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CHAPTER 7

Linear Algebra
This chapter introduces linear algebra. It discusses some of the essential approaches 

to solving systems of linear equations, as well as various matrix operations (matrix 

inverse, determinant, sum, subtraction, division, multiplication, power, exponential, 

elementwise and array-wise operations, and so forth). It covers eigen-value problems 

and matrix factorizations/decompositions, such as Cholesky, Schur, LU, QR, and 

singular value decomposition. It also includes built-in functions and scripts in MATLAB 

and Simulink models. Moreover, the chapter explains the standard matrix generator 

functions of MATLAB, how to create vector spaces, how to solve polynomials, and the 

logical indexing of matrices, all via examples in MATLAB and Simulink.

 Introduction to Linear Algebra
Linear algebra is one of the more important branches of mathematics. It deals with 

vectors, vector spaces, linear spaces, matrices, and systems of linear equations. There 

is a wide range of linear algebra applications in engineering and scientific computing, 

including many fields of natural and social studies. Linear algebra starts with a system of 

linear equations for underdetermined, overdetermined, and well-defined systems.

If a given system is composed of m-linear equations with n-unknowns and m ≥ n, 

that is solvable for unknowns. Consider the following linear system, formulated by the 

system of equations (Equation 7-1):
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(Equation 7-1)

The system of linear equations (Equation 7-1) is solvable directly for all cases when 

m ≥ n. If m < n, there are more unknowns than the number of linearly independent 

equations, and such a system is called underdetermined and not solvable directly.
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If m > n, there are more linearly independent equations, and such a system is called 

overdetermined and is solvable directly.

For the sake of simplicity, let’s take m = n and rewrite Equation 7-1.
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(Equation 7-2)

The given system of linear equations in Equation 7-2 can also be written in matrix 

notation form.

 A X B� � � � � � �*  (Equation 7-3)

Here, A and B are matrices and X is a vector of unknowns.
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Equation 7-3 can also be rewritten in the form of column matrices.
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(Equation 7-4)

The system in Equation 7-3 or 7-4 can be solved for X (unknowns) with the next 

formulation:

 X A B� �� � � � ��1
*  (Equation 7-5)

Here, [A]−1 is the inverse of the matrix [A].

 Matrix Properties and Operators
Matrices have several important properties and operators, such as determinant, 

diagonal, transpose, inverse, singularity, rank, and so forth.

The determinant of a matrix can be computed only if the given matrix is a square. 

Here’s an example:
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The determinant of M will be computed with the following expression:

det (M ) = aei + bfg + dhc - ceg - dbi - hfa

The MATLAB command for the determinant computation is det(). Here’s an 

example:

 >> A=[   8   1   6;   3   5   7;   4   9   2]

A =

     8     1     6

     3     5     7

     4     9     2

>> det(A)

ans =

-360

The diagonal of a matrix is composed of its element along its diagonals. For example, 

in the previous example, the diagonals are aei and ceg.

The MATLAB command for diagonal separation is diag(). Here’s an example:

>> A = [   8   1   6;   3   5   7;   4   9   2];

>> diag(A)

ans =

     8

     5

     2

The transpose of a matrix can be determined by the counterclockwise rotation of a 

matrix by 900 (degrees). The transpose properties are as follows:

 
M MT T� � �

 

 M B M B
T T T�� � � �  

 kM kM
T T� � �  

 MB B M
T T T� � �  

 
M M
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Here, M and B are matrices of the same size, k is a scalar, and T and -1 are the 

transpose and inverse operators.

The MATLAB command for the transpose operation is transpose(), or ' .

Here’s an example:

>> A =[   8   1   6;   3   5   7;   4   9   2];

>> transpose(A)

ans =

     8     3     4

     1     5     9

     6     7     2

>> A'

ans =

     8     3     4

     1     5     9

     6     7     2

 Simulink Blocks for Matrix Determinant, Diagonal 
Extraction, and Transpose
Simulink has blocks that you can use to compute the matrix determinant, extract 

the matrix diagonal elements, and obtain the matrix transpose. The determinant 

block ([det(A) (3x3)]) is present in Simulink’s Aerospace Blockset/Utilities/Math 

Operations, and it has a constraint and can only compute the determinant of 3-by-3 

matrices.

Note the block [det(A) (3x3)] from the aerospace blockset is limited; it can 
only compute the determinant of 3-by-3 matrices.

The block to extract the diagonal elements of a matrix is available in the DSP System 

Toolbox/MATH Functions/Matrices and Linear Algebra/Matrix Operations. The block 

to compute the matrix transpose is present in Simulink/Math Operations, and the block 

name is Math Function. It has a few math functions embedded in it, including exp 

(by default), log, 10^u, magnitude^2, square, pow, and transpose. Any of these math 
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functions in the Math Function block can be chosen. You simply click the Apply and OK 

buttons of the block, and the chosen math function becomes available. Figure 7-1 shows 

these three blocks.

Figure 7-1. Simulink blocks used for determinant calculation, diagonal 
extraction, and transpose operation, from left

These blocks have one input and one output port. Therefore, you need to add two 

additional blocks, specifically, one Constant block for input entry and one Display 

block, to obtain/see the computation results. The Constant block can be taken from 

the Simulink Library Simulink/Sources or DSP System Toolbox/Sources. Similarly, 

the Display block can be taken from Simulink/Sinks or DSP System Toolbox/Sinks. 

Alternatively, with the latest versions of MATLAB starting from 2018a, you can obtain 

all the necessary blocks by double-clicking (with the left mouse button) and typing the 

block name in the search box. As discussed in the previous chapters, in any Simulink 

model one signal source can be used as many times as necessary. There is no need to 

generate that signal within one model to use it with other blocks as an input signal. 

Moreover, to optimize the Simulink model, it is strongly advised you build a Simulink 

model with fewer blocks to make your models more readable, comprehensive, and easy 

to edit. Therefore, this example uses one Constant block for input source [A]. Figure 7-2 

shows the primary version of the Simulink model.
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Figure 7-2. Simulink model to compute the determinant of a matrix, extract 
diagonal elements of a matrix, and perform a transpose on a matrix

Let’s use example matrix [A] to demonstrate these three Simulink blocks. The 

elements of the matrices [A] can be entered in two different ways:

• By typing all elements in the Constant block’s Constant Value box, as 

shown in Figure 7-3. Click the Apply and OK buttons.

Figure 7-3. Entering matrix elements in a Constant block
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• By defining [A] via MATLAB’s Command window and workspace:

>>  A =[   8   1   6;   3   5   7;   4   9   2];

Then provide the variable name A in the Constant block’s Constant Value box for [A], 

as shown in Figure 7-4.

Figure 7-4. Matrix [A], defined in the MATLAB workspace, called via the 
Constant block

Then click the Apply and OK buttons. Note that we are not going to use the second 

method (see Figure 7-4) of defining matrix [A] elements in this example; it’s just shown 

here for explanation purposes.

Finally, you’ll get the complete model in which the matrix [A] elements are entered 

in the Constant block directly, as shown in Figure 7-5. After you complete the model, by 

pressing Ctrl+T on the keyboard or clicking the Run   button in the Simulink model 

window, the complete model with its computed results will be created.
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Figure 7-5. Completed Simulink model that computes the determinant, extracts 
diagonal elements, and performs the transpose operation on the 3-by-3 matrix

Note to see the simulation results in the Display block, it has to be resized/
stretched. You left click it and then drag with the mouse while holding the button.

The simulation results of the Simulink models match the ones from the MATLAB 

commands, such as det(), diag(), and transpose(), or '.

 Matrix Inverse or Inverse Matrix
The inverse matrix has the following important property:

 A A I� ��� � � � ��1

 

Here, [I] is the identity matrix.
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The MATLAB command to compute the inverse of a matrix is inv(). Here’s an 

example:
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>> A =[   8   1   6;   3   5   7;   4   9   2];

>> inv(A)

ans =

    0.1472   -0.1444    0.0639

   -0.0611    0.0222    0.1056

   -0.0194    0.1889   -0.1028

A given matrix is singular if it is square, if it does not have an inverse, and if it has a 

determinant of 0.

 Simulink Blocks for Inverse Matrix
The matrix inverse can also be calculated via several Simulink blocks with respect to a 

given matrix size, i.e., square matrix or rectangular. The inverse matrix or matrix inverse 

computing blocks are present in the DSP System and Aerospace Blockset Toolboxes of 

Simulink and can be accessed via the Simulink Library: the DSP System Toolbox/Math 

Functions/Matrices and Linear Algebra/Matrix Inverses, and the Aerospace Blockset/ 

Utilities/Math Operations. Let’s test the available blocks of this toolbox to compute 

the inverse of the matrix [A] shown in the previous example. Open a blank Simulink 

model and drag and drop the block from the libraries of the DSP System and Aerospace 

Blockset Toolboxes shown in Figure 7-6.

Figure 7-6. Simulink blocks for computing the inverse matrix

They are as indicated on the top of each block—General Inverse (LU), Pseudoinverse 

(SVD), and inv(A)—used to compute the matrix inverses based on LU factorization for 

square matrices, and pseudoinverse for rectangular matrices (i.e., m>n, or the number of 

rows is larger than the number of columns or vice versa). Theoretical aspects of the LU, 

SVD, and other matrix decomposition and transformation operations are highlighted in 

the “Matrix Decomposition” section.
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The three blocks have one input port for the entry matrix and one output port for the 

computed inverse. Add two additional blocks—one Constant block and one Display—by 

following the procedures. Figure 7-7 shows the primary version of the Simulink model.

Figure 7-7. Simulink model to compute the inverse matrix via three 
different blocks

The elements of the matrices [A] can be entered in two ways: (1) by typing all the 

elements in the Constant block’s Constant Value box and then clicking the Apply and OK 

buttons; or (2) by defining [A] via the MATLAB’s Command window and workspace.

Finally, you’ll get the following complete model in which the matrix [A] elements are 

entered in the Constant block directly. After you complete the model, by pressing Ctrl+T 

on the keyboard or clicking the Run   button in the Simulink model window, the 

finalized model with its computed results is created, as shown in Figure 7-8.
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Figure 7-8. The inverse matrix computed via three different blocks

The computed inverse matrix (A−1) values match the ones computed using 

MATLAB’s inv() command, within four correct decimal places.

Another important operator of matrices is its rank. The rank of a matrix (e.g., [A]) is 

the maximum number of linearly independent row vectors of the matrix, which is the 

same as the maximum number of linearly independent column vectors. The [A] matrix is 

considered to have a full rank if its rank equals the largest possible for a matrix of the same 

dimensions. The [M] matrix is considered to be rank deficient if it does not have full rank. 

A matrix’s rank determines how many linearly independent rows the system contains. The 

MATLAB command to compute the rank of a matrix is rank(). Here’s an example:

>> A =[8,   1,   6;   3,   5,   7;   4,   9,   2];   % Full rank matrix

>> rank(A) 

ans = 3

>> M  =[8   0   6;   -3,   0,   7;   0   0   2]   % Rank deficient matrix

M =

     8     0     6

    -3     0     7

     0     0     2

>> rank(M)

ans =

     2
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Based on the rank, the systems (system matrices) can be full rank, overdetermined, 

and underdetermined.

 Example 1: Solving a System of Linear Equations

The following example shows you how to solve a linear equation by using these 

formulations:
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To solve this problem for unknowns, such as x, y, z, you apply Equations 7-3, 7-4, and 

7-5 directly and then use the following operations:
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That can be written as follows:
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Let’s solve this exercise using the reduced row echelon method in MATLAB.

% Step 1. Write an augmented matrix: AU = [A, b]

A = [2 3 5; -3 -2 5; 4 -7 6;]; b = [1;2;3];

AU=[A, b];

% Step 2. Row1 = Row1 - Row2
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AU(1,:)=AU(1,:)-AU(2,:);

% Step 3. Row3 = Row3-4*Row1/5

AU(3,:)= AU(3,:)-4*AU(1,:)/5;

% Step 4. Row2 = Row2+3*Row1/5

AU(2,:)= AU(2,:)+3*AU(1,:)/5;

% Step 5. Row3 = Row3+11*Row2

AU(3,:)= AU(3,:)+11*AU(2,:);

% Step 6. Row2 = Row2+5*Row3/61

AU(2,:)= AU(2,:)-5*AU(3,:)/61;

% Step 7. Row1 = Row1/5-Row2

AU(1,:)= AU(1,:)/5-AU(2,:);

% Step 8. Row3 = Row3/61

AU(3,:)= AU(3,:)/61;

% Step 9. Solution:

x= AU(:, end)

x =

       -0.0262295081967213

        -0.173770491803279

         0.314754098360656

Alternative ways of solving this example include Gauss elimination and graphical 

methods. There are a number of operators and built-in functions in MATLAB that can be 

used to solve a linear system of equations. They are as follows:

• inv(), which computes the inverse of a given matrix or the pseudo- 

inverse of the given system (used for overdetermined systems).

• \, the backslash operator, which solves the system of linear equations 

directly. It’s based on the Gaussian elimination method. This is one of 

the most powerful MATLAB operators (tools) for handling matrices.

• mldivide(), which is a built-in function similar to the \ backslash 

operator.

• linsolve(), which is a built-in function similar to the \ backslash 

operator.

• lsqr(), which is a built-in function based on the least 

squares method.
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• lu(), which is a built-in function based on the Gauss 

elimination method.

• rref(), which is a built-in function based on the reduced row 

echelon method.

• svd(), which is a built-in function based on the singular value 

decomposition.

• chol(), which is a built-in function based on the Cholesky 

decomposition.

• qr(), which is a built-in function based on the orthogonal triangular 

decomposition.

• decomposition(), which is a built-in function that automatically 

choses the decomposition method.

• bicg(), cgs(), gmres(), pcg(), symmlq(), and gmr(), which are built- 

in functions that are based on gradient methods.

• solve(), which is a built-in function from the Symbolic MATH toolbox.

Note among these listed functions/commands and operators, some of them use 
the same computing algorithm and are alternatives to each other. For example, the 
\ backslash operator is an alternative to mldivide().

First, denote the given system with the following notations:
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The entries of [A] matrix (coefficients of the unknowns x, y, z) are defined, and the 

elements of [B] matrix are defined in the Command window.

>> A = [2 3, 5; -3, -2, 5; 4, -7, 6]

A =

     2     3     5

    -3    -2     5

     4    -7     6
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>> B = [1;2;3]

B =

     1

     2

     3

Using inv() and (*), we can compute the solutions of the system.

>>Ai=inv(A)   %   [B] matrix is an  inverse  matrix  of  [A]  matrix.

Ai =0.0754   -0.1738   0.0820

0.1246   -0.0262  -0.0820

0.0951    0.0852   0.0164

>> XYZ1=Ai*B   %   Solutions of the problem

Ai =-0.0262

-0.1738

0.3148

The next example uses the backslash \ operator based on the Gaussian elimination 

method. This approach is quite simple and efficient in terms of computation time.

>> XYZ2=A\B

Ai=-0.0262

-0.1738

0.3148

Using mldivide():

>>XYZ3=mldivide(A,B)

-0.0262

-0.1738

0.3148

Using linsolve():

>>XYZ4=linsolve(A,B)

-0.0262

-0.1738

0.3148
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Using lsqr():

>>XYZ5=lsqr(A,B)

lsqr converged at iteration 3 to  a  solution  with  relative   

residual  6.6e-17.

-0.0262

-0.1738

0.3148

Using lu():

>>[L, U, P] = lu(A); %L-lower; U-upper triangular; P-Permutation matrix

>> y = L\(P*B);

>> XYZ6 =  U\y

XYZ6 =

-0.0262

-0.1738

0.3148

Using rref():

>>   MA   = [A,  B];   % Augmented matrix

>> xyz = rref(MA);

>> XYZ7= xyz(:,end)

-0.0262

-0.1738

0.3148

Using svd() and inv():

>> [U, S, V]= svd(A);

>> XYZ8 = V*inv(S)*U'*B

-0.0262

-0.1738

0.3148
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Using chol():

>>  [U,  L]  =  chol(A);   % A has to be Hermitian positive definite

>>   XYZ9 =  U\(U'\B)   % U'*U = A

-0.0262

-0.1738

0.3148

Using qr():

>> [Q, R] = qr(A);

>>  XYZ10   = R\Q.'*B

-0.0262

-0.1738

0.3148

Using decomposition():

>> XYZ11 = decomposition(A)\B

-0.0262

-0.1738

0.3148

Using bicg() gradient methods:

>> XYZ12 = bicg(A, B)

bicg converged at iteration 3 to a solution with relative  residual  3.1e-14.

-0.0262

-0.1738

0.3148

Using solve(), which is a Symbolic Math Toolbox function:

>> syms x y z

>> sol=solve(2*x+3*y+5*z-1, -3*x-2*y+5*z-2, 4*x-7*y+6*z-3);

>> XYZ13=[sol.x; sol.y; sol.z]

-8/305

-53/305 96/305
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>> XYZ13=double([sol.x; sol.y; sol.z])

-0.0262

-0.1738

0.3148

All of the computed solutions are accurate within four decimal places of the 

employed operators and functions. In fact, the accuracy of the solutions and the 

computation time of each operator or function will differ. For instance, the inverse 

matrix calculation is not only costly in terms of computation time but is also less 

accurate. Moreover, among the studied methods, the last function of the Symbolic Math 

Toolbox, solve(), is the slowest and least efficient method.

Note the decomposition() function is available in the recent versions of 
MatLab starting from MatLab 2018b.

Simulink Modeling

In addition to the MATLAB commands demonstrated, Simulink has several blocks by 

which the linear system of equations, such as [A]{x} = [B], can be solved. All of the solver 

blocks are present in the DSP System Toolbox and can be accessed via the Simulink 

Library: the DSP System Toolbox/Math Functions/Matrices and Linear Algebra/Linear 

System Solvers. Let’s test some of the blocks here to solve the previous example, called 

Example 1. Open a blank Simulink model and drag and drop the block from the DSP 

System Toolbox library, as shown in Figure 7-9.

Figure 7-9. Simulink blocks used to solve a system of linear equations

They are as indicated on the top of each block—LU, SVD, QR factorization and 

decomposition operation-based solvers. All of them have two input ports for [A] and 

[B] and one output port for a solution, {x}. Therefore, you need to add three additional 
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blocks—two Constant and one Display block—which you add as explained previously in 

building Simulink models to compute determinant, transpose, and inverse of matrices. 

Figure 7-10 shows the primary version of the Simulink model.

Figure 7-10. Simulink model to solve a system of linear equations

The elements of the matrices [A] and [B] can be inserted, as shown in Figure 7-3, 

directly in the Constant block’s Constant Value window. Or you can define the elements 

of [A] and [B] via MATLAB’s Command window and workspace.

>> A=[2, 3, 5; -3, -2, 5; 4, -7, 6]

>> B=[1; 2; 3];

The variable names A and B are then entered in the first and second Constant block’s 

Constant Value box for [A] and [B], respectively, as shown in Figure 7-11. Click Apply and 

OK to complete the model.
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Figure 7-11. The variable names defined in the Constant block

By pressing Ctrl+T on the keyboard or clicking the Run   button in the Simulink 

model window, you’ll obtain the complete model with its simulation results (see 

Figure 7-12). The computed results/solutions match the MATLAB solutions to four 

decimal places.

Figure 7-12. Complete model with computed results

Note that the variables (matrices) A and B are defined via MATLAB’s 

Command window.
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To obtain more decimal places of the computed results with the Display block, the 

block parameters (Format Type) need to be tuned by selecting long_e, as shown in 

Figure 7-13.

Figure 7-13. Adjusting the Display block’s Format parameter

 Example 2: Embedding a MATLAB Function Block to Compute 
the Determinant and Solve Linear Equations

All of the aforementioned MATLAB functions/commands used for computing matrix 

determinants, matrix inverses, or solutions of linear systems can be embedded in 

Simulink via the MATLAB Function block . Let’s take two MATLAB functions/

commands used for computing a determinant of a matrix of any size with det() and 

solving with linsolve() and embed them into a Simulink model. Here’s an example:
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Here are completed Simulink models. Figure 7-14 is built with three Constant, two 

MATLAB Function, and two Display blocks.
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Figure 7-14. Simulink models with MATLAB Function blocks to compute the 
determinant and solve a linear system of equations

The input variables/entries for A1 and B1 are defined via the Command window and 

MATLAB workspace in this model. To edit and type in the necessary script, you have to 

open the MATLAB Function block. It can be opened by double-clicking it, which opens 

the MATLAB editor window. The following function file scripts for the MATLAB Function 

blocks are typed in the MATLAB editor for the upper MATLAB Function block (with one 

input) and the lower one (with two inputs A1 and B1) models, respectively. After editing 

the codes of the blocks, save them. They will be saved under the created Simulink model 

and not as a separate MATLAB function file.

function y  =  fcn(u)

y = det(u);

end

function y =  fcn(A1,  B1)

y = linsolve(A1, B1);

The model is then completed, and the finalized model is executed. Figure 7-15 shows 

the completed model with its computed results in the Display blocks. The upper Display 

block shows the determinant, and the lower one shows the solution of the given system.

Chapter 7  Linear aLgebra



465

Figure 7-15. Completed models with computed results

The computed results of the Simulink model can be compared with MATLAB.

>> A1=[16 2 -3 13 ; -5 11 10 -8; 9 7 -6 12; -4 14 15 1 ];

>> B1 = [3; 2; 4; 5];

>> det(A1)

ans =

-18812

>> linsolve(A1, B1)

-3.614714012332536e-03 2.740803742292154e-01

6.272591962577077e-02

2.075271103550925e-01

The computed results from the determinant calculation and linear MATLAB solver 

match the Simulink model’s results to 13 decimal places.

 Example 3: Accuracy of Solver Functions of Linear Equations

Let’s find out which one of the functions/tools (methods) highlighted in Example 1 is 

more accurate in computing the solutions. For this exercise, you’ll take the following 

13-by-13 [A] and 13-by-1 [B] matrices generated by the magic() and randi() (random 
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integer) matrix generator functions of MATLAB. Moreover, the norm() function is used 

to compute the norm of the given linear system with its computed solutions. LA_Ex3.m is 

the complete solution script.

%% Given 13-by-13 system of linear equations

A    =   magic(13);

B = randi([-169,169], 13,1); % Elements of B vary within [-169, 169]

%% 1-Way: inv()   or  pinv()   %% INVERSE matrix method

x1a = inv(A)*B; Err_INV  =  norm(A*x1a-B)/norm(B)     %#ok: ERROR checking

x1a = inv(A)*B; Err_PINV  =  norm(A*x1b-B)/norm(B)   %#ok: ERROR checking

%% 2-Way: \   %% backslash

x1a = inv(A)*B; Err_BACKSLASH = norm(A*x2-B)/norm(B)     %#ok: ERROR checking

%%  3-Way: mldivide()   %% Left divide function

x1a = inv(A)*B; Err_MLDIVIDE  =  norm(A*x3-B)/norm(B)   %#ok: ERROR checking

%% 4-Way: Using linsolve();

x1a = inv(A)*B; Err_LINSOLVE  =  norm(A*x4-B)/norm(B)      %#ok: ERROR 

checking

%% 5-Way: Using lsqr()

x1a = inv(A)*B; Err_LSQR  =  norm(A*x5-B)/norm(B)         %#ok: ERROR 

checking

%% 6-Way: Using lu()

x1a = inv(A)*B; y = L\(P*B); x6 = U\y;

Err_LU  =  norm(A*x6-B)/norm(B)   %#ok: ERROR checking

%% 7 - Way: Using rref()

x1a = inv(A)*B; xyz = rref(MA); x7= xyz(:,end);

Err_RREF  =  norm(A*x7-B)/norm(B)   %#ok: ERROR checking

%%   8 - Way: Using svd()

x1a = inv(A)*B; x8 = V*inv(S)*U'*B;

Err_SVD  =  norm(A*x8-B)/norm(B)   %#ok: ERROR checking

%% 9 - Way: Using chol()

x1a = inv(A)*B; x9 = U\(U'\B);

Err_CHOL  =  norm(A*x9-B)/norm(B)   %#ok: ERROR checking

%% 10 - Way: Using qr()

x1a = inv(A)*B; x10   =  R\Q.'*B;

Err_QR  =  norm(A*x10-B)/norm(B)   %#ok: ERROR checking

%% 11 - Way: Using decomposition()
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x1a = inv(A)*B; Err_DECOMPOSITION = norm(A*x11-B)/norm(B) %#ok: ERROR checking

%% 12 - Way: Using bicg()

x1a = inv(A)*B; Err_BICG  =  norm(A*x12-B)/norm(B)   %#ok: ERROR checking

%% 13-Way: solve()   %% SOLVE() symbolic math method

x = sym('x', [1, 13]); x=x.'; Eqn = A*(x); Eqn = Eqn - B;

Solution = solve(Eqn); SOLs = struct2array(Solution); SOLs = double(SOLs);

 x13 = SOLs';

Err_SOLVE  =  norm(A*x13-B)/norm(B)   %#ok: ERROR checking

Here are the errors that were made while computing the solutions of the system with 

the employed methods:

Err_INV =

5.8087e-16

Err_PINV =

3.7982e-15 Err_BACKSLASH = 3.0569e-16 Err_MLDIVIDE = 3.0569e-16 Err_

LINSOLVE = 3.0569e-16

lsqr converged at iteration 7 to a solution with relative residual 3.5e-07. Err_LSQR =

3.4959e-07

Err_LU =

3.0569e-16

Err_RREF =

1.1576e-05

Err_SVD =

3.7982e-15

Err_CHOL  =

2.2400

Err_QR =

7.0615e-16 

Err_DECOMPOSITION =

3.0569e-16

bicg stopped at iteration 13 without converging to the desired tolerance 1e-06 

because the maximum number of iterations was reached.

The iterate returned (number 13) has relative residual 9.6e-06.

Err_BICG = 9.5856e-06

Err_SOLVE = 1.5109e-16
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From the computed errors, it is clear that the RREF(), BICG(), and LSQR() functions 

make errors within the margin of 10−5…10−7 and all other methods make errors within 

the margin of 10−15…10−16 while computing the solutions of this given system.

 Example 4: Efficiency of Solver Functions of Linear Equations

This example demonstrates which one of the shown ways is more efficient in terms of 

computation time. For this demonstration, you’ll consider two large matrices of 1000- 

by- 1000 and 1000-by-1, generated by the random integer number generator function 

randi() to generate the elements of matrices [A] and [B]. In addition, to record the 

elapsed time of each computation method, the [tic, toc] functions are used. Here is 

the complete solution script, called LA_Ex4.m:

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

%% 1) inv() or pinv()

tic; Ai = inv(A); xyz1=Ai*B; T_inv=toc

%% 2) bacslash operator: \

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz2 = A\B; T_backslash = toc

%% 3) mldivide()

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz3= mldivide(A, B); T_mld = toc

%% 4) linsolve()

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz4 = linsolve(A, B); T_linsolve =   toc

%% 5) lsqr()

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz5 = lsqr(A, B); T_lsqr = toc

%% 6) lu()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [L, U, P]=lu(A); y=L\(P*B); xys6=U\y; T_lu=toc
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%% 7) rref()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; MA = [A, B];xyz7 = rref(MA); XYZ7=xyz7(:, end); T_rref=toc

%% 8) svd()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [U S V] = svd(A); xyz8 = V*inv(S)*U'*B; T_svd=toc

%% 9) chol()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [U L]= chol(A); xyz9 = U\(U'\B); T_chol=toc

%% 10) qr()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [Q R] = qr(A); xyz10 = R\Q.'*B ; T_qr=toc

%% 11) decomposition()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; xyz11 = decomposition(A)\B; T_decom = toc

%%  12)  bicg()   Gradient methods

clearvars; A=randi([-100,100], 1000); B=randi([-100, 100], 1000, 1);

tic; xyz12 = bicg(A, B); T_bicg=toc

%% 13) solve()

A=randi([-100,100],100); B=randi([-100, 100], 100, 1);

tic;

x = sym('x', [1, 100]); x=x.';

Eqn = A*(x); Eqn = Eqn - B;

Solution = solve(Eqn); SOLs = struct2array(Solution); SOLs = double(SOLs);

x13 = SOLs';

T_solve=toc

Here are the elapsed computation time values from the simulations:

T_inv =

0.0390

T_backslash = 0.0173

T_mld =

0.0171

T_linsolve =

0.0171
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lsqr stopped at iteration 20 without converging to the desired tolerance 1e-06 

because the maximum number of iterations was reached.

The iterate returned (number 20) has relative residual 0.24.

T_lsqr = 0.0236

T_lu =

0.0235

T_rref =

10.1406

T_svd =

0.4263

T_chol =

0.0330

T_qr =

0.1045

T_decom =

0.0459

bicg stopped at iteration 20 without converging to the desired tolerance 1e-06 

because the maximum number of iterations was reached.

The iterate returned (number 0) has a relative residual of 1.

T_bicg =

0.0195

T_solve =

14.6306

From these computations, it is clear that linsolve(), mldivide, and \ (the backslash 

operator) (Gaussian elimination method) are the fastest among all the tested methods. 

The slowest and computationally costliest one is the solve() operator of the Symbolic 

MATH even when the size of the system was 10 times smaller. It is worth noting that 

the reduced row echelon method called rref() is the next slowest, after the solve() 

operator.

Let’s consider another example to solve these four different methods, which are \, 

linsolve(), inv(), and solve(), discussed previously.
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 Example 5: Solving Linear Equations ([A]{x} = [b]) by Changing 
Values of [b]

This exercise is composed of two parts:

 [1]. Solve the given linear system for unknowns a, b, and c.

 

� � � �
� � �

� �

�

�
�

�
�

0 072 12

0 12 9

50

.

.

a c

b c

a b
 

 [2]. Solve the given system for unknowns a, b, and c. The third 

equation’s value changes in the range of 50…250.
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The system is rewritten in a matrix form as [A]{x} = [B] and then solved directly for 

unknowns a, b, and c. Here is the solution script (LA_Ex4.m):

% PART 1.

% The given system is written from the Ax=B as [A]*[abc]=[B]

A=[.072, 0, -1; 0, .12, -1; 1 1 0];

B=[-12, -9, 50];

abc1=A\B'                  %#ok   % BACKSLASH \

abc2  =   linsolve(A,B')   %#ok   % LINSOLVE()

abc3  =  inv(A)*B'         %#ok   % INV

% SOLVE() in symbolic MATH

syms a b c; abc4=solve(0.072*a-c+12, 0.12*b-c+9, a+b-50);

abc4=double([abc4.a;   abc4.b;  abc4.c])  %#ok

% SOLVE()

%% Part II. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BACKSLASH \ ; LINSOLVE(); INV

tic; Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);

c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];
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for ii=1:numel(Bk)

B=[-12; -9; Bk(ii)];

abc=A\B;

a(ii)=abc(1,:);

b(ii)=abc(2,:);

c(ii)=abc(3,:);

end Time1=toc;

fprintf('Computation time with  BACKSLASH: %3.3f   \n', Time1); clearvars

tic; Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);

c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];

for ii=1:numel(Bk)

B=[-12; -9; Bk(ii)];

abc=linsolve(A,B);

a(ii)=abc(1,:);

b(ii)=abc(2,:);

c(ii)=abc(3,:);

end

Time2=toc;

fprintf('Computation  time with LINSOLVE:   %3.3f   \n', Time2) clearvars

tic Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1); c=zeros(numel(Bk),1); A=[.072, 

0, -1; 0, .12, -1; 1 1 0];

for ii=1:numel(Bk)

   B=[-12; -9; Bk(ii)];

   abc=inv(A)*B;

   a(ii)=abc(1,:); b(ii)=abc(2,:); c(ii)=abc(3,:);

end

Time3=toc;

fprintf('Computation  time with  INV:   %3.3f   \n', Time3)

%% SOLVE() from symbolic math

clearvars; tic;

Bk=50:250;

a1=zeros(numel(Bk),1);b1=zeros(numel(Bk),1); c1=zeros(numel(Bk),1);

syms a b c

for ii=1:numel(Bk)
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   abc=solve(0.072*a-c+12,0.12*b-c+9,a+b-Bk(ii));

   a1(ii)=double(abc.a);

   b1(ii)=double(abc.b);

   c1(ii)=double(abc.c);

end

Time4=toc;

fprintf('Computation  time with SOLVE:   %3.3f   \n', Time4)

Here are the results of the calculations from Part 1:

abc1 =

   15.6250

   34.3750

   13.1250

abc2 =

15.6250

34.3750

13.1250

abc3 =

15.6250

34.3750

13.1250

abc4 =

15.6250

34.3750

13.1250

Here are the results of the script from Part 2:

Computation time with BACKSLASH: 0.002

Computation time with LINSOLVE:  0.002

Computation time with INV:       0.002

Computation time  with  SOLVE:   22.066

From the computation time spent to compute solutions of the given linear system 

with three variables and 201 possible cases using four ways, it is clear that the least 

efficient way of solving linear equations is using the Symbolic Math toolbox’s solve() 
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function. The backslash operator (\) and linsolve() and inv() methods all performed 

similarly. The solver linsolve(), \, and inv() methods are more than 11,033 times 

more efficient and faster than the solve() function.

 Example 6: Linear Equations ([A]{x} = [b]) Applied for the Least 
Squares Method

This exercise demonstrates how to apply the principles of solving linear equations in the 

form of [A]{x} = [b] to solve the least squares problem to find best-fit model coefficients. 

In this exercise, we introduce the Vandermonde matrix expression to determine the 

polynomial fit models.

Here is the N-th order polynomial:
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To compute the fit model f(xi), we set it equal to the measured data yi: f(xi) = [yi].
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These expressions can be written as follows:

 V a yi i� �� �� � �  

Here, [V] is the Vandermonde matrix, {ai} is the coefficients of the n-th order 

polynomial, and [yi] is the measured data points.
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Or
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Here, xi and yi are known, and ai polynomial fit coefficient values are needed to be 

computed. Therefore, we can compute ai from the next expression:

 a V yi i� �� � � �� ��1

 

Let’s consider the following example.

Given test data:

Test # Test1 Test2 Test3 Test4 Test5 Test6 Test7

applied Load, [n] 10 20 30 40 50 60 70

Deflection, δ[m] 0.145 0.435 0.505 0.765 1.025 1.199 1.430

The task is to compute the fit model using Hooke’s law formulation for linear elastic 

materials. The Hooke’s law formulation is F = kδ, where F is applied force in [N] and δ is a 

dependent variable, which is the deflection of an elastic material when F force is applied. 

And k is the stiffness coefficient of a material. Thus, the unknown variable here is k that 

will be computed using the least squares criterion.

First, we express the test data with respect to the system of linear equations [A]{x} = [b].  

Here the applied force is the dependent variable [b], and the independent variable 

{x} corresponds to the resulted deflection δ. Therefore, in this exercise, the unknown 

variable is k, which is stiffness of the material. In this exercise, a first tricky point is how 

to compute the values of [A]. To compute the elements of [A], we use the Vandermonde 

matrix approach. According to Hooke’s law, it is a first-order polynomial, i.e., F(δ) = kδ, 

that can be also written as k = F(δ)/δ. Using the given data in this exercise, we can define 

the Vandermonde matrix and load matrix.
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Here, V is the Vandermonde matrix. Note the size of the Vandermonde matrix is 

7-by-2 and the size of the applied load is 7-by-1. Therefore, the size of the stiffness matrix 

will be 1-by-2. The reason of having zeros in the second column of [V] is that according 

to Hooke’s law, the linear relationship between the applied load and deflection of 

a linear elastic material is in the form of f(x) = a1 ∗ x + a0 and a0 = 0. Therefore, the 

unknown stiffness is found from the following:

 k V F�� � �� ��1

 

Note that to compute the values of [k] in a more efficient and exactly, we employ 

the backslash (\) operator. An alternative solution function to the backslash operator is 

linsolve() or mldivide().

The final solution script (LA_Ex6.m) is shown here:

% LA_Ex6.m

% Part 1. Vandermonde matrix

clc; clear variables

F = (10:10:70).';                                    % Applied Load

d = [0.145  0.435 0.505 0.765 1.025 1.199 1.430].';  % Deflection

scatter(F, d, 'filled')

ylim([0, max(d)+.2]),shg

A = [F zeros(size(F))];

FM =A\d;

FM_values = FM(1)*F;

hold on

plot(F, FM_values, 'k-', 'linewidth', 2)

gtext(['Fit model: F = '  num2str(FM(1)) '*\delta'])

gtext(['Stifness is: '  num2str(FM(1))])

grid on

xlabel('Applied Load, F [N]')

ylabel('Deflection, \delta [m]')
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Figure 7-16 shows the resulted plot of the calculations from the script.

Figure 7-16. Fit model is computed using the least squares method

There are a few functions (polyfit, fitlm, fit) in Curve Fitting and Statistics and 

Machine Learning Toolboxes, which can be used easily to compute approximation 

polynomials. Let’s look at the previous example of how to employ these functions:

% Part 2. Polynomial Approximation Fcn: Curve Fitting Toolbox

FM2 = polyfit(F,d, 1);

fprintf('CFTOOL Fit Model: F(d) = %f*d \n', FM2(1));

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(F,d, 'linear');

fprintf('Stats and ML Fit Model: F(d) = %f*d \n', FM3.Coefficients.

Estimate(2));

Parts 2 and 3 of the code (LA_Ex6.m) produce close approximation coefficients of the 

first-order polynomial. The following results will be displayed in the Command window:

CFTOOL Fit Model: F(d) = 0.021082*d

Stats and ML Fit Model: F(d) = 0.021082*d

Note that there is a small difference between the Vandermonde approach and 

polyfit() and fitlm() functions. The reason for the difference is the intercept value 

is set equal to “0” with the Vandermonde matrix, and with the other two functions, the 

intercept is considered.
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 Example 7: Linear Equations ([A]{x} = [b]) Applied for the Least 
Squares Method

The following data table gives the stopping distance y as a function of initial speed v, for 

certain car model. Find the quadratic polynomial coefficients that fit the data.

v(km/h) 20 30 40 50 60 70

y(m) 45 80 130 185 250 330

The Vandermonde matrix of this exercise for the quadratic fit model is computed 

from the following:

 

V

v v v

v v v

v v vn n n

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1
0

1 1
2

2
0

2 2
2

0 2

: : :

 

Note that v v vn1
0

2
0 0 1, ,� � corresponds to a0. Therefore, V can be also expressed as 

follows:
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v v
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�

�

�

�
�
�
�
�

�

�
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: : :

 

Note that V can be also expressed as follows:
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v v

v v
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�

�

�

�
�
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�
�

�

�

�
�
�
�
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1
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The Vandermonde matrix of the data from this exercise is equal to the following:

V �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1 20 20

1 30 30

1 70 70

2

2

2

: : :
 or V �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

20 20 1

30 30 1

70 70 1

2

2

2

: : :

The measured data points in this exercise are as follows:

 

yi �

�

�

�
�
�
�

�

�

�
�
�
�

45

80

330

:

 

The unknown coefficient of the quadratic polynomial is found from the following, 

depending on which way [V] is defined:

a = [a0, a1, a2] or a = [a2, a1, a0]

 a V yi� �� ��1

 

Note that in this exercise, the size of the Vandermonde matrix is 6-by-3.

The complete code of this exercise is LA_Ex7.m.

% LA_Ex7.m

clc; clear variables; close

% Part 1. Vandermonde matrix

v = (20:10:70).';                        % Velocity, [km/h]

y = [45  80 130 185 250 330].';          % Braking distance, [m]

scatter(v, y, 'filled')

ylim([0, max(y)+.2])

A = [v.^2, v,  ones(size(v))];

FM =A\y;

FM_values = FM(1)*v.^2+FM(2)*v+FM(3);

hold on

plot(v, FM_values, 'k-', 'linewidth', 2)

gtext(['Fit model: s(v) = '  num2str(FM(1))  'v^2 +' num2str(FM(2)) '*v +', 

num2str(FM(3))])

grid on
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xlabel('\it Velocity, v [km/h]')

ylabel('\it Braking Distance, s [m]')

% Part 2. Polynomial Approximation Fcns: Curve Fitting Toolbox

FM2 = polyfit(v,s, 2);

fprintf('CFTOOL Fit Model: s(v) = %f*v.^2 + %f*v + %f \n', FM2);

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(v, s, 'poly2');

fprintf('Stats and ML Fit Model: s(v) = %f*v.^2 + %f*v + %f \n', flip(FM3.

Coefficients.Estimate));

Figure 7-17 shows the simulation results of LA_Ex7.m.
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Fit model: s(v) = 0.050893v2  +1.1054*v +2.3571

Figure 7-17. Quadratic fit model is computed using the least squares method

Also, in the Command window, the following outputs will be displayed after 

executing the script: LA_Ex7.m:

FMM =

    0.0509

    1.1054

    2.3571

CFTOOL Fit Model: s(v) = 0.050893*v.^2 + 1.105357*v + 2.357143

Stats and ML Fit Model: s(v) = 0.050893*v.^2 + 1.105357*v + 2.357143

Chapter 7  Linear aLgebra



481

The results from the three approaches are identical, which proves that the 

Vandermonde approach is well correlated with the functions of the two toolboxes.

 Example 8: Linear Equations ([A]{x} = [b]) Applied for the Least 
Squares Method Using Simulink Modeling

The following data table gives the stopping distance y as a function of initial speed v, for 

a certain car model. Find the quadratic polynomial coefficients that fit the data.

v(km/h) 20 30 40 50 60 70

y(m) 45 80 130 185 250 330

Let’s build a Simulink model to solve this exercise and apply the least squares 

polynomial solver block. A Simulink model of this exercise is relatively simple and 

composed of three blocks: Constant, Least Squares Polynomial Fit, and Display blocks, 

as shown in Figure 7-18.

Figure 7-18. Simulink model, the least squares method

The Simulink model shown in Figure 7-18 is not complete yet. There are two more 

adjustments to be made in the Constant and Least Squares Polynomial Fit blocks. The 

Constant should be opened by double-clicking it, and the data for y, i.e., [45 80 130 

185 250 330].' should be entered. Note the data has to be a column vector. Then the 

next block parameters should be adjusted, as shown in Figure 7-19. Note that Control 

Parameter (X) values are v values in a column vector form, and Polynomial order (N) is 2 

because we are looking for a quadratic polynomial fit.
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Figure 7-19. Least squares Polynomial Fit block parameters adjustment

Once all adjustments are made and values are entered, the model is ready to 

simulate. The completed model (LA_Ex8.slx) with simulation results after resizing the 

Display block to see all results is shown in Figure 7-20.

Figure 7-20. Simulink model, LA_Ex8.slx

Note that the found results from the Simulink model LA_Ex8.slx match perfectly 

well with the ones found using the Vandermonde matrix, polyfit() and fitlm().

 Matrix Operations
This section covers general mathematical operations and computations of matrices, 

vectors, and eigen-vectors. Many numerical examples are used to explain the matrix 

operations. Table 7-1 lists the matrix operations their command syntax.
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Table 7-1. Matrix Operators in Two Equivalent Formulations

Operation Name MATLAB First Way MATLAB Second Way

Matrix multiplication A*B mtimes(A,B)

array-wise multiplication A.*B times(A,B)

Matrix right division A/B mrdivide(A,B)

array-wise right division A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

array-wise left division A.\B ldivide(A,B)

Matrix power A^B mpower(A,B)

array-wise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

binary addition A+B plus(A,B)

Unary plus +A uplus(A)

binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Determinant det(A) det(A)

rotate by 900 rot90(A) rot90(A)

replicate and tile an array n times repmat(A, n) repmat(A, n)

Flip matrix left/right fliplr(A) fliplr(A)

Flip matrix in up/down flipud(A) flipud(A)

Basic MATLAB unit data is in the array type format. Matrices and vectors can be 

employed in many cases to define input and output, local data, and function inputs and 

outputs. Moreover, they can be used to combine separate scalars into one signal and 

process multidimensional input and output signals. An array is defined by a single name 

and a collection of data arranged by rows and columns, as shown here.
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Row # 1
11 12 13

Row # 2
21 22 23

Row # 3

31 22 33

Row # 4

41 42 43

11 12

21 22

31 22

41 42

 

Let’s look at some numerical examples. They perform matrix operations with scalars, 

such as addition, subtraction, power, multiplication, and division, including array-wise 

(elementwise) operations in the Command window.

>>   A=[8,1,6;   3,5,7;   4,9,2]   % Matrix 3-by-3

A =

     8     1     6

     3     5     7

     4     9     2

>> a = 2; b = 2+3i; c = 5j;

>> B=A^a  % Note the difference between ^ and .^

B =

    91    67    67

    67    91    67

    67    67    91

>> C=A.^a  % Elementwise. Note the difference between ^ and .^

C =

    64     1    36

     9    25    49

    16    81     4
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>> D = A*a+B/b

D =

  30.0000 -21.0000i  12.3077 -15.4615i  22.3077 -15.4615i

  16.3077 -15.4615i  24.0000 -21.0000i  24.3077 -15.4615i

  18.3077 -15.4615i  28.3077 -15.4615i  18.0000 -21.0000i

>> E =  C./c

E =

   0.0000 -12.8000i   0.0000 - 0.2000i   0.0000 - 7.2000i

   0.0000 - 1.8000i   0.0000 - 5.0000i   0.0000 - 9.8000i

   0.0000 - 3.2000i   0.0000 -16.2000i   0.0000 - 0.8000i

>> F = C/c

F =

   0.0000 -12.8000i   0.0000 - 0.2000i   0.0000 - 7.2000i

   0.0000 - 1.8000i   0.0000 - 5.0000i   0.0000 - 9.8000i

   0.0000 - 3.2000i   0.0000 -16.2000i   0.0000 - 0.8000i

 Example: Performing Matrix Operations
Given six arrays: A (4 − by − 3), B(3 − by − 4), C(4 − by − 4), D(4 − by − 3), E(3 − by − 3), 

and F(3 − by − 3).

Let’s perform several matrix operations—such as summation, subtraction, 

multiplication, power, scalar multiplication, square root, mean, round, standard 

deviations, and replicate/rotate/flip matrix—from the Command window.

>> A=[2 -3 1; 3 2 5; 1 3 4; -3 -2 3] ;

>> B=[3,4,-2 1;2,5,4,-6;4,-3, 1,2] ;

>> C=[16,2,3,13;5,11,10,8;9 4 7 14;6 15 12 1] ;

>> D=[1 2 3; 2 3 4; 4 3 1; -2 -3 1] ;

>> E=[8, 1, 6; 3, 5, 7; 4, 9, 2];

>> F=[3 7 3; 3 2 8; 9 2 1];

>> M_AB = A*B

M_AB =

     4   -10   -15    22

    33     7     7     1

    25     7    14    -9

    -1   -31     1    15
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>> M_BA = B*A

M_BA =

    13    -9    18

    41    28    25

    -6   -19    -1

>> M_S = M_AB-C

M_S =

   -12   -12   -18     9

    28    -4    -3    -7

    16     3     7   -23

    -7   -46   -11    14

>> M_S= M_BA-C

Matrix dimensions must agree.

>> CM=C*M_S   % Not equivalent to M_S*C

CM =

  -179  -789  -416   243

   352  -442  -141  -150

    18  -747  -279    88

   533  -142   -80  -313

>> CM1=M_S*C   % Not equivalent to C*M_S

CM1 =

  -360   -93  -174  -495

   359  -105   -61   283

   196  -252  -149   307

  -357  -354  -390  -599

>> CM2=M_S.*C   % Elementwise  operation:  NOT  equivalent  to  M_S*C

CM2 =

  -192   -24   -54   117

   140   -44   -30   -56

   144    12    49  -322

   -42  -690  -132    14
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>> MDE=M_S./C   % Elementwise operation:  NOT  equivalent  to  M_S/C

MDE =

   -0.7500   -6.0000   -6.0000    0.6923

    5.6000   -0.3636   -0.3000   -0.8750

    1.7778    0.7500    1.0000   -1.6429

   -1.1667   -3.0667   -0.9167   14.0000

>> MD=M_S/C   % Not equivalent to M_S./C

MD =

    1.9275    8.5704   -5.6271   -5.8414

    1.4496   -6.4076    1.5420    3.8277

   -1.0389  -10.8246    5.0116    6.9401

   -4.9118  -12.9118   12.6765    3.6765

>> M_AD =A.*D % Elementwise operation: matrix multiplication

M_AD =

     2    -6     3

     6     6    20

     4     9     4

     6     6     3

>> MM_AD= A*D    % Error due to size mismatch of [A] and [D]

Error using * Incorrect dimensions for matrix multiplication. Check that the number 

of columns in the first matrix matches the number of rows in the second matrix. To 

perform elementwise multiplication, use '.*'. Related documentation

>> M_EF=E.*F   % Elementwise multiplication of square matrices

M_EF =

    24     7    18

     9    10    56

    36    18     2

>> MM_EF=E*F   % Square matrices can be multiplied matrix-wise

MM_EF =

    81    70    38

    87    45    56

    57    50    86
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>> Csqrt=sqrt(C) % Not equivalent to sqrtm(C)

Csqrt =

    4.0000    1.4142    1.7321    3.6056

    2.2361    3.3166    3.1623    2.8284

    3.0000    2.0000    2.6458    3.7417

    2.4495    3.8730    3.4641    1.0000

>> Csqrt=sqrtm(C) % Not equivalent to sqrt(C)

Csqrt =

   3.8335 - 0.0167i   0.0738 + 0.7839i   0.1262 + 0.3666i   1.7975 - 1.1337i

   0.3251 + 0.0011i   2.6850 - 0.0526i   1.6850 - 0.0246i   1.1359 + 0.0761i

   1.3123 - 0.0237i   0.7322 + 1.1107i   1.9687 + 0.5194i   1.8178 - 1.6064i

   0.5925 + 0.0373i   2.0922 - 1.7477i   1.7997 - 0.8172i   1.3466 + 2.5276i

>>  C_E1 = expm(C)   % Matrix exponential not equal to  exp(C)

C_E1 =

   1.0e+14 *

    1.5718    1.3711    1.3622    1.5295

    1.5718    1.3711    1.3622    1.5295

    1.5718    1.3711    1.3622    1.5295

    1.5718    1.3711    1.3622    1.5295

>> C_E2 = exp(C) %  Exponential  of  a  matrix:  not  equal  to  expm(C)

C_E2 =

   1.0e+06 *

    8.8861    0.0000    0.0000    0.4424

    0.0001    0.0599    0.0220    0.0030

    0.0081    0.0001    0.0011    1.2026

    0.0004    3.2690    0.1628    0.0000

>> S=[A(1,1:3); B(2,1:3);C(3,2:4)]; % Created from the existed

>> Y=[A(1), 1.3];                   % Created from the existed

>> Arot90=rot90(A)                  % Matrix rotate
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Arot90 =

     1     5     4     3

    -3     2     3    -2

     2     3     1    -3

>> Crep=repmat(C,  2,1)   % Matrix replication/copy

Crep =

    16     2     3    13

     5    11    10     8

     9     4     7    14

     6    15    12     1

    16     2     3    13

     5    11    10     8

     9     4     7    14

     6    15    12     1

>> Bflip=fliplr(B)   % Matrix flip

Bflip =

     1    -2     4     3

    -6     4     5     2

     2     1    -3     4

Cud=flipud(Crep)   % Matrix flip up or down

Cud =

     6    15    12     1

     9     4     7    14

     5    11    10     8

    16     2     3    13

     6    15    12     1

     9     4     7    14

     5    11    10     8

    16     2     3    13

Many of these matrix operations can also be performed in the Simulink 

environment. Let’s use the previous examples to demonstrate how and what Simulink 

uses for matrix operations and manipulations.

The Simulink Library contains the blocks for sum, multiplication/division, power, 

exponent, and concatenation, as shown in Figure 7-21.
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Figure 7-21. Matrix operation blocks in the Simulink Library

First define the [A] and [D] matrices in the Command window.

>> A=[2 -3 1; 3 2 5; 1 3 4; -3 -2 3] ;

>> D=[1 2 3; 2 3 4; 4 3 1; -2 -3 1] ;

Now compute the sum and subtraction of matrices [A] and [D], as shown in 

Figure 7-22.

Figure 7-22. Matrix sum and subtraction operations in Simulink

Note that matrices [A] and [D] are defined via the Command window and workspace. 

The computed sums match the ones calculated using MATLAB’s Command window.

Here are the results of multiplication (see Figure 7-23), exponent, and square (see 

Figure 7-24) of the matrices.
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Figure 7-23. Matrix multiplication in Simulink

Note that for the matrix multiplication operation shown in Figure 7-23, the Multiply 

block changes from element-wise (.*) multiplication to matrix (*) multiplication, as 

shown in Figure 7-24.

Otherwise, the multiplication operation will not be performed due to the 

mismatched sizes of [A] and [B]. Again, the computed results match the ones 

from MATLAB.

Figure 7-24. Setting up the Matrix Multiply block for matrix multiplication (*) or 
element-wise multiplication (.*)
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Figure 7-25. Matrix exponential and square operation blocks

Note that in the operations in Figure 7-25, the exponential and power operations 

are performed with one block (one Math Function block), by choosing its Function type 

[pow] in uv and [square] in u2 (see Figure 7-26).

Figure 7-26. How to set the Math Function block for matrix operations

Now by using the Matrix Concatenate block, we create a new matrix (4-by-10) from 

the computed the matrix sum (4-by-3), square (4-by-4), and matrix division (4-by-3). See 

Figure 7-27.

Chapter 7  Linear aLgebra



493

Figure 7-27. The Matrix Concatenate block performs matrix concatenation.

As demonstrated, Simulink blocks perform various matrix operations, much like 

MATLAB functions. However, there are computationally costly simulations with matrix 

and array operations in which Simulink models might be slower than MATLAB scripts. 

For example, when computing discrete Fourier transforms, Simulink models are much 

slower than MATLAB. For some matrix and array operations, the MATLAB Fcn block or 

the Interpreted MATLAB Fcn block can be used in Simulink modeling.

In addition to these matrix operations, there are a few other operations by which you 

can create new matrices. For instance, you can take out diagonals of existing matrices 

with diag(A) or take out selected elements of matrices and create a new matrix.

>> E=[8, 1, 6; 3, 5, 7; 4, 9, 2];

>> F=[3 7 3; 3 2 8; 9 2 1];

>> EF = [diag(E),  diag(F)]

EF =

8   3

5   2

2   1

 Standard Matrix Generators
MATLAB has numerous standard array and matrix generators, which can be used to 

generate a wide range of matrices. For instance, eye(n), eye(k, m), ones(m), ones(m, 

k), zeros(l), zeros(l,k), magic(k), pascal(k), pascal(k, m), rand(m), rand(k, m), 

randi(n,m,k), repmat(A, r, c), blkdiag(A, B, C), sparse(m,n), and many more. 

Here’s an example:
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>> eye(3)

ans =

     1     0     0

     0     1     0

     0     0     1

>> magic(5)  %   Magic   matrix in a size of 5 by 5

ans =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

>>  A=pascal(4)   % Pascal  matrix  in  a  size  of  4  by  4

A =

     1     1     1     1

     1     2     3     4

     1     3     6    10

     1     4    10    20

>> A=pascal(4,2)   % Pascal matrix in a size of 4 by 4

A =

    -1    -1    -1    -1

     3     2     1     0

    -3    -1     0     0

     1     0     0     0

>> zeros(3)  % Zero matrix 3-by-3

ans =

     0     0     0

     0     0     0

     0     0     0

>> zeros(2,3)  % Zero matrix 2-by-3

ans =

     0     0     0

     0     0     0
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>> ones(3)  % Ones matrix 3-by-3

ans =

     1     1     1

     1     1     1

     1     1     1

>> ones(2,3)  % Ones matrix 2-by-3

ans =

     1     1     1

     1     1     1

>> eye(3,4)   % Unit diagonal matrix of size  3  - by - 4

ans =

     1     0     0     0

     0     1     0     0

     0     0     1     0

>> eye(4,5)   % Unit diagonal matrix of size 4 - by - 5

ans =

     1     0     0     0     0

     0     1     0     0     0

     0     0     1     0     0

     0     0     0     1     0

>> rand(2)    % Uniform random matrix 2-by-2

ans =

    0.8147    0.1270

    0.9058    0.9134

>> rand(2, 4)    % Uniform random matrix 2-by-4

ans =

    0.6324    0.2785    0.9575    0.1576

    0.0975    0.5469    0.9649    0.9706

>> randn(3)    % Normally distributed random matrix 3-by-3

ans =

    0.7254   -0.2050    1.4090

   -0.0631   -0.1241    1.4172

    0.7147    1.4897    0.6715
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>> A = round(randn(3))   % Round up to the nearest 0

A =

    -1     0     0

     1     1     0

     2     1    -1

>> A_rep=repmat(A, 2, 3) % replicating the matrix A by making its

% replication 2 times of rows and 3 times of columns

A_rep =

    -1     0     0    -1     0     0    -1     0     0

     1     1     0     1     1     0     1     1     0

     2     1    -1     2     1    -1     2     1    -1

    -1     0     0    -1     0     0    -1     0     0

     1     1     0     1     1     0     1     1     0

     2     1    -1     2     1    -1     2     1    -1

>> C=eye(2); B=magic(3); A=ones(4);

>> D=blkdiag(A,B,C)   % combine matrices in diagonal directions to

% create a block diagonal matrix.

D =

     1     1     1     1     0     0     0     0     0

     1     1     1     1     0     0     0     0     0

     1     1     1     1     0     0     0     0     0

     1     1     1     1     0     0     0     0     0

     0     0     0     0     8     1     6     0     0

     0     0     0     0     3     5     7     0     0

     0     0     0     0     4     9     2     0     0

     0     0     0     0     0     0     0     1     0

     0     0     0     0     0     0     0     0     1

>> randi([-13, 13], 5) % Random  integers within [-13, 13]

ans =

     0     7    12     9    -4

    12    -7     1    -7    -8

    -4     0   -10     8    -7

     2     5    -9    -7     3

    -7    11    -7    12    -1
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>> K=reshape(randperm(9),  3,3)  %  Change  the  size  (reshape)   

of  array  %  to  make 3 by 3 matrix by random permutation

K =

     6     4     7

     1     3     2

     9     8     5

In addition, there are a few dozen matrix generation functions. They are the gallery 

of test matrices, such as binomial, cauchy, clement, invol, house, krylov, leslie, lesp, 

neumann, poisson, ris, rando, smoke, wilk, and many more. In general, the command 

syntax of these matrices is as follows:

[A, B, C,...] = gallery(matname,P1,P2,...);

[A, B, C,...] = gallery(matname,P1,P2,..., classname);

A=gallery(3);

B=gallery(5);

To get more information about the gallery of matrices, type this in the 

Command window:

>> help gallery

>> doc gallery

Here are several examples of how to employ gallery matrices:

>> S=[3 2 7]; X=[2 2];

% This is the 3-by-3 Leslie population matrix taken from the model with 

average birth numbers S(1:n) and survival rates X(1:n-1)

>> L=gallery('leslie',  S,  X)

L =

     3     2     7

     2     0     0

     0     2     0

% Chebyshev spectral differentiation matrix of order 3

>> C = gallery('chebspec', 3,1)

C =

   -0.3333   -1.0000    0.3333

    1.0000    0.3333   -1.0000

   -1.3333    4.0000   -3.1667
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% Cauchy matrix 3-by-3, C(I, j) = 1/(S(i)+Y(j)). The arguments S and Y are 

vectors of length 3.

% If you pass in scalars for S and Y, they are interpreted as vectors 1:S 

and 1:Y.

>> S = [3 2 6]; Y = [1 3 2];

>> C = gallery('cauchy', S, Y)

C =

    0.2500    0.1667    0.2000

    0.3333    0.2000    0.2500

    0.1429    0.1111    0.1250

>> % Krylov matrix of size 5-by-5.

>>  B  =  gallery('krylov',  randn(5))

B =

    1.0000    2.4392    3.9250   26.5823   24.9976

    1.0000    1.2031    7.8039    6.5275   61.9487

    1.0000   -1.3094   -7.4622   11.6113  -14.5418

    1.0000    0.3038   -3.8311  -16.0811  -10.1830

    1.0000   -3.7454    0.3824    5.7186  -65.2352

>> % House-holder matrix of size 3-by-1.

>> A = [3;2;5];    % Must be a column matrix

>> H =   gallery('house', A)

H =

    9.1644

    2.0000

    5.0000

>> % Hankel matrix of size 5-by-5 with elements H(I, j)=0.5/(n-i-j+1.5).

>> B  =  gallery('ris',5)

B =

    0.1111    0.1429    0.2000    0.3333    1.0000

    0.1429    0.2000    0.3333    1.0000   -1.0000

    0.2000    0.3333    1.0000   -1.0000   -0.3333

    0.3333    1.0000   -1.0000   -0.3333   -0.2000

    1.0000   -1.0000   -0.3333   -0.2000   -0.1429
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>> % Smoke matrix  of size 3-by-3 – complex, with “smoke ring” pseudo- 

spectrum.

>> SM=gallery('smoke', 3)

SM =

  -0.5000 + 0.8660i   1.0000 + 0.0000i   0.0000 + 0.0000i

   0.0000 + 0.0000i  -0.5000 - 0.8660i   1.0000 + 0.0000i

   1.0000 + 0.0000i   0.0000 + 0.0000i   1.0000 + 0.0000i

These standard and gallery matrices have special properties that can be of great 

use in various numerical simulations and analysis problems. For instance, these 

standard matrices—ones(), eye(), zeros(), rand(), randn()—are used often for signal 

processing, data analysis, and memory allocation in large computations.

 Vector Spaces
In signal processing, numerical analyses, and building computer simulation models, 

vector spaces are very important. For instance, the logarithmic space is used for 

digital signal processing when frequencies go over a unit circle. There are several 

straightforward ways by which vectors, vector spaces, and arrays with equal spaces 

between their elements can be created. Let’s suppose that we need to create a vector W 

that begins with a value w1 and ends with w2, as shown in Figure 7-28.

Figure 7-28. Vector space

If the size Δw is known, then the space can be expressed by W = w1: Δw: w2. For 

instance, the whole space can be defined in terms of w1 = 1, w2 = 13, Δw = 0.1 with the 

following:

>> w=1:0.1:13;
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Moreover, if N number of points between the start and end boundaries of a space are 

known, the linear space function linspace() can be used.

>> % This creates a linear space of w array with equally spaced k number of 

elements

>> w=linspace(1, 13, N);

Note if N is not specified in the linspace() command, its default value is 100.

This simplex example generates sound waves with a sine function.

fs=3e4;      % Sampling frequency

% Different signal frequencies:

f1=100; f2=200; f3=300; f4=400; f5=500; f6=600;

t=0:1/fs:5;  % Time

% Signal: sum of sine waves

x=sin(2*pi*t*f1)+sin(2*pi*t*f2)+sin(2*pi*t*f3)+ 

sin(2*pi*t*f4)+sin(2*pi*t*f5);

[m,  n]=size(x);            % Gets the size of the created vector space

sound(x,  fs)               % Plays a created sound & hear from sound cards

The linspace() command creates linearly spaced vector spaces/arrays. In MATLAB, 

there is another similar function, called logspace(), that creates logarithmic scaled 

vector spaces. For example, you use the following command to create a logarithmic 

space of the x array containing 130 logarithmically spaced elements (here, N = 130) 

between boundary points 0 and 13:

>> x=logspace(1,13,130);

Likewise, use this command to create 50 logarithmic spaced points between 0 and π:

>> s=logspace(0, pi);

Note if N is not specified in logspace(), then its default value is 50.
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 Polynomials Represented by Vectors
For numerical simulations in MATLAB, polynomials are represented via vectors using 

coefficients of polynomials in descending order. For instance, a fifth-order polynomial is 

given as follows:

 12 13 15 17 135 4 2x x x x� � � �  

That is defined as a vector space in the following manner:

>>  f = [12, 13, 0, -15, 17, -13];

Note, that MATLAB reads vector entries as a vector of length n+1 as an n-th order 

polynomial. Thus, if any of the given polynomial misses any coefficients, zero has to 

be entered for its coefficient. For instance, in the previous example, 0 is entered for the 

coefficient of x3.

There are several functions that can be used to compute the roots of polynomials.

They are as follows:

• Using the roots() MATLAB function

• Using the zero() Control System Toolbox function

• Using the solve() Symbolic MATH Toolbox function

You find roots of the given polynomial using the base MATLAB function, roots().

>> x_sols=roots(f)

x_sols =

  -1.2403 + 0.9412i

  -1.2403 - 0.9412i

   0.7941 + 0.0000i

   0.3015 + 0.6869i

   0.3015 - 0.6869i

Note that the given polynomial has only one real value root and four complex 

valued roots.

The roots are computed by using the solve() function of MATLAB to find symbolic 

solutions of the polynomial, and then solutions are converted (note that conversion may 

be not necessary) to obtain a shorter number of decimal point numeric data using the 

double() function with the following entries in the Command window:
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>> syms x

>> syms x

>> Sol=solve(12*x^5+13*x^4-15*x^2+17*x-13)

Sol =

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 1)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 2)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 3)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 4)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 5)

>> double(Sol)

ans =

   0.3015 - 0.6869i

   0.3015 + 0.6869i

   0.7941 + 0.0000i

  -1.2403 - 0.9412i

  -1.2403 + 0.9412i

Roots can be computed by using zero(), which is a function of the Control Toolbox 

of MATLAB:

>> F_tf = tf(f, 1)

F_tf =

   12 s^5 + 13 s^4 - 15 s^2 + 17 s - 13

Continuous-time transfer function.

>> x_sols = zero(F_tf)

x_sols =

  -1.2403 + 0.9412i

  -1.2403 - 0.9412i

   0.7941 + 0.0000i

   0.3015 + 0.6869i

   0.3015 - 0.6869i

Note in this case, a transfer function (ratio of two polynomials) with a denominator 

of 1 in the “s” domain is created first. Then the roots of s are computed, which would 

make the polynomial equal to zero.
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The values of polynomials at specific input argument values can be computed using 

MATLAB’s built-in function polyval(). Here is an example how to use this function:

>> f = [12, 13, 0, -15, 17, -13];      % Given polynomial

>> x = linspace(-10, 10, 500);

>> f_val = polyval(f,x);               % Computed polynomial values

 Simulink Model-Based Solution of Polynomials
To solve polynomials via Simulink modeling, use the MATLAB Fcn block, the Constant 

block to input the polynomial coefficients, and the Display block to see the computed 

roots. Figure 7-29 shows the complete model saved as Polynomial_Solver.slx.

Figure 7-29. Simulink model to solve the polynomial 
12x5 + 13x4 − 15x2 + 17x − 13 = 0

The MATLAB Function block has the following command syntax embedded in it:

function y  =  fcn(u1,  u2,  u3,  u4,  u5,  u6)

y = roots([u1, u2, u3, u4, u5, u6]);

The MATLAB Fcn block calls the MATLAB function roots() and computes the roots 

of the polynomial with respect to its coefficients given by the input variables u1, u2, … 

u6 since we are solving a fifth-order polynomial. As it is, this model does not run, and 

there are two more issues related to the size of the variables and solver type. First, the 

solver type has to be a fixed-step size type. That can be adjusted via Simulation ➤ Model 
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Configuration Parameters ➤ Solver Selection ➤ Fixed Step Solver. By default, the solver 

is a variable type.

Second, you need to change the size of the output variable y. You can do that by 

clicking the   icon and selecting Model Explorer ➤ [Model Hierarchy] ➤ 

Polynomial_Solver.slx ➤ MATLAB Function ➤ y Output ➤ Size. Set the size to 5 and 

click Apply. (The fifth-order polynomial has five roots.) After clicking the Run button in 

the menu of the Simulink model window or pressing Ctrl+T on the keyboard, you’ll see 

the results displayed in Figure 7-30.

Figure 7-30. Complete model with computed roots of the polynomial 
12x5 + 13x4 − 15x2 + 17x − 13 = 0

The computed roots of the given polynomial match the ones computed by the 

MATLAB commands roots() and zero() to four decimal places.

 Eigen-Values and Eigen-Vectors
Eigen-values and eigen-vectors have broad applications, not only in linear algebra but 

also in many engineering problems. For instance, they are used with vibrations, modal 

analysis, control applications, robotics, and so forth.
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Definition 1. An eigen-value and eigen-vector of a square matrix A are, respectively, a 

scalar λ and a nonzero vector ν that satisfy the following:

 Av v� �  (Equation 7-6)

Definition 2. Given a linear transformation A (a square matrix), a nonzero vector ν is 

defined to be an eigen-vector of the transformation if it satisfies the following eigen-value 

equation for some scalar λ:

 A v v� �� � � � ��  (Equation 7-7)

In this case, the scalar λ is called an eigen-value of A corresponding to the eigen- 

vector {v}.
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 A I� ��� �� �� ��� ��X X� 0  (Equation 7-8)

Here, [I] is the identity matrix. Now by rearranging, the next formulation can be 

written as follows:

 
A X I X� ��� � � ��� �� ��� � �– � 0

 
(Equation 7-9)

Let’s assume that there is an inverse matrix of the coefficient of [X], i.e., ([A] – [λ] * [I]).

 
A I� � � ��� �� � �

�
– �

1
0

 
(Equation 7-10)

There can be other solutions apart from a trivial solution [X] = 0. So, this means  

([A] – [λ] * [I]) = 0 is obtained via determinant of this matrix equal to 0.

 
det A I� ��� ��� �� ��� 0

 
(Equation 7-11)

The left side of Equation 7-11 is called a characteristic polynomial. So, when this 

equation is expanded, it will lead to a polynomial equation of λ. Use the following 

example to compute eigen-values and eigen-vectors:
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Now, the given system’s equations are written in matrix form.
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Eigen-values of this transformation matrix are defined to be:
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 � � � � �7 884 49 12 2 5 02 3. . .� � �  

Solutions of this characteristic polynomial equation are as follows:

 � � �1 2 38 434 0 162 5 772� � � �. ; . ; .  

Further, three eigen-vectors are computed by plugging in each eigen-value one by 

one into the equation. Hand calculations of eigen-values and eigen-vectors for larger 

systems are tedious and time-consuming. For very large systems of linear equations, 

it is infeasible to compute eigen-values and eigen-vectors with hand calculations. All 

of these computations can be performed with a single built-in function of MATLAB, 

called eig(A):

>> A = [2.3 3.4, 5; 3, 2.4, -1.5; 2, -0.4, -7.2]

A =

    2.3000    3.4000    5.0000

    3.0000    2.4000   -1.5000

    2.0000   -0.4000   -7.2000

>> [v, lambda]=eig(A)

v =

   -0.7649   -0.6510   -0.4725

   -0.6366    0.7276    0.2479

   -0.0983   -0.2164    0.8458

lambda =

    5.7726         0         0

         0    0.1619         0

         0         0   -8.4345
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>> A*v - v*lambda   % Verify:  eigen-vectors and eigen-values;

ans =

   1.0e-14 *

   -0.0888   -0.0638   -0.1776

   -0.1776   -0.0763         0

    0.0555   -0.1783   -0.1776

Note that there are several different syntax forms of the eig() function to compute 

eigen-values and eigen-vectors of square arrays, and there is another command, called 

eigs(A), to compute eigen-values and eigen-vectors.

d = eig(A)

d = eig(A,B)

[V,D] = eig(A)

[V,D] = eig(A,'nobalance')

[V,D] = eig(A,B)

[V,D] = eig(A,B,flag)

To evaluate the largest eigen-values and eigen-vectors, use this:

d   = eigs(A)

[V,D]  = eigs(A)

[V,D,flag] = eigs(A); eigs(A,B)

eigs(A,k)

eigs(A,B,k)

eigs(A,k,sigma); eigs(A,B,k,sigma); eigs(A,K,sigma,opts); 

eigs(A,B,k,sigma,opts)

 Matrix Decomposition
The matrix decompositions have broad and valuable applications in many areas of 

linear algebra and engineering problem solving, for instance, solving linear equations, 

linear least squares, nonlinear optimization, Monte-Carlo simulation, experimental data 

analysis, modal analysis, circuit design, filter design, and many more. There are a few 

types of matrix transformations and decompositions, including QR, LU, LQ, Cholesky, 

Schur, singular value decomposition, and so forth. We very briefly already discussed 
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the command syntaxes of QR, LU, LQ, chol() Cholesky, and svd() singular value 

decompositions while solving the systems of linear equations. This section explains how 

to compute matrix decompostions by using MATLAB’s built-in functions.

 QR Decomposition
QR decomposition is also called orthogonal-triangular decomposition. It’s the process 

of factoring out a given matrix as a product of two matrices. They are traditionally called 

the Q and R matrices, and they are the orthogonal matrix Q and the upper triangular 

matrix R.

 A QR� �� �Equation 7 12

 Q Q IT � �� �Equation 7 13

Here, Q is an orthogonal matrix, QT is a transpose of Q, R is an upper triangular 

matrix, and I is an identity matrix. The QR decomposition is based on the Gram-Schmidt 

method. More details of the Gram-Schmidt method can be found on Wikipedia [1]. In 

MATLAB for the QR decomposition computation, there is a function called qr(). It has a 

few different syntax methods that evaluate Q, R, and other relevant matrices.

[Q,R] = qr(A)   %Produces  upper  triangular  matrix  R  &  unit  matrix  Q

[Q,R] = qr(A,0)     %Produces the economy-size decomposition

[Q,R,E] = qr(A)     %Produces Q, R and permutation matrix E =>A*E = Q*R 

[Q,R,E] =  qr(A,0)  %Produces  economy-size  decomposition:  A(:,E) =  Q*R

X  =  qr(A)         %Produces  matrix  X.  triu(X) is  upper  triangular   

factor  R

X = qr(A,0)         % The same as X = qr(A);

R = qr(A)           % Used when A is a sparse matrix and computes a Q-less

% QR decomposition and returns R.

 Example: Computing QR Decomposition of a 5-by-5 Matrix

Let’s take matrix [A] of size 5x5 generated from a normally distributed random number 

generator, called randn(). Compute the QR decompositions of the [A] matrix.
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>> format short

>> A = randn(5)

A =

    0.3335   -0.4762   -0.3349    0.6601    0.0230

    0.3914    0.8620    0.5528   -0.0679    0.0513

    0.4517   -1.3617    1.0391   -0.1952    0.8261

   -0.1303    0.4550   -1.1176   -0.2176    1.5270

    0.1837   -0.8487    1.2607   -0.3031    0.4669

>> [Q, R]=qr(A)

Q =

   -0.4629    0.0336    0.6635    0.4906    0.3219

   -0.5432   -0.7902   -0.2551   -0.1236    0.0155

   -0.6269    0.4640    0.0710   -0.4160   -0.4622

    0.1808   -0.1702    0.5228   -0.7440    0.3339

   -0.2549    0.3609   -0.4650   -0.1322    0.7557

R =

   -0.7205    0.9045   -1.3201   -0.1084   -0.3993

         0   -1.7127    0.6793   -0.0872    0.2522

         0         0   -1.4600    0.4687    0.6421

         0         0         0    0.6154   -1.5365

         0         0         0         0    0.4891

>> [Q,  R]=qr(A,  0)

Q =

   -0.4629    0.0336    0.6635    0.4906    0.3219

   -0.5432   -0.7902   -0.2551   -0.1236    0.0155

   -0.6269    0.4640    0.0710   -0.4160   -0.4622

    0.1808   -0.1702    0.5228   -0.7440    0.3339

   -0.2549    0.3609   -0.4650   -0.1322    0.7557

R =

   -0.7205    0.9045   -1.3201   -0.1084   -0.3993

         0   -1.7127    0.6793   -0.0872    0.2522

         0         0   -1.4600    0.4687    0.6421

         0         0         0    0.6154   -1.5365

         0         0         0         0    0.4891
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>> [Q,R,E]=qr(A)

Q =

   -0.1608   -0.0026   -0.4424    0.8652    0.1726

    0.2655   -0.0455    0.7987    0.4982   -0.2035

    0.4990   -0.4921   -0.3661    0.0262   -0.6116

   -0.5367   -0.8164    0.1799   -0.0321    0.1099

    0.6054   -0.2988   -0.0065   -0.0386    0.7366

R =

    2.0823   -0.1148   -1.1322   -0.2883    0.4568

         0   -1.7950    0.5142    0.3657   -0.1895

         0         0    1.4850   -0.3119   -0.0250

         0         0         0    0.5510    0.4924

         0         0         0         0   -0.1773

E =

     0     0     0     0     1

     0     0     1     0     0

     1     0     0     0     0

     0     0     0     1     0

     0     1     0     0     0

>> A*E

ans =

   -0.3349    0.0230   -0.4762    0.6601    0.3335

    0.5528    0.0513    0.8620   -0.0679    0.3914

    1.0391    0.8261   -1.3617   -0.1952    0.4517

   -1.1176    1.5270    0.4550   -0.2176   -0.1303

    1.2607    0.4669   -0.8487   -0.3031    0.1837

>> Q*R

ans =

   -0.3349    0.0230   -0.4762    0.6601    0.3335

    0.5528    0.0513    0.8620   -0.0679    0.3914

    1.0391    0.8261   -1.3617   -0.1952    0.4517

   -1.1176    1.5270    0.4550   -0.2176   -0.1303

    1.2607    0.4669   -0.8487   -0.3031    0.1837
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 LU Decomposition
The LU decomposition or factorization is also called a modified form of the Gauss 

elimination method and was introduced by Alan Turing [2]. It is defined as follows:

 A LU=  (Equation 7-14)

Here, A is a rectangular matrix, and L and U are the lower and upper triangular 

matrices, respectively.

For example, a 3-by-3 matrix can be LU factorized with the following expressions:
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In MATLAB, the LU decomposition is evaluated using the following syntax of the 

built-in function lu():

Y  =  lu(A)        %Produces matrix Y, for sparse  A.  Y  contains  only   

L  [L,U]  =  lu(A)   %Produces U and L

[L,U,P] = lu(A)    %Produces U & L with a unit diagonal & permutation 

matrix P

[L,U,P,Q]   =   lu(A)   % Produces U, L, and row permutation matrix P

                        %  and column reordering matrix Q, so that 

P*A*Q = L*U

[L,U,P,Q,R]  =  lu(A)   % Produces U,L, & permutation matrices P and Q,

                        % d iagonal scaling matrix R so that  P*(R\

A)*Q  =  L*U

                        % for sparse non-empty A.

[...] = lu(A,'vector')   %Produces the permutation information in two %row 

vectors p and q. A user can specify from 1 to 5 

outputs.

[...] = lu(A,thresh)

[...] = lu(A,thresh,'vector')
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 Example: Computing LU Composition of a 3-by-3 Pascal Matrix

Let’s compute L, U, and other (P, Q, R) matrices from any given rectangular matrix. For 

this task, you write a small script called LU_decomposition.m with MATLAB’s built-in 

function lu(). The script takes one user entry (input), which has to be a rectangular 

matrix. You’ll employ in this script another built-in function of MATLAB, called 

issparse(). It identifies whether the user-entered matrix is a sparse matrix or not.

% LU_decomposition.m

A=input('Enter rectangular matrix: ');

if   issparse(A)

     Y  =  lu(A)                      %#ok

     [L,U,P,Q]   =   lu(A)            %#ok

     disp('   oops more   ')

     [L,U,P,Q,R]  =  lu(A)            %#ok

     [L, U, P, Q, R] = lu(A,'vector') %#ok

else

     [L,U]  =  lu(A)   %#ok

     [L,U,P]   =   lu(A)   %#ok

     % Check evaluation results:

     ERROR=P*A-L*U   %#ok

     [L,U,P]  =  lu(A,  'vector')     %#ok

end

Run the script LU_decomposition.m and enter a standard matrix, called pascal(3), 

as an input matrix.

Enter rectangular matrix: pascal(3)

L =

    1.0000         0         0

    1.0000    0.5000    1.0000

    1.0000    1.0000         0

U =

    1.0000    1.0000    1.0000

         0    2.0000    5.0000

         0         0   -0.5000
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L =

    1.0000         0         0

    1.0000    1.0000         0

    1.0000    0.5000    1.0000

U =

    1.0000    1.0000    1.0000

         0    2.0000    5.0000

         0         0   -0.5000

P =

     1     0     0

     0     0     1

     0     1     0

ERROR =

     0     0     0

     0     0     0

     0     0     0

L =

    1.0000         0         0

    1.0000    1.0000         0

    1.0000    0.5000    1.0000

U =

    1.0000    1.0000    1.0000

         0    2.0000    5.0000

         0         0   -0.5000

P =

     1     3     2

Rerun the script and use a sparse matrix of size 3-by-3 as input.

Enter rectangular matrix: sparse(3)

Y =

   (1,1)        3

   oops more

L =

   (1,1)        1
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U =

   (1,1)        1

P =

   (1,1)        1

Q =

   (1,1)        1

R =

   (1,1)        3

L =

   (1,1)        1

U =

   (1,1)        1

P =

     1

Q =

     1

R =

   (1,1)        3

 Example: Solving [A]{x}=[b] Using LU Composition

LU composition can be employed to solve the [A]{x} = [b] system of linear equations 

using the MATLAB’s mldivide() or backslash (\) operator.

[A]{x} = [b] → [A] = [P]′ ∗ [L] ∗ [U]

[y] = [L]([P] ∗ [b]) → {x} = [U]\[y]

Let’s take the following example:

 

3
2

3
1

2
1

2
2

3

4
3

x y z

x y z

x y z

� � �

� � �

� � �

�

�

�
�
�

�

�
�
�
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The solution of this example is as follows:

A = [3 -2/3 1; 2 1 -1/2; 3/4 -1 -1];

b = [1;2;3];

[L, U, P]=lu(A);

y=mldivide(L,(P*b));

x = U\y

x =

                      0.82

                    -0.555

                     -1.83

 Cholesky Decomposition
The Cholesky decomposition is particularly important for Monte Carlo simulations 

and Kalman filter designs. This type of matrix factorization is applicable only to 

square matrices and to Cholesky triangles, which are decompositions of positive and 

definite matrixes that is decomposed into a product of a lower triangular matrix and 

its transpose. The Cholesky decomposition [3, 4] can be expressed via the following 

formulation:

 A U UT=  (Equation 7-15)

Here, A is a square matrix, and U and UT are an upper triangular matrix and its 

transpose, respectively. This formulation can be written with lower triangular matrix (L) 

and its transpose (LT) as well.

 A LLT=  (Equation 7-16)

In MATLAB, the Cholesky decompositions are evaluated using the following syntax 

options of the MATLAB’s built-in function, chol():

R = chol(A) % Produces an upper triangular matrix R satisfying: R'*R=A

L = chol(A,'lower') % Produces a lower triangular matrix R satisfying:

                    % L*L'=A

[R,p] = chol(A) %Produces  an  upper  triangular  matrix  R  and  p  is  0 

[L,p] = chol(A,'lower') %Produces lower triangular matrix R&p  is  0 

[R,p,S] = chol(A) % When A is a sparse matrix, produces a permutation

                  % matrices S and R, and p that can be zero or non-zero
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[R,p,s] = chol(A,'vector') % Produces the permutation information %as a 

vector 's'

[L,p,s] = chol(A,'lower','vector') % Produces a lower triangular matrix

                                   % L and a permutation vector 's'

Note Using chol (the Cholesky decomposition operator) is preferable over the 
eig (eigen-value and eigen-vector) operator for determining positive definiteness.

To evaluate the Cholesky decompositions of any given matrix (a user-entered 

matrix), you write the next script, called Chol_decoposition.m, by considering 

the requirements and properties of the Cholesky decompositions to compute 

decompositions of any matrix with respect to the formulations in Equations 7-15 and 

7-16. It takes one input, which is a user entry matrix. Note that in this script, we used 

disp(), size(), det(), run(), and a pop-up dialog box command, warndlg().

% Chol_decomposition.m

clearvars; clc

disp('Note your matrix must be square & positive definite!!!')

disp('NB: Positive means all determinants must be positive.')

disp('You can enter as matrix elements ')

disp('or define your matrix 1st, ')

disp('and then just enter your matrix name')

disp('      ')

A=input('Enter a given Matrix: ');

[rows, cols]=size(A);

for k=1:rows

    % Determinants are computed

    Det_A(k)=det(A(1:k, 1:k));

end

if rows==cols

  if Det_A>0

     if issparse(A)

            [R,p,S] = chol(A) %#ok

            [R,p,s] = chol(A,'vector');

            [L,p,s] = chol(A,'lower','vector');

Chapter 7  Linear aLgebra



517

else

            R = chol(A) %#ok % Upper triangular matrix R: R'*R=A

            L = chol(A,'lower') %#ok % Lower triangular matrix R.

            [R,p] = chol(A);

% Verify:

Error_up  = A-R'*R;

Error_low = A-L*L';

disp('Error is with upper triangular matrix: ')

disp(Error_up)

disp('Error is with lower triangular matrix:')

disp(Error_low)

       end

else

warndlg('Sorry your matrix is not positive and definite!')

warndlg('Try again!!!')

run('Chol_decomposition')

    end

end

You can test the script with different input entries (matrices). Let’s use a 4-by-4 

standard matrix generated with pascal().

Note your matrix must be square & positive definite!!!

NB: Positive means all determinants must be positive.

You can enter as matrix elements

or define your matrix 1st,

and then just enter your matrix name

Enter a given Matrix: pascal(4)

R =

     1     1     1     1

     0     1     2     3

     0     0     1     3

     0     0     0     1
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L =

     1     0     0     0

     1     1     0     0

     1     2     1     0

     1     3     3     1

Error is with upper triangular matrix:

     0     0     0     0

     0     0     0     0

     0     0     0     0

     0     0     0     0

Error is with lower triangular matrix:

     0     0     0     0

     0     0     0     0

     0     0     0     0

     0     0     0     0

Now, consider a magic matrix of size 3-by-3.

>> run('Chol_decomposition')

Note your matrix must be square & positive definite!!!

NB: Positive means all determinants must be positive.

You can enter as matrix elements

or define your matrix 1st,

and then just enter your matrix name

Enter a given Matrix: magic(3)

After running the script with an input entry of a magic square matrix of size 3-by-3, 

the warning dialog boxes shown in Figure 7-31 appear.

Figure 7-31. Warnings showing that the input matrix is not positive and definite 
and so cannot compute the Cholesky decompositions
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Besides these two warning message boxes shown in Figure 7.31, the code keeps 

asking to enter a matrix. The Chol_decoposition.m script identifies the Cholesky 

decomposition properties and computes the Cholesky decomposition of a user-entered 

matrix. It detects a matrix type and works for given square and positive definite matrices 

with the MATLAB built-in function chol().

 Schur Decomposition
The Schur decomposition has many applications in numerical analyses, including 

image-processing areas in combination with other matrix decompositions or 

factorization tools. The Schur decomposition of a complex square matrix [A] is defined 

as a matrix decomposition [5]:

 QH  AQ = T = D + N (Equation 7-17)

Here, Q is a unitary matrix, QH is a conjugate transpose of Q, and T is an upper 

triangular matrix that’s equal to sum of a matrix D = diag (λ1, λ2, λ3,…, λn) a diagonal 

matrix consisting of eigen-values λi of A,and strictly upper triangular matrix N. The Schur 

decomposition can be computed via the MATLAB’s built-in function, schur().

T  =  schur(A)   % Produces the Schur matrix of A

T  =  schur(A, flag) % Produces the Schur matrix for two cases.

%{

for real matrix A, returns a Schur matrix T in one of two forms depending on the value 

of flag:

'complex'   T is triangular and is complex if A has complex eigenvalues.

'real'   T has the real eigen-values on the diagonal and the complex eigen-

values in 2-by-2 blocks on the diagonal. 'real' is the default.

%}

[U,T] = schur(A,...)

Let’s look at several examples of standard matrices and compute their Schur 

decompositions:
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>> A=magic(5); B=pascal(3); C=round(randn(5,5)*10);

>> SA=schur(A)

SA =

   65.0000    0.0000   -0.0000    0.0000   -0.0000

         0  -21.2768   -2.5888    2.1871   -3.4893

         0         0  -13.1263   -3.3845   -2.8239

         0         0         0   21.2768    2.6287

         0         0         0         0   13.1263

>> SB=schur(B)

SB =

    0.1270         0         0

         0    1.0000         0

         0         0    7.8730

>> SC=schur(C)

SC =

   20.7072    7.3851   -0.2741    9.7514    1.9523

         0   -6.1453   17.4134   -5.0801  -14.3751

         0  -10.3437   -6.1453   14.7269    9.9502

         0         0         0    4.8687    2.1653

         0         0         0         0   -9.2853

>> [T,  U]=schur(A,  'complex')

T =

   -0.4472    0.0976   -0.6331    0.6145   -0.1095

   -0.4472    0.3525    0.7305    0.3760    0.0273

   -0.4472    0.5501   -0.2361   -0.6085    0.2673

   -0.4472   -0.3223    0.0793   -0.3285   -0.7628

   -0.4472   -0.6780    0.0594   -0.0535    0.5778

U =

   65.0000    0.0000   -0.0000    0.0000   -0.0000

         0  -21.2768   -2.5888    2.1871   -3.4893

         0         0  -13.1263   -3.3845   -2.8239

         0         0         0   21.2768    2.6287

         0         0         0         0   13.1263

Chapter 7  Linear aLgebra



521

>> [TA,  UA]=schur(B,  'real')

TA =

   -0.5438   -0.8165    0.1938

    0.7812   -0.4082    0.4722

   -0.3065    0.4082    0.8599

UA =

    0.1270         0         0

         0    1.0000         0

         0         0    7.8730

>> [T, U]=rsf2csf(U,T) %  Convert real Schur form to complex Schur form

T =

  -61.5539   20.8834   -0.0000   -0.0000    0.0000

    6.2354   18.3788    9.2270   -1.2464    3.6069

    2.0845    6.1442   -9.8039    6.8268    2.6290

    0.9854    2.9044   -4.6344  -20.6565   -1.4269

    0.0340    0.1003   -0.1601   -0.7135  -13.1055

U =

   -0.5636    0.1041    0.6400    0.4570   -0.0505

         0    0.8710   -0.2777    0.0336    0.2993

   -0.4472         0   -0.4787    0.7335   -0.3928

   -0.4472   -0.3223         0   -0.5309   -0.6067

   -0.4472   -0.6780    0.0594         0    0.6209

 Singular Value Decomposition
The singular value decomposition (SVD) has many applications in signal processing, 

statistics, and image processing areas. It is formulated as a product of three matrices, 

which are an orthogonal matrix (Uij), a diagonal matrix (Dij), and the transpose of an 

orthogonal matrix (Vjj), if a given matrix Aij is an i by j sized real matrix with i > j.

 
A U D Vii ij jj

T=
 (Equation 7-18)

Here, U U I V V Iii
T

ii jj
T

jj= =, . Diagonal entries of Dij are known as singular values of Aij.
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Moreover, there are a few other important properties of the SVD.

• Left-singular vectors of Aij are eigen-vectors of AijAij*.

• Right-singular vectors of Aij are eigen-vectors of Aij*Aij.

• Nonzero singular values (on the diagonal entries of Dij) of Aij are 

square roots of the nonzero eigen-values of both Aij*Aij and Aij*.

There are a few ways to evaluate the SVD, singular values, and vectors of any given 

matrix. You use svd() and svds(), which are MATLAB built-in functions.

s = svd(A)       %Produces a vector of singular values

[U,D,V] = svd(A) %Produces a diagonal matrix D of the same dimension

%as A, with nonnegative diagonal elements in decreasing order, and

% unitary matrices U and V so that X = U*D*V'.

[U,D,V] = svd(A,0) % Produces the "economy size" decomposition. If A

%  is   m-by-n with m > n, then SVD computes only the first n columns of

%U and  D  is n-by-n. s = svds(A)

s = svds(A,k)

s = svds(A,k,sigma) s = svds(A,k,'L')

s = svds(A,k,sigma,options) [U,D,V] = svds(A,...)

[U,D,V,flag] = svds(A,...)

Now, take two matrices (of size 2-by-3 and 3-by-3) and evaluate their SVDs.

>> A=ceil(randn(2,3)*10); B=pascal(3);

>> A=ceil(randn(2,3)*10); B=pascal(3);

>> A

A =

    -2    -4     3

   -15    -1    -2

>> B

B =

     1     1     1

     1     2     3

     1     3     6
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>> svd(A)

ans =

   15.2914

    5.0172

>> [U,V,D]=svd(A)

U =

   -0.1354   -0.9908

   -0.9908    0.1354

V =

   15.2914         0         0

         0    5.0172         0

D =

    0.9896   -0.0100   -0.1434

    0.1002    0.7629    0.6387

    0.1030   -0.6464    0.7560

>> [U,V,D]=svd(A, 0)

U =

   -0.1354   -0.9908

   -0.9908    0.1354

V =

   15.2914         0         0

         0    5.0172         0

D =

    0.9896   -0.0100   -0.1434

    0.1002    0.7629    0.6387

    0.1030   -0.6464    0.7560

>> SA = svds(A)

SA =

   15.2914

    5.0172

>> SB = svds(B)

SB =

    7.8730

    1.0000

    0.1270
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>> SA = svds(A, 2)

SA =

   15.2914

    5.0172

>> SB = svds(B, 2)

SB =

    7.8730

    1.0000

>> SB = svds(B, 3)

SB =

    7.8730

    1.0000

    0.1270

 Logic Operators, Indexes, and Conversions
MATLAB uses logic 1 and logic 0 for system variables to denote logic values for true and 

false, respectively. Variables of logical values are distinguished by a logical data type.

Table 7-2 is a list of logic operators and their operational functions used in MATLAB.

Table 7-2. Logical Expressions and Operators in MATLAB

Operator Operation

true,  false Setting logical value

&   (and), |  (or), ~   (not),  xor, any, all Logical operations

&&, || Short-circuits operations

bitand, bitcmp, bitor, bitmax, bitxor, bitset, bitget, 

bitshift

bitwise operations

==(eq),   ~=(ne),    <(lt),   >(gt),  <=(le),   >=(ge) relational operations

strcmp, strncmp,  strcmpi, strncmpi String comparisons
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Note to get a complete list of relational operators, their functions, and how to 
use them, type >> help relop in the Command window.

 Logical Indexing
Logic operators are one of the most central and essential keys to any programming 

language. Logic operators introduce another method for accessing data in MATLAB 

variables. For instance, given a magic matrix [A] of size 5-by-5, say you need to separate 

out the elements of [A] that are equal to or less than 13.

>> A=magic(5)

A =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

>> Index = A>15 | A<5   % Show which element is greater than 15 or 

less than 5

Index =

  5×5 logical array

   1   1   1   0   0

   1   0   0   0   1

   1   0   0   1   1

   0   0   1   1   1

   0   1   1   1   0

>> A(Index)

ans =

    17

    23

     4

    24

    18

     1
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    19

    25

    20

    21

     2

    16

    22

     3

>> A(A>15 | A<5);  % Or in a direct way

Let’s explore the logical indexing properties further via examples to select matrix 

elements.

>> E = eye(5)  % Identity matrix

E =

     1     0     0     0     0

     0     1     0     0     0

     0     0     1     0     0

     0     0     0     1     0

     0     0     0     0     1

Array indices must be positive integers or logical values.

>>EL=loogical(E)

EL =

  5×5 logical array

   1   0   0   0   0

   0   1   0   0   0

   0   0   1   0   0

   0   0   0   1   0

   0   0   0   0   1

>> A(EL)    % Compare Ih A(E)

ans =

    17

     5

    13
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    21

     9

A(EL) -  shows all diagonal elements of A matrix.

Note

Note the previous example demonstrates the identity matrix [e] (whose 
elements are 1s and 0s), which is not equivalent to the logic matrix [e_L] (whose 
elements are also 1s and 0s).

Moreover, there are a number of functions/commands (e.g., the is*() command) 

that can be used to find out whether the input is of a specified type of variable, contains 

any elements of a particular type, or whether such a variable or file exists, and so 

forth. All of these functions can be used for logical indexing. Let’s look at a few simple 

examples:

>>  x=13;  isnumeric(x)     % whether x is a numeric data or not?

ans = 1

>>  x=13; islogical(x)      % whether x is a logical data Or not?

ans = 0

>> x=13; islogical(x>110)   % whether the operation 

(x>110)  is  logic  or  not 

ans =1

>>  x  =  13;  isempty(x)   % whether x is an empty or not 

ans =1

>> x = [ ]; isempty(x)      % whether x is an empty or not

ans = logical 1

>>  x  =  [1  , 2;  3, 4]; iscell(x)   % whether x is a cell array or not

ans = logical 0

>> x = [1, 0; 0, 4];

>>   X_x   =  x/0;  isnan(X_x)   % whether any elements of X_x 

are  not-a- number

ans = 2×2 logical array

0   1

1   0
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>>'  e'ist''X_'',  'var')   % whether the variable called 

X_x  exists  or  not

ans =1

In the previous example, zero divided by zero (0/0) is defined to be NaN (i.e., not-a- 

number) in MATLAB.

Note the logical indexing operations have particular importance in matrix/array 
operations, programming, data analysis, and processing since they can be used to 
sort out, locate, or change particular elements of matrices/arrays/data sets.

 Example: Logical Indexing to Locate and Substitute 
Elements of [A] Matrix

Given: 3-by-3 matrix [A] with some elements equal to infinity A �
� �
�

� �

�

�

�
�
�

�

�

�
�
�

17 6

5 3 11

13

How do you substitute the elements equal to inf with 1000 and all negative-valued 

elements with 0? This task can be solved easily using logical indexing operations.

>> A = [17, Inf,   -6  ; 5 -3, 11; Inf, 13, Inf] % [A] is entered

A =

    17   Inf    -6

     5    -3    11

   Inf    13   Inf

>>   Index_inf  =  (A==1/0)   % Find out which elements of A 

are  equal  to  inf

Index_inf =

  3×3 logical array

   0   1   0

   0   0   0

   1   0   1
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>> A(Index_inf) =1000       % Set inf elements equal to 1000

A =

          17        1000          -6

           5          -3          11

        1000          13        1000

>> Index_neg = A<0          % Find out which elements  of  A  are  negative

Index_neg =

  3×3 logical array

   0   0   1

   0   1   0

   0   0   0

>> A(Index_neg)=0           % Set all negative elements equal to "0"

A =

          17        1000           0

           5           0          11

        1000          13        1000

Note the division of any value by 0 gives the value of Inf in MatLab.

Let’s look at another example. Given a matrix [A] of size 4-by-5 with NaN (not a 

number) and inf (infinity) elements, how do you substitute NaN elements with 0 and inf 

with 100? This task can be solved easily with logical indexing similar to the previously 

demonstrated example.

>> A  =  [2, -3, -2, -3, 1; Inf, -2,   3, -1, NaN; -3, 0, Inf, 3, 2; 3, 

NaN, 0, 2, Inf]

A =

     2    -3    -2    -3     1

   Inf    -2     3    -1   NaN

    -3     0   Inf     3     2

     3   NaN     0     2   Inf

>> Index_nan = isnan(A)   % Find out which elements are NaN
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Index_nan =

  4×5 logical array

   0   0   0   0   0

   0   0   0   0   1

   0   0   0   0   0

   0   1   0   0   0

>> A(Index_nan)=0  % Set all NaN elements equal to "0"

A =

     2    -3    -2    -3     1

   Inf    -2     3    -1     0

    -3     0   Inf     3     2

     3     0     0     2   Inf

Note that this section contains rather simple and small examples to demonstrate 

how easily you can substitute specific (valued) elements of a matrix using logical 

indexing operations. This technique (logical indexing or relational operators) can be 

applied to matrices, arrays, and data sets of any size. Therefore, the logical indexing is 

particularly useful in analysis and processing of large data sets. It is fast and efficient and 

does not require any additional effort to program with loop (for ... end, while ... 

end) and conditional (if ditio. endlyit) operators.

 Conversions
There are many examples in signal processing where you need to convert something. 

Analog to digital converters and vice versa, data processing and analysis, and 

programming when analog signal data format or type needs to be converted into digital 

or vice versa. For instance, to resolve memory issues in image processing, you might 

need to convert decimal (double) formatted data into binary numbers. That can be 

easily accomplished in MATLAB using DEC2BIN(). Conversely, BIN2DEC() is used to 

convert binary strings into decimal (double) type of data. DEC2BIN(D) returns the binary 

representation of D as a string. D must be a non-negative integer smaller than 252.

DEC2BIN(D,N) produces a binary representation with at least N bits.

Another conversion example is character conversion. You need to convert numbers 

into character strings and vice versa. MATLAB uses the CHAR() command to convert 

numbers into ASCII/ANSI formatted characters, DOUBLE() to convert characters and 

symbolic representations of numbers into double precision format, STR2NUM() to convert 
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strings into binary numbers, and NUM2STR() to convert any number into a string. Let’s 

consider several examples of employing these conversion commands:

>> dec2bin(11) % Converts  decimal  (integer) into  a  binary  string

ans =

    '1011'

>> dec2bin(23)

ans =

'10111'

>> dec2bin(22) ans =

'10110'

>> x=13.125/5.5;

>> dec2bin(x)

ans =

    '10'

>> dec2bin(11.11)

ans =

    '1011'

>> dec2bin(11)

ans =

    '1011'

>> bin2dec('1101')  %  Converts  a  binary  number  into  decimal  one

ans =

13

>> bin2dec('10110')

ans =

22

>> dec2bin(64)

ans =

10000000

>> char(bin2dec('10000000'))

ans =

@

>>   G='MatLab' G =

MatLab
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>> G0=G+0 G0 =

77   97   116   76   97   98

>> d2bG0=dec2bin(G0) d2bG0 =

1001101

1100001

1110100

1001100

1100001

1100010

>> b2dG0=bin2dec(d2bG0) b2dG0 =

77

97

116

76

97

98

>> char(b2dG0)' ans =

MatLab

>> num2str(123) ans =

'123'

>> num2str('matlab') ans =

'matlab'

>> ans+0

109   97   116   108   97   98

 Example: Creating Character Strings with char()
Create the following letters in a progressive format by writing a script that has one 

input argument that has to be an integer. All the other letters need to be generated 

programmatically.

a

b c

d e f

g h i j

k l m n o
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These characters can be generated in several ways. First, you need to determine the 

ASCII/ANSI numeric representation of a. Then you can generate all the other letters.

>> format short

>> double('a')

   97

>> char(97)

   'a'

>> double('b')

   98

The letter as numeric representation in ASCII/ANSI is 97, b is represented by 98, 

and so forth. Based on these, you can generate linear space of integers starting at 97 

and convert them to character strings one row at a time. In other words, you display one 

character on the first row, two characters on the second, three in the third row, etc. Here 

is the complete script (print_character.m), which prints the letters in progressive order:

% print_character.m

% Part 1.

Start = 97;

for ii = 1:5

    for jj = 1:ii

        fprintf(char(Start));

        Start = Start+1;

    end

    fprintf('\n')

end

Here is the result of the script:

a

bc

def

ghij

klmno

Let’s consider the following example, which prints a series of uppercase characters:

ABCDEF

GHIJK
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LMNO

PQR

ST

U

This example is similar to the previous example with a few small differences—it 

requires uppercase characters, starts with six letters, and reduces in the following rows.

Again, you can determine the numerical representation of A in ANSI/ASCII with the 

following commands:

>> double('A')

ans =

   65

>> 'A' + 0    % An alternative way:

ans =

   65

So now you know that the numerical representation of A is 65. You can then edit 

the script (print_characters.m) by introducing two small changes and then write 

this script:

%% Part 2. Upper cases

Start = 65;

for ii = 1:2:9

    for jj = 1:ii

        fprintf(char(Start));

        Start = Start+1;

    end

    fprintf('\n')

end

When you execute this script, you obtain the following output in the 

Command window:

ABCDEF

GHIJK
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LMNO

PQR

ST

U

Via a few examples, this section discussed logic operators, conversions, and indexing 

issues briefly. Applications of the issues of conversions are demonstrated via more 

extended examples in other chapters.

 Summary
This chapter introduced linear algebra, matrix operations, vector spaces, polynomials, 

methods of solving linear systems of equations, and matrix decompositions and 

conversions. Via examples, you learned how to use MATLAB’s built-in functions and 

commands, how to develop Simulink blocks in association with the MATLAB Command 

window, and how to use functions and the MATLAB Fcn block. The following MATLAB 

functions were discussed and explained in examples:

• Matrix operations +,-, *, and /

• Elementwise operations .*, .^, and ./

• Backslash operator (\) and mldivide()

• Solving linear equations with linsolve()

• Matrix inverse operators inv() and pinv()

• Eigen-values and eigen-vectors eig()

• Polynomial solvers roots(), solve(), and zero()

• Symbolic math equation solver solve()

• Standard matrices and gallery matrices, magic(), gallery(), and 

sparse()

• Vector spaces linspace() and logspace()

• Matrix operations and factorization methods, such as QR, LU, 

Cholesky, SVD, Schur: qr(), lu(), chol(), svd(), schur(), and 

decomposition()
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• Logical operators (<=, ~=, >=, |, &..., is*()) and 

indexing options

• Conversion tools and operators (bin2dec, dec2bin, double, and char)
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 Exercises for Self-Testing
 Exercise 1
Solve the following equations for variables x, y, and z:

 

3 5 4 2

2 3 2 2

6
2

0

x y z

x y z

x y
z

� � � �
� � � �

� ��
�
�

�
�
� �

�

�

�
��

�

�
�
�  
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 1. Use the backslash (\) operator or mldivide() to solve the given 

system of equations.

 2. Use the inverse matrix method inv() to solve the given system of 

equations.

 3. Use the linsolve() function to solve the given system of 

equations.

 4. Use the solve() function to solve the given system of equations.

 5. Use chol() to solve the given system of equations.

 6. Use Simulink blocks to solve the given system of equations.

 7. Compute errors by computing norms for each of the methods.

 Exercise 2
Solve the following equations, using the matrix inverse:

 

2 9 3 15

13 2 5 11

2 2 9

1 2 3

1 2 3

1 2 3

q q q

q q q

q q q

� � �
� � �
� � �

�

�
�

�
�

 

 1. Use the inverse matrix method inv().

 2. Use the least squares method lsqr().

 3. Use the Gauss Elimination method with the lu().

 4. Use rref().

 5. Use the solve().

 6. Use Simulink blocks.

 7. Compare the accuracy (to eight decimal places) of each solution.
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 Exercise 3
Solve the following equations:

 

2 5 3 3 5

2 2 2 5 2

2 2 5 3

1 2 3

1 2 3

1 2 3

. .

.

.

x x x

x x x

x x x

� � �
� � � � �

� � �

�

�
�

�
�

 

 1. Use the inverse matrix method qr() to solve the given system of 

equations.

 2. Use the reduced row echelon method step-by-step by multiplying 

rows by scalars and adding or subtracting from each other (don’t 

use rref()).

 3. Use the reduced row echelon method rref() to solve the given 

system of equations.

 4. Use the decomposition() function to solve the given system of 

equations.

 5. Use the solve() function to solve the given system of equations.

 6. Use Simulink blocks to solve the given system of equations.

 7. Compare the accuracy (to 10 decimal places) of these four 

methods.

 Exercise 4
Solve the following equations:

 

2 5 3 3 0 3 5

1 2 2 5 2 2 2 5 2 3

3

1 2 3 5

1 2 3 4 5

1

. . .

. . . .

x x x x

x x x x x

x x

� � � �
� � � � � � �

� 22 3 5

1 2 3 4 5

1 2 5

2 5 1

2 5 3 4 3 6

3 2 4 1 75 13

� � �
� � � � � �

� � �

�

�

�

.

.

. .

x x

x x x x x

x x x

��
�
�

�

�
�
�
�
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 1. Use the inverse matrix method inv() to solve the given system of 

equations.

 2. Use the singular decomposition svd() method to solve the given 

system of equations.

 3. Use the linsolve() function to solve the given system of 

equations.

 4. Use the solve() function to solve the given system of equations.

 5. Use Simulink blocks to solve the given system of equations.

 6. Compare the accuracy (to 13 decimal places) of these methods.

 Exercise 5
Given:

 3 6 0x y cz� � �  

 2 4 6 0x y z� � �  

 x y z� � �2 3 0  

• Find for which values of c the set of equations has a trivial solution.

• Find for which values of c the set of equations has an infinite number 

of solutions.

• Find relations between x, y, and z.

 Exercise 6
Find the inverse of the given matrix:

 

A �
�
�
�

�

�

�
�
�

�

�

�
�
�

3 6 12

2 4 6

1 2 3
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• Explain why the given matrix does not have an inverse.

• Compute the determinant of the matrix.

• Find eigen-values and eigen-vectors of the given system by 

using eig().

• Find eigen-values by using roots().

 Exercise 7
Find the inverse of the given matrix:

 

A �
�
�
�

�

�

�
�
�

�

�

�
�
�

3 6 2

1 2 4

0 1 3
 

• Compute determinant of the matrix.

• Find eigen-values and eigen-vectors of the given system using eig().

• Find eigen-values using roots().

 Exercise 8
Find a solution to the following set of equations representing an underdetermined 

system, using the left division (\ backslash) method and the pseudo-inverse method 

(pinv). Compare your obtained results and discuss the differences.

 2 5 3 3 1 3 0 3 111 2 3 4 5. . . .x x x x x� � � � �  

 � � � � � � �1 2 2 5 2 1 5 2 21 2 3 4 5. . .x x x x x  

 x x x1 2 32 2 5 3� � �.  

 Exercise 9
Solve the following set of equations using the backslash (\) operator, as well as the 

linsolve(), inv(), lsqr(), and solve() functions:
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 2 3 5x y� �  

 6 10 70x y� �  

 10 4 53x y� �  

 Exercise 10
Show why there is no solution to the following set of equations:

-2x - 3y = 2

-3x - 5y = 7

 5x - 2y = -4

 Exercise 11
Solve the following equations:

 

2 5 3 3 0 3 5

1 2 2 5 2 2 2 5 2 3

3

1 2 3 5

1 2 3 4 5

1

. . .

. . . .

x x x x

x x x x x

x x

� � � �
� � � � � � �

� 22 3 5

1 2 3 4 5

1 2 5

2 5 1

2 5 3 4 3 6

3 2 4 1 75

� � �
� � � � � �

� � �

�

�

�
�

.

.

. .

x x

x x x x x

x x x v

��
�

�

�
�
�
�

 

 v � � � � �� �10 9 8 9 10, , , ,  

 1. Use the inverse matrix method mldivide() to solve the given 

system of equations.

 2. Use the singular decomposition svd() method to solve the given 

system of equations.

 3. Use the linsolve() function to solve the given system of 

equations.

 4. Use the solve() function to solve the given system of equations.
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 Exercise 12
Compute the eigen-values and vectors of the following set of equations:

 

3 2 5 2 0

0

2 3 4 5 7 0

5
3

4

7

13
9 0

x y z u w

x y z w

x y z u w

y z u w

� � � � �
� � � �

� � � � � �

� � � � �

110 11 8 8 0x y u w� � � �

�

�

�
�
��

�

�
�
�
�

 

 Exercise 13
Create the matrix [C] from the given two [A] and [B] matrices by using logic operators. 

Explain why some of the elements of new array are zeros.

 

C A�

�

�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�
�

0 0 3

1 0 0

0 0 1

1 0 2

2 1 0

0 0 1

3 6 3

1 2 2

0 1 1

1 3
,

��
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�
�

� �
�
�

�

2

2 1 1

1 0 1

1 2 3

1 1 3

1 2 1

1 1 1

2 2 2

2 0 1

,B

��

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�  

Hints Use logic operators (<, =) and element-wise matrix multiplication.

 Exercise 14
The useful life of a machine bearing depends on its operating temperature, as the 

following data shows. Obtain a functional description (linear, square, and cubic 

polynomials) of this data. Plot the found fit functions and the data on the same plot. 

Estimate a bearing’s life if it operates at 52.50C.
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temperature (0C) 40 45 50 55 60 65 70

bearing life (hours x 103) 28 21 15 11 8 6 4

 Exercise 15
The following represents pressure samples, in MPa, taken in a fuel line once every 

second for 10 sec:

Time (Sec) Pressure (MPa) Time (Sec) Pressure (MPa)

1 2.61 6 3.06

2 2.70 7 3.11

3 2.82 8 3.13

4 2.90 9 3.10

5 2.98 10 3.05

a. Fit a first − degree polynomial, a second − degree polynomial, and a third − degree 

polynomial to this data. Plot the curve fits along with the data points.

b. Use the results from part a to predict the pressure at t = 11 sec.

 Exercise 16
The distance a spring stretches from its “free length” is a function of how much tension 

force is applied to it. The following table gives the spring length y that the given applied 

force F produced in a particular spring. The spring’s free length is 4.7 m. Find functional 

relation between F and x, the extension from the free length (x = y − 4.7).

Force 
F(kN)

Spring Length 
y (m)

0 4.7

0.47 7.2

1.15 10.6

1.64 12.9
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Also, plot experimental data (F versus x) and functional relation based fit 

(F _ linear vs. x) in the same plot. Use the appropriate plot maker type, color, size, etc., 

options.

 Exercise 17
Perform the following:

• Obtain an eye matrix of the size 5-by-5 from the magic matrix of the 

size of 5-by-5.

• Create a square eye matrix of the size 10-by-10 from the random 

square matrix of the size 10-by-10.

• Obtain a replicated square matrix of size 3-by-9 from the gallery 

matrix pascal() of size 3-by-3.

 Exercise 18
Solve the following equations and discuss the solutions for two cases: a = 13 and a = 29.

 

q q

q q a

q q

1 2

1 2

1 2

1

13 23

2 9

� �
� �
� �

�

�
�

�
�

 

Write a script with logic and loop operators (if, break, for, and end) to find such 

value of a that gives real solutions to these equations. Consider that a has an integer 

value that lies within 1 to 50.

Hints Use the rank() function and backslash (\) operators.
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 Exercise 19
Solve the following polynomials with roots(), solve(), zero(), and the Simulink model.

 2 3 5 13 131 09 8 4 2u u u u– – –� �  

 
y y

y
y y7 5

4
35

13

4
11 9 3 0� � � � � �

 

 
5

4

11

3

13
269 135

4 3
2x

x x
x x� � � � �

 

 Exercise 20
Create a logarithmic spaced array (a row vector) B of numbers starting with 10 and 

ending with 100, and create BB column vector from a row vector B.

 Exercise 21
Play a sound that is defined in the next expression:

 S t tf tf tf tf tf� � � � �� � �� � �� � �� �cos cos cot tan tan2 2 2 2 21 2 3 4 5� � � � � ��  

Here, fs = 10000 Hz (sampling frequency); t = 13 sec. (time length); f1 = 100 Hz (1st 

signal); f2 = 200 Hz (2nd signal); f3 = 300 Hz (3rd signal); f4 = 600 Hz (4th signal);  

f5 = 700 Hz (5th signal).

 Exercise 22
Answer the following questions using MATLAB:

• What are the binary representations of decimal numbers 123, 

123.123, 321, 321.123, 223, 322, 333, and 333.3?

• Why are the binary representations of 123 vs. 123.123, 321 vs. 321.123, 

and 333 vs. 333.3 the same?
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 Exercise 23
Answer the following questions using MATLAB:

• What are the decimal representations of the binary numbers 1001, 

01010, 111100, 0101011?

• What are character representations of the binary numbers 1001, 

01010, 111100, 0101011?

 Exercise 24
Write a script that takes one input number (an integer) and prints out the following 

characters in the order in the Command window:

A

BCD

EFGHI

JKLMNOP

QRSTUVWXY

 Exercise 25
Use numeric values of matrices [A] and [B] from Exercise 11 to evaluate the QR, LU, 

LQ, Cholesky, Schur, and singular value decompositions. Explain why some of the 

decompositions (matrix factorizations) of [A] and [B] cannot be computed.

 Exercise 26
Create the Hilbert matrix of size 5-by-5 using gallery matrix functions and compute 

Cholesky decomposition using the Chol_decoposition.m script. Edit the script 

(Chol_decoposition.m) in order to make it compute only the lower triangular matrix of 

Cholesky decomposition.
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 Exercise 27
Create the Riemann matrix of size 3-by-3 using gallery matrix functions and compute its 

QR, LU, LQ, Cholesky, Schur, and singular value decompositions.

 Exercise 28
Perform the following:

• Create the 4-by-4 random matrix with normalized columns and 

specified singular values using gallery matrix functions. Hint: Use 

randcolu.

• Compute the QR, LU, LQ, and decompositions of the matrix you just 

created.

 Exercise 29
Perform the following:

• Create one 5-by-5 random matrix with random integer elements 

varying in the range of 1 to 13 and name it A_mat.

• Create one 5-by-5 Krylov matrix using a matrix gallery of Krylov and 

name it K_mat.

• Create logic valued 5-by-5 matrix called Logic_A by using logic 

operation (A _ mat ≥ K _ mat) and elementwise matrix multiplication 

from A_mat and K_mat
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 Exercise 30
Create the following 10-by-10 matrix:

 

Hint Use magic() and repmat().
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