
419

CHAPTER 20

Introducing JHipster
JHipster is a Yeoman-based generator that creates Spring Boot-based web applications.

JHipster configures a wide variety of tools and frameworks commonly used in Spring

Boot applications, improving developer productivity.

This chapter covers how to install JHipster and create a monolithic application. It

also explores the generated application features and looks at how to create entities using

the sub-generator and JDL Studio.

�Introducing JHipster
Technology is evolving rapidly and new tools, frameworks, and libraries are created

daily. In recent years, there has been a lot of innovation in the JavaScript ecosystem and

many high-quality, modern web development tools have been born. There are build

tools like Webpack and Gulp. There are single page application (SPA) frameworks like

React, Angular, and VueJS. And there are many JavaScript testing libraries like Mocha,

Jasmine, and Jest. Integrating all of these tools manually is tedious and repetitive.

Yeoman (http://yeoman.io/) is a scaffolding tool that generates web projects

following best practices. Yeoman provides various generators to scaffold web projects

using various technologies. For example, if you want to create a React-based project, you

can use generator-react, which will generate a ReactJS project with the Gulp build tool,

with karma-based testing support.

JHipster (www.jhipster.tech/) is a Yeoman-based generator that generates Spring

Boot-based web projects with a wide variety of options for building tools, front-end

frameworks, relational databases, NoSQL databases, Spring security strategies, caching

options, and more.

© K. Siva Prasad Reddy, Sai Upadhyayula 2023
K. S. P. Reddy and S. Upadhyayula, Beginning Spring Boot 3, https://doi.org/10.1007/978-1-4842-8792-7_20

http://yeoman.io/
http://www.jhipster.tech/
https://doi.org/10.1007/978-1-4842-8792-7_20#DOI

420

With JHipster, you can generate Spring Boot applications with most configurations

appropriately configured and then start implementing the business use cases. JHipster

also provides sub-generators to generate JPA entities and a scaffolding UI for typical

CRUD operations, making development faster.

�Installing JHipster
JHipster is a Yeoman-based generator that depends on the NPM (Node Package

Manager). The following section covers the prerequisites for using JHipster.

�Prerequisites
Follow these steps to install JHipster:

	 1.	 Install JDK 17.

	 2.	 Install Git from https://git-scm.com/.

	 3.	 Install Node.js from https://nodejs.org/.

	 4.	 Run npm install -g generator-jhipster.

You should be able to run jhipster --help and see the various commands that

JHipster supports.

�Creating a JHipster Application
Creating a JHipster application is easy; you simply run the jhipster command and

answer the questions based on your technology’s preferences and application’s needs.

JHipster can generate a monolithic application or a microservices-based application.

In this chapter, you will create a simple monolithic blog application and then use the

relational database H2 for development and MySQL for production.

> mkdir jhipster-blog

> cd jhipster-blog

> jhipster

Chapter 20 Introducing JHipster

https://git-scm.com/
https://nodejs.org/

421

The jhipster command will ask you a series of questions. Select the options

shown here:

? Which *type* of application would you like to create? Monolithic

application (recommended for simple projects)

? What is the base name of your application? jhipsterblog

? Do you want to make it reactive with Spring Webflux? No

? What is your default Java package name? com.apress.jhblog

? Which *type* of authentication would you like to use? JWT authentication

(stateless, with a token)

? Which *type* of database would you like to use? SQL (H2, PostgreSQL,

MySQL, MariaDB, Oracle, MSSQL)

? Which *production* database would you like to use? MySQL

? Which *development* database would you like to use? H2 with in-memory

persistence

? Which cache do you want to use? (Spring cache abstraction) Ehcache (local

cache, for a single node)

? Do you want to use Hibernate 2nd level cache? Yes

? Would you like to use Maven or Gradle for building the backend? Maven

? Do you want to use the JHipster Registry to configure, monitor and

scale your

application? No

? Which other technologies would you like to use?

? Which *Framework* would you like to use for the client? Angular

? Do you want to generate the admin UI? No

? Would you like to use a Bootswatch theme (https://bootswatch.com/)?

Journal

? Choose a Bootswatch variant navbar theme (https://bootswatch.com/)?

Primary

? Would you like to enable internationalization support? No

? Please choose the native language of the application English

? Besides JUnit and Jest, which testing frameworks would you like to use?

? Would you like to install other generators from the JHipster

Marketplace? No

Chapter 20 Introducing JHipster

422

Based on the options selected here, JHipster will generate a Spring Boot application

with the following features:

•	 Angular-based front end with Webpack configuration

•	 H2 in-memory database used in development and MySQL used for

production

•	 Liquibase migration support for database migrations

•	 Spring Data JPA configured for database interaction

•	 Caching support configured using EHCache

•	 Spring Security JWT token-based authentication

•	 An administration dashboard showing application metrics using the

Spring Boot Actuator

•	 Ability to change log levels at runtime through UI

•	 Open API-based Rest API documentation

•	 User accounts out of the box with login, change password, and new

user registration functionality

You can run the application by running ./mvnw on Linux/MacOS or mvnw.cmd on

Windows. This command will start the application dev profile and is accessible at

http://localhost:8080/. Next, you’ll explore the generated application.

As shown on the home page, you can log in with admin/admin, which has both the

ROLE_USER and ROLE_ADMIN roles, or with user/user, which has only the ROLE_USER role.

Log in as the admin user using admin/admin. After a successful login, you will

be redirected to the home page. The top navigation bar includes the Entities,

Administration, and Account menus. As you haven’t created any entities yet, there won’t

be any entities listed in the Entities menu.

For gateway and microservice-based applications, JHipster provides a default

monitoring UI to view the application metrics, such as memory consumption, thread

states, garbage collection details, and HTTP request statistics, which are provided using

Micrometer (Figure 20-1).

Chapter 20 Introducing JHipster

423

Figure 20-1.  JHipster metrics dashboard

Click Administration ➤ Database to open the H2 in-memory database console,

where you can explore the current state of the database.

You can also manage the application’s users by clicking Administration ➤ User

Management, where you can perform CRUD operations on users. See Figure 20-2.

Chapter 20 Introducing JHipster

424

Figure 20-2.  JHipster user management

You can view the Swagger documentation for the REST API by choosing

Administration ➤ API. You can also view the Request and Response formats for each

endpoint and trigger REST API calls by providing inputs if needed.

�Creating Entities
Once the application is created, you may want to create entities and a scaffold UI for that

entity to perform CRUD operations on it. JHipster provides ways to create entities and

perform the following tasks:

•	 Create a JPA entity

•	 Create a database table based on the property information provided

•	 Create a Liquibase changeset for database migration

•	 Create a Spring Data JPA repository for the entity

Chapter 20 Introducing JHipster

425

•	 Create a Spring MVC REST controller with basic CRUD operations

•	 Create an Angular router, component, and service

•	 Create HTML views

•	 Generate integration and performance tests

You can generate entities using the jhipster entity sub-generator, the JHipster

Domain Language (JDL) Studio, or the JHipster UML (www.jhipster.tech/jhipster-

uml/). The following section uses the JHipster entity sub-generator and JDL Studio to

generate entities.

�Using the JHipster Entity Sub-Generator
You can generate entities using the jhipster entity sub-generator by providing a table

name and column details, as follows:

jhipster entity Post --table-name posts

This command will ask whether you want to add a field to your entity. In this

example, you’ll add three fields named title, content, and createdOn and specify type

and validation rules as follows:

•	 Name: title, Type: String, Validation: Required

•	 Name: content, Type: String, Validation: Required

•	 Name: createdOn, Type: LocalDate

Next, it will ask if you want to add a relationship to another entity. Answer no. You

will learn how to manage relationships in the next section.

The following questions will be asked; answer them as follows:

? Do you want to use separate service class for your business logic?

? Is this entity read-only? No

? Do you want pagination and sorting on your entity? No

You can choose to create data transfer objects (DTOs), which will be used to create

a response for the REST API, but for now, you can choose to return entities. You can also

choose to create a service layer to perform any business logic, but you are choosing to

directly use the Spring Data JPA repositories because there is no business logic involved.

Lastly, you can choose whether you need pagination support or not.

Chapter 20 Introducing JHipster

http://www.jhipster.tech/jhipster-uml/
http://www.jhipster.tech/jhipster-uml/

426

After successfully running the JHipster entity sub-generator command, you can run

the application and see the Post menu item in the Entities menu. You can perform the

CRUD operations on the Post entity.

Instead of running the entity sub-generator and answering all these questions, you

can use JDL Studio to create entities.

�Using JDL Studio
JDL Studio is an online utility that creates entities and configures relationships among

entities using the JHipster Domain Language (JDL). You can read about JDL at www.

jhipster.tech/jdl/intro.

If you go to https://start.jhipster.tech/jdl-studio/, a sample domain model

is configured with various entity definitions and relationships among those entities.

Remove all of that and add the Post entity definition as follows:

entity Post {

 title String required

 content String required

 createdOn LocalDate

}

Click the “Download Text File of This JDL” link in the top-right corner. The jhipster-

jdl.jdl file will download. Now you can run the jhipster import-jdl command to

create the entities from the JDL file.

> jhipster import-jdl jhipster-jdl.jdl

After running this command, the Post entity, Spring Data JPA repository, Spring

MVC controller, Angular front-end components, and more will be generated. If you

already have a Post entity, it will update the entity.

�Managing Relationships
You can use the JHipster entity command not only for creating entities but also to

specify relationships among entities. For example, you can create a Comment entity, then

establish a one-to-many relationship from Post to Comment and a many-to-one entity

from Comment to Post.

Chapter 20 Introducing JHipster

http://www.jhipster.tech/jdl/intro
http://www.jhipster.tech/jdl/intro
https://start.jhipster.tech/jdl-studio/

427

While creating the Post entity using the jhipster entity sub-generator, you can

specify the relationship to the Comment entity as follows:

> jhipster entity Post --table-name posts

As you already have a Post entity, it will display options to regenerate, add, and

remove fields and relationships. Choose the following:

Yes, add more fields and relationships.

? Do you want to add a field to your entity? No

? Do you want to add a relationship to another entity? Yes

? What is the name of the other entity? Comment

? What is the name of the relationship? comments

? What is the type of the relationship? one-to-many

? What is the name of this relationship in the other entity? post

Now you can generate a Comment entity with the name, email, content, and

createdOn fields. When prompted to add a relationship to another entity, you can add a

many-to-one relationship from Comment to the Post entity as follows:

? What is the name of the other entity? Post

? What is the name of the relationship? post

? What is the type of the relationship? many-to-one

? When you display this relationship with Angular, which field from 'Post'

do you want to use? id

? Do you want to add any validation rules to this relationship? No

You can use JDL Studio to create entities and specify relationships among them as

well. Configure the Post and Comment entities and the OneToMany relationship as follows:

entity Post {

 title String required

 content String required

 createdOn LocalDate

}

entity Comment {

 name String required

 email String required

Chapter 20 Introducing JHipster

428

 content String required

 createdOn LocalDate

}

relationship OneToMany {

 Post{comments} to Comment{post}

}

You can download this JDL file and import it as you did earlier. This will create JPA

entities and establish JPA relationship as follows:

@Entity

@Table(name = "post")

@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)

public class Post implements Serializable {

 ...

 ...

 @OneToMany(mappedBy = "post")

 @JsonIgnore

 @Cache(usage = CacheConcurrencyStrategy.READ_WRITE)

 private Set<Comment> comments = new HashSet<>();

 ...

 ...

}

@Entity

@Table(name = "comment")

@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)

public class Comment implements Serializable {

 ...

 ...

 @ManyToOne

 private Post post;

}

JHipster scaffolding will generate a dropdown with posts to select while creating a

comment.

You can read more about managing relationships at www.jhipster.tech/managing-

relationships/.

Chapter 20 Introducing JHipster

http://www.jhipster.tech/managing-relationships/
http://www.jhipster.tech/managing-relationships/

429

By default, when you run ./mvnw, the application will start in development mode

using the dev profile. If you want to run the application in production mode, you can run

it using the prod profile, as in ./mvnw -Pprod.

You can also generate a runnable WAR file using the ./mvnw -Pprod package

command and run the application as follows:

java -jar jhipsterblog-0.0.1-SNAPSHOT.war

Various optimizations will be performed when you run the application in the

production profile. For example, static assets like HTML, JS, and CSS files will be

optimized and GZip compression will be configured.

Note  You can also use JHipster to generate Spring Boot-based microservices. To
learn how to create microservices using JHipster, refer to www.jhipster.tech/
microservices-architecture/.

�Summary
In this chapter, you learned how to use JHipster to generate Spring Boot-based web

applications with the Angular front end. In the next chapter, you will look at how to run

production applications and deploy a Spring Boot application on the Heroku cloud

platform.

Chapter 20 Introducing JHipster

http://www.jhipster.tech/microservices-architecture/
http://www.jhipster.tech/microservices-architecture/

	Chapter 20: Introducing JHipster
	Introducing JHipster
	Installing JHipster
	Prerequisites

	Creating a JHipster Application
	Creating Entities
	Using the JHipster Entity Sub-Generator
	Using JDL Studio

	Managing Relationships
	Summary

