
553© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_13

CHAPTER 13

Generative
Adversarial Networks

What I cannot create, I have not yet fully understood.

—Richard Feynman

Before the invention of the generative adversarial network (GAN), the

variational autoencoder was considered to be theoretically complete and

simple to implement. It is very stable when trained using neural networks,

and the resulting images are more approximate, but the human eyes can

still easily distinguish real pictures and machine-generated pictures.

In 2014, Ian Goodfellow, a student of Yoshua Bengio (the winner of

the Turing Award in 2018) at the Université de Montréal, proposed the

GAN [1], which opened up one of the hottest research directions in deep

learning. From 2014 to 2019, GAN research has been steadily advancing,

and research successes have been reported frequently. The effect of

the latest GAN algorithm on image generation has reached a level that

is difficult to distinguish with the naked eyes, which is really exciting.

Due to the invention of GAN, Ian Goodfellow was awarded the title of

Father of GAN, and was granted the 35 Innovators Under 35 award by

the Massachusetts Institute of Technology Review in 2017. Figure 13-1

https://doi.org/10.1007/978-1-4842-7915-1_13#DOI

554

shows that from 2014 to 2018, the GAN model achieved the effect of book

generation. It can be seen that both the size of the picture and the fidelity

of the picture have been greatly improved. 1

Figure 13-1.  GAN generated image effect from 2014 to 2018

Next, we will start from the example of game learning in life, step

by step, to introduce the design ideas and model structure of the GAN

algorithm.

13.1  �Examples of Game Learning
We use the growth trajectory of a cartoonist to vividly introduce the idea

of GAN. Consider a pair of twin brothers, called G and D. G learns how

to draw cartoons, and D learns how to appreciate paintings. The two

brothers at young ages only learned how to use brushes and papers. G

drew an unknown painting, as shown in Figure 13-2(a). At this time, D’s

discriminating ability is not high, so D thinks G’s work is OK, but the main

character is not clear enough. Under D’s guidance and encouragement, G

began to learn how to draw the outline of the subject and use simple color

combinations.

1 Image source: https://twitter.com/goodfellow_ian/status/
1084973596236144640?lang=en

Chapter 13 Generative Adversarial Networks

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en
https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

555

A year later, G improved the basic skills of painting, and D also initially

mastered the ability to identify works by analyzing masterpieces and the

works of G. At this time, D feels that G’s work has the main character, as

shown in Figure 13-2(b), but the use of color is not mature enough. A few

years later, G’s basic painting skills have been very solid, and he can easily

draw paintings with bright subjects, appropriate color matching, and high

fidelity, as shown in Figure 13-2(c), but D also observes the differences

between G and other masterpieces, and improved the ability to distinguish

paintings. At this time, D felt that G’s painting skills have matured, but his

observation of life is not enough. G’s work does not convey the expression

and some details are not perfect. After a few more years, G’s painting

skills have reached the point of perfection. The details of the paintings

are perfect, the styles are very different and vivid, just like a master level,

as shown in Figure 13-2(d). Even at this time, D’s discrimination skills

are quite excellent. It is also difficult for D to distinguish G from other

masterpieces.

The growth process of the above-mentioned painters is actually a

common learning process in life, through the game of learning between

the two sides and mutual improvement, and finally reaches a balance

point. The GAN network draws on the idea of game learning and sets up

two sub-networks: a generator G responsible for generating samples and a

discriminator D responsible for authenticating. The discriminator D learns

how to distinguish between true and false by observing the difference

between the real sample and the sample produced by the generator G,

where the real sample is true and the sample produced by the generator

G is false. The generator G is also learning. It hopes that the generated

samples can be recognized by the discriminator D as true. Therefore, the

generator G tries to make the samples it generates be considered as true by

discriminant D. The generator G and the discriminator D play a game with

each other and improve together until they reach an equilibrium point.

At this time, the samples generated by the generator G are very realistic,

making the discriminator D difficult to distinguish between true and false.

Chapter 13 Generative Adversarial Networks

556

In the original GAN paper, Ian Goodfellow used another vivid

metaphor to introduce the GAN model: The function of the generator

network G is to generate a series of very realistic counterfeit banknotes

to try to deceive the discriminator D, and the discriminator D learns

the difference between the real money and the counterfeit banknotes

generated by generator G to master the banknote identification method.

These two networks are synchronized in the process of mutual games,

until the counterfeit banknotes produced by the generator G are very real,

and even the discriminator D can barely distinguish.

This idea of game learning makes the network structure and training

process of GAN slightly different from the previous network model. Let’s

introduce the network structure and algorithm principle of GAN in detail

in the following.

13.2  �GAN Principle
Now we will formally introduce the network structure and training

methods of GAN.

13.2.1  �Network Structure
GAN contains two sub-networks: the generator network (referred to

as G) and the discriminator network (referred to as D). The generator

network G is responsible for learning the true distribution of samples, and

Figure 13-2.  Sketch of the painter's growth trajectory

Chapter 13 Generative Adversarial Networks

557

the discriminator network D is responsible for distinguish the samples

generated by the generator network from the real samples.

Generator G(z) The generator network G is similar to the function of

decoder of the autoencoder. The hidden variables z~pz(∙) are sampled from

the prior distribution pz(∙). The generated sample x~pg(x| z) is obtained

by the parameterized distribution pg(x| z) of the generator network G, as

shown in Figure 13-3. The prior distribution pz(∙) of the hidden variable z

can be assumed to be a known distribution, such as a multivariate uniform

distribution z~Uniform(−1, 1).

Figure 13-3.  Generator G

pg(x| z) can be parameterized by a deep neural network. As shown in

Figure 13-4, the hidden variable z is sampled from the uniform distribution

pz(∙), and then sample xf is obtained from the pg(x| z) distribution. From

the perspective of input and output, the function of the generator G is

to convert the hidden vector z into a sample vector xf through a neural

network, and the subscript f represents fake samples.

Figure 13-4.  Generator network composed of transposed convolution

Chapter 13 Generative Adversarial Networks

558

Discriminator D(x) The function of the discriminator network is

similar to that of the ordinary binary classification network. It accepts a

dataset of input sample x, including samples xr~pr(∙) sampled from the

real data distribution pr(∙), and also includes fake samples sampled from

the generator network xf~pg(x| z). xr and xf together form the training data

set of the discriminator network. The output of the discriminator network

is the probability of x belonging to the real sample P(x is real | x). We label

all the real samples xr as true (1), and all the samples xf generated by the

generator network are labeled as false (0). The error between the predicted

value of the discriminator network D and the label is used to optimize the

discriminator network parameters as shown in Figure 13-5.

Figure 13-5.  Generator network and discriminator network

Chapter 13 Generative Adversarial Networks

559

13.2.2  �Network Training
The idea of GAN game learning is reflected in its training method. Since

the optimization goals of generator G and discriminator D are different,

they cannot be the same as the previous network model training, and only

one loss function is used. Let us introduce how to train the generator G

and the discriminator D respectively.

For the discriminator network D, its goal is to be able to distinguish

the real sample xr from the fake sample xf. Taking picture generation as an

example, its goal is to minimize the cross-entropy loss function between

the predicted value and the true value of the picture:

	
L CE D x y D x yr r f f� � � � �� �� �, , , 	

where Dθ(xr) represents the output of the real sample xr in the discriminant

network Dθ, θ is the parameter set of the discriminator network, Dθ(xf) is

the output of the generated sample xf in the discriminator network, and y is

the label of xr. Because the real sample is labeled as true, So yr = 1. yf is the

label of xf of the generated sample. Since the generated sample is labeled

as false, yf = 0. The CE function represents the cross-entropy loss function

CrossEntropy. The cross-entropy loss function of the two classification

problem is defined as:

	

L D x D x
x p

r
x p

f

r r f g

� � � �� � � �� �
�� � �� �

� �
~ ~

log log� �1
	

Therefore, the optimization goal of the discriminator network D is:

	

� � �
�

�� � �� �
� � � � � � � �� �� �

x p
r

x p
f

r r f g

D x D x
~ ~

log log 1
	

Chapter 13 Generative Adversarial Networks

560

Convert L to−L , and write it in the expectation form:

	
� � �

�
�� � �� �� � � � � � �� �E D x E D xx p r x p fr r f g~ ~log log 1 	

For the generator network G(z), we hope that xf = G(z) can deceive

the discriminator network D well, and the output of the fake sample xf

is as close to the real label as possible. That is to say, when training the

generator network, it is hoped that the output D(G(z)) of the discriminator

network is as close to 1 as possible, and the cross-entropy loss function

between D(G(z)) and 1 is minimized:

	
L CE D G z D G z� � �� �� � � � � �� �� �,1 log 	

Convert L to −L , and write it in the expectation form:

	
� �

�
�� �� � �� �E logD G zz pz~ 	

It can be equivalently transformed into:

	
� �

�
�� �� � � � �� ��� ��L E D G zz pz~ log 1 	

where ϕ is the parameter set of the generator network G, and the gradient

descent algorithm can be used to optimize the parameters ϕ.

13.2.3  �Unified Objective Function
We can merge the objective functions of the generator and discriminator

networks and write it in the form of a min-max game:

	
minmax ~ ~� � � �L D G E D x E D xx p r x p fr r f g

,� � � � � � � � �� ��� � �� �log log 1 	

	
� � �� � � �� �� ��� � �� �E D x E D G zx p z pr z~ ~log log� � �1 	 (13-1)

Chapter 13 Generative Adversarial Networks

561

The algorithm is as follows:

Algorithm 1:GAN training algorithm

Randomly initialize parameters θ and ϕ
repeat
 for k times do
 Randomly sample hidden vectors z~pz(∙)
 Randomly sample of real samples xr~pr(∙)
 Update the D network according to the gradient descent algorithm:

� ��� �� ��E logD x +E log D xx ~p r x ~p fr r f g��� � �� �� � � �� �1

 Randomly sample hidden vectors z~pz(∙)
 Update the G network according to the gradient descent algorithm:

� ��� �� ��E log D G zz~pz �� � � �� �� �1

 end for
until the number of training rounds meets the requirements

output:Trained generator Gϕ

13.3  �Hands-On DCGAN
In this section, we will complete the actual generation of cartoon

avatar images. Refer to the network structure of DCGAN [2], where the

discriminator D is implemented by a common convolutional layer, and the

generator G is implemented by a transposed convolutional layer, as shown

in Figure 13-6.

Chapter 13 Generative Adversarial Networks

562

Figure 13-6.  DCGAN Network structure

13.3.1  �Cartoon Avatar Dataset
Here we use a dataset of cartoon avatars, a total of 51,223 pictures, without

annotation information. The main body of the pictures have been cropped,

aligned, and uniformly scaled to a size of 96 × 96. Some samples are shown

in Figure 13-7.

Figure 13-7.  Cartoon avatar dataset

For customized datasets, you need to complete the data loading and

preprocessing work by yourself. We focus here on the GAN algorithm itself.

The subsequent chapter on customized datasets will introduce in detail

how to load your own datasets. Here the processed dataset is obtained

directly through the pre-written make_anime_dataset function.

Chapter 13 Generative Adversarial Networks

563

 �# Dataset path. URL: https://drive.google.com/file/

d/1lRPATrjePnX_n8laDNmPkKCtkf8j_dMD/view?usp=sharing

 �img_path = glob.glob(r'C:\Users\z390\Downloads\

faces*.jpg')

 # Create dataset object, return Dataset class and size

 �dataset, img_shape, _ = make_anime_dataset(img_path, batch_

size, resize=64)

The dataset object is an instance of the tf.data.Dataset class.

Operations such as random dispersal, preprocessing, and batching have

been completed, and sample batches can be obtained directly, and img_

shape is the preprocessed image size.

13.3.2  �Generator
The generator network G is formed by stacking five transposed

convolutional layers in order to realize the layer-by-layer enlargement of

the height and width of the feature map and the layer-by-layer reduction

of the number of feature map channels. First, the hidden vector z with

a length of 100 is adjusted to a four-dimensional tensor of [b, 1, 1, 100]

through the reshape operation, and the convolutional layer is transposed

in order to enlarge the height and width dimensions, reduce the number of

channels, and finally get the color picture with a width of 64 and a channel

number of 3. A BN layer is inserted between each convolutional layer to

improve training stability, and the convolutional layer chooses not to use a

bias vector. The generator class code is implemented as follows:

class Generator(keras.Model):

 # Generator class

 def __init__(self):

 super(Generator, self).__init__()

 filter = 64

Chapter 13 Generative Adversarial Networks

564

 �# Transposed convolutional layer 1, output channel

is filter*8, kernel is 4, stride is 1, no padding,

no bias.

 �self.conv1 = layers.Conv2DTranspose(filter*8, 4,1,

'valid', use_bias=False)

 self.bn1 = layers.BatchNormalization()

 # Transposed convolutional layer 2

 �self.conv2 = layers.Conv2DTranspose(filter*4, 4,2,

'same', use_bias=False)

 self.bn2 = layers.BatchNormalization()

 # Transposed convolutional layer 3

 �self.conv3 = layers.Conv2DTranspose(filter*2, 4,2,

'same', use_bias=False)

 self.bn3 = layers.BatchNormalization()

 # Transposed convolutional layer 4

 �self.conv4 = layers.Conv2DTranspose(filter*1, 4,2,

'same', use_bias=False)

 self.bn4 = layers.BatchNormalization()

 # Transposed convolutional layer 5

 �self.conv5 = layers.Conv2DTranspose(3, 4,2, 'same',

use_bias=False)

The forward propagation of generator network G is implemented

as follow:

 def call(self, inputs, training=None):

 x = inputs # [z, 100]

 # Reshape to 4D tensor:(b, 1, 1, 100)

 x = tf.reshape(x, (x.shape[0], 1, 1, x.shape[1]))

 x = tf.nn.relu(x) # activation function

 �# Transposed convolutional layer-BN-activation

function:(b, 4, 4, 512)

Chapter 13 Generative Adversarial Networks

565

 �x = tf.nn.relu(self.bn1(self.conv1(x),

training=training))

 �# Transposed convolutional layer-BN-activation

function:(b, 8, 8, 256)

 �x = tf.nn.relu(self.bn2(self.conv2(x),

training=training))

 �# Transposed convolutional layer-BN-activation

function:(b, 16, 16, 128)

 �x = tf.nn.relu(self.bn3(self.conv3(x),

training=training))

 �# Transposed convolutional layer-BN-activation

function:(b, 32, 32, 64)

 �x = tf.nn.relu(self.bn4(self.conv4(x),

training=training))

 �# Transposed convolutional layer-BN-activation

function:(b, 64, 64, 3)

 x = self.conv5(x)

 x = tf.tanh(x) # output x range -1~1

 return x

The output size of the generated network is [b, 64,64,3], and the value

range is −1~1.

13.3.3  �Discriminator
The discriminator network D is the same as the ordinary classification

network. It accepts image tensors of size [b,64,64,3] and continuously

extracts features through five convolutional layers. The final output size

of the convolutional layer is [b ,2,2,1024], and then convert the feature

size to [b,1024] through the pooling layer GlobalAveragePooling2D, and

finally obtain the probability of the binary classification task through a

Chapter 13 Generative Adversarial Networks

566

fully connected layer. The code for the discriminator network class D is

implemented as follows:

class Discriminator(keras.Model):

 # Discriminator class

 def __init__(self):

 super(Discriminator, self).__init__()

 filter = 64

 # Convolutional layer 1

 �self.conv1 = layers.Conv2D(filter, 4, 2, 'valid', use_

bias=False)

 self.bn1 = layers.BatchNormalization()

 # Convolutional layer 2

 �self.conv2 = layers.Conv2D(filter*2, 4, 2, 'valid',

use_bias=False)

 self.bn2 = layers.BatchNormalization()

 # Convolutional layer 3

 �self.conv3 = layers.Conv2D(filter*4, 4, 2, 'valid',

use_bias=False)

 self.bn3 = layers.BatchNormalization()

 # Convolutional layer 4

 �self.conv4 = layers.Conv2D(filter*8, 3, 1, 'valid',

use_bias=False)

 self.bn4 = layers.BatchNormalization()

 # Convolutional layer 5

 �self.conv5 = layers.Conv2D(filter*16, 3, 1, 'valid',

use_bias=False)

 self.bn5 = layers.BatchNormalization()

 # Global pooling layer

 self.pool = layers.GlobalAveragePooling2D()

 # Flatten feature layer

 self.flatten = layers.Flatten()

Chapter 13 Generative Adversarial Networks

567

 # Binary classification layer

 self.fc = layers.Dense(1)

The forward calculation process of the discriminator D is implemented

as follows:

 def call(self, inputs, training=None):

 �# Convolutional layer-BN-activation function:

(4, 31, 31, 64)

 �x = tf.nn.leaky_relu(self.bn1(self.conv1(inputs),

training=training))

 �# Convolutional layer-BN-activation function:

(4, 14, 14, 128)

 �x = tf.nn.leaky_relu(self.bn2(self.conv2(x),

training=training))

 �# Convolutional layer-BN-activation function:

(4, 6, 6, 256)

 �x = tf.nn.leaky_relu(self.bn3(self.conv3(x),

training=training))

 �# Convolutional layer-BN-activation function:

(4, 4, 4, 512)

 �x = tf.nn.leaky_relu(self.bn4(self.conv4(x),

training=training))

 �# Convolutional layer-BN-activation function:

(4, 2, 2, 1024)

 �x = tf.nn.leaky_relu(self.bn5(self.conv5(x),

training=training))

 # Convolutional layer-BN-activation function:(4, 1024)

 x = self.pool(x)

 # Flatten

Chapter 13 Generative Adversarial Networks

568

 x = self.flatten(x)

 # Output, [b, 1024] => [b, 1]

 logits = self.fc(x)

 return logits

The output size of the discriminator is [b,1]. The Sigmoid activation

function is not used inside the class, and the probability that b samples

belong to the real samples can be obtained through the Sigmoid activation

function.

13.3.4  �Training and Visualization
Discriminator According to formula (13-1), the goal of the discriminator

network is to maximize the function L(D, G), so that the probability of

true sample prediction is close to 1, and the probability of generated

sample prediction is close to 0. We implement the error function of the

discriminator in the d_loss_fn function, label all real samples as 1, and

label all generated samples as 0, and maximize the function L(D,G) by

minimizing the corresponding cross-entropy loss function. The d_loss_fn

function is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

 # Loss function for discriminator

 # Generate images from generator

 fake_image = generator(batch_z, is_training)

 # Distinguish images

 d_fake_logits = discriminator(fake_image, is_training)

 # Determine whether the image is real or not

 d_real_logits = discriminator(batch_x, is_training)

 # The error between real image and 1

 d_loss_real = celoss_ones(d_real_logits)

Chapter 13 Generative Adversarial Networks

569

 # The error between generated image and 0

 d_loss_fake = celoss_zeros(d_fake_logits)

 # Combine loss

 loss = d_loss_fake + d_loss_real

 return loss

The celoss_ones function calculates the cross-entropy loss between the

current predicted probability and label 1. The code is as follows:

def celoss_ones(logits):

 # Calculate the cross entropy belonging to and label 1

 y = tf.ones_like(logits)

 �loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

 return tf.reduce_mean(loss)

The celoss_zeros function calculates the cross entropy loss

between the current predicted probability and label 0. The code

is as follows:

def celoss_zeros(logits):

 �# Calculate the cross entropy that belongs to and the

note is 0

 y = tf.zeros_like(logits)

 �loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

 return tf.reduce_mean(loss)

Generator The training goal of generator network is to minimize

the L(D, G) objective function. Since the real sample has nothing

to do with the generator, the error function only needs to minimize

E D G zz pz~ �� � � � �� �� �log 1 � � . The cross-entropy error at this time can be

minimized by marking the generated sample as 1. It should be noted

that in the process of back propagating errors, the discriminator also

Chapter 13 Generative Adversarial Networks

570

participates in the construction of the calculation graph, but at this stage

only the generator network parameters need to be updated. The error

function of the generator is as follows:

def g_loss_fn(generator, discriminator, batch_z, is_training):

 # Generate images

 fake_image = generator(batch_z, is_training)

 �# When training the generator network, it is necessary to

force the generated image to be judged as true

 d_fake_logits = discriminator(fake_image, is_training)

 # Calculate error between generated images and 1

 loss = celoss_ones(d_fake_logits)

 return loss

Network training In each Epoch, first randomly sample the hidden

vector from the prior distribution pz(∙), randomly sample the real

pictures from the true data set, calculate the loss of the discriminator

network through the generator and the discriminator, and optimize

the discriminator network parameters θ. When training the generator,

the discriminator is needed to calculate the error, but only the gradient

information of the generator is calculated and ϕ is updated. Here set

the discriminator training times k = 5, and set the generator training

time as one.

First, create the generator network and the discriminator network, and

create the corresponding optimizers, respectively, as in the following:

 generator = Generator() # Create generator

 generator.build(input_shape = (4, z_dim))

 discriminator = Discriminator() # Create discriminator

 discriminator.build(input_shape=(4, 64, 64, 3))

 �# Create optimizers for generator and discriminator

respectively

Chapter 13 Generative Adversarial Networks

571

 �g_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

 �d_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

The main training part of the code is implemented as follows:

 for epoch in range(epochs): # Train epochs times

 # 1. Train discriminator

 for _ in range(5):

 # Sample hidden vectors

 batch_z = tf.random.normal([batch_size, z_dim])

 batch_x = next(db_iter) # Sample real images

 # Forward calculation - discriminator

 with tf.GradientTape() as tape:

 �d_loss = d_loss_fn(generator, discriminator,

batch_z, batch_x, is_training)

 �grads = tape.gradient(d_loss, discriminator.

trainable_variables)

 �d_optimizer.apply_gradients(zip(grads,

discriminator.trainable_variables))

 # 2. Train generator

 # Sample hidden vectors

 batch_z = tf.random.normal([batch_size, z_dim])

 batch_x = next(db_iter) # Sample real images

 # Forward calculation - generator

 with tf.GradientTape() as tape:

 �g_loss = g_loss_fn(generator, discriminator,

batch_z, is_training)

 �grads = tape.gradient(g_loss, generator.trainable_

variables)

 �g_optimizer.apply_gradients(zip(grads, generator.

trainable_variables))

Chapter 13 Generative Adversarial Networks

572

Every 100 Epochs, a picture generation test is performed. The hidden

vector is randomly sampled from the prior distribution, sent to the

generator to obtain the generated picture which is saved as a file.

As shown in Figure 13-8, it shows a sample of generated pictures saved

by the DCGAN model during the training process. It can be observed that

most of the pictures have clear subjects, vivid colors, rich picture diversity,

and the generated pictures are close to the real pictures in the data

set. At the same time, it can be found that a small amount of generated

pictures are still damaged, and the main body of the pictures cannot be

recognized by human eyes. To obtain the image generation effect shown in

Figure 13-8, it is necessary to carefully design the network model structure

and fine-tune the network hyperparameters.

Figure 13-8.  DCGAN image generation effect

Chapter 13 Generative Adversarial Networks

573

13.4  �GAN Variants
In the original GAN paper, Ian Goodfellow analyzed the convergence of

the GAN network from a theoretical level and tested the effect of image

generation on multiple classic image data sets, as shown in Figure 13-9,

where Figure 13-9 (a) is the MNIST dataset, Figure 13-9 (b) is the Toronto

Face dataset, and Figure 13-9 (c) and Figure 13-9 (d) are the CIFAR10

dataset.

Figure 13-9.  Original GAN image generation effect [1]

It can be seen that the original GAN model is not outstanding in terms

of image generation effect, and the difference from VAE is not obvious. At

this time, it does not show its powerful distribution approximation ability.

However, because GAN is relatively new in theory, there are many areas

for improvement, which greatly stimulated the research interest of the

academic community. In the next few years, GAN research is in full swing,

and substantial progress has also been made. Next we will introduce

several significant GAN variants.

Chapter 13 Generative Adversarial Networks

574

13.4.1  �DCGAN
The initial GAN network is mainly based on the fully connected layer

to realize the generator G and the discriminator D. Due to the high

dimensionality of the picture and the huge amount of network parameters,

the training effect is not excellent. DCGAN [2] proposed a generator

network implemented using transposed convolutional layers, and a

discriminator network implemented by ordinary convolutional layers,

which greatly reduces the amount of network parameters and greatly

improves the effect of image generation, showing that the GAN model has

the potential of outperforming the VAE model in image generation. In

addition, the author of DCGAN also proposed a series of empirical GAN

network training techniques, which were proved to be beneficial to the

stable training of the GAN network. We have used the DCGAN model to

complete the actual picture generation of the animation avatars.

13.4.2  �InfoGAN
InfoGAN [3] tried to use an unsupervised way to learn the interpretable

representation of the interpretable hidden vector z of the input x, that

is, it is hoped that the hidden vector z can correspond to the semantic

features of the data. For example, for MNIST handwritten digital pictures,

we can consider the category, font size, and writing style of the digits to

be hidden variables of the picture. We hope that the model can learn

these disentangled interpretable feature representation methods, so that

the hidden variables can be controlled artificially to generate a sample

of the specified content. For the CelebA celebrity photo dataset, it is

hoped that the model can separate features such as hairstyles, glasses

wearing conditions, and facial expressions, to generate face images of

specified shapes.

Chapter 13 Generative Adversarial Networks

575

What are the benefits of disentangled interpretable features? It can

make the neural network more interpretable. For example, z contains

some separate interpretable features, then we can obtain generated data

with different semantics by only changing the features at this position.

As shown in Figure 13-10, subtracting the hidden vectors of “men with

glasses” and “men without glasses” and adding them to the hidden vectors

of “women without glasses” can generate a picture of “women with

glasses”.

Figure 13-10.  Schematic diagram of separated features [3]

13.4.3  �CycleGAN
CycleGAN [4] is an unsupervised algorithm for image style conversion

proposed by Zhu Junyan. Because the algorithm is clear and simple, and

the results are better, this work has received a lot of praise. The basic

assumption of CycleGAN is that if you switch from picture A to picture

B, and then from picture B to A’, then A’ should be the same picture

as A. Therefore, in addition to setting up the standard GAN loss item,

CycleGAN also adds cycle consistency loss to ensure that A’ is as close

to A as possible. The conversion effect of CycleGAN pictures is shown in

Figure 13-11.

Chapter 13 Generative Adversarial Networks

576

Figure 13-11.  Image conversion effect [4]

13.4.4  �WGAN
The training problem of GAN has been criticized all the time, and it

is prone to the phenomenon of training non-convergence and mode

collapse. WGAN [5] analyzed the flaws of the original GAN using JS

divergence from a theoretical level and proposed that the Wasserstein

distance can be used to solve this problem. In WGAN-GP [6], the author

proposed that by adding a gradient penalty term, the WGAN algorithm

was well realized from the engineering level, and the advantages of WGAN

training stability were confirmed.

13.4.5  �Equal GAN
From the birth of GAN to the end of 2017, GAN Zoo has collected more

than 214 GAN network variants. These GAN variants have more or less

proposed some innovations, but several researchers from Google Brain

provided another point in a paper [7]: There is no evidence that the GAN

variant algorithms we tested have been consistently better than the

Chapter 13 Generative Adversarial Networks

577

original GAN paper. In that paper, these GAN variants are compared fairly

and comprehensively. With sufficient computing resources, it is found

that almost all GAN variants can achieve similar performance (FID score).

This work reminds the industry whether these GAN variants are essentially

innovative.

13.4.6  �Self-Attention GAN
The attention mechanism has been widely used in natural language

processing (NLP). Self-Attention GAN (SAGAN) [8] borrowed from the

attention mechanism and proposed a variant of GAN based on the self-

attention mechanism. SAGAN improved the fidelity index of the picture:

Inception score from the 36.8 to 52.52, and Frechet inception distance

from 27.62 to 18.65. From the effect of image generation perspective,

SAGAN’s breakthrough is very significant, and it also inspired the

industry’s attention to the self-attention mechanism.

13.4.7  �BigGAN
On the basis of SAGAN, BigGAN [9] attempts to extend the training of

GAN to a large scale, using techniques such as orthogonal regularization

to ensure the stability of the training process. The significance of BigGAN

Figure 13-12.  Attention mechanism in SAGAN [8]

Chapter 13 Generative Adversarial Networks

578

is to inspire people that the training of GAN networks can also benefit

from big data and large computing power. The effect of BigGAN image

generation has reached an unprecedented height: the inception score

record has increased to 166.5 (an increase of 52.52); Frechet inception

distance has dropped to 7.4, which has been reduced by 18.65. As shown

in Figure 13-13, the image resolution can reach 512×512, and the image

details are extremely realistic.

Figure 13-13.  BigGAN generated images

13.5  �Nash Equilibrium
Now we analyze from the theoretical level, through the training method

of game learning, what equilibrium state the generator G and the

discriminator D will reach. Specifically, we will explore the following two

questions:

•	 Fix G, what optimal state D∗ will D converge to?

•	 After D reaches the optimal state D∗, what state will G

converge to?

First, we give an intuitive explanation through the example of one-

dimensional normal distribution xr~pr(∙). As shown in Figure 13-14, the

black dashed curve represents the real data distribution pr(∙), which is

a normal distribution N(μ, σ2), and the green solid line represents the

distribution xf~pg(∙) learned by the generator network. The blue dotted line

Chapter 13 Generative Adversarial Networks

579

represents the decision boundary curve of the discriminator. Figure 13-14

(a), (b), (c), and (d) represents the learning trajectory of the generator

network, respectively. In the initial state, as shown in Figure 13-14(a),

the distribution of pg(∙) is quite different from pr(∙), and the discriminator

can easily learn a clear decision boundary, which is the blue dotted line

in Figure 13-14(a), which sets the sampling point from pg(∙) as 0 and

the sampling point in pr(∙) as 1. As the distribution pg(∙) of the generator

network approaches the true distribution pr(∙), it becomes more and

more difficult for the discriminator to distinguish between true and false

samples, as shown in Figures 13.14(b)(c). Finally, when the distribution

pg(∙) = pr(∙) learned by the generator network, the samples extracted from

the generator network are very realistic, and the discriminator cannot

distinguish the difference, that is, the probability of determining the true

and false samples is equal, as shown in Figure 13-14(d).

Figure 13-14.  Nash Equilibrium [1]

This example intuitively explains the training process of the GAN

network.

Chapter 13 Generative Adversarial Networks

580

13.5.1  �Discriminator State
Now let’s derive the first question. Review the loss function of GAN:

L G D p x log log D x dx p z log log D g z dz
x

r

z

z,� � � � � � �� � � � � � � �� �� �� � 1

	
� � � � �� � � � � � � �� ��

x

r gp x log log D x p x log log D x dx1
	

For the discriminator D, the optimization goal is to maximize the

L(G, D) function, and the maximum value of the following function needs

to be found:

	
f p x log log D x p x log log D xr g� � � � � �� � � � � � � �� �1 	

where θ is the network parameter of the discriminator D.

Let us consider the maximum value of the more general function of fθ:

	 f x A log log x B log log x� � � � �� �1 	

The maximum value of the function f  (x) is required. Consider the

derivative of f  (x):

	

df x

dx
A
ln ln x

B
ln ln x

� �
� �

�
1

10

1 1

10

1

1 	

	
� �

�
�
�
�

�
�
�

1

10 1ln ln

A

x

B

x 	

	
�

� �� �
�� �

1

10 1ln ln

A A B x

x x 	

Let
df x

dx

� �
� 0 , we can find the extreme points of the f  (x) function:

	
x

A

A B
�

� 	

Chapter 13 Generative Adversarial Networks

581

Therefore, it can be known that the extreme points of the fθ function

are also:

	
D

p x

p x p x
r

r g
� �

� �
� � � � � 	

That is to say, when the discriminator network Dθ is in the D
�� state,

the fθ function takes the maximum value, and the L(G, D) function also

takes the maximum value.

Now back to the problem of maximizing L(G, D), the maximum point

of L(G, D) is obtained at:

	
D

A

A B

p x

p x p x
r

r g

� �
�

�
� �

� � � � � 	

which is also the optimal state D∗ of Dθ.

13.5.2  �Generator State
Before deriving the second question, we first introduce another

distribution distance metric similar to KL divergence: JS divergence, which

is defined as a combination of KL divergence:

	
D p q p x log log

p x

q x
dxKL

x

� � � � � � �
� �� 	

	
D p q D p

p q
D q

p q
JS KL KL� � � ��

�
�

�
�
� �

��
�
�

�
�
�

1

2 2

1

2 2 	

JS divergence overcomes the asymmetry of KL divergence.

When D reaches the optimal state D∗, let us consider the JS divergence

of pr and pg at this time:

Chapter 13 Generative Adversarial Networks

582

	
D p p D p

p p
D p

p p
JS r g KL r

r g
KL g

r g� � � ��

�
�

�

�
� �

��

�
�

�

�
�

1

2 2

1

2 2 	

According to the definition of KL divergence:

	

D p p log log p x log log
p x

p p x
dxJS r g

x

r
r

r g

� � � � � � � �
� � �

�

�
��

�

�
���

1

2
2

	

	

� � � � � �
� � �

�

�
��

�

�
���

1

2
2log log p x log log

p x

p p x
dx

x

g
g

r g 	

Combining the constant terms, we can get:

	
D p p log log log logJS r g� � � �� �1

2
2 2 	

	

� � � � �
� � �

� � � � �
� � �� �

1

2 x

r
r

r g x

g
g

r g

p x log log
p x

p p x
dx p x log log

p x

p p x
ddx

�

�
��

�

�
�� 	

That is:

	
D p p log logJS r g� � � � �1

2
4 	

	

� � � � �
� � �

� � � � �
� � �� �

1

2 x

r
r

r g x

g
g

r g

p x log log
p x

p p x
dx p x log log

p x

p p x
ddx

�

�
��

�

�
�� 	

Consider when the network reaches D∗, the loss function at this time is:

	
L G D p x log log D x p x log log D x dx

x

r g, � � �� � � � � � �� � � � � � � �� �� 1
	

	
� � � � �

� � �
� � � � �

� � �� �
x

r
r

r g x

g
g

r g

p x log log
p x

p p x
dx p x log log

p x

p p x
dx

	

Chapter 13 Generative Adversarial Networks

583

Therefore, when the discriminator network reaches D∗, DJS(pr‖pg) and

L(G, D∗) satisfy the relationship:

	
D p p log log L G DJS r g� � � � � �� ��1

2
4 , 	

That is:

	
L G D D p p log logJS r g

, �� � � � � �2 2 2 	

For the generator network G, the training target is L(G, D) , considering

the nature of the JS divergence:

	
D p pJS r g� � � 0 	

Therefore, L(G, D∗) obtains the minimum value only when

DJS(pr‖pg) = 0 (at this time pg = pr), L(G, D∗) obtains the minimum value:

	
L G D log log� �� � � �, 2 2 	

At this time, the state of the generator network G∗ is:

	
p pg r= 	

That is, the learned distribution pg of G∗ is consistent with the real

distribution pr, and the network reaches a balance point. At this time:

	
D

p x

p x p x
r

r g

� �
� �

� � � � �
� 0 5.

	

Chapter 13 Generative Adversarial Networks

584

13.5.3  �Nash Equilibrium Point
Through the preceding derivation, we can conclude that the generation

network G will eventually converge to the true distribution, namely:pg = pr

At this time, the generated sample and the real sample come from the

same distribution, and it is difficult to distinguish between true and false.

The discriminator has the same probability to judge as true or false, that is:

	 D �� � � 0 5. 	

At this time, the loss function is

	
L G D log log� �� � � �, 2 2 	

13.6  �GAN Training Difficulty
Although the GAN network can learn the true distribution of data from the

theoretical level, the problem of difficulty in GAN network training often

arises in engineering implementation, which is mainly reflected in that

the GAN model is more sensitive to hyperparameters, and it is necessary

to carefully select the hyperparameters that can make the model work.

Hyperparameter settings are also prone to mode collapse.

13.6.1  �Hyperparameter Sensitivity
Hyperparameter sensitivity means that the network’s structure setting,

learning rate, initialization state and other hyper-parameters have a

greater impact on the training process of the network. A small amount

of hyperparameter adjustment may lead to completely different network

training results. Figure 13-15 (a) shows the generated samples obtained

from good training of the GAN model. The network in Figure 13-15 (b)

Chapter 13 Generative Adversarial Networks

585

does not use the batch normalization layer and other settings, resulting

in unstable GAN network training and failure to converge. The generated

samples are different from each other. The real sample gap is very large.

Figure 13-15.  Hyperparameter sensitive example [5]

In order to train the GAN network well, the author of the DCGAN

paper proposes not to use the pooling layer, not to use the fully connected

layer, to use the batch normalization layer more, and the activation

function in the generated network should use ReLU. The activation

function of the last layer should be Tanh, and the activation function of the

discriminator network should use a series of empirical training techniques

such as LeakyLeLU. However, these techniques can only avoid the

phenomenon of training instability to a certain extent and do not explain

from the theoretical level why there is training difficulty and how to solve

the problem of training instability.

13.6.2  �Model Collapse
Mode collapse refers to the phenomenon that the sample generated by

the model is single and the diversity is poor. Since the discriminator can

only identify whether a single sample is sampled from the true distribution

and does not impose explicit constraints on the sample diversity, the

generative model may tend to generate a small number of high-quality

samples in a partial interval of the true distribution, without learning

all the true distributions. The phenomenon of model collapse is more

common in GAN, as shown in Figure 13-16. During the training process, it

can be observed by visualizing the samples of the generator network that

Chapter 13 Generative Adversarial Networks

586

the types of pictures generated are very single, and the generator network

always tends to generate samples of a certain single style to fool the

discriminator.

Figure 13-16.  Image generation – model collapsed [10]

Another example of intuitive understanding of mode collapse

is shown in Figure 13-17. The first row is the training process of the

generator network without mode collapse, and the last column is the real

distribution, that is, the 2D Gaussian mixture model. The second row

shows the training process of generator network with model collapse. The

last column is the true distribution. It can be seen that the real distribution

is a mixture of eight Gaussian models. After model collapse occurs, the

generator network always tends to approach a narrow interval of the

real distribution, as shown in the first six columns of the second row in

Figure 13-17. The samples from this interval of can often be judged as real

samples with a higher probability in the discriminator, thus deceiving the

discriminator. But this phenomenon is not what we want to see. We hope

that the generator network can approximate the real distribution, rather

than a certain part of the real distribution.

Figure 13-17.  Schematic diagram of model collapse [10]

Chapter 13 Generative Adversarial Networks

587

So how to solve the problem of GAN training so that GAN can be

trained more stably like ordinary neural networks? The WGAN model

provides a solution.

13.7  �WGAN Principle
The WGAN algorithm analyzes the reasons for the instability of GAN

training from a theoretical level, and proposes an effective solution. So

what makes GAN training so unstable? WGAN proposed that the gradient

surface of the JS divergence on the non-overlapping distributions p and q

is always 0. As shown in Figure 13-18, when the distributions p and q do

not overlap, the gradient value of the JS divergence is always 0, which leads

to the gradient vanishing phenomenon; therefore, the parameters cannot

be updated for a long time, and the network cannot converge.

Figure 13-18.  Schematic diagram of distribution p and q

Next we will elaborate on the defects of JS divergence and how to solve

this defect.

Chapter 13 Generative Adversarial Networks

588

13.7.1  �JS Divergence Disadvantage
In order to avoid too much theoretical derivation, we use a simple

distribution example to explain the defects of JS divergence. Consider two

distributions p and q that are completely non-overlapping (θ ≠ 0), where

the distribution p is:

	 �� �� � � � �x y p x y U, ,, ,0 0 1 	

And the distribution of q is:

	 �� �� � � � �x y q x y U, ,, ,� 0 1 	

where θ ∈ R, when θ = 0, the distributions p and q overlap, and the two are

equal; when θ ≠ 0, the distributions p and q do not overlap.

Let us analyze the variation of the JS divergence between the preceding

distributions p and q with θ. According to the definition of KL divergence

and JS divergence, calculate the JS divergence DJS(p‖q) when θ = 0:

	
D p q log logKL

x y U

� � � � � ��
� � � �
�

0 0 1

1
1

0, , 	

	
D q p log logKL

x y U

� � � � � ��
� � � �
�

� , 0 1

1
1

0, 	

D p q log log log logJS
x y U x y U

� � � � � �
� � � � � � � �
� �1

2
1

1

1 2
1

1

0 0 1 0 0 1, ,/, , 11 2
2

/

�

�
��

�

�
�� � log log

When θ = 0, the two distributions completely overlap. At this time,

the JS divergence and KL divergence both achieve the minimum value,

which is 0:

	
D p q D q p D p qKL KL JS� � � � � � � � � 0 	

Chapter 13 Generative Adversarial Networks

589

From the preceding derivation, we can get the trend of DJS(p‖q) with θ:

	
D p q log logJS � � � � �{ 2 0 0 0� � 	

In other words, when the two distributions do not overlap at all,

regardless of the distance between the distributions, the JS divergence is a

constant value log log 2 , then the JS divergence will not be able to produce

effective gradient information. When the two distributions overlap, the JS

divergence changes smoothly and produces effective gradient information.

When the two distributions completely coincide, the JS divergence takes

the minimum value of 0. As shown in Figure 13-19, the red curve divides

the two normal distributions. Since the two distributions do not overlap,

the gradient value at the generated sample position is always 0, and the

parameters of the generator network cannot be updated, resulting in

difficulty in network training.

Figure 13-19.  Gradient vanishing of JS divergence [5]

Therefore, the JS divergence cannot smoothly measure the distance

between the distributions when the distributions p and q do not overlap.

As a result, effective gradient information cannot be generated at this

Chapter 13 Generative Adversarial Networks

590

position, and the GAN training is unstable. To solve this problem, we need

to use a better distribution distance measurement, so that it can smoothly

reflect the true distance change between the distributions even when the

distributions p and q do not overlap.

13.7.2  �EM Distance
The WGAN paper found that JS divergence leads to the instability of

GAN training and introduced a new distribution distance measurement

method: Wasserstein distance, also called earth mover’s distance

(EM distance), which represents the minimum cost of transforming a

distribution to another distribution. It’s defined as:

	
W p q E x yx y, ,� � � ��� ��� ��� 	

where ∏(p, q) is the set of all possible joint distributions combined by the

distributions p and q. For each possible joint distribution γ ∼ ∏ (p, q),

calculate the expectation distance E(x, y) ∼ γ[‖x − y‖] of ‖x − y‖, where (x, y)

is sampled from the joint distribution γ. Different joint distributions γ

have different expectations E(x, y) ∼ γ[‖x − y‖], and the infimum of these

expectations is defined as the Wasserstein distance of distributions p and

q, where inf{∙} represents the infimum of the set, for example, the infimum

of {x| 1 < x < 3, x ∈ R} is 1.

Continuing to consider the example in Figure 13-18, we directly give

the expression of the EM distance between the distributions p and q:

	 W p q,� � � � 	

Draw the curves of JS divergence and EM distance, as shown in

Figure 13-20. It can be seen that the JS divergence is not continuous at

θ = 0, the other position derivatives are all 0, and the EM distance can

always produce effective derivative information. Therefore, EM distance is

more suitable for guiding the training of GAN network than JS divergence.

Chapter 13 Generative Adversarial Networks

591

Figure 13-20.  JS divergence and EM distance change curve with
θ WGAN-GP

Considering that it is almost impossible to traverse all the joint

distributions γ to calculate the distance expectation E(x, y) ∼ γ[‖x − y‖]

of ‖x − y‖, so it’s not realistic to calculate the distance between the

distribution pg of the generator network and W(pr, pg). Based on the

Kantorovich-Rubinstein duality, the WGAN author converts the direct

calculation of W(pr, pg) into:

	
W p p

K
E f x E f xr g x p x pr g

,� � � � ��� �� � � ��� ��� �
1

	

where sup{∙} represents the supremum of the set, ‖f‖L ≤ K represents the

function f : R → R which satisfies the K-order Lipschitz continuity, that is,

	
f x f x K x x1 2 1 2� � � � � � � � 	

Therefore, we use the discriminant network Dθ(x) to parameterize

the f  (x) function, under the condition that Dθ satisfies the 1-Lipschitz

constraint, that is, K = 1, at this time:

	
W p p E D x E D xr g x p x pr g

,� � � � ��� �� � � ��� ��� �� � 	

Chapter 13 Generative Adversarial Networks

592

Therefore, the problem of solving W(pr, pg) can be transformed into:

	
E D x E D xx p x pr g� �� ��� �� � � ��� ��� � 	

This is the optimization goal of the discriminator D. The discriminant

network function Dθ(x) needs to satisfy the 1-Lipschitz constraint:

	
� � � �ˆ

ˆ
xD x I 	

In the WGAN-GP paper, the author proposes to increase the gradient

penalty method to force the discriminator network to meet the first-order-

Lipschitz function constraint, and the author found that the engineering

effect is better when the gradient value is constrained around 1, so the

gradient penalty term is defined as:

	
GP E D xx P xx
 ˆ ˆˆ

ˆ
� � � � �� ��

��
�
��2

2

1
	

Therefore, the training objective of WGAN discriminator D is:

where x̂ comes from the linear difference between xr and xf:

	
ˆ ,x tx t x tr f� � �� � �� �1 0 1, 	

The goal of the discriminator D is to minimize the above-mentioned

error L(G, D), that is, to force the EM distance E D x E D xx p r x p fr r f g� �� ��� �� � � ��� ��

as large as possible, and � � �ˆ
ˆ

xD x
2

 close to 1.

The training objectives of WGAN generator G are:

	 	

Chapter 13 Generative Adversarial Networks

593

That is, the EM distance between the generator’s distribution pg

and the real distribution pr is as small as possible. Considering that

E D xx p rr r� � ��� �� has nothing to do with the generator, the training objective

of the generator is abbreviated as:

	
min

�
L G D E D xx p ff g

,� � � � � ��� ��� 	

	
� � � �� ��� ���� �E D G zz pz~ 	

From the implementation point of view, the output of the

discriminator network D does not need to add a Sigmoid activation

function. This is because the original version of the discriminator is a

binary classification network, the Sigmoid function is added to obtain

the probability of belonging to a certain category; while the discriminator

in WGAN is used to measure the EM distance between the distribution

pg of the generator network and the real distribution pr. It belongs to

the real number space, so there is no need to add a Sigmoid activation

function. When calculating the error function, WGAN also does not have

a log function. When training WGAN, WGAN authors recommend using

RMSProp or SGD and other optimizers without momentum.

WGAN discovered the reason why the original GAN is prone to training

instability from the theoretical level and gave a new distance metric and

engineering implementation solution, which achieved good results.

WGAN also alleviates the problem of model collapse to a certain extent,

and the model using WGAN is not prone to model collapse. It should be

noted that WGAN generally does not improve the generation effect of

the model but only ensures the stability of model training. Of course, the

training stability is also a prerequisite for good model performance. As

shown in Figure 13-21, the original version of DCGAN showed unstable

training when the BN layer and other settings were not used. Under the

same settings, using WGAN to train the discriminator can avoid this

phenomenon, as shown in Figure 13-22.

Chapter 13 Generative Adversarial Networks

594

Figure 13-21.  DCGAN generator effect without BN layer [5]

Figure 13-22.  WGAN generator effect without BN layer [5]

Chapter 13 Generative Adversarial Networks

595

13.8  �Hands-On WGAN-GP
The WGAN-GP model can be modified slightly on the basis of the original

GAN implementation. The output of the discriminator D of the WGAN-GP

model is no longer the probability of the sample category, and the output

does not need to add the Sigmoid activation function. At the same time, we

need to add a gradient penalty term as follows:

def gradient_penalty(discriminator, batch_x, fake_image):

 # Gradient penalty term calculation function

 batchsz = batch_x.shape[0]

 # Each sample is randomly sampled at t for interpolation

 t = tf.random.uniform([batchsz, 1, 1, 1])

 �# Automatically expand to the shape of x, [b, 1, 1, 1] =>

[b, h, w, c]

 t = tf.broadcast_to(t, batch_x.shape)

 �# Perform linear interpolation between true and false

pictures

 interplate = t * batch_x + (1 - t) * fake_image

 �# Calculate the gradient of D to interpolated samples in a

gradient environment

 with tf.GradientTape() as tape:

 �tape.watch([interplate]) # Add to the gradient

watch list

 d_interplote_logits = discriminator(interplate)

 grads = tape.gradient(d_interplote_logits, interplate)

 �# Calculate the norm of the gradient of each sample:[b, h,

w, c] => [b, -1]

 grads = tf.reshape(grads, [grads.shape[0], -1])

 gp = tf.norm(grads, axis=1) #[b]

Chapter 13 Generative Adversarial Networks

596

 # Calculate the gradient penalty

 gp = tf.reduce_mean((gp-1.)**2)

 return gp

The loss function calculation of WGAN discriminator is different

from GAN. WGAN directly maximizes the output value of real samples

and minimizes the output value of generated samples. There is no cross-

entropy calculation process. The code is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

 # Calculate loss function for D

 �fake_image = generator(batch_z, is_training) #

Generated sample

 �d_fake_logits = discriminator(fake_image, is_training)

Output of generated sample

 �d_real_logits = discriminator(batch_x, is_training)

Output of real sample

 # Calculate gradient penalty term

 gp = gradient_penalty(discriminator, batch_x, fake_image)

 �# �WGAN-GP loss function of D. Here is not to calculate the

cross entropy, but to directly maximize the output of the

positive sample

 �# �Minimize the output of false samples and the gradient

penalty term

 �loss = tf.reduce_mean(d_fake_logits) - tf.reduce_mean

(d_real_logits) + 10. * gp

 return loss, gp

The loss function of the WGAN generator G only needs to maximize

the output value of the generated sample in the discriminator D, and there

is also no cross-entropy calculation step. The code is implemented as

follows:

Chapter 13 Generative Adversarial Networks

597

def g_loss_fn(generator, discriminator, batch_z, is_training):

 # Generator loss function

 fake_image = generator(batch_z, is_training)

 d_fake_logits = discriminator(fake_image, is_training)

 �# WGAN-GP G loss function. Maximize the output value of

false samples

 loss = - tf.reduce_mean(d_fake_logits)

 return loss

Comparing with the original GAN, the main training logic of WGAN is

basically the same. The role of the discriminator D for WGAN is a measure

of EM distance. Therefore, the more accurate the discriminator is, the

more beneficial it is to the generator. The discriminator D can be trained

multiple times for a step, and the generator G can be trained once to obtain

a more accurate EM distance estimation.

13.9  �References

	 [1].	 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio,

“Generative Adversarial Nets,” Advances in Neural

Information Processing Systems 27, Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence and

K. Q. Weinberger, Curran Associates, Inc., 2014,

pp. 2672-2680.

	 [2].	 A. Radford, L. Metz and S. Chintala, Unsupervised

Representation Learning with Deep Convolutional

Generative Adversarial Networks, 2015.

Chapter 13 Generative Adversarial Networks

598

	 [3].	 X. Chen, Y. Duan, R. Houthooft, J. Schulman,

I. Sutskever and P. Abbeel, “InfoGAN: Interpretable

Representation Learning by Information

Maximizing Generative Adversarial Nets,”Advances

in Neural Information Processing Systems 29,

D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon

and R. Garnett, Curran Associates, Inc., 2016,

pp. 2172-2180.

	 [4].	 J.-Y. Zhu, T. Park, P. Isola and A. A. Efros, “Unpaired

Image-to-Image Translation using Cycle-Consistent

Adversarial Networks,”Computer Vision (ICCV),

2017 IEEE International Conference on, 2017.

	 [5].	 M. Arjovsky, S. Chintala and L. Bottou, “Wasserstein

Generative Adversarial Networks,” Proceedings

of the 34th International Conference on Machine

Learning, International Convention Centre, Sydney,

Australia, 2017.

	 [6].	 I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin

and A. C. Courville, “Improved Training of

Wasserstein GANs,”Advances in Neural Information

Processing Systems 30, I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan

and R. Garnett, Curran Associates, Inc., 2017,

pp. 5767-5777.

	 [7].	 M. Lucic, K. Kurach, M. Michalski, O. Bousquet

and S. Gelly, “Are GANs Created Equal? A Large-

scale Study,” Proceedings of the 32Nd International

Conference on Neural Information Processing

Systems, USA, 2018.

Chapter 13 Generative Adversarial Networks

599

	 [8].	 H. Zhang, I. Goodfellow, D. Metaxas and A. Odena,

“Self-Attention Generative Adversarial Networks,”

Proceedings of the 36th International Conference

on Machine Learning, Long Beach, California,

USA, 2019.

	 [9].	 A. Brock, J. Donahue and K. Simonyan, “Large

Scale GAN Training for High Fidelity Natural Image

Synthesis,” International Conference on Learning

Representations, 2019.

	[10].	 L. Metz, B. Poole, D. Pfau and J. Sohl-Dickstein,

“Unrolled Generative Adversarial Networks,” CoRR,

abs/1611.02163, 2016.

Chapter 13 Generative Adversarial Networks

	Chapter 13: Generative Adversarial Networks
	13.1 Examples of Game Learning
	13.2 GAN Principle
	13.2.1 Network Structure
	13.2.2 Network Training
	13.2.3 Unified Objective Function

	13.3 Hands-On DCGAN
	13.3.1 Cartoon Avatar Dataset
	13.3.2 Generator
	13.3.3 Discriminator
	13.3.4 Training and Visualization

	13.4 GAN Variants
	13.4.1 DCGAN
	13.4.2 InfoGAN
	13.4.3 CycleGAN
	13.4.4 WGAN
	13.4.5 Equal GAN
	13.4.6 Self-Attention GAN
	13.4.7 BigGAN

	13.5 Nash Equilibrium
	13.5.1 Discriminator State
	13.5.2 Generator State
	13.5.3 Nash Equilibrium Point

	13.6 GAN Training Difficulty
	13.6.1 Hyperparameter Sensitivity
	13.6.2 Model Collapse

	13.7 WGAN Principle
	13.7.1 JS Divergence Disadvantage
	13.7.2 EM Distance

	13.8 Hands-On WGAN-GP
	13.9 References

