafka 

clusters. By carefully examining the choices between deploying Kafka on the cloud and 

on-premises, we’ll delve into strategies that can lead to significant cost reduction.

The chapter begins by exploring the vital aspects that influence the scaling of Kafka 

clusters, with particular attention to Kafka on-premises. Here, we’ll outline various 

options and their direct impact on hardware costs, drawing comparisons between cloud 

and on-premises solutions. The technical, managerial, and financial facets are analyzed, 

all within the context of achieving cost savings.

As we progress, the chapter takes a deep dive into the hardware considerations that 

play a central role in controlling costs. This includes detailed examinations of RAM, CPU 

cores, disk storage, and IOPS, with an emphasis on identifying the most economical 

configurations and setups. Practical examples are provided to clarify the optimal 

hardware selection for both cloud and on-premises deployments, with clear insights into 

the tradeoffs involved.

The concluding section presents a series of real-world examples that vividly illustrate 

proven strategies for cost reduction in over-provisioned Kafka clusters. These include 

specific findings, options for reducing costs, and recommendations tailored to different 

scenarios and cluster specifications. Special attention is given to cloud deployments, but 

the principles can be applied more broadly.

Through these examples and the detailed exploration throughout the chapter,  

you’ll gain a concrete understanding of how to minimize the hardware costs of your 

Kafka cluster. The insights offered are not merely theoretical; they are drawn from  

real-world applications and are designed to empower you to make informed,  

cost-effective decisions.
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�Determining If You Can Reduce Costs in Your 
Kafka Clusters
When it comes to scaling a Kafka cluster, the deployment environment makes a crucial 

difference. Specifically, scaling is often much more straightforward when the cluster is 

on the cloud as compared to on-premises. This difference stems from both technical and 

managerial reasons that make scaling an on-premises Kafka cluster more complex.

In discussing the scaling of an on-premises cluster, we need to take into 

consideration three key aspects: technical, managerial, and financial. Scaling the cluster 

in this context refers to making adjustments that may include adding or removing 

brokers or changing the type of the brokers. These changes can encompass variations in 

RAM, CPU cores, disk storage, or even disk type.

To illuminate the distinction between deploying on the cloud and on-premises, the 

following sections delve into the various reasons for scaling a cluster and explore how 

this process can be accomplished in both environments.

�Lack of RAM
Managing memory in a Kafka cluster is essential. In the cloud, you can easily add more 

RAM by choosing bigger instances. But for clusters deployed on-premises, it’s a bit more 

complex. You can either add or swap out memory sticks, or just bring in more machines. 

Each choice has its own set of pros and cons, so it’s crucial to think it through.

�Cloud-Based Cluster

In order to add more RAM to a Kafka cluster that is deployed on the cloud, we just need 

to spin off a new cluster with new instances that have more RAM.

�On-Prem Cluster

When aiming to add more RAM to a Kafka cluster deployed on-premises, we have 

several possible approaches. If there are available memory slots on the motherboard, 

additional DIMMs can be added to each broker. Alternatively, if the size of the current 

DIMMs deployed on the motherboard is smaller than the maximal size, these can be 

replaced with larger ones.
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If all memory slots are occupied with DIMMs at their maximal size, adding more 

machines becomes the viable option. It’s important to note that the term DIMM used 

here refers to a memory module or memory stick. This context is specifically referring to 

DDR4 DIMMs, which range in size from 8GB to 64GB.

�Discussion

There are several courses of action when dealing with a Kafka cluster that’s deployed on-

prem and lacks RAM, and choosing which way to go depends on the use case. If there are 

available slots for DIMMs, then the easiest way is to add DIMMs. If that solves the issue, 

then we’re done.

However, what if it doesn’t solve our problem? In such case, we have two options, 

as discussed next.

Replace the DIMMs with Larger DIMMs That Have More RAM

This strategy can be employed if the current size of the DIMMs isn’t at its maximum. 

Replacing all the DIMMs in all brokers with larger-sized DIMMs has specific advantages 

and challenges.

From a technical standpoint, this approach is correct, as it merely involves adding 

RAM without introducing additional brokers. This means there’s no need to reassign the 

topics since the number of brokers remains the same.

However, the financial implications of this solution must be considered. For 

instance, purchasing a single server with 24 DIMMs of size 32GB may cost between 

two to five times more than purchasing just the DIMMs themselves, depending on the 

server type.

The managerial aspect also presents challenges, making it a tough decision to 

undertake.

This process involves removing all existing DIMMs from the brokers, replacing them 

with the larger ones, and storing the old DIMMs elsewhere. Data center owners often 

resist purchasing hardware that will not be utilized (such as the old DIMMs), making this 

solution less attractive from an operational perspective.

If the current size of the DIMMs isn’t the maximal one, we can replace all the DIMMs 

in all brokers with DIMMs of a bigger size.
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Scale Out by Adding More Brokers with the Same Amount of RAM

This is an alternative solution to increasing the cluster’s capacity. From a managerial 

standpoint, this method has the advantage of not requiring the disposal of old DIMMs, 

making it an easier decision to implement. Moreover, adding more machines to the 

cluster is often a simpler task compared to replacing all the DIMMs in the current 

brokers.

However, this approach does have its drawbacks. If the DIMMs in the current brokers 

can be replaced with larger ones, adding more brokers with the same amount of RAM 

might end up being more costly. Essentially, the financial implications could outweigh 

the convenience, especially if the current DIMMs have not reached their maximum 

potential size. Therefore, careful consideration of the technical requirements and the 

budget constraints should guide the decision-making process.

The decision whether to replace the DIMMs or add more brokers needs to take into 

account all these aspects—technical, financial, maintenance and managerial. In order 

to make the right call, you’ll need to put into your calculation the importance of each 

aspect, and according to that decide on the correct path.

�Lack of CPU Cores
�Cloud-Based Cluster

When addressing the lack of CPU cores in a Kafka cluster deployed on the cloud, there 

are two main strategies that we can pursue: scale up or scale out.

•	 For the scale-up approach, we can create a new cluster with the 

same number of instances but select instance types that come with 

more cores. This essentially enhances the existing configuration 

with additional processing power without increasing the number of 

instances.

•	 The scale-out method involves adding more instances (with the 

same instance type of the the existing instances) to the cluster. This 

expands the cluster’s size without changing the individual processing 

capabilities of each instance, providing a broader rather than deeper 

enhancement.
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�On-Prem Cluster

When an on-premises Kafka cluster requires more CPU cores, two primary strategies can 

be considered: scaling up or scaling out.

•	 The scale-up approach involves creating a new cluster by replacing 

the existing machines with new ones that have more CPU cores. 

This strategy has the advantage of ensuring that the cluster will have 

the necessary cores, but it comes with financial and managerial 

challenges. For example, the old machines, now unused, represent 

an additional cost, and explaining to the data center owner why a 

cluster was initially provisioned with insufficient CPU cores can be 

challenging.

•	 The scale-out approach, on the other hand, entails adding more 

brokers of the same type to the existing cluster. This method avoids 

the need to remove current brokers, making it more palatable from 

both a financial and managerial perspective. However, it may lead to 

other complexities, such as ending up with a cluster that meets CPU 

requirements but has excessive RAM, disk storage, or disk IOPS.

�Discussion

When facing the decision whether to scale out or scale up a Kafka cluster to get more 

CPU cores, various considerations come into play, and the optimal approach might 

differ between on-premises and cloud-based deployments.

In the context of an on-premises cluster, scaling out often seems more financially 

attractive, as it can extend existing resources without necessitating the purchase of 

entirely new or costlier hardware. Conversely, in a cloud-based environment, financial 

considerations may be less significant, as replacing machines doesn’t result in the 

retention of old, unused hardware.

From a managerial perspective, scaling out an on-prem cluster may also be more 

appealing. It avoids the disposal or replacement of current equipment, aligning more 

closely with the existing infrastructure and investment, and making the decision-making 

process smoother. This managerial concern is typically not relevant for a cloud-based 

cluster, where hardware replacement is a transparent operation.
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Technically, scaling out is a more straightforward solution for both on-prem and 

cloud-based clusters. It allows for the necessary expansion without the need to migrate 

topics from the old cluster. Reassignment of partitions to new brokers simplifies the process, 

making scaling out a commonly preferred method across both deployment scenarios.

�Lack of Disk Storage
�Cloud-Based Cluster

When adding more disk storage to a Kafka cluster deployed on AWS, it’s crucial to 

consider the underlying storage technology, namely Elastic Block Store (EBS) and NVMe 

(Non-Volatile Memory Express) devices. Each of these options has unique characteristics 

and considerations.

With EBS, you have the flexibility to attach volumes to existing instances, allowing 

you to increase disk space without altering the existing infrastructure. You can also 

scale out the cluster by adding more brokers with the same amount of EBS disk space, 

distributing the data and load across a more extensive set of nodes. If needed, you 

can scale up the cluster by replacing current brokers with instances that have larger 

EBS volumes. Since EBS offers various types and sizes, you can choose the best fit for 

performance and cost, bearing in mind that EBS is network-attached storage, which 

might have implications on latency and IOPS requirements for your Kafka workload.

On the other hand, NVMe devices, known for low-latency and high-throughput 

storage, offer different opportunities for scaling. If your instances support NVMe, 

you can attach additional NVMe disks to each broker. This option may be especially 

beneficial for write-intensive workloads, giving you the option to scale out by adding 

more brokers equipped with NVMe disks. Alternatively, you can scale up by selecting 

instances with larger NVMe storage, allowing for a seamless increase in disk space 

and potential performance benefits. Keep in mind that NVMe is typically local to the 

instance, so data durability and replication strategies must be meticulously planned.

�On-Prem Cluster

In an on-premises environment, adding more disk storage to a Kafka cluster requires 

careful consideration of the existing hardware configuration, along with identifying 

the most suitable method for expansion. The term storage drawer, which refers to the 

component within a server chassis that houses disk drives, is pivotal in this context.
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One strategy to increase storage involves replacing the current disk drives in the 

storage drawers with those having more storage capacity. This approach enhances the 

existing infrastructure without necessitating additional hardware, capitalizing on the 

opportunity to upgrade without substantial changes.

If there are unused slots in the storage drawers, then adding more disk drives can be 

a viable option. This approach makes the most of existing capacity in the infrastructure, 

promoting a cost-effective increase in storage without transforming the overall hardware 

configuration.

Alternatively, the cluster can be expanded by adding more brokers, each equipped 

with the same number and type of disks.

�Discussion

When confronting the challenge of adding more disk storage to a Kafka cluster, various 

factors must be examined, and the most suitable approach may differ between cloud-

based and on-premises deployments.

In the cloud-based environment, particularly with AWS, the availability of different 

underlying storage technologies, such as Elastic Block Store (EBS) and NVMe, provides 

flexibility in scaling. With EBS, you can extend disk space effortlessly, offering options 

to scale out by adding more brokers or scale up by choosing larger storage volumes. 

However, considerations regarding network latency and IOPS requirements must be 

factored in. On the other hand, NVMe devices offer low-latency and high-throughput 

storage, but data durability and replication strategies must be carefully planned, as 

NVMe is typically local to the instance.

For an on-premises cluster, the decision-making process requires a thorough 

understanding of existing hardware configurations. Options might include replacing 

existing disk drives with larger ones, adding more drives if slots are available, or 

expanding the cluster with more brokers with the same type of disks. The choices often 

hinge on financial efficiency and alignment with the existing infrastructure, along with 

performance requirements. The approach must be consistent with the Kafka workload, 

ensuring that considerations such as latency, throughput, and data replication are 

adequately addressed.
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From a managerial perspective, decisions regarding scaling disk storage in an on-

prem cluster often lean toward maximizing existing resources without unnecessary 

expenditures on new hardware. This aligns with typical data center ownership concerns, 

favoring solutions that work with the existing investments. By contrast, the flexibility and 

variety of options in a cloud-based environment might allow for a more straightforward 

scaling, but with careful attention to specific storage characteristics and their impact on 

performance and reliability.

�Lack of Disk IOPS
If the disks have reached their maximum capacity for disk IOPS, there are two options 

to add more IOPS. The first option is adding more disks of the same type or replace the 

existing disks with ones that have a higher IOPS. You can find more info on that in the 

“Lack of Disk Storage” section.

However, if the lack of disk IOPS is due to read operations on the disks, the problem 

may not be lack of disk IOPS, but rather lack of RAM or lagging consumers. This is 

because the reads are initially performed from the page cache, and only if the messages 

are not found there, the operating system will read the data from the disks. In this case, 

instead of adding more disk IOPS to the cluster, it may be beneficial to check whether 

consumers lag, and/or add more RAM. You can find more information on this in the 

“Lack of RAM” section.

�Cost Optimization Strategies for Kafka Clusters 
in the Cloud
To reduce the hardware costs associated with a Kafka cluster, two main strategies can be 

considered: scaling in the cluster by using fewer brokers, or scaling down the cluster by 

using smaller brokers. Each approach has unique benefits and challenges. The following 

sections explore examples of over-provisioned Kafka clusters, starting with an in-depth 

description of the cluster’s specifications and hardware resource utilization.

Following that, we’ll assess the options for scaling in and scaling down the cluster 

where relevant. We’ll also illustrate the potential cost savings for each strategy, measured 

as a percentage of current costs, and offer guidance on the best scaling method to 

minimize costs without compromising the cluster’s stability.
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�Additional Considerations
Before we delve into the specific examples of over-provisioned Kafka clusters, this 

section goes over several considerations that may influence your decision-making 

process. From the deployment environment (cloud vs. on-prem) to the technical details 

such as hyper-threading, CPU types, and normalized load averages, these aspects 

provide the context for the subsequent analysis.

�Cloud vs. On-Prem
The following examples refer only to Kafka clusters that are deployed in the cloud, and 

the recommendation of how to reduce the costs of these clusters refers only to how to 

perform this in the cloud and not on-prem.

�Hyper-Threading

The number of CPU cores in each example is calculated under the assumption that 

hyper-threading is enabled. When hyper-threading is enabled, the Linux kernel can 

create two logical processors (threads) for each physical core, allowing two threads to 

execute simultaneously on a single core.

For example, consider a server that has two sockets. Each socket has 12 cores, and 

hyper-threading is enabled in the Linux kernel. This server has 24 physical cores but 

the OS sees 48 cores due to the hyper-threading. In this case, we’ll refer to this server as 

having 48 cores and not 24, since that’s the number of cores that the OS sees.

�CPU Type

There are different CPU types available in AWS, such as i386, AMD, and ARM. Each of 

these types has unique characteristics that may influence the performance and cost of 

the Kafka cluster. However, the influence that each CPU type has on the Kafka cluster 

isn’t discussed in this chapter.

�Normalized Load Average (NLA)

One of the metrics that we’ll use in order to indicate the load on the clusters is the 

Normalized Load Average (NLA), so let’s look at how the NLA is computed.
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While the load average is a measure of the number of processes that are currently 

running or waiting to run in the CPU queue (for time periods of the last 1, 5, and 15 

minutes), the normalized load average is a scaled value that represents the load average 

relative to the number of CPU cores on the system. The value of the NLA is defined as: 

(Load Average/Normalization Factor) x 100.

For example, consider a machine with eight cores. If the load average for the past 

five minutes is four, that means that on average there were four processes either in a 

runnable or waiting state. In that case, the NLA is (4/8) X 100 = 0.5.

�Scale In

For the sake of clarity, in all the examples that follow, when we explore options to scale 

in a Kafka cluster, the sections specifically look at using instance types that belong to 

the same family as the original brokers. While there is indeed the option to scale in a 

cluster by using instance types from a different family, this chapter doesn’t consider that 

approach, in order to maintain simplicity in this examination.

Example 1

Table 12-1 shows a Kafka cluster with four brokers.

�Findings

CPU utilization: The cluster is over-provisioned in terms of CPU (only 25% CPU 

utilization).

Disk storage usage: The cluster is over-provisioned in terms of disk storage (only 15% 

disk storage usage).

Table 12-1.  A Kafka Cluster with Four Brokers

# CPU Cores Per Broker RAM per Broker Disk Storage Per Broker (NVMe) %us %sy %wa

48 384GB 30TB (4 disks) 5% 20% 0%

Total CPU% 
Utilization

Normalized Load Average Used Disk Space in  
/var/lib/kafka

Network Processor Idle

25% 0.25 15% 99%
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Disk IOPS utilization: There are no reads from the disks (because the %wa is low).

Load on the Cluster: The NLA is far from reaching 1.0, which means that the load on 

the cluster is low.

�Options for Reducing Costs

There are two ways to reduce the hardware costs of the cluster—scale down or scale in.

Let’s look at the implications of each scaling option and then compare between the 

two. This chapter recommends the option that is best in terms of cost reduction and 

maintenance.

Scale Down

Assuming that you want to remain with the same instance family, you can replace the 

current brokers with brokers that have half the cores, disk storage, and RAM. The reason 

is that in AWS, the next instance type that’s smaller than the current instances has 24 

cores, 15TB storage, and 192GB RAM. Let’s check each hardware aspect and see how 

much you can scale it down:

•	 CPU: Use 24 cores instead of 48. Since even with half the number 

of cores, the brokers will have CPU utilization of only 50%, 24 cores 

seems to be enough, given that you have a rough estimation that 

CPU utilization is linear to the number of CPU cores. This is a valid 

estimation since the CPU utilization is mostly contributed to us% and 

sy% and not to disk wait time (wa%).

•	 Storage: In AWS, instances with 24 cores arrive with half of the 

disk storage (15TB) compared to instances with 48 cores. With this 

amount of storage, the storage usage will be only 30 percent, which is 

still low.

•	 RAM: In AWS, instances with 24 cores arrive with half of the RAM 

(192GB RAM) compared to instances with 48 cores. You can tell 

whether the RAM is sufficient only by reducing the amount of RAM 

and then checking if there are more reads from the disks. Since 

there are currently no reads from the disks, you can use only 192GB 

RAM and see if it’s enough by checking the rate of read IOPS from 

the disks.
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Scale In

Since the cluster has four brokers, the option of scaling in the cluster depends on the 

replication factor (RF) of the topics in the cluster.

If the RF is 3, it’s not recommended to remove even a single broker. The reason is 

that if a single broker fails in a cluster, only two brokers will be left in the cluster and the 

requirement of three replicas per topic won’t be satisfied.

However if the RF is 2, you can remove a single broker and leave the cluster with 

three brokers. Even if one broker fails, the cluster will still have two brokers, which means 

that each topic will still have two replicas and the replication requirement will be met.

�Recommendation

Scaling in the cluster would reduce the hardware costs by 50 percent since all the brokers 

will be replaced with brokers at half the price (and half the hardware resources as well). 

This will require migrating all the topics to the new brokers without having to change the 

number of partitions.

On the other hand, scaling down the cluster would reduce the costs by 25 percent, 

but that’s recommended only in case the replication factor of the topics is 2 and not 

3. This will require a reassignment of the partitions and a change to the number of 

partitions of all the topics in which their number of partitions doesn’t divide equally by 3.

Example 2

Table 12-2 shows a Kafka cluster with six brokers.

Table 12-2.  A Kafka Cluster with Six Brokers

# CPU Cores Per 
Broker

RAM Per Broker Disk Storage Per 
Broker (NVMe)

%us %sy %wa

8 64GB 5TB (2 disks) 30% 12% 0% with 

peaks of 4%

Total CPU% 
Utilization

Normalized Load 
Average

Used Disk Space in /var/
lib/kafka

Network Processor 
Idle

45% 0.6 4% 60%
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�Findings

CPU utilization: The cluster is over-provisioned in terms of CPU (only 45% CPU 

utilization).

Disk storage usage: The cluster is over-provisioned in terms of disk storage (only 4% 

disk storage usage).

Disk IOPS utilization: Most of the time, the disks aren’t utilized, but during the day 

there are several spikes of reads from the disks. This causes the CPU wa% to reach a value 

of 4%, which is quite high.

Load on the cluster: The NLA is 0.6, which isn’t low but also not that high.

Network processor idle percentage: This value is really low, only 60%.

�Options for Reducing Costs

A low value for Network Processor Idle indicates some bottleneck in the cluster or that 

there are just not enough network threads. In a healthy cluster, this value should be 99 

percent, and it’s surprisingly low given the fact that both CPU usage and load average 

aren’t that high. The spikes in the wa% also indicate there’s some issue in the cluster that 

causes the disks to be highly utilized in terms of disk IOPS.

�Recommendation

At first sight, this cluster seems over-provisioned in terms of CPU cores, since its 

CPU utilization is at ±45%. But the low network processor idle option shows that it 

won’t be a smart move to scale down the cluster because it suffers from some issue 

that might already cause latency for its clients, and reducing cores might make these 

symptoms worse.

So in this case you should focus on investigating the cause of the problematic 

symptom instead of reducing the cost of the cluster.

Example 3

Table 12-3 shows a Kafka cluster with 12 brokers.
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Table 12-3.  A Kafka Cluster with 12 Brokers

# CPU Cores Per Broker RAM Per Broker Disk Storage Per Broker (NVMe) %us %sy %wa

12 96GB 7.5TB 27% 12% 2%

Total CPU% 
Utilization

Normalized Load Average Used Disk Space in  
/var/lib/kafka

Network Processor Idle

40% 0.5 50% 99%

�Findings

CPU utilization: The cluster is over-provisioned in terms of CPU (only 40% CPU 

utilization).

Disk storage usage: The cluster is over-provisioned in terms of disk storage (only 50% 

disk storage usage).

Disk IOPS utilization: The wa% is 2%, which means there are reads/writes to the disks.

Load on the cluster: The NLA is only 0.5, which isn’t high.

�Options for Reducing Costs

Scaling Down

The option of scaling down the cluster isn’t feasible due to potential CPU saturation. The 

reason is that the only way in AWS to scale down is to use instances with 24 cores. With 

half of the current cores, the brokers will have CPU utilization of 80-85 percent, which 

might sometimes lead to a load average of more than 1.0 and to latency in the clients.

Scaling In

Scaling in the cluster involves reducing it from 12 brokers to 8. This reduction is expected 

to affect your CPU and storage utilization as follows: CPU usage may rise from 40 to 60 

percent, although it’s worth noting that CPU utilization doesn’t always scale linearly. The 

storage usage is expected to go from 50 to 75 percent. By implementing this change, you 

can anticipate a 30 percent savings on hardware costs without encountering any CPU 
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or storage limitations. To accomplish this transition, you need to reassign the partitions 

across all the topics and adjust the number of partitions to ensure an even distribution 

among the remaining brokers.

Example 4

Table 12-4 shows a Kafka cluster with ten brokers.

�Findings

CPU utilization: The cluster is over-provisioned in terms of CPU (only 35% CPU 

utilization).

Disk storage usage: The cluster uses 75 percent of its disk storage, which currently 

is enough.

Disk IOPS utilization: The wa% is 1 percent, which means there are almost no reads/

writes to the disks.

Load on the cluster: The NLA is only 0.4, which isn’t high.

Network processor idle: This is lower than expected, which shows there’s either some 

bottleneck in the cluster or that there are not enough threads.

Table 12-4.  A Kafka Cluster with Ten Brokers

# CPU Cores Per Broker RAM Per Broker Disk Storage Per Broker (NVMe) %us %sy %wa

16 122GB 3.8TB (2 disks) 22% 12% 1%

Total CPU% 
Utilization

Normalized Load Average Used Disk Space  
in /var/lib/kafka

Network Processor Idle

35% 0.4 75% 85%
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�Options for Reducing Costs

Scale Down

To scale down the brokers, you’ll need to use instances with eight cores, 16GB RAM, and 

one disk with 1.9TB storage. Let’s see if these are enough:

•	 CPU: The cluster currently uses 35 percent of the CPU, so with half of 

the cores, the CPU utilization is expected to reach 70 percent, which 

is okay.

•	 RAM: There are very few reads from the disks, so all you can tell 

is that the current amount of RAM is sufficient for the brokers in 

order to avoid almost completely accessing the disks in order to 

read data that doesn’t exist in the page cache. However, you can’t 

tell whether with half of the current RAM, the brokers won’t need 

to access the disks. The only way to know this is to scale down the 

cluster and monitor the CPU wa% (using the top command), the disk 

utilization (using the iostat command), and the misses from the 

page cache (using the cachestat script). These metrics will give you 

an indication whether the page cache has enough RAM in order to 

prevent the brokers from accessing the disks in order to serve the 

fetch requests of the consumers and other brokers (as part of the 

replication process).

•	 Disk storage: Since the current storage usage is already 75 percent, 

cutting the disk storage by half will leave the cluster with less storage 

capacity than required. So if the cluster will be scaled-down, you’ll 

need to attach more disks to this broker, which is possible. In terms 

of disk storage and utilization, everything will remain the same since 

you’ll keep the same amount of storage and IOPS as before.

•	 Load on the cluster: The normalized load average on the cluster is 

expected to be around 0.8, since the current load is 0.4 and you’re 

going to reduce the cores by half, and it seems that most of the load 

originates from CPU us% utilization. Such a load is okay for Kafka 

clusters, but the cluster shouldn’t reach a higher load than that.
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Scale In

To scale in the cluster, you can remove five brokers so that you’ll be left with five brokers, 

each with the same number of cores, RAM, disk storage, and IOPS. The previous 

arguments for CPU, RAM, disk storage, and load on the cluster apply here. In order to 

keep the same amount of disk storage, you’ll need to attach two more disks per broker, 

which is also possible.

�Recommendation

You can either scale down the cluster by half or scale in the cluster by half, but in both 

cases, you’ll need to attach more disks in order to have the same amount of storage.

However, the issue of the low network processor idle% makes the decision whether 

to reduce resources from the cluster a tough one. This metric indicates the percentage of 

time that the network processor threads in a Kafka broker were idle and not processing 

any incoming requests from clients. A value of 85 percent means that for 15 percent of 

the time, the network threads were busy, and my experience shows that clients of Kafka 

clusters with such busy network threads usually experience some latency.

Although from the perspective of CPU, RAM utilization, and load on the cluster, it 

seems that you could reduce half of the cores, RAM, and hardware costs of the cluster, 

the low network threads idle% metric indicates there’s a bottleneck that could cause 

clients of the clusters even greater latency.

That’s why in the case of this cluster, it’s better to check whether the clients suffer 

from latency rather than trying to scale down or scale in the cluster.

Example 5

Table 12-5 shows a Kafka cluster with eight brokers.
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Table 12-5.  A Kafka Cluster with Eight Brokers

# CPU Cores Per Broker RAM Per Broker Disk Storage Per Broker (NVMe) %us %sy %wa

24 192GB 15TB (2 disks) 14% 5% 1%

Total CPU% 
Utilization

Normalized Load 
Average

Used Disk Space in /var/lib/kafka Network Processor Idle

20% 0.25 40% 99%

�Findings

CPU utilization: The cluster is over-provisioned in terms of CPU (only 20% CPU 

utilization).

Disk storage usage: The cluster uses 40 percent of its disk storage, which currently 

is enough.

Disk IOPS utilization: The wa% is 1 percent, which means there are almost no reads/

writes to the disks.

Load on the cluster: The NLA is only 0.25, which isn’t high.

�Options for Reducing Costs

This is a pretty simple example of a cluster that can use brokers with half the cores, RAM, 

and storage. It can be achieved by either scaling down the cluster and using eight brokers 

with half the cores, RAM and storage, or by scaling in the cluster and using four brokers 

with the same instance type instead of eight brokers.

Example 6

Table 12-6 shows a Kafka cluster with six brokers.

Chapter 12  Cost Reduction of Kafka Clusters 



205

Table 12-6.  A Kafka Cluster with Six Brokers

# CPU Cores Per Broker RAM Per Broker Disk Storage Per Broker (NVMe) %us %sy %wa

12 96GB 7.5TB 20% 7% 1%

Total CPU% 
Utilization

Normalized Load 
Average

Used Disk Space  
in /var/lib/kafka

Network Processor 
Idle

30% 0.35 50% 99%

�Findings

CPU utilization: The cluster is over-provisioned in terms of CPU (only 30% CPU 

utilization).

Disk storage usage: The cluster uses only 50 percent of its disk storage.

Disk IOPS utilization: The wa% is 1 percent, which means there are almost no reads/

writes to the disks.

Load on the cluster: The NLA is only 0.35, which isn’t high.

�Options for Reducing Costs

Scale Down

In AWS, you can use a lower instance type from the same instance family with eight 

cores, 64GB RAM, and 5TB storage (composed of two 2.5GB disks). This should increase 

the CPU utilization of the cluster to ±60 percent, the normalized load average to ±0.7, 

and the disk usage to 75 percent.

This move will reduce the cost of the cluster’s hardware by 33 percent without 

reaching any CPU or storage bottleneck.
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Scale In

By scaling down the cluster from 12 brokers to 8, you can anticipate the CPU usage to 

increase from 40 to 60 percent and storage usage to rise from 50 to 75 percent. This 

adjustment is projected to lead to a 33 percent reduction in hardware costs without 

hitting any CPU or storage constraints. To facilitate this change, it’s essential to reassign 

the partitions across all topics in the cluster and adjust the number of partitions to 

ensure a balanced distribution among the remaining brokers.

�Recommendation

Scaling in the cluster would reduce the hardware costs by 30 percent, since all the 

brokers will be replaced with brokers at 2/3 the price (and 2/3 the hardware resources). 

This will require migrating all the topics to the new brokers without having to change the 

number of partitions.

Scaling the cluster down would also reduce the costs by 33 percent and will require a 

reassignment of the partitions. It will also require a change in the number of partitions of 

all the topics in which their number of partitions doesn’t divide equally by 8.

In this case, there’s no better or worse approach, since both reduce the cost of the 

cluster equally.

�Summary
Scaling and optimizing Kafka clusters is a multifaceted challenge that requires a 

comprehensive understanding of both technical intricacies and financial considerations. 

This chapter delved into the various strategies for handling different scaling 

requirements, focusing on both cloud-based and on-premises Kafka clusters, and 

emphasized the importance of avoiding over-provisioning to reduce costs.

We began by exploring the constraints on resources such as RAM, CPU cores, and 

disk storage, and provided potential solutions, weighing their respective merits and 

challenges. While the cloud-based environment often affords more flexibility with 

options to scale up or out, on-premises clusters call for a meticulous evaluation of 

existing hardware and careful alignment with financial and managerial objectives. The 

importance of optimizing cost savings without sacrificing performance was highlighted, 

underscoring the need for accurate evaluation of actual workloads.
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Furthermore, we offered insights into relevant Kafka metrics and OS considerations 

for assessing cluster usage, and provided six examples of over-provisioned clusters, 

illustrating how scaling in and scaling down of these clusters can be implemented. These 

practical examples elucidated the optimal scaling options to maximize cost reduction 

while maintaining stability.

It’s important to emphasize that scaling and cost reduction of Kafka clusters are not 

merely technical endeavors, but are strategic undertakings that necessitate thoughtful 

planning and a well-rounded understanding of various influencing factors.
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Garbage collection (GC)
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H
Hard disk drives (HDDs), 72, 169

See also HDD disk failures
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potential causes, 173

INDEX



212

disk drawers/racks
implications, 179
potential causes, 178
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disk replacement
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storage, 118
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Linux
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memory usage, 80, 81
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M
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N
Network Interface Cards (NICs), 45, 164, 
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devices, 192
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cost optimization, 195

O
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Partition skew
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deeper broker, 32
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followers (replica) skew, 28
imbalance brokers, 29
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number per broker, 31, 32
producers, 27
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reassignment procedure, 34
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Potential stability issues
cloud-based/on-premises, 165

Power supplies failuers
implication, 176
potential causes, 176
resolving option, 177

Producer monitoring
compression rate
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compression process, 140
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metrics, 139
migration, 141
tradeoffs, 142

consumers working, 138
integral component, 125
metrics, 125
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Input Bytes, 132, 133
Network I/O Rate, 126
Output Bytes, 130–132
Record Queue Time, 128–130
Request Latency (Avg/Max), 137, 138

R
Random access memory (RAM), 63

allocation
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garbage collection (GC), 78
JVM settings, 78

memory-mapped files, 77
partition across broker, 78
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cloud vs. on-prem
considerations/constraints, 65
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clusters, 64
cost optimization strategies, 197
cost reduction, 188–190
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compressing message, 73
flush policies, 73
I/O operations, 73
IOPS saturation, 74–77
I/O wait time, 72
logs across disks, 72
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OS page cache, 73
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SSDs/HDDs, 72

frequent dilemma, 65
garbage collection (GC), 79, 80
Linux (see Linux)
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performance

benefits, 66
disk I/O operations, 67
latency reduction, 67
throughput enhancement, 67

strategic role, 64
Record queue time metrics

average record queue, 130
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Records per Request Avg metrics, 152, 153
Redundant Array of Independent Disks 
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JBOD (see Just a bunch of disks (JBOD))
mirror set, 115, 116
RAID 0 distributes (stripe set), 114
RAID 1+0 configuration, 116

Request Latency (Avg/Max) metrics, 
137, 138

Retention policies
characteristics, 5
configuration, 4, 5
consumer lag, 6
data loss, 4
lagging application, 6
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monitoring

data skew, 14
message rate, 15
mount point, 15, 16
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monitoring/mitigation, 7
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throttling/delicate balance, 7
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variances, 7
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filesystem, 37
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distribution, 44, 45
non-even distribution, 42
uneven distribution, 44

network interface cards (NICs), 39
producers/consumers, 42
ZooKeeper (aka ZK), 39

Smoke testing, 183, 184
Solid State Drives (SSDs), 72, 182, 185
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antiviruses scan files, 180, 181
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ZooKeeper data centers, 181, 182 (see 
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Storage management, 1

clusters, 1
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scaling out, 10
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Retention policies)
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Threads (disk.io)
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context switches, 109

INDEX



216
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JVM threads per broker, 108
normalized load average (NLA), 
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num.io.threads, 96
produce/consume requests, 107
produce latency, 108
request queue, 99
request queue size, 107
server interruptions rate, 97, 98
system time (sy%), 109
user time, 110

Throttling, 7, 156
Tuning parameters

compression rate, 19
data duplication, 23

latency and throughput, 18
linger.ms and batch.size, 18
producer/performance, 19
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Uninterruptible power supply (UPS),  

169, 173, 177

Z
ZooKeeper

dedicated machines, 182
monitoring, 182
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optimal disk performance, 182
skewed/lost leaders, 39
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