
89

CHAPTER 5

Introduction to
Remix IDE
To develop smart contracts and then manage the lifecycle of those

contracts—like compilation, testing, deployment, and updates—we need

an integrated development environment (IDE). There are many options

available. Remix IDE is a web-based IDE (which means it does not require

any software installation). Remix comes with a full suite of development

and deployment tools integrated for developing and managing the

lifecycle of smart contracts.

In this chapter, we will introduce you to the Remix IDE and see how it

can help with creating and managing the lifecycle of smart contracts.

5.1 � Remix IDE
Remix IDE provides a browser-based environment for creating, compiling,

testing, and deploying Ethereum-based smart contracts on the blockchain

network. Actually, working with Remix IDE is a piece of cake! In this

chapter, we will go through how to make use of it.

The Remix IDE is laid out into different panels, each having a different

purpose, as shown in Figure 5-1.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_5

https://doi.org/10.1007/978-1-4842-8975-4_5#DOI

90

Figure 5-1.  Showing the different parts of the Remix IDE

	 1.	 Icon Panel – This shows the different icons for

functions like compiling, running, and deploying

smart contracts.

	 2.	 Side Panel – This shows the File Explorer where we

can create Solidity-based smart contracts.

	 3.	 Main Panel – This is specific to editing the files. We

will show examples later in the chapter.

	 4.	 Terminal – This is where you see the results of

the execution of various commands. You can run

custom scripts directly from the terminal.

Chapter 5 Introduction to Remix IDE

91

We will go over each component that makes up the Remix IDE. We

will create a straightforward smart contract, then proceed to compile and

deploy it on the Ropsten test network using MetaMask. Don’t worry: We

will walk you through the process of writing your smart contract.

The smart contract we create has two simple functions:

	 1.	 Set a message of your choice. This will store the

message on the Ropsten network.

	 2.	 Retrieve the message.

We need an understanding of Solidity and MetaMask alongside

the Remix IDE to create these smart contracts. We already learned how

Solidity and MetaMask work in the previous chapters. So let’s get started.

Any smart contract creation done via the Remix IDE has at least three

essential steps:

	 1.	 Write the smart contract using Solidity.

	 2.	 Compile the contract.

	 3.	 Deploy the contract.

To create the contract, navigate to the Remix IDE at https://remix.

ethereum.org/, as shown in Figure 5-2.

Chapter 5 Introduction to Remix IDE

https://remix.ethereum.org/
https://remix.ethereum.org/

92

Figure 5-2.  Homepage of Remix IDE

Under the default workspace, we see a folder for contracts. Right-click

on it, and then click on Create New File.

I created a file named Test.sol, as shown in Figure 5-3.

Chapter 5 Introduction to Remix IDE

93

Figure 5-3.  Creating a new file called Test.sol (.sol is the solidity
extension)

Copy the code from Listing 5-1 into the right-side window.

Listing 5-1.  Code for simple smart contract

pragma solidity 0.8.5;

contract Test{

 // state variable for holding the message

 string private message;

 // Initialize the message to Hello!!.

 constructor() public {

 message = "Welcome";

 }

Chapter 5 Introduction to Remix IDE

94

 /** @dev Function to set a new message.

 * @param newMessage The new message.

 */

 function setMessage(string memory newMessage) public {

 message = newMessage;

 }

 /** @dev Function to return the message.

 * @return The message string.

 */

 function getMessage() public view returns (string memory) {

 return message;

 }

}

As we can see, this creates a contract by name of Test in the Solidity

language. The contract has two functions:

	 1.	 setMessage

	 2.	 getMessage

Now it’s time to compile the contract, as shown in Figure 5-4.

Chapter 5 Introduction to Remix IDE

95

Figure 5-4.  Compile the Test.sol file by clicking on the Compile
button, shown circled in red

Click on the button highlighted in red. We will see the screen shown in

Figure 5-5.

Chapter 5 Introduction to Remix IDE

96

Figure 5-5.  Compilation screen for smart contract

Click on the Compile Test.sol button, and the screen shown in

Figure 5-6 will appear.

Chapter 5 Introduction to Remix IDE

97

Figure 5-6.  Compiled Test.sol

Click on the Compilation Details button to explore the different

aspects of the contract and environment, as shown in Figure 5-7.

Chapter 5 Introduction to Remix IDE

98

Figure 5-7.  See compiler version and language

Once we have compiled the smart contract, we will deploy it. Click on

the button highlighted in red, as shown in Figure 5-8.

Chapter 5 Introduction to Remix IDE

99

Figure 5-8.  Deployment button marked via red circle

Once the Deploy button has been clicked, we will see the screen shown

in Figure 5-9.

Chapter 5 Introduction to Remix IDE

100

Figure 5-9.  Environment to be chosen for deployment

We can choose from multiple deployment environments, as shown in

Figure 5-10.

Chapter 5 Introduction to Remix IDE

101

Figure 5-10.  Different environments for deployment of smart
contract

In our case, we need to choose the Injected Web3 environment, which

will connect us to the MetaMask wallet for transaction signing and gas

purposes.

The moment we choose the Injected Web3 environment, we will see

the Ropsten network, since this is the network we have chosen for our

MetaMask wallet. This is shown in Figure 5-11.

Chapter 5 Introduction to Remix IDE

102

Figure 5-11.  We choose the Ropsten test network for deployment

We see two other display sections in Figure 5-11. “Account” refers to

the account we created using MetaMask, and “Gas Limit” is the maximum

gas allowed for transactions performed via Remix.

Now, let’s go ahead and click the Deploy button. This will open

the MetaMask wallet (we have deployed MetaMask as a Brave browser

extension), as shown in Figure 5-12.

Chapter 5 Introduction to Remix IDE

103

Figure 5-12.  MetaMask wallet opens up to confirm payment of gas
for deployment

We can see the amount of the gas fee to be paid for this transaction in

terms of ether.

We will confirm this transaction to get it published on the Ropsten

testnet.

We can check on Etherscan to see the state of the transaction, as shown

in Figure 5-13.

Chapter 5 Introduction to Remix IDE

104

Figure 5-13.  Etherscan view of the deployment transaction

As we can see, initially it’s in a Pending state. Also, one can see the key

in the From field is the public key of my account. We can also validate the

key by opening the account details on MetaMask, as shown in Figure 5-14.

Figure 5-14.  MetaMask wallet showing the public key, which we can
confirm on Etherscan

After few seconds, the transaction gets confirmed on the Ropsten

testnet. The details are shown in Figure 5-15.

Chapter 5 Introduction to Remix IDE

105

Figure 5-15.  Etherscan view of the deployment transaction
(completed state)

We also see now a To field. This To field is the address of the contract.

Remember that in Chapter 3 we discussed two types of addresses. This is

the contract address.

We can also check this in Remix IDE, as shown in Figure 5-16.

Chapter 5 Introduction to Remix IDE

https://doi.org/10.1007/978-1-4842-8975-4_3

106

Figure 5-16.  Contract functions on Remix IDE

Apart from the contract address, Remix IDE also provides a way to

invoke these contracts.

Let’s go ahead and invoke the setMessage function on the smart

contract we just deployed.

On setting the message in the text box we will see the view shown in

Figure 5-17.

Figure 5-17.  Feeding the message for invoking a smart contract
function

Chapter 5 Introduction to Remix IDE

107

And after we click the setMessage button, the MetaMask wallet will

open again. This will allow us to sign the transaction and pay the gas fee.

We can see the amount and so forth in Figure 5-18.

Figure 5-18.  Gas consumed for invoking the setMessage function on
the smart contract

We will confirm the transaction in MetaMask now. And we can see the

transaction details on Etherscan, as shown in Figure 5-19.

Chapter 5 Introduction to Remix IDE

108

Figure 5-19.  Etherscan view of the smart contract function
invocation transaction

There are a few things one should remember about the numbers

just shown.

The quantity of gas that is used for a transaction is measured in gas

units consumed per transaction. This quantity, in turn, is a measure of

how complicated the transaction was. This is dependent on the number of

operations and amount of storage space being used by the smart contract.

The price that you are willing to pay for one gas unit is referred to as

the price per gas unit. Your transaction will be processed at a different

speed as a result of this. This process is referred to as a Priority Gas Auction

(PGA), and it means that all transactions are participating in an auction

to determine which miners will have the opportunity to include their

transactions in the blocks that are about to be mined.

The amount of ETH that goes toward covering the transaction fee is

determined by using the following formula:

Transaction Fee = Gas Units Used * Price per Gas Unit

Chapter 5 Introduction to Remix IDE

109

Calling getMessage by clicking the getMessage button gives us the

following output in the Remix IDE console:

{

 "0": "string: hello Web3"

}

This is what we had set as the message on the chain.

5.2 � Creating Own Token
Now, with knowledge of Solidity, MetaMask, and Remix, we move on to a

more concrete example of an application on the Ethereum blockchain.

How many times you might have wondered and wished to have your

own cryptocurrency. With the development of the ERC-20 standard,

creating your own coin is not that hard a job. We will go into the details in

this section.

The number 20 serves as the proposal’s identifier, and ERC is an

abbreviation for Ethereum’s Request for Comments. The ETH network was

targeted for improvement when ERC-20 was developed.

ERC-20 is the standard for creating tokens for DApps on the Ethereum

blockchain. All Ethereum-based tokens are required to adhere to the

ERC-20 standard, which provides a set of rules for creating these tokens.

Tokens, as defined by ERC-20, are assets based on blockchains that

may be sent and received and have value attached to them. To a significant

extent, ERC-20 tokens are analogous to cryptocurrencies such as Bitcoin

and Litecoin, with the difference that ERC-20 tokens operate only on the

Ethereum blockchain network.

Prior to the development of the ERC-20 standard, anyone who wanted

to produce their own token was forced to start from scratch, which resulted

in a wide variety of distinct tokens. This was the case because there were

no specific guidelines or structures for developing new tokens. Adding new

Chapter 5 Introduction to Remix IDE

110

types of tokens necessitated that the developers of wallets and exchange

platforms read through the source code of each individual token and gain

an understanding of it before they could begin to work with those tokens

on their respective platforms. This was a particularly arduous process. It

goes without saying that it was quite challenging to incorporate new tokens

into any program. Wallets can incorporate ERC-20–based tokens into their

platform and allow usage of these tokens via the apps. The ERC-20 token

standard has made it virtually simple and seamless to interface between

different tokens.

The standard specifies nine different functions that must be

implemented by a smart contract, along with three that can be

implemented if desired, including the following:

•	 totalSupply – This function specifies the total supply

for this token. Once the maximum capacity is reached,

no more tokens can be generated.

•	 balanceOf – This function, when invoked, returns the

balance for a specific wallet. We will show how this can

be invoked from Remix IDE.

•	 transfer – This function moves tokens to a specific

address. The tokens are deducted from the sender

address in this case.

•	 transferFrom – This function transfers tokens from one

user address to another. Here, the available tokens in

supply remain the same, but it’s a transfer between two

accounts.

•	 approve – This function determines, taking into

account the overall quantity of tokens, whether or not

it is permissible for a smart contract to allot a specific

number of tokens to a user.

Chapter 5 Introduction to Remix IDE

111

•	 allowance – This function checks whether the

transferor address has enough tokens to transfer to the

transferee.

So, in simple terms, ERC-20 provides the specifications or interface

that allows one to create tokens on the Ethereum blockchain.

Open the Remix IDE and create a file under the Contract directory and

name it Jain.sol.

Copy the code from Listing 5-2 to the file Jain.sol.

Listing 5-2.  Code for creating own token based on ERC-20 specs

// this is the ERC-20 interface which we will implement to

create our own coin

pragma solidity 0.8.5;

interface ERC20Interface {

 function totalSupply() external view returns (uint);

 �function balanceOf(address tokenOwner) external view

returns (uint balance);

 �function allowance(address tokenOwner, address spender)

external view returns (uint remaining);

 �function transfer(address to, uint tokens) external returns

(bool success);

 �function approve(address spender, uint tokens) external

returns (bool success);

 �function transferFrom(address from, address to, uint

tokens) external returns (bool success);

 �event Transfer(address indexed from, address indexed to,

uint tokens);

 �event Approval(address indexed tokenOwner, address indexed

spender, uint tokens);

}

Chapter 5 Introduction to Remix IDE

112

// implementation code for ERC20 interface

//here we create a smart contract named JainToken

contract JainToken is ERC20Interface {

 string public myTokenSymbol;

 string public myTokenName;

 uint8 public tokenDecimals;

 uint public _totalSupplyOfToken;

 mapping(address => uint) tokenBalances;

 mapping(address => mapping(address => uint)) allowed;

 //this is where we initialize our token with total supply,

name etc

 constructor() public {

 myTokenSymbol = "JAIN";

 myTokenName = "Shashank Jain Coin";

 tokenDecimals = 2;

 _totalSupplyOfToken = 200000;

 tokenBalances[msg.sender] = _totalSupplyOfToken;

 �emit Transfer(address(0), msg.sender, _

totalSupplyOfToken);

 }

 // function to return the supply at any point in time.

 �function totalSupply() public override view returns

(uint) {

 �return _totalSupplyOfToken - tokenBalances

[address(0)];

 }

 //function to check balance of tokens at a specific address

 �function balanceOf(address tokenOwner) public override view

returns (uint balance) {

 return tokenBalances[tokenOwner];

Chapter 5 Introduction to Remix IDE

113

 }

 // function for transferring tokens to a specific address.

 �function transfer(address to, uint tokens) public override

returns (bool success) {

//checks if there is enough balance in the sender address

 �require(tokens <= tokenBalances[msg.sender]);

//deduct tokens from the sender

 �tokenBalances[msg.sender] = tokenBalances[msg.

sender]-tokens;

 // add tokens to the recipient address

 tokenBalances[to] = tokenBalances[to] + tokens;

// once transfer is done emit a message

 emit Transfer(msg.sender, to, tokens);

 return true;

 }

 �function approve(address spender, uint tokens) public

override returns (bool success) {

 allowed[msg.sender][spender] = tokens;

 emit Approval(msg.sender, spender, tokens);

 return true;

 }

 // this is same as approve but here we can specify from

address which can be different from //message sender

 �function transferFrom(address from, address to, uint

tokens) public override returns (bool success) {

require(tokens <= tokenBalances[from]);

 tokenBalances[from] = tokenBalances[from]-tokens;

 require(tokens <= allowed[from][msg.sender]);

 �allowed[from][msg.sender] = allowed[from][msg.

sender]-tokens;

Chapter 5 Introduction to Remix IDE

114

 uint c=0;

 c = tokenBalances[to] + tokens;

 require(c >=tokenBalances[to]);

 emit Transfer(from, to, tokens);

 return true;

 }

 // checks if tokenOwner is allowed to make the transfer

 �function allowance(address tokenOwner, address

spender) public override view returns (uint remaining) {

 return allowed[tokenOwner][spender];

 }

 fallback() external payable {

 revert();

 }

}

The coin name is Shashank Jain Coin and its symbol is JAIN. We kept

the supply fixed to 200000.

Compile and deploy the contract. Remember to choose Injected Web3

as the environment with which to connect to MetaMask, as shown in

Figure 5-20.

Chapter 5 Introduction to Remix IDE

115

Figure 5-20.  Remix IDE showing the deployment screen

It will ask for approval of transaction in MetaMask, as shown in

Figure 5-21.

Chapter 5 Introduction to Remix IDE

116

Figure 5-21.  MetaMask opens up on deployment and asks for a
confirmation

Once we confirm, we can see the transaction in Etherscan, as shown in

Figure 5-22.

Chapter 5 Introduction to Remix IDE

117

Figure 5-22.  Etherscan view of the transaction just done

https://ropsten.etherscan.io/tx/0x7fcbb5d6e4414728e25905c9

7c52abc54d8afb90cfeda054c9d2cd91370d659a

Copy the contract address from the To field.

In my case it is 0xc96fcb68cdb1ac742e738294fb7db0b7455bbe6f.

Now we navigate back to the Remix IDE and open the contract, as

shown in Figure 5-23.

Chapter 5 Introduction to Remix IDE

https://ropsten.etherscan.io/tx/0x7fcbb5d6e4414728e25905c97c52abc54d8afb90cfeda054c9d2cd91370d659a
https://ropsten.etherscan.io/tx/0x7fcbb5d6e4414728e25905c97c52abc54d8afb90cfeda054c9d2cd91370d659a

118

Figure 5-23.  Remix view of the deployed contract

If you have multiple contracts deployed, please make sure you select

the right contract based on the contract address.

The first function we invoke is to check the tokens balance. Since the

token owner account is the account that created the contract, we will

copy the account address from MetaMask. Open MetaMask, as shown in

Figure 5-24.

Chapter 5 Introduction to Remix IDE

119

Figure 5-24.  MetaMask showing the account

The address for the owner in my case is

0xb96aeD3A4e11bBB1C028Ac96420305c803880Cd3.

We will now check the balance in this account using the contract API

in Remix IDE for the deployed contract, as shown in Figure 5-25.

Figure 5-25.  Feeding the address to check the balance

We can see that the tokens in this account are what we programmed it

to be when we created and deployed the contract.

Next, we do a transfer of some tokens from this account to another

account. I have already created another account in MetaMask with the

name “test,” and we can see that in Figure 5-26.

Chapter 5 Introduction to Remix IDE

120

Figure 5-26.  MetaMask showing both of my accounts

We get the address of test as

0x1A703B299d764B4e28Dc2C7849CFeDF9979D2430.

We will now transfer 100 tokens to this address using the APIs in

Remix IDE.

Since we have kept decimals to two, the number of coins displayed

would be tokens/102, which means tokens/100 in our case. So when we

transfer 100 tokens we see them as 1 JAIN token. We can see the deployed

contract transfer function in Figure 5-27.

Chapter 5 Introduction to Remix IDE

121

Figure 5-27.  Remix view of transfer function of the deployed contract

Click on the Transact button.

MetaMask opens up for approval, as shown in Figure 5-28.

Chapter 5 Introduction to Remix IDE

122

Figure 5-28.  MetaMask view of the transfer transaction

It asks for 1 JAIN token to be transferred.

We confirm the transaction.

Now, to display our ERC token in MetaMask, click on the Assets tab, as

shown in Figure 5-29.

Chapter 5 Introduction to Remix IDE

123

Figure 5-29.  MetaMask view of the account

In the Assets tab, we need to click on the Import Tokens button. Paste

the token contract address. Once we paste, the Token Symbol field is

populated, as shown in Figure 5-30.

Chapter 5 Introduction to Remix IDE

124

Figure 5-30.  Import of our token (JAIN token)

Now we will see the balance of JAIN tokens, as shown in Figure 5-31.

Figure 5-31.  Shows balance of JAIN tokens in Account 1

We will now navigate to the transferee account and check whether the

JAIN token arrived or not. We will again have to import the JAIN token into

the test account. On doing the import, we see the balance under the test

account, as shown in Figure 5-32.

Chapter 5 Introduction to Remix IDE

125

Figure 5-32.  Shows that 1 JAIN token arrived at the test account

We now see that the test account has 1 JAIN credited.

We go back to Remix IDE and also check the balance there, as shown

in Figure 5-33.

Figure 5-33.  Balance in test account

We see 100 as the balance in Remix IDE.

Chapter 5 Introduction to Remix IDE

126

5.3 � Summary
In this chapter, we introduced the reader to the concept of a Web3 app.

We learned about Remix IDE as well as about a simple manifestation of a

Web3 app in the form of an ERC-20 token on the Ropsten testnet using the

MetaMask wallet.

In the next chapter, we will introduce the reader to Truffle, which is

another development environment for DApp development.

Chapter 5 Introduction to Remix IDE

	Chapter 5: Introduction to Remix IDE
	5.1 Remix IDE
	5.2 Creating Own Token
	5.3 Summary

