
321

CHAPTER 5

Simulink Modeling
Essentials
Simulink1 is the graphical programming package that works in association with

MATLAB and interacts with it as one combined package. It is employed for modeling,

simulating, and analyzing dynamic systems, control algorithm development, and so

forth. It supports linear and nonlinear systems, continuous and discrete systems, and

multirate systems. With Simulink, you can model myriad types of systems, processes,

and problems, and you can use top-down and bottom-up approaches.

The Simulink package, like MATLAB, is expandable. By using its standard blocks, you

can develop your own library of blocks and subsystems and add to and expand existing

Simulink libraries. In your Simulink models, you can combine continuous systems with

discrete ones. One of the main advantages of using the package from a user’s perspective

is that it is much easier to model systems via block diagrams because it doesn’t require

any preliminary programming skills or experience from users. In Simulink, you simply

drag, drop, and connect blocks, and of course, adjust parameters, solvers, and other

components in the model. Another advantage of the Simulink package is that its models

can work interactively with MATLAB and can be manipulated and executed from the

MATLAB Command window and the M/MLX-files and function files.

�Simulink Modeling
To launch the package from MATLAB, you just type >> simulink in the Command

window, click the Simulink icon in the menu panel, or click and Simulink Model

icons. The window in Figure 5-1 will pop up. From the Simulink startup window, you can

1 Simulink is a registered trademark of MathWorks Inc.

© Sulaymon Eshkabilov 2022
S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_5

https://doi.org/10.1007/978-1-4842-8748-4_5#DOI

322

open existing models (recently worked on ones) from the right-side pane (Open) or

create a new model by clicking Blank Model or the other options there. Also, from the

Examples tab, users can open, study, and change existing examples. There are dozens of

examples from different areas of engineering, physics, computing, image processing,

code generation, and so forth.

Figure 5-1.  Simulink’s startup window

Figure 5-1 shows the default startup window of the Simulink package. Note that

Simulink is a stand-alone package, and there are a few toolboxes and add-ons (see

Figure 5-2) that can be installed. All of the blocks of the additional libraries and add-ons

will be accessible once they’re installed from the Simulink Library browser.

Chapter 5 Simulink Modeling Essentials

323

Figure 5-2.  Simulink’s startup window and additional toolboxes installed in it

�Example: Arithmetic Calculations
Let’s look at a simple example to demonstrate how to build a Simulink model that

computes the addition, multiplication, and subtraction of four different scalar numbers.

The complete model is shown in Figure 5-3. It’s composed of Constant, Gain, Sum, and

Display blocks. The scalars entered in constant blocks are 13, 22, 3i/2, and 5 . When

this model is executed, it displays its computed results in the Display block. Note that all

of the blocks employed in this model are available in the Simulink Library.

Chapter 5 Simulink Modeling Essentials

324

Figure 5-3.  Complete Simulink model example with arithmetic calculations

To open a blank model, click Blank Model, as shown in Figure 5-1. Note that a blank

model can also be opened from the already opened Simulink window by clicking

or by pressing Ctrl+N on the keyboard. After clicking the Blank Model icon (see

Figure 5-1), the model shown in Figure 5-4 opens. This is called untitled.slx by default,

just like MATLAB’s M/MLX-files.

Chapter 5 Simulink Modeling Essentials

325

Figure 5-4.  New Simulink model window (untitled by default)

From the opened blank model window, click (the Simulink Library icon). That

will open a Simulink Library window, as shown in Figure 5-5. It must be noted that the

toolboxes that are available in the library are defined by which toolboxes are installed

and which user developed/created custom libraries are installed. If necessary, you can

also create a new blank model by clicking the New Model icon in the Library

Browser (see Figure 5-5). This also creates a blank model window.

The Simulink Library (see Figure 5-5) looks different in different versions, but most of

its general blocks function using the same principles. In this regard, it is worth pointing

out that the package has been developed and subject to constant improvement with novel

add-ons/blocks, and therefore, the models created in recent versions of Simulink are not

fully compatible with its older versions. All of models are forward compatible; in other

words, models created in older versions of Simulink work in later versions of the package.

Chapter 5 Simulink Modeling Essentials

326

Figure 5-5.  Simulink Library browser

Let’s build a new model where you drag and drop all the necessary blocks from

the library. Dragging and dropping a block into a new model area is the most common

practice in Simulink-based modeling or programming; however, in recent versions

of Simulink (starting from MATLAB/Simulink 2018a), there is an alternative way of

obtaining blocks within a model area. It is also possible to obtain any block by double-

clicking a desired spot of the model area. For example, if you want to use an Input block,

you can double-click and type in the Create Annotation search box. The prompt drop-

down options will appear, as shown in Figure 5-6. From the drop-down option, you can

select the desired block name. There is another optional step to specify the port number

in this case. For other blocks, this option differs.

Chapter 5 Simulink Modeling Essentials

327

Figure 5-6.  Creating/obtaining blocks within the model area by using the
annotation option

Once all of the necessary blocks are placed in the model area, they need to be

connected. There are two ways to connect blocks in the Simulink model window. You

can connect a block in the blank model window by clicking the left mouse button and

holding the Ctrl key on the keyboard. You then click another block to connect the two.

An alternative way to link blocks or connect signals in between blocks is to drag a signal

arrow (see Figure 5-7) to the block you want to connect.

Figure 5-7.  Connecting blocks

Some blocks have input and output ports, some have only input ports, and others

have only output ports. You can only connect signals from their output port to another

block’s input port. In other words, it is not possible to connect signals from output port

to output port or input to input.

Note  Blocks can be resized easily. You click the block to be resized and drag it
from one of the four corners of the rectangular boundary around the block.

Before you start working with Simulink modeling, you must adjust one tool to ease

the process of working with the library of blocks. To keep the Simulink Library on top of

all the model windows, the icon must be clicked to a position of “on top,” which looks

like this: . This is done with a single click.

Chapter 5 Simulink Modeling Essentials

328

Note T o keep the Simulink Library on top of all the windows, including the model
window, click the “stay on top” icon.

Moreover, at the beginning you need to work within the Simulink Library. That

can be accessed by clicking the + before Simulink. The Simulink Library contains a

number of block sets grouped into Commonly Used Blocks, Continuous, Dashboard,

Discontinuities, Discrete, Logic, and Bit Operations. Let’s look at several examples to

explore the modeling tools and aspects in the Simulink environment.

�Example: Modeling Simple Arithmetic Operations
Let’s compute simple arithmetic operations using these +, -, /, *, , etc., operators to

compute this 13 + 22 * 5.3 -(3i / 2 + 5) and display the result.

To model these arithmetic computations of the exercise, you need the following

Simulink/Commonly Used Blocks from the Library: four Constant blocks, three Sum

blocks, one Gain block, and one Display block from Simulink/Sinks to output the

computation results.

	 1.	 Drag and drop all of these blocks in the model area.

	 2.	 All of the Constant blocks’ constant values must be changed

according to the given task (13, 22, 3i/2, 5)—see Figure 5-8.

Similarly, add one Gain block (for 5.3) by double-clicking each

block, one after another (see Figure 5-9).

	 3.	 Link a Constant block called Constant (13) to a Sum block with the

+ sign. You do this by clicking the block and holding the Ctrl key

on the keyboard. Then you click a Sum block.

	 4.	 Link a Constant block called Constant1 (22) to a Gain block, which

is linked to the Sum block with the + sign, as shown in Figure 5-6.

Chapter 5 Simulink Modeling Essentials

329

	 5.	 Link a Constant block called Constant2 (3i/2) to a second Sum

block. This rectangular shape can be changed by double-clicking

a Sum block with the + sign. Similarly, to this Sum block, the

Constant block called Constant3 (5) is linked using a + sign.

	 6.	 Connect two Sum blocks to a third Sum block with the +

and –signs. Subsequently, link the third Sum block to the

Display block.

Note A ny block can be copied numerous times by holding Ctrl and clicking the
block and then dragging the block over any spot in a model space. This method is
faster and more efficient than dragging the same block from the library.

Figure 5-8.  Blocks

Chapter 5 Simulink Modeling Essentials

330

Figure 5-9.  Altering the Sum block’s signs and icon shape

That completes our simple computation Simulink model.

This model is saved with the filename of Ex1_Arithmetic_operations.mdl.

Note I n the latest versions of Simulink, models can be saved either in *.mdl
(backward-compatible file format) or in *.slx (supported in later versions). Any
Simulink model can be exported to previous versions via File ➤ export model to ➤
previous version. For the “Save as type” option, you select the appropriate version
from the drop-down.

To see the computation results, click the Run button or press the Ctrl+T keys on

the keyboard. The results are displayed in the Display block. Figure 5-10 shows the

complete model.

Chapter 5 Simulink Modeling Essentials

331

Figure 5-10.  Completed Simulink model called Ex1_Arithmetic_operations.mdl

Note T o view a full-screen model, just press the spacebar on the keyboard. To
zoom in and out, press the Ctrl++ and Ctrl+- keys (in later versions) on the

keyboard, or click to get a Fit view. You can also use to zoom in.

Note that you type in 5 as a value of the Constant block called Constant3 by

sqrt(5) and 3i/2 as 3i/2 since Simulink (like MATLAB) recognizes imaginary numbers

via the letters i and j automatically. Any Simulink model can be simulated/executed

from MATLAB via the workspace or within any M-file using the sim() command. The

simulated model must reside in the current working directory. For instance, you can run

the previous model with this command:

>> sim('Ex1_Arithmetic_operations.mdl')

Note  You can alter the name of any block by clicking its name tag. You can alter
the properties and parameters of any block by opening the property window (by
double-clicking it) and inserting the necessary changes or selecting necessary
options. For instance, in a display block, you can format the data as short, long,
short_e, long_e, hex, etc.

Chapter 5 Simulink Modeling Essentials

332

�Performing Matrix Operations
Let’s build a Simulink model that performs the following matrix operations:

	

3 2 5

2 3 2

1

5

3 2 2

2 5 5 4

3 3

1

.

.

.

. .

.
i

i
i

i
T

�
�

�
�

�

�
� �

��

�
�
�

�

�
�
�

�

	

Figure 5-11 shows the complete model. The model performs matrix operations, such

as inverse, square root, transpose, sum, and division by a scalar (real and imaginary

numbers). The following matrix operations (transpose and inverse) are performed by

employing the Interpreted MATLAB Function block:

	

3 2 5

2 3 2

3 2 2

2 5 5 4

1

.

.
,

.

. .

i
i

iT

�
�

�
�

�

�
�

��

�
�
�

�

�
�
�

�

	

Math Function and Product of Elements blocks are compared with the computed

results and shown via Display blocks.

Figure 5-11.  The complete model: example 2, matrix operations

Chapter 5 Simulink Modeling Essentials

333

To model this exercise, follow these steps:

	 1.	 For this model, you need two Constant blocks, four Gain blocks,

five Display blocks, an Add block from the Simulink/Commonly

Used Blocks library, two Sqrt blocks, one Math Function

block, one Product of Elements block from the Simulink/Math

Operations library, and two MATLAB Interpreted Function from

the Simulink/User-Defined Functions (see Figure 5-12).

	 2.	 Enter the elements of two matrices into two Constant blocks as

[3 2.5j; 2j 3.2] (see Figure 5-13) and [-3i 2.2; 2.5 5.4].

These will be connected with two separate Math Function blocks,

one of which is Math Function (transpose of a matrix) and the

other is Product of Elements (inverse of a matrix). These two

blocks are edited accordingly; for instance, to obtain a transpose

operator of the Math Function block, a Function type is chosen

to be a transpose from drop-down options. In the Product of

Elements block, the “number of inputs” option is changed to be

a division (/), and the multiplication option is selected to be a

matrix(*) multiplication.

	 3.	 Link the Math Function (transpose) block to the Gain block (1/5),

which is subsequently linked to the Sum block. The Product of

Elements block is connected to the Sqrt block, which is linked to

the Gain block (3 3. i). Finally, signals from the Gain block (1/5)

and the Gain block (3 3. i) are connected with the Sum block (see

Figure 5-13), which is linked to the Display block.

Chapter 5 Simulink Modeling Essentials

334

Figure 5-12.  All blocks necessary for this model

Figure 5-13.  Inputting matrix elements into the Constant block’s constant value

Chapter 5 Simulink Modeling Essentials

335

Note  In Simulink modeling, you can attain the same results by altering the

properties and parameters of blocks. For instance, matrix inverse can be obtained

by inserting the MATLAB function called inv(u) in the interpreted MATLAB

Function block.

Matrix transpose is obtained from the Math Function block’s options, as shown in

Figure 5-14.

Figure 5-14.  Selecting the Function type in the Math Function block

Chapter 5 Simulink Modeling Essentials

336

Figure 5-15.  All blocks with adjusted options and entered values/elements

Note that there are two ways to obtain the inverse of matrices demonstrated in the

completed model, as shown in Figure 5-16. By running the completed model, you can

see that the results in both matrix inverse operations are the same. Note that the Display

block is resized to show all calculation results.

Chapter 5 Simulink Modeling Essentials

337

Figure 5-16.  Complete matrix operations and Simulink model called Ex2
MATRIX_operations.slx

Note T here are two file formats used to save Simulink models—*.mdl and
*.slx. The latter model type is supported in later versions (starting with MATLAB
2010) of the Simulink package, and the former format can be opened and
simulated by most versions, depending on the blocks used. Via a model export
option, you can save models in the previous versions of Simulink.

There are a few new blocks with different properties included in later versions of

the Simulink package. Therefore, the models developed by employing such new blocks

cannot be simulated by earlier versions of the package.

�Computing Values of Functions
In this section, you learn how to compute values of the following math functions, save

the computation results in a separate *.mat file and MATLAB workspace simultaneously,

and display them in a plot figure. Given H(t) = esinc(t) + esin (250t), t = − 3π…3π, ∆t = π/3000.

Chapter 5 Simulink Modeling Essentials

338

There are several ways to build a computation model of the given example. Let’s

start with a simple and straightforward way. You first take the necessary blocks from

the Simulink Library, like the previous two examples. For that, you need the following

blocks: Clock, Scope, Math Function, Gain, Trigonometric Function, To File, and Add

To Workspace. These are from Simulink/Sources, Simulink/Math Operations, Simulink/

Sinks, and Simulink/User-Defined Functions, respectively. The modeling process starts

with dragging all of the blocks from the Simulink Library and connecting them in the

order of Clock+Interpreted MATLAB Function+Math Function1+Add+Scope2+To File

and Clock+Trigonometric Function+Math Function+Scope1+Add+To Workspace.

Figure 5-17 shows the completed model that is saved under the file name Ex3_Function_

Compute.slx.

Figure 5-17.  The complete simulation model called Ex3_Function_Compute.slx

This completed model, as it is, cannot be executed because the properties and

parameters of several blocks used in the model need to be fixed according to the given

tasks of this exercise.

For instance, the simulation period should be in the range of t = − 3π…3π with the

time interval of ∆t = π/300. The MATLAB function of the block Interpreted MATLAB

Function must be altered to sinc(). Two optional editing points—the To File and To

Workspace blocks—should be renamed as external *.mat files, and a variable should be

saved in the workspace in structure format.

You can start adjusting the simulation time interval and the time step via the Model

Configuration Parameters (see Figure 5-18). They can be accessed by clicking the

icon or by pressing the Ctrl+E keys on the keyboard. Insert the start time of -3*pi and the

Chapter 5 Simulink Modeling Essentials

339

stop time of 3*pi, and change the solver type to a fixed-step from the variable step that is

chosen by default. In addition, in the Solver options, you should set Type to Fixed-step

and, in the Additional options, a fixed-step size (fundamental sample time) of pi/3000.

See Chapter 8 for a more detailed explanation on solvers and how to choose their types

and parameters, including solver algorithm, step size, relative error, and absolute error

tolerances.

Figure 5-18.  Adjusting the configuration parameters

Note  For many models, the accuracy of the simulation results depends on the
chosen solver type and step size.

Chapter 5 Simulink Modeling Essentials

https://doi.org/10.1007/978-1-4842-8748-4_8

340

Also, before proceeding with the simulations, you need to make the following

adjustments to the model:

	 1.	 The MATLAB function of the Interpreted MATLAB Function block

should be sinc(u). Note that the input variable name u is defined

by default.

	 2.	 In both MATH Function blocks, a Function type (from the drop-

down options) of exp function should be used (it’s the default).

	 3.	 In the Gain block, the Gain value should be 250 to obtain 250*t.

	 4.	 In the Trigonometric function, make it the sin function by default.

	 5.	 Even though this step is optional, rename the output file Output_

Data.mat and the output variable by output saved in the MATLAB

workspace.

Note  When you’re saving the computation results via an output file in *.mat
format and an output variable, there are several options (formats) to save
data—time-Series, array, Structure, and Structure with time series.

After making all these adjustments, the model should look like Figure 5-19.

Figure 5-19.  Finalized model with all necessary adjustments and tunings

Finally, you can simulate the Ex3_Function_Compute.slx model by pressing Ctrl+T

on the keyboard or clicking the Run button. You can view the simulation results by

double-clicking the Scope block. Figure 5-20 shows the simulation results, plotted in the

Scope block.

Chapter 5 Simulink Modeling Essentials

341

Figure 5-20.  Simulation results

Note  in the Scope display, the simulation results can be zoomed in or out
proportionally, horizontally, and vertically. They can also be auto-zoomed in or out,
all by using the , , , tools.

The simulation results, shown in Figure 5-20, are not coherent with the set

simulation period that is set to be within -3*pi ... 3*pi. The problem is in the Scope

block’s Time display offset, which is set to 0 by default. The time offset needs to be set to

-3*pi, which can be fixed via the Configuration properties of Scope. The Configuration

properties of Scope can be accessed by clicking the icon from its drop-down options

of Configuration Properties. After opening the Configuration Properties, click the

Time tab and enter -3*pi for “Time display offset.” Subsequently, click Apply and OK

Chapter 5 Simulink Modeling Essentials

342

(see Figure 5-21) and you’ll obtain a correct display of the results in Scope, as shown in

Figure 5-22. In addition, the simulation results displayed in the scope can be saved as a

variable in the format of structure with time series, array, or structure. You do this by

selecting the Log Data to Workspace option on the Logging tab (see Figure 5-21).

Moreover, the Scope block has many graphical display options that can be accessed

via the drop-down options, by clicking Style . Via the Style options, you can

adjust the figure color, axes colors, lines, and markers. See Figure 5-22.

Figure 5-21.  Setting up the Time display offset at -3*pi in Configuration
Properties: Scope

Chapter 5 Simulink Modeling Essentials

343

Figure 5-22.  A complete view of the simulation results

To improve the readability and manageability of large and complex Simulink models,

a whole model or part of a model can be associated in one Subsystem block.

It is easy and straightforward to create subsystems from existing models. The easiest

way to create subsystems from existing models is to select the blocks (interlinked ones)

by holding the left mouse button and dragging the cursor over the desired blocks and

then pressing Ctrl+G on the keyboard. To create one subsystem out of a whole model,

press Ctrl+A first and then Ctrl+G on the keyboard.

Let’s look at the complete model (see Figure 5-19) and create a subsystem out of the

whole model, excluding the Input signal to Clock and the Output signal to blocks—To

File, Scope, and To Workspace. You first select the model blocks except for the Input

block and all the Output blocks, by using the left mouse button, and then press Ctrl+G

on the keyboard. The subsystem is created from the selected blocks of the model, as

shown in Figure 5-23. To have access to what is under the created subsystem, you need

to double-click it. See Figure 5-24.

Chapter 5 Simulink Modeling Essentials

344

Figure 5-23.  Subsystem created out of the completed model (Figure 5-19),
excluding Input and Output blocks

Figure 5-24.  The created subsystem components

Note that this subsystem in Figure 5-24 has one input block called In1 and one

output block called Out1. They are linked with the Input block, Clock, and Output

blocks—To File, Scope, To Workspace—to receive and send signals, respectively.

Note that if you create a subsystem from the whole model (see Figure 5-19) excluding

only the Input block, then the subsystem will contain only one input block, called In1.

If you create a subsystem from the whole model (see Figure 5-19) excluding the output

Chapter 5 Simulink Modeling Essentials

345

blocks—To File, Scope, To Workspace—then it will contain one output block Out1. If you

create a subsystem from the whole model including all blocks, as well as the Input and

Output blocks, the created subsystem does not contain any input and output blocks.

The completed model can be simplified. In other words, the number of

blocks used in this model can be reduced by employing the Interpreted MATLAB

Function block with appropriately edited function formulation expressed by

exp(sinc(u))+exp(sin(250*u)) and adjusting Scope parameters that save simulation

results in the MATLAB workspace as a structure with time series. Figure 5-25, together

with the subsystem created from the model in Figure 5-23, produces the same results as

the subsystem in Figure 5-19.

Figure 5-25.  Simplified model Ex3_Function_Compute_Simple.slx

�Input/Output Signals from/to the MATLAB Workspace
As stated, the Simulink model works interactively and flawlessly with the MATLAB

workspace. For model development and simulation purposes, input signals can be

generated in the MATLAB workspace or within an M-file and then transferred to the

Simulink model environment. Similarly, all final simulation results of Simulink models

can be sent to the MATLAB workspace. To have an input signal loaded from the MATLAB

Chapter 5 Simulink Modeling Essentials

346

workspace and an output signal (simulation results) sent back to the MATLAB workspace

at the same time, you use input and output blocks and adjust the model configuration

parameters , which can be accessed by clicking the icon from the menu panel

or pressing Ctrl+E on the keyboard. In the previous example shown in Figure 5-25

(simplified part is considered), we substitute the input signal Clock block with In1 (the

Input block) and the Scope block with Out1 (the Output block); see Figure 5-26.

Figure 5-26.  Ex3_Function_Compute_In_Out.slx model with Input/Output from/
to MATLAB workspace

In addition, the Input and Output signal options in the model configuration

parameters are checked (see Figure 5-27) for input as t, u, and for output as tout

and yout, respectively. Note that before starting the simulation, you must define the

input signal in the form of t, u in the MATLAB workspace as two column vectors. That

can be done for this example as follows:

>> t=[-3*pi:pi/3000:3*pi]'; u=t;

In this example, the input signal is defined by time only, and thus, t = u. Moreover,

we make several adjustments (Start time: -3*pi; End time: 3*pi; Type: Fixed-step; Fixed-

step size (fundamental sample time): pi/3000) in the Solver options of this model via the

Configuration Parameters window, as shown in the example in Figure 5-18.

Chapter 5 Simulink Modeling Essentials

347

Figure 5-27.  Configuration parameters changed to load an input signal from the
workspace and export an output signal back to the workspace

In addition, we can add the Scope block to the model by clicking the signal going to

the Out1 block and using the right-click options (Create & Connect Viewer ➤ Simulink

➤ Scope), as shown in Figure 5-28 (top). After selecting Scope, the scope sign shows up

on top of the signal going to the Out1 block, as in Figure 5-28 (bottom).

Chapter 5 Simulink Modeling Essentials

348

Figure 5-28.  Adding a Scope block to a signal

In addition, make one important adjustment (Time display offset: -3*pi) in the

Scope block to make it display the whole simulation results completely, as demonstrated

in the example and shown in Figure 5-21. Now, you save the model (Ex3 Function_

compute_In_Out.slx) and simulate it after entering this in the MATLAB workspace:

>> t=[-3*pi:pi/3000:3*pi]̍; u=t;

Chapter 5 Simulink Modeling Essentials

349

After simulating the three alternative models, Ex3 Function_compute.slx,

Ex3_Function_Compute_Simple.slx, and Ex3_Function_Compute_In_Out.slx, the

simulation results are identical. Via these examples, you have seen how easily one block

can be substituted for another, how easily subsystems can be created from the existing

models by associating parts of interconnected blocks, and how models can be simplified

by reducing the number of blocks used in them.

�Simulating a Mechanical System
Let’s consider a mechanical spring-mass-damper system with Newtonian friction that is

formulated by the following differential equation:

	 mx t b sign x x t kx t f t
¨

� � � � � � � � � � � � � � 

2 	

Let’s treat the given model of the system as continuous and discrete systems in

order to demonstrate how to model and simulate such system in Simulink. Note that

solving and simulating differential equations via Simulink modeling is explained more in

Chapter 8. Here, we put more emphasis on model building, adjusting block parameters,

and interacting Simulink with MATLAB. Moreover, we address the issues of modeling

continuous and discrete systems and of creating subsystems.

Given m = 0.52; b = 0.00525; k = 165.5; f (t) = Acos(ωt); ω = 131;

A = 2.3 and all initial conditions are “zero.” The sampling time is ts = 0.01. The

parameters of the system are m for mass, b for the damping coefficient, k for stiffness,

f(t) for the input force, A for magnitude, and ω for frequency.

	 1.	 Collect all the necessary blocks from the Simulink Library

by dragging and dropping them in a Blank Model window.

Figure 5-29 shows the required blocks, taken from Simulink/Math

Operations, Continuous, Discrete, Sources, Signal Routing, and

Sinks. Also, the Bus collector block is taken from Simulink/Signal

Routing.

Chapter 5 Simulink Modeling Essentials

https://doi.org/10.1007/978-1-4842-8748-4_8

350

Figure 5-29.  Necessary the blocks for continuous and discrete systems

	 2.	 Adjust the blocks in a more readable order by moving them

around and rotating some of them by 180 degrees. The Product,

Sign, and Gain blocks need to be rotated. You can do that by

selecting a block and pressing the Ctrl+R keys on the keyboard

or using the right mouse button’s Rotate & Flip options. See

Figure 5-30.

Chapter 5 Simulink Modeling Essentials

351

Figure 5-30.  Adjusted blocks

	 3.	 Adjust the parameters of the blocks. First adjust the amplitude,

frequency, and sampling time for the Sine Wave and Sine Wave1

blocks, which are input signals (see Figure 5-31). Note that for Sine

Wave1, the sampling time is set to 0 because by default it is used

for continuous system modeling.

Chapter 5 Simulink Modeling Essentials

352

Figure 5-31.  Adjusting Sine Wave block’s parameters

	 4.	 Note how the sine wave sign in the Sine Wave block has changed

from a smooth curve to a stairs curve when Sample time is set to

be 0.01. Change the Gain values for Gain and Gain3 to 1/m, for

Gain1 and Gain4 to b, and for Gain2 and Gain5 to k. Also, change

the signs in the Add and Add1 blocks to -+-.

	 5.	 All blocks are connected, and complete models are attained. Two

signals coming from the Discrete Time Integrator1 and Integrator1

are connected to the Bus Creator block that subsequently is

connected to the Scope block. In addition, two notations are

added: Discrete System and Continuous System; see Figure 5-32.

The complete model is saved (Ex4_Discrete_Continuous_

Sys.slx).

Chapter 5 Simulink Modeling Essentials

353

Figure 5-32.  Complete models of discrete and continuous systems

	 6.	 You can execute these models by pressing the Ctrl+T keys on the

keyboard or pressing the Run button.

Now the completed models (Ex4_Discrete_Continuous_Sys.slx) seem to be ready

for simulation. However, if we execute them, error message windows will be launched,

and no results will be attained. The reason for that is the values of three parameters—m,

k, b—are not defined yet. You can define them in several different ways, one of which is

to specify the values of the parameters in each block or in the MATLAB workspace. You

can also specify this information in the Model properties/Callback/InitFcn, which can

be accessed via File ➤ Model Properties. Enter the following in the Command window:

>> m=0.52; k=155; b=.00144.

Subsequently, click the Run button in the Simulink model window. You can

change the Scope block’s Style settings (via drop-down options ➤ Style) and

obtain the results of the simulation displayed in the Scope block; see Figure 5-33.

Chapter 5 Simulink Modeling Essentials

354

Figure 5-33.  Simulation results

From the simulation results, you can see that one of the systems (the discrete one) is

not stable and should be fixed. The problem with this discrete system modeling resides

in the sampling time, which has to be adjusted. That can easily be fixed from the input

signal block, i.e., the Sine Wave. In this block’s sample, the time value is changed from

0.01 to 0.0001, which is 100 times smaller than initially set.

Note I f the sample time is set to -1 in a Discrete Integrator block, that makes the
sample time be inherited automatically from an input signal source.

In addition to making the plot in the Scope more readable with legends displayed for

the discrete and continuous system models, let’s check the Legends option of the Scope

block’s properties . Second, click the signal going from Discrete-Time Integrator1 to

Bus Creator and use the right mouse button’s option to access Properties (Signal

Properties). There, you specify the signal name to be Discrete Sys and then click

OK. Similarly, change the signal name for the signal going from Integrator1 to Bus

Creator and name the signal Continuous Sys. Then click OK, as shown in Figure 5-34.

Chapter 5 Simulink Modeling Essentials

355

Figure 5-34.  Signal name change

After these three changes, the whole model runs, and the next result is obtained, as

shown in Figure 5-35. Note that it is a zoomed-in view along the horizontal axis.

Figure 5-35.  Simulation results displayed in Scope with its adjusted properties

Chapter 5 Simulink Modeling Essentials

356

You have completed and verified the system models that can be simplified by using

a subsystem option, as shown in the previous example (see Figure 5-25; Ex3_Function_

Compute_Simple.slx). Any system containing more than two blocks can be simplified

or rather substituted by employing a subsystem block. There are several ways to create

subsystems from system models. The easiest way is to select model blocks meant to be

under one subsystem and then use the right mouse button options of Create Subsystem

from Selection or press Ctrl+G on the keyboard. You create the two subsystems

(Subsystem and Subsystem1) from the discrete and continuous system models (see

Figure 5-36).

Figure 5-36.  The model containing two subsystem models

A model under any subsystem can be accessed by double-clicking it. The subsystem

representing the discrete system contains the model shown in Figure 5-37.

Chapter 5 Simulink Modeling Essentials

357

Figure 5-37.  Subsystem composed of this model

Also, it is possible to reverse the process of subsystems by clicking a subsystem block

and using the right mouse button option of Subsystem & Model Reference ➤ Expand

Subsystem. You can also do this by pressing the Ctrl+Shift+G buttons after clicking a

subsystem block.

In this exercise, you learned how to build discrete and continuous systems and how

Simulink handles such composition of systems, but you have not made any adjustments

to solver parameters. The accuracy and efficiency of simulation processes can be

improved by adjusting solver type (variable step solver selected by default or fixed step

solver) and parameter settings (solver, error tolerances, solver algorithm, step size if

fixed step solver chosen, zero-crossings, and so forth).

�Working with a Second-Order Differential Equation
Now let’s build a Simulink model of the given system expressed by the second-order

differential equation A t Bq t Cq t F tq � � � � � � � � � � � , where F(t) is applied force (input

signal to the system) associated with the MATLAB’s function file. F(t) is a rectangular

pulse approximated by the Fourier series F t Amp n n t
n

N

� � � �
�
�

�
�
� � � �� � � �

�
�

1

1
�

� �cos sin , which

is implemented in MATLAB via the function_pulse.m function file:

function F=function_pulse(t, Amp, n)

% HELP. Two input arguments, viz. t, Amp, and n are needed for

Chapter 5 Simulink Modeling Essentials

358

% simulation, where t is time vector, Amp is amplitude of a pulse and n %

number of approximation terms in Fourier series.

F(1,:)=(Amp/pi)*(1-cos(pi))*sin(pi*t); for ii=2:n

 F=F+(Amp/(ii*pi))*(1-cos(ii*pi))*sin(ii*pi*t);

end

Let’s build a Simulink model associated with the function file function_pulse.m.

Moreover, you’ll employ Simulink blocks—Repeating Sequence and Signal Generator—

to generate a rectangular pulse signal. You’ll explore the options with MATLAB-

associated function files and Simulink blocks for input signal generation. In addition,

you’ll explore a few key Simulink modeling tools and aides, such as the model explorer,

model advisor, code generation in C/C++, report generation, and so forth. For numerical

simulations, the following values are used: A = 2; B = 4; C = 200; Amp = 10; n = 25.

Figure 5-38 shows the complete model of this exercise. It associates the given

function file called function_pulse.m via the Interpreted MATLAB Fcn block. The input

signal F(t) rectangular pulses are generated via two ways—one Interpreted MATLAB Fcn

with three input variables (Amp, n, t) and a signal generator with two inputs (amp and

frequency). You can compare the simulation results from the two input signal sources,

i.e., the MATLAB associated input signal generation (pulse_function.m embedded

via Interpreted MATLAB Fcn) versus Simulink Library block (the signal generator).

Moreover, you’ll see how to use Simulink’s Model properties to enter the model

parameters, such as Amp, n, A, B, C, and how to use Multiport Switch block.

Figure 5-38.  Complete model of the second-order ODE: A t Bq t Cq t F tq � � � � � � � � � � �

Chapter 5 Simulink Modeling Essentials

359

The necessary blocks to model the given exercise are Add, Gain, Integrator, Bus

Creator, and Scope, which you can drag and drop to a Blank Model window. The blocks

are connected, as shown in Figure 5-38. Note that the three signals connected with Bus

Creator and Scope blocks are called Input, dq(t), and q(t), and they represent input

signal, pulse, velocity, and displacement. This is displayed via legends in the Scope

block plot.

The function file (called function_pulse.m) is associated via the Interpreted

MATLAB Fcn block with the Simulink model (see Figure 5-38). Interpreted MATLAB Fcn

is modified to call the MATLAB function: function_pulse(u(1), u(2), u(3)), where

u(1) calls the time signal, u(2) calls the amplitude Amp, and u(3) calls n number of the

Fourier series approximation. Thus, the Interpreted MATLAB Fcn block requires three

input signals simultaneously. That can be done via the Bus Creator block, as shown in

Figure 5-40. Note that you can change block names by clicking the name of each block

and typing the new name. Note that block tags are not considered during the model

simulation, and thus, they have only an informative character for the user/programmer.

Figure 5-39.  Simulink model of the given second-order differential equation
without Input force signal generators

Chapter 5 Simulink Modeling Essentials

360

Figure 5-40.  MATLAB Fcn block with three inputs

Subsequently, one Simulink block, called Signal Generator, is added to the model

and its parameters to generate pulses (Amplitude = -Amp/2 and Frequency = 3.15 [rad/

sec]). It’s then adjusted according to the given pulse parameters, as shown in Figure 5-41.

Figure 5-41.  Adjusted parameters of the Signal Generator block

Chapter 5 Simulink Modeling Essentials

361

To connect two input signal sources (Signal Generator and MATLAB Interpreted

Fcn), add the Multiport Switch block and connect it to another Constant block to specify

a source signal block for selection. Finally, name the three signals going to the Scope

block via the Bus selector block. Moreover, adjust the Scope block’s Style options to make

the output signals readable. Figure 5-42 shows a completed model.

Figure 5-42.  Complete Simulink model called Ex5_Function_PULSE.slx

Before you start the simulation, you have to specify the values for A, B, C, Amp, and

n. You can do that via the Callbacks option, from File ➤ Model Properties ➤ Model

Properties ➤ Callbacks (Model callbacks) ➤ InitFcn. In the Model initialization function

window (or alternatively, in the Command window), type A=2; B=4; C=200; n=25;

Amp=10 and click OK. When you execute the model, both input signals are taken in

the order of first and second with respect to the Constant block (called Which_Signal)

values 1, 2. They correspond to Input 1 – Signal Generator and MATLAB Interpreted Fcn.

The simulation results in Figure 5-43 show that the two Input signals and two pairs of

Output signals (dq(t), q(t), which represent velocity q ̇and displacement q, respectively,

are well converged. Note that Input: 1 is Signal Generator and Input: 2 is MATLAB

Interpreted Fcn.

Chapter 5 Simulink Modeling Essentials

362

Figure 5-43.  Simulation results: a) from Signal Generator, b) from Repeating
Sequence, and c) from Interpreted MATLAB Fcn

It is clear from the simulation results displayed in Figure 5-43 that all three blocks

generating pulse input signals have resulted in approximately the same excitation in the

system. Simulink model blocks can be associated with MATLAB files if they are correctly

modeled and adjusted. It should be noted that the second input signal generation

approach via Interpreted MATLAB Fcn is less accurate. It approximates the Fourier

Series from the M-file function_pulse.m. Moreover, it is slower since it calls an external

M-file to generate the signal.

�Subsystem in Simulink Modeling
Simulink has a handy function to create a subsystem from the existing Simulink

model components or create model components inside the Subsystem block. The

Subsystem block helps you make your created model in a more well-structured way. The

Subsystem-based model and a model without it do not have any differences in terms of

simulation speed.

Let’s look at the following example to show how to employ the Subsystem block:

	
    u wt w uw u t sin t uw u t� �� � � � � � � � � � � � �1 2 2 6 2 3

2 3 cos 	

Chapter 5 Simulink Modeling Essentials

363

With the initial conditions of u w u w0 1 0 3 0 2 0 4� � � � � � � � � � � �; ; ;  and parameter

values a = 2, b = 10. The u and w are the functions of time. To build a Simulink model of

this exercise, we will follow the steps and procedures given in the previous two sections

on solving second-order differential equations. Thus, all model building steps are

skipped here.

To build a Simulink model of this given system of coupled differential equations,

Sum, Integration, Gain, and Scope blocks are needed. Here again we follow the steps of

building a Simulink model of a second-order ODE as explained previously.

In addition, the subsystem block will be used once the model is complete. The initial

version of the complete Simulink model is Ex6_Coupled_ODE_ver1.slx, as shown in

Figure 5-44.

Figure 5-44.  Simulink model, Ex6_Coupled_ODE_ver1.slx

The initial model called Ex6_Coupled_ODE_ver1.slx shown in Figure 5-44 is a bit

complicated and not easy to read. Therefore, to make it more readable, we use the

Subsystem block to re-create a new and simplified model out of this model.

You can create a subsystem out of the existing model in two different ways. The first

way is to select blocks using the left mouse button as highlighted in Figure 5-45 and

then press Ctrl+G keys on the keyboard or right-click and select Create Subsystem from

Chapter 5 Simulink Modeling Essentials

364

Selection. Once this step is completed, the subsystem is created from the selection; see

Figure 5-46.

Figure 5-45.  Simulink model, Ex6_Coupled_ODE_ver1.slx, step 1: how to create a
Subsystem

Figure 5-46.  Simulink model, Ex6_Coupled_ODE_ver1.slx, step 2:
Subsystem created

Chapter 5 Simulink Modeling Essentials

365

Similarly, you can select the blocks Gain3, Constant2, Sum4, Sum1, Gain4,

Integrator, Integrator2, and Gain1 for w signal using the left mouse button and press

Ctrl+G (Create Subsystem from Selection) on the keyboard. Subsequently, you obtain

the simplified model with two subsystems, as shown in Figure 5-47, that you can save

with a new file name: Ex6_Coupled_ODE_ver2.slx.

Figure 5-47.  Simplified Simulink model, Ex6_Coupled_ODE_ver2.slx with two
subsystems

To see or edit the model block parameters or connections, you can double-click the

Subsystem block or select the subsystem block with the left mouse button and then use

the right-click option of Open.

Let’s simulate both models, Ex6_Coupled_ODE_ver1.slx and Ex6_Coupled_ODE_

ver2.slx, for t = [0, 5], from MATLAB using the sim() function and compare their

simulation results. In addition, you should adjust the settings of the Scope block

 and adjust the output data variable name ➤ OUT and format type ➤

dataset in both models: Ex6_Coupled_ODE_

ver1.slx and Ex6_Coupled_ODE_ver2.slx. Now, from MATLAB, you can recall these

models and simulate them for five seconds, for instance, using the following short script

(Sim_Models.m) for ten times to find out if there is any difference between their

simulation time:

Chapter 5 Simulink Modeling Essentials

366

clc;

%%

clearvars

%%

for ii = 1:10

tic;

OUT2 = sim('Ex6_Coupled_ODE_ver2.slx', 5);

Sim_Time2(ii) = toc;

tic;

OUT1 = sim('Ex6_Coupled_ODE_ver1.slx', 5);

Sim_Time1(ii) = toc;

end

%% Compare simulation time

fprintf('Simulation time of Model 1: %f \n ', mean(Sim_Time1))

fprintf('Simulation time of Model 2: %f \n ', mean(Sim_Time2))

%% Compare simulation results

figure(1)

plot(OUT1.OUT{1}.Values.Time, OUT1.OUT{1}.Values.Data, 'r*')

hold on

plot(OUT2.OUT{1}.Values.Time, OUT2.OUT{1}.Values.Data, 'b-',

'linewidth', 2)

xlabel('Time, [s]')

ylabel('u(t)')

legend('Model 1', 'Model 2', 'location', 'NE')

figure(2)

plot(OUT1.OUT{2}.Values.Time, OUT1.OUT{2}.Values.Data, 'r*')

hold on

plot(OUT2.OUT{2}.Values.Time, OUT2.OUT{2}.Values.Data, 'b-',

'linewidth', 2)

xlabel('Time, [s]')

ylabel('w(t)')

legend('Model 1', 'Model 2', 'location', 'NE')

Chapter 5 Simulink Modeling Essentials

367

Note that these models are stored in your current MATLAB directory or you should

have added their location directory to the MATLAB’s path directory list using addpath().

Once the simulation is finished, the following output will be displayed in the

Command window:

Simulation time of Model 1: 0.341179

Simulation time of Model 2: 0.384217

Also, these two plot figures shown in Figure 5-48 and Figure 5-49 will be displayed.

Figure 5-48.  Comparison of simulation results of Ex6_Coupled_ODE_ver1.slx and
Ex6_Coupled_ODE_ver2.slx for u(t)

Chapter 5 Simulink Modeling Essentials

368

Figure 5-49.  Comparison of simulation results of Ex6_Coupled_ODE_ver1.slx and
Ex6_Coupled_ODE_ver2.slx for w(t)

The simulation results from the script Sim_Models.m for ten times show that there is

not a significant difference in simulation time of these two models.

�Simulink Model Analysis and Diagnostics
Simulink Model Analysis and Diagnostics tools provide good assistance to programmers

for improving their models in terms of simulation speed, efficiency, and elimination of

inaccurate and inefficient simulations. Therefore, it is recommended to perform analysis

and diagnostics for efficiency and adequacy of employed blocks and combinations,

chosen solver type, and many other options. All of these options can be explored via the

Model Explorer and the Model Advisor tools. Via the Model Explorer tools, you

can generate C/C++code of a Simulink model, obtain a profile report of a model, start a

model advisor, reset the configuration parameters of solver, view input/output, optimize

the models, generate code, and much more. Let’s look at some of the tools within the

Model Explorer, considering the previous example.

Chapter 5 Simulink Modeling Essentials

369

�Code Generation

Code generation (see Figure 5-50) can be accessed via the Model Explorer or Model

Configuration Parameters buttons.

Figure 5-50.  Model Explorer tools

After clicking Generate Code Only and Package Code and Artifacts, click the Generate

Code button. Subsequently, the C code (C is the chosen language) will be generated. Note

that there are some constraints in code generation; for instance, a chosen solver has to

be a fixed step, and not all blocks used are compatible with code generation in C/C++. If

these or other such requirements are not satisfied, the C/C++ code cannot be generated.

Also, the code generation process depends on the installed compiler type and version.

�Model Advisor

Model Advisor tools (see Figure 5-51) can be helpful in identifying where problems

have occurred within a model and where optimization is required. It identifies problems

with code generation and model performance by product, by task types, or both.

Chapter 5 Simulink Modeling Essentials

370

Figure 5-51.  Model Advisor tools

You first choose which process to get help/advice from in the Model Advisor and

then click the Run button. In this example, we chose the Model Advisor with By

Product and By Task. Once the Model Advisor is launched, all diagnostic checks of the

model (Ex5_Function_PULSE.slx) are run, and the report of all passed, failed, warning,

and not run points is prepared. You can view the report by clicking the Generate Report

button in the Model Advisor window. The Generate Report button opens the Generate

Model Advisor Report window, from which you can select the directory (where to save

the generated report), file name, file format (HTML by default, PDF, or Word), and check

mark option to view the report after it’s generated; see Figure 5-52. We chose HTML,

which is the default report format of the Model Advisor.

Chapter 5 Simulink Modeling Essentials

371

Figure 5-52.  The Generate Model Advisor Report window

Moreover, there are warnings concerning double precision operations used by the

blocks of the model. The blocks (Interpreted MATLAB Function) are not supported by

code generation. In addition, the Clock, Integrator, Integrator1, Signal Generator, and

Interpreted MATLAB Function blocks are not recommended for C/C++ production

deployment.

Chapter 5 Simulink Modeling Essentials

372

Figure 5-53.  Model Advisor Report

Figure 5-53 shows part of the Model Advisor Report for Ex5_Function_PULSE.

slx. The report is created in HTML format and shows 59 Pass, 0 Fail, 10 Warning, and

0 Not Run, for a total of 69 Run. By scrolling down the report, you can see where the

model passed and where it had some warning issues, such as optimization settings.

It’s recommended to set the parameter of “Remove Code from Floating-Point to

Integer Conversions That Warms Out-Of-Range Values (EfficientFloat2IntCast)”

to on. Another recommendation is to set the parameter “Inline invariant signals

(InlineInvariantSignals)” to on. Furthermore, another warning is Check Data Store

Memory blocks for multitasking, strong typing, and shadowing issues. Duplicate data

store names checking is not set to error. Duplicate usage of data store names can lead to

unintended shadowing of data stores of higher model scope. For this reason, consider

changing the duplicate data store names setting to error.

Chapter 5 Simulink Modeling Essentials

373

Another interesting warning is linked to bus signals. The warning says: “Check

bus signals treated as vectors.” The Bus signal was treated as a vector by the Simulink

software. Identify bus signals in the model that are treated as vectors by the Simulink

software.

Bus signal feeding input port 1 of the block: Ex5_Function_PULSE/Interpreted

MATLAB Function. Bus signal is feeding input port 1 of the block in Ex5_Function_

PULSE/ Scope.

Recommended Action: The model contains bus signals that the Simulink software

implicitly converts to vectors. However, the model is not configured to explicitly convert

these signals to vectors. To fix this issue, insert Bus To Vector blocks at the imports of the

blocks listed earlier.

You can do this automatically, by either pressing the modify button below or running

the Simulink.BlockDiagram.addBusToVector function. You can do this manually using

the Simulink ➤ Signal Attributes library.

By studying the Model Advisor’s reports, you can improve your model by removing

bugs, simulation bottlenecks, and unwanted warnings, and substituting some of the

inefficient blocks in the model.

In addition to the Model Advisor, you can also employ the Optimization tools under

Model Explorer or the Configuration parameters to optimize parameters and blocks in

our model. In addition, to locate bugs or bottlenecks, you can use debugging tools. They

can be accessed via the menu bar: Simulation ➤ Debug ➤ Debug Model. Another way

to learn about the model’s performance is from the menu bar: Analysis ➤ Performance

Tools ➤ Show Profile Report (select) and then ➤ Performance Tools ➤ Performance

Advisor. The options are displayed in Figure 5-54.

Chapter 5 Simulink Modeling Essentials

374

Figure 5-54.  Performance Advisor options

After clicking Run Selected Checks (see Figure 5-55), the Simulink Profile Report is

displayed. It’s composed of the Summary and Simulink Performance Advisor Report,

and it displays a complete picture of the model and its simulation processes.

Chapter 5 Simulink Modeling Essentials

375

Figure 5-55.  Simulink Model Profile Report Summary

Thus, it is recommended that you run the Model Advisor and Performance Advisor

options to obtain the many help hints to improve your model’s performance. Also, the

profile report generator can be recalled and executed using commands in order to locate

inefficient operations and blocks of the model.

>> profile on; sim('Ex5_Function PULSE.mdl'); profile viewer

The profile report generator works well with all M-files and Simulink models and

provides comprehensive reports including bottlenecks within a code/script/model in

terms of computation and execution time spent on each command and operation.

Chapter 5 Simulink Modeling Essentials

376

�Summary
In this chapter, we covered most of the essential graphical programming tools and some

common blocks in the Simulink package, including signal sources, matrix operations,

integration, visualization, signal routing, and C code generation. Moreover, the chapter

highlighted and demonstrated, via numerical simulation examples, a few salient points

on how to adjust parameters, use solver tools, set error tolerances, and improve the

performance of Simulink models. In addition, you learned how to select and adjust

solvers in Simulink.

You learned how to create subsystems from existing models and how to associate

Simulink models with MATLAB scripts and function files. Moreover, you learned how

to execute Simulink models from MATLAB scripts and acquire the Simulink model

simulation results into the MATLAB workspace. In addition, you worked with the

Simulink Model Analysis and Diagnostics tools and learned how to obtain Model

Advisor and Performance Reports.

�Exercises for Self-Testing
�Exercise 1

Build a Simulink model to compute values of the cosine function g(t) = cos (ωt)

for t = 0…3 with 3,000 incremental steps and ω = [π, 2π, 3π, 5π, 7π] specified in

MATLAB. Simulate your Simulink model using MATLAB with the sim() command using

a [for ... end] or [while .. end] loop for all values of ω.

�Exercise 2

The equation for charge in a resistor-inductance-capacitor (RLC) circuit (shown in

the below figure) in a series is determined by Kirchhoff’s law:
L Rq q C cos tq � � � � �/

max
� � .

Chapter 5 Simulink Modeling Essentials

377

Create a Simulink model to simulate the given RLC system expressed by the second-

order differential equation for q(t) with the input arguments of R, L, C, ω, and t. Create a

Simulink model to simulate the given RLC system.

Take R = 100 Ω, L = 200 H, C = 0.02 μF, ω = 60 rad/s.

�Exercise 3

The acceleration of a skydiver is determined by the following:

	
a g v
� �

�

�
�

�

�
�1

3600

2

	

where g = 9.81 m/sec2.

Create a Simulink model to simulate the acceleration of a skydiver.

�Exercise 4

A truck of mass m accelerates from rest at t = 0 with constant power P along a level road.

The speed of the truck as a function of time is given by v t P
m

t� � � �
�
�

�
�
�

2

1

2

 . If x = 0 at

time t = 0, the position function x(t) is given by x t P
m

t� � � �
�
�

�
�
�

8

9

1

2
3 , where P = 550 kW and

m = 15000 kg.

	 1.	 Write an inline function to compute the position of the truck from

the function x(t) as a function of time t.

Chapter 5 Simulink Modeling Essentials

378

	 2.	 Create a Simulink model to obtain numerical values of v(t), x(t)

as a function of t in the MATLAB workspace and compare the

results with the ones obtained from the function handle and inline

function.

	 3.	 Build plots of x(t) versus t and v(t) versus t in two separate plot

figures.

�Exercise 5

Create a Simulink model with three subsystems to compute numerical solutions (xA(t),

xB(t), xC(t)) of the following second-order coupled differential equations.

	 kx kx t mx t F t kx tk A A D B� � � � � � � � � � � � 	

	
2kx t m t k x t x txB B C B� � � � � � � � � � �� � 	

	
mx t k x x t x tC k B C � � � � � � � � �� � 	

	 x x x x x xA B k C k k0 0 0 0 2 1 5� � � � � � � � � �, , , . , 	

	
  x x xA B C0 0 0 0� � � � � � � � � 	

FD(t) = F0 cos (tω), F0 = 5.75, ω = 3.20;

	 t m k� � � � �0 25 2 32, , ; . 	

Hint: For more information about ordinary differential equations, see Chapter 8.

Chapter 5 Simulink Modeling Essentials

https://doi.org/10.1007/978-1-4842-8748-4_8

	Chapter 5: Simulink Modeling Essentials
	Simulink Modeling
	Example: Arithmetic Calculations
	Example: Modeling Simple Arithmetic Operations
	Performing Matrix Operations
	Computing Values of Functions
	Input/Output Signals from/to the MATLAB Workspace
	Simulating a Mechanical System
	Working with a Second-Order Differential Equation
	Subsystem in Simulink Modeling
	Simulink Model Analysis and Diagnostics
	Code Generation
	Model Advisor

	Summary
	Exercises for Self-Testing
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

