
33© Ramona Maxwell 2024
R. Maxwell, Azure Arc Systems Management,
https://doi.org/10.1007/978-1-4842-9480-2_3

CHAPTER 3

Overview of Benefits
of Arc in the
Enterprise

“Man is a tool-using animal. Without tools he is nothing, with tools
he is all” was the opinion of Thomas Carlyle, a British author and
philosopher who died 140 years ago. You might have thought he was
a bit prescient about the evolution of technology when you consider
another quote, “Go as far as you can see; when you get there you'll
be able to see farther.” In the enterprise, Arc is a tool to help you see
farther.

What is “enterprise” computing? Gartner defines an enterprise as

a business with more than a thousand employees or more than 50M in

revenue.1 Such organizations require specialized tools to scale, govern,

and monitor large IT landscapes. Today, businesses of all sizes can take

advantage of an enterprise computing paradigm simply by consuming

1 www.gartner.com/en/information-technology/glossary/smbs-small-
and-midsize-businesses

https://doi.org/10.1007/978-1-4842-9480-2_3#DOI
http://www.gartner.com/en/information-technology/glossary/smbs-small-and-midsize-businesses
http://www.gartner.com/en/information-technology/glossary/smbs-small-and-midsize-businesses

34

SaaS [Software as a Service] or PaaS [Platform as a Service]2 offerings from

major cloud vendors. However, solutions that might be required for a large

enterprise could be burdensome to a smaller business to purchase and

maintain. If you don’t have acres of database servers, IT assets that may

have a wide geographic distribution, edge computing installations, hybrid

installations, or vast farms of VMs or containers, then your organization

may realize enough benefit from using Azure’s many monitoring tools

without the Arc umbrella.

Let’s take a closer look at specific use cases for Arc in some of the

problem spaces that were highlighted in Chapter 1.

�DevOps
Application Lifecycle Management (ALM) is management of an

application during its span of usage in an organization from its design,

implementation, and day-to-day usage to its eventual retirement. It is

an area that has been codified into a discipline partially in response to

what happens when there is no ALM. A premier example of what can go

wrong is the case where a multi-tenant application begins to be deployed

in a snowflake fashion, tenant by tenant, until it is no longer a single

application but hundreds of applications with varying requirements and

implementations. Maintenance and upgrades become progressively more

difficult and expensive the longer this situation is allowed to continue.

Conversely, a defined set of requirements for what the application does

and proper source code management along with continuous integration

and deployment can achieve the first of the 12 factor principles3 of “One

codebase tracked in revision control, many deploys” throughout the

application’s lifetime.

2 www.ibm.com/topics/iaas-paas-saas
3 https://12factor.net/

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://doi.org/10.1007/978-1-4842-9480-2_1
http://www.ibm.com/topics/iaas-paas-saas
https://12factor.net/

35

Arc is a particularly apt solution to the “many deploys” aspect of

maintaining large distributed applications or services that may be hosted

on-premise, in a customer’s data center, at the edge, or upon a public

cloud since it can manage Kubernetes installations in all of those places

and assure that the desired consistency is achieved.

The impact on testing and quality assurance for an application is

also profound, since automated deployments allow for environments to

be strictly governed for consistency. Human-readable definitions allow

disparities between environments to be quickly identified and remediated.

Additionally, the disposable nature of containers means that unlike

virtual machines, they are not intended to be customized individually

in order to support a unicorn version of an application. Containers are

often described as “cattle not pets” for this reason. When a test is run on

development code, there is a reasonable assurance that if it passes in dev, it

will also be runnable in QA and subsequently pre-prod or production.

Eliminating friction caused by manual deployment strategies and

inconsistent environments greatly contributes to the ability to establish agile

release cycles, meaning that code can be released frequently as needed without

risk to the platform as opposed to large cumulative releases that are difficult

to troubleshoot. This level of standardization and governance is truly new and

doesn’t rely on human intervention to achieve once configured. While still

short of full Robotic Process Automation, the use of machine learning to mine

logs and metrics4 already allows for closing the loop on some types of issues

with an automated response, thus moving steadily in that direction.

A Kubernetes control plane (such as Istio5 service mesh) provides

service discovery, configuration ingestion and validation, certificate

management, runtime proxies, easy blue/green or canary releases, and

4 https://docs.microsoft.com/en-us/azure/machine-learning/monitor-
azure-machine-learning#analyzing-logs
5 https://istio.io/

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://docs.microsoft.com/en-us/azure/machine-learning/monitor-azure-machine-learning#analyzing-logs
https://docs.microsoft.com/en-us/azure/machine-learning/monitor-azure-machine-learning#analyzing-logs
https://istio.io/

36

ease of operation compared to managing Kubernetes directly. What lifts

Arc above using a service mesh alone is the ability to apply the same

deployment configuration and security policies to clusters running

in hybrid, edge, and multi-cloud environments and manage them all

from a single perspective – a truly one-world approach to Kubernetes

deployments.

An application’s lifecycle may be short, such as those developed for

seasonal campaigns, sign-ups, or other temporary service needs within

an organization. Conversely, an application may live for decades with an

indefinite endpoint. The Internal Revenue Service, many state governments,

and industries like insurance and banking still rely on applications that were

developed in COBOL for mainframes more than 40 years ago. In the case

of financial institutions, what some might view as an antiquated language

still has the benefit of being designed to handle fixed-point arithmetic

calculations well. In this case, the central ALM stages of maintenance and

feature enhancements will be managed not by a single group, but by a series

of specialists passing the baton of responsibility for that application. Can

Arc manage your more than 40-year-old mainframe running its 60-year-old

programming language? That’s unlikely; however, if you end up migrating off

the mainframe and into the Azure cloud,6 then those legacy applications can

come under a very modern control plane with Arc.

During the maintenance phase, ALM core challenges include things

like dealing with application failures, maintaining integration points,

feature additions and enhancements, meeting evolving security threats,

and more. How does Arc address some of these ALM challenges?

Arguably, the most critical issue faced in managing an application is

an outright failure. Even if the length of the outage is brief, there may be

substantial cost attached in terms of lost revenue and customer goodwill,

the time or overtime of incident responders, and corporate trust in the

6 https://docs.microsoft.com/en-us/azure/architecture/example-scenario/
mainframe/ibm-system-i-azure-infinite-i

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mainframe/ibm-system-i-azure-infinite-i
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mainframe/ibm-system-i-azure-infinite-i

37

faulting systems. Downstream effects could include data corruption or

loss, a scenario which carries its own costs (particularly if there is a breach

of private information that results in legal action against the company).

If the application is regulated, there may be consequences in terms of

additional monitoring requirements or fines and reputational injury. If

postmortem failure analysis shows security was breached, that requires

a crisis response. If any of the preceding issues are encountered by a core

business system that cannot be offline, then the impact is compounded.

There is confusion around the term “application” in that the singular

term might make it seem there is one artifact that can be manipulated

when new features or fixes are desired. In reality, what appears as a

single application to a user is an orchestration of workloads that could be

running on multiple systems of disparate types. The codebase itself may

consist of separate repositories of application code, application variables,

and environment configuration as well as deployment configurations.

If the application is built using microservices, then each service will

have all of these as a small stand-alone unit, and an application may

have hundreds of such services. Then there is the data an application

may create, consume, manipulate, or store. This could mean there are

messaging systems, databases, data caches for quick retrieval, and flat

file storage components. Connections between all these elements and

users of the application must be made; thus, there are networking and

sometimes Telco (in the case of dedicated pipes that do not traverse the

public Internet) elements to also consider. Finally, all of this must have

security as an integral component which can extend far beyond who or

what can access a particular area and include validation of component

identity with certificates, cryptographic stores for secret values like access

keys, and more. Further, multiple applications might depend upon shared

components or platform features compounding the risk of their failure.

This is why the objective of a product like Arc to have a very high-

level view of all the elements of an application is so necessary for the

maintenance phase of ALM and particularly proactively managing

Chapter 3 Overview of Benefits of Arc in the Enterprise

38

potential points of failure. If, for example, a messaging queue fails, but the

queue is monitored and has a failover strategy in place, then those sorts

of micro failures can occur without the application as a whole suffering

an outage. A modern application, especially one that is intended to run

on a distributed computing platform, must have resiliency built into every

application component to avoid being prone to failure.

The definition of an application as an amalgamation of a tremendous

number of resources is also a good indicator of why Arc is an enterprise

product, and it is at that level of complexity that its value will be realized

against the effort of implementation.

In both existing and new enterprise applications, project failure is a

constant risk to the extent that an entire industry has sprung up around

the forensic analysis of failed enterprise applications. As a consultant, I

encounter projects where we may be the second or third firm called in to

restructure and deliver projects that prior consulting partners had failed

to complete or that are installed but experiencing an unacceptable rate of

failure. This experience has been so common that it led me to write a brief

article on how to mitigate risk in consulting relationships.7

Over the past five years, estimates of software project failures have

remained at the astonishing level of about three quarters of those initiated

according to multiple sources, including Forbes contributor Steve

Andriole who, in a scathing send-up of this being an accepted norm, cites

management commitment to IT projects but also oversight and scope as

critical issues.8

It’s the oversight piece that could most benefit from tools like Arc.

Like the 1980s PSA, “Do you know where your children are?” – a project

with even a slim chance of success must think about incorporating

7 www.linkedin.com/pulse/risk-mitigation-through-successful-
consulting-ramona-maxwell/
8 www.forbes.com/sites/steveandriole/2021/03/25/3-main-reasons-why-big-
technology-projects-fail---why-many-companies-should-just-
never-do-them

Chapter 3 Overview of Benefits of Arc in the Enterprise

http://www.linkedin.com/pulse/risk-mitigation-through-successful-consulting-ramona-maxwell/
http://www.linkedin.com/pulse/risk-mitigation-through-successful-consulting-ramona-maxwell/
http://www.forbes.com/sites/steveandriole/2021/03/25/3-main-reasons-why-big-technology-projects-fail%2D%2D-why-many-companies-should-just-never-do-them
http://www.forbes.com/sites/steveandriole/2021/03/25/3-main-reasons-why-big-technology-projects-fail%2D%2D-why-many-companies-should-just-never-do-them
http://www.forbes.com/sites/steveandriole/2021/03/25/3-main-reasons-why-big-technology-projects-fail%2D%2D-why-many-companies-should-just-never-do-them

39

visibility and accountability long before the first server is provisioned. In

order for projects to come under the umbrella of corporate governance,

there first has to be a working governance model to adhere to, and then

it must be applied from the moment an idea enters the design phase.

Which governance policies apply to a particular piece of software as well

as how they will be implemented and monitored should be a prebuilt

decision based on the application requirements. Thus, a tool like Arc that

automates the application and monitoring of policy across all registered

resources shows its value from the very beginning of the ALM process

when the first development environment is set up. The management of the

application can be part of its development cycle so that if in some way it’s

not easily aligned with existing policies, adjustments can be made before it

even reaches its first round of quality assurance testing.

For a software project to have a shot at success, planning must include

more than a vision of what the application will do, how it will be built, and

how much it may cost. It should also assess all of the potential points of

failure, their impact on both the component and the project as a whole, as

well as whether or how to remediate them. A mantra of modern DevOps

is to “fail fast” and thereby not have problems disappear into the deeper

layers of the codebase where their origin will be much harder to diagnose.

Seema Thapar explains how her team performs a “premortem”9 in the

PayPal blog in order to uncover potential points of failure, while “the team

still has control to fix the problems” by inviting the execution team to

create potential failure scenarios before even beginning the development

of the first application components.

The God’s eye view that a control plane like Arc provides is desirable

in the management phase of ALM because often failures do not occur in

a linear set of dependencies where a single weak link in a chain could be

blamed for everything past that point. Enterprise systems far exceed the

9 https://hbr.org/2007/09/performing-a-project-premortem

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://hbr.org/2007/09/performing-a-project-premortem

40

complexity of a vehicle, yet that might serve as a simple analogy. If you

have a weak spark plug and the others still fire, you may be okay. If the

weak plug is combined with a failing alternator, then you might soon be

stranded. This is why there is some pushback to the idea of Root Cause

Analysis being effective in a large enterprise environment. Failures are

generally complex with multiple contributors and require a holistic

approach to resolve. Enterprise infrastructure and software are both

able to be designed with resistance to failure in mind. When individual

elements are adequately monitored, and backups stand ready to take their

place, it is unlikely that the system as a whole will fail.

According to the 2020 State of the Industry Report Software Quality

Analysis10 (SQA), a small report published by the Consortium for

Information and Software Quality (CISQ), only 17% of organizations

surveyed are requiring SQA tools in their development pipeline. One of

the functions of such tools is to check for code compliance with known

standards such as OWASP (security), HIPAA (healthcare privacy), and

others. This dovetails well with Arc’s policy features which will then

monitor deployed applications if, for instance, you choose to extend

Azure’s App Service to your Kubernetes deployment running on non-

Microsoft infrastructure (covered specifically in Chapter 6 of this book).

Since the Health Insurance Portability and Accountability Act (HIPAA) is

a standard governing how healthcare information should be managed,

Azure complies with commonly recognized methods of applying those

standards to IT infrastructure and provides predefined policy sets to

enable adherence to this standard and many others.11 Examples include

specifying how specific application interactions must be constructed

to avoid the likely compromise of private health information. Arc thus

10 www.it-cisq.org/pdf/soti-report.pdf
11 https://learn.microsoft.com/en-us/azure/governance/policy/samples/
hipaa-hitrust-9-2

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://doi.org/10.1007/978-1-4842-9480-2_6
https://www.it-cisq.org/pdf/soti-report.pdf
https://learn.microsoft.com/en-us/azure/governance/policy/samples/hipaa-hitrust-9-2
https://learn.microsoft.com/en-us/azure/governance/policy/samples/hipaa-hitrust-9-2

41

prevents another issue noted in CISQ’s SQA report that software quality

violations are often ignored by developers – a scenario that is unlikely to

occur when it is known that substandard code will not be deployable.

This leads directly to another core DevOps objective, that of

continuous integration of new features or modifications into the existing

codebase. It is the methodology to achieve the 12-factor manifesto

objective of a single codebase using frequent (sometimes multiple

times per day) pushes of developer code into the main codebase for the

application. In this way, new code is constantly verified to work within

the context of the existing application code. When integration is not

continuous, there is a significant risk that the feature branch may drift

from the architectural patterns used in the application and also perhaps

grow large enough that when it is finally integrated there are multiple

incompatibilities to resolve. As the application continues to stray, the

technical debt accrued in terms of the effort to fix or maintain it burgeons,

a problem common enough that technical debt is one of the three main

focuses of CISQ’s 202212 report, where it was estimated to consume an

astonishing 33% of an “average developer” workweek. Automating builds

with GitOps is a primary way this tight feedback loop of continuous

integration is accomplished.

�GitOps
Once an organization moves toward automated deployments and

configuration as code, then it becomes obvious that the configuration

files are data, and the repository is roughly analogous to a database for

that data and thus a candidate for applying well-known principles of data

consistency. The configuration store (Git repository) becomes the single

12 www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-
Nov-22-2.pdf

Chapter 3 Overview of Benefits of Arc in the Enterprise

http://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf
http://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf

42

source of truth for environments and the applications deployed within

them. The store also exposes the configuration to auditing and monitoring

processes to assure configuration remains consistent.

Arc makes use of a CNCF project called Flux13 to achieve what is known

as desired state configuration in Kubernetes clusters.14 Flux monitors

the Git repository (polling for changes every five minutes by default)

containing an application’s configuration for changes in order to assure

that the state you have defined for your application via a Kubernetes

manifest is a match to what is running in your cluster. Flux’s state

management is not only additive that is pushing new configuration, but

unlike many current deployment pipeline tools, it can also remove values

that are no longer part of the manifest. It can be used to automatically

update your configuration to the latest version of a container, thus assuring

its deployment configuration will automatically remain current.

The creator and CNCF contributor of Flux, Weaveworks (who are

also reputed to have coined the term GitOps), proudly noted at their 2022

GitOps conference15 that Flux is integrated into the GitOps pipeline of

major platforms, including AWS, VMware, Azure, Red Hat, and more. As

we will discover in the upcoming chapter on Arc-enabled Kubernetes,

Microsoft has been using Flux since version 1.0 and with the integration of

version 2.0 notes that GitOps using Flux is now a “first-class citizen”16 with

Flux available as a managed service so that both Azure Kubernetes Service

and Arc-enabled Kubernetes can be deployed using GitOps pipelines. In

addition to facilitating swift deployments, Arc-enabled Kubernetes clusters

also benefit from continuous monitoring and self-healing of deployed

13 www.cncf.io/projects/flux/
14 https://learn.microsoft.com/en-us/azure/azure-arc/kubernetes/
conceptual-gitops-flux2
15 www.weave.works/blog/
gitops-days-2022-recap-major-clouds-vendors-offering-gitops-with-flux
16 www.youtube.com/watch?v=60jhYD2wLkY

Chapter 3 Overview of Benefits of Arc in the Enterprise

http://www.cncf.io/projects/flux/
https://learn.microsoft.com/en-us/azure/azure-arc/kubernetes/conceptual-gitops-flux2
https://learn.microsoft.com/en-us/azure/azure-arc/kubernetes/conceptual-gitops-flux2
http://www.weave.works/blog/gitops-days-2022-recap-major-clouds-vendors-offering-gitops-with-flux
http://www.weave.works/blog/gitops-days-2022-recap-major-clouds-vendors-offering-gitops-with-flux
http://www.youtube.com/watch?v=60jhYD2wLkY

43

resources, thereby creating a resilient platform for enterprise workloads.

GitOps integration means all the typical deployment tools from the CLI

and PowerShell to portal commands are available, and you can monitor

the status of your deployment as it runs from within the Azure portal. This

expeditious approach allows deployments across Azure, on-premise, and

competitor’s clouds to run uniformly and at scale while reaping significant

cost savings by eliminating tedious and error-prone manual deployments.

Automating deployments using GitOps greatly accelerates the pace

of deployments and provides operators with fast feedback. Integrations

become simpler when both the infrastructure and code are predictable

and visible to development and operations teams. Test and QA cycles for

developers also benefit since deployment may go from hours and days to

minutes and seconds.

Overall, GitOps contributes greatly to implementing continuous

integration and deployment as part of an agile software development

approach to ALM. Key concerns around the safety of deployments

are minimized or eliminated, and the entire process comes under an

organization’s governance umbrella, no longer subject to the vagaries of

individual approaches and preferences that are not testable, repeatable,

or safe.

�Governance and Policy
Enterprise-level governance is a process with known standards and

accepted methodologies. Typically, it may involve an executive steering

committee reporting to the highest levels of the organization, senior

IT leaders such as CTO or CIO, serving as a consultative guide to

the committee as well as representation from legal and compliance

departments. A comprehensive governance plan will specify standards

across broad categories that can have a direct impact on regulatory

compliance, security, performance, profitability, and more. Almost always

Chapter 3 Overview of Benefits of Arc in the Enterprise

44

implementation of these standards will have some impact on IT, or in

larger organizations there will be subsidiary governance manifests around

technology standards.

IT implementation of these standards requires considerable

planning and systems architecture since the application of a governance

mandate may be extremely complex. Ideally, both the governance

document and its implementation specification will be living documents

versioned in lockstep with any update to policy triggering a review of the

implementation plan to assure it remains compliant. Conversely, when

CTOs become aware of offerings in the constantly evolving technology

landscape that will more comprehensively fulfill governance objectives,

the implementation specification may update without any change to

the governance plan. In real-world scenarios, synchronicity between

governance and operations is extremely difficult to accomplish, let alone

maintain. That is why yoking them together through Arc’s ability to extend

the reach of Azure’s policy engine to the far netherlands of large IT estates

is a powerful leverage in the effort to apply governance.

Scenarios that tend to precipitate changes to governance include

business growth and acquisition, evolution of threats both commercial

and operational, profit opportunities requiring compliance upgrades, and

the rapid changes to technology itself.

Arc lives up to its definition as an enterprise-wide control plane by

facilitating monitoring and collection of data that can then be fed back

into threat assessment tools. It’s important to remember that Arc is not

the tool performing the monitoring; rather, as a control plane, it facilitates

access via an agent where that is required. That agent is performing on

your behalf the activities you want applied to an asset, from monitoring to

updates and application of policies.

A March 2021 Cloud Native Computing Foundation outlines

an expectation that DevOps best practice will move beyond the

implementation of policy defined in document repositories to Policy

as Code, which the author defines as “the process of managing and

Chapter 3 Overview of Benefits of Arc in the Enterprise

45

provisioning policy enforcement tooling through machine-readable

definition files.”17 This is not so far-fetched since in coding a template for

a Kubernetes deployment things like ingress and egress rules or applying

security standards are in effect implementing policy.

This obvious need to automate infrastructure controls has led to

projects like Crossplane,18 which, similarly to Arc, are attempting to extend

infrastructure management, but in this case using a Kubernetes control

plane in a cloud-agnostic fashion suitable for multi-cloud deployments.

Determining whether Arc or an alternate approach would be better

for automated policy implementation and monitoring depends on several

factors. Is the enterprise historically a consumer of Microsoft products and

therefore its operations team is well equipped to manage non-Microsoft

assets using familiar Azure paradigms? Organizations already invested

in the Azure Stack would also find Arc to be an obvious choice. Since

Crossplane is basically a Kubernetes operator, if an organization isn’t

running Kubernetes clusters it’s an unlikely choice. Crossplane also lacks

Arc’s tight integration with Microsoft SQL Server, so that is likely to be a key

decision factor in organizations where that database is widely used.

For companies with a long history of Linux Servers and open source

software though, the CNCF Crossplane project would likely integrate

much more smoothly with existing workflows. Interestingly, Crossplane

claims both Red Hat, a publisher of a popular Linux distro, and Microsoft

as among its supporters. While the two tools aren’t mutually exclusive,

for instance, you could use Arc’s monitoring capabilities in conjunction

with Crossplane’s infrastructure; deployment chaos can sometimes

result in environments overloaded with too many tools and not enough

integration. Since the infrastructure landscape serves as the foundation

17 www.cncf.io/blog/2021/03/29/what-is-kubernetes-policy-as-code/
18 https://crossplane.io/

Chapter 3 Overview of Benefits of Arc in the Enterprise

http://www.cncf.io/blog/2021/03/29/what-is-kubernetes-policy-as-code/
https://crossplane.io/

46

of critical line-of-business applications, its architecture must be holistic,

avoiding redundant or shadow IT solutions that create more problems

than they solve.

�Modernization
Digital transformation, shift left, modernization, and cloud migration are

just a few of the phrases reflecting global efforts to transform enterprise IT

to a distributed computing model. First, there were microservices, then a

stampede to the cloud, and now a more realistic hybrid approach. What

causes an organization to embark upon this digital journey?

Insecure, nonperformant, and nonscalable applications often incite

modernization efforts, as highlighted in Table 3-1, discussing the notorious

Equifax breach of consumer credit data.

Table 3-1.  Data Breach Factors

Risk Management
Java Example

The famous Equifax breach

was attributed to an

unpatched Struts vulnerability.

Security Boulevard logged 20

years of Struts vulnerabilities

and the packages they affect

Lacks built-in protection

against many common security

risks. Amid legacy libraries are

known vulnerabilities. Weak or

ineffective “security” strategies

such as obscuring URLs

Scalability Not cloud-ready OOTB. Model/

View/Controller with tightly

coupled layers. Relies on a

plug-in system

Accomplished by clustering and

load-balancing technologies

Operability Security options require

construction of filters, expert

knowledge of vulnerabilities,

and remediation

Security can be misconfigured,

heavily manual. Scaling

approaches require

ongoing configuration and

administration

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://securityboulevard.com/2019/10/apache-struts-research-at-scale-part-1-building-115-versions-of-struts/

47

Many organizations have thousands of such legacy applications

that are difficult to maintain and protect. Some of these may not be

identified or considered in an overall risk profile due to the challenges

of cataloging large infrastructures and their dependencies. Remediating

security vulnerabilities is sometimes not possible on legacy platforms, and

performance improvements may also face obstacles. Thus, it becomes

apparent that modernization has value independent of cloud adoption.

Modernization has value independent of cloud adoption!19

A principal benefit of Arc to enterprise modernization efforts is the

capability it provides to catalog large infrastructures and monitor hosted

application stacks running on them. Modernization projects start with

an inventory of current applications and their business value. Beginning

left with the value to the business is key to not recycling old tech for its

own sake, but instead serving the reasons for which a particular business

or nonprofit organization exists. Sometimes, initial assessments may

reveal that much of the functionality of an old application is being served

elsewhere, and the app itself is still living simply because it performs one

calculation or is familiar to certain individuals who prefer it to adoption

of newer methods and different applications. Some of the effort that was

initially expected for the transformation may fall away quickly when

business value is the first criteria for retention of an application.

It is extremely challenging to enumerate large corpus of applications

and their supporting infrastructure, so much so that many organizations

never complete a thorough audit of their IT landscape. It is key to a

successful effort to consider the time required to accomplish the initial

assessment. If large efforts are not undertaken concurrently with sufficient

19 2020 Magenic Masters Course on Practical Application Modernization Strategies,
authored and delivered by Ramona Maxwell

Chapter 3 Overview of Benefits of Arc in the Enterprise

48

team support and a good dose of automation, the risk becomes that the

intended modernization strategies themselves may become outdated

before they are implemented, creating a vicious cycle of always remaining

in an outmoded state. The adoption of Arc can provide a dose of

prevention if all new assets are required to be exposed to its control plane,

but application modernization projects are often a juncture at which

technical debt must be paid if success is to be achieved. Some systems

aren’t worth the debt acquired, so the question becomes how to replace

them with whatever product is the modern standard for the company’s

industry in order to assure it remains competitive with its peers. Often, that

product will be a SaaS solution.

As existing candidates for modernization are identified, a common

approach is to perform a capability assessment20 of inventoried items

against a matrix of industry norms. This can help segregate applications by

their importance, known deficits, and other key attributes before deciding

how to treat each similar set. A popular industry paradigm of the “Five

Rs”21 can help to differentiate between core strategies for rationalizing a

large application portfolio. These five are

•	 Rehost

•	 A modern application will be platform agnostic

•	 Refactor

•	 Look for opportunities to reorganize the

application so that part or all of it can be migrated

to microservices or even PaaS offerings

•	 Revise

20 https://cio-wiki.org/wiki/IT_Capability
21 https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/
digital-estate/5-rs-of-rationalization

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://cio-wiki.org/wiki/IT_Capability
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/digital-estate/5-rs-of-rationalization
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/digital-estate/5-rs-of-rationalization

49

•	 Revise the current application only to the degree

that allows it to be hosted on a cloud platform

•	 Rebuild/Retain or Retire

•	 Rebuild on-prem, retain existing, or retire

•	 Replace

•	 The beauty of greenfield development with the

constraint of assuring uninterrupted service

The Five Rs are shown in Figure 3-1.

Figure 3-1.  The Five Rs – Credit: Stephen Orban, AWS

Performing adequate capability assessments will assist in determining

which approach to take with a particular application or group of similar

applications. For instance, applications that are already platform agnostic or

containerized may simply be rehosted. An important goal in rehosting is to

remove manual configurations so that even if the applications themselves

are not optimized to be cloud native, their management is much less

burdensome. Sometimes, this path is taken as part of a longer-term strategy

where individual apps will be assessed for further modernization after a

Chapter 3 Overview of Benefits of Arc in the Enterprise

50

cloud migration is complete, and sometimes it is the end goal. This may be

the case when the reduction in operational costs significantly reduces the

total cost of ownership for those applications, while modernization may

have much lower returns (particularly for applications that may be near the

end of their lifecycle). The operational benefits of moving select application

types to a cloud provider’s platform in a “lift and shift” were present before

Arc, which only sweetens the deal with dramatically improved administrator

overview and control plane capabilities.

Refactoring the application is often preferred for large monolithic

applications that are reaching their capacity limits as to cost-effective

scaling, have become entangled with internal and external dependencies

that were not well managed, or may be difficult to integrate with

modern software applications and effectively secure. This process is

rarely quick and is sometimes fraught with unexpected pitfalls in terms

of dependencies. Often, a Strangler Fig22 pattern (originally conceived

by Martin Fowler23) is used to peel off portions of functionality into

individual microservices that will over time form the building blocks of

the now modernized application. This extended timeline previously also

applied to the benefit of managing the new microservices in the cloud as

they gradually replaced old functionality from the original application.

However, Arc’s ability to manage on-premise assets as natively belonging

to Azure accelerates governance, server management, and security

benefits of the cloud from the moment the Arc agent is installed and

management controls applied. Microsoft’s implementation of the Strangler

Fig pattern particularly recommends a façade over the application as a

whole, both the legacy monolith and the modern services, in order to

avoid dependent users or applications having to make adjustments as

22 https://docs.microsoft.com/en-us/azure/architecture/patterns/
strangler-fig
23 https://martinfowler.com/bliki/StranglerFigApplication.html

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://martinfowler.com/bliki/StranglerFigApplication.html

51

to the location of app components (when that applies). In a sense, Arc

accomplishes the same abstraction for the configuration and management

tasks involved in administering the application.

Revision is a less common approach that touches the application

only to the minimal degree needed to move it to a different host. It might

apply to singular use cases where a prerequisite functionality needs to

move quickly before the components that depend upon it or for a group of

applications that need only one small adjustment to move.

Choosing to rebuild or retain or retire an existing application is

often prudent choices. As part of the original assessment process,

there are often good candidates for retirement due duplication of

functionality, low usage, and other criteria. Removing these, along with

any associated cost allocation, contributes to the speed and lowers the

cost of the modernization project as a whole. As will be discussed in the

chapter on data migration, it may be helpful to bring host servers under

management as early as possible in the project so that usage patterns may

be tracked. Rebuilding an application that gains little from transitioning

to microservices but will still benefit from cleaning up outdated technical

stacks and other typical problems can be worthwhile. The rebuild effort

can include a modern deployment pipeline to reduce risk and reliance

on the old-school practice of using feature flags (switching the release

on if it appears to work or off if it creates issues) to add new capabilities

to live systems. When the rebuilt application is brought under Arc’s

control plane, then its management and security as part of the enterprise

application portfolio will also be assured. Even applications that are

selected for retention only (e.g., do nothing) should be evaluated as

candidates for consolidated management under Arc since the payback

from an Arc deployment is partially tied to gathering up all stragglers. Not

only the application but its operational ecosystem stand to benefit from

the centralized management that Arc provides, for example, Microsoft

Chapter 3 Overview of Benefits of Arc in the Enterprise

52

Defender for Cloud24 can protect servers outside of Azure when they are

Arc enabled, potentially replacing several on-premise or competitor cloud

antivirus [AV] solutions, thereby reducing both complexity and cost.

The replace option is guaranteed to generate enthusiasm in business

stakeholders, architects, and developers alike due to the opportunity to use

cutting-edge technology and innovate solutions that if executed correctly

may propel a business into new profit opportunities. It is also, as previously

discussed, fraught with the danger of project failure or cost escalation. Even

if costs are contained, it is generally an expensive option that may require

extensive validation to gain approval. If designed correctly, it will be resilient

(self-healing), rapidly scalable, secure, and potentially have many other

enhancements, such as artificial intelligence, machine learning, and more.

It provides a golden opportunity to apply governance and management

strategies from the very beginning of a new application’s lifecycle.

�Upgrades
Since many of the options discussed earlier refer to classic hosting of

applications in data centers (whether on-premise or on a cloud provider’s

infrastructure), the issue of how to update running systems remains critical.

Common types of updates include patches to fix security

vulnerabilities or bugs in a current version of software, updates which

are improvements to software that are not a new installation but usually

increment the version, and lastly upgrades which usually completely

uninstall an older version of software in order to reinstall a completely

new version but retain the user data and preferences. The necessity of

applying any of these may occur all the way through the technical stack

24 https://learn.microsoft.com/en-us/azure/defender-for-cloud/
quickstart-onboard-machines?pivots=azure-arc

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://learn.microsoft.com/en-us/azure/defender-for-cloud/quickstart-onboard-machines?pivots=azure-arc
https://learn.microsoft.com/en-us/azure/defender-for-cloud/quickstart-onboard-machines?pivots=azure-arc

53

from a server’s firmware and operating system to end-user software and

everything else in between, including things like network protocols,

firewalls, etc. Microsoft has its tradition of “Patch Tuesday”25 releases,

and other companies also have distinct routines with an out-of-band

release signaling a significant security vulnerability that must be dealt

with immediately. The incredibly complex job of managing a living IT

landscape has led to Herculean efforts by administrators with entire teams

devoting 48 hours of their weekend to installing and validating an endless

stream of items which are continuously being stapled onto software

packages. Colloquial wisdom held that responsible administrators would

stay six months behind Microsoft’s release date before installing update

packages, since the updates themselves sometimes created issues and

were often impossible to roll back. An early incentive toward cloud-hosted

PaaS26 (when reluctance to abandon private data centers was rampant)

was the Nirvana of living in a world relieved of the need to manage

patching, and this is still a primary driver toward rehosting applications

on PaaS since not only OS components are updated but also SDKs for

application code as well as database and security updates.

Arc’s approach to updating servers is world’s away from all-night

sessions of humans watching for maintenance side effects. It was designed

to enable uniform patching and upgrades across hybrid and multi-cloud

environments in service of a single control plane mandate for enterprise

infrastructure administration.

Imagine you have Ubuntu Server running on an EC2 in AWS as part

of your enterprise fleet. About as un-Microsoft as you can get, right? By

installing the Arc agent on this server, it “projects” its runtime information

into your Azure Arc dashboard. As with servers you may have running in

Azure, it can then live up to its control plane moniker by applying updates

25 www.microsoft.com/en-us/msrc/faqs-security-update-guide
26 https://searchcloudcomputing.techtarget.com/definition/
Platform-as-a-Service-PaaS

Chapter 3 Overview of Benefits of Arc in the Enterprise

http://www.microsoft.com/en-us/msrc/faqs-security-update-guide
https://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS
https://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS

54

and policies, running analytics, and more. Arc can then apply policy to

assure the Azure Monitor agent (required as of mid-2024, formerly the

Log Analytics agent was used27) is installed on your Ubuntu Server. Once

configured, this opens up the plethora of monitoring options that will be

discussed in Chapter 8. This is one of many examples of how Arc allows

administrators to benefit from their existing Azure skills to manage a

diverse IT landscape.

Arc utilizes the information provided by the agent to determine

whether the patch level of your Ubuntu Server matches the desired state

you have configured for servers of that type. If it does not, then updates

can automatically be applied to make the server compliant as shown in the

diagram in Figure 3-2 from Microsoft’s documentation.

Figure 3-2.  Credit: Microsoft Azure Update Automation
Documentation

27 https://learn.microsoft.com/en-us/azure/azure-monitor/agents/
azure-monitor-agent-migration

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://doi.org/10.1007/978-1-4842-9480-2_8
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/azure-monitor-agent-migration
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/azure-monitor-agent-migration

55

This does not mean abandoning appropriate cautions including

patch testing environments, proper change management practices to

document each update, and subsequent thorough smoke testing to assure

applications running on the newly patched server still work properly. What

it does accomplish is automation to assure critical patches aren’t delayed,

monitoring that will raise alerts before failures can cascade into adjacent

systems, flagging of troubled installations as not suitable for production,

as well as discovery of what the challenges will be in applying a particular

update to production systems (for instance, if a reboot is required, then a

planned outage may also be necessary). An organization’s security profile

will be raised proportionate to the assets under active management, as

today’s threats aim to probe for any outlier that can provide a foothold

for further intrusion. Today, systems management without automation is

nearly equivalent to no management at all.

Systems management via policy is also advantageous in that effective

patch and update management depends on prioritization of both the

systems being updated and the changes being applied to them. Servers

hosting core line-of-business applications require more vigorous oversight,

detailed analytics, and prompt attention to risk than those with less critical

workloads. Likewise, updates themselves have varying levels of criticality

and value that must be considered in the constant rebalancing of resources

and requirements that is the Wallenda walk of enterprise systems

management.

In each of the aforementioned topics of this chapter, there is

another layer that will ultimately determine the success or failure of the

application, and that is end-to-end security. In Chapter 4, we’ll examine

the practical application of a zero trust security model in the enterprise

and how Arc may contribute to its implementation.

Chapter 3 Overview of Benefits of Arc in the Enterprise

https://doi.org/10.1007/978-1-4842-9480-2_4

	Chapter 3: Overview of Benefits of Arc in the Enterprise
	DevOps
	GitOps
	Governance and Policy
	Modernization
	Upgrades

