
135

CHAPTER 6

Security Processes
Every modern enterprise uses a large amount and variety of data to work on various 

data-driven initiatives. Having various security processes in place is a must in order to 

properly and safely use data and create business insights from it.

The previous chapter discussed various patterns for building applications on the 

cloud. You also took a quick tour of various data security patterns that provide easier and 

safer access to the data stored in the cloud.

This chapter covers the following topics:

•	 Complete mediation with threat modeling

•	 Securing the infrastructure and application deployment

•	 Security testing

•	 Key management

•	 Vulnerability management

•	 Disaster recovery

�Complete Meditation with Threat Modeling
Every company has a dedicated infrastructure and networking team. The application 

development team focuses more on the development lifecycle and leaves the security 

assessments and controls to the infrastructure and networking team. The majority of the 

developers think this way due to the following reasons:

•	 Security is implemented from Layer 2/Layer 3/Layer 4 of OSI model, 

as shown in Figure 6-1, and there are various security layers: Physical 

Security, Perimeter and Network Security, Secure Endpoints, 

Application Security, Data Security, and Mission-Critical Assets.

© Sagar Lad 2023 
S. Lad, Azure Security For Critical Workloads, https://doi.org/10.1007/978-1-4842-8936-5_6

https://doi.org/10.1007/978-1-4842-8936-5_6#DOI


136

Figure 6-1.  Security layers

•	 Fault isolation and resiliency weren’t considered during the 

design phase.

As displayed in Figure 6-2, thread modeling is an iterative process that starts by 

defining the threat, creating the threat modeling diagram, identifying the relevant 

threats, mitigating the threats, and validate them to see if the relevant threat is resolved.

Figure 6-2.  Threat modeling process

Chapter 6  Security Processes



137

Things are changing fast due to greater public cloud adoption. In the past few years, 

distributed architecture coupled with DevOps has put forth new requirements like 

resiliency and fault isolation on applications and services. Application and services need 

to continue functioning correctly even in the presence of faults in underlying layers. This 

is also due to the fact that hardware and networks are moving to a commodity model 

leveraging PaaS models with on premises and public cloud options. Nonfunctional 

requirements (NFRs) like fault isolation and resiliency are becoming the norm of every 

application and service. This changing need has also put more focus on "security 

by design," bringing in the need to implement the security controls from within the 

application and services.

Enterprises need to determine the security controls which need to be implemented 

in the application and services. Security controls are not an IT need but a business 

need and hence the security controls need to be done in the frame of "business risk 

assessment", modeling threats with a focus on business impact. A beautiful approach 

to modeling security threats for your application and services is the STRIDE model. 

With this model, we can answer the questions like "What are the security threats in my 

application and services and what security controls does my team need to implement for 

an application or service?".

Figure 6-3.  STRIDE threat modeling

Chapter 6  Security Processes



138

Threat modeling is a process of creating an optimized application by identifying the 

objectives and security vulnerabilities to prevent the security issues to the application. It 

helps to identify the security requirements of the system or application which is mission 

critical and contains sensitive data. It provides a systematic and structured process to 

identify potential threats and the security vulnerabilities to reduce the risk of the IT 

resources.

With respect to software security, threat modeling is considered to be a very critical 

activity of the software design and development. Without evaluating and migrating 

the threats, it is impossible to build applications and systems which comply with the 

corporate security policies and regulatory requirements.

We look at the process of threat modeling in the next sections.

�Form a Team
The team should include stakeholders, business developers, owners, and security 

experts. People from diverse backgrounds make the threat modeling process more 

robust and secure.

�Define the Scope
Define the scope of the application to start the threat-modeling process. For example, 

does the developed application focus on applications, networks, or infrastructures? You 

can create a catalogue of all components and map them to the architecture diagrams.

�Brainstorm and List Potential Security Threats
For all system components, determine if threats exist. With this exercise, you can build 

the roadmap, pinpoint the expected and unexpected threat scenarios, including the 

threat trees, and identify possible weakness and vulnerabilities.

�Prioritize Threats
Determine the level of the threats and rank them to take appropriate risk-mitigation 

actions. One common approach to determining priority is to multiply the damage 

potential of the threat by its likelihood of happening.

Chapter 6  Security Processes



139

�Develop and Implement Risk Mitigation
Decide how to mitigate each threat or reduce the risk to an acceptable level to avoid any 

issues with the security measures. You can transfer the risk, reduce the risk, or accept 

the risk.

�Document the Results
You can document all the findings of the threat-modeling process and related actions so 

future changes to the application, landscape, and the operating environment can assess 

and update the threat model. See Figure 6-4.

Figure 6-4.  Threat-modeling steps

The threat modeling (aka the STRIDE) model works on the principle of data flows 

and trust boundaries. Each security threat in the STRIDE model is a potential violation 

that needs to be accessed for vulnerabilities in your application and system. If the risks 

are viable, you must implement the security controls.

Each letter of STRIDE stands for a security threat and is linked to a desired property. 

Here are the details:

S = Spoofing (linked to the authenticity of your application and services)

T = Tampering (linked to the integrity of the data)

R = Repudiation (linked to the beautiful requirement of non-repudiation)

I = Information disclosure (linked to the confidentiality of your data or parts of 

application and services)

D = Denial of service (linked to the availability of your application and services)

E = Elevation of privilege (linked to the authorization of your application and 

services)

Chapter 6  Security Processes



140

STRIDE modeling must be done at the design phase and revisited in the 

development and testing phases. Security needs to be done from the perspective 

of capturing all requirements as early as possible. The STRIDE model discusses the 

potential security risk per threat and marks them against their probability and impact. 

The risks are seen from inside as well as outside attack vectors. The STRIDE model can 

reveal threats and, with proper analysis, the trust boundaries can be determined and 

security controls that need to be implemented can be captured.

It is best to couple STRIDE threat modeling with pattern-based security. Based on the 

trust boundaries identified from the threat modeling, you can map the security controls to 

a particular security zone and then implement the controls aligned to this security zone. 

This keeps security zones and security controls centralized and brings the security team 

closer to engineers. In addition to this, the model is easily to for any new application or 

service. The beauty of this approach from an architectural perspective is simplicity while 

serving the requirements of fault isolation and resiliency for the applications and services 

across the Development, Test, Acceptance, and Production (DTAP) environments.

After looking at the threat modeling process and its steps in detail, it’s now time to 

dive into how you can secure the infrastructure and application deployment process.

�Securing the Infrastructure and Application 
Deployment
Every enterprise must have a well-defined software development lifecycle process to 

deploy applications securely with proper security checks in place during the design, 

development, testing, and deployment stages. It is best to create a layered system 

architecture that uses standard frameworks to design an application for the identity, 

authorization, and access control. Let’s look at a few options to improve security of the 

infrastructure and application deployment.

�Automate Security Releases
Considering the wide range of security vulnerabilities, it is very difficult to deploy, 

update, and patch application environments to meet security standards without using 

the automated security tools. In order to automate the security releases, it is best to 

create continuous integration/continuous deployment pipelines (CI/CD). One advantage 

of creating automated CI/CD pipelines is that you remove the manual errors, provide a 

Chapter 6  Security Processes



141

standardized development feedback loop, and increase the speed of deployment for the 

new features. You can also use automation to scan the security vulnerabilities when the 

artefacts are created and define policies for different environments (development, test, 

acceptance and production—DTAP) to verify that the artefacts have been deployed. See 

Figure 6-5.

Figure 6-5.  Automated security with CI/CD pipeline

There are certain considerations while automating security with CI/CD pipelines. 

You need to protect the CI/CD pipeline using Access Control.

You need to start by defining who can send code changes to the repository, which 

will be used as a storage base to ensure the first layer of protection for the automated 

pipeline. You also need to ensure what is sent, stored, and moved into the CI/CD 

pipeline. Another point to ensure is that the security of the process occurs with the least 

possible intervention. See Figure 6-6.

Chapter 6  Security Processes



142

Figure 6-6.  Automated CI/CD pipeline configuration

�Well-Governed Application Deployment
If an attacker compromises the CI/CD pipeline, the entire technology stack can have 

a major impact. In order to secure the pipeline, you need to enforce the established 

approval process to deploy the code into production. See Figure 6-7.

Chapter 6  Security Processes



143

Figure 6-7.  Application deployment governance

�Scan Security Vulnerabilities
It is best to use automated tools to continuously perform a vulnerability scan before 

packages/containers are deployed to the production environment. See Figure 6-8.

Figure 6-8.  Security vulnerability scans

Chapter 6  Security Processes



144

�Monitor Application for Security Vulnerabilities
In order to proactively react to security vulnerabilities, it’s best to constantly monitor the 

application code for vulnerabilities. For example, you can use the web security scanner 

to identify the security vulnerabilities in the app engine, compute engine, or web 

applications. This web scanner helps identify vulnerabilities, including XSS (cross-site 

scripting), Flash injection, mixed content (HTTP in HTTPS for example), and insecure 

libraries. If you have a monitoring mechanism in place, you can easily detect such 

vulnerabilities beforehand to tackle those security challenges at the early stage of the 

application development and deployment process. See Figure 6-9.

Figure 6-9.  Security vulnerability management

�Control the Data Movement
In order to control and secure the data stored in cloud services, you need to configure 

the cloud resources with correct security configurations.

�Infrastructure as a Code (IaC)
All operational changes and modifications should be done through the Infrastructure as 

a Code pipelines. IaC is a key DevOps practice and it is often used to enable continuous 

integration and delivery. See Figure 6-10.

Chapter 6  Security Processes



145

Figure 6-10.  Infrastructure as a Code

It reduces the manual effort required to do all the configurations and automate the 

environment deployment using the Infrastructure as a code pipeline. It is a vital practice 

for the DevOps adoption. It makes the release changes to the production faster and 

reduces the time to market.

�Pipeline Secret Management
Confidential certificates, keys, and secrets used in the deployment pipeline should 

be stored in the Key Vault (AKV). When you do the deployment of the application 

infrastructure with the Azure Resource Manager (ARM), Bicep or Terraform, you have 

various credentials to connect to different services. It is best to use confidential secrets 

from the secret management tools like Key Vault (AKV) instead of hard coding these 

values. See Figure 6-11.

Chapter 6  Security Processes



146

Figure 6-11.  Azure Key Vault for Pipeline secrets

�Adhere to the Principle of Least Privilege
Based on the principle of least privilege, the main goal is to grant only required 

permissions. If possible, it is also best to grant access to the roles and not to the 

individual users. Restrict the access as much as possible:

	 1.	 Restrict admin access to users as much as possible

	 2.	 Users with higher access can change security objects such as roles, 

users, or permission management

	 3.	 Roles that have capability to add, change, or remove security 

privileges

The principle of least privileged access means that users are only given the privileges 

that they need to perform their jobs efficiently.

Let’s now look at how to perform security testing on an application.

Chapter 6  Security Processes



147

�Security Testing
With cloud computing, you can access and use IT resources over the Internet with the 

pay-as-you-use cost principle. You can access technology and cloud services using the 

compute power, storage, and databases instead of buying, owning, and maintaining 

physical data centers and servers. There are many public cloud providers available in the 

market, including Azure, Google Cloud, and AWS. See Figure 6-12.

Figure 6-12.  Public cloud providers

As cloud provider popularity increases day by day, attackers focus more on cloud 

services and security vulnerabilities. Attackers use security attacks against these 

managed cloud service providers. Enterprise organizations should focus on securing 

cloud resources.

In order to avoid cloud security attacks, it is best to enable cloud penetration testing, 

which is an attack performed to find security vulnerabilities that could cause issues or 

misconfigurations in a cloud-based system. See Figure 6-13.

Chapter 6  Security Processes



148

Figure 6-13.  Cloud security testing

Security testing is an essential step in the software development lifecycle. In security 

testing, it uncovers security vulnerabilities of the system and ensures that data and 

system resources are protected from attackers. With security testing, you can also ensure 

that software systems and applications are free from threats and risks.

The main goal of security testing is as follows:

•	 Identify the threats in the system

•	 Measure and detect security vulnerabilities on time

•	 Proactively detect every possible security risk in the system

•	 Enable integration with third-party tools for code scanning and 

vulnerabilities

During security testing, the main goal of the principles are as follows (see 

Figure 6-14):

•	 Confidentiality

•	 Integrity

•	 Authentication

•	 Authorization

Chapter 6  Security Processes



149

•	 Availability

Figure 6-14.  Security testing types

Let’s look at the types of security testing.

�Vulnerability Testing
It is best to enable this type of testing performed with the help of an automated 

software. The main goal is to scan the entire system and application to detect the known 

vulnerabilities.

�Security Scanning
During security scanning, the main goal is to identify network and system weaknesses. 

This type of scanning provides solutions for reducing the risks or defects.

�Penetration Testing
With penetration testing, the main goal is to simulate attacks from attackers to tackle 

those challenges proactively. This includes an analysis of the system to examine 

potential vulnerabilities from the hacker to hack the system. See Figure 6-15.

Chapter 6  Security Processes



150

Figure 6-15.  Penetration testing

�Risk Assessment
Risk assessment mainly consists of security risks that were observed in the organization 

to determine the likelihood and the impact of the risk. Risks are divided into the three 

types: low, medium, and high. See Figure 6-16.

Chapter 6  Security Processes



151

Figure 6-16.  Risk assessment matrix

�Security Auditing
Security auditing is an internal inspection of the software application and OS to identify 

security defects. Security audits can be performed in various ways by looking at the 

code line by line. You can start by the planning, scoping, and logistics of the security 

auditing to be placed across the applications. The next step is to collect data and gather 

evidence. Once the data is collected, you perform the analysis, interpret the data, and 

generate the reports. Once that is done, you create an action plan to fix those findings. 

See Figure 6-17.

Chapter 6  Security Processes



152

Figure 6-17.  Security audit process

�Ethical Hacking
The purpose of ethical hacking is to expose security flaws in the system. It involves an 

authorized attempt to get unauthorized access to an application, system, or data.

Ethical hacking follows these four concepts:

•	 Legal: Gather approval to access and perform the security 

assessment.

•	 Define scope: Determine the scope to perform the ethical hacking so 

that hacking activities will remain legal and within the organization’s 

approved boundaries.

•	 Record vulnerabilities: Once all the vulnerabilities are recorded, 

notify the organization of all the vulnerabilities and take action to 

prevent the security issues.

Chapter 6  Security Processes



153

•	 Posture assessment: This is a combination of ethical hacking, 

security scanning, and risk assessments to provide an overall 

security of the organization. This assessment is done to ensure 

that cybersecurity practices are followed in the organization. Data 

breaches, cyberattacks, and online threats have become major 

threats for many organizations. Security posture assessment is 

calculated based on resources such as people, hardware, and 

software capabilities whenever a new virus attacks. It shows the 

security health of the product or the application. There are various 

levels of the assessment, which indirectly mean posture assessment. 

See Figure 6-18.

Figure 6-18.  Posture assessment

After understanding the types of security testing, let’s look at the process of security 

testing. You must include a security testing phase in the software development lifecycle 

phase. See Figure 6-19.

Chapter 6  Security Processes



154

Figure 6-19.  Security testing process

�Requirements
Gather requirements for the security analysis to check if the application is compatible 

with the security standards.

�Design
Security test plans should be designed and include the development plan for all 

security tests.

�Unit Testing
This is the smallest, testable part of an application that can be individually tested to 

ensure functionality. See Figure 6-20.

Chapter 6  Security Processes



155

Figure 6-20.  Unit testing

�Integration Testing
Integration testing is a type of software testing in which different units, modules, 

or components of the software applications are tested as a combined entity. See 

Figure 6-21.

Chapter 6  Security Processes



156

Figure 6-21.  Integration testing

�System Testing
System testing, also referred to as system-level testing, is where the quality assurance 

team evaluates how various components of an application interact together in the full, 

integrated system or application. System testing verifies that an application performs its 

tasks as designed. It mainly focuses on the functionality of the application.

System testing examines every component of the application to ensure that it works 

as an application as a whole. The QA team typically conducts the system testing after the 

individual modules with functional or user-story testing is performed.

There are various tools available in the market by which you can perform the 

system testing. These tools can create, manage, and automate test cases and it also has 

additional features other than testing.

Chapter 6  Security Processes



157

•	 Implementation: In the implementation phase, you perform 

thorough penetration testing and vulnerability scanning to execute 

and detect any vulnerabilities.

•	 Support: Once the vulnerabilities are identified and detected, the 

next step is to mitigate them to make sure the system is free from 

vulnerabilities. See Figure 6-22.

Figure 6-22.  System testing phases

Now that you understand the security testing process, let’s take a quick tour of the 

key management process.

�Key Management
Confidential secrets and keys are an important part of any security system. Using keys, 

you can perform encryption and decryption of the user authentication. See Figure 6-23.

Chapter 6  Security Processes



158

Figure 6-23.  Key management lifecycle

Proper management of the keys and their related components can ensure the safety 

of confidential information. Key management is the process of putting standards in 

place to ensure the security of confidential information. With key management, you can 

create, exchange, store, delete, and refresh the keys.

Key management is one of the foundational building blocks of all data security. Data 

is encrypted and decrypted using encryption keys. If the keys are lost, there will be an 

impact on accessing the data. Keys also ensure the safe transmission of the data across 

an Internet connection. See Figure 6-24.

Chapter 6  Security Processes



159

Figure 6-24.  Azure Key Vault: Secret management

There are two types of keys: symmetric and asymmetric. Symmetric keys deal 

with the data at rest, which is stored in a static location such as a database. Symmetric 

encryption uses the same key for encryption and decryption. Encryption using an 

asymmetric key is more complicated than symmetric encryption. Instead of using the 

same key, it uses a public key and private key to encrypt and decrypt the data. This 

public key can be shared with anyone since it encrypts the data but you can’t decrypt the 

data. See Figure 6-25.

Chapter 6  Security Processes



160

Figure 6-25.  Symmetric encryption

Asymmetric encryption focuses on encrypting data in motion. Data in motion 

means the data that is sent across a network connection, which can be a private or public 

connection. For most data-transmission activities, asymmetric keys are used to protect 

sensitive data.

Key management follows a lifecycle process for which you need to ensure that the 

keys are created, stored, used, and rotated securely. Most cryptographic keys follow a 

lifecycle that involves the following:

•	 Generation

•	 Distribution

•	 Use

•	 Storage

•	 Rotation

Chapter 6  Security Processes



161

•	 Backup

•	 Destruction

Irrespective of the key management process that organizations follow, a major 

challenge is to make sure keys are stored securely and are not being misused by 

unauthorized people. The following are recommended practices to ensure compliance 

with government regulation and standards.

•	 Avoid hard-coded keys: It’s best not to hard-code values into 

the source code. Anyone with access to the code can access that 

confidential information.

•	 Hardware Security Module (HSM): HSMs are dedicated processors 

typically designed for the protection of the crypto key lifecycle. They 

act as a security module that creates trust anchors that protect the 

cryptographic infrastructure of the organization. HSM is a secure, 

cryptographic processor designed specifically to protect the lifecycle 

of the confidential keys. It provides a high level of security in terms of 

confidentiality, integrity, and availability. See Figure 6-26.

Chapter 6  Security Processes



162

Figure 6-26.  Hardware Security Module (HSM)

Next, we explore vulnerability management and discuss how you can efficiently 

detect and handle it.

�Vulnerability Management
Patching your application and system with daily, weekly, and monthly updates is a 

humongous task. Moreover, in the period between patches, depending on the severity of 

the pending vulnerability, a bug can become a weakness in the application or system.

Chapter 6  Security Processes



163

Keeping virtual machines and devices up-to-date is mandatory to create secure 

software applications. If the virtual machines or devices are outdated, that leaves 

the software applications exposed to cyberattacks. Thus, it is very important that 

vulnerabilities be patched as soon as possible. It is also important to manage patches 

and vulnerability detection so that severe problems are detected quickly.

A majority of the malware issues are sent via emails. This malicious software can 

come in multiple forms: worms, viruses, trojans, and ransomware. Worms are a type of 

malware that spreads from computer to network without user intervention. Computer 

viruses are malware that affects digital media such as computer memory.

A trojan horse is downloaded on to a system when the user downloads a program 

or opens an email containing a malicious attachment. Attackers usually use these to 

steal privileged information, like passwords, from the system. Ransomware is a kind of 

malicious software that is created to block access to files or directories on an infected 

computer, after which the attacker demands that the victim pay money to get their 

files back.

Vulnerability management is a process of identifying, evaluating, and reporting 

security vulnerabilities in the system and software that runs on them. It refers to the 

weakness that allows an attacker to get access to the product and the information it 

holds. It is an ongoing process of identifying, assessing, reporting, and managing security 

vulnerabilities across workloads, systems, and endpoints.

Security vulnerabilities refer to technological weakness that allow attackers to 

compromise a product or application. The vulnerability management process can be 

broken into these four steps:

•	 Identifying vulnerabilities

•	 Evaluating vulnerabilities

•	 Treating vulnerabilities

•	 Reporting vulnerabilities

Chapter 6  Security Processes



164

Figure 6-27.  Vulnerability management

The steps of the vulnerability lifecycle are as follows:

•	 Discover: The first step is to identify the inventory of all assets across 

the network and identify host details, including the operating system 

and open services to identify vulnerabilities. Develop a network 

baseline and identify security vulnerabilities on a regular automated 

schedule.

•	 Prioritize assets: Categorize assets into group or business units and 

assign the business value to asset groups based on the priority and 

criticality of the business operation.

•	 Assess: Determine the baseline risk profile so you can eliminate risk 

based on criticality, vulnerability, and asset classification. This will 

help reduce the vulnerability of the developed application.

Chapter 6  Security Processes



165

•	 Report: Once the vulnerabilities are assessed, measure the risk based 

on the security policies. Create a security plan, monitor the activities, 

and describe the known vulnerabilities.

•	 Remediate: Once the report is ready, prioritize and fix the 

vulnerabilities according to the business risk. Once that is done, 

establish the control and show the progress.

•	 Verification: The last step is to verify that the threats have been 

eliminated through the audits. See Figure 6-28.

Figure 6-28.  Vulnerability report

Vulnerability can be defined as a weakness of an asset or group of assets that can 

be exploited by one or more threats. Any means or act by which an external actor gets 

unauthorized access to the data or privilege to control an application is considered 

a vulnerability. Common examples include communication network ports that are 

open to the Internet and insecure configurations of software and OSs. At a higher level, 

vulnerabilities can be broken into a few components:

Chapter 6  Security Processes



166

•	 CVE - Common Vulnerabilities and Exposure: Each CVE defines a 

specific vulnerability that attackers can attack on the application 

or system.

•	 CCE - Common Configuration Enumeration: This is a list of 

system security configuration issues that can be used to develop 

configuration guidance.

•	 CPE - Common Platform Enumeration: This is a standardized 

method of describing and identifying classes of the application, 

operating systems, and devices in the environment.

•	 CVSS - Common Vulnerability Scoring System: This scoring system 

assigns the scores to each defined vulnerability and is used to 

prioritize efforts and resources according to the threat.

�Disaster Recovery (DR)
Disaster recovery is the process of restoring application functionality during an 

abnormal situation. Upfront failures can happen at any point in time when you use 

public clouds like Azure, AWS, or GCP. When such failures occur, you should be able to 

minimize the effect of failing components. See Figure 6-29.

Chapter 6  Security Processes



167

Figure 6-29.  Disaster recovery management

With automated testing, you can prepare and minimize failures. A standard backup 

and recovery process is a must in order to handle such failures without an impact. You 

need to consider the following key points while creating a disaster and recovery plan:

•	 Create a disaster and recovery plan considering all failure scenarios

•	 Design a disaster recovery plan to run most applications with 

reduced functionality

•	 Design a backup strategy tailored to your business requirements

•	 Automate processes and runbooks to do the rollback or failover 

activities

After understanding the basics of backup and disaster recovery, let’s look at the 

disaster recovery process of design and implementation.

Chapter 6  Security Processes



168

•	 Determine subscription and service requirements: The process of 

determining the subscription and service requirements consists of 

various key processes. Certain resources, such as resource groups 

and storage accounts, are limited in every Azure subscription.

•	 Azure regional pairs: Multiple regional pairs are accessible in Azure. 

For example, North China, East China, North Europe, and West 

Europe, where you can see two regions per continent. Some Azure 

services can take advantage of cross-region replication to ensure 

business continuity and protect against data loss. Azure provides 

several storage solutions that use cross-region replication to ensure 

data availability. For example, Azure Geo Redundant storage 

automatically replicates data to a secondary region. See Figure 6-30.

Figure 6-30.  Azure regional pairs

•	 Azure availability zones: Availability zones are dedicated physical 

locations in an Azure region. In order to ensure resiliency, three 

separate zones are enabled in every region. See Figure 6-31.

Chapter 6  Security Processes



169

Figure 6-31.  Azure availability zones

•	 Azure PaaS components: Azure provides many built-in PaaS services. 

Each service can be configured to enable backup and georeplication 

in case there are issues. See Figure 6-32.

Chapter 6  Security Processes



170

Figure 6-32.  Azure PaaS services

•	 Determine and document RTO, RPO, and RLO: Recovery Time 

objective (RTO) is the amount of time and service level within which 

business processes must be recovered when a disaster happens. See 

Figure 6-33.

Figure 6-33.  Recovery Time Objective

Recovery Point Objective (RPO) refers to the amount of time that can be lost before 

creating damage to the organization. Recovery Level Objective (RLO) specifies the 

granularity by which data must be recovered.

Chapter 6  Security Processes



171

�Conclusion
This chapter explored the threat modeling process and the need to enable it in your 

organization. You also learned about how to secure your infrastructure and platform 

deployment with the Infrastructure as a Code (IaC). Then you learned the importance 

of the security testing process and its related phases. Then you learned about the 

importance of the key management process and standard process to automate it.

The chapter also discussed vulnerability management and the importance of the 

disaster recovery process and its best practices.

Chapter 6  Security Processes


	Chapter 6: Security Processes
	Complete Meditation with Threat Modeling
	Form a Team
	Define the Scope
	Brainstorm and List Potential Security Threats
	Prioritize Threats
	Develop and Implement Risk Mitigation
	Document the Results

	Securing the Infrastructure and Application Deployment
	Automate Security Releases
	Well-Governed Application Deployment
	Scan Security Vulnerabilities
	Monitor Application for Security Vulnerabilities
	Control the Data Movement
	Infrastructure as a Code (IaC)
	Pipeline Secret Management
	Adhere to the Principle of Least Privilege

	Security Testing
	Vulnerability Testing
	Security Scanning
	Penetration Testing
	Risk Assessment
	Security Auditing
	Ethical Hacking
	Requirements
	Design
	Unit Testing
	Integration Testing
	System Testing
	Key Management
	Vulnerability Management
	Disaster Recovery (DR)

	Conclusion




