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CHAPTER 8

Ordinary Differential 
Equations
Many modeling problems with engineering applications can be formulated using 

ordinary differential equations (ODEs). There are a few different definitions of 

differential equations. One of the simplest is “A differential equation is any equation 

which contains derivatives, either ordinary derivatives or partial derivatives,” as given 

in source [1]. From this definition, we can derive two types of differential equations: 

ordinary differential equations (ODEs) and partial differential equations (PDEs). ODEs 

contain one type of derivative or one independent variable, and PDEs, on the contrary, 

contain two or more derivatives or independent variables. For example, first-order ODEs 

can be expressed as follows:

 

dy

dx
f x y� � �,

 
(Equation 8-1)

Here, y(x) is a dependent variable whose values depend on the values of the 

independent variable of x. Another good example of ODEs is Newton’s Second Law of 

Motion, formulated as follows:

 
ma

dp

dt

mdv

dt
f t v� � � � �,

 
(Equation 8-2)

Here, F(t, v) is force, which is a function of time (t) and velocity (v). 
dv

dt
 is a velocity 

change rate (acceleration) of a moving object; m is the mass of a moving object; a is 

an acceleration of a moving object; p is momentum; and dp/dt is its derivative. This 

formulation of Newton’s Second Law can be also rewritten the following way:

 

md

dt

dx

dt

md x

dt
F t x

dx

dt
�
�
�

�
�
� � � �

�
�

�
�
�

2

2
, ,

 
(Equation 8-3)
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Here, the derivative 
dx

dt
�
�
�

�
�
�  of the displacement (x) of a moving object is the 

velocity (v).

In other words, the velocity is the rate of change of the displacement x(t) of a moving 

object in time. This can be visualized with the flowchart displayed in Figure 8-1.

Figure 8-1. Flowchart expressing motion and exerted force of a moving object

 Classifying ODEs
There are two classifications of ODE-related problems.

• Initial value problems (IVPs):  x xt x� �3  with initial 

conditions x x0 3 0 1� � � � � �, 

• Boundary value problems (BVPs):  x xt x� �3  with boundary 

conditions x(0) = 3, x(2) = 1.50

IVPs are defined with ODEs together with a specified value, called the initial 

condition, of the unknown function at a given point in the solution domain. In the IVP of 

ODEs, there can be a unique solution, no solution, or many solutions. By definition, the 

IVP of ODEs can be explicitly or implicitly defined. Most of the IVP are explicitly defined. 

Let’s start with explicitly defined IVPs and then move to implicitly defined ones. In 

addition to solution type—how solution values change over the solution search  
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space—the IVPs are divided into stiff and nonstiff problems. Moreover, ODEs are 

grouped into two categories, linear and nonlinear, and divided into two groups, 

homogeneous and nonhomogeneous.

Here are some specific examples of different ODE types, categories, and groups:

• Stiff ODEs: y y� �3 108 ,  t ∈ [0, 40]

• Nonstiff: y y t� �2 2

• Linear ODEs: v v� �9 81 0 198. .

• Nonlinear ODEs: v v� �9 81 0 198 2. .

• Homogeneous ODEs: y y� �2 0

• Nonhomogeneous ODEs: y y t� � � �2 2sin

The following are several examples of ODEs and their application areas.

 Example 1: Unconstrained Growth 
of Biological Organisms
This is an exponential growth problem that describes the unconstrained growth of 

biological organisms (such as bacteria). This behavior can also describe real estate or 

investment values, membership increase of a popular networking site, growth in retail 

businesses, positive feedback of electrical systems, and generated chemical reactions. 

The problem is formulated by the following first-order ODE:

dy

dt
y� �  has a solution: y(t) = y0eμt

 Example 2: Radioactive Decay
This refers to exponential decay, which describes many phenomena in nature and in 

engineering, such as radioactive decay, washout of chemicals in a reactor, discharge 

of a capacitor, and decomposition of material in a river. It’s expressed using this first- 

order ODE:
dy

dt
y� �� has a solution: y(t) = y0e−μt

Examples 1 and 2 are two simple examples of first-order ODEs.
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 Example 3: Newton’s Second Law
The motion of a falling object is expressed in the following equation using Newton’s 

Second Law:

 

md y

dt
mg

dy

dt

2

2
� �

�

 

This is a second-order ODE that has a solution in the following form:
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Here, m is the mass of the falling object, g is gravitational acceleration, and γ is an 

air-drag coefficient of a falling object. Three parameters—m, g, and γ—are constant, 

the solution of a falling object, and C1 and C2 are arbitrary numbers that are dependent 

on the initial conditions. In other words, they can be computed considering the initial 

condition of a falling object.

There are a few methods that evaluate analytical solutions of ODEs, including 

separation of variables, introduction of new variables, and others. We look at specific 

examples of these types of ODEs to see how to evaluate their analytical solutions and 

compute numerical solutions. We do this by employing different techniques in the 

MATLAB/Simulink environment and writing scripts and building models. In computing 

analytical solutions of ODEs, we explain via specific examples how to use built-in 

functions of the Symbolic Math Toolbox.

For obvious reasons, considerable effort is placed on numerical solution methods 

rather than analytical solution search tools. It is not always possible or is too costly to 

evaluate analytical solutions of ODEs. Therefore, a numerical solution search is often 

best. There are a number of numerical methods. They are Euler (forward, backward, 

modified), Heun, the midpoint rule, Runge- Kutta, Runge-Kutta-Gill, Adams-Bashforth, 

Milne, Adams-Moulton, Taylor series, and trapezoidal rule methods.

Some of these methods are explicit, and others are implicit. To demonstrate how 

to employ these methods, we first describe their formulations and then work on their 

implementation algorithm for writing scripts (programs) explicitly. We do not attempt 

to derive any of the formulations used in these numerical methods. There are many 

literature sources [see 2, 3, 4, 5] that explain the theoretical aspects of these methods.

Chapter 8  Ordinary differential equatiOns



553

In solving the IVP using numerical methods, we start at an initial point (initial 

conditions) and then take a step (equal step- size or varying step-size) forward in time 

to compute the following numerical solution. Some of the previously named numerical 

methods (e.g., Euler’s methods) are single-step methods, and others (Runge-Kutta, 

Adams-Bashforth, Milne, Adams-Moulton, and the Taylor series) are multistep methods. 

Single-step methods refer to only one previous point and its derivative to determine the 

current value. Other methods, such as Runge-Kutta methods, take some intermediate 

steps to obtain a higher-order step and then drop off values before taking the next step. 

Unlike single-step methods, multistep methods keep and use values from the previous 

steps instead of discarding them. This way, multistep methods link a few previously 

obtained values (solutions) and derivative values. All of these methods, i.e., the single-

step and multistep methods, are assessed based on their accuracy and efficiency in 

terms of the computation time and resources (e.g., machine time) spent to compute 

numerical solutions for specific types of IVPs of ODEs. Nevertheless, it remains true that 

most solutions of the first-, second-, or higher-order IVPs cannot be found by analytical 

means. Therefore, we need to employ various numerical methods.

 Analytical Methods
The Symbolic Math Toolbox has several functions that are capable of evaluating 

analytical solutions of many analytically solvable ODEs. There are two commands (built-

in functions) by which analytical solutions of some ODEs can be evaluated—dsolve and 

ilaplace/laplace.

Note that in this section we demonstrate—via a few examples of first- and second-

order ODEs and systems of coupled differential equations—how to compute analytical 

solutions of ODEs.

 DSOLVE
One ODE solver tool for computing an analytical (or general) solution of any given ODE 

in MATLAB is dsolve. It can be used with the following general syntax:
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Solution = dsolve(equation)

Solution = dsolve(equation, conditions)

Solution = dsolve(equation, conditions, Name, Value)

[y1,...,yN] = dsolve(equations)

[y1,...,yN] = dsolve(equations, conditions)

[y1,...,yN] = dsolve(equations, conditions, Name, Value)

 Example 1: Using DSOLVE
Given a first-order ODE: y + 2ty2 = 0 with no known initial or boundary conditions. 

Let’ solve it using dsolve().

>> y_solution=dsolve('Dy=-2*y^2*t')

Y_solution=

  -1/(C3-t^2)

Note that C3 is defined from the initial or boundary conditions of the given 

ODE. There is also an alternative command. In later versions of MATLAB (starting with 

MATLAB 2012), we can solve the given problem by using the following command syntax:

>>syms y(t); y_sol=dsolve(diff(y) == - 2*y^2*t)

 y_sol =

    0

    -1/(- t^2+C3)

 Example 2: Plotting the Found Solution with dsolve
Given a first-order ODE: y ty� �2 02  with the initial condition y(0) = 0.50. Let’s solve it 

using dsolve().

>> Solution=dsolve('Dy=-2*y^2*t', 'y(0)=0.5')

Solution =

1/(t^2 + 2)

The alternative command syntax with later versions of MATLAB is as follows:

>> syms y(t); Solution=dsolve(diff(y) == -2*y^2*t, y(0)==0.5) 
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Solution = 1/(t^2 + 2)

The evaluated analytical solution in a symbolic formulation can be plotted with 

fplot. (See Figure 8-2.)

>> fplot(Solution, [-5, 5], 'ro-'); grid on; xlabel('t'); ylabel 'y(t)'

Figure 8-2. Analytical solution of y ty� �2 02  with the initial condition y(0) = 0.50

Numerical values of the analytical solution (the equation) can be computed by 

vectorizing (parameterizing) the symbolic formulation (the solution), as shown here:

>> ysol=vectorize(solution)

ysol =

1./(t.^2 + 2)

>> t=(-5:.1:5); ysol_values=eval(ysol);

 Example 3: Adding an Unspecified Parameter
Given y kty� �2 0 , y (0) = 0.50. Let’s solve it using dsolve(). Note that this exercise has 

one unspecified parameter k.
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>> syms k

>> solution=dsolve('Dy=-k*y^2*t', 'y(0)=0.5')

solution =

1/((k*t^2)/2 + 2)

An alternative command syntax is as follows:

>> syms y(t) k;

solution=dsolve(diff(y) == -k*y^2*t, y(0)==0.5)

solution =

1/((k*t^2)/2 + 2)

Note Options in dsolve need to be set appropriately depending on the 
problem type. in MatlaB 2008–2010 or earlier versions, you should set 
IgnoreAnalyticConstraints to none to obtain all possible solutions.

Here’s an example:

solution=dsolve('Dy=-k*y^2*t','y(0)=0.5','IgnoreAnalyticConstraints','none')

Note for MatlaB 2012 or later versions, you should set 
IgnoreAnalyticConstraints to false to get all possible correct answers 
for all the argument values. Otherwise, dsolve may output an incorrect answer 
because of its pre- algebraic simplifications.

Here’s an example:

solution=dsolve(diff(y)==-k*y^2*t, y(0)==0.5,'IgnoreAnalyticConstraints',  

false)

 Second-Order ODEs and a System of ODEs
There are a myriad of processes and phenomena that are expressed via second-order 

differential equations. Examples include simple harmonic motions of a spring-mass 

Chapter 8  Ordinary differential equatiOns



557

system, motions of objects with some acceleration (Newton’s Second Law), damped 

vibrations, current flows in resistor-capacitor-inductance circuits, and so forth. In 

general, second-order ODEs are expressed in two different forms—homogeneous 

(Equation 8-4) and nonhomogeneous (Equation 8-5).

 
 y p x y q x y� � � � � � � 0  (Equation 8-4)

 
 y p x y q x y p x� � � � � � � � �  (Equation 8-5)

Note that the homogeneous ODEs in Equation 8-4 always have one trivial solution, 

which is y(x) = 0. It satisfies the givens in Equation 8-4. With respect to the independent 

functions p(x), q(x), and g(x), the ODEs can be linear or nonlinear. In some cases, the 

independent functions p(x), q(x), and g(x) can be constant values or nonconstant values.

Let’s consider several examples of second-order ODEs to see how to compute 

general and particular solutions with MATLAB’s Symbolic Math Toolbox.

 Example 1: dsolve with a Second-Order ODE
Given a  second-order ODE:  u u t u u� � � � � � � � � �100 2 5 10 0 0 0 0. sin , ,  with no known 

initial or boundary conditions. Let's solve it using dsolve().

usol=dsolve('D2u+100*u=2.5*sin(10*t)', 'u(0)=0', 'Du(0)=0'); pretty(usol)

%% Alternative syntax

syms u(t)

Du = diff(u);

u(t) = dsolve(diff(u, 2)==2.5*sin(10*t)-100*u, u(0)==0, Du(0) == 0); 

pretty(u(t))

The following is the output from executing the two short scripts/commands:

sin(10 t) 3   sin(30 t)             / t   sin(20 t) \

----------- - --------- - cos(10 t) | - - --------- |

    320          320                \ 8      160    /

 Example 2: System ODEs
Given a system of ODEs: 

y y

y y y
1 2

2 1 20 125

�

�

�
� � �

�
�
� .

,  y1(0) = 1, y2(0) = 0. 

Let's solve it using dsolve().
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The given problem is a system of two first-order ODEs. This problem can be solved 

directly with dsolve, similar to the previous examples.

%% System of two 1st-order ODEs solved with dsolve

yt=dsolve('Dy1=y2', 'Dy2=-y1-0.125*y2','y1(0)=1', 'y2(0)=0');

pretty(yt.y1) pretty(yt.y2)

%% Alternative  syntax

syms y1(t) y2(t)

z=dsolve(diff(y1,1)==y2, diff(y2,1)==(-y1-0.125*y2), y1(0)==1, y2(0)==0); 

pretty(z.y1), pretty(z.y2)

The computed analytical solutions of the problem displayed in the command 

window are not shown here. These are the computed solutions:
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 Example 3: Unsolvable Solutions Using dsolve
Given a second-order ODE: 2 3 100 2 y y y t� � � � �cos , y(0) = 1, y 0 2� � � . 

Let' solve it using dsolve().

>> syms y(t); Dy = diff(y,t); D2y = diff(y, t,2);

>> Solution=dsolve(2*D2y+3*(Dy^3)-cos(100*t)*abs(y)- 2==0, y(0)==1, 

Dy(0)==2)

Warning: Unable to find symbolic solution.

 Solution =

      [ empty sym ]

When the analytical solutions cannot be found with dsolve,the only option will be 

numerical solution.
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 Example 4: Computing an Analytical Solution
Say we have this: y y e yt� � � � �2 0 2, . Here are the commands used to compute an 

analytical solution of the given exercise:

syms y(t)

   Dy = diff(y,t);

   Solution = dsolve(Dy==2+abs(y)*exp(t), y(0)==2);

   fplot(Solution, [0, 5], 'r--o'), grid on

   xlabel 't'

   ylabel('y(t)')

Figure 8-3 shows the plot of the found analytical solution.

Figure 8-3. The found analytical solution y y e yt� � � � �2 0 2,
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 Example 5: An Interesting ODE
Let’s consider a second-order ODE, as follows:  u u t� � � �sin ,  u u0 1 0 2� � � � � �,  .

syms u(t)

Du = diff(u,t);

D2u = diff(u,t, 2);

Solution = dsolve(D2u==sin(t)-Du, u(0)==1, Du(0)==2);

fplot(Solution, [0, 4*pi], 'b-.s'), grid on

xlabel ('t'); ylabel('u(t)')

 Laplace Transforms
Solutions of linear ordinary differential equations with constant coefficients can be 

evaluated by using the Laplace transformation. One of the most important features of 

the Laplace transforms in solving a differential equation is that the transformed equation 

is an algebraic equation. It will be used to define a solution to the given differential 

equation. In general, the Laplace transform application to solving differential equations 

can be formulated in the following way.

Figure 8-4. Analytical solution plot of  u u t� � � �sin ,  u u0 1 0 2� � � � � �, 
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Let’s consider the nth order derivative of yn(x) = f (t). The Laplace transform of yn(x) is 

as follows:


d u

dt
f t s U s s u su su F s

n

n
n n n� � ��

�
�

�
�
�
��� � �� � � ��� � �� � � � �� �1 1 0 0 0 ��

 
(Equation 8-6)

Or

 
s U s s u F sn

i

n
n i� � � � � � � �

�

� ��
1

1 1 0
 

(Equation 8-7)

In Equation 8-6 or 8-7, if you substitute constant values of initial conditions at t = 0 

given as y(0) = a0; y′(0) = a1; y"(0) = a2; …; yn − 2(0) = an − 2; yn − 1(0) = an − 1, you can rewrite the  

expression (Equation 8-6 or 8-7) as follows:

 s U s s a sa sa F sn n
n n� � � ��� � � � ��

�
1

0 1  (Equation 8-8)

Subsequently, we first solve for Y(s), take the inverse Laplace transform from Y(s), 

and obtain the solution y(t) of the nth order differential equation.

The general procedure for applying the Laplace and the inverse Laplace transforms 

to determine the solution of differential equations with constant coefficients is as 

follows:

 [1]. Take the Laplace transforms from both sides of the given 

equation.

 [2]. Solve for Y(s) in terms of F(s) and other unknowns.

 [3]. Take the inverse Laplace transform of the found expression to 

obtain the final solution of the problem.

Note that in step 3, you should also break the expression from step 2 into partial 

fractions in order to use tables of the inverse Laplace transform correspondences.

A schematic view of the Laplace and inverse Laplace transforms is given in the 

flowchart shown in Figure 8-5.
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Differential Equation Solution

Solution

Figure 8-5. Flowchart of solving ODE with Laplace transform and its inverse

 Example 1: First Laplace Transform
Let’s consider a second-order nonhomogeneous differential equation.

 

d y

dt

Ady

dt
C e y k dy mnt

2
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Now, by applying the steps depicted in the flowchart of the Laplace and inverse 

transforms from the flowchart, you write the Laplace transform of the given problem in 

explicit steps.
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� � �� eent� �  (Equation 8-9)
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(Equation 8-10)

Now, you can work on the left-hand side of Equation 8-9 starting from the 

highest order.


d y

dt
s Y s dy s y s Y s k s m

2

2
2 20 0

�
�
�

�
�
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� � �� � � � � � � � � � � � �

 
(Equation 8-11)
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(Equation 8-12)

  C C� ��  (Equation 8-13)
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By plugging Equations 8-10, 8-11, 8-12, and 8-13 back into Equation 8-9, you obtain 

the assembled expression given in Equation 8-14.

 
s Y s k sm AsY s m C

s n
2 1� �� � � � �� � �

�  
(Equation 8-14)

You solve Equation 8-15 for Y(s).

Y s
sm k m C s n

s n s As

Cn Cs kn mn ks ms ms� � �
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�� � �� �
�

� � � � � �1
2

2

ss A s n s�� � �� �
 

(Equation 8-15)

From the expression of Y(s) in Equation 8-15, you can split this into partial fractions 

and take the inverse Laplace transform of both sides. You obtain Equation 8-16, which is 

the y(t) of the given differential equation:

y t
e

An n

Cn kn mn

An

Cn kn mn A k mn C

Ae A n

nt

At� � �
�

�
� � �

�
� � � � �� ��

�� �2

1 1

 
(Equation 8-16)

The built-in laplace() function of the Symbolic Math Toolbox is used to evaluate 

the Laplace transform of any algebraic expression or differential equation. Likewise, the 

ilaplace() function of the Symbolic Math Toolbox is used to compute the inverse of 

the evaluated Laplace transformed s domain expression. These two functions handle all 

transformations by breaking up the partial fraction procedures automatically and then 

compute an analytical solution of a given ODE exercise.

 LAPLACE/ILAPLACE
As mentioned, laplace/ilaplace are based on the Laplace and inverse Laplace 

transforms, which are built-in function tools of the Symbolic Math Toolbox. The general 

syntax of laplace/ilaplace is as follows:

F=laplace(f) 

F=laplace(f, t) 

F=laplace(f, var1, var2)

and as follows:

f=ilaplace(F)

f=ilaplace(F, s) f=ilaplace(F, var1, var2)

Chapter 8  Ordinary differential equatiOns



564

 Example 2: Using LAPLACE
Given x(t) = sin (2t), the Laplace transform of x(t) is computed with the following 

command syntax:

>> syms t

>> xt=sin(2*t); Xs=laplace(xt)

2/(s^2 + 4)

Given y(t) = sin (Kt). Let's compute its Laplace transform with laplace().

>> syms t K

>> yt=sin(K*t); Ys=laplace(yt)

K/(K^2 + s^2)

 Example 3: A Final LAPLACE
Compute the Laplace transform of y(x) = ax3 + b.

>> syms x a b y(x)

>> y(x)=a*x^3+b; Ys=laplace(y(x))

Ys =

(6*a)/s^4 + b/s

You can also obtain the t variable domain instead of s.

>> syms x t a b

>> y=a*x^3+b; Yt=laplace(y, x, t)

Yt =

(6*a)/t^4 + b/t

The ilaplace() function syntax and implementation are exactly the same for 

laplace. Let’s look at several ODE exercises to see how to use laplace/ilaplace and 

compare their evaluated solutions to the ones obtained with dsolve.

 Example 4: Comparing LAPLACE/ILAPLACE with DSOLVE
Let’s solve y y� �2 0 , y (0) = 0.5 with laplace/ilaplace and dsolve. The following script 

(ODE_Laplace.m) shows the solution:
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% ODE_Laplace.m

clearvars; clc; close all

% Step #1. Define symbolic variables' names

syms t s y(t) Y

Dy = diff(y(t),t);

ODE1=Dy==-2*y(t);

% Step #2. Laplace Transforms

LT_A=laplace(ODE1, t, s);

% Step #3. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),y(0)},{Y,0.5});

% Step #4. Solve for Y (unknown)

Y=solve(LT_A, Y);

display('Laplace Transforms of the given ODE with ICs'); disp(Y)

% Step #5. Evaluate Inverse Laplace Transform

Solution_Laplace=ilaplace(Y);

display('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace)

% Step #6. Compute numerical values and plot them

t=0:.01:2.5; LTsol=eval(vectorize(Solution_Laplace));

figure, semilogx(t, LTsol, 'ko')

xlabel('t'), ylabel('solution values')

title('laplace/ilaplace vs dsolve ')

grid on; hold on

%% Compare with dsolve solution method

clearvars;

syms y(t)

Dy = diff(y, t);

Y_d=dsolve(Dy==-2*y, y(0)==0.5);

disp('Solution with dsolve')

t=0:.01:2.5;

pretty(Y_d); Y_sol=eval(vectorize(Y_d));

plot(t,Y_sol, 'b-', 'linewidth', 2), grid minor

legend('laplace+ilaplace', 'dsolve')

hold off; axis tight

Chapter 8  Ordinary differential equatiOns



566

After executing the ODE_Laplace.m script, the following output is obtained:

Laplace Transforms of the given ODE with ICs

1/(2*s + 4)

Solution found using Laplace Transforms: exp(-2 t)

--------

2

Solution with dsolve exp(-2 t)

--------

2

The plot of solutions shown in Figure 8-6 clearly displays a perfect convergence of 

solutions found with laplace/ilaplace and dsolve.

Figure 8-6. The problem y y� �2 0 , y (0) = 0.5 solved with laplace/ilaplace 
and dsolve
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 Example 5: Convergent Answers
Given  y y t� � � �sin , y y0 1 0 2� � � � � �,  , here is the solution script (Laplace_vs_Dsolve.m) 

of this second-order nonhomogeneous ODE with laplace, ilaplace, and dsolve:

clearvars, clc, close all

syms t s y(t) Y(s)

Dy = diff(y(t), t);

D2Y = diff(y(t), t, 2);

ODE2nd=D2Y== sin(t)-Dy;

% Step 1. Laplace Transforms

LT_A=laplace(ODE2nd, t, s);

% Step 2. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),subs(diff(y(t),t),  t, 

0),y(0)},{Y(s),2,1});

% Step 3. Solve for Y unknown

Y=isolate(LT_A, Y);

%disp('Laplace Transforms of the given ODE with ICs');

disp(Y)

Solution_Laplace=ilaplace(rhs(Y));

disp('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace);

t=0:.01:13; LTsol=eval(vectorize(Solution_Laplace));

figure, plot(t, LTsol, 'ro-'); xlabel('t'), ylabel('solution values')

title('laplace/ilaplace vs. dsolve: ddy+dy=sin(t)'); hold on

% dsolve solution method

Y=dsolve('D2y+Dy=sin(t)', 'y(0)=1, Dy(0)=2', 't');

disp('Solution with dsolve:   ');

pretty(Y)

fplot(Y, [0, 13], 'b-', 'linewidth', 2); grid minor

legend('laplace+ilaplace', 'dsolve', 'location', 'SE'); hold off
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The computed analytical solutions are as follows:

Y(s) == (s + 1/(s^2 + 1) + 3)/(s^2 + s)

Solution found using Laplace Transforms:

    cos(t)   sin(t)   5 exp(-t)

4 - ------ - ------ - ---------

       2        2         2

Solution with dsolve:

               /     pi \

    sqrt(2) cos| t - -- |

               \      4 /   5 exp(-t)

4 - --------------------- - ---------

              2                 2

From the plot displayed in Figure 8-7, it is clear that the solutions found via the 

Laplace transforms (laplace/ilaplace) and the dsolve functions converge perfectly 

well. Both functions evaluate the same analytical solution of a given ODE.

Figure 8-7. Analytical solutions of  y y t� � � �sin , y y0 1 0 2� � � � � �, 
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 Example 6: No Analytical Solution
Given the following second-order nonhomogeneous and nonlinear ODE, let's try to 

solve it using syms, diff(), and laplace().

 2 3 100 2 0 1 0 2  y y y t y y� � � � � � � � � � �cos , , .  

Let's solve Here is the solution script (Lap_inv_Lap.m) with the Laplace and inverse 

Laplace transforms:

% Lap_inv_Lap.m

clearvars, clc, close all

syms t s y(t) Y(s)

Dy=diff(y(t),t);

D2y=diff(y(t),t,2);

ODE2nd=D2y==0.5*(-3*(Dy)^3+cos(100*t)*abs(y(t))+2);

% Step 1. Laplace Transforms

LT_A=laplace(ODE2nd, t, s);

% Step 2. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),subs(diff(y(t),t),  t, 

0),y(0)},{Y(s),0,0});

% Step 3. Solve for Y unknown

Y=isolate(LT_A, Y);

% Step 3.   Solve for Y unknown Y=solve(LT_A, Y);

disp('Laplace Transforms of the given ODE with ICs');

disp(Y)

Solution_Laplace=ilaplace(Y);

disp('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace)
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The Lap_inv_Lap.m script produces the following output in the Command window:

Laplace Transforms of the given ODE with ICs
Y(s) == (4 + s*laplace(abs(y(t)), t, s - 100i) + s*laplace(abs(y(t)), t, s 
+ 100i) - 6*s*laplace(diff(y(t), t)^3, t, s))/(4*s^3)
Solution found using Laplace Transforms:
                                 t
                                 /
                                |            /   d         \3
                             3  |  (t - u23) | ---- y(u23) |  du23
                         2     /             \ du23        /
                        t        0
ilaplace(Y(s), s, t) == -- - -------------------------------------
                         2                     2
             / laplace(|y(t)|, t, s - 100i)       \
     ilaplace| ----------------------------, s, t |
             |               2                    |
             \              s                     /
   + ----------------------------------------------
                            4
             / laplace(|y(t)|, t, s + 100i)       \
     ilaplace| ----------------------------, s, t |
             |               2                    |
             \              s                     /
   + ----------------------------------------------
                            4

This output means that no analytical solution is computed explicitly with 

laplace/ilaplace, just like with the dsolve function tools.

 Example 7: Demonstrating Efficiency and Effortlessness
Given a second-order nonhomogeneous ODE where g(t) is a forcing function that is 

discontinuous and defined by the following expression, let's solve it by applying the 

Laplace transform.

 
g t u t u t

t

t t
� � � � �� � � �

� �
� � �

�
�
�

2 10

5 2 10

0 0 2 10

,

, and  
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The Laplace transform of the given equation is as follows:

 
 2 3 2 2 10y y y u t u t� �� �� � �� � �� �  

 
2 2 0 2 0 3 0 2

5
2

2 10

s Y s sy y sY s y Y s
e e

s

s s

� � � � � � � � � � � � � � � � � � �
�� �� �



 

 

Y s
e e

s s s

s s

� � �
�� �
� �� �

� �5

2 3 2

2 10

2

 

Note that e−2s and e−10s are explained with time delays in the system output signals; in 

other words, -2 and -10 mean 2 and 10 seconds of time delays. 5 is the magnitude of the 

Heaviside (step) function.

The formulation Y(s) is the solution of the differential equation in the s domain, 

but we need it in the time domain. Thus, you need to compute its inverse Laplace 

transform:� � �� �� � �1 Y s y t .By employing ilaplace(), the next short script (Lap_4_

non_homog.m) is created. It solves the given problem and computes its analytical and 

numerical solutions.

% Lap_4_non_homog.m

syms t s

F=5*(exp(-2*s)-exp(-10*s))/s;

Y=2*s^2+s+2;

TF=F/Y; TFt=ilaplace(TF);

pretty(TFt);

Sol=vectorize(TFt);

t=linspace(0, 20, 400);

S=eval(Sol); plot(t, S, 'bo-'); grid minor

title('Differential Equation with Discontinuous Forcing Fcn')

grid on, xlabel('time'), ylabel('y(t) solution'), shg

After executing the script, the next solution plot is obtained along with the solution 

formulation, as shown in Figure 8-8.
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Figure 8-8. Simulation of the second-order nonhomogeneous ODE subject to the 
discontinuous forcing function

>> pretty(TFt)

                 /    / 5   t \ /      sqrt(15) sin(#1) \     \

                  | exp| - - - | | cos(#1) + ---------------- |     |

                  |    \ 2   4 / \                  15        /   1 |

heaviside(t - 10) | ------------------------------------------- - - |

             \                      2                        2 /

                       /    / 1   t \ /     sqrt(15) sin(#2) \     \

                       | exp| - - - | | cos(#2) + ---------------- |     |

                       |    \ 2   4 / \                  15        /   1 |

  5 - heaviside(t - 2) | ----------------------------------------- - - | 5

                \                      2                        2 /

where

         sqrt(15) (t - 10)

   #1 == -----------------

                 4

         sqrt(15) (t - 2)

   #2 == ----------------

                 4
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From the previous exercise, the following points can be drawn. Using the Laplace 

transforms (laplace/ilaplace) to compute analytical solutions of nonhomogeneous 

ODEs subject to external forcing functions, which are discontinuous, is relatively easy, 

fast, and effortless. Such exercises are found often within control engineering problems. 

Moreover, note that the Laplace and inverse Laplace transforms (laplace/ilaplace) are 

straightforward to implement in solving ODEs. The solutions of ODEs found with them 

match the ones found by dsolve() perfectly well. As mentioned, many ODEs cannot be 

solved analytically with the laplace/ilaplace and dsolve functions. Thus, numerical 

methods are often the only option.

 MATLAB Built-in ODEx Solvers

In MATLAB, there are a few built-in ODE solvers, namely, ode15s, ode15i, ode23, ode23s, 

ode23t, ode23tb, ode45, and ode113, which are efficient in finding numerical solutions of 

many different types of initial value problems. These solvers are based on explicit Runge-

Kutta and implicit Adams-Bashforth-Moulton methods with different implementation 

algorithms and ODE solver methods, namely, Dormand-Prince (ode45), Bogacki-

Shampine (ode23), Rosenbrock (ode23s), trapezoidal rule (ode23t), Adams- Bashforth- 

Moulton (ode113), Gear’s method (ode15s), and so forth. Using MATLAB’s built-in ODE 

solvers is relatively simple, and these are the following general syntaxes of the ODE 

solvers:

solver(odefun,tspan,y0)

[T,Y] = solver(odefun,tspan,y0)

[T,Y] = solver(odefun,tspan,y0,options)

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)

sol = solver(odefun,[t0 tf],y0...)

Any of ode15s, ode15i, ode23, ode23s, ode23t, ode23tb, ode45, and ode113 can be 

chosen depending on the given problem type, for instance, whether the given problem is 

stiff (how far stiff, e.g., very stiff or moderately stiff ) or nonstiff, explicit or implicit.

It is worth noting that an ODE solver type needs to be selected carefully. In selecting 

a solver type, the recommendations given in Table 8-1 should be considered. These are 

taken from the help library of the MATLAB package.
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Table 8-1. MATLAB’s Built-in ODEx Solvers

Solver Type Problem Type Accuracy When to Apply

ode15i fully implicit Medium for only fully implicit iVp

ode15s stiff low to Medium if ode45 is too slow in finding solutions of 

the problem due to its stiffness

ode23 nonstiff low for moderately stiff problems with crude 

error tolerances

ode23s stiff low for stiff problems with crude error tolerances

ode23t Moderately stiff low for moderately stiff problems

ode23tb stiff low for stiff problems with crude error tolerances

ode45 Nonstiff Medium Recommended for most problems; must 
be the first ODE solver to try

ode113 nonstiff low to high for problems with tight error tolerances

Moreover, the efficiency of these solvers depends on the chosen step type (fixed or 

variable), the size, and the relative and absolute error tolerances that directly affect the 

accuracy of simulation results and efficiency of computation processes. While using 

built-in ODE solvers, the step size can be chosen as variable (automatically chosen) or 

fixed/specified by a user. All built-in ODE solvers by default will take variable step sizes 

automatically depending on the type of a given IVP (e.g., a stiffness level) and a solution 

search space. Error tolerance can be controlled in ODE solvers via their setting options. 

Hereafter, we study in real exercises all these key aspects and settings of ODE built-in 

solvers.

ODEFUN for the ODE solvers can be defined by using the following:

 1. Anonymous function with function (@)

 2. Function file (*.m file)

 3. matlabFunction: function file (*.m file) by employing the 

Symbolic Math Toolbox

 4. Inline function (in the future MATLAB versions will be removed)
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Note you need to be careful while recalling the function (name) ODEFUN. if it 
is defined via anonymous function (@) or inline function, then you should use the 
following command syntax:

[T Y]=ODEx(my_Function, t, y0);

If you define a given problem (function/expression) via a function file, then you need 

to use one of the following command syntaxes:

[T Y]=ODEx(@Fun_File, t, y0);

[T Y]=ODEx('Fun_File', t, y0);

Time space can be predefined as a row or column vector of time values or with two 

elements, namely, starting and end values, e.g., t = linspace(0, 13, 1000); t = (0:0.001:13).’; 

t = [0, 13].

ODEx solvers will automatically take different number of steps or step size with 

respect to the nature of the given ODE (stiff or nonstiff, linear or nonlinear, etc.).

 Example 8: Demonstrating MATLAB Built-in ODEx Solvers
Here is the example problem: y ty� �2 02 , y0 = 0.5 . In this case, our function file called 

Fun_File.m is defined via the next function file:

function F=Fun_File(t, y)

F=(-2*y^2*t);

We will look at several different problems of how to implement these built-in tools 

and their options in defining ODEFUN. In the first example, we show how to use the 

anonymous function (@) to simulate a first-order ODE: y ty� �2 02 , y0 = 0.5.

The following script (Example_8.m) shows the implementation of ode45, ode23, and 

ode113 solvers with an anonymous function (@) with a fixed step size, h = 0.1:
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%%  Example_8.m

% Part 1

% dy/dt=-2*t*(y^2); with ICs: y(0)=0.5

clearvars

F=@(t,y)(-2*y^2*t); % Anonymous function (@)

% matlabFunction creates a function file called: Fun_F.m

syms tt u; % tt and u are used instead of t and y not to overlap.

F=-2*u^2*tt;

matlabFunction(f, 'file', 'Fun_F');

t0 = 0;            % Start of simulation

tend=10;           % End of simulation

h = 0.1;           % Time step

t=t0:h:tend;       % Time space

y0=0.5;            % Ics: y0 at t0

[t1, Yode45]=ode45(F, t, y0);  % F is anonymous function (@)

[t2, Yode23]=ode23(@Fun_File,t,y0); % Fun_File.m - function file

[t3, Yode113]=ode113('Fun_F',t,y0); % Fun_F.m - matlabFunction

plot(t1, Yode45, 'ks-', t2, Yode23, 'ro-.',t3, Yode113,'bx--'),

grid on;

title('\it Solutions of: $$\frac{dy}{dt}+2*t^2=0, y_0=0.5$$', 

'interpreter', 'latex')

legend ('ode45','ode23','ode113')

xlabel('Time, t'), ylabel('Solution, y(t)'), shg

Figure 8-9 shows the output plot of the script. You can conclude that for the given 

problem, ode23, ode45, and ode113 performs very well with the fixed step size of h = 0.1.
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Figure 8-9. Simulation results of ODE23, ODE45, and ODE113

Note if you do not specify the output variable names, e.g., ode45(F, t, y0),  
then the chosen solver displays computation results in a plot figure and no 
numerical outputs are saved in the workspace.

Let’s look at the issue of how MATLAB built-in solvers take variable steps in solving a 

given problem (Example 1. y ty� �2 02 , y0 = 0.5) and how the step size will influence the 

accuracy of simulations and computation (elapsed) time costs.

%%  Example_8.m

%% Part 2

t0 = 0;                % Start of simulation

tend=100;              % End of simulation

t=[t0, tend];          % Time space

y0=0.5;                % ICs: y0 at t0

F=@(t,y)(-2*y^2*t);

tic

[t1, Yode45]=ode45(F, t, y0);

Tode45=toc; fprintf('Tode45 = %2.6f  \n', Tode45)

clearvars -except t y0
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tic

[t2, Yode23]=ode23(@Fun_File, t, y0);

Tode23=toc; fprintf('Tode23 = %2.6f  \n', Tode23)

clearvars -except t y0

tic

[t3, Yode113]=ode113('Fun_F', t, y0);

Tode113=toc; fprintf('Tode113 = %2.6f \n', Tode113)

In Part 2 of the script, the time space ([t0, tend]) is defined by the initial and end 

time values. Thus, in this case, each solver has taken variable steps while performing 

simulations. The simulations are performed on a laptop computer with these specs: 

Windows 10, Intel Core i7 – 9750 CPU @ 2.60 GHz, 16 GB RAM. The script outputs the 

following data that are computational time of the solvers: ode45, ode23, and ode113.

Tode45 = 0.018722

Tode23 = 0.007884

Tode113 = 0.010358

Note that the computation time (Tode45) of ode45 (in seconds) is the shortest.

 Example 9: MATLAB Built-in ODEx Solvers 
for Second-Order ODEs
When solving second- or higher-order ODEs, you need to rewrite a given problem as a 

system of first-order ODEs.

Here’s the nonhomogenous and nonlinear second-order ODE problem: 

2 3 100 2 y y y t� � � � �cos , y(0) = 1, y 0 2� � � .

Note that this exercise can’t be solved analytically using dsolve or laplace/ilaplace 

(see Example 6 given earlier).

Before writing a script of commands for MATLAB built-in ODE solvers, you need to 

rewrite the given second-order ODE as a system of two first-order ODEs by introducing 

new variables.

 y y y t� � � � ��� �1

2
3 100 2cos  is re-written: 





y y

y y y t

1 2

2 2 1

1

2
3 100 2

�

� � � � ��� �
�
�
�

��
cos

Note that y1 = y and  y y2 = .
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The previously written system of first-order ODEs can be expressed by 

matlabFunction, anonymous function (@), function file, and inline function (be removed 

in the future MATLAB releases) in scripts.

Note ODE45 is a recommended solver to try when solving the iVps if the given 
problem is not stiff or implicitly defined.

The script (Example_9.m) embeds command syntaxes of the ODE solvers, namely, 

ode45, ode23, and ode113, to compute numerical solutions of the given problem.

% Example_9.m

clearvars; close all

t0=0;         % Start of simulations

tend=2;       % End of simulations

t=[t0, tend];

y(1,:)=[1; 2];      % Initial Conditions

% ode45 - RUNGGE-KUTTA 4/5 Order

Fun = @(t, y)([y(2); (1/2)*(-3*y(2)+abs(y(1))*cos(100*t)+2)]);

[T1, U1]=ode45(Fun, t, y, []);

plot(T1, U1(:,1), 'rp', 'markersize', 9); grid on; hold on

% ode23 - RUNGGE-KUTTA 2/3 Order

[T2, U2]=ode23(Fun, t, y);

plot(T2, U2(:,1), 'b:o', 'markersize', 9)

% ode113 - ADAMS Higher Order

[T3, U3]=ode113(Fun, t, y);

plot(T3, U3(:,1), 'k-', 'linewidth', 2)

legend('ode45', 'ode23', 'ode113', 'location', 'SE')

title('Simulation of: $$\frac{2d^2y}{dt^2}+\frac{3dy}{dt}-

|y|cos(100t)=2$$', 'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex'),

ylabel('Solution, $$y(t)$$', 'interpreter', 'latex')

axis tight
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Figure 8-10. Simulation results of ODE23, ODE45, and ODE113

This exercise shows that the employed ODE45, ODE23, and ODE113 built-in solvers 

have found well-converged numerical solutions of the given nonhomogeneous and 

nonlinear second-order ODE problem.

Note there are some exercises that have a nonzero starting time of iVps. in 
solving such problems, the simulation has to start at a given initial time (value). for 

example, for u
�
2

2

3
�
�
�

�
�
� � ,  the simulation has to start at t �

�
2

. this is applicable for 

all built-in Odex solvers, scripts, and simulink models.

 Example 10: Simulink Modeling
Solving second or higher-order ODEs with Simulink modeling should be started with 

the Integrator block to obtain a sought solution from second- or higher-order derivative 

variable. For example, if you are solving a first-order ODE, you need one integrator block, 

and similarly, if you are solving second- or third-order ODE, you need two or three 

Integrator cblocks.

Let’s consider the following second-order ODE example to demonstrate how to build 

a Simulink model.
1

2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �and  .
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You first rewrite the given second-order ODE before starting to model it.

  u t u u� � �2 0 8 2. .  

Note that to obtain u(t) from u  that must be integrated twice, as shown in 

Figure 8-11, you need two Integrator blocks to build a sought model.

Figure 8-11. Double Integration with Integrator blocks

The initial conditions of the given ODE exercise are set up in the Integrator1 

and Integrator block parameters by double-clicking each integrator block shown in 

Figure 8-11 in a sequential order. The Integrator1 block parameters, including the 

Initial condition entry window, are shown in Figure 8-11. Similarly, by double-clicking 

Integrator2, the block parameters are accessed and set up. Alternatively, the integrator 

block parameters can be accessed via one click and using the right mouse option of 

Block Parameters (Integrator). Note in this case that the initial condition source is 

chosen to be internal but can be also chosen to be external.
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Figure 8-12. Setting up the initial condition using Block Parameters: Integrator

The complete model of this exercise is Example_10.slx, which is shown in 

Figure 8-13.

Figure 8-13. Simulink model of the problem: 1
2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �, 
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In the Simulink model in Figure 8-12, the Integrator1 block has an internal initial 

condition value of 2.0, and the other one has an internal initial condition value of 1.0. By 

executing the model (Figure 8-13), the simulation results obtained via the Scope block 

shown in Figure 8-14 are obtained.

Figure 8-14. Simulation results shown in the Scope block of the Simulink model, 
Figure 8-13

The simulation results of 
1

2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �,   are displayed in the 

Scope block, as shown in Figure 8-14. Note that in the Scope block shown earlier, we 

have made some adjustments, e.g.,, by adjusting/selecting its background color and 

plotting data points from parameters ( ) of the block, that are a marker and line type 

and the color of plotted data points, which are similar to plot tools of MATLAB. Note that 

the Out1 block is optional to include in the model. By including this model, you obtain 

two outputs (tout and yout) in the MATLAB workspace, which are plotted data points 

shown in Figure 8-13. This Simulink model, called Example_10.slx, can be executed 

without opening it from MATLAB using the sim() command, and the simulation data 

points (tout and yout) can be also plotted in MATLAB. Here’s an example:

[t, u]=sim('Example_10.slx');

plot(t, u(:,1), 'bo'), grid on

xlabel('time, [s]')

ylabel('Solution, u(t)')
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Note that in the simulation results, t represents the time taken from tout, and u 

represents the solution results taken from (yout) two integrator blocks, which are the 

displacement and velocity values.

Note the options in the scope block parameters to change the background color, 
the plotted data’s line type, and the marker type and axis color, as well as add 
legends, are only available starting from MatlaB 2012/simulink 8.0.

The accuracy of the found numerical solutions from Simulink models depends on 

the solver type (variable or fixed step solver) and solver (ode45, ode113, ode23, ode1, 

ode2, odeN, etc.), relative and absolute error tolerances, zero-crossings, step size (if a 

fixed step solver type), and other settings.

Note By default, the variable-step solver with ode45 is chosen that can be 
switched to a fixed step solver. Moreover, solver settings can be adjusted from the 
simulink model window’s Gui tools via the Modeling tab. Click Model settings or 
use the simset() function from MatlaB.

The solver settings can be adjusted using GUI tools from the Simulink model window 

via the Modeling tab. Clicking Model Settings   opens the Configuration 

Parameters: Solver, Data Import/Export, Math and Data Types, and so forth. By default, 

Solver is selected, and this shows all Solver details and setting options. All Solver settings 

can be also accessed and changed from MATLAB using the simset() function.

Let’s test the previous example by changing the solver settings, such as solver type 

and relative and absolute error tolerances, and switching off the zero-crossing option 

using a MATLAB script. Here is a complete script (SimSet_Simulate.m) to simulate the 

Simulink model (Example_10.slx):
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% SimSet_Simulate.m

% Part 1. Variable step solver

% Solver 1 (Variable-step solver): ode45;

Time = [0, 25];

OPTIONS = simset('solver', 'ode45', 'zerocross', 'on');

[t1, u1]=sim('Example_10.slx', Time, OPTIONS);

% Solver 2 (Variable-step solver): ode113;

OPTIONS = simset('solver', 'ode113', 'zerocross', 'on');

[t2, u2]=sim('Example_10.slx', Time, OPTIONS);

% Solver 3 (Variable-step solver): ode23s;

OPTIONS = simset('solver', 'ode23s', 'zerocross', 'on');

[t3, u3]=sim('Example_10.slx', Time, OPTIONS);

plot(t1, u1(:,1), 'bo', t2, u2(:,1), 'r*', t3, u3(:,1), 'kp'), grid on

L=legend('ode45', 'ode113', 'ode23s', 'location', 'SE');

title(L,'Solver type: Variable-step')

title('Solution: $$\frac{d^2u}{2dt^2}+\frac{2du}{5dt}+u=t$$', 

'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex')

ylabel('Solution, $$u(t)$$', 'interpreter', 'latex')

axis tight

%% Part 2. Fixed-step solver

% Solver 1: ode1 (Euler); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode1', 'reltol', '1e-3', 'abstol', '1e-5', 

'zerocross', 'off');

[t1, u1]=sim('Example_10.slx', Time, OPTIONS);

% Solver 2: ode3 (Bogacki-Shampine); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode3', 'reltol', '1e-3', 'abstol', '1e-5', 

'zerocross', 'off');

[t2, u2]=sim('Example_10.slx', Time, OPTIONS);

% Solver 3: ode14x (Extrapolation); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode14x', 'reltol', '1e-3', 'abstol', '1e-5', 

'zerocross', 'off');

[t3, u3]=sim('Example_10.slx', Time, OPTIONS);

plot(t1, u1(:,1), 'bo', t2, u2(:,1), 'r*', t3, u3(:,1), 'kp'), grid on
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L=legend('ode1', 'ode3', 'ode14x', 'location', 'SE');

title(L,'Solver type: Fixed-step')

title('Solution: $$\frac{d^2u}{2dt^2}+\frac{2du}{5dt}+u=t$$', 

'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex')

ylabel('Solution, $$u(t)$$', 'interpreter', 'latex')

After simulating the script (SimSet_Simulate.m), we get the following simulation 

results from the variable step solvers—ode45, ode113, ode23s, and fixed step 

solvers—ode1, ode3, ode14x. From the simulation of the variable step solvers shown in 

Figure 8-15, the found numerical solutions from the three solvers are well converged. On 

the other hand, the results from the fixed step-solvers shown in Figure 8-16 show that not 

all fixed step solvers can compute accurate numerical solutions despite the same error 

tolerances. The solver ode1 (Euler method) exhibits significantly inaccurate solutions 

of the problem. This is a good example that shows the importance of selecting a right 

solver type and solver with respect to a given ODE problem nature and its stiffness level. 

Another important observation in this example is that the variable-step solver takes a 

varying step size, and fixed step- solvers with the same error tolerance settings take the 

same number of steps to compute numerical solutions.

Figure 8-15. Simulation results from the variable-step type solvers of the Simulink 
model, Example_10.slx
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Figure 8-16. Simulation results from the fixed-step type solvers of the Simulink 
model, Example_10.slx

 Summary
This chapter covered briefly analytical solution functions (dsolve, laplace/ilaplace) of 

MATLAB to solve ODE exercises. Not all ODE problems can be solved analytically using 

dsolve and laplace/ilaplace functions. On the other hand, the Laplace transforms 

(laplace/ilaplace) can be employed to solve ODEs with discontinuous forcing 

functions, which have broad engineering applications.

The chapter introduced key steps of using MATLAB’s ODEx numerical solvers, such as 

ODE23, ODE45, and ODE113, for first and second-order ODEs. Moreover, you learned how to 

use Simulink modeling aspects to solve IVPs. The chapter demonstrated how to adjust the 

Simulink solver type and solver settings using the simset() function from MATLAB.
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 Self-Study Exercises
 Exercise 1
The following are IVPs of second-order nonhomogeneous ODEs:

• y y t� � � �9 22 sin , y(0) = 0 and y 0 6� � �  for t ϵ [0,  3π]

•  y y y t� � � � �4 104 2 10cos , y(0) = 0 and y 0 0� � �  for t ϵ [0,  5π]

• y y� � �ex 2,  y(0) = 0 and y 0 0� � �  for x ϵ [0,  13]

•  y y y� � �2 2x , y 0 0� � �  and y 0 6� � �  for x ϵ [0,  15]

•  y y y t� � � � �2 101 5 10sin , y(0) = 0 and y 0 20� � �  for t ϵ [0,  5π]

Solve each of the second-order ODEs with the following methods:

 a) Using MATLAB built-in ODE solvers ode23, ode45, and ode113 

and adjusting their settings, namely, relative and absolute error 

tolerances

 b) Building a Simulink model (see Chapters 5 and 8 for Simulink 

modeling) and using a solver ode3

Next compare the solutions found from (a) and (b) and figure out which approach is 

the most efficient and accurate (correct and has smallest error margins) one.

Finally, is it possible to compute an analytical solution of given problems by using 

dsolve and Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions 

against numerical solutions found from (a) and (b).
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 Exercise 2
First, solve the second-order nonhomogeneous ODE: x xy y ey x2 35 8 � � � , y(1) = 0 and 
y 1 24� � �  for x ϵ [1, 15]. Note that the initial point is at x = 1. Use the following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapter 5 for Simulink modeling) 

and employing a solver ode2

Next, is it possible to compute an analytical solution of the given problem by using 

dsolve and Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions 

against numerical solutions found from (a) and (b).

 Exercise 3
First, solve the following second-order nonhomogeneous and nonlinear ODE: 
 y y y y t t� � � � � �16 12 3 12 33 cos , y(0) =  − 1 and y 0 0� � �  for x ϵ [0,  13]. Use the 

following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapters 5 and 8 for Simulink 

modeling) and employing a solver ode4

Next, compare the solutions found from (a) and (b) by plotting t versus y(t) and 

t y tversus  � �,  and find out which approach is the most adequate (meaning it’s correct 

and has the smallest error margins) and efficient.

 Exercise 4
First, solve the given IVP of this second-order nonhomogeneous and nonlinear ODE: 
 y y y y e t tt� � � � � � �2 101 2 5 102 2 5 2 sin , y(0) = 0 and y 0 20� � � for t ϵ [0,  6π]. Use the 

following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapter 5 and 8 for Simulink 

modelling) and employing a solver ode14x
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Next, compare the solutions found from (a) and (b) and find out which approach is 

the most efficient. Take smaller time steps if necessary.

Finally, is it possible to compute an analytical solution of the given problem by using 

dsolve and Laplace transforms (laplace and ilaplace)?

 Exercise 5
First, solve the following second-order nonhomogeneous and nonlinear ODE: 

 y y y e tt2 2 25 2� � �| | , y(0) = 1 and y 0 0� � �  for t ϵ [0,  13]. Use the following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapters 5 and 8 for Simulink 

modeling) and employing a solver ode1

Next, compare the solutions found from (a) and (b) and find out which approach is 

the most efficient.

 Exercise 6
Given an equation of charge in resistor-inductance-capacitor (RLC) circuit shown in the 

below given figure in a series by Kirchhoff’s law: L Rq
q

C
tq � � �max cos �  

 

with q q0 0 0� � � � � �  for t ϵ [0,  4π].

EMF: εmax = 110   [V]

Resistance: R = 7.17 [Ω]

Capacitor: C = 50 ∗ 10−3[F]
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Armature inductance:  � � � ��9 53 10 4. H

Frequency: ω = 60 [Hz].

First do the following:

 a) Find numerical solutions of q(t) using MATLAB built-in ODE 

solvers: ode23, ode45, ode113.

 b) Find numerical solutions of q(t) by building a Simulink model 

(see Chapters 5 and 8 for Simulink modeling) and employing a 

solver ode8.

 c) Compare the solutions found from (a) and (b) and find out 

which approach is the most efficient and correct/appropriate. 

If necessary, take reasonably smaller time steps and specify the 

(appropriate) initial step size, as well as relative and absolute 

tolerances.

Then, is it possible to compute analytical solution of the problem using dsolve and 

Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions against 

numerical solutions found from (a) and (b).

 Exercise 7
First, solve the given IVP of the fourth-order nonhomogeneous 

ODE: y t y y tyiv � � � � � � � � �3 100 8 10 1003 2
 cos sin t  with 

y y yy0 0 0 1 0 2 0 3� � � � � � � � � � � � �, , , .  and  For t ϵ [0,  3π]. Use the following methods:

 a) Solve the problem by using MATLAB built-in ODE solvers (ode23, 

ode45, ode113 ) and adequately setting up relative and absolute 

error tolerances.

 b) Solve the problem by using MATLAB built-in ODE solvers 

(ode23s, ode15s, ode23tb) and obtain the numerical solution of 

the problem in plot only (hints: set up OutputFcn for @odeplot 

with odeset).

 c) Solve the problem by building a Simulink model (see Chapters 5 

and 8 for Simulink modeling) with a solver ode2.
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Finally, compare all the solutions found from (a) to (c) and find out which approach 

is the most efficient and adequate.

 Exercise 8
Solve the given IVP of the fourth-order nonhomogeneous ODE: 

y y y y t eyiv t� � � � � � �� �2 8 12 12 25 5
   sin , y y yy0 3 0 0 0 1 0 2� � � � � � � � � � � � �, , ,  and  for 

t ϵ [0,  5π]. Use the following methods:

 a) Solve the problem by using MATLAB built-in ODE solvers 

(ode23s, ode15s, ode113) by setting up relative and absolute 

tolerances.

 b) Solve the problem by using MATLAB built-in ODE solvers (ode23, 

ode45, ode23tb) and obtain the numerical solutions of the 

problem in plot only (hints: set up 'OutputFcn' for @odeplot with 

odeset).

 c) Solve the problem by building a Simulink model (see Chapters 5 

and 8 for Simulink modeling) with the solver ode8.

Then, compare all the solutions found from (a) to (c) and find out which approach is 

the most efficient and appropriate.

 Exercise 9
Find numerical solutions of the following systems of coupled ODEs defined by the 

following:

 1. 

dx

dt
x t

dx

dt
x t

1
2

2
1

� � � � �

� � � �

�

�
��

�
�
�

cos

sin
 with ICs: x1(1) = 2.5, x2(1) = 3.5,   t ϵ [1, 13].

 2. 

dx

dt
x y

dy

dt
x

� � � �

� � � �

�

�
��

�
�
�

3 5 2

13 2 2

ye

x y

x

 with ICs: x(0.5) = 2, y(0.5) =  − 2,   t ≤ 5.55.

Chapter 8  Ordinary differential equatiOns

https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8


593

 3. 

dx

dt
x y

dy

dt
x y

� �� � � �

� � � � �

�

�
��

�
�
�

1

1

sin

cos

 with ICs: x y t
� � � �
4

1 25
4

0 75
4

7

2
�
�
�

�
�
� �

�
�
�

�
�
� �

�
��

�
��

. , . , . ,

For each of the systems, perform the following tasks:

 – Write an anonymous function of the coupled system.

 – Create a Function file called, e.g., CoupleODE.m.

 – Solve the problem by building a Simulink model (see Chapters 5  

and 8 for Simulink modeling) called, e.g., CoupledODEsim.mdl, with a 

fixed step solver ode3.

 – Find the numerical solutions of the problem by employing ode23, 

ode45, and ode113. Compare the solutions from ODEx solvers and 

the Simulink model and check the efficiency of each approach. Take 

smaller time steps, adjust the relative and absolute tolerances, and 

simulate your created Simulink model (CoupledODEsim.mdl) from an 

M-file (hint: use sim() and simset()).

 Exercise 10
By using the Laplace transforms (laplace, ilaplace), solve the following second-order 

nonhomogeneous ODEs subject to discontinuous forcing function:

 1. 
 y y h t y y� � � � � � � � � �5 0 0 0 0, , , h t t

t

t

t

� � � �� �
� �
� �
�

�

�
�

�
�

0

3 3

13

0 3

3 11

11

,

/

 2. 
  y y y g t y y� � � � � � � � � � �5 5 0 0 0 2, , , g t

t

t t
� � �

� �
� � �

�
�
�

5

0

3

0 3

� �
� �and

 3. 
  x x x u t x x� � � � � � � � � � �5

5

6
0 0 0 0, , , u t

t t

t
� � � � � � �

�
�
�
�

sin

0

0 2

2

�
�

Plot numerical values of the analytical solutions for a sufficient time.
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