
549

CHAPTER 8

Ordinary Differential
Equations
Many modeling problems with engineering applications can be formulated using

ordinary differential equations (ODEs). There are a few different definitions of

differential equations. One of the simplest is “A differential equation is any equation

which contains derivatives, either ordinary derivatives or partial derivatives,” as given

in source [1]. From this definition, we can derive two types of differential equations:

ordinary differential equations (ODEs) and partial differential equations (PDEs). ODEs

contain one type of derivative or one independent variable, and PDEs, on the contrary,

contain two or more derivatives or independent variables. For example, first-order ODEs

can be expressed as follows:

	

dy

dx
f x y� � �,

	
(Equation 8-1)

Here, y(x) is a dependent variable whose values depend on the values of the

independent variable of x. Another good example of ODEs is Newton’s Second Law of

Motion, formulated as follows:

	
ma

dp

dt

mdv

dt
f t v� � � � �,

	
(Equation 8-2)

Here, F(t, v) is force, which is a function of time (t) and velocity (v).
dv

dt
 is a velocity

change rate (acceleration) of a moving object; m is the mass of a moving object; a is

an acceleration of a moving object; p is momentum; and dp/dt is its derivative. This

formulation of Newton’s Second Law can be also rewritten the following way:

	

md

dt

dx

dt

md x

dt
F t x

dx

dt
�
�
�

�
�
� � � �

�
�

�
�
�

2

2
, ,

	
(Equation 8-3)

© Sulaymon Eshkabilov 2022
S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_8

https://doi.org/10.1007/978-1-4842-8748-4_8#DOI

550

Here, the derivative
dx

dt
�
�
�

�
�
� of the displacement (x) of a moving object is the

velocity (v).

In other words, the velocity is the rate of change of the displacement x(t) of a moving

object in time. This can be visualized with the flowchart displayed in Figure 8-1.

Figure 8-1.  Flowchart expressing motion and exerted force of a moving object

�Classifying ODEs
There are two classifications of ODE-related problems.

•	 Initial value problems (IVPs):  x xt x� �3 with initial

conditions x x0 3 0 1� � � � � �, 

•	 Boundary value problems (BVPs):  x xt x� �3 with boundary

conditions x(0) = 3, x(2) = 1.50

IVPs are defined with ODEs together with a specified value, called the initial

condition, of the unknown function at a given point in the solution domain. In the IVP of

ODEs, there can be a unique solution, no solution, or many solutions. By definition, the

IVP of ODEs can be explicitly or implicitly defined. Most of the IVP are explicitly defined.

Let’s start with explicitly defined IVPs and then move to implicitly defined ones. In

addition to solution type—how solution values change over the solution search

Chapter 8 Ordinary Differential Equations

551

space—the IVPs are divided into stiff and nonstiff problems. Moreover, ODEs are

grouped into two categories, linear and nonlinear, and divided into two groups,

homogeneous and nonhomogeneous.

Here are some specific examples of different ODE types, categories, and groups:

•	 Stiff ODEs: y y� �3 108 , t ∈ [0, 40]

•	 Nonstiff: y y t� �2 2

•	 Linear ODEs: v v� �9 81 0 198. .

•	 Nonlinear ODEs: v v� �9 81 0 198 2. .

•	 Homogeneous ODEs: y y� �2 0

•	 Nonhomogeneous ODEs: y y t� � � �2 2sin

The following are several examples of ODEs and their application areas.

�Example 1: Unconstrained Growth
of Biological Organisms
This is an exponential growth problem that describes the unconstrained growth of

biological organisms (such as bacteria). This behavior can also describe real estate or

investment values, membership increase of a popular networking site, growth in retail

businesses, positive feedback of electrical systems, and generated chemical reactions.

The problem is formulated by the following first-order ODE:

dy

dt
y� � has a solution: y(t) = y0eμt

�Example 2: Radioactive Decay
This refers to exponential decay, which describes many phenomena in nature and in

engineering, such as radioactive decay, washout of chemicals in a reactor, discharge

of a capacitor, and decomposition of material in a river. It’s expressed using this first-

order ODE:
dy

dt
y� �� has a solution: y(t) = y0e−μt

Examples 1 and 2 are two simple examples of first-order ODEs.

Chapter 8 Ordinary Differential Equations

552

�Example 3: Newton’s Second Law
The motion of a falling object is expressed in the following equation using Newton’s

Second Law:

	

md y

dt
mg

dy

dt

2

2
� �

�

	

This is a second-order ODE that has a solution in the following form:

	
y t C e

m mg g t
C

t

m� � � �
�� �

�
��
�
�

�
�
�

1 2 2

� �
� 	

Here, m is the mass of the falling object, g is gravitational acceleration, and γ is an

air-drag coefficient of a falling object. Three parameters—m, g, and γ—are constant,

the solution of a falling object, and C1 and C2 are arbitrary numbers that are dependent

on the initial conditions. In other words, they can be computed considering the initial

condition of a falling object.

There are a few methods that evaluate analytical solutions of ODEs, including

separation of variables, introduction of new variables, and others. We look at specific

examples of these types of ODEs to see how to evaluate their analytical solutions and

compute numerical solutions. We do this by employing different techniques in the

MATLAB/Simulink environment and writing scripts and building models. In computing

analytical solutions of ODEs, we explain via specific examples how to use built-in

functions of the Symbolic Math Toolbox.

For obvious reasons, considerable effort is placed on numerical solution methods

rather than analytical solution search tools. It is not always possible or is too costly to

evaluate analytical solutions of ODEs. Therefore, a numerical solution search is often

best. There are a number of numerical methods. They are Euler (forward, backward,

modified), Heun, the midpoint rule, Runge-Kutta, Runge-Kutta-Gill, Adams-Bashforth,

Milne, Adams-Moulton, Taylor series, and trapezoidal rule methods.

Some of these methods are explicit, and others are implicit. To demonstrate how

to employ these methods, we first describe their formulations and then work on their

implementation algorithm for writing scripts (programs) explicitly. We do not attempt

to derive any of the formulations used in these numerical methods. There are many

literature sources [see 2, 3, 4, 5] that explain the theoretical aspects of these methods.

Chapter 8 Ordinary Differential Equations

553

In solving the IVP using numerical methods, we start at an initial point (initial

conditions) and then take a step (equal step-size or varying step-size) forward in time

to compute the following numerical solution. Some of the previously named numerical

methods (e.g., Euler’s methods) are single-step methods, and others (Runge-Kutta,

Adams-Bashforth, Milne, Adams-Moulton, and the Taylor series) are multistep methods.

Single-step methods refer to only one previous point and its derivative to determine the

current value. Other methods, such as Runge-Kutta methods, take some intermediate

steps to obtain a higher-order step and then drop off values before taking the next step.

Unlike single-step methods, multistep methods keep and use values from the previous

steps instead of discarding them. This way, multistep methods link a few previously

obtained values (solutions) and derivative values. All of these methods, i.e., the single-

step and multistep methods, are assessed based on their accuracy and efficiency in

terms of the computation time and resources (e.g., machine time) spent to compute

numerical solutions for specific types of IVPs of ODEs. Nevertheless, it remains true that

most solutions of the first-, second-, or higher-order IVPs cannot be found by analytical

means. Therefore, we need to employ various numerical methods.

�Analytical Methods
The Symbolic Math Toolbox has several functions that are capable of evaluating

analytical solutions of many analytically solvable ODEs. There are two commands (built-

in functions) by which analytical solutions of some ODEs can be evaluated—dsolve and

ilaplace/laplace.

Note that in this section we demonstrate—via a few examples of first- and second-

order ODEs and systems of coupled differential equations—how to compute analytical

solutions of ODEs.

�DSOLVE
One ODE solver tool for computing an analytical (or general) solution of any given ODE

in MATLAB is dsolve. It can be used with the following general syntax:

Chapter 8 Ordinary Differential Equations

554

Solution = dsolve(equation)

Solution = dsolve(equation, conditions)

Solution = dsolve(equation, conditions, Name, Value)

[y1,...,yN] = dsolve(equations)

[y1,...,yN] = dsolve(equations, conditions)

[y1,...,yN] = dsolve(equations, conditions, Name, Value)

�Example 1: Using DSOLVE
Given a first-order ODE: y + 2ty2 = 0 with no known initial or boundary conditions.

Let’ solve it using dsolve().

>> y_solution=dsolve('Dy=-2*y^2*t')

Y_solution=

 -1/(C3-t^2)

Note that C3 is defined from the initial or boundary conditions of the given

ODE. There is also an alternative command. In later versions of MATLAB (starting with

MATLAB 2012), we can solve the given problem by using the following command syntax:

>>syms y(t); y_sol=dsolve(diff(y) == - 2*y^2*t)

 y_sol =

 0

 -1/(- t^2+C3)

�Example 2: Plotting the Found Solution with dsolve
Given a first-order ODE: y ty� �2 02 with the initial condition y(0) = 0.50. Let’s solve it

using dsolve().

>> Solution=dsolve('Dy=-2*y^2*t', 'y(0)=0.5')

Solution =

1/(t^2 + 2)

The alternative command syntax with later versions of MATLAB is as follows:

>> syms y(t); Solution=dsolve(diff(y) == -2*y^2*t, y(0)==0.5)

Chapter 8 Ordinary Differential Equations

555

Solution = 1/(t^2 + 2)

The evaluated analytical solution in a symbolic formulation can be plotted with

fplot. (See Figure 8-2.)

>> fplot(Solution, [-5, 5], 'ro-'); grid on; xlabel('t'); ylabel 'y(t)'

Figure 8-2.  Analytical solution of y ty� �2 02 with the initial condition y(0) = 0.50

Numerical values of the analytical solution (the equation) can be computed by

vectorizing (parameterizing) the symbolic formulation (the solution), as shown here:

>> ysol=vectorize(solution)

ysol =

1./(t.^2 + 2)

>> t=(-5:.1:5); ysol_values=eval(ysol);

�Example 3: Adding an Unspecified Parameter
Given y kty� �2 0 , y (0) = 0.50. Let’s solve it using dsolve(). Note that this exercise has

one unspecified parameter k.

Chapter 8 Ordinary Differential Equations

556

>> syms k

>> solution=dsolve('Dy=-k*y^2*t', 'y(0)=0.5')

solution =

1/((k*t^2)/2 + 2)

An alternative command syntax is as follows:

>> syms y(t) k;

solution=dsolve(diff(y) == -k*y^2*t, y(0)==0.5)

solution =

1/((k*t^2)/2 + 2)

Note  Options in dsolve need to be set appropriately depending on the
problem type. In MatlaB 2008–2010 or earlier versions, you should set
IgnoreAnalyticConstraints to none to obtain all possible solutions.

Here’s an example:

solution=dsolve('Dy=-k*y^2*t','y(0)=0.5','IgnoreAnalyticConstraints','none')

Note F or MatlaB 2012 or later versions, you should set
IgnoreAnalyticConstraints to false to get all possible correct answers
for all the argument values. Otherwise, dsolve may output an incorrect answer
because of its pre-algebraic simplifications.

Here’s an example:

solution=dsolve(diff(y)==-k*y^2*t, y(0)==0.5,'IgnoreAnalyticConstraints',

false)

�Second-Order ODEs and a System of ODEs
There are a myriad of processes and phenomena that are expressed via second-order

differential equations. Examples include simple harmonic motions of a spring-mass

Chapter 8 Ordinary Differential Equations

557

system, motions of objects with some acceleration (Newton’s Second Law), damped

vibrations, current flows in resistor-capacitor-inductance circuits, and so forth. In

general, second-order ODEs are expressed in two different forms—homogeneous

(Equation 8-4) and nonhomogeneous (Equation 8-5).

	
 y p x y q x y� � � � � � � 0 	 (Equation 8-4)

	
 y p x y q x y p x� � � � � � � � � 	 (Equation 8-5)

Note that the homogeneous ODEs in Equation 8-4 always have one trivial solution,

which is y(x) = 0. It satisfies the givens in Equation 8-4. With respect to the independent

functions p(x), q(x), and g(x), the ODEs can be linear or nonlinear. In some cases, the

independent functions p(x), q(x), and g(x) can be constant values or nonconstant values.

Let’s consider several examples of second-order ODEs to see how to compute

general and particular solutions with MATLAB’s Symbolic Math Toolbox.

�Example 1: dsolve with a Second-Order ODE
Given a second-order ODE:  u u t u u� � � � � � � � � �100 2 5 10 0 0 0 0. sin , , with no known

initial or boundary conditions. Let's solve it using dsolve().

usol=dsolve('D2u+100*u=2.5*sin(10*t)', 'u(0)=0', 'Du(0)=0'); pretty(usol)

%% Alternative syntax

syms u(t)

Du = diff(u);

u(t) = dsolve(diff(u, 2)==2.5*sin(10*t)-100*u, u(0)==0, Du(0) == 0);

pretty(u(t))

The following is the output from executing the two short scripts/commands:

sin(10 t) 3 sin(30 t) / t sin(20 t) \

----------- - --------- - cos(10 t) | - - --------- |

 320 320 \ 8 160 /

�Example 2: System ODEs
Given a system of ODEs:

y y

y y y
1 2

2 1 20 125

�

�

�
� � �

�
�
� .

, y1(0) = 1, y2(0) = 0.

Let's solve it using dsolve().

Chapter 8 Ordinary Differential Equations

558

The given problem is a system of two first-order ODEs. This problem can be solved

directly with dsolve, similar to the previous examples.

%% System of two 1st-order ODEs solved with dsolve

yt=dsolve('Dy1=y2', 'Dy2=-y1-0.125*y2','y1(0)=1', 'y2(0)=0');

pretty(yt.y1) pretty(yt.y2)

%% Alternative syntax

syms y1(t) y2(t)

z=dsolve(diff(y1,1)==y2, diff(y2,1)==(-y1-0.125*y2), y1(0)==1, y2(0)==0);

pretty(z.y1), pretty(z.y2)

The computed analytical solutions of the problem displayed in the command

window are not shown here. These are the computed solutions:

	
y t

t

e

t

et t1 16 16

255
16

255
255
16

255
� � �

�

�
�

�

�
�
�

�

�
�

�

�
�cos sin

	

	
y t

t

et
2 16

16 255
255
16

255
� � � �

�

�
�

�

�
�sin

	

�Example 3: Unsolvable Solutions Using dsolve
Given a second-order ODE: 2 3 100 2 y y y t� � � � �cos , y(0) = 1, y 0 2� � � .

Let' solve it using dsolve().

>> syms y(t); Dy = diff(y,t); D2y = diff(y, t,2);

>> Solution=dsolve(2*D2y+3*(Dy^3)-cos(100*t)*abs(y)- 2==0, y(0)==1,

Dy(0)==2)

Warning: Unable to find symbolic solution.

 Solution =

 [empty sym]

When the analytical solutions cannot be found with dsolve,the only option will be

numerical solution.

Chapter 8 Ordinary Differential Equations

559

�Example 4: Computing an Analytical Solution
Say we have this: y y e yt� � � � �2 0 2, . Here are the commands used to compute an

analytical solution of the given exercise:

syms y(t)

 Dy = diff(y,t);

 Solution = dsolve(Dy==2+abs(y)*exp(t), y(0)==2);

 fplot(Solution, [0, 5], 'r--o'), grid on

 xlabel 't'

 ylabel('y(t)')

Figure 8-3 shows the plot of the found analytical solution.

Figure 8-3.  The found analytical solution y y e yt� � � � �2 0 2,

Chapter 8 Ordinary Differential Equations

560

�Example 5: An Interesting ODE
Let’s consider a second-order ODE, as follows:  u u t� � � �sin , u u0 1 0 2� � � � � �,  .

syms u(t)

Du = diff(u,t);

D2u = diff(u,t, 2);

Solution = dsolve(D2u==sin(t)-Du, u(0)==1, Du(0)==2);

fplot(Solution, [0, 4*pi], 'b-.s'), grid on

xlabel ('t'); ylabel('u(t)')

�Laplace Transforms
Solutions of linear ordinary differential equations with constant coefficients can be

evaluated by using the Laplace transformation. One of the most important features of

the Laplace transforms in solving a differential equation is that the transformed equation

is an algebraic equation. It will be used to define a solution to the given differential

equation. In general, the Laplace transform application to solving differential equations

can be formulated in the following way.

Figure 8-4.  Analytical solution plot of  u u t� � � �sin , u u0 1 0 2� � � � � �, 

Chapter 8 Ordinary Differential Equations

561

Let’s consider the nth order derivative of yn(x) = f (t). The Laplace transform of yn(x) is

as follows:


d u

dt
f t s U s s u su su F s

n

n
n n n� � ��

�
�

�
�
�
��� � �� � � ��� � �� � � � �� �1 1 0 0 0 ��

	
(Equation 8-6)

Or

	
s U s s u F sn

i

n
n i� � � � � � � �

�

� ��
1

1 1 0
	

(Equation 8-7)

In Equation 8-6 or 8-7, if you substitute constant values of initial conditions at t = 0

given as y(0) = a0; y′(0) = a1; y"(0) = a2; …; yn − 2(0) = an − 2; yn − 1(0) = an − 1, you can rewrite the

expression (Equation 8-6 or 8-7) as follows:

	 s U s s a sa sa F sn n
n n� � � ��� � � � ��

�
1

0 1 	 (Equation 8-8)

Subsequently, we first solve for Y(s), take the inverse Laplace transform from Y(s),

and obtain the solution y(t) of the nth order differential equation.

The general procedure for applying the Laplace and the inverse Laplace transforms

to determine the solution of differential equations with constant coefficients is as

follows:

	 [1].	 Take the Laplace transforms from both sides of the given

equation.

	 [2].	 Solve for Y(s) in terms of F(s) and other unknowns.

	 [3].	 Take the inverse Laplace transform of the found expression to

obtain the final solution of the problem.

Note that in step 3, you should also break the expression from step 2 into partial

fractions in order to use tables of the inverse Laplace transform correspondences.

A schematic view of the Laplace and inverse Laplace transforms is given in the

flowchart shown in Figure 8-5.

Chapter 8 Ordinary Differential Equations

562

Differential Equation Solution

Solution

Figure 8-5.  Flowchart of solving ODE with Laplace transform and its inverse

�Example 1: First Laplace Transform
Let’s consider a second-order nonhomogeneous differential equation.

	

d y

dt

Ady

dt
C e y k dy mnt

2

0 0� � � � � � � � �, ,
	

Now, by applying the steps depicted in the flowchart of the Laplace and inverse

transforms from the flowchart, you write the Laplace transform of the given problem in

explicit steps.

    
d y

dt

Ady

dt
C e

d y

dt

Ady

dt
Cnt

2 2

2
� � �

�
�
�

�
�
�
�

�
�
�

�
�
�
� �

�
�

�
�
�
� � �� eent� � 	 (Equation 8-9)

	
 e

s n
nt� ��

�
1

	
(Equation 8-10)

Now, you can work on the left-hand side of Equation 8-9 starting from the

highest order.


d y

dt
s Y s dy s y s Y s k s m

2

2
2 20 0

�
�
�

�
�
�
� � �� � � � � � � � � � � � �

	
(Equation 8-11)

 
Ady

dt
A

dy

dt
A s Y s y A s Y s m�

�
�

�
�
�
� � �

�
�

�
�
�
� � � � � � � �� � � � � � � �0

	
(Equation 8-12)

	  C C� �� 	 (Equation 8-13)

Chapter 8 Ordinary Differential Equations

563

By plugging Equations 8-10, 8-11, 8-12, and 8-13 back into Equation 8-9, you obtain

the assembled expression given in Equation 8-14.

	
s Y s k sm AsY s m C

s n
2 1� �� � � � �� � �

� 	
(Equation 8-14)

You solve Equation 8-15 for Y(s).

Y s
sm k m C s n

s n s As

Cn Cs kn mn ks ms ms� � �
� � � �� �� � �� �

�� � �� �
�

� � � � � �1
2

2

ss A s n s�� � �� �
	

(Equation 8-15)

From the expression of Y(s) in Equation 8-15, you can split this into partial fractions

and take the inverse Laplace transform of both sides. You obtain Equation 8-16, which is

the y(t) of the given differential equation:

y t
e

An n

Cn kn mn

An

Cn kn mn A k mn C

Ae A n

nt

At� � �
�

�
� � �

�
� � � � �� ��

�� �2

1 1

	
(Equation 8-16)

The built-in laplace() function of the Symbolic Math Toolbox is used to evaluate

the Laplace transform of any algebraic expression or differential equation. Likewise, the

ilaplace() function of the Symbolic Math Toolbox is used to compute the inverse of

the evaluated Laplace transformed s domain expression. These two functions handle all

transformations by breaking up the partial fraction procedures automatically and then

compute an analytical solution of a given ODE exercise.

�LAPLACE/ILAPLACE
As mentioned, laplace/ilaplace are based on the Laplace and inverse Laplace

transforms, which are built-in function tools of the Symbolic Math Toolbox. The general

syntax of laplace/ilaplace is as follows:

F=laplace(f)

F=laplace(f, t)

F=laplace(f, var1, var2)

and as follows:

f=ilaplace(F)

f=ilaplace(F, s) f=ilaplace(F, var1, var2)

Chapter 8 Ordinary Differential Equations

564

�Example 2: Using LAPLACE
Given x(t) = sin (2t), the Laplace transform of x(t) is computed with the following

command syntax:

>> syms t

>> xt=sin(2*t); Xs=laplace(xt)

2/(s^2 + 4)

Given y(t) = sin (Kt). Let's compute its Laplace transform with laplace().

>> syms t K

>> yt=sin(K*t); Ys=laplace(yt)

K/(K^2 + s^2)

�Example 3: A Final LAPLACE
Compute the Laplace transform of y(x) = ax3 + b.

>> syms x a b y(x)

>> y(x)=a*x^3+b; Ys=laplace(y(x))

Ys =

(6*a)/s^4 + b/s

You can also obtain the t variable domain instead of s.

>> syms x t a b

>> y=a*x^3+b; Yt=laplace(y, x, t)

Yt =

(6*a)/t^4 + b/t

The ilaplace() function syntax and implementation are exactly the same for

laplace. Let’s look at several ODE exercises to see how to use laplace/ilaplace and

compare their evaluated solutions to the ones obtained with dsolve.

�Example 4: Comparing LAPLACE/ILAPLACE with DSOLVE
Let’s solve y y� �2 0 , y (0) = 0.5 with laplace/ilaplace and dsolve. The following script

(ODE_Laplace.m) shows the solution:

Chapter 8 Ordinary Differential Equations

565

% ODE_Laplace.m

clearvars; clc; close all

% Step #1. Define symbolic variables' names

syms t s y(t) Y

Dy = diff(y(t),t);

ODE1=Dy==-2*y(t);

% Step #2. Laplace Transforms

LT_A=laplace(ODE1, t, s);

% Step #3. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),y(0)},{Y,0.5});

% Step #4. Solve for Y (unknown)

Y=solve(LT_A, Y);

display('Laplace Transforms of the given ODE with ICs'); disp(Y)

% Step #5. Evaluate Inverse Laplace Transform

Solution_Laplace=ilaplace(Y);

display('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace)

% Step #6. Compute numerical values and plot them

t=0:.01:2.5; LTsol=eval(vectorize(Solution_Laplace));

figure, semilogx(t, LTsol, 'ko')

xlabel('t'), ylabel('solution values')

title('laplace/ilaplace vs dsolve ')

grid on; hold on

%% Compare with dsolve solution method

clearvars;

syms y(t)

Dy = diff(y, t);

Y_d=dsolve(Dy==-2*y, y(0)==0.5);

disp('Solution with dsolve')

t=0:.01:2.5;

pretty(Y_d); Y_sol=eval(vectorize(Y_d));

plot(t,Y_sol, 'b-', 'linewidth', 2), grid minor

legend('laplace+ilaplace', 'dsolve')

hold off; axis tight

Chapter 8 Ordinary Differential Equations

566

After executing the ODE_Laplace.m script, the following output is obtained:

Laplace Transforms of the given ODE with ICs

1/(2*s + 4)

Solution found using Laplace Transforms: exp(-2 t)

2

Solution with dsolve exp(-2 t)

2

The plot of solutions shown in Figure 8-6 clearly displays a perfect convergence of

solutions found with laplace/ilaplace and dsolve.

Figure 8-6.  The problem y y� �2 0 , y (0) = 0.5 solved with laplace/ilaplace
and dsolve

Chapter 8 Ordinary Differential Equations

567

�Example 5: Convergent Answers
Given  y y t� � � �sin , y y0 1 0 2� � � � � �,  , here is the solution script (Laplace_vs_Dsolve.m)

of this second-order nonhomogeneous ODE with laplace, ilaplace, and dsolve:

clearvars, clc, close all

syms t s y(t) Y(s)

Dy = diff(y(t), t);

D2Y = diff(y(t), t, 2);

ODE2nd=D2Y== sin(t)-Dy;

% Step 1. Laplace Transforms

LT_A=laplace(ODE2nd, t, s);

% Step 2. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),subs(diff(y(t),t), t,

0),y(0)},{Y(s),2,1});

% Step 3. Solve for Y unknown

Y=isolate(LT_A, Y);

%disp('Laplace Transforms of the given ODE with ICs');

disp(Y)

Solution_Laplace=ilaplace(rhs(Y));

disp('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace);

t=0:.01:13; LTsol=eval(vectorize(Solution_Laplace));

figure, plot(t, LTsol, 'ro-'); xlabel('t'), ylabel('solution values')

title('laplace/ilaplace vs. dsolve: ddy+dy=sin(t)'); hold on

% dsolve solution method

Y=dsolve('D2y+Dy=sin(t)', 'y(0)=1, Dy(0)=2', 't');

disp('Solution with dsolve: ');

pretty(Y)

fplot(Y, [0, 13], 'b-', 'linewidth', 2); grid minor

legend('laplace+ilaplace', 'dsolve', 'location', 'SE'); hold off

Chapter 8 Ordinary Differential Equations

568

The computed analytical solutions are as follows:

Y(s) == (s + 1/(s^2 + 1) + 3)/(s^2 + s)

Solution found using Laplace Transforms:

 cos(t) sin(t) 5 exp(-t)

4 - ------ - ------ - ---------

 2 2 2

Solution with dsolve:

 / pi \

 sqrt(2) cos| t - -- |

 \ 4 / 5 exp(-t)

4 - --------------------- - ---------

 2 2

From the plot displayed in Figure 8-7, it is clear that the solutions found via the

Laplace transforms (laplace/ilaplace) and the dsolve functions converge perfectly

well. Both functions evaluate the same analytical solution of a given ODE.

Figure 8-7.  Analytical solutions of  y y t� � � �sin , y y0 1 0 2� � � � � �, 

Chapter 8 Ordinary Differential Equations

569

�Example 6: No Analytical Solution
Given the following second-order nonhomogeneous and nonlinear ODE, let's try to

solve it using syms, diff(), and laplace().

	 2 3 100 2 0 1 0 2  y y y t y y� � � � � � � � � � �cos , , . 	

Let's solve Here is the solution script (Lap_inv_Lap.m) with the Laplace and inverse

Laplace transforms:

% Lap_inv_Lap.m

clearvars, clc, close all

syms t s y(t) Y(s)

Dy=diff(y(t),t);

D2y=diff(y(t),t,2);

ODE2nd=D2y==0.5*(-3*(Dy)^3+cos(100*t)*abs(y(t))+2);

% Step 1. Laplace Transforms

LT_A=laplace(ODE2nd, t, s);

% Step 2. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),subs(diff(y(t),t), t,

0),y(0)},{Y(s),0,0});

% Step 3. Solve for Y unknown

Y=isolate(LT_A, Y);

% Step 3. Solve for Y unknown Y=solve(LT_A, Y);

disp('Laplace Transforms of the given ODE with ICs');

disp(Y)

Solution_Laplace=ilaplace(Y);

disp('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace)

Chapter 8 Ordinary Differential Equations

570

The Lap_inv_Lap.m script produces the following output in the Command window:

Laplace Transforms of the given ODE with ICs
Y(s) == (4 + s*laplace(abs(y(t)), t, s - 100i) + s*laplace(abs(y(t)), t, s
+ 100i) - 6*s*laplace(diff(y(t), t)^3, t, s))/(4*s^3)
Solution found using Laplace Transforms:
 t
 /
 | / d \3
 3 | (t - u23) | ---- y(u23) | du23
 2 / \ du23 /
 t 0
ilaplace(Y(s), s, t) == -- - -------------------------------------
 2 2
 / laplace(|y(t)|, t, s - 100i) \
 ilaplace| ----------------------------, s, t |
 | 2 |
 \ s /
 + --
 4
 / laplace(|y(t)|, t, s + 100i) \
 ilaplace| ----------------------------, s, t |
 | 2 |
 \ s /
 + --
 4

This output means that no analytical solution is computed explicitly with

laplace/ilaplace, just like with the dsolve function tools.

�Example 7: Demonstrating Efficiency and Effortlessness
Given a second-order nonhomogeneous ODE where g(t) is a forcing function that is

discontinuous and defined by the following expression, let's solve it by applying the

Laplace transform.

	
g t u t u t

t

t t
� � � � �� � � �

� �
� � �

�
�
�

2 10

5 2 10

0 0 2 10

,

, and 	

Chapter 8 Ordinary Differential Equations

571

The Laplace transform of the given equation is as follows:

	
 2 3 2 2 10y y y u t u t� �� �� � �� � �� � 	

	
2 2 0 2 0 3 0 2

5
2

2 10

s Y s sy y sY s y Y s
e e

s

s s

� � � � � � � � � � � � � � � � � � �
�� �� �



	

	

Y s
e e

s s s

s s

� � �
�� �
� �� �

� �5

2 3 2

2 10

2

	

Note that e−2s and e−10s are explained with time delays in the system output signals; in

other words, -2 and -10 mean 2 and 10 seconds of time delays. 5 is the magnitude of the

Heaviside (step) function.

The formulation Y(s) is the solution of the differential equation in the s domain,

but we need it in the time domain. Thus, you need to compute its inverse Laplace

transform:� � �� �� � �1 Y s y t .By employing ilaplace(), the next short script (Lap_4_

non_homog.m) is created. It solves the given problem and computes its analytical and

numerical solutions.

% Lap_4_non_homog.m

syms t s

F=5*(exp(-2*s)-exp(-10*s))/s;

Y=2*s^2+s+2;

TF=F/Y; TFt=ilaplace(TF);

pretty(TFt);

Sol=vectorize(TFt);

t=linspace(0, 20, 400);

S=eval(Sol); plot(t, S, 'bo-'); grid minor

title('Differential Equation with Discontinuous Forcing Fcn')

grid on, xlabel('time'), ylabel('y(t) solution'), shg

After executing the script, the next solution plot is obtained along with the solution

formulation, as shown in Figure 8-8.

Chapter 8 Ordinary Differential Equations

572

Figure 8-8.  Simulation of the second-order nonhomogeneous ODE subject to the
discontinuous forcing function

>> pretty(TFt)

 / / 5 t \ / sqrt(15) sin(#1) \ \

 | exp| - - - | | cos(#1) + ---------------- | |

 | \ 2 4 / \ 15 / 1 |

heaviside(t - 10) | --- - - |

 \ 2 2 /

 / / 1 t \ / sqrt(15) sin(#2) \ \

 | exp| - - - | | cos(#2) + ---------------- | |

 | \ 2 4 / \ 15 / 1 |

 5 - heaviside(t - 2) | --- - - | 5

 \ 2 2 /

where

 sqrt(15) (t - 10)

 #1 == -----------------

 4

 sqrt(15) (t - 2)

 #2 == ----------------

 4

Chapter 8 Ordinary Differential Equations

573

From the previous exercise, the following points can be drawn. Using the Laplace

transforms (laplace/ilaplace) to compute analytical solutions of nonhomogeneous

ODEs subject to external forcing functions, which are discontinuous, is relatively easy,

fast, and effortless. Such exercises are found often within control engineering problems.

Moreover, note that the Laplace and inverse Laplace transforms (laplace/ilaplace) are

straightforward to implement in solving ODEs. The solutions of ODEs found with them

match the ones found by dsolve() perfectly well. As mentioned, many ODEs cannot be

solved analytically with the laplace/ilaplace and dsolve functions. Thus, numerical

methods are often the only option.

�MATLAB Built-in ODEx Solvers

In MATLAB, there are a few built-in ODE solvers, namely, ode15s, ode15i, ode23, ode23s,

ode23t, ode23tb, ode45, and ode113, which are efficient in finding numerical solutions of

many different types of initial value problems. These solvers are based on explicit Runge-

Kutta and implicit Adams-Bashforth-Moulton methods with different implementation

algorithms and ODE solver methods, namely, Dormand-Prince (ode45), Bogacki-

Shampine (ode23), Rosenbrock (ode23s), trapezoidal rule (ode23t), Adams-Bashforth-

Moulton (ode113), Gear’s method (ode15s), and so forth. Using MATLAB’s built-in ODE

solvers is relatively simple, and these are the following general syntaxes of the ODE

solvers:

solver(odefun,tspan,y0)

[T,Y] = solver(odefun,tspan,y0)

[T,Y] = solver(odefun,tspan,y0,options)

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)

sol = solver(odefun,[t0 tf],y0...)

Any of ode15s, ode15i, ode23, ode23s, ode23t, ode23tb, ode45, and ode113 can be

chosen depending on the given problem type, for instance, whether the given problem is

stiff (how far stiff, e.g., very stiff or moderately stiff) or nonstiff, explicit or implicit.

It is worth noting that an ODE solver type needs to be selected carefully. In selecting

a solver type, the recommendations given in Table 8-1 should be considered. These are

taken from the help library of the MATLAB package.

Chapter 8 Ordinary Differential Equations

574

Table 8-1.  MATLAB’s Built-in ODEx Solvers

Solver Type Problem Type Accuracy When to Apply

ode15i Fully Implicit Medium For only fully implicit IVP

ode15s Stiff Low to Medium If ode45 is too slow in finding solutions of

the problem due to its stiffness

ode23 Nonstiff Low For moderately stiff problems with crude

error tolerances

ode23s Stiff Low For stiff problems with crude error tolerances

ode23t Moderately stiff Low For moderately stiff problems

ode23tb Stiff Low For stiff problems with crude error tolerances

ode45 Nonstiff Medium Recommended for most problems; must
be the first ODE solver to try

ode113 Nonstiff Low to high For problems with tight error tolerances

Moreover, the efficiency of these solvers depends on the chosen step type (fixed or

variable), the size, and the relative and absolute error tolerances that directly affect the

accuracy of simulation results and efficiency of computation processes. While using

built-in ODE solvers, the step size can be chosen as variable (automatically chosen) or

fixed/specified by a user. All built-in ODE solvers by default will take variable step sizes

automatically depending on the type of a given IVP (e.g., a stiffness level) and a solution

search space. Error tolerance can be controlled in ODE solvers via their setting options.

Hereafter, we study in real exercises all these key aspects and settings of ODE built-in

solvers.

ODEFUN for the ODE solvers can be defined by using the following:

	 1.	 Anonymous function with function (@)

	 2.	 Function file (*.m file)

	 3.	 matlabFunction: function file (*.m file) by employing the

Symbolic Math Toolbox

	 4.	 Inline function (in the future MATLAB versions will be removed)

Chapter 8 Ordinary Differential Equations

575

Note Y ou need to be careful while recalling the function (name) ODEFUN. If it
is defined via anonymous function (@) or inline function, then you should use the
following command syntax:

[T Y]=ODEx(my_Function, t, y0);

If you define a given problem (function/expression) via a function file, then you need

to use one of the following command syntaxes:

[T Y]=ODEx(@Fun_File, t, y0);

[T Y]=ODEx('Fun_File', t, y0);

Time space can be predefined as a row or column vector of time values or with two

elements, namely, starting and end values, e.g., t = linspace(0, 13, 1000); t = (0:0.001:13).’;

t = [0, 13].

ODEx solvers will automatically take different number of steps or step size with

respect to the nature of the given ODE (stiff or nonstiff, linear or nonlinear, etc.).

�Example 8: Demonstrating MATLAB Built-in ODEx Solvers
Here is the example problem: y ty� �2 02 , y0 = 0.5 . In this case, our function file called

Fun_File.m is defined via the next function file:

function F=Fun_File(t, y)

F=(-2*y^2*t);

We will look at several different problems of how to implement these built-in tools

and their options in defining ODEFUN. In the first example, we show how to use the

anonymous function (@) to simulate a first-order ODE: y ty� �2 02 , y0 = 0.5.

The following script (Example_8.m) shows the implementation of ode45, ode23, and

ode113 solvers with an anonymous function (@) with a fixed step size, h = 0.1:

Chapter 8 Ordinary Differential Equations

576

%% Example_8.m

% Part 1

% dy/dt=-2*t*(y^2); with ICs: y(0)=0.5

clearvars

F=@(t,y)(-2*y^2*t); % Anonymous function (@)

% matlabFunction creates a function file called: Fun_F.m

syms tt u; % tt and u are used instead of t and y not to overlap.

F=-2*u^2*tt;

matlabFunction(f, 'file', 'Fun_F');

t0 = 0; % Start of simulation

tend=10; % End of simulation

h = 0.1; % Time step

t=t0:h:tend; % Time space

y0=0.5; % Ics: y0 at t0

[t1, Yode45]=ode45(F, t, y0); % F is anonymous function (@)

[t2, Yode23]=ode23(@Fun_File,t,y0); % Fun_File.m - function file

[t3, Yode113]=ode113('Fun_F',t,y0); % Fun_F.m - matlabFunction

plot(t1, Yode45, 'ks-', t2, Yode23, 'ro-.',t3, Yode113,'bx--'),

grid on;

title('\it Solutions of: $$\frac{dy}{dt}+2*t^2=0, y_0=0.5$$',

'interpreter', 'latex')

legend ('ode45','ode23','ode113')

xlabel('Time, t'), ylabel('Solution, y(t)'), shg

Figure 8-9 shows the output plot of the script. You can conclude that for the given

problem, ode23, ode45, and ode113 performs very well with the fixed step size of h = 0.1.

Chapter 8 Ordinary Differential Equations

577

Figure 8-9.  Simulation results of ODE23, ODE45, and ODE113

Note I f you do not specify the output variable names, e.g., ode45(F, t, y0),
then the chosen solver displays computation results in a plot figure and no
numerical outputs are saved in the workspace.

Let’s look at the issue of how MATLAB built-in solvers take variable steps in solving a

given problem (Example 1. y ty� �2 02 , y0 = 0.5) and how the step size will influence the

accuracy of simulations and computation (elapsed) time costs.

%% Example_8.m

%% Part 2

t0 = 0; % Start of simulation

tend=100; % End of simulation

t=[t0, tend]; % Time space

y0=0.5; % ICs: y0 at t0

F=@(t,y)(-2*y^2*t);

tic

[t1, Yode45]=ode45(F, t, y0);

Tode45=toc; fprintf('Tode45 = %2.6f \n', Tode45)

clearvars -except t y0

Chapter 8 Ordinary Differential Equations

578

tic

[t2, Yode23]=ode23(@Fun_File, t, y0);

Tode23=toc; fprintf('Tode23 = %2.6f \n', Tode23)

clearvars -except t y0

tic

[t3, Yode113]=ode113('Fun_F', t, y0);

Tode113=toc; fprintf('Tode113 = %2.6f \n', Tode113)

In Part 2 of the script, the time space ([t0, tend]) is defined by the initial and end

time values. Thus, in this case, each solver has taken variable steps while performing

simulations. The simulations are performed on a laptop computer with these specs:

Windows 10, Intel Core i7 – 9750 CPU @ 2.60 GHz, 16 GB RAM. The script outputs the

following data that are computational time of the solvers: ode45, ode23, and ode113.

Tode45 = 0.018722

Tode23 = 0.007884

Tode113 = 0.010358

Note that the computation time (Tode45) of ode45 (in seconds) is the shortest.

�Example 9: MATLAB Built-in ODEx Solvers
for Second-Order ODEs
When solving second- or higher-order ODEs, you need to rewrite a given problem as a

system of first-order ODEs.

Here’s the nonhomogenous and nonlinear second-order ODE problem:

2 3 100 2 y y y t� � � � �cos , y(0) = 1, y 0 2� � � .

Note that this exercise can’t be solved analytically using dsolve or laplace/ilaplace

(see Example 6 given earlier).

Before writing a script of commands for MATLAB built-in ODE solvers, you need to

rewrite the given second-order ODE as a system of two first-order ODEs by introducing

new variables.

 y y y t� � � � ��� �1

2
3 100 2cos is re-written:





y y

y y y t

1 2

2 2 1

1

2
3 100 2

�

� � � � ��� �
�
�
�

��
cos

Note that y1 = y and  y y2 = .

Chapter 8 Ordinary Differential Equations

579

The previously written system of first-order ODEs can be expressed by

matlabFunction, anonymous function (@), function file, and inline function (be removed

in the future MATLAB releases) in scripts.

Note  ODE45 is a recommended solver to try when solving the IVPs if the given
problem is not stiff or implicitly defined.

The script (Example_9.m) embeds command syntaxes of the ODE solvers, namely,

ode45, ode23, and ode113, to compute numerical solutions of the given problem.

% Example_9.m

clearvars; close all

t0=0; % Start of simulations

tend=2; % End of simulations

t=[t0, tend];

y(1,:)=[1; 2]; % Initial Conditions

% ode45 - RUNGGE-KUTTA 4/5 Order

Fun = @(t, y)([y(2); (1/2)*(-3*y(2)+abs(y(1))*cos(100*t)+2)]);

[T1, U1]=ode45(Fun, t, y, []);

plot(T1, U1(:,1), 'rp', 'markersize', 9); grid on; hold on

% ode23 - RUNGGE-KUTTA 2/3 Order

[T2, U2]=ode23(Fun, t, y);

plot(T2, U2(:,1), 'b:o', 'markersize', 9)

% ode113 - ADAMS Higher Order

[T3, U3]=ode113(Fun, t, y);

plot(T3, U3(:,1), 'k-', 'linewidth', 2)

legend('ode45', 'ode23', 'ode113', 'location', 'SE')

title('Simulation of: $$\frac{2d^2y}{dt^2}+\frac{3dy}{dt}-

|y|cos(100t)=2$$', 'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex'),

ylabel('Solution, $$y(t)$$', 'interpreter', 'latex')

axis tight

Chapter 8 Ordinary Differential Equations

580

Figure 8-10.  Simulation results of ODE23, ODE45, and ODE113

This exercise shows that the employed ODE45, ODE23, and ODE113 built-in solvers

have found well-converged numerical solutions of the given nonhomogeneous and

nonlinear second-order ODE problem.

Note T here are some exercises that have a nonzero starting time of IVPs. In
solving such problems, the simulation has to start at a given initial time (value). For

example, for u
�
2

2

3
�
�
�

�
�
� � , the simulation has to start at t �

�
2

. This is applicable for

all built-in ODEx solvers, scripts, and Simulink models.

�Example 10: Simulink Modeling
Solving second or higher-order ODEs with Simulink modeling should be started with

the Integrator block to obtain a sought solution from second- or higher-order derivative

variable. For example, if you are solving a first-order ODE, you need one integrator block,

and similarly, if you are solving second- or third-order ODE, you need two or three

Integrator cblocks.

Let’s consider the following second-order ODE example to demonstrate how to build

a Simulink model.
1

2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �and  .

Chapter 8 Ordinary Differential Equations

581

You first rewrite the given second-order ODE before starting to model it.

	  u t u u� � �2 0 8 2. . 	

Note that to obtain u(t) from u that must be integrated twice, as shown in

Figure 8-11, you need two Integrator blocks to build a sought model.

Figure 8-11.  Double Integration with Integrator blocks

The initial conditions of the given ODE exercise are set up in the Integrator1

and Integrator block parameters by double-clicking each integrator block shown in

Figure 8-11 in a sequential order. The Integrator1 block parameters, including the

Initial condition entry window, are shown in Figure 8-11. Similarly, by double-clicking

Integrator2, the block parameters are accessed and set up. Alternatively, the integrator

block parameters can be accessed via one click and using the right mouse option of

Block Parameters (Integrator). Note in this case that the initial condition source is

chosen to be internal but can be also chosen to be external.

Chapter 8 Ordinary Differential Equations

582

Figure 8-12.  Setting up the initial condition using Block Parameters: Integrator

The complete model of this exercise is Example_10.slx, which is shown in

Figure 8-13.

Figure 8-13.  Simulink model of the problem: 1
2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �, 

Chapter 8 Ordinary Differential Equations

583

In the Simulink model in Figure 8-12, the Integrator1 block has an internal initial

condition value of 2.0, and the other one has an internal initial condition value of 1.0. By

executing the model (Figure 8-13), the simulation results obtained via the Scope block

shown in Figure 8-14 are obtained.

Figure 8-14.  Simulation results shown in the Scope block of the Simulink model,
Figure 8-13

The simulation results of
1

2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �,  are displayed in the

Scope block, as shown in Figure 8-14. Note that in the Scope block shown earlier, we

have made some adjustments, e.g.,, by adjusting/selecting its background color and

plotting data points from parameters () of the block, that are a marker and line type

and the color of plotted data points, which are similar to plot tools of MATLAB. Note that

the Out1 block is optional to include in the model. By including this model, you obtain

two outputs (tout and yout) in the MATLAB workspace, which are plotted data points

shown in Figure 8-13. This Simulink model, called Example_10.slx, can be executed

without opening it from MATLAB using the sim() command, and the simulation data

points (tout and yout) can be also plotted in MATLAB. Here’s an example:

[t, u]=sim('Example_10.slx');

plot(t, u(:,1), 'bo'), grid on

xlabel('time, [s]')

ylabel('Solution, u(t)')

Chapter 8 Ordinary Differential Equations

584

Note that in the simulation results, t represents the time taken from tout, and u

represents the solution results taken from (yout) two integrator blocks, which are the

displacement and velocity values.

Note T he options in the Scope block parameters to change the background color,
the plotted data’s line type, and the marker type and axis color, as well as add
legends, are only available starting from MATLAB 2012/Simulink 8.0.

The accuracy of the found numerical solutions from Simulink models depends on

the solver type (variable or fixed step solver) and solver (ode45, ode113, ode23, ode1,

ode2, odeN, etc.), relative and absolute error tolerances, zero-crossings, step size (if a

fixed step solver type), and other settings.

Note  By default, the variable-step solver with ode45 is chosen that can be
switched to a fixed step solver. Moreover, solver settings can be adjusted from the
Simulink model window’s GUI tools via the Modeling tab. Click Model Settings or
use the simset() function from MATLAB.

The solver settings can be adjusted using GUI tools from the Simulink model window

via the Modeling tab. Clicking Model Settings opens the Configuration

Parameters: Solver, Data Import/Export, Math and Data Types, and so forth. By default,

Solver is selected, and this shows all Solver details and setting options. All Solver settings

can be also accessed and changed from MATLAB using the simset() function.

Let’s test the previous example by changing the solver settings, such as solver type

and relative and absolute error tolerances, and switching off the zero-crossing option

using a MATLAB script. Here is a complete script (SimSet_Simulate.m) to simulate the

Simulink model (Example_10.slx):

Chapter 8 Ordinary Differential Equations

585

% SimSet_Simulate.m

% Part 1. Variable step solver

% Solver 1 (Variable-step solver): ode45;

Time = [0, 25];

OPTIONS = simset('solver', 'ode45', 'zerocross', 'on');

[t1, u1]=sim('Example_10.slx', Time, OPTIONS);

% Solver 2 (Variable-step solver): ode113;

OPTIONS = simset('solver', 'ode113', 'zerocross', 'on');

[t2, u2]=sim('Example_10.slx', Time, OPTIONS);

% Solver 3 (Variable-step solver): ode23s;

OPTIONS = simset('solver', 'ode23s', 'zerocross', 'on');

[t3, u3]=sim('Example_10.slx', Time, OPTIONS);

plot(t1, u1(:,1), 'bo', t2, u2(:,1), 'r*', t3, u3(:,1), 'kp'), grid on

L=legend('ode45', 'ode113', 'ode23s', 'location', 'SE');

title(L,'Solver type: Variable-step')

title('Solution: $$\frac{d^2u}{2dt^2}+\frac{2du}{5dt}+u=t$$',

'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex')

ylabel('Solution, $$u(t)$$', 'interpreter', 'latex')

axis tight

%% Part 2. Fixed-step solver

% Solver 1: ode1 (Euler); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode1', 'reltol', '1e-3', 'abstol', '1e-5',

'zerocross', 'off');

[t1, u1]=sim('Example_10.slx', Time, OPTIONS);

% Solver 2: ode3 (Bogacki-Shampine); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode3', 'reltol', '1e-3', 'abstol', '1e-5',

'zerocross', 'off');

[t2, u2]=sim('Example_10.slx', Time, OPTIONS);

% Solver 3: ode14x (Extrapolation); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode14x', 'reltol', '1e-3', 'abstol', '1e-5',

'zerocross', 'off');

[t3, u3]=sim('Example_10.slx', Time, OPTIONS);

plot(t1, u1(:,1), 'bo', t2, u2(:,1), 'r*', t3, u3(:,1), 'kp'), grid on

Chapter 8 Ordinary Differential Equations

586

L=legend('ode1', 'ode3', 'ode14x', 'location', 'SE');

title(L,'Solver type: Fixed-step')

title('Solution: $$\frac{d^2u}{2dt^2}+\frac{2du}{5dt}+u=t$$',

'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex')

ylabel('Solution, $$u(t)$$', 'interpreter', 'latex')

After simulating the script (SimSet_Simulate.m), we get the following simulation

results from the variable step solvers—ode45, ode113, ode23s, and fixed step

solvers—ode1, ode3, ode14x. From the simulation of the variable step solvers shown in

Figure 8-15, the found numerical solutions from the three solvers are well converged. On

the other hand, the results from the fixed step-solvers shown in Figure 8-16 show that not

all fixed step solvers can compute accurate numerical solutions despite the same error

tolerances. The solver ode1 (Euler method) exhibits significantly inaccurate solutions

of the problem. This is a good example that shows the importance of selecting a right

solver type and solver with respect to a given ODE problem nature and its stiffness level.

Another important observation in this example is that the variable-step solver takes a

varying step size, and fixed step-solvers with the same error tolerance settings take the

same number of steps to compute numerical solutions.

Figure 8-15.  Simulation results from the variable-step type solvers of the Simulink
model, Example_10.slx

Chapter 8 Ordinary Differential Equations

587

Figure 8-16.  Simulation results from the fixed-step type solvers of the Simulink
model, Example_10.slx

�Summary
This chapter covered briefly analytical solution functions (dsolve, laplace/ilaplace) of

MATLAB to solve ODE exercises. Not all ODE problems can be solved analytically using

dsolve and laplace/ilaplace functions. On the other hand, the Laplace transforms

(laplace/ilaplace) can be employed to solve ODEs with discontinuous forcing

functions, which have broad engineering applications.

The chapter introduced key steps of using MATLAB’s ODEx numerical solvers, such as

ODE23, ODE45, and ODE113, for first and second-order ODEs. Moreover, you learned how to

use Simulink modeling aspects to solve IVPs. The chapter demonstrated how to adjust the

Simulink solver type and solver settings using the simset() function from MATLAB.

�References

	 [1].	 http://tutorial.math.lamar.edu/Classes/DE/Definitions.

aspx, viewed September, 2013.

	 [2].	 Gear, C.W., Numerical Initial-Value problems in Ordinary

Differential Equations, Prentice-Hall, Englewood Cliffs,

N.J. (1971).

Chapter 8 Ordinary Differential Equations

http://tutorial.math.lamar.edu/Classes/DE/Definitions.aspx
http://tutorial.math.lamar.edu/Classes/DE/Definitions.aspx

588

	 [3].	 Potter M. C., Goldberg J.L., Aboufadel E.F., Advanced Engineering

Mathematics, 3rd Edition, Oxford University Press, (2005).

	 [4].	 Boyce W.E., Diprima R.C., Elementary Differential Equations

and Boundary Value Problems, 7th Edition, John Wiley & Son,

Inc, (2003).

	 [5].	 Hairer E., Norsett S. P., Wanner G., Solving ordinary differential

equations I: Non-stiff problems, 2nd Edition, Berlin: Springer Verlag,

ISBN 978-3-540-56670-0, (1993).

�Self-Study Exercises
�Exercise 1
The following are IVPs of second-order nonhomogeneous ODEs:

•	 y y t� � � �9 22 sin , y(0) = 0 and y 0 6� � � for t ϵ [0,   3π]

•	  y y y t� � � � �4 104 2 10cos , y(0) = 0 and y 0 0� � � for t ϵ [0,   5π]

•	 y y� � �ex 2, y(0) = 0 and y 0 0� � � for x ϵ [0,   13]

•	  y y y� � �2 2x , y 0 0� � � and y 0 6� � � for x ϵ [0,   15]

•	  y y y t� � � � �2 101 5 10sin , y(0) = 0 and y 0 20� � � for t ϵ [0,   5π]

Solve each of the second-order ODEs with the following methods:

	 a)	 Using MATLAB built-in ODE solvers ode23, ode45, and ode113

and adjusting their settings, namely, relative and absolute error

tolerances

	 b)	 Building a Simulink model (see Chapters 5 and 8 for Simulink

modeling) and using a solver ode3

Next compare the solutions found from (a) and (b) and figure out which approach is

the most efficient and accurate (correct and has smallest error margins) one.

Finally, is it possible to compute an analytical solution of given problems by using

dsolve and Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions

against numerical solutions found from (a) and (b).

Chapter 8 Ordinary Differential Equations

https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8

589

�Exercise 2
First, solve the second-order nonhomogeneous ODE: x xy y ey x2 35 8 � � � , y(1) = 0 and
y 1 24� � � for x ϵ [1, 15]. Note that the initial point is at x = 1. Use the following methods:

	 a)	 Using MATLAB built-in ODE solvers: ode23, ode45, ode113

	 b)	 Building a Simulink model (see Chapter 5 for Simulink modeling)

and employing a solver ode2

Next, is it possible to compute an analytical solution of the given problem by using

dsolve and Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions

against numerical solutions found from (a) and (b).

�Exercise 3
First, solve the following second-order nonhomogeneous and nonlinear ODE:
 y y y y t t� � � � � �16 12 3 12 33 cos , y(0) = − 1 and y 0 0� � � for  x ϵ [0,   13]. Use the

following methods:

	 a)	 Using MATLAB built-in ODE solvers: ode23, ode45, ode113

	 b)	 Building a Simulink model (see Chapters 5 and 8 for Simulink

modeling) and employing a solver ode4

Next, compare the solutions found from (a) and (b) by plotting t versus y(t) and

t y tversus  � �, and find out which approach is the most adequate (meaning it’s correct

and has the smallest error margins) and efficient.

�Exercise 4
First, solve the given IVP of this second-order nonhomogeneous and nonlinear ODE:
 y y y y e t tt� � � � � � �2 101 2 5 102 2 5 2 sin , y(0) = 0 and y 0 20� � � for t ϵ [0,   6π]. Use the

following methods:

	 a)	 Using MATLAB built-in ODE solvers: ode23, ode45, ode113

	 b)	 Building a Simulink model (see Chapter 5 and 8 for Simulink

modelling) and employing a solver ode14x

Chapter 8 Ordinary Differential Equations

https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8
https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8

590

Next, compare the solutions found from (a) and (b) and find out which approach is

the most efficient. Take smaller time steps if necessary.

Finally, is it possible to compute an analytical solution of the given problem by using

dsolve and Laplace transforms (laplace and ilaplace)?

�Exercise 5
First, solve the following second-order nonhomogeneous and nonlinear ODE:

 y y y e tt2 2 25 2� � �| | , y(0) = 1 and y 0 0� � � for t ϵ [0,   13]. Use the following methods:

	 a)	 Using MATLAB built-in ODE solvers: ode23, ode45, ode113

	 b)	 Building a Simulink model (see Chapters 5 and 8 for Simulink

modeling) and employing a solver ode1

Next, compare the solutions found from (a) and (b) and find out which approach is

the most efficient.

�Exercise 6
Given an equation of charge in resistor-inductance-capacitor (RLC) circuit shown in the

below given figure in a series by Kirchhoff’s law: L Rq
q

C
tq � � �max cos �

with q q0 0 0� � � � � � for t ϵ [0,   4π].

EMF: εmax = 110   [V]

Resistance: R = 7.17  [Ω]

Capacitor: C = 50 ∗ 10−3[F]

Chapter 8 Ordinary Differential Equations

https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8

591

Armature inductance:  � � � ��9 53 10 4. H

Frequency: ω = 60 [Hz].

First do the following:

	 a)	 Find numerical solutions of q(t) using MATLAB built-in ODE

solvers: ode23, ode45, ode113.

	 b)	 Find numerical solutions of q(t) by building a Simulink model

(see Chapters 5 and 8 for Simulink modeling) and employing a

solver ode8.

	 c)	 Compare the solutions found from (a) and (b) and find out

which approach is the most efficient and correct/appropriate.

If necessary, take reasonably smaller time steps and specify the

(appropriate) initial step size, as well as relative and absolute

tolerances.

Then, is it possible to compute analytical solution of the problem using dsolve and

Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions against

numerical solutions found from (a) and (b).

�Exercise 7
First, solve the given IVP of the fourth-order nonhomogeneous

ODE: y t y y tyiv � � � � � � � � �3 100 8 10 1003 2
 cos sin t with

y y yy0 0 0 1 0 2 0 3� � � � � � � � � � � � �, , , .  and For t ϵ [0,   3π]. Use the following methods:

	 a)	 Solve the problem by using MATLAB built-in ODE solvers (ode23,

ode45, ode113) and adequately setting up relative and absolute

error tolerances.

	 b)	 Solve the problem by using MATLAB built-in ODE solvers

(ode23s, ode15s, ode23tb) and obtain the numerical solution of

the problem in plot only (hints: set up OutputFcn for @odeplot

with odeset).

	 c)	 Solve the problem by building a Simulink model (see Chapters 5

and 8 for Simulink modeling) with a solver ode2.

Chapter 8 Ordinary Differential Equations

https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8
https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8

592

Finally, compare all the solutions found from (a) to (c) and find out which approach

is the most efficient and adequate.

�Exercise 8
Solve the given IVP of the fourth-order nonhomogeneous ODE:

y y y y t eyiv t� � � � � � �� �2 8 12 12 25 5
   sin , y y yy0 3 0 0 0 1 0 2� � � � � � � � � � � � �, , ,  and for

t ϵ [0,   5π]. Use the following methods:

	 a)	 Solve the problem by using MATLAB built-in ODE solvers

(ode23s, ode15s, ode113) by setting up relative and absolute

tolerances.

	 b)	 Solve the problem by using MATLAB built-in ODE solvers (ode23,

ode45, ode23tb) and obtain the numerical solutions of the

problem in plot only (hints: set up 'OutputFcn' for @odeplot with

odeset).

	 c)	 Solve the problem by building a Simulink model (see Chapters 5

and 8 for Simulink modeling) with the solver ode8.

Then, compare all the solutions found from (a) to (c) and find out which approach is

the most efficient and appropriate.

�Exercise 9
Find numerical solutions of the following systems of coupled ODEs defined by the

following:

	 1.	

dx

dt
x t

dx

dt
x t

1
2

2
1

� � � � �

� � � �

�

�
��

�
�
�

cos

sin
 with ICs: x1(1) = 2.5,  x2(1) = 3.5,   t ϵ [1, 13].

	 2.	

dx

dt
x y

dy

dt
x

� � � �

� � � �

�

�
��

�
�
�

3 5 2

13 2 2

ye

x y

x

 with ICs: x(0.5) = 2,  y(0.5) = − 2,   t ≤ 5.55.

Chapter 8 Ordinary Differential Equations

https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8

593

	 3.	

dx

dt
x y

dy

dt
x y

� �� � � �

� � � � �

�

�
��

�
�
�

1

1

sin

cos

 with ICs: x y t
� � � �
4

1 25
4

0 75
4

7

2
�
�
�

�
�
� �

�
�
�

�
�
� �

�
��

�
��

. , . , . ,

For each of the systems, perform the following tasks:

–– Write an anonymous function of the coupled system.

–– Create a Function file called, e.g., CoupleODE.m.

–– Solve the problem by building a Simulink model (see Chapters 5

and 8 for Simulink modeling) called, e.g., CoupledODEsim.mdl, with a

fixed step solver ode3.

–– Find the numerical solutions of the problem by employing ode23,

ode45, and ode113. Compare the solutions from ODEx solvers and

the Simulink model and check the efficiency of each approach. Take

smaller time steps, adjust the relative and absolute tolerances, and

simulate your created Simulink model (CoupledODEsim.mdl) from an

M-file (hint: use sim() and simset()).

�Exercise 10
By using the Laplace transforms (laplace, ilaplace), solve the following second-order

nonhomogeneous ODEs subject to discontinuous forcing function:

	 1.	
 y y h t y y� � � � � � � � � �5 0 0 0 0, , , h t t

t

t

t

� � � �� �
� �
� �
�

�

�
�

�
�

0

3 3

13

0 3

3 11

11

,

/

	 2.	
  y y y g t y y� � � � � � � � � � �5 5 0 0 0 2, , , g t

t

t t
� � �

� �
� � �

�
�
�

5

0

3

0 3

� �
� �and

	 3.	
  x x x u t x x� � � � � � � � � � �5

5

6
0 0 0 0, , , u t

t t

t
� � � � � � �

�
�
�
�

sin

0

0 2

2

�
�

Plot numerical values of the analytical solutions for a sufficient time.

Chapter 8 Ordinary Differential Equations

https://doi.org/10.1007/978-1-4842-8748-4_5
https://doi.org/10.1007/978-1-4842-8748-4_8

	Chapter 8: Ordinary Differential Equations
	Classifying ODEs
	Example 1: Unconstrained Growth of Biological Organisms
	Example 2: Radioactive Decay
	Example 3: Newton’s Second Law

	Analytical Methods
	DSOLVE
	Example 1: Using DSOLVE
	Example 2: Plotting the Found Solution with dsolve
	Example 3: Adding an Unspecified Parameter

	Second-Order ODEs and a System of ODEs
	Example 1: dsolve with a Second-Order ODE
	Example 2: System ODEs
	Example 3: Unsolvable Solutions Using dsolve
	Example 4: Computing an Analytical Solution
	Example 5: An Interesting ODE

	Laplace Transforms
	Example 1: First Laplace Transform

	LAPLACE/ILAPLACE
	Example 2: Using LAPLACE
	Example 3: A Final LAPLACE
	Example 4: Comparing LAPLACE/ILAPLACE with DSOLVE
	Example 5: Convergent Answers
	Example 6: No Analytical Solution
	Example 7: Demonstrating Efficiency and Effortlessness
	MATLAB Built-in ODEx Solvers

	Example 8: Demonstrating MATLAB Built-in ODEx Solvers
	Example 9: MATLAB Built-in ODEx Solvers for Second-Order ODEs
	Example 10: Simulink Modeling

	Summary
	References
	Self-Study Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10

