
443

CHAPTER 7

Linear Algebra
This chapter introduces linear algebra. It discusses some of the essential approaches

to solving systems of linear equations, as well as various matrix operations (matrix

inverse, determinant, sum, subtraction, division, multiplication, power, exponential,

elementwise and array-wise operations, and so forth). It covers eigen-value problems

and matrix factorizations/decompositions, such as Cholesky, Schur, LU, QR, and

singular value decomposition. It also includes built-in functions and scripts in MATLAB

and Simulink models. Moreover, the chapter explains the standard matrix generator

functions of MATLAB, how to create vector spaces, how to solve polynomials, and the

logical indexing of matrices, all via examples in MATLAB and Simulink.

 Introduction to Linear Algebra
Linear algebra is one of the more important branches of mathematics. It deals with

vectors, vector spaces, linear spaces, matrices, and systems of linear equations. There

is a wide range of linear algebra applications in engineering and scientific computing,

including many fields of natural and social studies. Linear algebra starts with a system of

linear equations for underdetermined, overdetermined, and well-defined systems.

If a given system is composed of m-linear equations with n-unknowns and m ≥ n,

that is solvable for unknowns. Consider the following linear system, formulated by the

system of equations (Equation 7-1):

a x a x a x b

a x a x a x b

n n

m m mn n m

11 1 12 2 1 1

1 1 2 2

� � � �
� � �

� � � �

�

�
�

��

..

: : : :

..

(Equation 7-1)

The system of linear equations (Equation 7-1) is solvable directly for all cases when

m ≥ n. If m < n, there are more unknowns than the number of linearly independent

equations, and such a system is called underdetermined and not solvable directly.

© Sulaymon Eshkabilov 2022
S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_7

https://doi.org/10.1007/978-1-4842-8748-4_7#DOI

444

If m > n, there are more linearly independent equations, and such a system is called

overdetermined and is solvable directly.

For the sake of simplicity, let’s take m = n and rewrite Equation 7-1.

a x a x a x b

a x a x a x b

n n

n n nn n n

11 1 12 2 1 1

1 1 2 2

� � � �
� � �
� � � �

�

�
�

��

..

: : : :

..

(Equation 7-2)

The given system of linear equations in Equation 7-2 can also be written in matrix

notation form.

 A X B� � � � � � �* (Equation 7-3)

Here, A and B are matrices and X is a vector of unknowns.

Where A

a a

a a

n

n nn

� � �
�

�

�

�

�
�
�

�

�

�
�
�

11 1

1

: : : , X x x x B

b

b
n

n

� �� �� � � ��
�

�

�
�
�

�

�

�
�
�

1 2

1

, , , , :

Equation 7-3 can also be rewritten in the form of column matrices.

x

a

a

x

a

a

x

a

an n

n

n

nn

1

11

1

2

12

2

1

: : :

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�
���

�

�

�
�
�

�

�

��
�
�
�
�

�

�
�
�

�

�

�
�
�

b

bn

1

:

(Equation 7-4)

The system in Equation 7-3 or 7-4 can be solved for X (unknowns) with the next

formulation:

 X A B� �� � � � ��1
* (Equation 7-5)

Here, [A]−1 is the inverse of the matrix [A].

 Matrix Properties and Operators
Matrices have several important properties and operators, such as determinant,

diagonal, transpose, inverse, singularity, rank, and so forth.

The determinant of a matrix can be computed only if the given matrix is a square.

Here’s an example:

M

a b c

d e f

g h i

�
�

�

�
�
�

�

�

�
�
�

Chapter 7 Linear aLgebra

445

The determinant of M will be computed with the following expression:

det (M) = aei + bfg + dhc - ceg - dbi - hfa

The MATLAB command for the determinant computation is det(). Here’s an

example:

 >> A=[8 1 6; 3 5 7; 4 9 2]

A =

 8 1 6

 3 5 7

 4 9 2

>> det(A)

ans =

-360

The diagonal of a matrix is composed of its element along its diagonals. For example,

in the previous example, the diagonals are aei and ceg.

The MATLAB command for diagonal separation is diag(). Here’s an example:

>> A = [8 1 6; 3 5 7; 4 9 2];

>> diag(A)

ans =

 8

 5

 2

The transpose of a matrix can be determined by the counterclockwise rotation of a

matrix by 900 (degrees). The transpose properties are as follows:

M MT T� � �

 M B M B
T T T�� � � �

 kM kM
T T� � �

 MB B M
T T T� � �

M M

T T� �� � � � �1 1

Chapter 7 Linear aLgebra

446

Here, M and B are matrices of the same size, k is a scalar, and T and -1 are the

transpose and inverse operators.

The MATLAB command for the transpose operation is transpose(), or ' .

Here’s an example:

>> A =[8 1 6; 3 5 7; 4 9 2];

>> transpose(A)

ans =

 8 3 4

 1 5 9

 6 7 2

>> A'

ans =

 8 3 4

 1 5 9

 6 7 2

 Simulink Blocks for Matrix Determinant, Diagonal
Extraction, and Transpose
Simulink has blocks that you can use to compute the matrix determinant, extract

the matrix diagonal elements, and obtain the matrix transpose. The determinant

block ([det(A) (3x3)]) is present in Simulink’s Aerospace Blockset/Utilities/Math

Operations, and it has a constraint and can only compute the determinant of 3-by-3

matrices.

Note the block [det(A) (3x3)] from the aerospace blockset is limited; it can
only compute the determinant of 3-by-3 matrices.

The block to extract the diagonal elements of a matrix is available in the DSP System

Toolbox/MATH Functions/Matrices and Linear Algebra/Matrix Operations. The block

to compute the matrix transpose is present in Simulink/Math Operations, and the block

name is Math Function. It has a few math functions embedded in it, including exp

(by default), log, 10^u, magnitude^2, square, pow, and transpose. Any of these math

Chapter 7 Linear aLgebra

447

functions in the Math Function block can be chosen. You simply click the Apply and OK

buttons of the block, and the chosen math function becomes available. Figure 7-1 shows

these three blocks.

Figure 7-1. Simulink blocks used for determinant calculation, diagonal
extraction, and transpose operation, from left

These blocks have one input and one output port. Therefore, you need to add two

additional blocks, specifically, one Constant block for input entry and one Display

block, to obtain/see the computation results. The Constant block can be taken from

the Simulink Library Simulink/Sources or DSP System Toolbox/Sources. Similarly,

the Display block can be taken from Simulink/Sinks or DSP System Toolbox/Sinks.

Alternatively, with the latest versions of MATLAB starting from 2018a, you can obtain

all the necessary blocks by double-clicking (with the left mouse button) and typing the

block name in the search box. As discussed in the previous chapters, in any Simulink

model one signal source can be used as many times as necessary. There is no need to

generate that signal within one model to use it with other blocks as an input signal.

Moreover, to optimize the Simulink model, it is strongly advised you build a Simulink

model with fewer blocks to make your models more readable, comprehensive, and easy

to edit. Therefore, this example uses one Constant block for input source [A]. Figure 7-2

shows the primary version of the Simulink model.

Chapter 7 Linear aLgebra

448

Figure 7-2. Simulink model to compute the determinant of a matrix, extract
diagonal elements of a matrix, and perform a transpose on a matrix

Let’s use example matrix [A] to demonstrate these three Simulink blocks. The

elements of the matrices [A] can be entered in two different ways:

• By typing all elements in the Constant block’s Constant Value box, as

shown in Figure 7-3. Click the Apply and OK buttons.

Figure 7-3. Entering matrix elements in a Constant block

Chapter 7 Linear aLgebra

449

• By defining [A] via MATLAB’s Command window and workspace:

>> A =[8 1 6; 3 5 7; 4 9 2];

Then provide the variable name A in the Constant block’s Constant Value box for [A],

as shown in Figure 7-4.

Figure 7-4. Matrix [A], defined in the MATLAB workspace, called via the
Constant block

Then click the Apply and OK buttons. Note that we are not going to use the second

method (see Figure 7-4) of defining matrix [A] elements in this example; it’s just shown

here for explanation purposes.

Finally, you’ll get the complete model in which the matrix [A] elements are entered

in the Constant block directly, as shown in Figure 7-5. After you complete the model, by

pressing Ctrl+T on the keyboard or clicking the Run button in the Simulink model

window, the complete model with its computed results will be created.

Chapter 7 Linear aLgebra

450

Figure 7-5. Completed Simulink model that computes the determinant, extracts
diagonal elements, and performs the transpose operation on the 3-by-3 matrix

Note to see the simulation results in the Display block, it has to be resized/
stretched. You left click it and then drag with the mouse while holding the button.

The simulation results of the Simulink models match the ones from the MATLAB

commands, such as det(), diag(), and transpose(), or '.

 Matrix Inverse or Inverse Matrix
The inverse matrix has the following important property:

 A A I� ��� � � � ��1

Here, [I] is the identity matrix.

For example, A �
�

�
�

�

�
�

1 1

3 4
has its inverse A� �

�
�
�

�
�

�

�
�

1 4 1

3 1
 that is computed from the

following:

A

A
adjugate A� �

� �
� � � � � � ��� ��

�
�
�

�
�

�

�
�

1 1
1 4 3 1 3

4 1

3 1det
/(

The MATLAB command to compute the inverse of a matrix is inv(). Here’s an

example:

Chapter 7 Linear aLgebra

451

>> A =[8 1 6; 3 5 7; 4 9 2];

>> inv(A)

ans =

 0.1472 -0.1444 0.0639

 -0.0611 0.0222 0.1056

 -0.0194 0.1889 -0.1028

A given matrix is singular if it is square, if it does not have an inverse, and if it has a

determinant of 0.

 Simulink Blocks for Inverse Matrix
The matrix inverse can also be calculated via several Simulink blocks with respect to a

given matrix size, i.e., square matrix or rectangular. The inverse matrix or matrix inverse

computing blocks are present in the DSP System and Aerospace Blockset Toolboxes of

Simulink and can be accessed via the Simulink Library: the DSP System Toolbox/Math

Functions/Matrices and Linear Algebra/Matrix Inverses, and the Aerospace Blockset/

Utilities/Math Operations. Let’s test the available blocks of this toolbox to compute

the inverse of the matrix [A] shown in the previous example. Open a blank Simulink

model and drag and drop the block from the libraries of the DSP System and Aerospace

Blockset Toolboxes shown in Figure 7-6.

Figure 7-6. Simulink blocks for computing the inverse matrix

They are as indicated on the top of each block—General Inverse (LU), Pseudoinverse

(SVD), and inv(A)—used to compute the matrix inverses based on LU factorization for

square matrices, and pseudoinverse for rectangular matrices (i.e., m>n, or the number of

rows is larger than the number of columns or vice versa). Theoretical aspects of the LU,

SVD, and other matrix decomposition and transformation operations are highlighted in

the “Matrix Decomposition” section.

Chapter 7 Linear aLgebra

452

The three blocks have one input port for the entry matrix and one output port for the

computed inverse. Add two additional blocks—one Constant block and one Display—by

following the procedures. Figure 7-7 shows the primary version of the Simulink model.

Figure 7-7. Simulink model to compute the inverse matrix via three
different blocks

The elements of the matrices [A] can be entered in two ways: (1) by typing all the

elements in the Constant block’s Constant Value box and then clicking the Apply and OK

buttons; or (2) by defining [A] via the MATLAB’s Command window and workspace.

Finally, you’ll get the following complete model in which the matrix [A] elements are

entered in the Constant block directly. After you complete the model, by pressing Ctrl+T

on the keyboard or clicking the Run button in the Simulink model window, the

finalized model with its computed results is created, as shown in Figure 7-8.

Chapter 7 Linear aLgebra

453

Figure 7-8. The inverse matrix computed via three different blocks

The computed inverse matrix (A−1) values match the ones computed using

MATLAB’s inv() command, within four correct decimal places.

Another important operator of matrices is its rank. The rank of a matrix (e.g., [A]) is

the maximum number of linearly independent row vectors of the matrix, which is the

same as the maximum number of linearly independent column vectors. The [A] matrix is

considered to have a full rank if its rank equals the largest possible for a matrix of the same

dimensions. The [M] matrix is considered to be rank deficient if it does not have full rank.

A matrix’s rank determines how many linearly independent rows the system contains. The

MATLAB command to compute the rank of a matrix is rank(). Here’s an example:

>> A =[8, 1, 6; 3, 5, 7; 4, 9, 2]; % Full rank matrix

>> rank(A)

ans = 3

>> M =[8 0 6; -3, 0, 7; 0 0 2] % Rank deficient matrix

M =

 8 0 6

 -3 0 7

 0 0 2

>> rank(M)

ans =

 2

Chapter 7 Linear aLgebra

454

Based on the rank, the systems (system matrices) can be full rank, overdetermined,

and underdetermined.

 Example 1: Solving a System of Linear Equations

The following example shows you how to solve a linear equation by using these

formulations:

2 3 5 1

3 2 5 2

4 7 6 3

x y z

x y z

x y z

� � �
� � � �

� � �

�

�
�

�
�

To solve this problem for unknowns, such as x, y, z, you apply Equations 7-3, 7-4, and

7-5 directly and then use the following operations:

2 3 5

3 2 5

4 7 6

1

2

3

� �
�

�

�

�
�
�

�

�

�
�
�
�
�

�
�

�
�

�

�
�

�
�
�
�

�

�
�
�

�

�

�
�
�

x

y

z

That can be written as follows:

x

y

z

�

�
�

�
�

�

�
�

�
�
� � �

�

�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

�
2 3 5

3 2 5

4 7 6

1

2

3

1

x

y

z

�

�
�

�
�

�

�
�

�
�
�

�
� �

0 0754 0 1738 0 0820

0 1246 0 0262 0 0820

0 095

. . .

. . .

. 11 0 0852 0 0164

1

2

3

0 0262

0 1738

0 314. .

.

.

.

�

�

�
�
�

�

�

�
�
�
�
�

�

�
�
�

�

�

�
�
�
�

�
�

88

�

�

�
�
�

�

�

�
�
�

Solution

x

y

z

:

.

.

.

�

�
�

�
�

�

�
�

�
�
�

�
�
�

�

�
�
�

�

�

�
�
�

0 0262

0 1738

0 3148

Let’s solve this exercise using the reduced row echelon method in MATLAB.

% Step 1. Write an augmented matrix: AU = [A, b]

A = [2 3 5; -3 -2 5; 4 -7 6;]; b = [1;2;3];

AU=[A, b];

% Step 2. Row1 = Row1 - Row2

Chapter 7 Linear aLgebra

455

AU(1,:)=AU(1,:)-AU(2,:);

% Step 3. Row3 = Row3-4*Row1/5

AU(3,:)= AU(3,:)-4*AU(1,:)/5;

% Step 4. Row2 = Row2+3*Row1/5

AU(2,:)= AU(2,:)+3*AU(1,:)/5;

% Step 5. Row3 = Row3+11*Row2

AU(3,:)= AU(3,:)+11*AU(2,:);

% Step 6. Row2 = Row2+5*Row3/61

AU(2,:)= AU(2,:)-5*AU(3,:)/61;

% Step 7. Row1 = Row1/5-Row2

AU(1,:)= AU(1,:)/5-AU(2,:);

% Step 8. Row3 = Row3/61

AU(3,:)= AU(3,:)/61;

% Step 9. Solution:

x= AU(:, end)

x =

 -0.0262295081967213

 -0.173770491803279

 0.314754098360656

Alternative ways of solving this example include Gauss elimination and graphical

methods. There are a number of operators and built-in functions in MATLAB that can be

used to solve a linear system of equations. They are as follows:

• inv(), which computes the inverse of a given matrix or the pseudo-

inverse of the given system (used for overdetermined systems).

• \, the backslash operator, which solves the system of linear equations

directly. It’s based on the Gaussian elimination method. This is one of

the most powerful MATLAB operators (tools) for handling matrices.

• mldivide(), which is a built-in function similar to the \ backslash

operator.

• linsolve(), which is a built-in function similar to the \ backslash

operator.

• lsqr(), which is a built-in function based on the least

squares method.

Chapter 7 Linear aLgebra

456

• lu(), which is a built-in function based on the Gauss

elimination method.

• rref(), which is a built-in function based on the reduced row

echelon method.

• svd(), which is a built-in function based on the singular value

decomposition.

• chol(), which is a built-in function based on the Cholesky

decomposition.

• qr(), which is a built-in function based on the orthogonal triangular

decomposition.

• decomposition(), which is a built-in function that automatically

choses the decomposition method.

• bicg(), cgs(), gmres(), pcg(), symmlq(), and gmr(), which are built-

in functions that are based on gradient methods.

• solve(), which is a built-in function from the Symbolic MATH toolbox.

Note among these listed functions/commands and operators, some of them use
the same computing algorithm and are alternatives to each other. For example, the
\ backslash operator is an alternative to mldivide().

First, denote the given system with the following notations:

A B� � �
�

�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

2 3 5

3 2 5

4 7 6

1

2

3

,

The entries of [A] matrix (coefficients of the unknowns x, y, z) are defined, and the

elements of [B] matrix are defined in the Command window.

>> A = [2 3, 5; -3, -2, 5; 4, -7, 6]

A =

 2 3 5

 -3 -2 5

 4 -7 6

Chapter 7 Linear aLgebra

457

>> B = [1;2;3]

B =

 1

 2

 3

Using inv() and (*), we can compute the solutions of the system.

>>Ai=inv(A) % [B] matrix is an inverse matrix of [A] matrix.

Ai =0.0754 -0.1738 0.0820

0.1246 -0.0262 -0.0820

0.0951 0.0852 0.0164

>> XYZ1=Ai*B % Solutions of the problem

Ai =-0.0262

-0.1738

0.3148

The next example uses the backslash \ operator based on the Gaussian elimination

method. This approach is quite simple and efficient in terms of computation time.

>> XYZ2=A\B

Ai=-0.0262

-0.1738

0.3148

Using mldivide():

>>XYZ3=mldivide(A,B)

-0.0262

-0.1738

0.3148

Using linsolve():

>>XYZ4=linsolve(A,B)

-0.0262

-0.1738

0.3148

Chapter 7 Linear aLgebra

458

Using lsqr():

>>XYZ5=lsqr(A,B)

lsqr converged at iteration 3 to a solution with relative

residual 6.6e-17.

-0.0262

-0.1738

0.3148

Using lu():

>>[L, U, P] = lu(A); %L-lower; U-upper triangular; P-Permutation matrix

>> y = L\(P*B);

>> XYZ6 = U\y

XYZ6 =

-0.0262

-0.1738

0.3148

Using rref():

>> MA = [A, B]; % Augmented matrix

>> xyz = rref(MA);

>> XYZ7= xyz(:,end)

-0.0262

-0.1738

0.3148

Using svd() and inv():

>> [U, S, V]= svd(A);

>> XYZ8 = V*inv(S)*U'*B

-0.0262

-0.1738

0.3148

Chapter 7 Linear aLgebra

459

Using chol():

>> [U, L] = chol(A); % A has to be Hermitian positive definite

>> XYZ9 = U\(U'\B) % U'*U = A

-0.0262

-0.1738

0.3148

Using qr():

>> [Q, R] = qr(A);

>> XYZ10 = R\Q.'*B

-0.0262

-0.1738

0.3148

Using decomposition():

>> XYZ11 = decomposition(A)\B

-0.0262

-0.1738

0.3148

Using bicg() gradient methods:

>> XYZ12 = bicg(A, B)

bicg converged at iteration 3 to a solution with relative residual 3.1e-14.

-0.0262

-0.1738

0.3148

Using solve(), which is a Symbolic Math Toolbox function:

>> syms x y z

>> sol=solve(2*x+3*y+5*z-1, -3*x-2*y+5*z-2, 4*x-7*y+6*z-3);

>> XYZ13=[sol.x; sol.y; sol.z]

-8/305

-53/305 96/305

Chapter 7 Linear aLgebra

460

>> XYZ13=double([sol.x; sol.y; sol.z])

-0.0262

-0.1738

0.3148

All of the computed solutions are accurate within four decimal places of the

employed operators and functions. In fact, the accuracy of the solutions and the

computation time of each operator or function will differ. For instance, the inverse

matrix calculation is not only costly in terms of computation time but is also less

accurate. Moreover, among the studied methods, the last function of the Symbolic Math

Toolbox, solve(), is the slowest and least efficient method.

Note the decomposition() function is available in the recent versions of
MatLab starting from MatLab 2018b.

Simulink Modeling

In addition to the MATLAB commands demonstrated, Simulink has several blocks by

which the linear system of equations, such as [A]{x} = [B], can be solved. All of the solver

blocks are present in the DSP System Toolbox and can be accessed via the Simulink

Library: the DSP System Toolbox/Math Functions/Matrices and Linear Algebra/Linear

System Solvers. Let’s test some of the blocks here to solve the previous example, called

Example 1. Open a blank Simulink model and drag and drop the block from the DSP

System Toolbox library, as shown in Figure 7-9.

Figure 7-9. Simulink blocks used to solve a system of linear equations

They are as indicated on the top of each block—LU, SVD, QR factorization and

decomposition operation-based solvers. All of them have two input ports for [A] and

[B] and one output port for a solution, {x}. Therefore, you need to add three additional

Chapter 7 Linear aLgebra

461

blocks—two Constant and one Display block—which you add as explained previously in

building Simulink models to compute determinant, transpose, and inverse of matrices.

Figure 7-10 shows the primary version of the Simulink model.

Figure 7-10. Simulink model to solve a system of linear equations

The elements of the matrices [A] and [B] can be inserted, as shown in Figure 7-3,

directly in the Constant block’s Constant Value window. Or you can define the elements

of [A] and [B] via MATLAB’s Command window and workspace.

>> A=[2, 3, 5; -3, -2, 5; 4, -7, 6]

>> B=[1; 2; 3];

The variable names A and B are then entered in the first and second Constant block’s

Constant Value box for [A] and [B], respectively, as shown in Figure 7-11. Click Apply and

OK to complete the model.

Chapter 7 Linear aLgebra

462

Figure 7-11. The variable names defined in the Constant block

By pressing Ctrl+T on the keyboard or clicking the Run button in the Simulink

model window, you’ll obtain the complete model with its simulation results (see

Figure 7-12). The computed results/solutions match the MATLAB solutions to four

decimal places.

Figure 7-12. Complete model with computed results

Note that the variables (matrices) A and B are defined via MATLAB’s

Command window.

Chapter 7 Linear aLgebra

463

To obtain more decimal places of the computed results with the Display block, the

block parameters (Format Type) need to be tuned by selecting long_e, as shown in

Figure 7-13.

Figure 7-13. Adjusting the Display block’s Format parameter

 Example 2: Embedding a MATLAB Function Block to Compute
the Determinant and Solve Linear Equations

All of the aforementioned MATLAB functions/commands used for computing matrix

determinants, matrix inverses, or solutions of linear systems can be embedded in

Simulink via the MATLAB Function block . Let’s take two MATLAB functions/

commands used for computing a determinant of a matrix of any size with det() and

solving with linsolve() and embed them into a Simulink model. Here’s an example:

A B1

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

1

3

2

4

5

�

�
� �

�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�

�

,

��

�
�
�
�

Here are completed Simulink models. Figure 7-14 is built with three Constant, two

MATLAB Function, and two Display blocks.

Chapter 7 Linear aLgebra

464

Figure 7-14. Simulink models with MATLAB Function blocks to compute the
determinant and solve a linear system of equations

The input variables/entries for A1 and B1 are defined via the Command window and

MATLAB workspace in this model. To edit and type in the necessary script, you have to

open the MATLAB Function block. It can be opened by double-clicking it, which opens

the MATLAB editor window. The following function file scripts for the MATLAB Function

blocks are typed in the MATLAB editor for the upper MATLAB Function block (with one

input) and the lower one (with two inputs A1 and B1) models, respectively. After editing

the codes of the blocks, save them. They will be saved under the created Simulink model

and not as a separate MATLAB function file.

function y = fcn(u)

y = det(u);

end

function y = fcn(A1, B1)

y = linsolve(A1, B1);

The model is then completed, and the finalized model is executed. Figure 7-15 shows

the completed model with its computed results in the Display blocks. The upper Display

block shows the determinant, and the lower one shows the solution of the given system.

Chapter 7 Linear aLgebra

465

Figure 7-15. Completed models with computed results

The computed results of the Simulink model can be compared with MATLAB.

>> A1=[16 2 -3 13 ; -5 11 10 -8; 9 7 -6 12; -4 14 15 1];

>> B1 = [3; 2; 4; 5];

>> det(A1)

ans =

-18812

>> linsolve(A1, B1)

-3.614714012332536e-03 2.740803742292154e-01

6.272591962577077e-02

2.075271103550925e-01

The computed results from the determinant calculation and linear MATLAB solver

match the Simulink model’s results to 13 decimal places.

 Example 3: Accuracy of Solver Functions of Linear Equations

Let’s find out which one of the functions/tools (methods) highlighted in Example 1 is

more accurate in computing the solutions. For this exercise, you’ll take the following

13-by-13 [A] and 13-by-1 [B] matrices generated by the magic() and randi() (random

Chapter 7 Linear aLgebra

466

integer) matrix generator functions of MATLAB. Moreover, the norm() function is used

to compute the norm of the given linear system with its computed solutions. LA_Ex3.m is

the complete solution script.

%% Given 13-by-13 system of linear equations

A = magic(13);

B = randi([-169,169], 13,1); % Elements of B vary within [-169, 169]

%% 1-Way: inv() or pinv() %% INVERSE matrix method

x1a = inv(A)*B; Err_INV = norm(A*x1a-B)/norm(B) %#ok: ERROR checking

x1a = inv(A)*B; Err_PINV = norm(A*x1b-B)/norm(B) %#ok: ERROR checking

%% 2-Way: \ %% backslash

x1a = inv(A)*B; Err_BACKSLASH = norm(A*x2-B)/norm(B) %#ok: ERROR checking

%% 3-Way: mldivide() %% Left divide function

x1a = inv(A)*B; Err_MLDIVIDE = norm(A*x3-B)/norm(B) %#ok: ERROR checking

%% 4-Way: Using linsolve();

x1a = inv(A)*B; Err_LINSOLVE = norm(A*x4-B)/norm(B) %#ok: ERROR

checking

%% 5-Way: Using lsqr()

x1a = inv(A)*B; Err_LSQR = norm(A*x5-B)/norm(B) %#ok: ERROR

checking

%% 6-Way: Using lu()

x1a = inv(A)*B; y = L\(P*B); x6 = U\y;

Err_LU = norm(A*x6-B)/norm(B) %#ok: ERROR checking

%% 7 - Way: Using rref()

x1a = inv(A)*B; xyz = rref(MA); x7= xyz(:,end);

Err_RREF = norm(A*x7-B)/norm(B) %#ok: ERROR checking

%% 8 - Way: Using svd()

x1a = inv(A)*B; x8 = V*inv(S)*U'*B;

Err_SVD = norm(A*x8-B)/norm(B) %#ok: ERROR checking

%% 9 - Way: Using chol()

x1a = inv(A)*B; x9 = U\(U'\B);

Err_CHOL = norm(A*x9-B)/norm(B) %#ok: ERROR checking

%% 10 - Way: Using qr()

x1a = inv(A)*B; x10 = R\Q.'*B;

Err_QR = norm(A*x10-B)/norm(B) %#ok: ERROR checking

%% 11 - Way: Using decomposition()

Chapter 7 Linear aLgebra

467

x1a = inv(A)*B; Err_DECOMPOSITION = norm(A*x11-B)/norm(B) %#ok: ERROR checking

%% 12 - Way: Using bicg()

x1a = inv(A)*B; Err_BICG = norm(A*x12-B)/norm(B) %#ok: ERROR checking

%% 13-Way: solve() %% SOLVE() symbolic math method

x = sym('x', [1, 13]); x=x.'; Eqn = A*(x); Eqn = Eqn - B;

Solution = solve(Eqn); SOLs = struct2array(Solution); SOLs = double(SOLs);

 x13 = SOLs';

Err_SOLVE = norm(A*x13-B)/norm(B) %#ok: ERROR checking

Here are the errors that were made while computing the solutions of the system with

the employed methods:

Err_INV =

5.8087e-16

Err_PINV =

3.7982e-15 Err_BACKSLASH = 3.0569e-16 Err_MLDIVIDE = 3.0569e-16 Err_

LINSOLVE = 3.0569e-16

lsqr converged at iteration 7 to a solution with relative residual 3.5e-07. Err_LSQR =

3.4959e-07

Err_LU =

3.0569e-16

Err_RREF =

1.1576e-05

Err_SVD =

3.7982e-15

Err_CHOL =

2.2400

Err_QR =

7.0615e-16

Err_DECOMPOSITION =

3.0569e-16

bicg stopped at iteration 13 without converging to the desired tolerance 1e-06

because the maximum number of iterations was reached.

The iterate returned (number 13) has relative residual 9.6e-06.

Err_BICG = 9.5856e-06

Err_SOLVE = 1.5109e-16

Chapter 7 Linear aLgebra

468

From the computed errors, it is clear that the RREF(), BICG(), and LSQR() functions

make errors within the margin of 10−5…10−7 and all other methods make errors within

the margin of 10−15…10−16 while computing the solutions of this given system.

 Example 4: Efficiency of Solver Functions of Linear Equations

This example demonstrates which one of the shown ways is more efficient in terms of

computation time. For this demonstration, you’ll consider two large matrices of 1000-

by- 1000 and 1000-by-1, generated by the random integer number generator function

randi() to generate the elements of matrices [A] and [B]. In addition, to record the

elapsed time of each computation method, the [tic, toc] functions are used. Here is

the complete solution script, called LA_Ex4.m:

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

%% 1) inv() or pinv()

tic; Ai = inv(A); xyz1=Ai*B; T_inv=toc

%% 2) bacslash operator: \

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; xyz2 = A\B; T_backslash = toc

%% 3) mldivide()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; xyz3= mldivide(A, B); T_mld = toc

%% 4) linsolve()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; xyz4 = linsolve(A, B); T_linsolve = toc

%% 5) lsqr()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; xyz5 = lsqr(A, B); T_lsqr = toc

%% 6) lu()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [L, U, P]=lu(A); y=L\(P*B); xys6=U\y; T_lu=toc

Chapter 7 Linear aLgebra

469

%% 7) rref()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; MA = [A, B];xyz7 = rref(MA); XYZ7=xyz7(:, end); T_rref=toc

%% 8) svd()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [U S V] = svd(A); xyz8 = V*inv(S)*U'*B; T_svd=toc

%% 9) chol()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [U L]= chol(A); xyz9 = U\(U'\B); T_chol=toc

%% 10) qr()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [Q R] = qr(A); xyz10 = R\Q.'*B ; T_qr=toc

%% 11) decomposition()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; xyz11 = decomposition(A)\B; T_decom = toc

%% 12) bicg() Gradient methods

clearvars; A=randi([-100,100], 1000); B=randi([-100, 100], 1000, 1);

tic; xyz12 = bicg(A, B); T_bicg=toc

%% 13) solve()

A=randi([-100,100],100); B=randi([-100, 100], 100, 1);

tic;

x = sym('x', [1, 100]); x=x.';

Eqn = A*(x); Eqn = Eqn - B;

Solution = solve(Eqn); SOLs = struct2array(Solution); SOLs = double(SOLs);

x13 = SOLs';

T_solve=toc

Here are the elapsed computation time values from the simulations:

T_inv =

0.0390

T_backslash = 0.0173

T_mld =

0.0171

T_linsolve =

0.0171

Chapter 7 Linear aLgebra

470

lsqr stopped at iteration 20 without converging to the desired tolerance 1e-06

because the maximum number of iterations was reached.

The iterate returned (number 20) has relative residual 0.24.

T_lsqr = 0.0236

T_lu =

0.0235

T_rref =

10.1406

T_svd =

0.4263

T_chol =

0.0330

T_qr =

0.1045

T_decom =

0.0459

bicg stopped at iteration 20 without converging to the desired tolerance 1e-06

because the maximum number of iterations was reached.

The iterate returned (number 0) has a relative residual of 1.

T_bicg =

0.0195

T_solve =

14.6306

From these computations, it is clear that linsolve(), mldivide, and \ (the backslash

operator) (Gaussian elimination method) are the fastest among all the tested methods.

The slowest and computationally costliest one is the solve() operator of the Symbolic

MATH even when the size of the system was 10 times smaller. It is worth noting that

the reduced row echelon method called rref() is the next slowest, after the solve()

operator.

Let’s consider another example to solve these four different methods, which are \,

linsolve(), inv(), and solve(), discussed previously.

Chapter 7 Linear aLgebra

471

 Example 5: Solving Linear Equations ([A]{x} = [b]) by Changing
Values of [b]

This exercise is composed of two parts:

 [1]. Solve the given linear system for unknowns a, b, and c.

� � � �
� � �

� �

�

�
�

�
�

0 072 12

0 12 9

50

.

.

a c

b c

a b

 [2]. Solve the given system for unknowns a, b, and c. The third

equation’s value changes in the range of 50…250.

� � � �
� � �

� � �

�

�
�

�
�

0 072 12

0 12 9

50 250

.

.

a c

b c

a b

The system is rewritten in a matrix form as [A]{x} = [B] and then solved directly for

unknowns a, b, and c. Here is the solution script (LA_Ex4.m):

% PART 1.

% The given system is written from the Ax=B as [A]*[abc]=[B]

A=[.072, 0, -1; 0, .12, -1; 1 1 0];

B=[-12, -9, 50];

abc1=A\B' %#ok % BACKSLASH \

abc2 = linsolve(A,B') %#ok % LINSOLVE()

abc3 = inv(A)*B' %#ok % INV

% SOLVE() in symbolic MATH

syms a b c; abc4=solve(0.072*a-c+12, 0.12*b-c+9, a+b-50);

abc4=double([abc4.a; abc4.b; abc4.c]) %#ok

% SOLVE()

%% Part II. %%

% BACKSLASH \ ; LINSOLVE(); INV

tic; Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);

c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];

Chapter 7 Linear aLgebra

472

for ii=1:numel(Bk)

B=[-12; -9; Bk(ii)];

abc=A\B;

a(ii)=abc(1,:);

b(ii)=abc(2,:);

c(ii)=abc(3,:);

end Time1=toc;

fprintf('Computation time with BACKSLASH: %3.3f \n', Time1); clearvars

tic; Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);

c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];

for ii=1:numel(Bk)

B=[-12; -9; Bk(ii)];

abc=linsolve(A,B);

a(ii)=abc(1,:);

b(ii)=abc(2,:);

c(ii)=abc(3,:);

end

Time2=toc;

fprintf('Computation time with LINSOLVE: %3.3f \n', Time2) clearvars

tic Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1); c=zeros(numel(Bk),1); A=[.072,

0, -1; 0, .12, -1; 1 1 0];

for ii=1:numel(Bk)

 B=[-12; -9; Bk(ii)];

 abc=inv(A)*B;

 a(ii)=abc(1,:); b(ii)=abc(2,:); c(ii)=abc(3,:);

end

Time3=toc;

fprintf('Computation time with INV: %3.3f \n', Time3)

%% SOLVE() from symbolic math

clearvars; tic;

Bk=50:250;

a1=zeros(numel(Bk),1);b1=zeros(numel(Bk),1); c1=zeros(numel(Bk),1);

syms a b c

for ii=1:numel(Bk)

Chapter 7 Linear aLgebra

473

 abc=solve(0.072*a-c+12,0.12*b-c+9,a+b-Bk(ii));

 a1(ii)=double(abc.a);

 b1(ii)=double(abc.b);

 c1(ii)=double(abc.c);

end

Time4=toc;

fprintf('Computation time with SOLVE: %3.3f \n', Time4)

Here are the results of the calculations from Part 1:

abc1 =

 15.6250

 34.3750

 13.1250

abc2 =

15.6250

34.3750

13.1250

abc3 =

15.6250

34.3750

13.1250

abc4 =

15.6250

34.3750

13.1250

Here are the results of the script from Part 2:

Computation time with BACKSLASH: 0.002

Computation time with LINSOLVE: 0.002

Computation time with INV: 0.002

Computation time with SOLVE: 22.066

From the computation time spent to compute solutions of the given linear system

with three variables and 201 possible cases using four ways, it is clear that the least

efficient way of solving linear equations is using the Symbolic Math toolbox’s solve()

Chapter 7 Linear aLgebra

474

function. The backslash operator (\) and linsolve() and inv() methods all performed

similarly. The solver linsolve(), \, and inv() methods are more than 11,033 times

more efficient and faster than the solve() function.

 Example 6: Linear Equations ([A]{x} = [b]) Applied for the Least
Squares Method

This exercise demonstrates how to apply the principles of solving linear equations in the

form of [A]{x} = [b] to solve the least squares problem to find best-fit model coefficients.

In this exercise, we introduce the Vandermonde matrix expression to determine the

polynomial fit models.

Here is the N-th order polynomial:

 f x a x a x a x a x ax an
n

n
n� � � � ��� � � ��
�

1
1

3
3

2
2

0

To compute the fit model f(xi), we set it equal to the measured data yi: f(xi) = [yi].

 a x a x a x a x a x a yn
n

n
n

1 1 1
1

3 1
3

2 1
2

1 1 0 1� ��� � � � ��
�

 a x a x a x a x a x a yn
n

n
n

2 1 2
1

3 2
3

2 2
2

1 2 0 2� ��� � � � ��
�

 a x a x a x a x a x a yn
n

n
n

3 1 3
1

3 3
3

2 3
2

1 3 0 3� ��� � � � ��
�

: : … : : : : = :

a x a x a x a x a x a yn m
n

n m
n

m m m m� ��� � � � ��
�

1
1

3
3

2
2

1 0

These expressions can be written as follows:

 V a yi i� �� �� � �

Here, [V] is the Vandermonde matrix, {ai} is the coefficients of the n-th order

polynomial, and [yi] is the measured data points.

V

x x x

x x x

x x x

n

m m m
n

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1

1

1

1 1 1

2 2
2

2

2

: : : : :
; a

a

a

a

a

i

n

�

�

�

�
��

�

�
�
�

�

�

�
��

�

�
�
�

0

1

2

:

; y

y

y

y

y

i

m

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

1

2

3

:

Chapter 7 Linear aLgebra

475

Or

V

x x x

x x x

x x x

n

n

m
n

m m

�

�

�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1 1
2

1

2 2
2

2

2

1

1

1

:

;

a

a

a

a

i

n

�

�

�
�
�

�
�
�

�

�
�
�

�
�
�

:
;

1

0

y

y

y

y

y

i

m

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

1

2

3

:

Here, xi and yi are known, and ai polynomial fit coefficient values are needed to be

computed. Therefore, we can compute ai from the next expression:

 a V yi i� �� � � �� ��1

Let’s consider the following example.

Given test data:

Test # Test1 Test2 Test3 Test4 Test5 Test6 Test7

applied Load, [n] 10 20 30 40 50 60 70

Deflection, δ[m] 0.145 0.435 0.505 0.765 1.025 1.199 1.430

The task is to compute the fit model using Hooke’s law formulation for linear elastic

materials. The Hooke’s law formulation is F = kδ, where F is applied force in [N] and δ is a

dependent variable, which is the deflection of an elastic material when F force is applied.

And k is the stiffness coefficient of a material. Thus, the unknown variable here is k that

will be computed using the least squares criterion.

First, we express the test data with respect to the system of linear equations [A]{x} = [b].

Here the applied force is the dependent variable [b], and the independent variable

{x} corresponds to the resulted deflection δ. Therefore, in this exercise, the unknown

variable is k, which is stiffness of the material. In this exercise, a first tricky point is how

to compute the values of [A]. To compute the elements of [A], we use the Vandermonde

matrix approach. According to Hooke’s law, it is a first-order polynomial, i.e., F(δ) = kδ,

that can be also written as k = F(δ)/δ. Using the given data in this exercise, we can define

the Vandermonde matrix and load matrix.

Chapter 7 Linear aLgebra

476

V

n

�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

�
�

�

1

1

0

0

0

0 145 0

0 435 0

1 430 0

: :

.

.

: :

.

FF �

�

�

�
�
�
�

�

�

�
�
�
�

10

20

70

:

Here, V is the Vandermonde matrix. Note the size of the Vandermonde matrix is

7-by-2 and the size of the applied load is 7-by-1. Therefore, the size of the stiffness matrix

will be 1-by-2. The reason of having zeros in the second column of [V] is that according

to Hooke’s law, the linear relationship between the applied load and deflection of

a linear elastic material is in the form of f(x) = a1 ∗ x + a0 and a0 = 0. Therefore, the

unknown stiffness is found from the following:

 k V F�� � �� ��1

Note that to compute the values of [k] in a more efficient and exactly, we employ

the backslash (\) operator. An alternative solution function to the backslash operator is

linsolve() or mldivide().

The final solution script (LA_Ex6.m) is shown here:

% LA_Ex6.m

% Part 1. Vandermonde matrix

clc; clear variables

F = (10:10:70).'; % Applied Load

d = [0.145 0.435 0.505 0.765 1.025 1.199 1.430].'; % Deflection

scatter(F, d, 'filled')

ylim([0, max(d)+.2]),shg

A = [F zeros(size(F))];

FM =A\d;

FM_values = FM(1)*F;

hold on

plot(F, FM_values, 'k-', 'linewidth', 2)

gtext(['Fit model: F = ' num2str(FM(1)) '*\delta'])

gtext(['Stifness is: ' num2str(FM(1))])

grid on

xlabel('Applied Load, F [N]')

ylabel('Deflection, \delta [m]')

Chapter 7 Linear aLgebra

477

Figure 7-16 shows the resulted plot of the calculations from the script.

Figure 7-16. Fit model is computed using the least squares method

There are a few functions (polyfit, fitlm, fit) in Curve Fitting and Statistics and

Machine Learning Toolboxes, which can be used easily to compute approximation

polynomials. Let’s look at the previous example of how to employ these functions:

% Part 2. Polynomial Approximation Fcn: Curve Fitting Toolbox

FM2 = polyfit(F,d, 1);

fprintf('CFTOOL Fit Model: F(d) = %f*d \n', FM2(1));

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(F,d, 'linear');

fprintf('Stats and ML Fit Model: F(d) = %f*d \n', FM3.Coefficients.

Estimate(2));

Parts 2 and 3 of the code (LA_Ex6.m) produce close approximation coefficients of the

first-order polynomial. The following results will be displayed in the Command window:

CFTOOL Fit Model: F(d) = 0.021082*d

Stats and ML Fit Model: F(d) = 0.021082*d

Note that there is a small difference between the Vandermonde approach and

polyfit() and fitlm() functions. The reason for the difference is the intercept value

is set equal to “0” with the Vandermonde matrix, and with the other two functions, the

intercept is considered.

Chapter 7 Linear aLgebra

478

 Example 7: Linear Equations ([A]{x} = [b]) Applied for the Least
Squares Method

The following data table gives the stopping distance y as a function of initial speed v, for

certain car model. Find the quadratic polynomial coefficients that fit the data.

v(km/h) 20 30 40 50 60 70

y(m) 45 80 130 185 250 330

The Vandermonde matrix of this exercise for the quadratic fit model is computed

from the following:

V

v v v

v v v

v v vn n n

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1
0

1 1
2

2
0

2 2
2

0 2

: : :

Note that v v vn1
0

2
0 0 1, ,� � corresponds to a0. Therefore, V can be also expressed as

follows:

V

v v

v v

v vn n

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1

1

1

1 1
2

2 2
2

2

: : :

Note that V can be also expressed as follows:

V

v v

v v

v vn n

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1
2

1

2
2

2

2

1

1

1

: : :

Chapter 7 Linear aLgebra

479

The Vandermonde matrix of the data from this exercise is equal to the following:

V �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1 20 20

1 30 30

1 70 70

2

2

2

: : :
 or V �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

20 20 1

30 30 1

70 70 1

2

2

2

: : :

The measured data points in this exercise are as follows:

yi �

�

�

�
�
�
�

�

�

�
�
�
�

45

80

330

:

The unknown coefficient of the quadratic polynomial is found from the following,

depending on which way [V] is defined:

a = [a0, a1, a2] or a = [a2, a1, a0]

 a V yi� �� ��1

Note that in this exercise, the size of the Vandermonde matrix is 6-by-3.

The complete code of this exercise is LA_Ex7.m.

% LA_Ex7.m

clc; clear variables; close

% Part 1. Vandermonde matrix

v = (20:10:70).'; % Velocity, [km/h]

y = [45 80 130 185 250 330].'; % Braking distance, [m]

scatter(v, y, 'filled')

ylim([0, max(y)+.2])

A = [v.^2, v, ones(size(v))];

FM =A\y;

FM_values = FM(1)*v.^2+FM(2)*v+FM(3);

hold on

plot(v, FM_values, 'k-', 'linewidth', 2)

gtext(['Fit model: s(v) = ' num2str(FM(1)) 'v^2 +' num2str(FM(2)) '*v +',

num2str(FM(3))])

grid on

Chapter 7 Linear aLgebra

480

xlabel('\it Velocity, v [km/h]')

ylabel('\it Braking Distance, s [m]')

% Part 2. Polynomial Approximation Fcns: Curve Fitting Toolbox

FM2 = polyfit(v,s, 2);

fprintf('CFTOOL Fit Model: s(v) = %f*v.^2 + %f*v + %f \n', FM2);

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(v, s, 'poly2');

fprintf('Stats and ML Fit Model: s(v) = %f*v.^2 + %f*v + %f \n', flip(FM3.

Coefficients.Estimate));

Figure 7-17 shows the simulation results of LA_Ex7.m.

20 25 30 35 40 45 50 55 60 65 70

 Velocity, v [km/h]

0

50

100

150

200

250

300

 B
ra

ki
ng

 D
is

ta
nc

e,
 s

 [m
]

Fit model: s(v) = 0.050893v2 +1.1054*v +2.3571

Figure 7-17. Quadratic fit model is computed using the least squares method

Also, in the Command window, the following outputs will be displayed after

executing the script: LA_Ex7.m:

FMM =

 0.0509

 1.1054

 2.3571

CFTOOL Fit Model: s(v) = 0.050893*v.^2 + 1.105357*v + 2.357143

Stats and ML Fit Model: s(v) = 0.050893*v.^2 + 1.105357*v + 2.357143

Chapter 7 Linear aLgebra

481

The results from the three approaches are identical, which proves that the

Vandermonde approach is well correlated with the functions of the two toolboxes.

 Example 8: Linear Equations ([A]{x} = [b]) Applied for the Least
Squares Method Using Simulink Modeling

The following data table gives the stopping distance y as a function of initial speed v, for

a certain car model. Find the quadratic polynomial coefficients that fit the data.

v(km/h) 20 30 40 50 60 70

y(m) 45 80 130 185 250 330

Let’s build a Simulink model to solve this exercise and apply the least squares

polynomial solver block. A Simulink model of this exercise is relatively simple and

composed of three blocks: Constant, Least Squares Polynomial Fit, and Display blocks,

as shown in Figure 7-18.

Figure 7-18. Simulink model, the least squares method

The Simulink model shown in Figure 7-18 is not complete yet. There are two more

adjustments to be made in the Constant and Least Squares Polynomial Fit blocks. The

Constant should be opened by double-clicking it, and the data for y, i.e., [45 80 130

185 250 330].' should be entered. Note the data has to be a column vector. Then the

next block parameters should be adjusted, as shown in Figure 7-19. Note that Control

Parameter (X) values are v values in a column vector form, and Polynomial order (N) is 2

because we are looking for a quadratic polynomial fit.

Chapter 7 Linear aLgebra

482

Figure 7-19. Least squares Polynomial Fit block parameters adjustment

Once all adjustments are made and values are entered, the model is ready to

simulate. The completed model (LA_Ex8.slx) with simulation results after resizing the

Display block to see all results is shown in Figure 7-20.

Figure 7-20. Simulink model, LA_Ex8.slx

Note that the found results from the Simulink model LA_Ex8.slx match perfectly

well with the ones found using the Vandermonde matrix, polyfit() and fitlm().

 Matrix Operations
This section covers general mathematical operations and computations of matrices,

vectors, and eigen-vectors. Many numerical examples are used to explain the matrix

operations. Table 7-1 lists the matrix operations their command syntax.

Chapter 7 Linear aLgebra

483

Table 7-1. Matrix Operators in Two Equivalent Formulations

Operation Name MATLAB First Way MATLAB Second Way

Matrix multiplication A*B mtimes(A,B)

array-wise multiplication A.*B times(A,B)

Matrix right division A/B mrdivide(A,B)

array-wise right division A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

array-wise left division A.\B ldivide(A,B)

Matrix power A^B mpower(A,B)

array-wise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

binary addition A+B plus(A,B)

Unary plus +A uplus(A)

binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Determinant det(A) det(A)

rotate by 900 rot90(A) rot90(A)

replicate and tile an array n times repmat(A, n) repmat(A, n)

Flip matrix left/right fliplr(A) fliplr(A)

Flip matrix in up/down flipud(A) flipud(A)

Basic MATLAB unit data is in the array type format. Matrices and vectors can be

employed in many cases to define input and output, local data, and function inputs and

outputs. Moreover, they can be used to combine separate scalars into one signal and

process multidimensional input and output signals. An array is defined by a single name

and a collection of data arranged by rows and columns, as shown here.

Chapter 7 Linear aLgebra

484

Row # 1
11 12 13

Row # 2
21 22 23

Row # 3

31 22 33

Row # 4

41 42 43

11 12

21 22

31 22

41 42

Let’s look at some numerical examples. They perform matrix operations with scalars,

such as addition, subtraction, power, multiplication, and division, including array-wise

(elementwise) operations in the Command window.

>> A=[8,1,6; 3,5,7; 4,9,2] % Matrix 3-by-3

A =

 8 1 6

 3 5 7

 4 9 2

>> a = 2; b = 2+3i; c = 5j;

>> B=A^a % Note the difference between ^ and .^

B =

 91 67 67

 67 91 67

 67 67 91

>> C=A.^a % Elementwise. Note the difference between ^ and .^

C =

 64 1 36

 9 25 49

 16 81 4

Chapter 7 Linear aLgebra

485

>> D = A*a+B/b

D =

 30.0000 -21.0000i 12.3077 -15.4615i 22.3077 -15.4615i

 16.3077 -15.4615i 24.0000 -21.0000i 24.3077 -15.4615i

 18.3077 -15.4615i 28.3077 -15.4615i 18.0000 -21.0000i

>> E = C./c

E =

 0.0000 -12.8000i 0.0000 - 0.2000i 0.0000 - 7.2000i

 0.0000 - 1.8000i 0.0000 - 5.0000i 0.0000 - 9.8000i

 0.0000 - 3.2000i 0.0000 -16.2000i 0.0000 - 0.8000i

>> F = C/c

F =

 0.0000 -12.8000i 0.0000 - 0.2000i 0.0000 - 7.2000i

 0.0000 - 1.8000i 0.0000 - 5.0000i 0.0000 - 9.8000i

 0.0000 - 3.2000i 0.0000 -16.2000i 0.0000 - 0.8000i

 Example: Performing Matrix Operations
Given six arrays: A (4 − by − 3), B(3 − by − 4), C(4 − by − 4), D(4 − by − 3), E(3 − by − 3),

and F(3 − by − 3).

Let’s perform several matrix operations—such as summation, subtraction,

multiplication, power, scalar multiplication, square root, mean, round, standard

deviations, and replicate/rotate/flip matrix—from the Command window.

>> A=[2 -3 1; 3 2 5; 1 3 4; -3 -2 3] ;

>> B=[3,4,-2 1;2,5,4,-6;4,-3, 1,2] ;

>> C=[16,2,3,13;5,11,10,8;9 4 7 14;6 15 12 1] ;

>> D=[1 2 3; 2 3 4; 4 3 1; -2 -3 1] ;

>> E=[8, 1, 6; 3, 5, 7; 4, 9, 2];

>> F=[3 7 3; 3 2 8; 9 2 1];

>> M_AB = A*B

M_AB =

 4 -10 -15 22

 33 7 7 1

 25 7 14 -9

 -1 -31 1 15

Chapter 7 Linear aLgebra

486

>> M_BA = B*A

M_BA =

 13 -9 18

 41 28 25

 -6 -19 -1

>> M_S = M_AB-C

M_S =

 -12 -12 -18 9

 28 -4 -3 -7

 16 3 7 -23

 -7 -46 -11 14

>> M_S= M_BA-C

Matrix dimensions must agree.

>> CM=C*M_S % Not equivalent to M_S*C

CM =

 -179 -789 -416 243

 352 -442 -141 -150

 18 -747 -279 88

 533 -142 -80 -313

>> CM1=M_S*C % Not equivalent to C*M_S

CM1 =

 -360 -93 -174 -495

 359 -105 -61 283

 196 -252 -149 307

 -357 -354 -390 -599

>> CM2=M_S.*C % Elementwise operation: NOT equivalent to M_S*C

CM2 =

 -192 -24 -54 117

 140 -44 -30 -56

 144 12 49 -322

 -42 -690 -132 14

Chapter 7 Linear aLgebra

487

>> MDE=M_S./C % Elementwise operation: NOT equivalent to M_S/C

MDE =

 -0.7500 -6.0000 -6.0000 0.6923

 5.6000 -0.3636 -0.3000 -0.8750

 1.7778 0.7500 1.0000 -1.6429

 -1.1667 -3.0667 -0.9167 14.0000

>> MD=M_S/C % Not equivalent to M_S./C

MD =

 1.9275 8.5704 -5.6271 -5.8414

 1.4496 -6.4076 1.5420 3.8277

 -1.0389 -10.8246 5.0116 6.9401

 -4.9118 -12.9118 12.6765 3.6765

>> M_AD =A.*D % Elementwise operation: matrix multiplication

M_AD =

 2 -6 3

 6 6 20

 4 9 4

 6 6 3

>> MM_AD= A*D % Error due to size mismatch of [A] and [D]

Error using * Incorrect dimensions for matrix multiplication. Check that the number

of columns in the first matrix matches the number of rows in the second matrix. To

perform elementwise multiplication, use '.*'. Related documentation

>> M_EF=E.*F % Elementwise multiplication of square matrices

M_EF =

 24 7 18

 9 10 56

 36 18 2

>> MM_EF=E*F % Square matrices can be multiplied matrix-wise

MM_EF =

 81 70 38

 87 45 56

 57 50 86

Chapter 7 Linear aLgebra

488

>> Csqrt=sqrt(C) % Not equivalent to sqrtm(C)

Csqrt =

 4.0000 1.4142 1.7321 3.6056

 2.2361 3.3166 3.1623 2.8284

 3.0000 2.0000 2.6458 3.7417

 2.4495 3.8730 3.4641 1.0000

>> Csqrt=sqrtm(C) % Not equivalent to sqrt(C)

Csqrt =

 3.8335 - 0.0167i 0.0738 + 0.7839i 0.1262 + 0.3666i 1.7975 - 1.1337i

 0.3251 + 0.0011i 2.6850 - 0.0526i 1.6850 - 0.0246i 1.1359 + 0.0761i

 1.3123 - 0.0237i 0.7322 + 1.1107i 1.9687 + 0.5194i 1.8178 - 1.6064i

 0.5925 + 0.0373i 2.0922 - 1.7477i 1.7997 - 0.8172i 1.3466 + 2.5276i

>> C_E1 = expm(C) % Matrix exponential not equal to exp(C)

C_E1 =

 1.0e+14 *

 1.5718 1.3711 1.3622 1.5295

 1.5718 1.3711 1.3622 1.5295

 1.5718 1.3711 1.3622 1.5295

 1.5718 1.3711 1.3622 1.5295

>> C_E2 = exp(C) % Exponential of a matrix: not equal to expm(C)

C_E2 =

 1.0e+06 *

 8.8861 0.0000 0.0000 0.4424

 0.0001 0.0599 0.0220 0.0030

 0.0081 0.0001 0.0011 1.2026

 0.0004 3.2690 0.1628 0.0000

>> S=[A(1,1:3); B(2,1:3);C(3,2:4)]; % Created from the existed

>> Y=[A(1), 1.3]; % Created from the existed

>> Arot90=rot90(A) % Matrix rotate

Chapter 7 Linear aLgebra

489

Arot90 =

 1 5 4 3

 -3 2 3 -2

 2 3 1 -3

>> Crep=repmat(C, 2,1) % Matrix replication/copy

Crep =

 16 2 3 13

 5 11 10 8

 9 4 7 14

 6 15 12 1

 16 2 3 13

 5 11 10 8

 9 4 7 14

 6 15 12 1

>> Bflip=fliplr(B) % Matrix flip

Bflip =

 1 -2 4 3

 -6 4 5 2

 2 1 -3 4

Cud=flipud(Crep) % Matrix flip up or down

Cud =

 6 15 12 1

 9 4 7 14

 5 11 10 8

 16 2 3 13

 6 15 12 1

 9 4 7 14

 5 11 10 8

 16 2 3 13

Many of these matrix operations can also be performed in the Simulink

environment. Let’s use the previous examples to demonstrate how and what Simulink

uses for matrix operations and manipulations.

The Simulink Library contains the blocks for sum, multiplication/division, power,

exponent, and concatenation, as shown in Figure 7-21.

Chapter 7 Linear aLgebra

490

Figure 7-21. Matrix operation blocks in the Simulink Library

First define the [A] and [D] matrices in the Command window.

>> A=[2 -3 1; 3 2 5; 1 3 4; -3 -2 3] ;

>> D=[1 2 3; 2 3 4; 4 3 1; -2 -3 1] ;

Now compute the sum and subtraction of matrices [A] and [D], as shown in

Figure 7-22.

Figure 7-22. Matrix sum and subtraction operations in Simulink

Note that matrices [A] and [D] are defined via the Command window and workspace.

The computed sums match the ones calculated using MATLAB’s Command window.

Here are the results of multiplication (see Figure 7-23), exponent, and square (see

Figure 7-24) of the matrices.

Chapter 7 Linear aLgebra

491

Figure 7-23. Matrix multiplication in Simulink

Note that for the matrix multiplication operation shown in Figure 7-23, the Multiply

block changes from element-wise (.*) multiplication to matrix (*) multiplication, as

shown in Figure 7-24.

Otherwise, the multiplication operation will not be performed due to the

mismatched sizes of [A] and [B]. Again, the computed results match the ones

from MATLAB.

Figure 7-24. Setting up the Matrix Multiply block for matrix multiplication (*) or
element-wise multiplication (.*)

Chapter 7 Linear aLgebra

492

Figure 7-25. Matrix exponential and square operation blocks

Note that in the operations in Figure 7-25, the exponential and power operations

are performed with one block (one Math Function block), by choosing its Function type

[pow] in uv and [square] in u2 (see Figure 7-26).

Figure 7-26. How to set the Math Function block for matrix operations

Now by using the Matrix Concatenate block, we create a new matrix (4-by-10) from

the computed the matrix sum (4-by-3), square (4-by-4), and matrix division (4-by-3). See

Figure 7-27.

Chapter 7 Linear aLgebra

493

Figure 7-27. The Matrix Concatenate block performs matrix concatenation.

As demonstrated, Simulink blocks perform various matrix operations, much like

MATLAB functions. However, there are computationally costly simulations with matrix

and array operations in which Simulink models might be slower than MATLAB scripts.

For example, when computing discrete Fourier transforms, Simulink models are much

slower than MATLAB. For some matrix and array operations, the MATLAB Fcn block or

the Interpreted MATLAB Fcn block can be used in Simulink modeling.

In addition to these matrix operations, there are a few other operations by which you

can create new matrices. For instance, you can take out diagonals of existing matrices

with diag(A) or take out selected elements of matrices and create a new matrix.

>> E=[8, 1, 6; 3, 5, 7; 4, 9, 2];

>> F=[3 7 3; 3 2 8; 9 2 1];

>> EF = [diag(E), diag(F)]

EF =

8 3

5 2

2 1

 Standard Matrix Generators
MATLAB has numerous standard array and matrix generators, which can be used to

generate a wide range of matrices. For instance, eye(n), eye(k, m), ones(m), ones(m,

k), zeros(l), zeros(l,k), magic(k), pascal(k), pascal(k, m), rand(m), rand(k, m),

randi(n,m,k), repmat(A, r, c), blkdiag(A, B, C), sparse(m,n), and many more.

Here’s an example:

Chapter 7 Linear aLgebra

494

>> eye(3)

ans =

 1 0 0

 0 1 0

 0 0 1

>> magic(5) % Magic matrix in a size of 5 by 5

ans =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

>> A=pascal(4) % Pascal matrix in a size of 4 by 4

A =

 1 1 1 1

 1 2 3 4

 1 3 6 10

 1 4 10 20

>> A=pascal(4,2) % Pascal matrix in a size of 4 by 4

A =

 -1 -1 -1 -1

 3 2 1 0

 -3 -1 0 0

 1 0 0 0

>> zeros(3) % Zero matrix 3-by-3

ans =

 0 0 0

 0 0 0

 0 0 0

>> zeros(2,3) % Zero matrix 2-by-3

ans =

 0 0 0

 0 0 0

Chapter 7 Linear aLgebra

495

>> ones(3) % Ones matrix 3-by-3

ans =

 1 1 1

 1 1 1

 1 1 1

>> ones(2,3) % Ones matrix 2-by-3

ans =

 1 1 1

 1 1 1

>> eye(3,4) % Unit diagonal matrix of size 3 - by - 4

ans =

 1 0 0 0

 0 1 0 0

 0 0 1 0

>> eye(4,5) % Unit diagonal matrix of size 4 - by - 5

ans =

 1 0 0 0 0

 0 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

>> rand(2) % Uniform random matrix 2-by-2

ans =

 0.8147 0.1270

 0.9058 0.9134

>> rand(2, 4) % Uniform random matrix 2-by-4

ans =

 0.6324 0.2785 0.9575 0.1576

 0.0975 0.5469 0.9649 0.9706

>> randn(3) % Normally distributed random matrix 3-by-3

ans =

 0.7254 -0.2050 1.4090

 -0.0631 -0.1241 1.4172

 0.7147 1.4897 0.6715

Chapter 7 Linear aLgebra

496

>> A = round(randn(3)) % Round up to the nearest 0

A =

 -1 0 0

 1 1 0

 2 1 -1

>> A_rep=repmat(A, 2, 3) % replicating the matrix A by making its

% replication 2 times of rows and 3 times of columns

A_rep =

 -1 0 0 -1 0 0 -1 0 0

 1 1 0 1 1 0 1 1 0

 2 1 -1 2 1 -1 2 1 -1

 -1 0 0 -1 0 0 -1 0 0

 1 1 0 1 1 0 1 1 0

 2 1 -1 2 1 -1 2 1 -1

>> C=eye(2); B=magic(3); A=ones(4);

>> D=blkdiag(A,B,C) % combine matrices in diagonal directions to

% create a block diagonal matrix.

D =

 1 1 1 1 0 0 0 0 0

 1 1 1 1 0 0 0 0 0

 1 1 1 1 0 0 0 0 0

 1 1 1 1 0 0 0 0 0

 0 0 0 0 8 1 6 0 0

 0 0 0 0 3 5 7 0 0

 0 0 0 0 4 9 2 0 0

 0 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 0 0 1

>> randi([-13, 13], 5) % Random integers within [-13, 13]

ans =

 0 7 12 9 -4

 12 -7 1 -7 -8

 -4 0 -10 8 -7

 2 5 -9 -7 3

 -7 11 -7 12 -1

Chapter 7 Linear aLgebra

497

>> K=reshape(randperm(9), 3,3) % Change the size (reshape)

of array % to make 3 by 3 matrix by random permutation

K =

 6 4 7

 1 3 2

 9 8 5

In addition, there are a few dozen matrix generation functions. They are the gallery

of test matrices, such as binomial, cauchy, clement, invol, house, krylov, leslie, lesp,

neumann, poisson, ris, rando, smoke, wilk, and many more. In general, the command

syntax of these matrices is as follows:

[A, B, C,...] = gallery(matname,P1,P2,...);

[A, B, C,...] = gallery(matname,P1,P2,..., classname);

A=gallery(3);

B=gallery(5);

To get more information about the gallery of matrices, type this in the

Command window:

>> help gallery

>> doc gallery

Here are several examples of how to employ gallery matrices:

>> S=[3 2 7]; X=[2 2];

% This is the 3-by-3 Leslie population matrix taken from the model with

average birth numbers S(1:n) and survival rates X(1:n-1)

>> L=gallery('leslie', S, X)

L =

 3 2 7

 2 0 0

 0 2 0

% Chebyshev spectral differentiation matrix of order 3

>> C = gallery('chebspec', 3,1)

C =

 -0.3333 -1.0000 0.3333

 1.0000 0.3333 -1.0000

 -1.3333 4.0000 -3.1667

Chapter 7 Linear aLgebra

498

% Cauchy matrix 3-by-3, C(I, j) = 1/(S(i)+Y(j)). The arguments S and Y are

vectors of length 3.

% If you pass in scalars for S and Y, they are interpreted as vectors 1:S

and 1:Y.

>> S = [3 2 6]; Y = [1 3 2];

>> C = gallery('cauchy', S, Y)

C =

 0.2500 0.1667 0.2000

 0.3333 0.2000 0.2500

 0.1429 0.1111 0.1250

>> % Krylov matrix of size 5-by-5.

>> B = gallery('krylov', randn(5))

B =

 1.0000 2.4392 3.9250 26.5823 24.9976

 1.0000 1.2031 7.8039 6.5275 61.9487

 1.0000 -1.3094 -7.4622 11.6113 -14.5418

 1.0000 0.3038 -3.8311 -16.0811 -10.1830

 1.0000 -3.7454 0.3824 5.7186 -65.2352

>> % House-holder matrix of size 3-by-1.

>> A = [3;2;5]; % Must be a column matrix

>> H = gallery('house', A)

H =

 9.1644

 2.0000

 5.0000

>> % Hankel matrix of size 5-by-5 with elements H(I, j)=0.5/(n-i-j+1.5).

>> B = gallery('ris',5)

B =

 0.1111 0.1429 0.2000 0.3333 1.0000

 0.1429 0.2000 0.3333 1.0000 -1.0000

 0.2000 0.3333 1.0000 -1.0000 -0.3333

 0.3333 1.0000 -1.0000 -0.3333 -0.2000

 1.0000 -1.0000 -0.3333 -0.2000 -0.1429

Chapter 7 Linear aLgebra

499

>> % Smoke matrix of size 3-by-3 – complex, with “smoke ring” pseudo-

spectrum.

>> SM=gallery('smoke', 3)

SM =

 -0.5000 + 0.8660i 1.0000 + 0.0000i 0.0000 + 0.0000i

 0.0000 + 0.0000i -0.5000 - 0.8660i 1.0000 + 0.0000i

 1.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

These standard and gallery matrices have special properties that can be of great

use in various numerical simulations and analysis problems. For instance, these

standard matrices—ones(), eye(), zeros(), rand(), randn()—are used often for signal

processing, data analysis, and memory allocation in large computations.

 Vector Spaces
In signal processing, numerical analyses, and building computer simulation models,

vector spaces are very important. For instance, the logarithmic space is used for

digital signal processing when frequencies go over a unit circle. There are several

straightforward ways by which vectors, vector spaces, and arrays with equal spaces

between their elements can be created. Let’s suppose that we need to create a vector W

that begins with a value w1 and ends with w2, as shown in Figure 7-28.

Figure 7-28. Vector space

If the size Δw is known, then the space can be expressed by W = w1: Δw: w2. For

instance, the whole space can be defined in terms of w1 = 1, w2 = 13, Δw = 0.1 with the

following:

>> w=1:0.1:13;

Chapter 7 Linear aLgebra

500

Moreover, if N number of points between the start and end boundaries of a space are

known, the linear space function linspace() can be used.

>> % This creates a linear space of w array with equally spaced k number of

elements

>> w=linspace(1, 13, N);

Note if N is not specified in the linspace() command, its default value is 100.

This simplex example generates sound waves with a sine function.

fs=3e4; % Sampling frequency

% Different signal frequencies:

f1=100; f2=200; f3=300; f4=400; f5=500; f6=600;

t=0:1/fs:5; % Time

% Signal: sum of sine waves

x=sin(2*pi*t*f1)+sin(2*pi*t*f2)+sin(2*pi*t*f3)+

sin(2*pi*t*f4)+sin(2*pi*t*f5);

[m, n]=size(x); % Gets the size of the created vector space

sound(x, fs) % Plays a created sound & hear from sound cards

The linspace() command creates linearly spaced vector spaces/arrays. In MATLAB,

there is another similar function, called logspace(), that creates logarithmic scaled

vector spaces. For example, you use the following command to create a logarithmic

space of the x array containing 130 logarithmically spaced elements (here, N = 130)

between boundary points 0 and 13:

>> x=logspace(1,13,130);

Likewise, use this command to create 50 logarithmic spaced points between 0 and π:

>> s=logspace(0, pi);

Note if N is not specified in logspace(), then its default value is 50.

Chapter 7 Linear aLgebra

501

 Polynomials Represented by Vectors
For numerical simulations in MATLAB, polynomials are represented via vectors using

coefficients of polynomials in descending order. For instance, a fifth-order polynomial is

given as follows:

 12 13 15 17 135 4 2x x x x� � � �

That is defined as a vector space in the following manner:

>> f = [12, 13, 0, -15, 17, -13];

Note, that MATLAB reads vector entries as a vector of length n+1 as an n-th order

polynomial. Thus, if any of the given polynomial misses any coefficients, zero has to

be entered for its coefficient. For instance, in the previous example, 0 is entered for the

coefficient of x3.

There are several functions that can be used to compute the roots of polynomials.

They are as follows:

• Using the roots() MATLAB function

• Using the zero() Control System Toolbox function

• Using the solve() Symbolic MATH Toolbox function

You find roots of the given polynomial using the base MATLAB function, roots().

>> x_sols=roots(f)

x_sols =

 -1.2403 + 0.9412i

 -1.2403 - 0.9412i

 0.7941 + 0.0000i

 0.3015 + 0.6869i

 0.3015 - 0.6869i

Note that the given polynomial has only one real value root and four complex

valued roots.

The roots are computed by using the solve() function of MATLAB to find symbolic

solutions of the polynomial, and then solutions are converted (note that conversion may

be not necessary) to obtain a shorter number of decimal point numeric data using the

double() function with the following entries in the Command window:

Chapter 7 Linear aLgebra

502

>> syms x

>> syms x

>> Sol=solve(12*x^5+13*x^4-15*x^2+17*x-13)

Sol =

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 1)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 2)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 3)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 4)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 5)

>> double(Sol)

ans =

 0.3015 - 0.6869i

 0.3015 + 0.6869i

 0.7941 + 0.0000i

 -1.2403 - 0.9412i

 -1.2403 + 0.9412i

Roots can be computed by using zero(), which is a function of the Control Toolbox

of MATLAB:

>> F_tf = tf(f, 1)

F_tf =

 12 s^5 + 13 s^4 - 15 s^2 + 17 s - 13

Continuous-time transfer function.

>> x_sols = zero(F_tf)

x_sols =

 -1.2403 + 0.9412i

 -1.2403 - 0.9412i

 0.7941 + 0.0000i

 0.3015 + 0.6869i

 0.3015 - 0.6869i

Note in this case, a transfer function (ratio of two polynomials) with a denominator

of 1 in the “s” domain is created first. Then the roots of s are computed, which would

make the polynomial equal to zero.

Chapter 7 Linear aLgebra

503

The values of polynomials at specific input argument values can be computed using

MATLAB’s built-in function polyval(). Here is an example how to use this function:

>> f = [12, 13, 0, -15, 17, -13]; % Given polynomial

>> x = linspace(-10, 10, 500);

>> f_val = polyval(f,x); % Computed polynomial values

 Simulink Model-Based Solution of Polynomials
To solve polynomials via Simulink modeling, use the MATLAB Fcn block, the Constant

block to input the polynomial coefficients, and the Display block to see the computed

roots. Figure 7-29 shows the complete model saved as Polynomial_Solver.slx.

Figure 7-29. Simulink model to solve the polynomial
12x5 + 13x4 − 15x2 + 17x − 13 = 0

The MATLAB Function block has the following command syntax embedded in it:

function y = fcn(u1, u2, u3, u4, u5, u6)

y = roots([u1, u2, u3, u4, u5, u6]);

The MATLAB Fcn block calls the MATLAB function roots() and computes the roots

of the polynomial with respect to its coefficients given by the input variables u1, u2, …

u6 since we are solving a fifth-order polynomial. As it is, this model does not run, and

there are two more issues related to the size of the variables and solver type. First, the

solver type has to be a fixed-step size type. That can be adjusted via Simulation ➤ Model

Chapter 7 Linear aLgebra

504

Configuration Parameters ➤ Solver Selection ➤ Fixed Step Solver. By default, the solver

is a variable type.

Second, you need to change the size of the output variable y. You can do that by

clicking the icon and selecting Model Explorer ➤ [Model Hierarchy] ➤

Polynomial_Solver.slx ➤ MATLAB Function ➤ y Output ➤ Size. Set the size to 5 and

click Apply. (The fifth-order polynomial has five roots.) After clicking the Run button in

the menu of the Simulink model window or pressing Ctrl+T on the keyboard, you’ll see

the results displayed in Figure 7-30.

Figure 7-30. Complete model with computed roots of the polynomial
12x5 + 13x4 − 15x2 + 17x − 13 = 0

The computed roots of the given polynomial match the ones computed by the

MATLAB commands roots() and zero() to four decimal places.

 Eigen-Values and Eigen-Vectors
Eigen-values and eigen-vectors have broad applications, not only in linear algebra but

also in many engineering problems. For instance, they are used with vibrations, modal

analysis, control applications, robotics, and so forth.

Chapter 7 Linear aLgebra

505

Definition 1. An eigen-value and eigen-vector of a square matrix A are, respectively, a

scalar λ and a nonzero vector ν that satisfy the following:

 Av v� � (Equation 7-6)

Definition 2. Given a linear transformation A (a square matrix), a nonzero vector ν is

defined to be an eigen-vector of the transformation if it satisfies the following eigen-value

equation for some scalar λ:

 A v v� �� � � � �� (Equation 7-7)

In this case, the scalar λ is called an eigen-value of A corresponding to the eigen-

vector {v}.

a b c

d e f

g h i

x

y

z

x

y

z

�

�

�
�
�

�

�

�
�
�
�
�

�
�

��

�

�
�

��
� �

�

�
�

��

�

�

� � � �A X
� �� �� �

� ��

��

� �X
�

 A I� ��� �� �� ��� ��X X� 0 (Equation 7-8)

Here, [I] is the identity matrix. Now by rearranging, the next formulation can be

written as follows:

A X I X� ��� � � ��� �� ��� � �– � 0

(Equation 7-9)

Let’s assume that there is an inverse matrix of the coefficient of [X], i.e., ([A] – [λ] * [I]).

A I� � � ��� �� � �

�
– �

1
0

(Equation 7-10)

There can be other solutions apart from a trivial solution [X] = 0. So, this means

([A] – [λ] * [I]) = 0 is obtained via determinant of this matrix equal to 0.

det A I� ��� ��� �� ��� 0

(Equation 7-11)

The left side of Equation 7-11 is called a characteristic polynomial. So, when this

equation is expanded, it will lead to a polynomial equation of λ. Use the following

example to compute eigen-values and eigen-vectors:

2 3 3 4 5 0

3 2 4 1 5 0

2 0 4 7 2 0

1 2 3

1 2 3

1 2 3

. .

. .

. .

x x x

x x x

x x x

� � �
� � �
� � �

�

�
�

�
�

Chapter 7 Linear aLgebra

506

Now, the given system’s equations are written in matrix form.

2 3 3 4 5

3 2 4 1 5

2 0 4 7 2

0
1

2

3

. .

. .

. .

�
� �

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

x

x

x

Eigen-values of this transformation matrix are defined to be:

det

. .

. .

. .

2 3 3 4 5

3 2 4 1 5

2 0 4 7 2

0

�
� �

� � �

�

�

�
�
�

�

�

�
�
�
�

�
�

�

 � � � � �7 884 49 12 2 5 02 3. . .� � �

Solutions of this characteristic polynomial equation are as follows:

 � � �1 2 38 434 0 162 5 772� � � �. ; . ; .

Further, three eigen-vectors are computed by plugging in each eigen-value one by

one into the equation. Hand calculations of eigen-values and eigen-vectors for larger

systems are tedious and time-consuming. For very large systems of linear equations,

it is infeasible to compute eigen-values and eigen-vectors with hand calculations. All

of these computations can be performed with a single built-in function of MATLAB,

called eig(A):

>> A = [2.3 3.4, 5; 3, 2.4, -1.5; 2, -0.4, -7.2]

A =

 2.3000 3.4000 5.0000

 3.0000 2.4000 -1.5000

 2.0000 -0.4000 -7.2000

>> [v, lambda]=eig(A)

v =

 -0.7649 -0.6510 -0.4725

 -0.6366 0.7276 0.2479

 -0.0983 -0.2164 0.8458

lambda =

 5.7726 0 0

 0 0.1619 0

 0 0 -8.4345

Chapter 7 Linear aLgebra

507

>> A*v - v*lambda % Verify: eigen-vectors and eigen-values;

ans =

 1.0e-14 *

 -0.0888 -0.0638 -0.1776

 -0.1776 -0.0763 0

 0.0555 -0.1783 -0.1776

Note that there are several different syntax forms of the eig() function to compute

eigen-values and eigen-vectors of square arrays, and there is another command, called

eigs(A), to compute eigen-values and eigen-vectors.

d = eig(A)

d = eig(A,B)

[V,D] = eig(A)

[V,D] = eig(A,'nobalance')

[V,D] = eig(A,B)

[V,D] = eig(A,B,flag)

To evaluate the largest eigen-values and eigen-vectors, use this:

d = eigs(A)

[V,D] = eigs(A)

[V,D,flag] = eigs(A); eigs(A,B)

eigs(A,k)

eigs(A,B,k)

eigs(A,k,sigma); eigs(A,B,k,sigma); eigs(A,K,sigma,opts);

eigs(A,B,k,sigma,opts)

 Matrix Decomposition
The matrix decompositions have broad and valuable applications in many areas of

linear algebra and engineering problem solving, for instance, solving linear equations,

linear least squares, nonlinear optimization, Monte-Carlo simulation, experimental data

analysis, modal analysis, circuit design, filter design, and many more. There are a few

types of matrix transformations and decompositions, including QR, LU, LQ, Cholesky,

Schur, singular value decomposition, and so forth. We very briefly already discussed

Chapter 7 Linear aLgebra

508

the command syntaxes of QR, LU, LQ, chol() Cholesky, and svd() singular value

decompositions while solving the systems of linear equations. This section explains how

to compute matrix decompostions by using MATLAB’s built-in functions.

 QR Decomposition
QR decomposition is also called orthogonal-triangular decomposition. It’s the process

of factoring out a given matrix as a product of two matrices. They are traditionally called

the Q and R matrices, and they are the orthogonal matrix Q and the upper triangular

matrix R.

 A QR� �� �Equation 7 12

 Q Q IT � �� �Equation 7 13

Here, Q is an orthogonal matrix, QT is a transpose of Q, R is an upper triangular

matrix, and I is an identity matrix. The QR decomposition is based on the Gram-Schmidt

method. More details of the Gram-Schmidt method can be found on Wikipedia [1]. In

MATLAB for the QR decomposition computation, there is a function called qr(). It has a

few different syntax methods that evaluate Q, R, and other relevant matrices.

[Q,R] = qr(A) %Produces upper triangular matrix R & unit matrix Q

[Q,R] = qr(A,0) %Produces the economy-size decomposition

[Q,R,E] = qr(A) %Produces Q, R and permutation matrix E =>A*E = Q*R

[Q,R,E] = qr(A,0) %Produces economy-size decomposition: A(:,E) = Q*R

X = qr(A) %Produces matrix X. triu(X) is upper triangular

factor R

X = qr(A,0) % The same as X = qr(A);

R = qr(A) % Used when A is a sparse matrix and computes a Q-less

% QR decomposition and returns R.

 Example: Computing QR Decomposition of a 5-by-5 Matrix

Let’s take matrix [A] of size 5x5 generated from a normally distributed random number

generator, called randn(). Compute the QR decompositions of the [A] matrix.

Chapter 7 Linear aLgebra

509

>> format short

>> A = randn(5)

A =

 0.3335 -0.4762 -0.3349 0.6601 0.0230

 0.3914 0.8620 0.5528 -0.0679 0.0513

 0.4517 -1.3617 1.0391 -0.1952 0.8261

 -0.1303 0.4550 -1.1176 -0.2176 1.5270

 0.1837 -0.8487 1.2607 -0.3031 0.4669

>> [Q, R]=qr(A)

Q =

 -0.4629 0.0336 0.6635 0.4906 0.3219

 -0.5432 -0.7902 -0.2551 -0.1236 0.0155

 -0.6269 0.4640 0.0710 -0.4160 -0.4622

 0.1808 -0.1702 0.5228 -0.7440 0.3339

 -0.2549 0.3609 -0.4650 -0.1322 0.7557

R =

 -0.7205 0.9045 -1.3201 -0.1084 -0.3993

 0 -1.7127 0.6793 -0.0872 0.2522

 0 0 -1.4600 0.4687 0.6421

 0 0 0 0.6154 -1.5365

 0 0 0 0 0.4891

>> [Q, R]=qr(A, 0)

Q =

 -0.4629 0.0336 0.6635 0.4906 0.3219

 -0.5432 -0.7902 -0.2551 -0.1236 0.0155

 -0.6269 0.4640 0.0710 -0.4160 -0.4622

 0.1808 -0.1702 0.5228 -0.7440 0.3339

 -0.2549 0.3609 -0.4650 -0.1322 0.7557

R =

 -0.7205 0.9045 -1.3201 -0.1084 -0.3993

 0 -1.7127 0.6793 -0.0872 0.2522

 0 0 -1.4600 0.4687 0.6421

 0 0 0 0.6154 -1.5365

 0 0 0 0 0.4891

Chapter 7 Linear aLgebra

510

>> [Q,R,E]=qr(A)

Q =

 -0.1608 -0.0026 -0.4424 0.8652 0.1726

 0.2655 -0.0455 0.7987 0.4982 -0.2035

 0.4990 -0.4921 -0.3661 0.0262 -0.6116

 -0.5367 -0.8164 0.1799 -0.0321 0.1099

 0.6054 -0.2988 -0.0065 -0.0386 0.7366

R =

 2.0823 -0.1148 -1.1322 -0.2883 0.4568

 0 -1.7950 0.5142 0.3657 -0.1895

 0 0 1.4850 -0.3119 -0.0250

 0 0 0 0.5510 0.4924

 0 0 0 0 -0.1773

E =

 0 0 0 0 1

 0 0 1 0 0

 1 0 0 0 0

 0 0 0 1 0

 0 1 0 0 0

>> A*E

ans =

 -0.3349 0.0230 -0.4762 0.6601 0.3335

 0.5528 0.0513 0.8620 -0.0679 0.3914

 1.0391 0.8261 -1.3617 -0.1952 0.4517

 -1.1176 1.5270 0.4550 -0.2176 -0.1303

 1.2607 0.4669 -0.8487 -0.3031 0.1837

>> Q*R

ans =

 -0.3349 0.0230 -0.4762 0.6601 0.3335

 0.5528 0.0513 0.8620 -0.0679 0.3914

 1.0391 0.8261 -1.3617 -0.1952 0.4517

 -1.1176 1.5270 0.4550 -0.2176 -0.1303

 1.2607 0.4669 -0.8487 -0.3031 0.1837

Chapter 7 Linear aLgebra

511

 LU Decomposition
The LU decomposition or factorization is also called a modified form of the Gauss

elimination method and was introduced by Alan Turing [2]. It is defined as follows:

 A LU= (Equation 7-14)

Here, A is a rectangular matrix, and L and U are the lower and upper triangular

matrices, respectively.

For example, a 3-by-3 matrix can be LU factorized with the following expressions:

A A A

A A A

A A A

L

L L L

11 12 13

21 22 23

31 32 33

21

31 32 33

1 0 0

1 0

�

�

�
�
�

�

�

�
�
�
�
�

�

�
��
�

�

�

�
�
�
�
�

�

�
�
�

�

�

�
�
�

U U U

U U

U

11 12 13

22 23

33

0

0 0

In MATLAB, the LU decomposition is evaluated using the following syntax of the

built-in function lu():

Y = lu(A) %Produces matrix Y, for sparse A. Y contains only

L [L,U] = lu(A) %Produces U and L

[L,U,P] = lu(A) %Produces U & L with a unit diagonal & permutation

matrix P

[L,U,P,Q] = lu(A) % Produces U, L, and row permutation matrix P

 % and column reordering matrix Q, so that

P*A*Q = L*U

[L,U,P,Q,R] = lu(A) % Produces U,L, & permutation matrices P and Q,

 % d iagonal scaling matrix R so that P*(R\

A)*Q = L*U

 % for sparse non-empty A.

[...] = lu(A,'vector') %Produces the permutation information in two %row

vectors p and q. A user can specify from 1 to 5

outputs.

[...] = lu(A,thresh)

[...] = lu(A,thresh,'vector')

Chapter 7 Linear aLgebra

512

 Example: Computing LU Composition of a 3-by-3 Pascal Matrix

Let’s compute L, U, and other (P, Q, R) matrices from any given rectangular matrix. For

this task, you write a small script called LU_decomposition.m with MATLAB’s built-in

function lu(). The script takes one user entry (input), which has to be a rectangular

matrix. You’ll employ in this script another built-in function of MATLAB, called

issparse(). It identifies whether the user-entered matrix is a sparse matrix or not.

% LU_decomposition.m

A=input('Enter rectangular matrix: ');

if issparse(A)

 Y = lu(A) %#ok

 [L,U,P,Q] = lu(A) %#ok

 disp(' oops more ')

 [L,U,P,Q,R] = lu(A) %#ok

 [L, U, P, Q, R] = lu(A,'vector') %#ok

else

 [L,U] = lu(A) %#ok

 [L,U,P] = lu(A) %#ok

 % Check evaluation results:

 ERROR=P*A-L*U %#ok

 [L,U,P] = lu(A, 'vector') %#ok

end

Run the script LU_decomposition.m and enter a standard matrix, called pascal(3),

as an input matrix.

Enter rectangular matrix: pascal(3)

L =

 1.0000 0 0

 1.0000 0.5000 1.0000

 1.0000 1.0000 0

U =

 1.0000 1.0000 1.0000

 0 2.0000 5.0000

 0 0 -0.5000

Chapter 7 Linear aLgebra

513

L =

 1.0000 0 0

 1.0000 1.0000 0

 1.0000 0.5000 1.0000

U =

 1.0000 1.0000 1.0000

 0 2.0000 5.0000

 0 0 -0.5000

P =

 1 0 0

 0 0 1

 0 1 0

ERROR =

 0 0 0

 0 0 0

 0 0 0

L =

 1.0000 0 0

 1.0000 1.0000 0

 1.0000 0.5000 1.0000

U =

 1.0000 1.0000 1.0000

 0 2.0000 5.0000

 0 0 -0.5000

P =

 1 3 2

Rerun the script and use a sparse matrix of size 3-by-3 as input.

Enter rectangular matrix: sparse(3)

Y =

 (1,1) 3

 oops more

L =

 (1,1) 1

Chapter 7 Linear aLgebra

514

U =

 (1,1) 1

P =

 (1,1) 1

Q =

 (1,1) 1

R =

 (1,1) 3

L =

 (1,1) 1

U =

 (1,1) 1

P =

 1

Q =

 1

R =

 (1,1) 3

 Example: Solving [A]{x}=[b] Using LU Composition

LU composition can be employed to solve the [A]{x} = [b] system of linear equations

using the MATLAB’s mldivide() or backslash (\) operator.

[A]{x} = [b] → [A] = [P]′ ∗ [L] ∗ [U]

[y] = [L]([P] ∗ [b]) → {x} = [U]\[y]

Let’s take the following example:

3
2

3
1

2
1

2
2

3

4
3

x y z

x y z

x y z

� � �

� � �

� � �

�

�

�
�
�

�

�
�
�

Chapter 7 Linear aLgebra

515

The solution of this example is as follows:

A = [3 -2/3 1; 2 1 -1/2; 3/4 -1 -1];

b = [1;2;3];

[L, U, P]=lu(A);

y=mldivide(L,(P*b));

x = U\y

x =

 0.82

 -0.555

 -1.83

 Cholesky Decomposition
The Cholesky decomposition is particularly important for Monte Carlo simulations

and Kalman filter designs. This type of matrix factorization is applicable only to

square matrices and to Cholesky triangles, which are decompositions of positive and

definite matrixes that is decomposed into a product of a lower triangular matrix and

its transpose. The Cholesky decomposition [3, 4] can be expressed via the following

formulation:

 A U UT= (Equation 7-15)

Here, A is a square matrix, and U and UT are an upper triangular matrix and its

transpose, respectively. This formulation can be written with lower triangular matrix (L)

and its transpose (LT) as well.

 A LLT= (Equation 7-16)

In MATLAB, the Cholesky decompositions are evaluated using the following syntax

options of the MATLAB’s built-in function, chol():

R = chol(A) % Produces an upper triangular matrix R satisfying: R'*R=A

L = chol(A,'lower') % Produces a lower triangular matrix R satisfying:

 % L*L'=A

[R,p] = chol(A) %Produces an upper triangular matrix R and p is 0

[L,p] = chol(A,'lower') %Produces lower triangular matrix R&p is 0

[R,p,S] = chol(A) % When A is a sparse matrix, produces a permutation

 % matrices S and R, and p that can be zero or non-zero

Chapter 7 Linear aLgebra

516

[R,p,s] = chol(A,'vector') % Produces the permutation information %as a

vector 's'

[L,p,s] = chol(A,'lower','vector') % Produces a lower triangular matrix

 % L and a permutation vector 's'

Note Using chol (the Cholesky decomposition operator) is preferable over the
eig (eigen-value and eigen-vector) operator for determining positive definiteness.

To evaluate the Cholesky decompositions of any given matrix (a user-entered

matrix), you write the next script, called Chol_decoposition.m, by considering

the requirements and properties of the Cholesky decompositions to compute

decompositions of any matrix with respect to the formulations in Equations 7-15 and

7-16. It takes one input, which is a user entry matrix. Note that in this script, we used

disp(), size(), det(), run(), and a pop-up dialog box command, warndlg().

% Chol_decomposition.m

clearvars; clc

disp('Note your matrix must be square & positive definite!!!')

disp('NB: Positive means all determinants must be positive.')

disp('You can enter as matrix elements ')

disp('or define your matrix 1st, ')

disp('and then just enter your matrix name')

disp(' ')

A=input('Enter a given Matrix: ');

[rows, cols]=size(A);

for k=1:rows

 % Determinants are computed

 Det_A(k)=det(A(1:k, 1:k));

end

if rows==cols

 if Det_A>0

 if issparse(A)

 [R,p,S] = chol(A) %#ok

 [R,p,s] = chol(A,'vector');

 [L,p,s] = chol(A,'lower','vector');

Chapter 7 Linear aLgebra

517

else

 R = chol(A) %#ok % Upper triangular matrix R: R'*R=A

 L = chol(A,'lower') %#ok % Lower triangular matrix R.

 [R,p] = chol(A);

% Verify:

Error_up = A-R'*R;

Error_low = A-L*L';

disp('Error is with upper triangular matrix: ')

disp(Error_up)

disp('Error is with lower triangular matrix:')

disp(Error_low)

 end

else

warndlg('Sorry your matrix is not positive and definite!')

warndlg('Try again!!!')

run('Chol_decomposition')

 end

end

You can test the script with different input entries (matrices). Let’s use a 4-by-4

standard matrix generated with pascal().

Note your matrix must be square & positive definite!!!

NB: Positive means all determinants must be positive.

You can enter as matrix elements

or define your matrix 1st,

and then just enter your matrix name

Enter a given Matrix: pascal(4)

R =

 1 1 1 1

 0 1 2 3

 0 0 1 3

 0 0 0 1

Chapter 7 Linear aLgebra

518

L =

 1 0 0 0

 1 1 0 0

 1 2 1 0

 1 3 3 1

Error is with upper triangular matrix:

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

Error is with lower triangular matrix:

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

Now, consider a magic matrix of size 3-by-3.

>> run('Chol_decomposition')

Note your matrix must be square & positive definite!!!

NB: Positive means all determinants must be positive.

You can enter as matrix elements

or define your matrix 1st,

and then just enter your matrix name

Enter a given Matrix: magic(3)

After running the script with an input entry of a magic square matrix of size 3-by-3,

the warning dialog boxes shown in Figure 7-31 appear.

Figure 7-31. Warnings showing that the input matrix is not positive and definite
and so cannot compute the Cholesky decompositions

Chapter 7 Linear aLgebra

519

Besides these two warning message boxes shown in Figure 7.31, the code keeps

asking to enter a matrix. The Chol_decoposition.m script identifies the Cholesky

decomposition properties and computes the Cholesky decomposition of a user-entered

matrix. It detects a matrix type and works for given square and positive definite matrices

with the MATLAB built-in function chol().

 Schur Decomposition
The Schur decomposition has many applications in numerical analyses, including

image-processing areas in combination with other matrix decompositions or

factorization tools. The Schur decomposition of a complex square matrix [A] is defined

as a matrix decomposition [5]:

 QH AQ = T = D + N (Equation 7-17)

Here, Q is a unitary matrix, QH is a conjugate transpose of Q, and T is an upper

triangular matrix that’s equal to sum of a matrix D = diag (λ1, λ2, λ3,…, λn) a diagonal

matrix consisting of eigen-values λi of A,and strictly upper triangular matrix N. The Schur

decomposition can be computed via the MATLAB’s built-in function, schur().

T = schur(A) % Produces the Schur matrix of A

T = schur(A, flag) % Produces the Schur matrix for two cases.

%{

for real matrix A, returns a Schur matrix T in one of two forms depending on the value

of flag:

'complex' T is triangular and is complex if A has complex eigenvalues.

'real' T has the real eigen-values on the diagonal and the complex eigen-

values in 2-by-2 blocks on the diagonal. 'real' is the default.

%}

[U,T] = schur(A,...)

Let’s look at several examples of standard matrices and compute their Schur

decompositions:

Chapter 7 Linear aLgebra

520

>> A=magic(5); B=pascal(3); C=round(randn(5,5)*10);

>> SA=schur(A)

SA =

 65.0000 0.0000 -0.0000 0.0000 -0.0000

 0 -21.2768 -2.5888 2.1871 -3.4893

 0 0 -13.1263 -3.3845 -2.8239

 0 0 0 21.2768 2.6287

 0 0 0 0 13.1263

>> SB=schur(B)

SB =

 0.1270 0 0

 0 1.0000 0

 0 0 7.8730

>> SC=schur(C)

SC =

 20.7072 7.3851 -0.2741 9.7514 1.9523

 0 -6.1453 17.4134 -5.0801 -14.3751

 0 -10.3437 -6.1453 14.7269 9.9502

 0 0 0 4.8687 2.1653

 0 0 0 0 -9.2853

>> [T, U]=schur(A, 'complex')

T =

 -0.4472 0.0976 -0.6331 0.6145 -0.1095

 -0.4472 0.3525 0.7305 0.3760 0.0273

 -0.4472 0.5501 -0.2361 -0.6085 0.2673

 -0.4472 -0.3223 0.0793 -0.3285 -0.7628

 -0.4472 -0.6780 0.0594 -0.0535 0.5778

U =

 65.0000 0.0000 -0.0000 0.0000 -0.0000

 0 -21.2768 -2.5888 2.1871 -3.4893

 0 0 -13.1263 -3.3845 -2.8239

 0 0 0 21.2768 2.6287

 0 0 0 0 13.1263

Chapter 7 Linear aLgebra

521

>> [TA, UA]=schur(B, 'real')

TA =

 -0.5438 -0.8165 0.1938

 0.7812 -0.4082 0.4722

 -0.3065 0.4082 0.8599

UA =

 0.1270 0 0

 0 1.0000 0

 0 0 7.8730

>> [T, U]=rsf2csf(U,T) % Convert real Schur form to complex Schur form

T =

 -61.5539 20.8834 -0.0000 -0.0000 0.0000

 6.2354 18.3788 9.2270 -1.2464 3.6069

 2.0845 6.1442 -9.8039 6.8268 2.6290

 0.9854 2.9044 -4.6344 -20.6565 -1.4269

 0.0340 0.1003 -0.1601 -0.7135 -13.1055

U =

 -0.5636 0.1041 0.6400 0.4570 -0.0505

 0 0.8710 -0.2777 0.0336 0.2993

 -0.4472 0 -0.4787 0.7335 -0.3928

 -0.4472 -0.3223 0 -0.5309 -0.6067

 -0.4472 -0.6780 0.0594 0 0.6209

 Singular Value Decomposition
The singular value decomposition (SVD) has many applications in signal processing,

statistics, and image processing areas. It is formulated as a product of three matrices,

which are an orthogonal matrix (Uij), a diagonal matrix (Dij), and the transpose of an

orthogonal matrix (Vjj), if a given matrix Aij is an i by j sized real matrix with i > j.

A U D Vii ij jj

T=
 (Equation 7-18)

Here, U U I V V Iii
T

ii jj
T

jj= =, . Diagonal entries of Dij are known as singular values of Aij.

Chapter 7 Linear aLgebra

522

Moreover, there are a few other important properties of the SVD.

• Left-singular vectors of Aij are eigen-vectors of AijAij*.

• Right-singular vectors of Aij are eigen-vectors of Aij*Aij.

• Nonzero singular values (on the diagonal entries of Dij) of Aij are

square roots of the nonzero eigen-values of both Aij*Aij and Aij*.

There are a few ways to evaluate the SVD, singular values, and vectors of any given

matrix. You use svd() and svds(), which are MATLAB built-in functions.

s = svd(A) %Produces a vector of singular values

[U,D,V] = svd(A) %Produces a diagonal matrix D of the same dimension

%as A, with nonnegative diagonal elements in decreasing order, and

% unitary matrices U and V so that X = U*D*V'.

[U,D,V] = svd(A,0) % Produces the "economy size" decomposition. If A

% is m-by-n with m > n, then SVD computes only the first n columns of

%U and D is n-by-n. s = svds(A)

s = svds(A,k)

s = svds(A,k,sigma) s = svds(A,k,'L')

s = svds(A,k,sigma,options) [U,D,V] = svds(A,...)

[U,D,V,flag] = svds(A,...)

Now, take two matrices (of size 2-by-3 and 3-by-3) and evaluate their SVDs.

>> A=ceil(randn(2,3)*10); B=pascal(3);

>> A=ceil(randn(2,3)*10); B=pascal(3);

>> A

A =

 -2 -4 3

 -15 -1 -2

>> B

B =

 1 1 1

 1 2 3

 1 3 6

Chapter 7 Linear aLgebra

523

>> svd(A)

ans =

 15.2914

 5.0172

>> [U,V,D]=svd(A)

U =

 -0.1354 -0.9908

 -0.9908 0.1354

V =

 15.2914 0 0

 0 5.0172 0

D =

 0.9896 -0.0100 -0.1434

 0.1002 0.7629 0.6387

 0.1030 -0.6464 0.7560

>> [U,V,D]=svd(A, 0)

U =

 -0.1354 -0.9908

 -0.9908 0.1354

V =

 15.2914 0 0

 0 5.0172 0

D =

 0.9896 -0.0100 -0.1434

 0.1002 0.7629 0.6387

 0.1030 -0.6464 0.7560

>> SA = svds(A)

SA =

 15.2914

 5.0172

>> SB = svds(B)

SB =

 7.8730

 1.0000

 0.1270

Chapter 7 Linear aLgebra

524

>> SA = svds(A, 2)

SA =

 15.2914

 5.0172

>> SB = svds(B, 2)

SB =

 7.8730

 1.0000

>> SB = svds(B, 3)

SB =

 7.8730

 1.0000

 0.1270

 Logic Operators, Indexes, and Conversions
MATLAB uses logic 1 and logic 0 for system variables to denote logic values for true and

false, respectively. Variables of logical values are distinguished by a logical data type.

Table 7-2 is a list of logic operators and their operational functions used in MATLAB.

Table 7-2. Logical Expressions and Operators in MATLAB

Operator Operation

true, false Setting logical value

& (and), | (or), ~ (not), xor, any, all Logical operations

&&, || Short-circuits operations

bitand, bitcmp, bitor, bitmax, bitxor, bitset, bitget,

bitshift

bitwise operations

==(eq), ~=(ne), <(lt), >(gt), <=(le), >=(ge) relational operations

strcmp, strncmp, strcmpi, strncmpi String comparisons

Chapter 7 Linear aLgebra

525

Note to get a complete list of relational operators, their functions, and how to
use them, type >> help relop in the Command window.

 Logical Indexing
Logic operators are one of the most central and essential keys to any programming

language. Logic operators introduce another method for accessing data in MATLAB

variables. For instance, given a magic matrix [A] of size 5-by-5, say you need to separate

out the elements of [A] that are equal to or less than 13.

>> A=magic(5)

A =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

>> Index = A>15 | A<5 % Show which element is greater than 15 or

less than 5

Index =

 5×5 logical array

 1 1 1 0 0

 1 0 0 0 1

 1 0 0 1 1

 0 0 1 1 1

 0 1 1 1 0

>> A(Index)

ans =

 17

 23

 4

 24

 18

 1

Chapter 7 Linear aLgebra

526

 19

 25

 20

 21

 2

 16

 22

 3

>> A(A>15 | A<5); % Or in a direct way

Let’s explore the logical indexing properties further via examples to select matrix

elements.

>> E = eye(5) % Identity matrix

E =

 1 0 0 0 0

 0 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

 0 0 0 0 1

Array indices must be positive integers or logical values.

>>EL=loogical(E)

EL =

 5×5 logical array

 1 0 0 0 0

 0 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

 0 0 0 0 1

>> A(EL) % Compare Ih A(E)

ans =

 17

 5

 13

Chapter 7 Linear aLgebra

527

 21

 9

A(EL) - shows all diagonal elements of A matrix.

Note

Note the previous example demonstrates the identity matrix [e] (whose
elements are 1s and 0s), which is not equivalent to the logic matrix [e_L] (whose
elements are also 1s and 0s).

Moreover, there are a number of functions/commands (e.g., the is*() command)

that can be used to find out whether the input is of a specified type of variable, contains

any elements of a particular type, or whether such a variable or file exists, and so

forth. All of these functions can be used for logical indexing. Let’s look at a few simple

examples:

>> x=13; isnumeric(x) % whether x is a numeric data or not?

ans = 1

>> x=13; islogical(x) % whether x is a logical data Or not?

ans = 0

>> x=13; islogical(x>110) % whether the operation

(x>110) is logic or not

ans =1

>> x = 13; isempty(x) % whether x is an empty or not

ans =1

>> x = []; isempty(x) % whether x is an empty or not

ans = logical 1

>> x = [1 , 2; 3, 4]; iscell(x) % whether x is a cell array or not

ans = logical 0

>> x = [1, 0; 0, 4];

>> X_x = x/0; isnan(X_x) % whether any elements of X_x

are not-a- number

ans = 2×2 logical array

0 1

1 0

Chapter 7 Linear aLgebra

528

>>' e'ist''X_'', 'var') % whether the variable called

X_x exists or not

ans =1

In the previous example, zero divided by zero (0/0) is defined to be NaN (i.e., not-a-

number) in MATLAB.

Note the logical indexing operations have particular importance in matrix/array
operations, programming, data analysis, and processing since they can be used to
sort out, locate, or change particular elements of matrices/arrays/data sets.

 Example: Logical Indexing to Locate and Substitute
Elements of [A] Matrix

Given: 3-by-3 matrix [A] with some elements equal to infinity A �
� �
�

� �

�

�

�
�
�

�

�

�
�
�

17 6

5 3 11

13

How do you substitute the elements equal to inf with 1000 and all negative-valued

elements with 0? This task can be solved easily using logical indexing operations.

>> A = [17, Inf, -6 ; 5 -3, 11; Inf, 13, Inf] % [A] is entered

A =

 17 Inf -6

 5 -3 11

 Inf 13 Inf

>> Index_inf = (A==1/0) % Find out which elements of A

are equal to inf

Index_inf =

 3×3 logical array

 0 1 0

 0 0 0

 1 0 1

Chapter 7 Linear aLgebra

529

>> A(Index_inf) =1000 % Set inf elements equal to 1000

A =

 17 1000 -6

 5 -3 11

 1000 13 1000

>> Index_neg = A<0 % Find out which elements of A are negative

Index_neg =

 3×3 logical array

 0 0 1

 0 1 0

 0 0 0

>> A(Index_neg)=0 % Set all negative elements equal to "0"

A =

 17 1000 0

 5 0 11

 1000 13 1000

Note the division of any value by 0 gives the value of Inf in MatLab.

Let’s look at another example. Given a matrix [A] of size 4-by-5 with NaN (not a

number) and inf (infinity) elements, how do you substitute NaN elements with 0 and inf

with 100? This task can be solved easily with logical indexing similar to the previously

demonstrated example.

>> A = [2, -3, -2, -3, 1; Inf, -2, 3, -1, NaN; -3, 0, Inf, 3, 2; 3,

NaN, 0, 2, Inf]

A =

 2 -3 -2 -3 1

 Inf -2 3 -1 NaN

 -3 0 Inf 3 2

 3 NaN 0 2 Inf

>> Index_nan = isnan(A) % Find out which elements are NaN

Chapter 7 Linear aLgebra

530

Index_nan =

 4×5 logical array

 0 0 0 0 0

 0 0 0 0 1

 0 0 0 0 0

 0 1 0 0 0

>> A(Index_nan)=0 % Set all NaN elements equal to "0"

A =

 2 -3 -2 -3 1

 Inf -2 3 -1 0

 -3 0 Inf 3 2

 3 0 0 2 Inf

Note that this section contains rather simple and small examples to demonstrate

how easily you can substitute specific (valued) elements of a matrix using logical

indexing operations. This technique (logical indexing or relational operators) can be

applied to matrices, arrays, and data sets of any size. Therefore, the logical indexing is

particularly useful in analysis and processing of large data sets. It is fast and efficient and

does not require any additional effort to program with loop (for ... end, while ...

end) and conditional (if ditio. endlyit) operators.

 Conversions
There are many examples in signal processing where you need to convert something.

Analog to digital converters and vice versa, data processing and analysis, and

programming when analog signal data format or type needs to be converted into digital

or vice versa. For instance, to resolve memory issues in image processing, you might

need to convert decimal (double) formatted data into binary numbers. That can be

easily accomplished in MATLAB using DEC2BIN(). Conversely, BIN2DEC() is used to

convert binary strings into decimal (double) type of data. DEC2BIN(D) returns the binary

representation of D as a string. D must be a non-negative integer smaller than 252.

DEC2BIN(D,N) produces a binary representation with at least N bits.

Another conversion example is character conversion. You need to convert numbers

into character strings and vice versa. MATLAB uses the CHAR() command to convert

numbers into ASCII/ANSI formatted characters, DOUBLE() to convert characters and

symbolic representations of numbers into double precision format, STR2NUM() to convert

Chapter 7 Linear aLgebra

531

strings into binary numbers, and NUM2STR() to convert any number into a string. Let’s

consider several examples of employing these conversion commands:

>> dec2bin(11) % Converts decimal (integer) into a binary string

ans =

 '1011'

>> dec2bin(23)

ans =

'10111'

>> dec2bin(22) ans =

'10110'

>> x=13.125/5.5;

>> dec2bin(x)

ans =

 '10'

>> dec2bin(11.11)

ans =

 '1011'

>> dec2bin(11)

ans =

 '1011'

>> bin2dec('1101') % Converts a binary number into decimal one

ans =

13

>> bin2dec('10110')

ans =

22

>> dec2bin(64)

ans =

10000000

>> char(bin2dec('10000000'))

ans =

@

>> G='MatLab' G =

MatLab

Chapter 7 Linear aLgebra

532

>> G0=G+0 G0 =

77 97 116 76 97 98

>> d2bG0=dec2bin(G0) d2bG0 =

1001101

1100001

1110100

1001100

1100001

1100010

>> b2dG0=bin2dec(d2bG0) b2dG0 =

77

97

116

76

97

98

>> char(b2dG0)' ans =

MatLab

>> num2str(123) ans =

'123'

>> num2str('matlab') ans =

'matlab'

>> ans+0

109 97 116 108 97 98

 Example: Creating Character Strings with char()
Create the following letters in a progressive format by writing a script that has one

input argument that has to be an integer. All the other letters need to be generated

programmatically.

a

b c

d e f

g h i j

k l m n o

Chapter 7 Linear aLgebra

533

These characters can be generated in several ways. First, you need to determine the

ASCII/ANSI numeric representation of a. Then you can generate all the other letters.

>> format short

>> double('a')

 97

>> char(97)

 'a'

>> double('b')

 98

The letter as numeric representation in ASCII/ANSI is 97, b is represented by 98,

and so forth. Based on these, you can generate linear space of integers starting at 97

and convert them to character strings one row at a time. In other words, you display one

character on the first row, two characters on the second, three in the third row, etc. Here

is the complete script (print_character.m), which prints the letters in progressive order:

% print_character.m

% Part 1.

Start = 97;

for ii = 1:5

 for jj = 1:ii

 fprintf(char(Start));

 Start = Start+1;

 end

 fprintf('\n')

end

Here is the result of the script:

a

bc

def

ghij

klmno

Let’s consider the following example, which prints a series of uppercase characters:

ABCDEF

GHIJK

Chapter 7 Linear aLgebra

534

LMNO

PQR

ST

U

This example is similar to the previous example with a few small differences—it

requires uppercase characters, starts with six letters, and reduces in the following rows.

Again, you can determine the numerical representation of A in ANSI/ASCII with the

following commands:

>> double('A')

ans =

 65

>> 'A' + 0 % An alternative way:

ans =

 65

So now you know that the numerical representation of A is 65. You can then edit

the script (print_characters.m) by introducing two small changes and then write

this script:

%% Part 2. Upper cases

Start = 65;

for ii = 1:2:9

 for jj = 1:ii

 fprintf(char(Start));

 Start = Start+1;

 end

 fprintf('\n')

end

When you execute this script, you obtain the following output in the

Command window:

ABCDEF

GHIJK

Chapter 7 Linear aLgebra

535

LMNO

PQR

ST

U

Via a few examples, this section discussed logic operators, conversions, and indexing

issues briefly. Applications of the issues of conversions are demonstrated via more

extended examples in other chapters.

 Summary
This chapter introduced linear algebra, matrix operations, vector spaces, polynomials,

methods of solving linear systems of equations, and matrix decompositions and

conversions. Via examples, you learned how to use MATLAB’s built-in functions and

commands, how to develop Simulink blocks in association with the MATLAB Command

window, and how to use functions and the MATLAB Fcn block. The following MATLAB

functions were discussed and explained in examples:

• Matrix operations +,-, *, and /

• Elementwise operations .*, .^, and ./

• Backslash operator (\) and mldivide()

• Solving linear equations with linsolve()

• Matrix inverse operators inv() and pinv()

• Eigen-values and eigen-vectors eig()

• Polynomial solvers roots(), solve(), and zero()

• Symbolic math equation solver solve()

• Standard matrices and gallery matrices, magic(), gallery(), and

sparse()

• Vector spaces linspace() and logspace()

• Matrix operations and factorization methods, such as QR, LU,

Cholesky, SVD, Schur: qr(), lu(), chol(), svd(), schur(), and

decomposition()

Chapter 7 Linear aLgebra

536

• Logical operators (<=, ~=, >=, |, &..., is*()) and

indexing options

• Conversion tools and operators (bin2dec, dec2bin, double, and char)

 References

 [1]. Wikipedia, http://en.wikipedia.org/wiki/Gram–Schmidt_

process, viewed on September 19, 2013.

 [2]. Bunch, James R.; Hopcroft, John (1974), “Triangular Factorization

and Inversion by Fast Matrix Multiplication,” Mathematics of

Computation 28: 231–236, ISSN 0025-5718.

 [3]. Gentle, J. E. “Cholesky Factorization.” §3.2.2 in Numerical Linear

Algebra for Applications in Statistics. Berlin: Springer-Verlag,

pp. 93-95, 1998.

 [4]. Nash, J. C. “The Choleski Decomposition.” Ch. 7 in Compact

Numerical Methods for Computers: Linear Algebra and

Function Minimisation, 2nd ed. Bristol, England: Adam Hilger,

pp. 84-93, 1990.

 [5]. Mathworld , http://mathworld.wolfram.com/

SchurDecomposition.html, viewed on September 20, 2013.

 Exercises for Self-Testing
 Exercise 1
Solve the following equations for variables x, y, and z:

3 5 4 2

2 3 2 2

6
2

0

x y z

x y z

x y
z

� � � �
� � � �

� ��
�
�

�
�
� �

�

�

�
��

�

�
�
�

Chapter 7 Linear aLgebra

http://en.wikipedia.org/wiki/Gram–Schmidt_process
http://en.wikipedia.org/wiki/Gram–Schmidt_process
http://mathworld.wolfram.com/SchurDecomposition.html
http://mathworld.wolfram.com/SchurDecomposition.html

537

 1. Use the backslash (\) operator or mldivide() to solve the given

system of equations.

 2. Use the inverse matrix method inv() to solve the given system of

equations.

 3. Use the linsolve() function to solve the given system of

equations.

 4. Use the solve() function to solve the given system of equations.

 5. Use chol() to solve the given system of equations.

 6. Use Simulink blocks to solve the given system of equations.

 7. Compute errors by computing norms for each of the methods.

 Exercise 2
Solve the following equations, using the matrix inverse:

2 9 3 15

13 2 5 11

2 2 9

1 2 3

1 2 3

1 2 3

q q q

q q q

q q q

� � �
� � �
� � �

�

�
�

�
�

 1. Use the inverse matrix method inv().

 2. Use the least squares method lsqr().

 3. Use the Gauss Elimination method with the lu().

 4. Use rref().

 5. Use the solve().

 6. Use Simulink blocks.

 7. Compare the accuracy (to eight decimal places) of each solution.

Chapter 7 Linear aLgebra

538

 Exercise 3
Solve the following equations:

2 5 3 3 5

2 2 2 5 2

2 2 5 3

1 2 3

1 2 3

1 2 3

. .

.

.

x x x

x x x

x x x

� � �
� � � � �

� � �

�

�
�

�
�

 1. Use the inverse matrix method qr() to solve the given system of

equations.

 2. Use the reduced row echelon method step-by-step by multiplying

rows by scalars and adding or subtracting from each other (don’t

use rref()).

 3. Use the reduced row echelon method rref() to solve the given

system of equations.

 4. Use the decomposition() function to solve the given system of

equations.

 5. Use the solve() function to solve the given system of equations.

 6. Use Simulink blocks to solve the given system of equations.

 7. Compare the accuracy (to 10 decimal places) of these four

methods.

 Exercise 4
Solve the following equations:

2 5 3 3 0 3 5

1 2 2 5 2 2 2 5 2 3

3

1 2 3 5

1 2 3 4 5

1

. . .

. . . .

x x x x

x x x x x

x x

� � � �
� � � � � � �

� 22 3 5

1 2 3 4 5

1 2 5

2 5 1

2 5 3 4 3 6

3 2 4 1 75 13

� � �
� � � � � �

� � �

�

�

�

.

.

. .

x x

x x x x x

x x x

��
�
�

�

�
�
�
�

Chapter 7 Linear aLgebra

539

 1. Use the inverse matrix method inv() to solve the given system of

equations.

 2. Use the singular decomposition svd() method to solve the given

system of equations.

 3. Use the linsolve() function to solve the given system of

equations.

 4. Use the solve() function to solve the given system of equations.

 5. Use Simulink blocks to solve the given system of equations.

 6. Compare the accuracy (to 13 decimal places) of these methods.

 Exercise 5
Given:

 3 6 0x y cz� � �

 2 4 6 0x y z� � �

 x y z� � �2 3 0

• Find for which values of c the set of equations has a trivial solution.

• Find for which values of c the set of equations has an infinite number

of solutions.

• Find relations between x, y, and z.

 Exercise 6
Find the inverse of the given matrix:

A �
�
�
�

�

�

�
�
�

�

�

�
�
�

3 6 12

2 4 6

1 2 3

Chapter 7 Linear aLgebra

540

• Explain why the given matrix does not have an inverse.

• Compute the determinant of the matrix.

• Find eigen-values and eigen-vectors of the given system by

using eig().

• Find eigen-values by using roots().

 Exercise 7
Find the inverse of the given matrix:

A �
�
�
�

�

�

�
�
�

�

�

�
�
�

3 6 2

1 2 4

0 1 3

• Compute determinant of the matrix.

• Find eigen-values and eigen-vectors of the given system using eig().

• Find eigen-values using roots().

 Exercise 8
Find a solution to the following set of equations representing an underdetermined

system, using the left division (\ backslash) method and the pseudo-inverse method

(pinv). Compare your obtained results and discuss the differences.

 2 5 3 3 1 3 0 3 111 2 3 4 5. . . .x x x x x� � � � �

 � � � � � � �1 2 2 5 2 1 5 2 21 2 3 4 5. . .x x x x x

 x x x1 2 32 2 5 3� � �.

 Exercise 9
Solve the following set of equations using the backslash (\) operator, as well as the

linsolve(), inv(), lsqr(), and solve() functions:

Chapter 7 Linear aLgebra

541

 2 3 5x y� �

 6 10 70x y� �

 10 4 53x y� �

 Exercise 10
Show why there is no solution to the following set of equations:

-2x - 3y = 2

-3x - 5y = 7

 5x - 2y = -4

 Exercise 11
Solve the following equations:

2 5 3 3 0 3 5

1 2 2 5 2 2 2 5 2 3

3

1 2 3 5

1 2 3 4 5

1

. . .

. . . .

x x x x

x x x x x

x x

� � � �
� � � � � � �

� 22 3 5

1 2 3 4 5

1 2 5

2 5 1

2 5 3 4 3 6

3 2 4 1 75

� � �
� � � � � �

� � �

�

�

�
�

.

.

. .

x x

x x x x x

x x x v

��
�

�

�
�
�
�

 v � � � � �� �10 9 8 9 10, , , ,

 1. Use the inverse matrix method mldivide() to solve the given

system of equations.

 2. Use the singular decomposition svd() method to solve the given

system of equations.

 3. Use the linsolve() function to solve the given system of

equations.

 4. Use the solve() function to solve the given system of equations.

Chapter 7 Linear aLgebra

542

 Exercise 12
Compute the eigen-values and vectors of the following set of equations:

3 2 5 2 0

0

2 3 4 5 7 0

5
3

4

7

13
9 0

x y z u w

x y z w

x y z u w

y z u w

� � � � �
� � � �

� � � � � �

� � � � �

110 11 8 8 0x y u w� � � �

�

�

�
�
��

�

�
�
�
�

 Exercise 13
Create the matrix [C] from the given two [A] and [B] matrices by using logic operators.

Explain why some of the elements of new array are zeros.

C A�

�

�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�
�

0 0 3

1 0 0

0 0 1

1 0 2

2 1 0

0 0 1

3 6 3

1 2 2

0 1 1

1 3
,

��
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�
�

� �
�
�

�

2

2 1 1

1 0 1

1 2 3

1 1 3

1 2 1

1 1 1

2 2 2

2 0 1

,B

��

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

Hints Use logic operators (<, =) and element-wise matrix multiplication.

 Exercise 14
The useful life of a machine bearing depends on its operating temperature, as the

following data shows. Obtain a functional description (linear, square, and cubic

polynomials) of this data. Plot the found fit functions and the data on the same plot.

Estimate a bearing’s life if it operates at 52.50C.

Chapter 7 Linear aLgebra

543

temperature (0C) 40 45 50 55 60 65 70

bearing life (hours x 103) 28 21 15 11 8 6 4

 Exercise 15
The following represents pressure samples, in MPa, taken in a fuel line once every

second for 10 sec:

Time (Sec) Pressure (MPa) Time (Sec) Pressure (MPa)

1 2.61 6 3.06

2 2.70 7 3.11

3 2.82 8 3.13

4 2.90 9 3.10

5 2.98 10 3.05

a. Fit a first − degree polynomial, a second − degree polynomial, and a third − degree

polynomial to this data. Plot the curve fits along with the data points.

b. Use the results from part a to predict the pressure at t = 11 sec.

 Exercise 16
The distance a spring stretches from its “free length” is a function of how much tension

force is applied to it. The following table gives the spring length y that the given applied

force F produced in a particular spring. The spring’s free length is 4.7 m. Find functional

relation between F and x, the extension from the free length (x = y − 4.7).

Force
F(kN)

Spring Length
y (m)

0 4.7

0.47 7.2

1.15 10.6

1.64 12.9

Chapter 7 Linear aLgebra

544

Also, plot experimental data (F versus x) and functional relation based fit

(F _ linear vs. x) in the same plot. Use the appropriate plot maker type, color, size, etc.,

options.

 Exercise 17
Perform the following:

• Obtain an eye matrix of the size 5-by-5 from the magic matrix of the

size of 5-by-5.

• Create a square eye matrix of the size 10-by-10 from the random

square matrix of the size 10-by-10.

• Obtain a replicated square matrix of size 3-by-9 from the gallery

matrix pascal() of size 3-by-3.

 Exercise 18
Solve the following equations and discuss the solutions for two cases: a = 13 and a = 29.

q q

q q a

q q

1 2

1 2

1 2

1

13 23

2 9

� �
� �
� �

�

�
�

�
�

Write a script with logic and loop operators (if, break, for, and end) to find such

value of a that gives real solutions to these equations. Consider that a has an integer

value that lies within 1 to 50.

Hints Use the rank() function and backslash (\) operators.

Chapter 7 Linear aLgebra

545

 Exercise 19
Solve the following polynomials with roots(), solve(), zero(), and the Simulink model.

 2 3 5 13 131 09 8 4 2u u u u– – –� �

y y

y
y y7 5

4
35

13

4
11 9 3 0� � � � � �

5

4

11

3

13
269 135

4 3
2x

x x
x x� � � � �

 Exercise 20
Create a logarithmic spaced array (a row vector) B of numbers starting with 10 and

ending with 100, and create BB column vector from a row vector B.

 Exercise 21
Play a sound that is defined in the next expression:

 S t tf tf tf tf tf� � � � �� � �� � �� � �� �cos cos cot tan tan2 2 2 2 21 2 3 4 5� � � � � ��

Here, fs = 10000 Hz (sampling frequency); t = 13 sec. (time length); f1 = 100 Hz (1st

signal); f2 = 200 Hz (2nd signal); f3 = 300 Hz (3rd signal); f4 = 600 Hz (4th signal);

f5 = 700 Hz (5th signal).

 Exercise 22
Answer the following questions using MATLAB:

• What are the binary representations of decimal numbers 123,

123.123, 321, 321.123, 223, 322, 333, and 333.3?

• Why are the binary representations of 123 vs. 123.123, 321 vs. 321.123,

and 333 vs. 333.3 the same?

Chapter 7 Linear aLgebra

546

 Exercise 23
Answer the following questions using MATLAB:

• What are the decimal representations of the binary numbers 1001,

01010, 111100, 0101011?

• What are character representations of the binary numbers 1001,

01010, 111100, 0101011?

 Exercise 24
Write a script that takes one input number (an integer) and prints out the following

characters in the order in the Command window:

A

BCD

EFGHI

JKLMNOP

QRSTUVWXY

 Exercise 25
Use numeric values of matrices [A] and [B] from Exercise 11 to evaluate the QR, LU,

LQ, Cholesky, Schur, and singular value decompositions. Explain why some of the

decompositions (matrix factorizations) of [A] and [B] cannot be computed.

 Exercise 26
Create the Hilbert matrix of size 5-by-5 using gallery matrix functions and compute

Cholesky decomposition using the Chol_decoposition.m script. Edit the script

(Chol_decoposition.m) in order to make it compute only the lower triangular matrix of

Cholesky decomposition.

Chapter 7 Linear aLgebra

547

 Exercise 27
Create the Riemann matrix of size 3-by-3 using gallery matrix functions and compute its

QR, LU, LQ, Cholesky, Schur, and singular value decompositions.

 Exercise 28
Perform the following:

• Create the 4-by-4 random matrix with normalized columns and

specified singular values using gallery matrix functions. Hint: Use

randcolu.

• Compute the QR, LU, LQ, and decompositions of the matrix you just

created.

 Exercise 29
Perform the following:

• Create one 5-by-5 random matrix with random integer elements

varying in the range of 1 to 13 and name it A_mat.

• Create one 5-by-5 Krylov matrix using a matrix gallery of Krylov and

name it K_mat.

• Create logic valued 5-by-5 matrix called Logic_A by using logic

operation (A _ mat ≥ K _ mat) and elementwise matrix multiplication

from A_mat and K_mat

Chapter 7 Linear aLgebra

548

 Exercise 30
Create the following 10-by-10 matrix:

Hint Use magic() and repmat().

Chapter 7 Linear aLgebra

	Chapter 7: Linear Algebra
	Introduction to Linear Algebra
	Matrix Properties and Operators
	Simulink Blocks for Matrix Determinant, Diagonal Extraction, and Transpose
	Matrix Inverse or Inverse Matrix
	Simulink Blocks for Inverse Matrix
	Example 1: Solving a System of Linear Equations
	Simulink Modeling

	Example 2: Embedding a MATLAB Function Block to Compute the Determinant and Solve Linear Equations
	Example 3: Accuracy of Solver Functions of Linear Equations
	Example 4: Efficiency of Solver Functions of Linear Equations
	Example 5: Solving Linear Equations ([A]{x} = [b]) by Changing Values of [b]
	Example 6: Linear Equations ([A]{x} = [b]) Applied for the Least Squares Method
	Example 7: Linear Equations ([A]{x} = [b]) Applied for the Least Squares Method
	Example 8: Linear Equations ([A]{x} = [b]) Applied for the Least Squares Method Using Simulink Modeling

	Matrix Operations
	Example: Performing Matrix Operations

	Standard Matrix Generators
	Vector Spaces
	Polynomials Represented by Vectors
	Simulink Model-Based Solution of Polynomials

	Eigen-Values and Eigen-Vectors
	Matrix Decomposition
	QR Decomposition
	Example: Computing QR Decomposition of a 5-by-5 Matrix

	LU Decomposition
	Example: Computing LU Composition of a 3-by-3 Pascal Matrix
	Example: Solving [A]{x}=[b] Using LU Composition

	Cholesky Decomposition
	Schur Decomposition
	Singular Value Decomposition

	Logic Operators, Indexes, and Conversions
	Logical Indexing
	Example: Logical Indexing to Locate and Substitute Elements of [A] Matrix
	Conversions
	Example: Creating Character Strings with char()

	Summary
	References
	Exercises for Self-Testing
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 11
	Exercise 12
	Exercise 13
	Exercise 14
	Exercise 15
	Exercise 16
	Exercise 17
	Exercise 18
	Exercise 19
	Exercise 20
	Exercise 21
	Exercise 22
	Exercise 23
	Exercise 24
	Exercise 25
	Exercise 26
	Exercise 27
	Exercise 28
	Exercise 29
	Exercise 30

