CHAPTER 7

Linear Algebra

This chapter introduces linear algebra. It discusses some of the essential approaches

to solving systems of linear equations, as well as various matrix operations (matrix
inverse, determinant, sum, subtraction, division, multiplication, power, exponential,
elementwise and array-wise operations, and so forth). It covers eigen-value problems
and matrix factorizations/decompositions, such as Cholesky, Schur, LU, QR, and
singular value decomposition. It also includes built-in functions and scripts in MATLAB
and Simulink models. Moreover, the chapter explains the standard matrix generator
functions of MATLAB, how to create vector spaces, how to solve polynomials, and the
logical indexing of matrices, all via examples in MATLAB and Simulink.

Introduction to Linear Algebra

Linear algebra is one of the more important branches of mathematics. It deals with
vectors, vector spaces, linear spaces, matrices, and systems of linear equations. There
is a wide range of linear algebra applications in engineering and scientific computing,
including many fields of natural and social studies. Linear algebra starts with a system of
linear equations for underdetermined, overdetermined, and well-defined systems.

If a given system is composed of m-linear equations with n-unknowns and m > n,
that is solvable for unknowns. Consider the following linear system, formulated by the
system of equations (Equation 7-1):

a,x, +a,x,+..+a,x, =b

+ + : = (Equation 7-1)

a,x +a,,x,+.+a,,x,=b

m

The system of linear equations (Equation 7-1) is solvable directly for all cases when
m > n. If m < n, there are more unknowns than the number of linearly independent
equations, and such a system is called underdetermined and not solvable directly.

443
© Sulaymon Eshkabilov 2022

S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_7

https://doi.org/10.1007/978-1-4842-8748-4_7#DOI

CHAPTER 7 LINEAR ALGEBRA

If m > n, there are more linearly independent equations, and such a system is called
overdetermined and is solvable directly.
For the sake of simplicity, let’s take m = n and rewrite Equation 7-1.

a,x,+a,x,+..+a, x, =b,

+ + o= (Equation 7-2)

a,x,+a,x,+.+a,x,=b,

n

The given system of linear equations in Equation 7-2 can also be written in matrix

notation form.
[A]*{X}=[B] (Equation 7-3)

Here, A and B are matrices and X is a vector of unknowns.

a, ... a, b,
Where [A]=| @ : |, {X}={x,x,...,x,},[B]=] :
a, ... a,, b,

Equation 7-3 can also be rewritten in the form of column matrices.
bl
x| 0o |+x,| |+t x,| o= (Equation 7-4)

all a12 al

n

a a,, a b

nl

The system in Equation 7-3 or 7-4 can be solved for X (unknowns) with the next
formulation: o
{X}=[A] *[B] (Equation 7-5)

Here, [A]! is the inverse of the matrix [A].

Matrix Properties and Operators

Matrices have several important properties and operators, such as determinant,
diagonal, transpose, inverse, singularity, rank, and so forth.

The determinant of a matrix can be computed only if the given matrix is a square.
Here’s an example:

9}

I
d A
S 0T

<

444

CHAPTER 7 LINEAR ALGEBRA

The determinant of M will be computed with the following expression:
det (M) = aei + bfg + dhc - ceg - dbi - hfa
The MATLAB command for the determinant computation is det (). Here’s an

example:

>As[8 1 6; 3 5 7; 4 9 2]

A =
8 1
3 5
4 9

>> det(A)

ans =

-360

The diagonal of a matrix is composed of its element along its diagonals. For example,
in the previous example, the diagonals are aei and ceg.
The MATLAB command for diagonal separation is diag(). Here’s an example:

>>A=[8 1 6; 3 5 7; 4 9 2];
>> diag(A)
ans =

8

The transpose of a matrix can be determined by the counterclockwise rotation of a
matrix by 90° (degrees). The transpose properties are as follows:

(wr) =
(M+B) =M" +B"
(kM) =kM"
(MB) =B'M"

(o) ~(ar7)

445

CHAPTER 7 LINEAR ALGEBRA

Here, M and B are matrices of the same size, k is a scalar, and "and - are the
transpose and inverse operators.

The MATLAB command for the transpose operation is transpose(), or ' .

Here’s an example:

>>A=[8 1 6; 3 5 7; 4 9 2];
>> transpose(A)

ans =
8 4
1 9
2
>> A
ans =
8 4
1 9
2

Simulink Blocks for Matrix Determinant, Diagonal
Extraction, and Transpose

Simulink has blocks that you can use to compute the matrix determinant, extract
the matrix diagonal elements, and obtain the matrix transpose. The determinant
block ([det(A) (3x3)])is present in Simulink’s Aerospace Blockset/Utilities/Math
Operations, and it has a constraint and can only compute the determinant of 3-by-3

matrices.

Note The block [det(A) (3x3)] from the aerospace blockset is limited; it can
only compute the determinant of 3-by-3 matrices.

The block to extract the diagonal elements of a matrix is available in the DSP System
Toolbox/MATH Functions/Matrices and Linear Algebra/Matrix Operations. The block
to compute the matrix transpose is present in Simulink/Math Operations, and the block
name is Math Function. It has a few math functions embedded in it, including exp
(by default), log, 10Au, magnitude/2, square, pow, and transpose. Any of these math

446

CHAPTER 7 LINEAR ALGEBRA

functions in the Math Function block can be chosen. You simply click the Apply and OK
buttons of the block, and the chosen math function becomes available. Figure 7-1 shows
these three blocks.

b M e\ op { b

Figure 7-1. Simulink blocks used for determinant calculation, diagonal
extraction, and transpose operation, from left

These blocks have one input and one output port. Therefore, you need to add two
additional blocks, specifically, one Constant block for input entry and one Display
block, to obtain/see the computation results. The Constant block can be taken from
the Simulink Library Simulink/Sources or DSP System Toolbox/Sources. Similarly,
the Display block can be taken from Simulink/Sinks or DSP System Toolbox/Sinks.
Alternatively, with the latest versions of MATLAB starting from 2018a, you can obtain
all the necessary blocks by double-clicking (with the left mouse button) and typing the
block name in the search box. As discussed in the previous chapters, in any Simulink
model one signal source can be used as many times as necessary. There is no need to
generate that signal within one model to use it with other blocks as an input signal.
Moreover, to optimize the Simulink model, it is strongly advised you build a Simulink
model with fewer blocks to make your models more readable, comprehensive, and easy
to edit. Therefore, this example uses one Constant block for input source [A]. Figure 7-2
shows the primary version of the Simulink model.

447

CHAPTER 7 LINEAR ALGEBRA

A4

det(A)
(3x3)

v

Figure 7-2. Simulink model to compute the determinant of a matrix, extract
diagonal elements of a matrix, and perform a transpose on a matrix

Let’s use example matrix [A] to demonstrate these three Simulink blocks. The
elements of the matrices [A] can be entered in two different ways:

o Bytyping all elements in the Constant block’s Constant Value box, as
shown in Figure 7-3. Click the Apply and OK buttons.

@ Block Parameters: Constant3 b4
Constant

Output the constant specified by the "Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on,
treat the constant value as a 1-D array. Otherwise, output a matrix with the
same dimensions as the constant value.

Main Signal Attributes
|| Constant value:
L | 816,357,492 E

[Interpret vector parameters as 1-D
Sample time:
Iinf I i

QD Cancel Help Apply

Figure 7-3. Entering matrix elements in a Constant block

448

CHAPTER 7 LINEAR ALGEBRA
o By defining [A] via MATLAB’s Command window and workspace:

> A=[8 1 6; 3 5 7; 4 9 2];

Then provide the variable name A in the Constant block’s Constant Value box for [A],

as shown in Figure 7-4.

[%a) Block Parameters: Constant3 N
Constant

Qutput the constant specified by the 'Constant value' parameter. If
'Constant value' is a vector and "Interpret vector parameters as 1-D' is on,
treat the constant value as a 1-D array. Otherwise, output a matrix with the
same dimensions as the constant value.

Main Signal Attributes

| | Constant value:

[Interpret vector parameters as 1-D

Sample time:
f

9] Cancel Help Apply

Figure 7-4. Matrix [A], defined in the MATLAB workspace, called via the
Constant block

Then click the Apply and OK buttons. Note that we are not going to use the second
method (see Figure 7-4) of defining matrix [A] elements in this example; it’s just shown
here for explanation purposes.

Finally, you'll get the complete model in which the matrix [A] elements are entered
in the Constant block directly, as shown in Figure 7-5. After you complete the model, by
pressing Ctrl+T on the keyboard or clicking the Run [/ button in the Simulink model
window, the complete model with its computed results will be created.

449

CHAPTER 7 LINEAR ALGEBRA

dot) I

(3x3)

h 4

{3x3) »{A ea\ D > 5
2

| 8| 3 4
» T > 1 B 9]
| 6 7l 2)

Figure 7-5. Completed Simulink model that computes the determinant, extracts
diagonal elements, and performs the transpose operation on the 3-by-3 matrix

Note To see the simulation results in the Display block, it has to be resized/
stretched. You left click it and then drag with the mouse while holding the button.

The simulation results of the Simulink models match the ones from the MATLAB
commands, such as det (), diag(), and transpose(), or ".

Matrix Inverse or Inverse Matrix
The inverse matrix has the following important property:
[A]+[A]" =[1]

Here, [I] is the identity matrix.

) } that is computed from the

11 4
For example, A= L 4} has its inverse A™ :{
following:

Al=

4 -1
adjugate(A)=1/(4*3—(—1*_3){ 3 1}

1
det(A)

The MATLAB command to compute the inverse of a matrix is inv(). Here’s an

example:

450

CHAPTER 7 LINEAR ALGEBRA

>A=[8 1 6; 3 5 7; 4 9 2];
>> inv(A)
ans =

0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056

-0.0194 0.1889 -0.1028

A given matrix is singular if it is square, if it does not have an inverse, and if it has a
determinant of 0.

Simulink Blocks for Inverse Matrix

The matrix inverse can also be calculated via several Simulink blocks with respect to a
given matrix size, i.e., square matrix or rectangular. The inverse matrix or matrix inverse
computing blocks are present in the DSP System and Aerospace Blockset Toolboxes of
Simulink and can be accessed via the Simulink Library: the DSP System Toolbox/Math
Functions/Matrices and Linear Algebra/Matrix Inverses, and the Aerospace Blockset/
Utilities/Math Operations. Let’s test the available blocks of this toolbox to compute

the inverse of the matrix [A] shown in the previous example. Open a blank Simulink
model and drag and drop the block from the libraries of the DSP System and Aerospace
Blockset Toolboxes shown in Figure 7-6.

al
ﬁﬁgf;; Psoudoinverse
- ~ inviA)
> 4 A X > # (3x3) >
(L) (SVD)

Figure 7-6. Simulink blocks for computing the inverse matrix

They are as indicated on the top of each block—General Inverse (LU), Pseudoinverse
(SVD), and inv(A)—used to compute the matrix inverses based on LU factorization for
square matrices, and pseudoinverse for rectangular matrices (i.e., m>n, or the number of
rows is larger than the number of columns or vice versa). Theoretical aspects of the LU,
SVD, and other matrix decomposition and transformation operations are highlighted in
the “Matrix Decomposition” section.

451

CHAPTER 7 LINEAR ALGEBRA

The three blocks have one input port for the entry matrix and one output port for the
computed inverse. Add two additional blocks—one Constant block and one Display—by
following the procedures. Figure 7-7 shows the primary version of the Simulink model.

General
Inverse
(L)
Pseudoinverse
1 A X P>
(SVD)
» inv(A) »>
g (3x3) v

Figure 7-7. Simulink model to compute the inverse matrix via three
different blocks

The elements of the matrices [A] can be entered in two ways: (1) by typing all the
elements in the Constant block’s Constant Value box and then clicking the Apply and OK
buttons; or (2) by defining [A] via the MATLAB’s Command window and workspace.

Finally, you'll get the following complete model in which the matrix [A] elements are
entered in the Constant block directly. After you complete the model, by pressing Ctrl+T
on the keyboard or clicking the Run [] button in the Simulink model window, the
finalized model with its computed results is created, as shown in Figure 7-8.

452

CHAPTER 7 LINEAR ALGEBRA

0.1472| -0.1444 0.06389|
General
Sensie -0.06111| 0.02222 0.1056]
> > -0.01944][0.1889 -0.1028]
(L)
| 0.1472|| -0.1444|| 0.06389|
Pseudoinverse -0.06111|[0.02222|| 0.1054]
[3x3] »(A X > -0.01944]| 0.1889](-0.1028]
(SVD)
[0.1472] -0.1444][0.06389]
_ inviA) -0.06111|f 0.02222 0.1056|
" (3x3) - -0.01944]| 0.1889 -0.1028]

Figure 7-8. The inverse matrix computed via three different blocks

The computed inverse matrix (A™') values match the ones computed using
MATLAB’s inv() command, within four correct decimal places.

Another important operator of matrices is its rank. The rank of a matrix (e.g., [A]) is
the maximum number of linearly independent row vectors of the matrix, which is the
same as the maximum number of linearly independent column vectors. The [A] matrix is
considered to have a full rank if its rank equals the largest possible for a matrix of the same
dimensions. The [M] matrix is considered to be rank deficient if it does not have full rank.
A matrix’s rank determines how many linearly independent rows the system contains. The
MATLAB command to compute the rank of a matrix is rank (). Here’s an example:

> A=[8, 1, 6; 3, 5 7; 4, 9, 2]; % Full rank matrix
>> rank(A)

ans = 3

>M =[8 0o 6; -3, 0, 7; 0 0 2] % Rank deficient matrix

8

-3

0 0
>> rank(M)
ans =

2

453

CHAPTER 7 LINEAR ALGEBRA

Based on the rank, the systems (system matrices) can be full rank, overdetermined,
and underdetermined.

Example 1: Solving a System of Linear Equations

The following example shows you how to solve a linear equation by using these
formulations:

2x+3y+5z=1
—3x-2y+5z=2
4x-7y+6z=3

To solve this problem for unknowns, such as x, y, z, you apply Equations 7-3, 7-4, and
7-5 directly and then use the following operations:

2 3 5 X 1
3 -2 5|x{yt=|2
4 -7 6 z 3
That can be written as follows:
x) [2 3 57 J1
yt=|-3 =2 5| %2
z 4 -7 6 3

X 0.0754 -0.1738 0.0820 1 —-0.0262
yr=|0.1246 -0.0262 -0.0820 |[*|2 |=|—-0.1738
z 0.0951 0.0852 0.0164 3 0.3148

X —0.0262
Solution: {y r=|-0.1738
z 0.3148

Let’s solve this exercise using the reduced row echelon method in MATLAB.

% Step 1. Write an augmented matrix: AU = [A, b]
A=1[235;-3-25;4-76;];b=7[1;2;3];
AU=[A, b];

% Step 2. Rowl = Rowl - Row2

454

CHAPTER 7

AU(1,:)=AU(1,:)-AU(2,:);
% Step 3. Row3 = Row3-4*Row1/5
AU(3,:)= AU(3,:)-4*AU(1,:)/5;
% Step 4. Row2 = Row2+3*Row1/5
AU(2,:)= AU(2,:)+3*AU(1,:)/5;
% Step 5. Row3 = Row3+11*Row2
AU(3,:)= AU(3,:)+11*AU(2,:);
% Step 6. Row2 = Row2+5*Row3/61
AU(2,:)= AU(2,:)-5%AU(3,:)/61;
% Step 7. Rowl = Rowl/5-Row2
AU(1,:)= AU(1,:)/5-AU(2,:);
% Step 8. Row3 = Row3/61
AU(3,:)= AU(3,:)/61;
% Step 9. Solution:
x= AU(:, end)
X =
-0.0262295081967213
-0.173770491803279
0.314754098360656

LINEAR ALGEBRA

Alternative ways of solving this example include Gauss elimination and graphical

methods. There are a number of operators and built-in functions in MATLAB that can be

used to solve a linear system of equations. They are as follows:

o inv(), which computes the inverse of a given matrix or the pseudo-

inverse of the given system (used for overdetermined systems).

o \, the backslash operator, which solves the system of linear equations

directly. It's based on the Gaussian elimination method. This is one of

the most powerful MATLAB operators (tools) for handling matrices.

o mldivide(), which is a built-in function similar to the \ backslash

operator.

e linsolve(), which is a built-in function similar to the \ backslash

operator.

o 1sqgr(), which is a built-in function based on the least
squares method.

455

CHAPTER 7

LINEAR ALGEBRA

1u(), which is a built-in function based on the Gauss
elimination method.

rref(), which is a built-in function based on the reduced row
echelon method.

svd(), which is a built-in function based on the singular value
decomposition.

chol(), which is a built-in function based on the Cholesky
decomposition.

qr (), which is a built-in function based on the orthogonal triangular
decomposition.

decomposition(), which is a built-in function that automatically
choses the decomposition method.

bicg(), cgs(), gmres(), pcg(), symmlq(), and gmr (), which are built-
in functions that are based on gradient methods.

solve(), which is a built-in function from the Symbolic MATH toolbox.

Note

Among these listed functions/commands and operators, some of them use

the same computing algorithm and are alternatives to each other. For example, the
\ backslash operator is an alternative to mldivide().

First,

denote the given system with the following notations:

2 3 5 1
A=|-3 -2 5|, B=|2
4 -7 6 3

The entries of [A] matrix (coefficients of the unknowns ¥, y, z) are defined, and the

elements of [B] matrix are defined in the Command window.

>» A = [2 3, 55 -3, -2, 5; 4, -7, 6]

456

CHAPTER 7 LINEAR ALGEBRA

>> B = [1;2;3]
B =

1

2

3
Using inv() and (*), we can compute the solutions of the system.

>>Ai=inv(A) % [B] matrix is an inverse matrix of [A] matrix.
Ai =0.0754 -0.1738 0.0820

0.1246 -0.0262 -0.0820

0.0951 0.0852 0.0164

>> XYZ1=Ai*B % Solutions of the problem

Ai =-0.0262

-0.1738

0.3148

The next example uses the backslash \ operator based on the Gaussian elimination
method. This approach is quite simple and efficient in terms of computation time.

>> XYZ2=A\B
Ai=-0.0262
-0.1738
0.3148

Using mldivide():

>>XYZ3=mldivide(A,B)
-0.0262

-0.1738

0.3148

Using linsolve():

>>XYZ4=1insolve(A,B)
-0.0262

-0.1738

0.3148

457

CHAPTER 7 LINEAR ALGEBRA
Using 1sqr():

>>XYZ5=1sqr(A,B)

lsqr converged at iteration 3 to a solution with relative
residual 6.6e-17.

-0.0262

-0.1738

0.3148

Using lu():

>>[L, U, P] = 1u(A); %L-lower; U-upper triangular; P-Permutation matrix
>> y = L\(P*B);

>> XYZ6 = Uly
XYZ6 =
-0.0262
-0.1738
0.3148

Using rref():
>> MA = [A, B]; % Augmented matrix
>> xyz = rref(MA);
>> XYZ7= xyz(:,end)
-0.0262
-0.1738
0.3148

Using svd() and inv():

>> [U, S, V]= svd(A);
>> XYZ8 = V*inv(S)*U'*B
-0.0262

-0.1738

0.3148

458

Using chol():

CHAPTER 7

LINEAR ALGEBRA

>> [U, L] = chol(A); % A has to be Hermitian positive definite

>> XYZ9 = U\(U'\B) % U'*U = A
-0.0262
-0.1738
0.3148

Using qr():

>> [Q, R] = qr(A);

>> XYZ10 = R\Q.'*B
-0.0262

-0.1738

0.3148

Using decomposition():

>> XYZ11 = decomposition(A)\B
-0.0262
-0.1738
0.3148

Using bicg() gradient methods:

>> XYZ12 = bicg(A, B)

bicg converged at iteration 3 to a solution with relative residual 3.1e-14.

-0.0262
-0.1738
0.3148

Using solve(), which is a Symbolic Math Toolbox function:

>> syms X y z

>> sol=solve(2*x+3*y+5%z-1, -3*x-2*y+5%z-2, 4*x-7*y+6*z-3);

>> XYZ13=[sol.x; sol.y; sol.z]
-8/305
-53/305 96/305

459

CHAPTER 7 LINEAR ALGEBRA

>> XYZ13=double([sol.x; sol.y; sol.z])
-0.0262
-0.1738
0.3148

All of the computed solutions are accurate within four decimal places of the
employed operators and functions. In fact, the accuracy of the solutions and the
computation time of each operator or function will differ. For instance, the inverse
matrix calculation is not only costly in terms of computation time but is also less
accurate. Moreover, among the studied methods, the last function of the Symbolic Math
Toolbox, solve(), is the slowest and least efficient method.

Note The decomposition() function is available in the recent versions of
MATLAB starting from MATLAB 2018b.

Simulink Modeling

In addition to the MATLAB commands demonstrated, Simulink has several blocks by
which the linear system of equations, such as [A]{x} = [B], can be solved. All of the solver
blocks are present in the DSP System Toolbox and can be accessed via the Simulink
Library: the DSP System Toolbox/Math Functions/Matrices and Linear Algebra/Linear
System Solvers. Let’s test some of the blocks here to solve the previous example, called
Example 1. Open a blank Simulink model and drag and drop the block from the DSP
System Toolbox library, as shown in Figure 7-9.

= AX=B (SVD -
Y AX=B (LU} YA (SVD) Ya AX=B (QR)
fo} 303604 0
B
fm x m] Y [mxn] [m x n]

Figure 7-9. Simulink blocks used to solve a system of linear equations

They are as indicated on the top of each block—LU, SVD, QR factorization and
decomposition operation-based solvers. All of them have two input ports for [A] and
[B] and one output port for a solution, {x}. Therefore, you need to add three additional

460

CHAPTER 7 LINEAR ALGEBRA

blocks—two Constant and one Display block—which you add as explained previously in
building Simulink models to compute determinant, transpose, and inverse of matrices.
Figure 7-10 shows the primary version of the Simulink model.

1
»la AX=B (LU) A AX=B (SVD)
i o
B, B
im x m] {mx n]
1 =t

AX=B (QR)
A

v
v

A

[

[]x

v

[mxn]

Figure 7-10. Simulink model to solve a system of linear equations

The elements of the matrices [A] and [B] can be inserted, as shown in Figure 7-3,
directly in the Constant block’s Constant Value window. Or you can define the elements
of [A] and [B] via MATLAB’s Command window and workspace.

>> A=[2’ 3, 5, -3, -2, 5; 4, -7, 6]
>> B=[1; 2; 3];

The variable names A and B are then entered in the first and second Constant block’s
Constant Value box for [A] and [B], respectively, as shown in Figure 7-11. Click Apply and
OK to complete the model.

461

CHAPTER 7 LINEAR ALGEBRA

(%) Block Parameters: Constant X
Constant

Output the constant specified by the ‘Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on,
treat the constant value as a 1-D array. Otherwise, output a matrix with the
same dimensions as the constant value.

Main Signal Attributes

[_ Constant value:
b | [a Bl =

Interpret vector parameters as 1-D

IIl-— S[‘.::ple_tim_e: _| -

9 [ok][cancel || nelp | [Apoly

ed st Fl I

Figure 7-11. The variable names defined in the Constant block

By pressing Ctrl+T on the keyboard or clicking the Run [#! button in the Simulink
model window, you'll obtain the complete model with its simulation results (see

Figure 7-12). The computed results/solutions match the MATLAB solutions to four
decimal places.

> ‘“’Bﬁ”l] |—~ /AT
= x

g oy 0.3148

v

Amxn]

oln AX=B(GR) -0.02623]
D . I:Ix > -0.1739)
o313

v

[mxn]

Figure 7-12. Complete model with computed results

Note that the variables (matrices) A and B are defined via MATLAB'’s
Command window.

462

CHAPTER 7 LINEAR ALGEBRA

To obtain more decimal places of the computed results with the Display block, the
block parameters (Format Type) need to be tuned by selecting long_e, as shown in
Figure 7-13.

(%] Block Parameters: Display12 X
Display
Numeric display of input values.

Parameters

Format: lb_"__g_-_9.——

e e e e
[Floatir bank
hex (Stored Integer)
binary (Stored Integer)
J decimal (Stored Integer)

octal (Stored Integer) El

Figure 7-13. Adjusting the Display block’s Format parameter

Example 2: Embedding a MATLAB Function Block to Compute
the Determinant and Solve Linear Equations

All of the aforementioned MATLAB functions/commands used for computing matrix
determinants, matrix inverses, or solutions of linear systems can be embedded in

= 4 P

fen

Simulink via the MATLAB Function block . Let’s take two MATLAB functions/
commands used for computing a determinant of a matrix of any size with det() and

solving with 1insolve() and embed them into a Simulink model. Here’s an example:

16 2 -3 13 3
=511 10 -8 2

].= ,Bl:
9 7 -6 12 4
-414 15 1 5

Here are completed Simulink models. Figure 7-14 is built with three Constant, two
MATLAB Function, and two Display blocks.

463

CHAPTER 7 LINEAR ALGEBRA

Al Pu * ¥

v

Al P AT

B1 »{B81

Figure 7-14. Simulink models with MATLAB Function blocks to compute the
determinant and solve a linear system of equations

The input variables/entries for A1 and B1 are defined via the Command window and
MATLAB workspace in this model. To edit and type in the necessary script, you have to
open the MATLAB Function block. It can be opened by double-clicking it, which opens
the MATLAB editor window. The following function file scripts for the MATLAB Function
blocks are typed in the MATLAB editor for the upper MATLAB Function block (with one
input) and the lower one (with two inputs Al and B1) models, respectively. After editing
the codes of the blocks, save them. They will be saved under the created Simulink model
and not as a separate MATLAB function file.

function y = fcn(u)
y = det(u);
end

function y = fcn(A1, B1)
y = linsolve(A1, B1);

The model is then completed, and the finalized model is executed. Figure 7-15 shows
the completed model with its computed results in the Display blocks. The upper Display
block shows the determinant, and the lower one shows the solution of the given system.

464

CHAPTER 7 LINEAR ALGEBRA

[-1salzoooommm0000v04q
fen

Al f——ls @y

v

A1 ——plas [-3.6147140123325430-03)
[274080374229215%e-01]
4 v > 6.2725010625770790-02]
o [2.075271103550025¢-01)
B1 {81

Figure 7-15. Completed models with computed results

The computed results of the Simulink model can be compared with MATLAB.

>> A1=[16 2 -3 13 ; -5 11 10 -8; 9 7 -6 12; -4 14 15 1 |;
>> Bl = [3; 2; 4; 5];

>> det(A1)

ans =

-18812

>> linsolve(A1, B1)

-3.614714012332536€e-03 2.740803742292154e-01
6.272591962577077e-02

2.075271103550925e-01

The computed results from the determinant calculation and linear MATLAB solver
match the Simulink model’s results to 13 decimal places.

Example 3: Accuracy of Solver Functions of Linear Equations

Let’s find out which one of the functions/tools (methods) highlighted in Example 1 is
more accurate in computing the solutions. For this exercise, you'll take the following
13-by-13 [A] and 13-by-1 [B] matrices generated by the magic() and randi() (random

465

CHAPTER 7 LINEAR ALGEBRA

integer) matrix generator functions of MATLAB. Moreover, the norm() function is used
to compute the norm of the given linear system with its computed solutions. LA_Ex3.mis
the complete solution script.

%% Given 13-by-13 system of linear equations

A = magic(13);

B = randi([-169,169], 13,1); % Elements of B vary within [-169, 169]

%% 1-Way: inv() or pinv() %% INVERSE matrix method

inv(A)*B; Err INV = norm(A*x1a-B)/norm(B) %#ok: ERROR checking
xla = inv(A)*B; Err PINV = norm(A*x1b-B)/norm(B) %#ok: ERROR checking
%% 2-Way: \ %% backslash

xla = inv(A)*B; Err BACKSLASH = norm(A*x2-B)/norm(B) %ttok: ERROR checking
%% 3-Way: mldivide() %% Left divide function

xla = inv(A)*B; Err MLDIVIDE = norm(A*x3-B)/norm(B) %tok: ERROR checking
%% 4-Way: Using linsolve();

x1la

xla = inv(A)*B; Err LINSOLVE = norm(A*x4-B)/norm(B) %#ok: ERROR
checking

%% 5-Way: Using lsqr()

xla = inv(A)*B; Err LSQR = norm(A*x5-B)/norm(B) %#ok: ERROR
checking

%% 6-Way: Using lu()

xla = inv(A)*B; y = L\(P*B); x6 = U\y;

Err LU = norm(A*x6-B)/norm(B) %#ok: ERROR checking
%% 7 - Way: Using rref()

xla = inv(A)*B; xyz = rref(MA); x7= xyz(:,end);

Err RREF = norm(A*x7-B)/norm(B) %#ok: ERROR checking
%% 8 - Way: Using svd()

x1la = inv(A)*B; x8 = V*inv(S)*U'*B;

Err SVD = norm(A*x8-B)/norm(B) %#ok: ERROR checking
%% 9 - Way: Using chol()

xla = inv(A)*B; x9 = U\(U'\B);

Err CHOL = norm(A*x9-B)/norm(B) %#ok: ERROR checking
%% 10 - Way: Using qr()

xla = inv(A)*B; x10 = R\Q.'*B;

Err QR = norm(A*x10-B)/norm(B) %#ok: ERROR checking
%% 11 - Way: Using decomposition()

466

CHAPTER 7 LINEAR ALGEBRA

x1a = inv(A)*B; Err DECOMPOSITION = norm(A*x11-B)/norm(B) %tok: ERROR checking
%% 12 - Way: Using bicg()

xla = inv(A)*B; Err BICG = norm(A*x12-B)/norm(B) %t#ok: ERROR checking
%% 13-Way: solve() %% SOLVE() symbolic math method

x = sym('x", [1, 13]); x=x."; Egn = A*(x); Eqn = Eqn - B;

Solution = solve(Egn); SOLs = struct2array(Solution); SOLs = double(SOLs);
x13 = SOLs';

Err SOLVE = norm(A*x13-B)/norm(B) %t#ok: ERROR checking

Here are the errors that were made while computing the solutions of the system with
the employed methods:

Err INV =

5.8087e-16

Err PINV =

3.7982e-15 Err BACKSLASH = 3.0569e-16 Err MLDIVIDE = 3.0569e-16 Err_
LINSOLVE = 3.0569e-16

Isqr converged at iteration 7 to a solution with relative residual 3.5e-07. Err_LSQR =

3.4959e-07
Err LU =
3.0569¢e-16
Err RREF =
1.1576e-05
Exrr SVD =
3.7982e-15
Err CHOL =
2.2400
Err QR =
7.0615e-16
Err DECOMPOSITION =
3.0569e-16

bicg stopped at iteration 13 without converging to the desired tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 13) has relative residual 9.6e-06.

Err BICG = 9.5856e-06
Err SOLVE = 1.5109e-16
467

CHAPTER 7 LINEAR ALGEBRA

From the computed errors, it is clear that the RREF (), BICG(), and LSQR() functions
make errors within the margin of 107°...1077 and all other methods make errors within
the margin of 10~%°...107'®* while computing the solutions of this given system.

Example 4: Efficiency of Solver Functions of Linear Equations

This example demonstrates which one of the shown ways is more efficient in terms of
computation time. For this demonstration, you'll consider two large matrices of 1000-
by-1000 and 1000-by-1, generated by the random integer number generator function
randi() to generate the elements of matrices [A] and [B]. In addition, to record the
elapsed time of each computation method, the [tic, toc] functions are used. Here is
the complete solution script, called LA_Ex4.m:

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
%% 1) inv() or pinv()

tic; Ai = inv(A); xyz1=Ai*B; T inv=toc

%% 2) bacslash operator: \

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; xyz2 = A\B; T _backslash = toc

%% 3) mldivide()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; xyz3= mldivide(A, B); T mld = toc

%% 4) linsolve()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; xyz4 = linsolve(A, B); T linsolve = toc

%% 5) lsqr()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; xyz5 = lsqr(A, B); T lsqr = toc

%% 6) lu()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [L, U, P]=lu(A); y=L\(P*B); xys6=U\y; T lu=toc

468

CHAPTER 7 LINEAR ALGEBRA

%% 7) rref()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; MA = [A, B];xyz7 = rref(MA); XYZ7=xyz7(:, end); T rref=toc

%% 8) svd()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; [U S V] = svd(A); xyz8 = V¥inv(S)*U'*B; T svd=toc

%% 9) chol()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; [U L]= chol(A); xyz9 = U\(U'\B); T chol=toc

%% 10) qr()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [Q R] = qr(A); xyz10 = R\Q.'*B ; T qr=toc

%% 11) decomposition()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);
tic; xyz11l = decomposition(A)\B; T decom = toc

%% 12) bicg() Gradient methods

clearvars; A=randi([-100,100], 1000); B=randi([-100, 100], 1000, 1);
tic; xyz12 = bicg(A, B); T_bicg=toc

%% 13) solve()

A=randi([-100,100],100); B=randi([-100, 100], 100, 1);

tic;

x = sym('x", [1, 100]); x=x.';

Eqn = A*(x); Eqn = Eqn - B;

Solution = solve(Eqgn); SOLs = struct2array(Solution); SOLs = double(SOLs);
x13 = SOLs';
T_solve=toc

Here are the elapsed computation time values from the simulations:

T inv =

0.0390

T _backslash = 0.0173
T mld =

0.0171

T_linsolve =

0.0171

469

CHAPTER 7 LINEAR ALGEBRA

1sqr stopped at iteration 20 without converging to the desired tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 20) has relative residual 0.24.

T 1sqr = 0.0236
T 1lu =
0.0235
T rref
10.1406
T svd =
0.4263
T chol =
0.0330
Tqr =
0.1045

T decom =

0.0459

bicg stopped at iteration 20 without converging to the desired tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 0) has a relative residual of 1.

T bicg =
0.0195

T solve =
14.6306

From these computations, it is clear that 1insolve(), mldivide, and \ (the backslash
operator) (Gaussian elimination method) are the fastest among all the tested methods.
The slowest and computationally costliest one is the solve() operator of the Symbolic
MATH even when the size of the system was 10 times smaller. It is worth noting that
the reduced row echelon method called rref() is the next slowest, after the solve()
operator.

Let’s consider another example to solve these four different methods, which are \,
linsolve(), inv(), and solve(), discussed previously.

470

CHAPTER 7 LINEAR ALGEBRA

Example 5: Solving Linear Equations ([A]l{x} = [b]) by Changing
Values of [b]

This exercise is composed of two parts:

[1]. Solve the given linear system for unknowns a, b, and c.

—-0.072a—-c=-12
0.12b—-c=-9
a+b=50

[2]. Solve the given system for unknowns a, b, and c. The third
equation’s value changes in the range of 50...250.

-0.072a—-c=-12
0.12b—c=-9
a+b=50...250

The system is rewritten in a matrix form as [A]{x} = [B] and then solved directly for
unknowns a, b, and c. Here is the solution script (LA_Ex4.m):

% PART 1.

% The given system is written from the Ax=B as [A]*[abc]=[B]
A=[.072, 0, -1; 0, .12, -1; 1 1 0];

B=[-12, -9, 50];

abc1=A\B' %ok % BACKSLASH \
abc2 = linsolve(A,B') %ttok % LINSOLVE()
abc3 = inv(A)*B' %ok % INV

% SOLVE() in symbolic MATH

syms a b c; abc4=solve(0.072*a-c+12, 0.12*b-c+9, a+b-50);
abc4=double([abc4.a; abc4.b; abc4.c]) %tok

% SOLVE()

%% Part TL. %%%%7616%65%%%%3%3%3676761656066536 636766 6666:65636..67616 666656565666 16 6
% BACKSLASH \ ; LINSOLVE(); INV

tic; Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);
c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];

471

CHAPTER 7 LINEAR ALGEBRA

for ii=1:numel(Bk)
B=[-12; -9; Bk(ii)];
abc=A\B;
a(ii)=abc(1,:);
b(ii)=abc(2,:);
c(ii)=abc(3,:);
end Timel=toc;
fprintf('Computation time with BACKSLASH: %3.3f \n', Timel); clearvars
tic; Bk=50:250;
a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);
c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];
for ii=1:numel(Bk)
B=[-12; -9; Bk(ii)];
abc=linsolve(A,B);
a(ii)=abc(1,:);
b(ii)=abc(2,:);
c(ii)=abc(3,:);
end
Time2=toc;
fprintf('Computation time with LINSOLVE: %3.3f \n', Time2) clearvars
tic Bk=50:250;
a=zeros(numel(Bk),1); b=zeros(numel(Bk),1); c=zeros(numel(Bk),1); A=[.072,
0, -1; 0, .12, -1; 1 1 0];
for ii=1:numel(Bk)
B=[-12; -9; Bk(ii)];
abc=inv(A)*B;
a(ii)=abc(1,:); b(ii)=abc(2,:); c(ii)=abc(3,:);
end
Time3=toc;
fprintf('Computation time with INV: %3.3f \n', Time3)
%% SOLVE() from symbolic math
clearvars; tic;
Bk=50:250;
al=zeros(numel(Bk),1);b1=zeros(numel(Bk),1); cl=zeros(numel(Bk),1);
syms a b c
for ii=1:numel(Bk)

472

CHAPTER 7 LINEAR ALGEBRA

abc=solve(0.072*a-c+12,0.12*b-c+9,a+b-Bk(ii));
al(ii)=double(abc.a);
b1(ii)=double(abc.b);
c1(ii)=double(abc.c);
end
Time4=toc;
fprintf('Computation time with SOLVE: %3.3f \n', Time4)

Here are the results of the calculations from Part 1:

abcl =
15.6250
34.3750
13.1250
abc2 =
15.6250
34.3750
13.1250
abc3 =
15.6250
34.3750
13.1250
abc4 =
15.6250
34.3750
13.1250

Here are the results of the script from Part 2:

Computation time with BACKSLASH: 0.002
Computation time with LINSOLVE: 0.002
Computation time with INV: 0.002
Computation time with SOLVE: 22.066

From the computation time spent to compute solutions of the given linear system
with three variables and 201 possible cases using four ways, it is clear that the least
efficient way of solving linear equations is using the Symbolic Math toolbox’s solve()

473

CHAPTER 7 LINEAR ALGEBRA

function. The backslash operator (\) and linsolve() and inv() methods all performed
similarly. The solver 1insolve(), \, and inv() methods are more than 11,033 times
more efficient and faster than the solve() function.

Example 6: Linear Equations ([A]{x} = [b]) Applied for the Least
Squares Method

This exercise demonstrates how to apply the principles of solving linear equations in the
form of [A]{x} = [b] to solve the least squares problem to find best-fit model coefficients.
In this exercise, we introduce the Vandermonde matrix expression to determine the
polynomial fit models.

Here is the N-th order polynomial:

f(x)=a,x"+a, x"" +...+a,x’ +a,x* +ax +a,
To compute the fit model f(x;), we set it equal to the measured data y;: f(x;) = [y)].
a,x! +a, x'"'+..+a,x’ +a,x’ +a,x,+a,=y,

n n-1 3 2 _
ax, +a, x, +..ta;x,+a,x,+ax,+a,=y,

n n-1 3 2 _
ax,; +a, X; +...+a;X; +a,xX; +a, X, +a, =y,

n n-1 3 2 _
ax, +a, X, +..+a;x, +a,x, +a,x, +a,=y,

These expressions can be written as follows:
[VI{aj=[y]

Here, [V] is the Vandermonde matrix, {a;} is the coefficients of the n-th order
polynomial, and [y,] is the measured data points.

a, .,]

N
1 1 X X a, y
1 2 x) |ia =<a,t: ’
V — 2 2 2 ’ i 2 (7 yi — _V3
2 n
1 x, x, X, a, y
LS m

474

CHAPTER 7 LINEAR ALGEBRA

Or
n 2 1 r T
X' ... X X a, A
2
X ... x5 x, 1 : Y,
V= 2 2 2 aiz ;
a, Yi=| Vs
xhooxkox, 1 a, :
’
LVm |

Here, x; and y; are known, and a; polynomial fit coefficient values are needed to be
computed. Therefore, we can compute a; from the next expression:

tak=[v] *[v]

Let’s consider the following example.

Given test data:
Test # Test1 Test2 Test3 Test4 Test5 Test6 Test7
Applied Load, [N] 10 20 30 40 50 60 70

Deflection, 5[m] 0.145 0.435 0.505 0.765 1.025 1.199 1.430

The task is to compute the fit model using Hooke’s law formulation for linear elastic
materials. The Hooke’s law formulation is F = k&, where F is applied force in [N] and § is a
dependent variable, which is the deflection of an elastic material when F force is applied.
And k s the stiffness coefficient of a material. Thus, the unknown variable here is k that
will be computed using the least squares criterion.

First, we express the test data with respect to the system of linear equations [A]{x} = [b].
Here the applied force is the dependent variable [b], and the independent variable
{x} corresponds to the resulted deflection §. Therefore, in this exercise, the unknown
variable is k, which is stiffness of the material. In this exercise, a first tricky point is how
to compute the values of [A]. To compute the elements of [A], we use the Vandermonde
matrix approach. According to Hooke’s law, it is a first-order polynomial, i.e., F(6) = k5,
that can be also written as k = F(5)/5. Using the given data in this exercise, we can define

the Vandermonde matrix and load matrix.

475

CHAPTER 7 LINEAR ALGEBRA

6, 0 0.145 0 10

y_| 8 0|_|0435 0] |20

6,0 1.430 O 70
Here, V is the Vandermonde matrix. Note the size of the Vandermonde matrix is
7-by-2 and the size of the applied load is 7-by-1. Therefore, the size of the stiffness matrix
will be 1-by-2. The reason of having zeros in the second column of [V] is that according
to Hooke’s law, the linear relationship between the applied load and deflection of

a linear elastic material is in the form of f{x) = a, * x + a, and a, = 0. Therefore, the
unknown stiffness is found from the following:

e=[V]"+[F]

Note that to compute the values of [k] in a more efficient and exactly, we employ
the backslash (\) operator. An alternative solution function to the backslash operator is
linsolve() ormldivide().

The final solution script (LA_Ex6.m) is shown here:

% LA Ex6.m

% Part 1. Vandermonde matrix

clc; clear variables

F = (10:10:70)."; % Applied Load
d = [0.145 0.435 0.505 0.765 1.025 1.199 1.430].'; % Deflection
scatter(F, d, 'filled')

ylim([0, max(d)+.2]),shg

A = [F zeros(size(F))];

FM =A\d;

FM values = FM(1)*F;

hold on

plot(F, FM values, 'k-', 'linewidth', 2)

gtext(['Fit model: F = ' num2str(FM(1)) '*\delta'])
gtext(['Stifness is: ' num2str(FM(1))])

grid on

xlabel('Applied Load, F [N]")
ylabel('Deflection, \delta [m]")

476

CHAPTER 7 LINEAR ALGEBRA

Figure 7-16 shows the resulted plot of the calculations from the script.

Fit model: F = 0.019842*5
Stifness is: 0.019942

Deflection, 4 [m]
= = =
r-N (=] =]

o
[

10 20 30 40 50 60 70
Applied Load, F [N]

Figure 7-16. Fit model is computed using the least squares method

There are a few functions (polyfit, fitlm, fit)in Curve Fitting and Statistics and
Machine Learning Toolboxes, which can be used easily to compute approximation
polynomials. Let’s look at the previous example of how to employ these functions:

% Part 2. Polynomial Approximation Fcn: Curve Fitting Toolbox

FM2 = polyfit(F,d, 1);

fprintf('CFTOOL Fit Model: F(d) = %f*d \n', FM2(1));

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(F,d, 'linear');

fprintf('Stats and ML Fit Model: F(d) = %f*d \n', FM3.Coefficients.
Estimate(2));

Parts 2 and 3 of the code (LA_Ex6.m) produce close approximation coefficients of the
first-order polynomial. The following results will be displayed in the Command window:

CFTOOL Fit Model: F(d) = 0.021082*d
Stats and ML Fit Model: F(d) = 0.021082*d

Note that there is a small difference between the Vandermonde approach and
polyfit() and fitlm() functions. The reason for the difference is the intercept value
is set equal to “0” with the Vandermonde matrix, and with the other two functions, the
intercept is considered.

477

CHAPTER 7 LINEAR ALGEBRA

Example 7: Linear Equations ([A]{x} = [b]) Applied for the Least
Squares Method

The following data table gives the stopping distance y as a function of initial speed v, for
certain car model. Find the quadratic polynomial coefficients that fit the data.

W kmlh) 20 30 40 50 60 70

nm) 45 80 130 185 250 330

The Vandermonde matrix of this exercise for the quadratic fit model is computed
from the following:
vov v

0 2
vZ v2 v2

0 2
v, U, U

n n

Note that vf ,vg ,.. .vz =1 corresponds to a,. Therefore, V can be also expressed as

follows:
1 v v
ve|l v v,
1 v vV

vV 1
2
v, v, 1
V — 2 2
v: v 1

478

CHAPTER 7 LINEAR ALGEBRA

The Vandermonde matrix of the data from this exercise is equal to the following:

1 20 20° 20% 20 1

1 30 30° 0> 301
V= or V=

1 70 70° 70° 70 1

The measured data points in this exercise are as follows:
45
80
Yi=
330
The unknown coefficient of the quadratic polynomial is found from the following,
depending on which way [V] is defined:

a=[ay, ay, a,] or a=[a, a,, a,)

a=v=+[y,]

Note that in this exercise, the size of the Vandermonde matrix is 6-by-3.
The complete code of this exercise is LA_Ex7.m.

% LA_EX7.m

clc; clear variables; close

% Part 1. Vandermonde matrix

v = (20:10:70)."; % Velocity, [km/h]

y = [45 80 130 185 250 330].'; % Braking distance, [m]
scatter(v, y, 'filled")

ylim([0, max(y)+.2])

A = [v.”2, v, ones(size(v))];

FM =A\y;

FM values = FM(1)*v.”2+FM(2)*v+FM(3);

hold on

plot(v, FM values, 'k-', 'linewidth', 2)

gtext(['Fit model: s(v) = ' num2str(FM(1)) 'v72 +' num2str(FM(2)) "*v +',
num2str(FM(3))1)

grid on

479

CHAPTER 7 LINEAR ALGEBRA

xlabel('\it Velocity, v [km/h]")

ylabel('\it Braking Distance, s [m]")

% Part 2. Polynomial Approximation Fcns: Curve Fitting Toolbox

FM2 = polyfit(v,s, 2);

fprintf('CFTOOL Fit Model: s(v) = %f*v.”2 + %f*v + %f \n', FM2);

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(v, s, 'poly2');

fprintf('Stats and ML Fit Model: s(v) = %f*v.”2 + %f*v + %f \n', flip(FM3.
Coefficients.Estimate));

Figure 7-17 shows the simulation results of LA_Ex7.m.

300

Fit model: s(v) = 0.050893v° +1.1054* +2.3571
250 |-

200 |

150

Braking Distance, s [m]

100

20 25 30 35 40 45 50 55 60 65 70
Velocity, v [km/h]

Figure 7-17. Quadratic fit model is computed using the least squares method
Also, in the Command window, the following outputs will be displayed after

executing the script: LA_Ex7.m:

FMM =

0.0509
1.1054
2.3571
CFTOOL Fit Model: s(v) = 0.050893*v.”2 + 1.105357*v + 2.357143
Stats and ML Fit Model: s(v) = 0.050893*v.”2 + 1.105357*v + 2.357143

480

CHAPTER 7 LINEAR ALGEBRA

The results from the three approaches are identical, which proves that the
Vandermonde approach is well correlated with the functions of the two toolboxes.

Example 8: Linear Equations ([A]l{x} = [b]) Applied for the Least
Squares Method Using Simulink Modeling

The following data table gives the stopping distance y as a function of initial speed v, for
a certain car model. Find the quadratic polynomial coefficients that fit the data.

Wkml h) 20 30 40 50 60 70

nm) 45 80 130 185 250 330

Let’s build a Simulink model to solve this exercise and apply the least squares
polynomial solver block. A Simulink model of this exercise is relatively simple and
composed of three blocks: Constant, Least Squares Polynomial Fit, and Display blocks,
as shown in Figure 7-18.

1 o poyit — o[]

Constant Least Squares Display
Polynomial Fit

Figure 7-18. Simulink model, the least squares method

The Simulink model shown in Figure 7-18 is not complete yet. There are two more
adjustments to be made in the Constant and Least Squares Polynomial Fit blocks. The
Constant should be opened by double-clicking it, and the data fory, i.e., [45 80 130
185 250 330]." should be entered. Note the data has to be a column vector. Then the
next block parameters should be adjusted, as shown in Figure 7-19. Note that Control
Parameter (X) values are v values in a column vector form, and Polynomial order (N) is 2
because we are looking for a quadratic polynomial fit.

481

CHAPTER 7 LINEAR ALGEBRA

[i] Block Parameters: Least Squares Polynomial Fit
Least Squares Polynomial Fit (mask) (link)

Find the coefficients of a polynomial P(X) of order N that fits the input
data U, such that P(X) best approximates U in a least-squares sense.

The input vector U must have the same length as X.

Parameters

Control points (X):

(20:10:70)."

Polynomial order (N):

2

9

Cancel

Apply

Figure 7-19. Least squares Polynomial Fit block parameters adjustment

Once all adjustments are made and values are entered, the model is ready to
simulate. The completed model (LA_Ex8.slx) with simulation results after resizing the
Display block to see all results is shown in Figure 7-20.

[45 80 130 185 250 330].

Polyfit

Constant

Least Squares
Polynomial Fit

Figure 7-20. Simulink model, LA_Ex8.slx

' 0.05089

L, 1.105

2.357

Display

Note that the found results from the Simulink model LA_Ex8.s1x match perfectly
well with the ones found using the Vandermonde matrix, polyfit() and fitlm().

Matrix Operations

This section covers general mathematical operations and computations of matrices,

vectors, and eigen-vectors. Many numerical examples are used to explain the matrix
operations. Table 7-1 lists the matrix operations their command syntax.

482

CHAPTER 7 LINEAR ALGEBRA

Table 7-1. Matrix Operators in Two Equivalent Formulations

Operation Name MATLAB First Way MATLAB Second Way
Matrix multiplication A*B mtimes(A,B)
Array-wise multiplication A.*B times(A,B)
Matrix right division A/B mrdivide(A,B)
Array-wise right division A./B rdivide(A,B)
Matrix left division A\B mldivide(A,B)
Array-wise left division A.\B 1divide(A,B)
Matrix power A"B mpower (A,B)
Array-wise power A."B power (A,B)
Complex transpose A' ctranspose(A)
Matrix transpose A’ transpose(A)
Binary addition A+B plus(A,B)
Unary plus +A uplus(A)
Binary subtraction A-B minus(A,B)
Unary minus -A uminus(A)
Determinant det(A) det(A)

Rotate by 90° rot90(A) rot90(A)
Replicate and tile an array ntimes ~ repmat (A, n) repmat(A, n)
Flip matrix left/right fliplr(A) fliplr(A)

Flip matrix in up/down flipud(A) flipud(A)

Basic MATLAB unit data is in the array type format. Matrices and vectors can be

employed in many cases to define input and output, local data, and function inputs and

outputs. Moreover, they can be used to combine separate scalars into one signal and

process multidimensional input and output signals. An array is defined by a single name

and a collection of data arranged by rows and columns, as shown here.

483

CHAPTER 7 LINEAR ALGEBRA

Row # 1 =
W Apq Ay A1z

Row # 2 =
Ayq Az Ay

Row # 3 =
A3zq Az A3z

Row # 4 =

Let’s look at some numerical examples. They perform matrix operations with scalars,
such as addition, subtraction, power, multiplication, and division, including array-wise
(elementwise) operations in the Command window.

>> A=[8)1:6; 3,5,7; 4)9:2] % Matrix 3'by_3

A =
8 1 6
3 7
4 2

>> a=2; b=2+3i; c = 5j;
>> B=A"a % Note the difference between * and .7

B =
91 67 67
67 91 67
67 67 91

>> C=A.”a % Elementwise. Note the difference between * and .
C =

64 1 36
9 25 49
16 81 4

484

>>
D =
3
1

D = A*a+B/b

0.0000 -21.0000i
6.3077 -15.46151
8.3077 -15.46151
E= C./c

0.0000 -12.8000i
0.0000 - 1.8000i
0.0000 - 3.20001
F=0C/c

0.0000 -12.80001
0.0000 - 1.80001
0.0000 - 3.20001

12.
24,
28.

3077
0000
3077

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

-15.
-21.
-15.

- 0.
.00001
-16.

46151
00001
46151

20001

20001

.20001
.00001
.20001

22.
24.
18.

3077
3077
0000

.0000

0.0000

.0000

0.0000
0.0000

.0000

-15
-15
-21

Example: Performing Matrix Operations

Given six arrays: A (4 — by — 3), B(3 — by —4), C(4 — by — 4), D(4 — by — 3), E(3 — by — 3),
and F(3 — by — 3).

Let’s perform several matrix operations—such as summation, subtraction,

CHAPTER 7 LINEAR ALGEBRA

.46151
.46151
.00001

.20001
.80001
.80001

.20001
.80001
.80001

multiplication, power, scalar multiplication, square root, mean, round, standard

deviations, and replicate/rotate/flip matrix—from the Command window.

>>
>>
>>
>>
>>
>>
>>
M A

A=[2 -3 1; 3 25; 13 4; -3 -23];
B=[3,4,-2 1;2,5,4,-6;4,-3, 1,2] ;

C=[16,2,3,13;5,11,10,8;9 4 7 14;6 15 12 1] ;
D=[123; 234; 431; -2 -31];

E=[8, 1, 6; 3, 5, 7; 4, 9, 2];

F=[373; 328;921];

M AB = A*B

B =
4 -10 -15
33 7 7
25 7 14
-1 -31 1

22

15

485

CHAPTER 7 LINEAR ALGEBRA

>> M BA = B*A

M BA =
13 -9 18
41 28 25
-6 -19 -1

>> M S = M_AB-C

14

MS =
-12 -12 -18
28 -4 -3
16 3 7 -23
-7 -46 -11
>> M_S= M _BA-C

Matrix dimensions must agree.

>> (M=C*M_S % Not equivalent to M_S*C

M =

-179 -789 -416 243
352 -442 -141 -150

18 -747 -279

88

533 -142 -80 -313

>> (M1=M_S*C % Not equivalent to C*M_S

M1 =

-360 -93 -174 -495
359 -105 -61 283
196 -252 -149 307

-357 -354 -390 -599

>> (M2=M_S.*C % Elementwise operation:

M2 =

-192 -24 -54 117
140 -44 -30 -56
144 12 49 -322

-42 -690 -132

486

14

NOT equivalent

to M S*C

CHAPTER 7 LINEAR ALGEBRA

>> MDE=M_S./C % Elementwise operation: NOT equivalent to M _S/C
MDE =

-0.7500 -6.0000 -6.0000 0.6923

5.6000 -0.3636 -0.3000 -0.8750

1.7778 0.7500 1.0000 -1.6429

-1.1667 -3.0667 -0.9167 14.0000

>> MD=M_S/C % Not equivalent to M S./C
MD =
1.9275 8.5704 -5.6271 -5.8414
1.4496 -6.4076 1.5420 3.8277
-1.0389 -10.8246 5.0116 6.9401
-4.9118 -12.9118 12.6765 3.6765
>> M_AD =A.*D % Elementwise operation: matrix multiplication
M AD =

2 -6 3
6 6 20
4 9 4
6 6 3

>> MM_AD= A*D % Error due to size mismatch of [A] and [D]

Error using * Incorrect dimensions for matrix multiplication. Check that the number
of columns in the first matrix matches the number of rows in the second matrix. To
perform elementwise multiplication, use '.*'. Related documentation

>> M _EF=E.*F % Elementwise multiplication of square matrices
M EF =

24 7 18

9 10 56

36 18 2
>> MM_EF=E*F % Square matrices can be multiplied matrix-wise
MM_EF =

81 70 38
87 45 56
57 50 86

487

CHAPTER 7

LINEAR ALGEBRA

>> Csqrt=sqrt(C) % Not equivalent to sqrtm(C)

Csqrt =
4.0000
2.2361
3.0000
2.4495

1.4142
3.3166
2.0000
3.8730

1.7321
3.1623
2.6458
3.4641

3.6056
2.8284
3.7417
1.0000

>> Csqrt=sqrtm(C) % Not equivalent to sqrt(C)

Csqrt =

3.8335 - 0.01671
0.3251 + 0.0011i
1.3123 - 0.0237i
0.5925 + 0.0373i

>> C_E1 = expm(C)
C_E1 =
1.0e+14 *
1.5718 1.3711
1.5718 1.3711
1.5718 1.3711
1.5718 1.3711
>> C_E2 = exp(C) %
CE2 =
1.0e+06 *
8.8861 0.0000
0.0001 0.0599
0.0081 0.0001
0.0004 3.2690

>> S=[A(1,1:3); B(2,1:3);C(3,2:4)];

>> Y=[A(1), 1.3];
>> Arot90=rot90(A)

488

0.0738 + 0.78391
2.6850 - 0.05261
0.7322 + 1.11071
2.0922 - 1.74771

1.3622
1.3622
1.3622
1.3622

0.0000
0.0220
0.0011
0.1628

1.5295
1.5295
1.5295
1.5295

Exponential of a

4424
.0030
.2026
.0000

o B O O

matrix:

0.1262 + 0.36661
1.6850 - 0.02461
1.9687 + 0.51941
1.7997 - 0.81721

not

1.7975 - 1.1337i
1.1359 + 0.07611
1.8178 - 1.60641
1.3466 + 2.52761

% Matrix exponential not equal to exp(C)

equal to expm(C)

% Created from the existed

% Created from the existed
% Matrix rotate

Arot9o =
1 5 4 3
-3 2 3 -2
2 3 1 -3
>> Crep=repmat(C, 2,1)

Crep =

16 2 3 13

11 10 8

9 4 7 14

6 15 12 1

16 2 3 13

5 11 10 8

9 4 7 14

6 15 12 1

CHAPTER 7 LINEAR ALGEBRA

% Matrix replication/copy

>> Bflip=fliplr(B) % Matrix flip

Bflip =
1 -2 4 3
-6 4 5 2
2 1 -3 4

Cud=flipud(Crep) % Matrix flip up or down

Cud =
15 12 1
4 7 14
5 11 10 8
16 2 3 13
15 12 1
4 7 14
5 11 10 8

16 2 3 13

Many of these matrix operations can also be performed in the Simulink

environment. Let’s use the previous examples to demonstrate how and what Simulink

uses for matrix operations and manipulations.

The Simulink Library contains the blocks for sum, multiplication/division, power,

exponent, and concatenation, as shown in Figure 7-21.

489

CHAPTER 7

LINEAR ALGEBRA

X

LW

LW

LW

LWl

Multiply

LW
L

Divide

LW

Exp

2

Matnx
Concatenate

S

Figure 7-21. Matrix operation blocks in the Simulink Library

First define the [A] and [D] matrices in the Command window.

>> A=[2 -3 1; 32 5; 13 4; -3 -23];
>> D=[123; 234; 43 1; -2-31];

Now compute the sum and subtraction of matrices [A] and [D], as shown in
Figure 7-22.

Constant

Censtantl

3 [:
|l g 7 IIITI_’
—— ’E,
E -5 3
Dpiey Constants
]] :
|H| | g =
Constant2 3]| E;II 3
g il 3

Constant3

Display1

Ell -1l 4

Ell El E

E|l 9

[- 9
Display2

Figure 7-22. Matrix sum and subtraction operations in Simulink

Note that matrices [A] and [D] are defined via the Command window and workspace.

The computed sums match the ones calculated using MATLAB’s Command window.

Here are the results of multiplication (see Figure 7-23), exponent, and square (see

Figure 7-24) of the matrices.

490

CHAPTER 7 LINEAR ALGEBRA

[B]

[2-31:325134:3-23): k= gl 0] .1§_| 22
n Matrix ~ 33 |
[A] Multiply » 25;" 7 14" o
| | 31)| 1| 1
[3.4.-21:254-6:4.-3.12): Multply Display3

Figure 7-23. Matrix multiplication in Simulink

Note that for the matrix multiplication operation shown in Figure 7-23, the Multiply

block changes from element-wise (.*) multiplication to matrix (*) multiplication, as

shown in Figure 7-24.

Main Signal Attributes
Number of inputs:

2

Multiplication: | Matrix(*)

b |

Element-wisi.'i |

Figure 7-24. Setting up the Matrix Multiply block for matrix multiplication (*) or

element-wise multiplication (.-)

Otherwise, the multiplication operation will not be performed due to the

mismatched sizes of [A] and [B]. Again, the computed results match the ones

from MATLAB.

491

CHAPTER 7 LINEAR ALGEBRA

[4006 B 27 2197)
¢ " _ 29| 1331 1000)[512
(C] > v 729 64 343 2744]
= 21g|| 3375 1728]| 1
3 xp
Displays
power
| | gl]l 769
Ao, R 25 121 100} _64)
¢ g gl 81 19| E | 156)
€ | 36| 225 134 1)
Exp1
Displayb

Figure 7-25. Matrix exponential and square operation blocks

Note that in the operations in Figure 7-25, the exponential and power operations
are performed with one block (one Math Function block), by choosing its Function type

[pow] in u’ and [square] in u? (see Figure 7-26).

Main Signal Attributes

Function: [exp _ i v

exp
Output sig jog
10%u

log10

magnitude~2
uare

J conj
i reciprocal
hypot
rem

mod
transpose
| hermitian

Figure 7-26. How to set the Math Function block for matrix operations

Now by using the Matrix Concatenate block, we create a new matrix (4-by-10) from
the computed the matrix sum (4-by-3), square (4-by-4), and matrix division (4-by-3). See
Figure 7-27.

492

CHAPTER 7 LINEAR ALGEBRA

4[
i
o)
=

Daghay

e B 5T na-..-—l

e[5 0 067 122]

= S | L K|
Bl 0 3

oeear)

El&
T
)=l
SI5E A
i 3

234325134323 x

ﬂ;! Uog

Figure 7-27. The Matrix Concatenate block performs matrix concatenation.

As demonstrated, Simulink blocks perform various matrix operations, much like
MATLAB functions. However, there are computationally costly simulations with matrix
and array operations in which Simulink models might be slower than MATLAB scripts.
For example, when computing discrete Fourier transforms, Simulink models are much
slower than MATLAB. For some matrix and array operations, the MATLAB Fcn block or
the Interpreted MATLAB Fcn block can be used in Simulink modeling.

In addition to these matrix operations, there are a few other operations by which you
can create new matrices. For instance, you can take out diagonals of existing matrices
with diag(A) or take out selected elements of matrices and create a new matrix.

>> E=[8, 1, 6; 3, 5, 7; 4, 9, 2];
>> F=[373; 3238;921];

>> EF = [diag(E), diag(F)]

EF =

Standard Matrix Generators

MATLAB has numerous standard array and matrix generators, which can be used to
generate a wide range of matrices. For instance, eye(n), eye(k, m), ones(m), ones(m,
k), zeros(1), zeros(1,k), magic(k), pascal(k), pascal(k, m), rand(m), rand(k, m),
randi(n,m,k), repmat(A, r, c),blkdiag(A, B, C), sparse(m,n), and many more.
Here’s an example:

493

CHAPTER 7

>> eye(3)

ans

>> magic(5) %

ans

>>

>> A=pascal(4,2)

A =

17
23

4
10
11

1
1
1
1

-1
3
-3
1

A=pascal(4)

-1
2
-1
0

-1
1
0
0

LINEAR ALGEBRA
0 0
1 0
0 1
Magic
24 1 8
5 7 14
6 13 20
12 19 21
18 25 2
% Pascal
1 1
2 3 4
3 10
4 10 20

-1
0
0
0

matrix in a size of 5 by 5

15
16
22
3
9
matrix in a size of 4 by 4

% Pascal matrix in a size of 4 by 4

>> zeros(3) % Zero matrix 3-by-3

ans

0
0
0

0
0
0

0
0
0

>> zeros(2,3) % Zero matrix 2-by-3

ans

494

CHAPTER 7

>> ones(3) % Ones matrix 3-by-3

ans =
1 1
1 1
1 1

>> ones(2,3)
ans =
1 1
1 1
>> eye(3,4)
ans =

1 0
0 1
0 0

>> eye(4,5)
ans =

1
0
0

o O »r O

0
>> rand(2)
ans =
0.8147
0.9058
>> rand(2, 4)
ans =
0.6324
0.0975
>> randn(3)
ans =
0.7254
-0.0631
0.7147

1
1
1
% Ones matrix 2-by-3

1
1
% Unit diagonal matrix of size 3 - by - 4
0 0
0 0
1 0

% Unit diagonal matrix of size 4 - by - 5

0 0 0
0 0 0
1 0 0
0 1 0

% Uniform random matrix 2-by-2

0.1270
0.9134
% Uniform random matrix 2-by-4

0.2785 0.9575 0.1576
0.5469 0.9649 0.9706
% Normally distributed random matrix 3-by-3

-0.2050 1.4090
-0.1241 1.4172
1.4897 0.6715

LINEAR ALGEBRA

495

CHAPTER 7 LINEAR ALGEBRA

>> A = round(randn(3)) % Round up to the nearest 0
A =

-1 0 0
1 1 0
2 1 -1

>> A rep=repmat(A, 2, 3) % replicating the matrix A by making its
% replication 2 times of rows and 3 times of columns

A rep =
-1 0 0 -1 0 0 -1 0 0
1 1 0 1 1 0 1 1 0
1 -1 1 -1 2 1 -1
-1 0 0 -1 0 0 -1 0 0
1 1 1 1 1 1 0
2 1 -1 1 -1 2 1 -1

>> C=eye(2); B=magic(3); A=ones(4);
>> D=blkdiag(A,B,C) % combine matrices in diagonal directions to
% create a block diagonal matrix.

D =
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 8 1 6 0 0
0 0 0 0 3 5 7 0 0
0 0 0 0 4 9 2 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

>> randi([-13, 13], 5) % Random integers within [-13, 13]

ans =
0 7 12 9 -4
12 -7 1 -7 -8

-4 0 -10 8 -7
2 5 -9 -7 3
-7 11 -7 12 -1

496

CHAPTER 7 LINEAR ALGEBRA

>> K=reshape(randperm(9), 3,3) % Change the size (reshape)
of array % to make 3 by 3 matrix by random permutation
K =

5

In addition, there are a few dozen matrix generation functions. They are the gallery
of test matrices, such as binomial, cauchy, clement, invol, house, krylov, leslie, lesp,
neumann, poisson, ris, rando, smoke, wilk, and many more. In general, the command
syntax of these matrices is as follows:

[A, B, C,...]
[A, B, C,...]
A=gallery(3);
B=gallery(5);

gallery(matname,P1,P2,...);
gallery(matname,P1,P2,..., classname);

To get more information about the gallery of matrices, type this in the
Command window:

>> help gallery
>> doc gallery

Here are several examples of how to employ gallery matrices:

> S=[3 2 7]; X=[2 2];

% This is the 3-by-3 Leslie population matrix taken from the model with
average birth numbers S(1:n) and survival rates X(1:n-1)

>> L=gallery('leslie', S, X)

L =
3 2 7
2 0 0
0 2 0

% Chebyshev spectral differentiation matrix of order 3
>> C = gallery('chebspec’, 3,1)
C =

-0.3333 -1.0000 0.3333

1.0000 0.3333 -1.0000

-1.3333 4.0000 -3.1667

497

CHAPTER 7 LINEAR ALGEBRA

% Cauchy matrix 3-by-3, C(I, j) = 1/(S(i)+Y(j)). The arguments S and Y are
vectors of length 3.

% If you pass in scalars for S and Y, they are interpreted as vectors 1:S
and 1:Y.

>>S=1[326];Y=1[132];
>> C = gallery('cauchy', S, Y)
C =

0.2500 0.1667 0.2000
0.3333 0.2000 0.2500
0.1429 0.1111 0.1250
>> % Krylov matrix of size 5-by-5.
>> B = gallery('krylov', randn(5))
B =
1.0000 2.4392 3.9250 26.5823 24.9976
1.0000 1.2031 7.8039 6.5275 61.9487
1.0000 -1.3094 -7.4622 11.6113 -14.5418
1.0000 0.3038 -3.8311 -16.0811 -10.1830
1.0000 -3.7454 0.3824 5.7186 -65.2352
>> % House-holder matrix of size 3-by-1.

>> A = [3;2;5]; % Must be a column matrix
>> H = gallery('house', A)
H =

9.1644

2.0000

5.0000

>> % Hankel matrix of size 5-by-5 with elements H(I, j)=0.5/(n-i-j+1.5).
>> B = gallery('ris’,5)
B =

0.1111 0.1429 0.2000 0.3333 1.0000

0.1429 0.2000 0.3333 1.0000 -1.0000

0.2000 0.3333 1.0000 -1.0000 -0.3333

0.3333 1.0000 -1.0000 -0.3333 -0.2000

1.0000 -1.0000 -0.3333 -0.2000 -0.1429

498

CHAPTER 7 LINEAR ALGEBRA

>> % Smoke matrix of size 3-by-3 - complex, with “smoke ring” pseudo-
spectrum.
>> SM=gallery('smoke', 3)
SM =
-0.5000 + 0.86601 1.0000 + 0.0000i 0.0000 + 0.00001
0.0000 + 0.0000i -0.5000 - 0.86601 1.0000 + 0.0000i
1.0000 + 0.00001i 0.0000 + 0.0000i 1.0000 + 0.00001i

These standard and gallery matrices have special properties that can be of great
use in various numerical simulations and analysis problems. For instance, these
standard matrices—ones(), eye(), zeros(), rand(), randn()—are used often for signal
processing, data analysis, and memory allocation in large computations.

Vector Spaces

In signal processing, numerical analyses, and building computer simulation models,
vector spaces are very important. For instance, the logarithmic space is used for

digital signal processing when frequencies go over a unit circle. There are several
straightforward ways by which vectors, vector spaces, and arrays with equal spaces
between their elements can be created. Let’s suppose that we need to create a vector W
that begins with a value w1 and ends with w2, as shown in Figure 7-28.

| | | | | | | | | | 4
| | | | | | ! [| |
wil w2
Aw N number of subdivision

Figure 7-28. Vector space

If the size Aw is known, then the space can be expressed by W= w1: Aw: w2. For
instance, the whole space can be defined in terms of w1 =1, w2 = 13, Aw = 0.1 with the
following:

>> w=1:0.1:13;

499

CHAPTER 7 LINEAR ALGEBRA

Moreover, if N number of points between the start and end boundaries of a space are
known, the linear space function 1linspace() can be used.

>> % This creates a linear space of w array with equally spaced k number of
elements
>> w=linspace(1, 13, N);

Note If Nis not specified in the linspace() command, its default value is 100.

This simplex example generates sound waves with a sine function.

fs=3e4; % Sampling frequency

% Different signal frequencies:

f1=100; f2=200; f3=300; f4=400; f5=500; f6=600;

t=0:1/fs:5; % Time

% Signal: sum of sine waves

x=sin(2*pi*t*f1)+sin(2*pi*t*f2)+sin(2*pi*t*f3)+
sin(2*pi*t*f4)+sin(2*pi*t*f5);

[m, nJ=size(x); % Gets the size of the created vector space
sound(x, fs) % Plays a created sound & hear from sound cards

The linspace() command creates linearly spaced vector spaces/arrays. In MATLAB,
there is another similar function, called logspace(), that creates logarithmic scaled
vector spaces. For example, you use the following command to create a logarithmic
space of the x array containing 130 logarithmically spaced elements (here, N = 130)
between boundary points 0 and 13:

>> x=logspace(1,13,130);
Likewise, use this command to create 50 logarithmic spaced points between 0 and z:

>> s=logspace(0, pi);

Note If Nis not specified in logspace(), then its default value is 50.

500

CHAPTER 7 LINEAR ALGEBRA

Polynomials Represented by Vectors

For numerical simulations in MATLAB, polynomials are represented via vectors using
coefficients of polynomials in descending order. For instance, a fifth-order polynomial is
given as follows:

12x° +13x* —15x* +17x—13

That is defined as a vector space in the following manner:
>> f=[12, 13, 0, -15, 17, -13];

Note, that MATLAB reads vector entries as a vector of length n+1 as an n-th order
polynomial. Thus, if any of the given polynomial misses any coefficients, zero has to
be entered for its coefficient. For instance, in the previous example, 0 is entered for the
coefficient of x°.

There are several functions that can be used to compute the roots of polynomials.

They are as follows:

e Using the roots() MATLAB function
o Using the zero() Control System Toolbox function
o Using the solve() Symbolic MATH Toolbox function

You find roots of the given polynomial using the base MATLAB function, roots().

>> x_sols=roots(f)
x_sols =
-1.2403 + 0.94121
-1.2403 - 0.9412i
0.7941 + 0.00001
0.3015 + 0.68691
0.3015 - 0.68691

+ +

Note that the given polynomial has only one real value root and four complex
valued roots.

The roots are computed by using the solve() function of MATLAB to find symbolic
solutions of the polynomial, and then solutions are converted (note that conversion may
be not necessary) to obtain a shorter number of decimal point numeric data using the
double() function with the following entries in the Command window:

501

CHAPTER 7 LINEAR ALGEBRA

>> syms X

>> syms X

>> Sol=solve(12*x"5+13*x"4-15*x"2+17*x-13)

Sol =

root(z"5 + (13*z"4)/12 - (5*z"2)/4 + (17*z)/12 - 13/12, z, 1)
root(z"5 + (13*z"4)/12 - (5*z*2)/4 + (17*z)/12 - 13/12, z, 2)
root(z"5 + (13*z"4)/12 - (5*z"2)/4 + (17*z)/12 - 13/12, z, 3)
root(z"5 + (13*z"4)/12 - (5*z"2)/4 + (17*z)/12 - 13/12, z, 4)
root(z"5 + (13*z"4)/12 - (5*z*2)/4 + (17*z)/12 - 13/12, z, 5)

>> double(Sol)

ans =
0.3015 - 0.6869i
0.3015 + 0.68691
0.7941 + 0.00001
-1.2403 - 0.9412i
-1.2403 + 0.94121

Roots can be computed by using zero(), which is a function of the Control Toolbox
of MATLAB:

>> F_tf = tf(f, 1)
F_tf =

12 s”5 + 13 s™4 - 15 s"2 + 17 s - 13
Continuous-time transfer function.

>> X_sols = zero(F_tf)
x_sols =
-1.2403 + 0.9412i
-1.2403 - 0.94121
0.7941 + 0.0000i
0.3015 + 0.68691
0.3015 - 0.68691

Note in this case, a transfer function (ratio of two polynomials) with a denominator
of 1 in the “s” domain is created first. Then the roots of s are computed, which would
make the polynomial equal to zero.

502

CHAPTER 7 LINEAR ALGEBRA

The values of polynomials at specific input argument values can be computed using
MATLAB's built-in function polyval(). Here is an example how to use this function:

>> f = [12, 13, 0, -15, 17, -13]; % Given polynomial
>> x = linspace(-10, 10, 500);
>> f val = polyval(f,x); % Computed polynomial values

Simulink Model-Based Solution of Polynomials

To solve polynomials via Simulink modeling, use the MATLAB Fcn block, the Constant
block to input the polynomial coefficients, and the Display block to see the computed
roots. Figure 7-29 shows the complete model saved as Polynomial_Solver.slx.

17 P{us

-13 L

Figure 7-29. Simulink model to solve the polynomial
12x°+13x' — 15X+ 17x — 13=0

The MATLAB Function block has the following command syntax embedded in it:

function y = fcn(ui, wu2, wu3, u4, u5, ub)
y = roots([u1l, u2, u3, u4, us5, u6l);

The MATLAB Fcn block calls the MATLAB function roots() and computes the roots
of the polynomial with respect to its coefficients given by the input variables ul, u2, ...
ub6 since we are solving a fifth-order polynomial. As it is, this model does not run, and
there are two more issues related to the size of the variables and solver type. First, the
solver type has to be a fixed-step size type. That can be adjusted via Simulation » Model

503

CHAPTER 7 LINEAR ALGEBRA

Configuration Parameters » Solver Selection » Fixed Step Solver. By default, the solver
is a variable type.
Second, you need to change the size of the output variable y. You can do that by
icon and selecting Model Explorer » [Model Hierarchy| »
Polynomial_Solver.slx » MATLAB Function » y Output » Size. Set the size to 5 and
click Apply. (The fifth-order polynomial has five roots.) After clicking the Run button in

clicking the

the menu of the Simulink model window or pressing Ctrl+T on the keyboard, you'll see
the results displayed in Figure 7-30.

12 Put
13 »u2
[-1.24 + 0.9412]]
0 »{u3 | -1.24 - 0.9412])
4 >l 0.3015 + 0.6869
\ -1 i
15 plug fon { 0.7941 - 1.651e-16i
| 0.3015 - 0.6869i]
17 »{us
-13 » 6

Figure 7-30. Complete model with computed roots of the polynomial
12X+ 13x' — 15x* + 17x — 13=0

The computed roots of the given polynomial match the ones computed by the
MATLAB commands roots () and zero() to four decimal places.

Eigen-Values and Eigen-Vectors

Eigen-values and eigen-vectors have broad applications, not only in linear algebra but
also in many engineering problems. For instance, they are used with vibrations, modal
analysis, control applications, robotics, and so forth.

504

CHAPTER 7 LINEAR ALGEBRA

Definition 1. An eigen-value and eigen-vector of a square matrix A are, respectively, a
scalar 4 and a nonzero vector v that satisfy the following:

Av=Av (Equation 7-6)
Definition 2. Given a linear transformation A (a square matrix), a nonzero vector v is

defined to be an eigen-vector of the transformation if it satisfies the following eigen-value
equation for some scalar A:

[A]{v}=2{v} (Equation 7-7)
In this case, the scalar A is called an eigen-value of A corresponding to the eigen-
vector {v}.

a b c X X
d e f|xyr=1%y

g hi z z
—_— — ——
[A] x] x]
[A]*[X]-2A=[I]*[X]=0 (Equation 7-8)

Here, (1] is the identity matrix. Now by rearranging, the next formulation can be
written as follows:

([A]*[X]‘PL 1[I])*[X]=0 (Equation 7-9)
Let’s assume that there is an inverse matrix of the coefficient of [X], i.e., ([A] - [4] * [1]).

([A]-[2]#[1]) " =0 (Equation 7-10)

There can be other solutions apart from a trivial solution [X] = 0. So, this means
([A] - [A] * [1]) = 0 is obtained via determinant of this matrix equal to 0.

det{[A]—[}t]*[I]}:O (Equation 7-11)

The left side of Equation 7-11 is called a characteristic polynomial. So, when this
equation is expanded, it will lead to a polynomial equation of 4. Use the following
example to compute eigen-values and eigen-vectors:

2.3x,+3.4x, +5x,=0
3x,+2.4x,-1.5x,=0
2x,-0.4x,-72x,=0

505

CHAPTER 7 LINEAR ALGEBRA

Now, the given system’s equations are written in matrix form.

23 34 5 |[x
3 24 -15|x,|=0
2 04 -72| x,

Eigen-values of this transformation matrix are defined to be:

23-1 34 5
det 3 24-4 =15 |=0
2 -04 -72-1

—7.884+49.121-251*-1*=0

Solutions of this characteristic polynomial equation are as follows:

A, =—8.434;1, =0.162; A, =5.772

Further, three eigen-vectors are computed by plugging in each eigen-value one by
one into the equation. Hand calculations of eigen-values and eigen-vectors for larger
systems are tedious and time-consuming. For very large systems of linear equations,
it is infeasible to compute eigen-values and eigen-vectors with hand calculations. All
of these computations can be performed with a single built-in function of MATLAB,
called eig(A):

>> A =1[2.3 3.4, 5; 3, 2.4, -1.5; 2, -0.4, -7.2]
A =

2.3000 3.4000 5.0000

3.0000 2.4000 -1.5000

2.0000 -0.4000 -7.2000

>> [v, lambda]=eig(A)

vV =
-0.7649 -0.6510 -0.4725
-0.6366 0.7276 0.2479
-0.0983 -0.2164 0.8458
lambda =
5.7726 0 0
0 0.1619 0
0 0 -8.4345

506

CHAPTER 7 LINEAR ALGEBRA

>> A*v - v*¥lambda % Verify: eigen-vectors and eigen-values;

ans =
1.0e-14 *
-0.0888 -0.0638 -0.1776
-0.1776 -0.0763 0

0.0555 -0.1783 -0.1776

Note that there are several different syntax forms of the eig() function to compute
eigen-values and eigen-vectors of square arrays, and there is another command, called
eigs(A), to compute eigen-values and eigen-vectors.

d = eig(A)

d = eig(A,B)

[V,D] = eig(A)

[V,D] = eig(A, "nobalance")
[V,D] = eig(A,B)

[V,D] = eig(A,B,flag)

To evaluate the largest eigen-values and eigen-vectors, use this:

d = eigs(A)

[V,D] = eigs(A)

[V,D,flag] = eigs(A); eigs(A,B)

eigs(A,k)

eigs(A,B,k)

eigs(A,k,sigma); eigs(A,B,k,sigma); eigs(A,K,sigma,opts);
eigs(A,B,k,sigma,opts)

Matrix Decomposition

The matrix decompositions have broad and valuable applications in many areas of
linear algebra and engineering problem solving, for instance, solving linear equations,
linear least squares, nonlinear optimization, Monte-Carlo simulation, experimental data
analysis, modal analysis, circuit design, filter design, and many more. There are a few
types of matrix transformations and decompositions, including QR, LU, LQ, Cholesky,
Schury, singular value decomposition, and so forth. We very briefly already discussed

507

CHAPTER 7 LINEAR ALGEBRA

the command syntaxes of QR, LU, LQ, chol() Cholesky, and svd() singular value
decompositions while solving the systems of linear equations. This section explains how
to compute matrix decompostions by using MATLAB'’s built-in functions.

QR Decomposition

QR decomposition is also called orthogonal-triangular decomposition. It’s the process
of factoring out a given matrix as a product of two matrices. They are traditionally called
the Q and R matrices, and they are the orthogonal matrix Q and the upper triangular
matrix R.

A=QR (Equation7-12)

Q'Q=I (Equation7-13)

Here, Q is an orthogonal matrix, Q” is a transpose of Q, R is an upper triangular
matrix, and I is an identity matrix. The QR decomposition is based on the Gram-Schmidt
method. More details of the Gram-Schmidt method can be found on Wikipedia [1]. In
MATLARB for the QR decomposition computation, there is a function called qr (). It has a
few different syntax methods that evaluate Q, R, and other relevant matrices.

[Q,R] = gr(A) %Produces upper triangular matrix R & unit matrix Q
[Q,R] = gr(A,0) %Produces the economy-size decomposition

[Q,R,E] = qr(A) %Produces Q, R and permutation matrix E =>A*E = Q*R
[Q,R,E] = qr(A,0) %Produces economy-size decomposition: A(:,E) = Q*R
X = qr(A) %Produces matrix X. triu(X) is upper triangular
factor R

X = qr(A,0) % The same as X = qr(A);

R = qr(A) % Used when A is a sparse matrix and computes a Q-less

% OR decomposition and returns R.

Example: Computing QR Decomposition of a 5-by-5 Matrix

Let’s take matrix [A] of size 5x5 generated from a normally distributed random number
generator, called randn(). Compute the QR decompositions of the [A] matrix.

508

>> format short
>> A = randn(5)

A =
0.3335 -0
0.3914 0O
0.4517 -1
-0.1303 0
0.1837 -0
>> [Q, R]=qr(A)
Q:
-0.4629 0.
-0.5432 -0.
-0.6269 0.
0.1808 -0.
-0.2549 0.
R =
-0.7205 0.
0 -1
0
0
0
>> [Q, R]=qr(A,
Q =
-0.4629 0
-0.5432 -0.
-0.6269 0.
0.1808 -0.
-0.2549 0.
R =
-0.7205 0.
0 -1
0
0
0

.4762
.8620
.3617
-4550
.8487

.0336

7902
4640
1702
3609

9045

L7127

.3349

0.5528
1.0391

.1176
.2607

.6635
.2551

0.0710
0.5228

.4650

.3201
.6793
.4600

.6635
.2551

0.0710
0.5228

.4650

.3201
.6793
.4600

0

.6601
.0679
.1952
.2176
.3031

.4906
.1236
.4160
.7440
.1322

.1084
.0872

0.4687
0.6154

.4906
.1236
.4160
. 7440
.1322

.1084
.0872

0.4687

.6154

o »r O O O

.0230
.0513
. 8261
.5270
.4669

.3219
.0155
.4622

0.3339

. 7557

-3993

0.2522

.6421
.5365
4891

.3219
.0155
4622

0.3339

. 7557

3993

0.2522

.6421
.5365
.4891

CHAPTER 7

LINEAR ALGEBRA

509

CHAPTER 7 LINEAR ALGEBRA

>> [Q,R,E]=qI(A)

0 =
-0.1608 -0.0026 -0.4424 0.8652 0.1726
0.2655 -0.0455 0.7987 0.4982 -0.2035
0.4990 -0.4921 -0.3661 0.0262 -0.6116
-0.5367 -0.8164 0.1799 -0.0321 0.1099
0.6054 -0.2988 -0.0065 -0.0386 0.7366
R =
2.0823 -0.1148 -1.1322 -0.2883 0.4568
0 -1.7950 0.5142 0.3657 -0.1895
0 0 1.4850 -0.3119 -0.0250
0 0 0 0.5510 0.4924
0 0 0 0 -0.1773
E =
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
>> A*E
ans =
-0.3349 0.0230 -0.4762 0.6601 0.3335
0.5528 0.0513 0.8620 -0.0679 0.3914
1.0391 0.8261 -1.3617 -0.1952 0.4517
-1.1176 1.5270 0.4550 -0.2176 -0.1303
1.2607 0.4669 -0.8487 -0.3031 0.1837
>> Q*R
ans =
-0.3349 0.0230 -0.4762 0.6601 0.3335
0.5528 0.0513 0.8620 -0.0679 0.3914
1.0391 0.8261 -1.3617 -0.1952 0.4517
-1.1176 1.5270 0.4550 -0.2176 -0.1303
1.2607 0.4669 -0.8487 -0.3031 0.1837

510

CHAPTER 7 LINEAR ALGEBRA

LU Decomposition

The LU decomposition or factorization is also called a modified form of the Gauss
elimination method and was introduced by Alan Turing [2]. It is defined as follows:

A=LU (Equation 7-14)

Here, A is a rectangular matrix, and L and U are the lower and upper triangular
matrices, respectively.
For example, a 3-by-3 matrix can be LU factorized with the following expressions:
A, A, A, 1 0 0 u, U, U,
A, A, A,l|=L, 1 0 (* 0 U, U,
A, A, A, L, L, L, 0 0 U,

In MATLAB, the LU decomposition is evaluated using the following syntax of the
built-in function 1u():

Y = 1lu(A) %Produces matrix Y, for sparse A. Y contains only
L [L,U] = 1u(A) %Produces U and L
[L,U,P] = 1u(A) %Produces U & L with a unit diagonal & permutation

matrix P
[L,Uu,P,0] = 1lu(A) % Produces U, L, and row permutation matrix P
% and column reordering matrix Q, so that
P*A*Q = L*U
[L,U,P,Q,R] = 1u(A) % Produces U,L, & permutation matrices P and Q,
% diagonal scaling matrix R so that P*(R\
A)¥Q = L*U

% for sparse non-empty A.
= lu(A, 'vector') %Produces the permutation information in two %row

—
.
.
.

—
|

vectors p and q. A user can specify from 1 to 5
outputs.

—
.
.
.
—
1]

lu(A, thresh)
lu(A,thresh, 'vector")

—
.
.
.
[a—
]

511

CHAPTER 7 LINEAR ALGEBRA

Example: Computing LU Composition of a 3-by-3 Pascal Matrix

Let’s compute L, U, and other (P, Q, R) matrices from any given rectangular matrix. For
this task, you write a small script called LU_decomposition.mwith MATLAB's built-in
function 1u(). The script takes one user entry (input), which has to be a rectangular
matrix. You'll employ in this script another built-in function of MATLAB, called
issparse(). It identifies whether the user-entered matrix is a sparse matrix or not.

% LU_decomposition.m
A=input('Enter rectangular matrix: ');
if issparse(A)

Y = 1lu(A) %ttok
[L,U,P,0] = 1lu(A) %ok
disp(' oops more ')

[L,U,P,0,R] = Lu(A) %ttok
[L, U, P, Q, R] = 1u(A, 'vector") %ttok

else
[L,U] = 1lu(A) %tok
[L,U,P] = 1u(A) %tok

% Check evaluation results:

ERROR=P*A-L*U %#ok

[L,U,P] = 1lu(A, ‘'vector') %ok
end

Run the script LU_decomposition.mand enter a standard matrix, called pascal(3),

as an input matrix.

Enter rectangular matrix: pascal(3)

L =
1.0000 0 0
1.0000 0.5000 1.0000
1.0000 1.0000 0

U=

1.0000 1.0000 1.0000
0 2.0000 5.0000
0 0 -0.5000

512

L =
1.0000
1.0000
1.0000

U =
1.0000

0
0
P =
0
ERROR =
0
0

L =
1.0000
1.0000
1.0000

U =
1.0000

0
0
P =
1 3

.0000
.5000

.0000
2.0000

1.0000
.5000

.0000
.0000

2

1.0000

1.0000
5.0000
-0.5000

1.0000

1.0000
5.0000
-0.5000

CHAPTER 7

Rerun the script and use a sparse matrix of size 3-by-3 as input.

Enter rectangular matrix: sparse(3)

Y =
(1,1)
oops more

L =
(1,1)

LINEAR ALGEBRA

513

CHAPTER 7 LINEAR ALGEBRA

U =
(1,1) 1
P =
(1,1) 1
0=
(1,1) 1
R =
(1,1) 3
L =
(1,1) 1
U =
(1,1) 1
P =
1
Q =
1
R =
(1,1) 3

Example: Solving [A]{x}=[b] Using LU Composition

LU composition can be employed to solve the [A]{x} = [b] system of linear equations
using the MATLAB’s mldivide() or backslash (\) operator.

[Alx} = [b] — [A] = [P] « [L] [U]
[y] = [L]([P] * [b]) — {x} = [U\]Y]

Let’s take the following example:
2
3x——=y+z=1
3 y
2x+y— lz =2
Y 2

3
“x-y-z=3
PR

514

CHAPTER 7 LINEAR ALGEBRA
The solution of this example is as follows:

A=[3-2/31; 21 -1/2; 3/4 -1 -1];
b = [1;2;3];

[L, U, P]=1u(A);

y=mldivide(L, (P*b));

x = U\y
X =
0.82
-0.555
-1.83

Cholesky Decomposition

The Cholesky decomposition is particularly important for Monte Carlo simulations
and Kalman filter designs. This type of matrix factorization is applicable only to
square matrices and to Cholesky triangles, which are decompositions of positive and
definite matrixes that is decomposed into a product of a lower triangular matrix and
its transpose. The Cholesky decomposition [3, 4] can be expressed via the following
formulation:

A=U"U (Equation 7-15)

Here, A is a square matrix, and U and U” are an upper triangular matrix and its
transpose, respectively. This formulation can be written with lower triangular matrix (L)
and its transpose (L7) as well.

A=LI" (Equation 7-16)

In MATLAB, the Cholesky decompositions are evaluated using the following syntax
options of the MATLAB's built-in function, chol():

R = chol(A) % Produces an upper triangular matrix R satisfying: R'*R=A
L = chol(A, 'lower') % Produces a lower triangular matrix R satisfying:
% L*L'=A
[R,p] = chol(A) %Produces an upper triangular matrix R and p is O
[L,p] = chol(A, 'lower') %Produces lower triangular matrix R&p is 0
[R,p,S] = chol(A) % When A is a sparse matrix, produces a permutation
% matrices S and R, and p that can be zero or non-zero

515

CHAPTER 7 LINEAR ALGEBRA

[R,p,s] = chol(A, 'vector') % Produces the permutation information %as a
vector 's'
[L,p,s] = chol(A, 'lower', 'vector') % Produces a lower triangular matrix

% L and a permutation vector 's

Note Using chol (the Cholesky decomposition operator) is preferable over the
elg (eigen-value and eigen-vector) operator for determining positive definiteness.

To evaluate the Cholesky decompositions of any given matrix (a user-entered
matrix), you write the next script, called Chol_decoposition.m, by considering
the requirements and properties of the Cholesky decompositions to compute
decompositions of any matrix with respect to the formulations in Equations 7-15 and
7-16. It takes one input, which is a user entry matrix. Note that in this script, we used
disp(), size(), det(), run(), and a pop-up dialog box command, warndlg().

% Chol decomposition.m
clearvars; clc
disp('Note your matrix must be square & positive definite!!!")
disp('NB: Positive means all determinants must be positive.')
disp('You can enter as matrix elements ')
disp('or define your matrix 1st, ')
disp('and then just enter your matrix name')
disp(*)
A=input('Enter a given Matrix: ');
[rows, cols]=size(A);
for k=1:rows
% Determinants are computed
Det A(k)=det(A(1:k, 1:k));

end
if rows==cols
if Det_A>0
if issparse(A)
[R,p,S] = chol(A) %tok
[R,p,s] = chol(A, 'vector');
[L,p,s] = chol(A, 'lower", 'vector');

516

CHAPTER 7 LINEAR ALGEBRA

else
R = chol(A) %#ok % Upper triangular matrix R: R'*R=A
L = chol(A, 'lower") %#ok % Lower triangular matrix R.
[R,p] = chol(A);

% Verify:

Error up = A-R'*R;

Error low = A-L*L';

disp('Error is with upper triangular matrix: ")
disp(Error_up)
disp('Error is with lower triangular matrix:')
disp(Error low)
end

else
warndlg('Sorry your matrix is not positive and definite!')
warndlg('Try again!!!")
run('Chol_decomposition")

end
end

You can test the script with different input entries (matrices). Let’s use a 4-by-4
standard matrix generated with pascal().

Note your matrix must be square & positive definite!!!
NB: Positive means all determinants must be positive.
You can enter as matrix elements

or define your matrix 1st,

and then just enter your matrix name

Enter a given Matrix: pascal(4)
R =

O O O
o o r B
o r N R
B W W R

517

CHAPTER 7 LINEAR ALGEBRA

L =
1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1
Error is with upper triangular matrix:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Error is with lower triangular matrix:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Now, consider a magic matrix of size 3-by-3.

>> run('Chol decomposition")

Note your matrix must be square & positive definite!!!
NB: Positive means all determinants must be positive.

You can enter as matrix elements
or define your matrix 1st,
and then just enter your matrix name

Enter a given Matrix: magic(3)

After running the script with an input entry of a magic square matrix of size 3-by-3,

the warning dialog boxes shown in Figure 7-31 appear.

- W

Sorry your malrix is not posilive and definite!

[ox]

"4 Warning Dialog = b

Try again!!!

Figure 7-31. Warnings showing that the input matrix is not positive and definite
and so cannot compute the Cholesky decompositions

518

CHAPTER 7 LINEAR ALGEBRA

Besides these two warning message boxes shown in Figure 7.31, the code keeps
asking to enter a matrix. The Chol_decoposition.m scriptidentifies the Cholesky
decomposition properties and computes the Cholesky decomposition of a user-entered
matrix. It detects a matrix type and works for given square and positive definite matrices
with the MATLAB built-in function chol().

Schur Decomposition

The Schur decomposition has many applications in numerical analyses, including
image-processing areas in combination with other matrix decompositions or
factorization tools. The Schur decomposition of a complex square matrix [A] is defined
as a matrix decomposition [5]:

Q" AQ=T=D+N (Equation 7-17)

Here, Q is a unitary matrix, Q" is a conjugate transpose of Q, and T is an upper
triangular matrix that’s equal to sum of a matrix D = diag (,, A5, 4s,..., 4,) a diagonal
matrix consisting of eigen-values 4; of A,and strictly upper triangular matrix N. The Schur
decomposition can be computed via the MATLAB'’s built-in function, schur ().

T = schur(A) % Produces the Schur matrix of A
T = schur(A, flag) % Produces the Schur matrix for two cases.
%{

for real matrix A, returns a Schur matrix T in one of two forms depending on the value
of flag:

‘complex' T is triangular and is complex if A has complex eigenvalues.
'real’ T has the real eigen-values on the diagonal and the complex eigen-
values in 2-by-2 blocks on the diagonal. 'real' is the default.

%}
[U,T] = schur(A,...)

Let’s look at several examples of standard matrices and compute their Schur
decompositions:

519

CHAPTER 7 LINEAR ALGEBRA

>> A=magic(5); B=pascal(3); C=round(randn(5,5)*10);
>> SA=schur(A)
SA =
65.0000 0.0000 -0.0000 0.0000 -0.0000
0 -21.2768 -2.5888 2.1871 -3.4893

0 0 -13.1263 -3.3845 -2.8239
0] 0 0 21.2768 2.6287
0 0 0 0 13.1263

>> SB=schur(B)

SB =

0.1270 0 0

0 1.0000 0
0 0 7.8730

>> SC=schur(C)

SC =

20.7072 7.3851 -0.2741 9.7514 1.9523
0 -6.1453 17.4134 -5.0801 -14.3751
0 -10.3437 -6.1453 14.7269 9.9502
0 0 0 4.8687 2.1653
0 0 0 0 -9.2853

>> [T, Ul=schur(A, 'complex')

T =
-0.4472 0.0976 -0.6331 0.6145 -0.1095
-0.4472 0.3525 0.7305 0.3760 0.0273
-0.4472 0.5501 -0.2361 -0.6085 0.2673
-0.4472 -0.3223 0.0793 -0.3285 -0.7628
-0.4472 -0.6780 0.0594 -0.0535 0.5778

U=

65.0000 0.0000 -0.0000 0.0000 -0.0000
0 -21.2768 -2.5888 2.1871 -3.4893

0 0 -13.1263 -3.3845 -2.8239
0 0 0 21.2768 2.6287
0 0 0 0 13.1263

520

>> [TA,

TA =

-0.
0.
-0.

UA =

0.

5438
7812
3065

1270
0
0

-0.

UA]=schur (B,

8165

-0.4082
0.4082

0

1.0000

0

real')

0.1938
0.4722
0.8599

7.

>> [T, Ul=rsf2csf(U,T) %

T =

-61.
.2354
.0845
.9854
.0340

o O N O

5539

.5636

0

<4472
4472
<4472

20.
18.
6.

8834
3788
1442

2.9044

.1003

0.1041

-0.
-0.

.8710

0
3223
6780

0
0
8730

CHAPTER 7

LINEAR ALGEBRA

Convert real Schur form to complex Schur form

.0000
.2270
.8039
.6344
.1601

.6400
2777
4787

0

.0594

-0.
-1.
6.
-20.
-0.

0000
2464
8268
6565
7135

0.4570
0.0336
0.7335

.5309

0

Singular Value Decomposition

.0000

3.6069
2.6290

.4269
.1055

.0505
.2993
3928
.6067
.6209

The singular value decomposition (SVD) has many applications in signal processing,

statistics, and image processing areas. It is formulated as a product of three matrices,

which are an orthogonal matrix (Uj), a diagonal matrix (D;), and the transpose of an

orthogonal matrix (V}), if a given matrix A; is an i by j sized real matrix with i > j.

A=U.D.V!

Wi i

Here, U U, =1,

VIV,

/)

(Equation 7-18)

= I. Diagonal entries of D; are known as singular values of A;.

521

CHAPTER 7 LINEAR ALGEBRA

Moreover, there are a few other important properties of the SVD.
o Left-singular vectors of Ajj are eigen-vectors of A;A;*.
 Right-singular vectors of Aij are eigen-vectors of A;*A;.

« Nonzero singular values (on the diagonal entries of D;) of A; are
square roots of the nonzero eigen-values of both A;*A; and A;*.

There are a few ways to evaluate the SVD, singular values, and vectors of any given
matrix. You use svd() and svds (), which are MATLAB built-in functions.

s = svd(A) %Produces a vector of singular values

[U,D,V] = svd(A) %Produces a diagonal matrix D of the same dimension
%as A, with nonnegative diagonal elements in decreasing order, and

% unitary matrices U and V so that X = U*D*V'.

[U,D,V] = svd(A,0) % Produces the "economy size" decomposition. If A
% 1s m-by-n with m > n, then SVD computes only the first n columns of
%U and D is n-by-n. s = svds(A)

s = svds(A,k)

s = svds(A,k,sigma) s = svds(A,k,'L")

s = svds(A,k,sigma,options) [U,D,V] = svds(A,...)

[U,D,V,flag] = svds(A,...)

Now, take two matrices (of size 2-by-3 and 3-by-3) and evaluate their SVDs.

>> A=ceil(randn(2,3)*10); B=pascal(3);
>> A=ceil(randn(2,3)*10); B=pascal(3);

>> A
A =
-2 -4
-15 -1 -2
>> B
B =
1 1
1 2 3
1 3 6

522

>> [U,V,D]=svd(A)

-0.9908
0.1354

0
5.0172

-0.0100
0.7629
-0.6464

>> [U,V,D]=svd(A, 0)

-0.9908
0.1354

5.0172

-0.0100

0.7629
-0.6464

>> svd(A)
ans =
15.2914
5.0172
U=
-0.1354
-0.9908
V =
15.2914
0
D =
0.9896
0.1002
0.1030
U =
-0.1354
-0.9908
V =
15.2914
0]
D =
0.9896
0.1002
0.1030
>> SA = svds(A)
SA =
15.2914
5.0172
>> SB = svds(B)
SB =
7.8730
1.0000

0.1270

-0.1434
0.6387
0.7560

-0.1434
0.6387
0.7560

LINEAR ALGEBRA

CHAPTER 7 LINEAR ALGEBRA

>> SA = svds(A, 2)

SA =

15.
5.

>> SB
SB =

7.
1.

>> SB
SB =

2914
0172
= svds(B, 2)

8730
0000
= svds(B, 3)

7.8730
1.0000

.1270

Logic Operators, Indexes, and Conversions

MATLAB uses logic 1 and logic 0 for system variables to denote logic values for true and

false, respectively. Variables of logical values are distinguished by a logical data type.

Table 7-2 is a list of logic operators and their operational functions used in MATLAB.

Table 7-2. Logical Expressions and Operators in MATLAB

Operator

Operation

true, false

& (and),| (or),~

&8, ||

bitand, bitcmp, bitor, bitmax, bitxor, bitset, bitget,

bitshift

—~(eq), ~=(ne), <(1t), >(gt),

strcmp, strncmp, strcmpi, strncmpi

(not), xor, any,all

<=(le), >=(ge)

Setting logical value
Logical operations
Short-circuits operations

Bitwise operations

Relational operations

String comparisons

524

CHAPTER 7 LINEAR ALGEBRA

Note To get a complete list of relational operators, their functions, and how to
use them, type >> help relop inthe Command window.

Logical Indexing

Logic operators are one of the most central and essential keys to any programming
language. Logic operators introduce another method for accessing data in MATLAB
variables. For instance, given a magic matrix [A] of size 5-by-5, say you need to separate
out the elements of [A] that are equal to or less than 13.

>> A=magic(5)

A =
17 24 1 8 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

>> Index = A>15 | A<5 % Show which element is greater than 15 or
less than 5
Index =
5x5 logical array
1 1 1 O
1 0
1 0
0 O
0 1
>> A(Index)
ans =
17
23
4
24
18
1

=~ » O O

0
1
1
1

o r B P O

525

CHAPTER 7 LINEAR ALGEBRA

19
25
20
21
2
16
22
3
>> A(A>15 | A<5); % Or in a direct way

Let’s explore the logical indexing properties further via examples to select matrix
elements.

>> E = eye(5) % Identity matrix
E =

o O O O -
o O © » O
o O »r O O
o B O O O
= O O O O

Array indices must be positive integers or logical values.

>>EL=1oogical(E)

EL =
5x5 logical array
1 0 0O 0 O
0 1 o o0 ©
o o0 1 o0 o0
o o o0 1 0O
O o0 o0 O 1
>> A(EL) % Compare Ih A(E)
ans =
17
5
13

526

CHAPTER 7 LINEAR ALGEBRA

21

9
A(EL) - shows all diagonal elements of A matrix.
Note

Note The previous example demonstrates the identity matrix [e] (whose
elements are 1s and 0s), which is not equivalent to the logic matrix [e_L] (whose
elements are also 1s and 0s).

Moreover, there are a number of functions/commands (e.g., the is*() command)
that can be used to find out whether the input is of a specified type of variable, contains
any elements of a particular type, or whether such a variable or file exists, and so
forth. All of these functions can be used for logical indexing. Let’s look at a few simple

examples:

>> x=13; isnumeric(x) % whether x is a numeric data or not?
ans = 1

>> x=13; islogical(x) % whether x is a logical data Or not?
ans = 0

>> x=13; islogical(x>110) % whether the operation
(x>110) is logic or not

ans =1
>> x = 13; isempty(x) % whether x is an empty or not
ans =1
>> x = []; isempty(x) % whether x is an empty or not

ans = logical 1

>> x = [1 , 2; 3, 4]; iscell(x) % whether x is a cell array or not
ans = logical 0

>> x = [1, 0; 0, 4];

> X x = x/0; isnan(X x) % whether any elements of X x

are not-a-number

ans = 2x2 logical array

0 1
1 0

527

CHAPTER 7 LINEAR ALGEBRA

>>' e'ist'"'X "', 'var') % whether the variable called
X x exists or not
ans =1

In the previous example, zero divided by zero (0/0) is defined to be NaN (i.e., not-a-
number) in MATLAB.

Note The logical indexing operations have particular importance in matrix/array
operations, programming, data analysis, and processing since they can be used to
sort out, locate, or change particular elements of matrices/arrays/data sets.

Example: Logical Indexing to Locate and Substitute
Elements of [A] Matrix

17 o -6
Given: 3-by-3 matrix [A] with some elements equal to infinity A=| 5 -3 11

o 13 o
How do you substitute the elements equal to inf with 1000 and all negative-valued
elements with 0? This task can be solved easily using logical indexing operations.

>> A =[17, Inf, -6 ; 5 -3, 11; Inf, 13, Inf] % [A] is entered
A =

17 Inf -6
5 -3 11
Inf 13 Inf
>> Index_inf = (A==1/0) % Find out which elements of A
are equal to inf
Index_inf =
3x3 logical array
o 1 O
0O 0 ©O
1 0 1

528

CHAPTER 7 LINEAR ALGEBRA
>> A(Index_inf) =1000 % Set inf elements equal to 1000
A =
17 1000 -6
5 -3 11
1000 13 1000
>> Index_neg = A<O % Find out which elements of A are negative
Index_neg =
3x3 logical array
0O 0 1
0O 1 o0
0o 0 ©O
>> A(Index_neg)=0 % Set all negative elements equal to "0"
A =
17 1000 0
5 0 11
1000 13 1000
Note The division of any value by 0 gives the value of Inf in MATLAB.

Let’s look at another example. Given a matrix [A] of size 4-by-5 with NaN (not a
number) and inf (infinity) elements, how do you substitute NaN elements with 0 and inf
with 100? This task can be solved easily with logical indexing similar to the previously

demonstrated example.

>» A =
NaN, 0, 2, Inf]

2 -3 -2 -3
Inf -2 3 -1
-3 0 Inf 3
3 NaN 0 2
>> Index_nan = isnan(A)

[2) '3) '2: '3) 1; In{: '2)

3, -1, NaN; -3, o, Inf, 3, 2; 3,

1
NaN
2
Inf

% Find out which elements are NaN

529

CHAPTER 7 LINEAR ALGEBRA

Index_nan =
4x5 logical array
o o0 o0 o
o o0 o0 ©oO
O o0 o0 O
o 1 0 0 o0
>> A(Index_nan)=0 % Set all NaN elements equal to "0"

o » O

2 -3 -2 -3
Inf -2 3 -1 0
-3 0 Inf 3 2
3 0 0 2 Inf

Note that this section contains rather simple and small examples to demonstrate
how easily you can substitute specific (valued) elements of a matrix using logical
indexing operations. This technique (logical indexing or relational operators) can be
applied to matrices, arrays, and data sets of any size. Therefore, the logical indexing is
particularly useful in analysis and processing of large data sets. It is fast and efficient and
does not require any additional effort to program with loop (for ... end,while ...
end) and conditional (if ditio. endlyit) operators.

Conversions

There are many examples in signal processing where you need to convert something.
Analog to digital converters and vice versa, data processing and analysis, and
programming when analog signal data format or type needs to be converted into digital
or vice versa. For instance, to resolve memory issues in image processing, you might
need to convert decimal (double) formatted data into binary numbers. That can be
easily accomplished in MATLAB using DEC2BIN(). Conversely, BIN2DEC() is used to
convert binary strings into decimal (double) type of data. DEC2BIN(D) returns the binary
representation of D as a string. D must be a non-negative integer smaller than 252

DEC2BIN(D,N) produces a binary representation with at least N bits.

Another conversion example is character conversion. You need to convert numbers
into character strings and vice versa. MATLAB uses the CHAR() command to convert
numbers into ASCII/ANSI formatted characters, DOUBLE () to convert characters and
symbolic representations of numbers into double precision format, STR2NUM() to convert

530

CHAPTER 7 LINEAR ALGEBRA

strings into binary numbers, and NUM2STR() to convert any number into a string. Let’s
consider several examples of employing these conversion commands:

>> dec2bin(11) % Converts decimal (integer) into a binary string
ans =
'1011'
>> dec2bin(23)
ans =
'10111'
>> dec2bin(22) ans =
'10110'
>> X=13.125/5.5;
>> dec2bin(x)
ans =
'10"
>> dec2bin(11.11)
ans =
'1011'
>> dec2bin(11)
ans =
'1011'
>> bin2dec('1101"') % Converts a binary number into decimal one
ans =

13

>> bin2dec('10110")
ans =

22

>> dec2bin(64)

ans =

10000000

>> char(bin2dec('10000000"))
ans =

@

>> G="MatLab' G =
MatLab

531

CHAPTER 7 LINEAR ALGEBRA

>> G0=G+0 GO =

77 97 116 76 97 98

>> d2bGo=dec2bin(G0) d2bGo =
1001101

1100001

1110100

1001100

1100001

1100010

>> b2dGo=bin2dec(d2bGo) b2dGo =
77

97

116

76

97

98

>> char(b2dGo)"' ans
MatLab

>> num2str(123) ans
‘123"

>> num2str('matlab') ans =
'matlab’

>> ans+0

109 97 116 108 97 98

Example: Creating Character Strings with char()

Create the following letters in a progressive format by writing a script that has one
input argument that has to be an integer. All the other letters need to be generated
programmatically.

a
b c

de f
ghij
klmno

532

CHAPTER 7 LINEAR ALGEBRA

These characters can be generated in several ways. First, you need to determine the
ASCII/ANSI numeric representation of a. Then you can generate all the other letters.

>> format short
>> double('a")
97
>> char(97)
'3
>> double('b")

98

The letter as numeric representation in ASCII/ANSI is 97, b is represented by 98,
and so forth. Based on these, you can generate linear space of integers starting at 97
and convert them to character strings one row at a time. In other words, you display one
character on the first row, two characters on the second, three in the third row, etc. Here
is the complete script (print_character.m), which prints the letters in progressive order:

% print_character.m

% Part 1.
Start = 97;
for ii = 1:5

for jj = 1:ii
fprintf(char(Start));
Start = Start+1;
end
fprintf('\n")
end

Here is the result of the script:

a
bc
def

ghij
klmno

Let’s consider the following example, which prints a series of uppercase characters:

ABCDEF
GHIJK

533

CHAPTER 7 LINEAR ALGEBRA

LMNO
POR
ST

U

This example is similar to the previous example with a few small differences—it
requires uppercase characters, starts with six letters, and reduces in the following rows.

Again, you can determine the numerical representation of A in ANSI/ASCII with the
following commands:

>> double('A")
ans =
65
>> 'A" + 0 % An alternative way:
ans =
65

So now you know that the numerical representation of A is 65. You can then edit
the script (print_characters.m) by introducing two small changes and then write
this script:

%% Part 2. Upper cases
Start = 65;
for ii = 1:2:9
for jj = 1:ii
fprintf(char(Start));
Start = Start+1;
end
fprintf('\n")
end

When you execute this script, you obtain the following output in the
Command window:

ABCDEF
GHIJK

534

CHAPTER 7 LINEAR ALGEBRA

LMNO
POR
ST

Via a few examples, this section discussed logic operators, conversions, and indexing
issues briefly. Applications of the issues of conversions are demonstrated via more
extended examples in other chapters.

Summary

This chapter introduced linear algebra, matrix operations, vector spaces, polynomials,
methods of solving linear systems of equations, and matrix decompositions and
conversions. Via examples, you learned how to use MATLAB’s built-in functions and
commands, how to develop Simulink blocks in association with the MATLAB Command
window, and how to use functions and the MATLAB Fcn block. The following MATLAB
functions were discussed and explained in examples:

e Matrix operations +,-, *, and /

o Elementwise operations .*, .”, and ./

o Backslash operator (\) and mldivide()

o Solving linear equations with 1insolve()

e Matrix inverse operators inv() and pinv()

« Eigen-values and eigen-vectors eig()

o Polynomial solvers roots(), solve(), and zero()
o Symbolic math equation solver solve()

o Standard matrices and gallery matrices, magic(), gallery(), and
sparse()

o Vector spaces linspace() and logspace()

e Matrix operations and factorization methods, such as QR, LU,
Cholesky, SVD, Schur: qr (), 1u(), chol(), svd(), schur(), and
decomposition()

535

CHAPTER 7 LINEAR ALGEBRA

o Logical operators (<=, ~=, >=, |, &...,is*())and
indexing options

o Conversion tools and operators (bin2dec, dec2bin, double, and char)

References

[1]. Wikipedia, http://en.wikipedia.org/wiki/Gram-Schmidt
process, viewed on September 19, 2013.

[2]. Bunch, James R.; Hopcroft, John (1974), “Triangular Factorization
and Inversion by Fast Matrix Multiplication,” Mathematics of
Computation 28: 231-236, ISSN 0025-5718.

[3]. Gentle, J. E. “Cholesky Factorization.” §3.2.2 in Numerical Linear
Algebra for Applications in Statistics. Berlin: Springer-Verlag,
pp. 93-95, 1998.

[4]. Nash, J. C. “The Choleski Decomposition.” Ch. 7 in Compact
Numerical Methods for Computers: Linear Algebra and
Function Minimisation, 2nd ed. Bristol, England: Adam Hilger,
pp. 84-93, 1990.

[5]. Mathworld, http://mathworld.wolfram.com/
SchurDecomposition.html, viewed on September 20, 2013.

Exercises for Self-Testing
Exercise 1

Solve the following equations for variables x, y, and z:

3x+5y+4z=-2
—2x+3y-2z=2

x+6(y—§j=0

536

http://en.wikipedia.org/wiki/Gram–Schmidt_process
http://en.wikipedia.org/wiki/Gram–Schmidt_process
http://mathworld.wolfram.com/SchurDecomposition.html
http://mathworld.wolfram.com/SchurDecomposition.html

CHAPTER 7 LINEAR ALGEBRA

1. Use the backslash (\) operator or mldivide() to solve the given
system of equations.

2. Use the inverse matrix method inv() to solve the given system of
equations.

3. Use the linsolve() function to solve the given system of
equations.

4. Use the solve() function to solve the given system of equations.
5. Use chol() to solve the given system of equations.
6. Use Simulink blocks to solve the given system of equations.

7. Compute errors by computing norms for each of the methods.

Exercise 2

Solve the following equations, using the matrix inverse:

2q,+9q, +3q, =15
13q, +2q,-5q, =11
q,—2q,+2q,=9

1. Use the inverse matrix method inv().

2. Use the least squares method 1sqr ().

3. Use the Gauss Elimination method with the 1u().
4. Userref().

5. Use the solve().

6. Use Simulink blocks.

7. Compare the accuracy (to eight decimal places) of each solution.

537

CHAPTER 7 LINEAR ALGEBRA

Exercise 3

Solve the following equations:
2.5x, —x,+3.3x,=5
—2.2x,+2x, —5x, =2
X, —2x,+2.5x,=3

1. Use the inverse matrix method qr () to solve the given system of
equations.

2. Use the reduced row echelon method step-by-step by multiplying
rows by scalars and adding or subtracting from each other (don’t
use rref()).

3. Use the reduced row echelon method rref() to solve the given
system of equations.

4. Use the decomposition() function to solve the given system of
equations.

5. Use the solve() function to solve the given system of equations.
6. Use Simulink blocks to solve the given system of equations.

7. Compare the accuracy (to 10 decimal places) of these four
methods.

Exercise 4

Solve the following equations:

2.5x, —x,+3.3x,-0.3x,=5
-1.2x,+2.5x, —2x, -2.2x, +5.2x,=-3
X, +3x,-2.5x,—x;=1
2x,+x,—-5x,-3x,—4.3x,=—6
3x, —2.4x,+1.75x, =13

538

CHAPTER 7 LINEAR ALGEBRA

1. Use the inverse matrix method inv() to solve the given system of
equations.

2. Use the singular decomposition svd() method to solve the given
system of equations.

3. Use the linsolve() function to solve the given system of
equations.

4. Use the solve() function to solve the given system of equations.
5. Use Simulink blocks to solve the given system of equations.

6. Compare the accuracy (to 13 decimal places) of these methods.

Exercise 5

Given:

3x+6y—-cz=0
2x+4y—-6z=0
x+2y-3z=0

¢ Find for which values of c the set of equations has a trivial solution.

o Find for which values of c the set of equations has an infinite number
of solutions.

o Find relations between x, y, and z.

Exercise 6
Find the inverse of the given matrix:
3 6 -12
A=|2 4 -6
1 2 -3

539

CHAPTER 7 LINEAR ALGEBRA

o Explain why the given matrix does not have an inverse.
¢ Compute the determinant of the matrix.

o Find eigen-values and eigen-vectors of the given system by
using eig().

 Find eigen-values by using roots().

Exercise 7

Find the inverse of the given matrix:

3 6 -2
A=|1 2 -4
01 -3

¢ Compute determinant of the matrix.
 Find eigen-values and eigen-vectors of the given system using eig().

« Find eigen-values using roots().

Exercise 8

Find a solution to the following set of equations representing an underdetermined
system, using the left division (\ backslash) method and the pseudo-inverse method
(pinv). Compare your obtained results and discuss the differences.

2.5x, —x,+3.3x, +1.3x, —-0.3x, =11
-1.2x,+2x,-5x,-2.1x, +5.2x,=-2

X, —2x,+2.5x,=3

Exercise 9

Solve the following set of equations using the backslash (\) operator, as well as the
linsolve(), inv(), 1sqr(), and solve() functions:

540

CHAPTER 7 LINEAR ALGEBRA
2x-3y=5
6x+10y="70

10x-4y =53

Exercise 10

Show why there is no solution to the following set of equations:
-2x-3y=2
-3x-5y="7
5x -2y=-4

Exercise 11

Solve the following equations:

2.5%, —x,+3.3x,—03x,=5
-1.2x, +2.5x, -2x,-2.2x, +5.2x,=-3
X, +3x,-2.5x,—x,=1
2x,+x,—5x,-3x,—4.3x,=—6
3x,—2.4x, +1.75x, =v

v=[-10,-9,-8,...9,10]

1. Use the inverse matrix method mldivide() to solve the given
system of equations.

2. Use the singular decomposition svd() method to solve the given
system of equations.

3. Use the linsolve() function to solve the given system of
equations.

4. Use the solve() function to solve the given system of equations.

541

CHAPTER 7

Exercise 12

Compute the eigen-values and vectors of the following set of equations:

Exercise 13

Create the matrix [C] from the given two [A] and [B] matrices by using logic operators.

LINEAR ALGEBRA

x+y+z-w=0
—2x+3y+4z-5u—-"7Tw=0

3x-2y+5z+2u-w=0

3 7
—S5y——z+—u+9w=0
4 13

10x-11y+8u—-8w=0

Explain why some of the elements of new array are zeros.

0

O N = O -

S = O©O O O O

-3
0

3

—_— N = O

6

S = W = N

1 2 -3
1 1 -3
-1 -2 1
1 1 -1
2 2 =2
-2 0 1

Hints Use logic operators (<, =) and element-wise matrix multiplication.

Exercise 14

The useful life of a machine bearing depends on its operating temperature, as the
following data shows. Obtain a functional description (linear, square, and cubic
polynomials) of this data. Plot the found fit functions and the data on the same plot.
Estimate a bearing’s life if it operates at 52.5°C.

542

CHAPTER 7 LINEAR ALGEBRA

Temperature (°C) 40 45 50 55 60 65 70
Bearing life (hours x 103%) 28 21 15 11 8 6 4

Exercise 15

The following represents pressure samples, in MPa, taken in a fuel line once every
second for 10 sec:

Time (Sec) Pressure (MPa) Time (Sec) Pressure (MPa)
1 2.61 6 3.06
2 2.70 7 3.11
3 2.82 8 3.13
4 2.90 9 3.10
5 2.98 10 3.05

a. Fit a first — degree polynomial, a second — degree polynomial, and a third — degree
polynomial to this data. Plot the curve fits along with the data points.
b. Use the results from part a to predict the pressure at =11 sec.

Exercise 16

The distance a spring stretches from its “free length” is a function of how much tension
force is applied to it. The following table gives the spring length y that the given applied
force F produced in a particular spring. The spring’s free length is 4.7 m. Find functional
relation between F and x, the extension from the free length (x =y — 4.7).

Force Spring Length

RkN) y (m)
0 47
0.47 7.2
1.15 10.6
1.64 12.9

543

CHAPTER 7 LINEAR ALGEBRA

Also, plot experimental data (F versus x) and functional relation based fit
(F_linear vs. x) in the same plot. Use the appropriate plot maker type, color, size, etc.,
options.

Exercise 17

Perform the following:

o Obtain an eye matrix of the size 5-by-5 from the magic matrix of the
size of 5-by-5.

o C(Create a square eye matrix of the size 10-by-10 from the random
square matrix of the size 10-by-10.

e Obtain a replicated square matrix of size 3-by-9 from the gallery
matrix pascal() of size 3-by-3.

Exercise 18

Solve the following equations and discuss the solutions for two cases: a = 13 and a = 29.

q,+q9,=1
139, +23q,=a
q4,-2q,=9

Write a script with logic and loop operators (if, break, for, and end) to find such
value of a that gives real solutions to these equations. Consider that a has an integer
value that lies within 1 to 50.

Hints Use the rank() function and backslash (\) operators.

544

CHAPTER 7 LINEAR ALGEBRA

Exercise 19

Solve the following polynomials with roots(), solve(), zero(), and the Simulink model.

2u’ -3u® +5u" -13u*-131=0

4
y7+5y5—1?’Ty—11y3+9y+3=0

4 3
5x5+41x1 3); +x%—269x=13

Exercise 20

Create a logarithmic spaced array (a row vector) B of numbers starting with 10 and
ending with 100, and create BB column vector from a row vector B.

Exercise 21

Play a sound that is defined in the next expression:

S (t)=cos(2xtf,)+cos(2xtf,)+cot(2ntf,)+tan(2xtf,)+tan(2xtf,)

Here, f, = 10000 Hz (sampling frequency); t = 13 sec. (time length); f, = 100 Hz (1st
signal); f, = 200 Hz (2nd signal); f; = 300 Hz (3rd signal); f, = 600 Hz (4th signal);
f; =700 Hz (5th signal).

Exercise 22

Answer the following questions using MATLAB:

e What are the binary representations of decimal numbers 123,
123.123, 321, 321.123, 223, 322, 333, and 333.3?

e Why are the binary representations of 123 vs. 123.123, 321 vs. 321.123,
and 333 vs. 333.3 the same?

545

CHAPTER 7 LINEAR ALGEBRA

Exercise 23

Answer the following questions using MATLAB:

o What are the decimal representations of the binary numbers 1001,
01010,111100, 01010117

e What are character representations of the binary numbers 1001,
01010,111100, 01010117

Exercise 24

Write a script that takes one input number (an integer) and prints out the following
characters in the order in the Command window:

A

BCD

EFGHI
JKLMNOP
ORSTUVIWXY

Exercise 25

Use numeric values of matrices [A] and [B] from Exercise 11 to evaluate the QR, LU,
LQ, Cholesky, Schur, and singular value decompositions. Explain why some of the
decompositions (matrix factorizations) of [A] and [B] cannot be computed.

Exercise 26

Create the Hilbert matrix of size 5-by-5 using gallery matrix functions and compute
Cholesky decomposition using the Chol decoposition.mscript. Edit the script
(Chol_decoposition.m) in order to make it compute only the lower triangular matrix of
Cholesky decomposition.

546

CHAPTER 7 LINEAR ALGEBRA

Exercise 27

Create the Riemann matrix of size 3-by-3 using gallery matrix functions and compute its
QR, LU, LQ, Cholesky, Schur, and singular value decompositions.

Exercise 28

Perform the following:

Create the 4-by-4 random matrix with normalized columns and
specified singular values using gallery matrix functions. Hint: Use
randcolu.

Compute the QR, LU, LQ, and decompositions of the matrix you just
created.

Exercise 29

Perform the following:

Create one 5-by-5 random matrix with random integer elements
varying in the range of 1 to 13 and name it A_mat.

Create one 5-by-5 Krylov matrix using a matrix gallery of Krylov and
name itK_mat.

Create logic valued 5-by-5 matrix called Logic_A by using logic
operation (A _ mat > K _ mat) and elementwise matrix multiplication
from A matand K _mat

547

CHAPTER 7

Exercise 30

LINEAR ALGEBRA

Create the following 10-by-10 matrix:

AaA =
17
23
4
10
11
17
23
4
10
11

24 1 8 15
5 7 14 16
6 13 20 22
12 19 21 3
18 25 2 9
24 1 8 15
5 7 14 16
6 13 20 22
12 19 21 3
18 25 2 9

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

Hint Use magic() and repmat().

548

	Chapter 7: Linear Algebra
	Introduction to Linear Algebra
	Matrix Properties and Operators
	Simulink Blocks for Matrix Determinant, Diagonal Extraction, and Transpose
	Matrix Inverse or Inverse Matrix
	Simulink Blocks for Inverse Matrix
	Example 1: Solving a System of Linear Equations
	Simulink Modeling

	Example 2: Embedding a MATLAB Function Block to Compute the Determinant and Solve Linear Equations
	Example 3: Accuracy of Solver Functions of Linear Equations
	Example 4: Efficiency of Solver Functions of Linear Equations
	Example 5: Solving Linear Equations ([A]{x} = [b]) by Changing Values of [b]
	Example 6: Linear Equations ([A]{x} = [b]) Applied for the Least Squares Method
	Example 7: Linear Equations ([A]{x} = [b]) Applied for the Least Squares Method
	Example 8: Linear Equations ([A]{x} = [b]) Applied for the Least Squares Method Using Simulink Modeling

	Matrix Operations
	Example: Performing Matrix Operations

	Standard Matrix Generators
	Vector Spaces
	Polynomials Represented by Vectors
	Simulink Model-Based Solution of Polynomials

	Eigen-Values and Eigen-Vectors
	Matrix Decomposition
	QR Decomposition
	Example: Computing QR Decomposition of a 5-by-5 Matrix

	LU Decomposition
	Example: Computing LU Composition of a 3-by-3 Pascal Matrix
	Example: Solving [A]{x}=[b] Using LU Composition

	Cholesky Decomposition
	Schur Decomposition
	Singular Value Decomposition

	Logic Operators, Indexes, and Conversions
	Logical Indexing
	Example: Logical Indexing to Locate and Substitute Elements of [A] Matrix
	Conversions
	Example: Creating Character Strings with char()

	Summary
	References
	Exercises for Self-Testing
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 11
	Exercise 12
	Exercise 13
	Exercise 14
	Exercise 15
	Exercise 16
	Exercise 17
	Exercise 18
	Exercise 19
	Exercise 20
	Exercise 21
	Exercise 22
	Exercise 23
	Exercise 24
	Exercise 25
	Exercise 26
	Exercise 27
	Exercise 28
	Exercise 29
	Exercise 30

