
63

CHAPTER 4

Wallets and Gateways
Users have the ability to manage their accounts on blockchain networks

like Bitcoin or Ethereum through the usage of wallets. With an account on

Ethereum, one can participate on the Ethereum blockchain network, such

as by performing transactions on it.

An address on the Ethereum blockchain is a public string of letters and

integers that begins with 0x. Because an Ethereum address is represented

by a string of numbers and letters, it is possible to check the balance of

any Ethereum address on the blockchain. However, it is not possible to

determine who controls any given address. Users are able to exert control

over an unlimited number of addresses via wallets, which can be either

software or hardware.

Users of Ethereum wallets can move their cash around within the

wallet by using a private key. This key serves as the control mechanism for

Ethereum wallets. Because of this, these private keys are supposed to be

known only by the person who created the wallet, as anyone who knows

them can access the funds in the wallet.

There is a wide variety of Ethereum wallets available, some of which

may be stored on your computer or mobile device, and others of which can

be stored offline by means of a piece of paper, titanium, or other hardware.

You can choose the sort of Ethereum wallet that best suits your needs.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_4

https://doi.org/10.1007/978-1-4842-8975-4_4#DOI

64

One needs to use a secured key (known as the private key) to create

a wallet. A wallet can be thought of as a store that holds the private and

public keys for a user. In cryptography, a private key can be used to sign

a transaction and a public key can be used to verify the signer. The idea

is that the user keeps the private key secured with herself and shares the

public key on the network. This allows the user to sign the transactions

she wants to execute, and the verifiers using her public key can verify if

she is the signer of those transactions. Wallets simplify this process of key

management by providing a single place and an abstraction for clients

to interact with the chain. People who want to avoid managing wallets

can make use of third-party exchanges like binance that do the wallet

management on the user’s behalf. Since these exchanges are mostly

centralized, any compromise of their servers can lead to compromise of

user wallets. So, if your keys are on the exchange via an exchange-managed

wallet, it is at your own risk. As the common saying goes, “Your keys, your

money.” From a security standpoint, it’s always a better choice to have the

keys off the exchange.

4.1 � Types of Wallets
Some people store their Ethereum holdings in wallets designed for users,

while others use cryptocurrency exchanges or other services, such as

online marketplaces or loan services, offered by wallets designed for

users. Wallets like these are referred to as custodial wallets, and they are

distinguished from other wallets by the fact that they store users’ private

keys on their behalf. The user does not have direct control over the funds

stored in the wallet; rather, the service manages the wallet on behalf of the

user. There is a cost associated with this arrangement.

Chapter 4 Wallets and Gateways

65

The danger that another party will not fulfill their obligations is known

as counterparty risk. This risk is increased when funds are stored with a

third party through the use of custodial wallets. The service that stores

the private keys runs the risk of being hacked or acting maliciously, for

example.

It’s possible that various users would benefit from using one particular

wallet over another. There are a plethora of wallets available now for the

user to choose from. Most of them use Ethereum or ERC 20 standard–

based tokens to access the applications on the blockchain. This access

is realized by executing code in the form of a smart contract on the

blockchain network. ERC 20 is a set of standards defined for creating

tokens on the chain. This allows people to create their own tokens, which

then can be used for their own applications if so desired.

There are different kinds of wallets available, as follows:

	 1.	 Mobile Wallet – These are mobile applications

like the bitcoin.com app, which provides an

interface for using the keys for transactions on the

blockchain.

	 2.	 Desktop Wallet – This is installed as a desktop

application and can be used on a laptop or home

PC. An example of such a wallet is electrum.

	 3.	 Web Extensions – These are browser-based

extensions that allow the wallet to be accessed from

within the browser. MetaMask is an example of such

wallets.

	 4.	 Hardware Wallet – These are physical hardware

devices that can be used to securely manage your

wallet. This is the most secure means of keeping

keys secure.

Chapter 4 Wallets and Gateways

http://bitcoin.com

66

In this chapter, we will discuss the MetaMask wallet, which comes as

an extension to browsers like Chrome and Brave.

Once we choose a wallet, we need funds to interact with the Ethereum

network. These funds are in the form of ether, which is the cryptocurrency

used on the Ethereum blockchain. Ether can be purchased via exchanges

like Binance or Coinbase.

All transactions on the Ethereum blockchain are validated by nodes,

which are called validator nodes. They charge a fee for validating the

transactions, and this fee (called gas) has to be paid by the user initiating

the specific transaction. There are means via which a user can check the

estimated gas fee based on estimated resources needed to execute the

specific smart contract.

Since the production Ethereum network (also known as mainnet) will

charge the gas fee for every transaction, it’s not feasible to do development

on the mainnet. To facilitate the development of decentralized

applications on the Ethereum blockchain, there are many development

networks available, known as testnets, that allow one to develop

applications using exactly the same interfaces as the Ethereum blockchain,

but without incurring real gas costs.

4.2 � So, What Is a Testnet ?
When someone starts to develop a decentralized application (Dapp), they

can deploy it to a test network, which from an interface perspective is the

same as the main network. This test network is known as a testnet. This

provides an opportunity for the developers, the community, and you to

test it out before real assets are involved. Ether and tokens on a testnet are

simple to acquire and have no value in the real world.

Chapter 4 Wallets and Gateways

67

There are currently four major testnets in operation, and each

functions in a manner that is analogous to the production blockchain

(where your real ether and tokens reside). In most cases, projects will

only be developed on a single testnet, despite the fact that individual

developers may have a preference or favorite among them.

	 1.	 Ropsten – A testnet blockchain that is based on

proof of work and most closely resembles Ethereum

	 2.	 Rinkeby – A blockchain based on proof of authority

that was initiated by the Geth team

	 3.	 Kovan – Again, a blockchain based on proof of

authority

	 4.	 Goerli – A proof of authority–based testnet

To connect our wallet to any of these testnets, we need to have these

two things:

	 1.	 A wallet installed on the local machine. We will use

MetaMask as the wallet here.

	 2.	 A gateway like Infura to enable our wallet

connectivity to these testnets.

4.3 � MetaMask
MetaMask belongs to a family of what we call HD (hierarchical

deterministic) wallets. See https://coinsutra.com/hd-wallets-

deterministic-wallet/.

Chapter 4 Wallets and Gateways

https://coinsutra.com/hd-wallets-deterministic-wallet/
https://coinsutra.com/hd-wallets-deterministic-wallet/

68

4.3.1 � Installation
In the next two steps, installation and configuration instructions for

MetaMask are detailed for your convenience. After that, we will go through

a few different configurations that you ought to become familiar with.

We can install MetaMask as an extension to Chrome/Brave. Figure 4-1

shows how the extension looks on Brave.

Figure 4-1.  MetaMask extension on Brave browser

Make sure that only you can access your MetaMask account by coming

up with a password and keeping it a secret from anyone else who uses the

computer you share.

Immediately following the submission of your password, you will be

presented with your 12-word seed phrase.

Chapter 4 Wallets and Gateways

69

Even if they do not have the password that you chose for your account

in the step before this one, anyone who knows these 12 words can log in

to your account. You should never share your seed words with somebody

in whom you do not have complete faith. In the event that you forget your

password or something happens to your computer, you will need to re-

enter these 12 words to regain access to your wallet.

Launching the MetaMask wallet extension, we see three stacked dots

on the right-hand side, as shown in Figure 4-2.

Figure 4-2.  MetaMask wallet extension

By clicking on these three dots, we can get account details, as shown in

Figure 4-3.

Chapter 4 Wallets and Gateways

70

Figure 4-3.  Account details of the MetaMask wallet

We can view the account on Etherscan by clicking on the button View

on Etherscan, as shown in Figure 4-4.

Chapter 4 Wallets and Gateways

71

Figure 4-4.  Etherscan view of the account

Click on the dropdown menu to show the networks available, as shown

in Figure 4-5.

Chapter 4 Wallets and Gateways

72

Figure 4-5.  The networks available to MetaMask wallet

Before we add funds to the wallet from a testnet, we need to

understand how the connectivity to these testnets works from MetaMask.

One option is to run a testnet node ourselves and then connect our wallet

to it. Another option is to go via a hosted testnet.

There are a few hosting providers for testnets. Here, we discuss one of

them known as Infura.

Infura is an infrastructure-as-a-service (IaaS) and Web3 backend

provider that offers a variety of services and tools to blockchain developers.

This includes the application programming interface (API) suite for the

Infura platform. The Infura Web3 service revolves around the flagship

Infura Ethereum API as its central component. However, communication

with both the InterPlanetary File System (IPFS) and Filecoin is currently

Chapter 4 Wallets and Gateways

73

being worked on. Having said that, certain alternatives to Infura currently

offer wider cross-chain connectivity than Infura itself does. Many

blockchain developers are currently seeking Infura alternatives, despite

the fact that Ethereum is currently the most popular programmable

blockchain for the launch of decentralized applications (DApps). This

occurs as Binance Smart Chain (BSC) and Polygon Network are becoming

increasingly well known (previously Matic Network).

A high-level architecture of the Infura gateway is shown in Figure 4-6.

Figure 4-6.  Infura architecture

On the left side of Figure 4-6, we see the wallet that connects to the

Infura infrastructure via either https or websockets. Infura in turn provides

connectivity to the blockchain networks, like Ethereum mainnet or

testnets. Infura acts as a gateway for the wallets to the blockchain world.

Users who make use of the Infura Ethereum API are able to devote

more of their time and resources to activities such as doing market

research and product development. In addition, users are provided

with a straightforward and user-friendly dashboard that allows them to

obtain a greater understanding of how apps are performing. Utilizing

the dashboard makes it simple to conduct application analysis and

configuration. In addition, developers are able to track usage times,

Chapter 4 Wallets and Gateways

74

the effectiveness of various request types, and a great deal more. These

insights allow developers to improve their programs by gaining a deeper

understanding of the people who use those applications. In addition, the

Infura Ethereum API is interoperable with both testnets and mainnets, and

it uses client-compatible JSON-RPC that is transferred through HTTPS and

WSS. Users are also given the opportunity to obtain access to the Ethereum

Archive node data that is made accessible as an add-on.

Infura is the default node provider that MetaMask utilizes, although

users have the opportunity to switch to another node provider or even host

their own node.

Let us add some funds to our MetaMask wallet.

We will experiment a bit with the Ropsten testnet for this example.

Navigate to https://faucet.egorfine.com/.

We see a screen similar to the one shown in Figure 4-7.

Figure 4-7.  Ropsten testnet Faucet

In the address field, we need to put the public key that we get from the

MetaMask wallet. Upon clicking the Give me Ropsten ETH! Button, we see

the result shown in Figure 4-8.

Chapter 4 Wallets and Gateways

https://faucet.egorfine.com/

75

Figure 4-8.  Confirmation of ETH added to the wallet

We can check our MetaMask wallet to see if funds got added, as shown

in Figure 4-9.

Figure 4-9.  The MetaMask wallet view. It shows the Ropsten ETH
credited to the wallet

We can see 10.9973 ETH in my wallet, out of which 0.9973 were already

there from my previous addition.

We will look into Etherscan once to check the transaction. We see a

screen like that shown in Figure 4-10.

Chapter 4 Wallets and Gateways

76

Figure 4-10.  Etherscan transaction view

We can see that 10 ether got added to my account on the Ropsten

network.

We will need these funds when we create a smart contract and invoke

functions on it. We already talked about gas fees in the previous chapter.

First, we will create a simple web page that uses the web3.js library

to connect to the testnet via Infura. Let’s now get a small introduction to

web3.js.

4.4 � Web3.js
The Ethereum APIs can be consumed over an HTTP-based protocol.

So, one can create HTTP clients, which allows us to interface with the

Ethereum networks (either mainnet or testnet). To ease the process of

development, the Ethereum Foundation created a library in JavaScript

that allows us to access the Ethereum blockchain programmatically. They

called this library web3.js, and, as the name suggests, it’s for web3-based

applications, and the library itself is written in the JavaScript programming

language.

This library comprises different modules, which are described in the

next subsections.

Chapter 4 Wallets and Gateways

77

4.4.1 � web3-eth
A user of web3.js is able to connect with the Ethereum blockchain thanks

to the web3-eth module, which offers functions that make this possible.

To be more specific, these functions are able to communicate with smart

contracts, accounts that are controlled by other parties, nodes, blocks that

have been mined, and transactions.

Using the web3-eth library functions, one can sign the transations,

can check balances in your Ethereum wallet, as well as send the signed

transaction over the internet to the Ethereum blockchain.

4.4.2 � web3-shh
You will be able to interact with the Whisper protocol if you make use

of the web3-shh module. Whisper is a messaging protocol that was

developed to facilitate the easy broadcasting of messages and the low-

level, asynchronous transmission of data. The following are two instances

that illustrate the point:

	 1.	 The network receives a Whisper message when

web3.shh.post is called.

	 2.	 Apart from just sending messages, one can

subscribe to messages using the web3.ssh.

subscribe method. This allows the user to receive

messages from the network.

4.4.3 � web3-bzz
It’s in the user’s interest to have clarity as to what kind of data is stored on

the blockchain. Generally, we store only transactional data on the chain.

Other data, like documents, images, videos, and so on, are not stored on

the blockchain. We can use decentralized storage services like Swarm, ipfs,

Chapter 4 Wallets and Gateways

78

and so forth for those needs. We can store references to such content on

the blockchain though. And this is where the module web3-bzz helps. It

provides us a library-based abstraction to communicate with Swarm.

We can upload and download images, documents, videos, and audio

clips to the Swarm network using the web3.bzz.upload and web3.bzz.

download methods.

4.4.4 � web3-net
You will be able to interact with the network attributes of an Ethereum

node if you make use of the web3-net module. You will be able to get

information about the node by using the web3-net module. This module

allows us to extract metadata about the Ethereum node itself. As an

example, the network ID can be obtained by calling web3.net.getID,

and using web3.net.peerCount will return the number of peer nodes

connected to a specific node.

4.4.5 � web3-utils
The web3-utils module allows us to make use of some of the utility

functions defined inside this library module. Included in web3-utils is a

collection of utility functions that can search databases, convert numbers,

and check to see whether a value satisfies a given criterion. The following

are three instances that illustrate the point:

	 1.	 web3.utils.toWei is a converter that goes from wei

to ether.

	 2.	 web3.utils.hex converts a hexadecimal value to a

string with the ToNumberString function.

Chapter 4 Wallets and Gateways

http://web3.net
http://web3.net

79

	 3.	 The web3.utils.isAddress function determines

whether or not the given string represents a valid

Ethereum address.

4.5 � Infura Setup
Since we use Infura as the gateway, we need to configure the Infura

endpoint, which can then be used from our applications.

In order for us to access the Infura network, the first thing that has to

be done is to sign up for an Infura account and obtain an API key. We can

go to https://infura.io to access Infura.

Please visit the Infura website to create a new account for yourself.

When you open the account creation page, you will see the screen shown

in Figure 4-11.

Chapter 4 Wallets and Gateways

https://infura.io

80

Figure 4-11.  Infura account creation page

The next step is to go to the dashboard page and click the Create New

Project button. Give your project a name and click the Create button, as

shown in Figure 4-12.

Chapter 4 Wallets and Gateways

81

Figure 4-12.  Create New Project screen

I created a project named trial, as shown in Figure 4-13.

Figure 4-13.  Creating a project named trial

We next get the project ID and project secret, as shown in Figure 4-14.

Chapter 4 Wallets and Gateways

82

Figure 4-14.  Keys for the Infura project we created

Since I am using the Ropsten network, I choose the endpoint as

Ropsten.

We get two endpoints:

	 1.	 HTTPS based

	 2.	 Secure web socket

4.5.1 � Interfacing with Ropsten Network via
Infura Gateway

Please copy the HTTPS endpoint URL. Remember this URL constitutes

your project ID. We will use this URL in our HTML page, which we will

create next.

Create a directory web3

Cd to web3 directory

Inside the web3 directory, create an HTML page. Copy the following

content to this HTML page:

<html>

 <header>

Chapter 4 Wallets and Gateways

83

 <title>Sample Infura connectivity check</title>

 <script

//importing the web3.js library

 src="https://cdn.jsdelivr.net/gh/ethereum/web3.js@1.0.0-

beta.36/dist/web3.min.js" integrity="sha256-nWBTbvxhJgjslRyuAK

JHK+XcZPlCnmIAAMixz6EefVk=" crossorigin="anonymous"></script>

 <script src="https://code.jquery.com/jquery-3.4.1.min.js"

integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="

crossorigin="anonymous"></script>

 <script>

 if (typeof web3 !== 'undefined') {

 web3 = new Web3(web3.currentProvider);

 } else {

 // Set the provider you want from Web3.providers

//see the ropsten url is the one we copied from infura

 web3 = new Web3(new Web3.providers.HttpProvider("https://

ropsten.infura.io/v3/b1c76cbfffd24d09aa70726f91de1004"));

 }

 </script>

 </header>

 <body>

 <div>

//get the last block on the ropstentestnet

 <h2>Latest Block</h2>

 </div>

Chapter 4 Wallets and Gateways

84

 <script>

 web3.eth.getBlockNumber(function (err, res) { if (err)

console.log(err)

 $("#lastblock").text(res)

 })

 </script>

 </body>

 </html>

We get the following output on loading this page in the browser; we see

the response as shown in Figure 4-15.

Figure 4-15.  Getting the latest block via web3 library

This means that our test succeeded in connecting to the Ropsten

testnet via the Infura gateway.

We modify the following HTML file to extract more information, like

the ETH balance as well as the node information:

<html>

 <header>

 <title>Sample Infura connectivity check</title>

 <script

Chapter 4 Wallets and Gateways

85

 src="https://cdn.jsdelivr.net/gh/ethereum/web3.js@1.0.0-

beta.36/dist/web3.min.js" integrity="sha256-nWBTbvxhJgjslRyuAK

JHK+XcZPlCnmIAAMixz6EefVk=" crossorigin="anonymous"></script>

 <script src="https://code.jquery.com/jquery-3.4.1.min.js"

integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="

crossorigin="anonymous"></script>

 <script>

 if (typeof web3 !== 'undefined') {

 web3 = new Web3(web3.currentProvider);

 } else {

 // Set the provider you want from Web3.providers

 web3 = new Web3(new Web3.providers.HttpProvider("https://

ropsten.infura.io/v3/b1c76cbfffd24d09aa70726f91de1004"));

 }

 </script>

 </header>

 <body>

 <div>

 <h2>Latest Block</h2>

 <h2>My balance</h2>

 <h2>node information</h2>

 </div>

 <script>

Chapter 4 Wallets and Gateways

86

 �web3.eth.getBlockNumber(function (err, res) { if (err)

console.log(err)

 $("#lastblock").text(res)

 })

 �web3.eth.getBalance("0xb96aeD3A4e11bBB1C028Ac96420305c803880

Cd3", function (err, res) { if (err) console.log(err)

 $("#balance").text(res)

 })

 �web3.eth.getNodeInfo(function (err, res) { if (err) console.

log(err)

 $("#nodeInfo").text(res)

 })

 </script>

 </body>

 </html>

Loading this in a browser gives the output shown in Figure 4-16.

Chapter 4 Wallets and Gateways

87

Figure 4-16.  Showing block information and balance information

The same functionality we showcased via the browser can be achieved

using nodejs as the JavaScript-based application server.

4.6 � Summary
In this chapter, we looked at different kinds of wallets and how they work.

We detailed how MetaMask wallet works. We also looked at how gateways

work and their purpose in the web3 world.

In the next chapter, we will look into how we can use the Remix IDE

(a browser-based environment) to compile and deploy smart contracts.

Chapter 4 Wallets and Gateways

	Chapter 4: Wallets and Gateways
	4.1 Types of Wallets
	4.2 So, What Is a Testnet ?
	4.3 MetaMask
	4.3.1 Installation

	4.4 Web3.js
	4.4.1 web3-eth
	4.4.2 web3-shh
	4.4.3 web3-bzz
	4.4.4 web3-net
	4.4.5 web3-utils

	4.5 Infura Setup
	4.5.1 Interfacing with Ropsten Network via Infura Gateway

	4.6 Summary

