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CHAPTER 13

Generative 
Adversarial Networks

What I cannot create, I have not yet fully understood.

—Richard Feynman

Before the invention of the generative adversarial network (GAN), the 

variational autoencoder was considered to be theoretically complete and 

simple to implement. It is very stable when trained using neural networks, 

and the resulting images are more approximate, but the human eyes can 

still easily distinguish real pictures and machine-generated pictures.

In 2014, Ian Goodfellow, a student of Yoshua Bengio (the winner of 

the Turing Award in 2018) at the Université de Montréal, proposed the 

GAN [1], which opened up one of the hottest research directions in deep 

learning. From 2014 to 2019, GAN research has been steadily advancing, 

and research successes have been reported frequently. The effect of 

the latest GAN algorithm on image generation has reached a level that 

is difficult to distinguish with the naked eyes, which is really exciting. 

Due to the invention of GAN, Ian Goodfellow was awarded the title of 

Father of GAN, and was granted the 35 Innovators Under 35 award by 

the Massachusetts Institute of Technology Review in 2017. Figure 13-1 
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shows that from 2014 to 2018, the GAN model achieved the effect of book 

generation. It can be seen that both the size of the picture and the fidelity 

of the picture have been greatly improved. 1

Figure 13-1.  GAN generated image effect from 2014 to 2018

Next, we will start from the example of game learning in life, step 

by step, to introduce the design ideas and model structure of the GAN 

algorithm.

13.1  �Examples of Game Learning
We use the growth trajectory of a cartoonist to vividly introduce the idea 

of GAN. Consider a pair of twin brothers, called G and D. G learns how 

to draw cartoons, and D learns how to appreciate paintings. The two 

brothers at young ages only learned how to use brushes and papers. G 

drew an unknown painting, as shown in Figure 13-2(a). At this time, D’s 

discriminating ability is not high, so D thinks G’s work is OK, but the main 

character is not clear enough. Under D’s guidance and encouragement, G 

began to learn how to draw the outline of the subject and use simple color 

combinations.

1 Image source: https://twitter.com/goodfellow_ian/status/ 
1084973596236144640?lang=en
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A year later, G improved the basic skills of painting, and D also initially 

mastered the ability to identify works by analyzing masterpieces and the 

works of G. At this time, D feels that G’s work has the main character, as 

shown in Figure 13-2(b), but the use of color is not mature enough. A few 

years later, G’s basic painting skills have been very solid, and he can easily 

draw paintings with bright subjects, appropriate color matching, and high 

fidelity, as shown in Figure 13-2(c), but D also observes the differences 

between G and other masterpieces, and improved the ability to distinguish 

paintings. At this time, D felt that G’s painting skills have matured, but his 

observation of life is not enough. G’s work does not convey the expression 

and some details are not perfect. After a few more years, G’s painting 

skills have reached the point of perfection. The details of the paintings 

are perfect, the styles are very different and vivid, just like a master level, 

as shown in Figure 13-2(d). Even at this time, D’s discrimination skills 

are quite excellent. It is also difficult for D to distinguish G from other 

masterpieces.

The growth process of the above-mentioned painters is actually a 

common learning process in life, through the game of learning between 

the two sides and mutual improvement, and finally reaches a balance 

point. The GAN network draws on the idea of game learning and sets up 

two sub-networks: a generator G responsible for generating samples and a 

discriminator D responsible for authenticating. The discriminator D learns 

how to distinguish between true and false by observing the difference 

between the real sample and the sample produced by the generator G, 

where the real sample is true and the sample produced by the generator 

G is false. The generator G is also learning. It hopes that the generated 

samples can be recognized by the discriminator D as true. Therefore, the 

generator G tries to make the samples it generates be considered as true by 

discriminant D. The generator G and the discriminator D play a game with 

each other and improve together until they reach an equilibrium point. 

At this time, the samples generated by the generator G are very realistic, 

making the discriminator D difficult to distinguish between true and false.
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In the original GAN paper, Ian Goodfellow used another vivid 

metaphor to introduce the GAN model: The function of the generator 

network G is to generate a series of very realistic counterfeit banknotes 

to try to deceive the discriminator D, and the discriminator D learns 

the difference between the real money and the counterfeit banknotes 

generated by generator G to master the banknote identification method. 

These two networks are synchronized in the process of mutual games, 

until the counterfeit banknotes produced by the generator G are very real, 

and even the discriminator D can barely distinguish.

This idea of game learning makes the network structure and training 

process of GAN slightly different from the previous network model. Let’s 

introduce the network structure and algorithm principle of GAN in detail 

in the following.

13.2  �GAN Principle
Now we will formally introduce the network structure and training 

methods of GAN.

13.2.1  �Network Structure
GAN contains two sub-networks: the generator network (referred to 

as G) and the discriminator network (referred to as D). The generator 

network G is responsible for learning the true distribution of samples, and 

Figure 13-2.  Sketch of the painter's growth trajectory
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the discriminator network D is responsible for distinguish the samples 

generated by the generator network from the real samples.

Generator G(z) The generator network G is similar to the function of 

decoder of the autoencoder. The hidden variables z~pz(∙) are sampled from 

the prior distribution pz(∙). The generated sample x~pg(x| z) is obtained 

by the parameterized distribution pg(x| z) of the generator network G, as 

shown in Figure 13-3. The prior distribution pz(∙) of the hidden variable z 

can be assumed to be a known distribution, such as a multivariate uniform 

distribution z~Uniform(−1, 1).

Figure 13-3.  Generator G

pg(x| z) can be parameterized by a deep neural network. As shown in 

Figure 13-4, the hidden variable z is sampled from the uniform distribution 

pz(∙), and then sample xf is obtained from the pg(x| z) distribution. From 

the perspective of input and output, the function of the generator G is 

to convert the hidden vector z into a sample vector xf through a neural 

network, and the subscript f represents fake samples.

Figure 13-4.  Generator network composed of transposed convolution
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Discriminator D(x) The function of the discriminator network is 

similar to that of the ordinary binary classification network. It accepts a 

dataset of input sample x, including samples xr~pr(∙) sampled from the 

real data distribution pr(∙), and also includes fake samples sampled from 

the generator network xf~pg(x| z). xr and xf together form the training data 

set of the discriminator network. The output of the discriminator network 

is the probability of x belonging to the real sample P(x is real | x). We label 

all the real samples xr as true (1), and all the samples xf generated by the 

generator network are labeled as false (0). The error between the predicted 

value of the discriminator network D and the label is used to optimize the 

discriminator network parameters as shown in Figure 13-5.

Figure 13-5.  Generator network and discriminator network
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13.2.2  �Network Training
The idea of GAN game learning is reflected in its training method. Since 

the optimization goals of generator G and discriminator D are different, 

they cannot be the same as the previous network model training, and only 

one loss function is used. Let us introduce how to train the generator G 

and the discriminator D respectively.

For the discriminator network D, its goal is to be able to distinguish 

the real sample xr from the fake sample xf. Taking picture generation as an 

example, its goal is to minimize the cross-entropy loss function between 

the predicted value and the true value of the picture:

	
L CE D x y D x yr r f f� � � � �� �� �, , , 	

where Dθ(xr) represents the output of the real sample xr in the discriminant 

network Dθ, θ is the parameter set of the discriminator network, Dθ(xf) is 

the output of the generated sample xf in the discriminator network, and y is 

the label of xr. Because the real sample is labeled as true, So yr = 1. yf is the 

label of xf of the generated sample. Since the generated sample is labeled 

as false, yf = 0. The CE function represents the cross-entropy loss function 

CrossEntropy. The cross-entropy loss function of the two classification 

problem is defined as:
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Convert L to−L , and write it in the expectation form:

	
� � �

�
�� � �� �� � � � � � �� �E D x E D xx p r x p fr r f g~ ~log log 1 	

For the generator network G(z), we hope that xf = G(z) can deceive 

the discriminator network D well, and the output of the fake sample xf 

is as close to the real label as possible. That is to say, when training the 

generator network, it is hoped that the output D(G(z)) of the discriminator 

network is as close to 1 as possible, and the cross-entropy loss function 

between D(G(z)) and 1 is minimized:

	
L CE D G z D G z� � �� �� � � � � �� �� �,1 log 	

Convert L to −L , and write it in the expectation form:

	
� �

�
�� �� � �� �E logD G zz pz~ 	

It can be equivalently transformed into:

	
� �

�
�� �� � � � �� ��� ��L E D G zz pz~ log 1 	

where ϕ is the parameter set of the generator network G, and the gradient 

descent algorithm can be used to optimize the parameters ϕ.

13.2.3  �Unified Objective Function
We can merge the objective functions of the generator and discriminator 

networks and write it in the form of a min-max game:

	
minmax ~ ~� � � �L D G E D x E D xx p r x p fr r f g

,� � � � � � � � �� ��� � �� �log log 1 	

	
� � �� � � �� �� ��� � �� �E D x E D G zx p z pr z~ ~log log� � �1 	 (13-1)
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The algorithm is as follows:

Algorithm 1:GAN training algorithm

Randomly initialize parameters θ and ϕ
repeat
  for k times do
    Randomly sample hidden vectors z~pz(∙)
    Randomly sample of real samples xr~pr(∙)
    Update the D network according to the gradient descent algorithm:

� ��� �� ��E logD x +E log D xx ~p r x ~p fr r f g��� � �� �� � � �� �1

  Randomly sample hidden vectors z~pz(∙)
  Update the G network according to the gradient descent algorithm:

� ��� �� ��E log D G zz~pz �� � � �� �� �1

  end for
until the number of training rounds meets the requirements

output:Trained generator Gϕ

13.3  �Hands-On DCGAN
In this section, we will complete the actual generation of cartoon 

avatar images. Refer to the network structure of DCGAN [2], where the 

discriminator D is implemented by a common convolutional layer, and the 

generator G is implemented by a transposed convolutional layer, as shown 

in Figure 13-6.
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Figure 13-6.  DCGAN Network structure

13.3.1  �Cartoon Avatar Dataset
Here we use a dataset of cartoon avatars, a total of 51,223 pictures, without 

annotation information. The main body of the pictures have been cropped, 

aligned, and uniformly scaled to a size of 96 × 96. Some samples are shown 

in Figure 13-7.

Figure 13-7.  Cartoon avatar dataset

For customized datasets, you need to complete the data loading and 

preprocessing work by yourself. We focus here on the GAN algorithm itself. 

The subsequent chapter on customized datasets will introduce in detail 

how to load your own datasets. Here the processed dataset is obtained 

directly through the pre-written make_anime_dataset function.
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    �# Dataset path. URL: https://drive.google.com/file/

d/1lRPATrjePnX_n8laDNmPkKCtkf8j_dMD/view?usp=sharing

    �img_path = glob.glob(r'C:\Users\z390\Downloads\

faces\*.jpg')

    # Create dataset object, return Dataset class and size

    �dataset, img_shape, _ = make_anime_dataset(img_path, batch_

size, resize=64)

The dataset object is an instance of the tf.data.Dataset class. 

Operations such as random dispersal, preprocessing, and batching have 

been completed, and sample batches can be obtained directly, and img_

shape is the preprocessed image size.

13.3.2  �Generator
The generator network G is formed by stacking five transposed 

convolutional layers in order to realize the layer-by-layer enlargement of 

the height and width of the feature map and the layer-by-layer reduction 

of the number of feature map channels. First, the hidden vector z with 

a length of 100 is adjusted to a four-dimensional tensor of [b, 1, 1, 100] 

through the reshape operation, and the convolutional layer is transposed 

in order to enlarge the height and width dimensions, reduce the number of 

channels, and finally get the color picture with a width of 64 and a channel 

number of 3. A BN layer is inserted between each convolutional layer to 

improve training stability, and the convolutional layer chooses not to use a 

bias vector. The generator class code is implemented as follows:

class Generator(keras.Model):

    # Generator class

    def __init__(self):

        super(Generator, self).__init__()

        filter = 64
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        �# Transposed convolutional layer 1, output channel 

is filter*8, kernel is 4, stride is 1, no padding, 

no bias.

        �self.conv1 = layers.Conv2DTranspose(filter*8, 4,1, 

'valid', use_bias=False)

        self.bn1 = layers.BatchNormalization()

        # Transposed convolutional layer 2

        �self.conv2 = layers.Conv2DTranspose(filter*4, 4,2, 

'same', use_bias=False)

        self.bn2 = layers.BatchNormalization()

        # Transposed convolutional layer 3

        �self.conv3 = layers.Conv2DTranspose(filter*2, 4,2, 

'same', use_bias=False)

        self.bn3 = layers.BatchNormalization()

        # Transposed convolutional layer 4

        �self.conv4 = layers.Conv2DTranspose(filter*1, 4,2, 

'same', use_bias=False)

        self.bn4 = layers.BatchNormalization()

        # Transposed convolutional layer 5

        �self.conv5 = layers.Conv2DTranspose(3, 4,2, 'same', 

use_bias=False)

The forward propagation of generator network G is implemented 

as follow:

    def call(self, inputs, training=None):

        x = inputs # [z, 100]

        # Reshape to 4D tensor:(b, 1, 1, 100)

        x = tf.reshape(x, (x.shape[0], 1, 1, x.shape[1]))

        x = tf.nn.relu(x) # activation function

        �# Transposed convolutional layer-BN-activation 

function:(b, 4, 4, 512)
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        �x = tf.nn.relu(self.bn1(self.conv1(x), 

training=training))

        �# Transposed convolutional layer-BN-activation 

function:(b, 8, 8, 256)

        �x = tf.nn.relu(self.bn2(self.conv2(x), 

training=training))

        �# Transposed convolutional layer-BN-activation 

function:(b, 16, 16, 128)

        �x = tf.nn.relu(self.bn3(self.conv3(x), 

training=training))

        �# Transposed convolutional layer-BN-activation 

function:(b, 32, 32, 64)

        �x = tf.nn.relu(self.bn4(self.conv4(x), 

training=training))

        �# Transposed convolutional layer-BN-activation 

function:(b, 64, 64, 3)

        x = self.conv5(x)

        x = tf.tanh(x) # output x range -1~1

        return x

The output size of the generated network is [b, 64,64,3], and the value 

range is −1~1.

13.3.3  �Discriminator
The discriminator network D is the same as the ordinary classification 

network. It accepts image tensors of size [b,64,64,3] and continuously 

extracts features through five convolutional layers. The final output size 

of the convolutional layer is [b ,2,2,1024], and then convert the feature 

size to [b,1024] through the pooling layer GlobalAveragePooling2D, and 

finally obtain the probability of the binary classification task through a 
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fully connected layer. The code for the discriminator network class D is 

implemented as follows:

class Discriminator(keras.Model):

    # Discriminator class

    def __init__(self):

        super(Discriminator, self).__init__()

        filter = 64

        # Convolutional layer 1

        �self.conv1 = layers.Conv2D(filter, 4, 2, 'valid', use_

bias=False)

        self.bn1 = layers.BatchNormalization()

        # Convolutional layer 2

        �self.conv2 = layers.Conv2D(filter*2, 4, 2, 'valid', 

use_bias=False)

        self.bn2 = layers.BatchNormalization()

        # Convolutional layer 3

        �self.conv3 = layers.Conv2D(filter*4, 4, 2, 'valid', 

use_bias=False)

        self.bn3 = layers.BatchNormalization()

        # Convolutional layer 4

        �self.conv4 = layers.Conv2D(filter*8, 3, 1, 'valid', 

use_bias=False)

        self.bn4 = layers.BatchNormalization()

        # Convolutional layer 5

        �self.conv5 = layers.Conv2D(filter*16, 3, 1, 'valid', 

use_bias=False)

        self.bn5 = layers.BatchNormalization()

        # Global pooling layer

        self.pool = layers.GlobalAveragePooling2D()

        # Flatten feature layer

        self.flatten = layers.Flatten()
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        # Binary classification layer

        self.fc = layers.Dense(1)

The forward calculation process of the discriminator D is implemented 

as follows:

    def call(self, inputs, training=None):

        �# Convolutional layer-BN-activation function: 

(4, 31, 31, 64)

        �x = tf.nn.leaky_relu(self.bn1(self.conv1(inputs), 

training=training))

        �# Convolutional layer-BN-activation function: 

(4, 14, 14, 128)

        �x = tf.nn.leaky_relu(self.bn2(self.conv2(x), 

training=training))

        �# Convolutional layer-BN-activation function: 

(4, 6, 6, 256)

        �x = tf.nn.leaky_relu(self.bn3(self.conv3(x), 

training=training))

        �# Convolutional layer-BN-activation function: 

(4, 4, 4, 512)

        �x = tf.nn.leaky_relu(self.bn4(self.conv4(x), 

training=training))

        �# Convolutional layer-BN-activation function: 

(4, 2, 2, 1024)

        �x = tf.nn.leaky_relu(self.bn5(self.conv5(x), 

training=training))

        # Convolutional layer-BN-activation function:(4, 1024)

        x = self.pool(x)

        # Flatten
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        x = self.flatten(x)

        # Output, [b, 1024] => [b, 1]

        logits = self.fc(x)

        return logits

The output size of the discriminator is [b,1]. The Sigmoid activation 

function is not used inside the class, and the probability that b samples 

belong to the real samples can be obtained through the Sigmoid activation 

function.

13.3.4  �Training and Visualization
Discriminator According to formula (13-1), the goal of the discriminator 

network is to maximize the function L(D, G), so that the probability of 

true sample prediction is close to 1, and the probability of generated 

sample prediction is close to 0. We implement the error function of the 

discriminator in the d_loss_fn function, label all real samples as 1, and 

label all generated samples as 0, and maximize the function L(D,G) by 

minimizing the corresponding cross-entropy loss function. The d_loss_fn 

function is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

    # Loss function for discriminator

    # Generate images from generator

    fake_image = generator(batch_z, is_training)

    # Distinguish images

    d_fake_logits = discriminator(fake_image, is_training)

    # Determine whether the image is real or not

    d_real_logits = discriminator(batch_x, is_training)

    # The error between real image and 1

    d_loss_real = celoss_ones(d_real_logits)
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    # The error between generated image and 0

    d_loss_fake = celoss_zeros(d_fake_logits)

    # Combine loss

    loss = d_loss_fake + d_loss_real

    return loss

The celoss_ones function calculates the cross-entropy loss between the 

current predicted probability and label 1. The code is as follows:

def celoss_ones(logits):

    # Calculate the cross entropy belonging to and label 1

    y = tf.ones_like(logits)

    �loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

    return tf.reduce_mean(loss)

The celoss_zeros function calculates the cross entropy loss 

between the current predicted probability and label 0. The code 

is as follows:

def celoss_zeros(logits):

    �# Calculate the cross entropy that belongs to and the 

note is 0

    y = tf.zeros_like(logits)

    �loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

     return tf.reduce_mean(loss)

Generator The training goal of generator network is to minimize 

the L(D, G) objective function. Since the real sample has nothing 

to do with the generator, the error function only needs to minimize 

E D G zz pz~ �� � � � �� �� �log 1 � � . The cross-entropy error at this time can be 

minimized by marking the generated sample as 1. It should be noted 

that in the process of back propagating errors, the discriminator also 
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participates in the construction of the calculation graph, but at this stage 

only the generator network parameters need to be updated. The error 

function of the generator is as follows:

def g_loss_fn(generator, discriminator, batch_z, is_training):

    # Generate images

    fake_image = generator(batch_z, is_training)

    �#  When training the generator network, it is necessary to 

force the generated image to be judged as true

    d_fake_logits = discriminator(fake_image, is_training)

    # Calculate error between generated images and 1

    loss = celoss_ones(d_fake_logits)

    return loss

Network training In each Epoch, first randomly sample the hidden 

vector from the prior distribution pz(∙), randomly sample the real 

pictures from the true data set, calculate the loss of the discriminator 

network through the generator and the discriminator, and optimize 

the discriminator network parameters θ. When training the generator, 

the discriminator is needed to calculate the error, but only the gradient 

information of the generator is calculated and ϕ is updated. Here set 

the discriminator training times k = 5, and set the generator training 

time as one.

First, create the generator network and the discriminator network, and 

create the corresponding optimizers, respectively, as in the following:

    generator = Generator() #  Create generator

    generator.build(input_shape = (4, z_dim))

    discriminator = Discriminator() #  Create discriminator

    discriminator.build(input_shape=(4, 64, 64, 3))

    �# Create optimizers for generator and discriminator 

respectively
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    �g_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

    �d_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

The main training part of the code is implemented as follows:

    for epoch in range(epochs): #  Train epochs times

        # 1. Train discriminator

        for _ in range(5):

            # Sample hidden vectors

            batch_z = tf.random.normal([batch_size, z_dim])

            batch_x = next(db_iter) # Sample real images

            # Forward calculation - discriminator

            with tf.GradientTape() as tape:

                �d_loss = d_loss_fn(generator, discriminator, 

batch_z, batch_x, is_training)

            �grads = tape.gradient(d_loss, discriminator.

trainable_variables)

            �d_optimizer.apply_gradients(zip(grads, 

discriminator.trainable_variables))

        # 2. Train generator

        # Sample hidden vectors

        batch_z = tf.random.normal([batch_size, z_dim])

        batch_x = next(db_iter) # Sample real images

        # Forward calculation - generator

        with tf.GradientTape() as tape:

            �g_loss = g_loss_fn(generator, discriminator, 

batch_z, is_training)

        �grads = tape.gradient(g_loss, generator.trainable_

variables)

        �g_optimizer.apply_gradients(zip(grads, generator.

trainable_variables))
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Every 100 Epochs, a picture generation test is performed. The hidden 

vector is randomly sampled from the prior distribution, sent to the 

generator to obtain the generated picture which is saved as a file.

As shown in Figure 13-8, it shows a sample of generated pictures saved 

by the DCGAN model during the training process. It can be observed that 

most of the pictures have clear subjects, vivid colors, rich picture diversity, 

and the generated pictures are close to the real pictures in the data 

set. At the same time, it can be found that a small amount of generated 

pictures are still damaged, and the main body of the pictures cannot be 

recognized by human eyes. To obtain the image generation effect shown in 

Figure 13-8, it is necessary to carefully design the network model structure 

and fine-tune the network hyperparameters.

Figure 13-8.  DCGAN image generation effect
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13.4  �GAN Variants
In the original GAN paper, Ian Goodfellow analyzed the convergence of 

the GAN network from a theoretical level and tested the effect of image 

generation on multiple classic image data sets, as shown in Figure 13-9, 

where Figure 13-9 (a) is the MNIST dataset, Figure 13-9 (b) is the Toronto 

Face dataset, and Figure 13-9 (c) and Figure 13-9 (d) are the CIFAR10 

dataset.

Figure 13-9.  Original GAN image generation effect [1]

It can be seen that the original GAN model is not outstanding in terms 

of image generation effect, and the difference from VAE is not obvious. At 

this time, it does not show its powerful distribution approximation ability. 

However, because GAN is relatively new in theory, there are many areas 

for improvement, which greatly stimulated the research interest of the 

academic community. In the next few years, GAN research is in full swing, 

and substantial progress has also been made. Next we will introduce 

several significant GAN variants.
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13.4.1  �DCGAN
The initial GAN network is mainly based on the fully connected layer 

to realize the generator G and the discriminator D. Due to the high 

dimensionality of the picture and the huge amount of network parameters, 

the training effect is not excellent. DCGAN [2] proposed a generator 

network implemented using transposed convolutional layers, and a 

discriminator network implemented by ordinary convolutional layers, 

which greatly reduces the amount of network parameters and greatly 

improves the effect of image generation, showing that the GAN model has 

the potential of outperforming the VAE model in image generation. In 

addition, the author of DCGAN also proposed a series of empirical GAN 

network training techniques, which were proved to be beneficial to the 

stable training of the GAN network. We have used the DCGAN model to 

complete the actual picture generation of the animation avatars.

13.4.2  �InfoGAN
InfoGAN [3] tried to use an unsupervised way to learn the interpretable 

representation of the interpretable hidden vector z of the input x, that 

is, it is hoped that the hidden vector z can correspond to the semantic 

features of the data. For example, for MNIST handwritten digital pictures, 

we can consider the category, font size, and writing style of the digits to 

be hidden variables of the picture. We hope that the model can learn 

these disentangled interpretable feature representation methods, so that 

the hidden variables can be controlled artificially to generate a sample 

of the specified content. For the CelebA celebrity photo dataset, it is 

hoped that the model can separate features such as hairstyles, glasses 

wearing conditions, and facial expressions, to generate face images of 

specified shapes.
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What are the benefits of disentangled interpretable features? It can 

make the neural network more interpretable. For example, z contains 

some separate interpretable features, then we can obtain generated data 

with different semantics by only changing the features at this position. 

As shown in Figure 13-10, subtracting the hidden vectors of “men with 

glasses” and “men without glasses” and adding them to the hidden vectors 

of “women without glasses” can generate a picture of “women with 

glasses”.

Figure 13-10.  Schematic diagram of separated features [3]

13.4.3  �CycleGAN
CycleGAN [4] is an unsupervised algorithm for image style conversion 

proposed by Zhu Junyan. Because the algorithm is clear and simple, and 

the results are better, this work has received a lot of praise. The basic 

assumption of CycleGAN is that if you switch from picture A to picture 

B, and then from picture B to A’, then A’ should be the same picture 

as A. Therefore, in addition to setting up the standard GAN loss item, 

CycleGAN also adds cycle consistency loss to ensure that A’ is as close 

to A as possible. The conversion effect of CycleGAN pictures is shown in 

Figure 13-11.
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Figure 13-11.  Image conversion effect [4]

13.4.4  �WGAN
The training problem of GAN has been criticized all the time, and it 

is prone to the phenomenon of training non-convergence and mode 

collapse. WGAN [5] analyzed the flaws of the original GAN using JS 

divergence from a theoretical level and proposed that the Wasserstein 

distance can be used to solve this problem. In WGAN-GP [6], the author 

proposed that by adding a gradient penalty term, the WGAN algorithm 

was well realized from the engineering level, and the advantages of WGAN 

training stability were confirmed.

13.4.5  �Equal GAN
From the birth of GAN to the end of 2017, GAN Zoo has collected more 

than 214 GAN network variants. These GAN variants have more or less 

proposed some innovations, but several researchers from Google Brain 

provided another point in a paper [7]: There is no evidence that the GAN 

variant algorithms we tested have been consistently better than the 
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original GAN paper. In that paper, these GAN variants are compared fairly 

and comprehensively. With sufficient computing resources, it is found 

that almost all GAN variants can achieve similar performance (FID score). 

This work reminds the industry whether these GAN variants are essentially 

innovative.

13.4.6  �Self-Attention GAN
The attention mechanism has been widely used in natural language 

processing (NLP). Self-Attention GAN (SAGAN) [8] borrowed from the 

attention mechanism and proposed a variant of GAN based on the self-

attention mechanism. SAGAN improved the fidelity index of the picture: 

Inception score from the 36.8 to 52.52, and Frechet inception distance 

from 27.62 to 18.65. From the effect of image generation perspective, 

SAGAN’s breakthrough is very significant, and it also inspired the 

industry’s attention to the self-attention mechanism.

13.4.7  �BigGAN
On the basis of SAGAN, BigGAN [9] attempts to extend the training of 

GAN to a large scale, using techniques such as orthogonal regularization 

to ensure the stability of the training process. The significance of BigGAN 

Figure 13-12.  Attention mechanism in SAGAN [8]
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is to inspire people that the training of GAN networks can also benefit 

from big data and large computing power. The effect of BigGAN image 

generation has reached an unprecedented height: the inception score 

record has increased to 166.5 (an increase of 52.52); Frechet inception 

distance has dropped to 7.4, which has been reduced by 18.65. As shown 

in Figure 13-13, the image resolution can reach 512×512, and the image 

details are extremely realistic.

Figure 13-13.  BigGAN generated images

13.5  �Nash Equilibrium
Now we analyze from the theoretical level, through the training method 

of game learning, what equilibrium state the generator G and the 

discriminator D will reach. Specifically, we will explore the following two 

questions:

•	 Fix G, what optimal state D∗ will D converge to?

•	 After D reaches the optimal state D∗, what state will G 

converge to?

First, we give an intuitive explanation through the example of one-

dimensional normal distribution xr~pr(∙). As shown in Figure 13-14, the 

black dashed curve represents the real data distribution pr(∙), which is 

a normal distribution N(μ, σ2), and the green solid line represents the 

distribution xf~pg(∙) learned by the generator network. The blue dotted line 
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represents the decision boundary curve of the discriminator. Figure 13-14 

(a), (b), (c), and (d) represents the learning trajectory of the generator 

network, respectively. In the initial state, as shown in Figure 13-14(a), 

the distribution of pg(∙) is quite different from pr(∙), and the discriminator 

can easily learn a clear decision boundary, which is the blue dotted line 

in Figure 13-14(a), which sets the sampling point from pg(∙) as 0 and 

the sampling point in pr(∙) as 1. As the distribution pg(∙) of the generator 

network approaches the true distribution pr(∙), it becomes more and 

more difficult for the discriminator to distinguish between true and false 

samples, as shown in Figures 13.14(b)(c). Finally, when the distribution 

pg(∙) = pr(∙) learned by the generator network, the samples extracted from 

the generator network are very realistic, and the discriminator cannot 

distinguish the difference, that is, the probability of determining the true 

and false samples is equal, as shown in Figure 13-14( d).

Figure 13-14.  Nash Equilibrium [1]

This example intuitively explains the training process of the GAN 

network.
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13.5.1  �Discriminator State
Now let’s derive the first question. Review the loss function of GAN:

L G D p x log log D x dx p z log log D g z dz
x

r

z

z,� � � � � � �� � � � � � � �� �� �� � 1

	
� � � � �� � � � � � � �� ��

x

r gp x log log D x p x log log D x dx1
	

For the discriminator D, the optimization goal is to maximize the 

L(G, D) function, and the maximum value of the following function needs 

to be found:

	
f p x log log D x p x log log D xr g� � � � � �� � � � � � � �� �1 	

where θ is the network parameter of the discriminator D.

Let us consider the maximum value of the more general function of fθ:

	 f x A log log x B log log x� � � � �� �1 	

The maximum value of the function f  (x) is required. Consider the 

derivative of f  (x):
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Let 
df x

dx

� �
� 0 , we can find the extreme points of the f  (x) function:
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Therefore, it can be known that the extreme points of the fθ function 

are also:

	
D

p x

p x p x
r

r g
� �

� �
� � � � � 	

That is to say, when the discriminator network Dθ is in the D
��  state, 

the fθ function takes the maximum value, and the L(G, D) function also 

takes the maximum value.

Now back to the problem of maximizing L(G, D), the maximum point 

of L(G, D) is obtained at:

	
D
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p x p x
r
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�
� �

� � � � � 	

which is also the optimal state D∗ of Dθ.

13.5.2  �Generator State
Before deriving the second question, we first introduce another 

distribution distance metric similar to KL divergence: JS divergence, which 

is defined as a combination of KL divergence:

	
D p q p x log log

p x

q x
dxKL
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JS divergence overcomes the asymmetry of KL divergence.

When D reaches the optimal state D∗, let us consider the JS divergence 

of pr and pg at this time:
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According to the definition of KL divergence:
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Combining the constant terms, we can get:
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That is:
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Consider when the network reaches D∗, the loss function at this time is:

	
L G D p x log log D x p x log log D x dx

x
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Therefore, when the discriminator network reaches D∗, DJS(pr‖pg) and 

L(G, D∗) satisfy the relationship:

	
D p p log log L G DJS r g� � � � � �� ��1

2
4 , 	

That is:

	
L G D D p p log logJS r g

, �� � � � � �2 2 2 	

For the generator network G, the training target is L(G, D) , considering 

the nature of the JS divergence:

	
D p pJS r g� � � 0 	

Therefore, L(G, D∗) obtains the minimum value only when 

DJS(pr‖pg) = 0 (at this time pg = pr), L(G, D∗) obtains the minimum value:

	
L G D log log� �� � � �, 2 2 	

At this time, the state of the generator network G∗ is:

	
p pg r= 	

That is, the learned distribution pg of G∗ is consistent with the real 

distribution pr, and the network reaches a balance point. At this time:

	
D

p x

p x p x
r

r g
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13.5.3  �Nash Equilibrium Point
Through the preceding derivation, we can conclude that the generation 

network G will eventually converge to the true distribution, namely:pg = pr

At this time, the generated sample and the real sample come from the 

same distribution, and it is difficult to distinguish between true and false. 

The discriminator has the same probability to judge as true or false, that is:

	 D �� � � 0 5. 	

At this time, the loss function is

	
L G D log log� �� � � �, 2 2 	

13.6  �GAN Training Difficulty
Although the GAN network can learn the true distribution of data from the 

theoretical level, the problem of difficulty in GAN network training often 

arises in engineering implementation, which is mainly reflected in that 

the GAN model is more sensitive to hyperparameters, and it is necessary 

to carefully select the hyperparameters that can make the model work. 

Hyperparameter settings are also prone to mode collapse.

13.6.1  �Hyperparameter Sensitivity
Hyperparameter sensitivity means that the network’s structure setting, 

learning rate, initialization state and other hyper-parameters have a 

greater impact on the training process of the network. A small amount 

of hyperparameter adjustment may lead to completely different network 

training results. Figure 13-15 (a) shows the generated samples obtained 

from good training of the GAN model. The network in Figure 13-15 (b) 
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does not use the batch normalization layer and other settings, resulting 

in unstable GAN network training and failure to converge. The generated 

samples are different from each other. The real sample gap is very large.

Figure 13-15.  Hyperparameter sensitive example [5]

In order to train the GAN network well, the author of the DCGAN 

paper proposes not to use the pooling layer, not to use the fully connected 

layer, to use the batch normalization layer more, and the activation 

function in the generated network should use ReLU. The activation 

function of the last layer should be Tanh, and the activation function of the 

discriminator network should use a series of empirical training techniques 

such as LeakyLeLU. However, these techniques can only avoid the 

phenomenon of training instability to a certain extent and do not explain 

from the theoretical level why there is training difficulty and how to solve 

the problem of training instability.

13.6.2  �Model Collapse
Mode collapse refers to the phenomenon that the sample generated by 

the model is single and the diversity is poor. Since the discriminator can 

only identify whether a single sample is sampled from the true distribution 

and does not impose explicit constraints on the sample diversity, the 

generative model may tend to generate a small number of high-quality 

samples in a partial interval of the true distribution, without learning 

all the true distributions. The phenomenon of model collapse is more 

common in GAN, as shown in Figure 13-16. During the training process, it 

can be observed by visualizing the samples of the generator network that 
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the types of pictures generated are very single, and the generator network 

always tends to generate samples of a certain single style to fool the 

discriminator.

Figure 13-16.  Image generation – model collapsed [10]

Another example of intuitive understanding of mode collapse 

is shown in Figure 13-17. The first row is the training process of the 

generator network without mode collapse, and the last column is the real 

distribution, that is, the 2D Gaussian mixture model. The second row 

shows the training process of generator network with model collapse. The 

last column is the true distribution. It can be seen that the real distribution 

is a mixture of eight Gaussian models. After model collapse occurs, the 

generator network always tends to approach a narrow interval of the 

real distribution, as shown in the first six columns of the second row in 

Figure 13-17. The samples from this interval of can often be judged as real 

samples with a higher probability in the discriminator, thus deceiving the 

discriminator. But this phenomenon is not what we want to see. We hope 

that the generator network can approximate the real distribution, rather 

than a certain part of the real distribution.

Figure 13-17.  Schematic diagram of model collapse [10]
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So how to solve the problem of GAN training so that GAN can be 

trained more stably like ordinary neural networks? The WGAN model 

provides a solution.

13.7  �WGAN Principle
The WGAN algorithm analyzes the reasons for the instability of GAN 

training from a theoretical level, and proposes an effective solution. So 

what makes GAN training so unstable? WGAN proposed that the gradient 

surface of the JS divergence on the non-overlapping distributions p and q 

is always 0. As shown in Figure 13-18, when the distributions p and q do 

not overlap, the gradient value of the JS divergence is always 0, which leads 

to the gradient vanishing phenomenon; therefore, the parameters cannot 

be updated for a long time, and the network cannot converge.

Figure 13-18.  Schematic diagram of distribution p and q

Next we will elaborate on the defects of JS divergence and how to solve 

this defect.
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13.7.1  �JS Divergence Disadvantage
In order to avoid too much theoretical derivation, we use a simple 

distribution example to explain the defects of JS divergence. Consider two 

distributions p and q that are completely non-overlapping (θ ≠ 0), where 

the distribution p is:

	 �� �� � � � �x y p x y U, ,, ,0 0 1 	

And the distribution of q is:

	 �� �� � � � �x y q x y U, ,, ,� 0 1 	

where θ ∈ R, when θ = 0, the distributions p and q overlap, and the two are 

equal; when θ ≠ 0, the distributions p and q do not overlap.

Let us analyze the variation of the JS divergence between the preceding 

distributions p and q with θ. According to the definition of KL divergence 

and JS divergence, calculate the JS divergence DJS(p‖q) when θ = 0:
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When θ = 0, the two distributions completely overlap. At this time, 

the JS divergence and KL divergence both achieve the minimum value, 

which is 0:

	
D p q D q p D p qKL KL JS� � � � � � � � � 0 	
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From the preceding derivation, we can get the trend of DJS(p‖q) with θ:

	
D p q log logJS � � � � �{ 2 0 0 0� � 	

In other words, when the two distributions do not overlap at all, 

regardless of the distance between the distributions, the JS divergence is a 

constant value log log 2 , then the JS divergence will not be able to produce 

effective gradient information. When the two distributions overlap, the JS 

divergence changes smoothly and produces effective gradient information. 

When the two distributions completely coincide, the JS divergence takes 

the minimum value of 0. As shown in Figure 13-19, the red curve divides 

the two normal distributions. Since the two distributions do not overlap, 

the gradient value at the generated sample position is always 0, and the 

parameters of the generator network cannot be updated, resulting in 

difficulty in network training.

Figure 13-19.  Gradient vanishing of JS divergence [5]

Therefore, the JS divergence cannot smoothly measure the distance 

between the distributions when the distributions p and q do not overlap. 

As a result, effective gradient information cannot be generated at this 
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position, and the GAN training is unstable. To solve this problem, we need 

to use a better distribution distance measurement, so that it can smoothly 

reflect the true distance change between the distributions even when the 

distributions p and q do not overlap.

13.7.2  �EM Distance
The WGAN paper found that JS divergence leads to the instability of 

GAN training and introduced a new distribution distance measurement 

method: Wasserstein distance, also called earth mover’s distance 

(EM distance), which represents the minimum cost of transforming a 

distribution to another distribution. It’s defined as:

	
W p q E x yx y, ,� � � ��� ��� ��� 	

where ∏(p, q) is the set of all possible joint distributions combined by the 

distributions p and q. For each possible joint distribution γ ∼  ∏ (p, q), 

calculate the expectation distance E(x, y) ∼ γ[‖x − y‖] of ‖x − y‖, where (x, y) 

is sampled from the joint distribution γ. Different joint distributions γ 

have different expectations E(x, y) ∼ γ[‖x − y‖], and the infimum of these 

expectations is defined as the Wasserstein distance of distributions p and 

q, where inf{∙} represents the infimum of the set, for example, the infimum 

of {x| 1 < x < 3, x ∈ R} is 1.

Continuing to consider the example in Figure 13-18, we directly give 

the expression of the EM distance between the distributions p and q:

	 W p q,� � � � 	

Draw the curves of JS divergence and EM distance, as shown in 

Figure 13-20. It can be seen that the JS divergence is not continuous at 

θ = 0, the other position derivatives are all 0, and the EM distance can 

always produce effective derivative information. Therefore, EM distance is 

more suitable for guiding the training of GAN network than JS divergence.
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Figure 13-20.  JS divergence and EM distance change curve with 
θ WGAN-GP

Considering that it is almost impossible to traverse all the joint 

distributions γ to calculate the distance expectation E(x, y) ∼ γ[‖x − y‖] 

of ‖x − y‖, so it’s not realistic to calculate the distance between the 

distribution pg of the generator network and W(pr, pg). Based on the 

Kantorovich-Rubinstein duality, the WGAN author converts the direct 

calculation of W(pr, pg) into:

	
W p p

K
E f x E f xr g x p x pr g

,� � � � ��� �� � � ��� ��� �
1

	

where sup{∙} represents the supremum of the set, ‖f‖L ≤ K represents the 

function f : R → R which satisfies the K-order Lipschitz continuity, that is,

	
f x f x K x x1 2 1 2� � � � � � � � 	

Therefore, we use the discriminant network Dθ(x) to parameterize 

the f  (x) function, under the condition that Dθ satisfies the 1-Lipschitz 

constraint, that is, K = 1, at this time:

	
W p p E D x E D xr g x p x pr g

,� � � � ��� �� � � ��� ��� �� � 	
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Therefore, the problem of solving W(pr, pg) can be transformed into:

	
E D x E D xx p x pr g� �� ��� �� � � ��� ��� � 	

This is the optimization goal of the discriminator D. The discriminant 

network function Dθ(x) needs to satisfy the 1-Lipschitz constraint:

	
� � � �ˆ

ˆ
xD x I 	

In the WGAN-GP paper, the author proposes to increase the gradient 

penalty method to force the discriminator network to meet the first-order-

Lipschitz function constraint, and the author found that the engineering 

effect is better when the gradient value is constrained around 1, so the 

gradient penalty term is defined as:

	
GP E D xx P xx
 ˆ ˆˆ

ˆ
� � � � �� ��

��
�
��2

2

1
	

Therefore, the training objective of WGAN discriminator D is:

 

where x̂  comes from the linear difference between xr and xf:

	
ˆ ,x tx t x tr f� � �� � �� �1 0 1, 	

The goal of the discriminator D is to minimize the above-mentioned 

error L(G, D), that is, to force the EM distance E D x E D xx p r x p fr r f g� �� ��� �� � � ��� ��  

as large as possible, and � � �ˆ
ˆ

xD x
2

 close to 1.

The training objectives of WGAN generator G are:
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That is, the EM distance between the generator’s distribution pg 

and the real distribution pr is as small as possible. Considering that 

E D xx p rr r� � ��� ��  has nothing to do with the generator, the training objective 

of the generator is abbreviated as:

	
min

�
L G D E D xx p ff g

,� � � � � ��� ��� 	

	
� � � �� ��� ���� �E D G zz pz~ 	

From the implementation point of view, the output of the 

discriminator network D does not need to add a Sigmoid activation 

function. This is because the original version of the discriminator is a 

binary classification network, the Sigmoid function is added to obtain 

the probability of belonging to a certain category; while the discriminator 

in WGAN is used to measure the EM distance between the distribution 

pg of the generator network and the real distribution pr. It belongs to 

the real number space, so there is no need to add a Sigmoid activation 

function. When calculating the error function, WGAN also does not have 

a log function. When training WGAN, WGAN authors recommend using 

RMSProp or SGD and other optimizers without momentum.

WGAN discovered the reason why the original GAN is prone to training 

instability from the theoretical level and gave a new distance metric and 

engineering implementation solution, which achieved good results. 

WGAN also alleviates the problem of model collapse to a certain extent, 

and the model using WGAN is not prone to model collapse. It should be 

noted that WGAN generally does not improve the generation effect of 

the model but only ensures the stability of model training. Of course, the 

training stability is also a prerequisite for good model performance. As 

shown in Figure 13-21, the original version of DCGAN showed unstable 

training when the BN layer and other settings were not used. Under the 

same settings, using WGAN to train the discriminator can avoid this 

phenomenon, as shown in Figure 13-22.
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Figure 13-21.  DCGAN generator effect without BN layer [5]

Figure 13-22.  WGAN generator effect without BN layer [5]
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13.8  �Hands-On WGAN-GP
The WGAN-GP model can be modified slightly on the basis of the original 

GAN implementation. The output of the discriminator D of the WGAN-GP 

model is no longer the probability of the sample category, and the output 

does not need to add the Sigmoid activation function. At the same time, we 

need to add a gradient penalty term as follows:

def gradient_penalty(discriminator, batch_x, fake_image):

    # Gradient penalty term calculation function

    batchsz = batch_x.shape[0]

    # Each sample is randomly sampled at t for interpolation

    t = tf.random.uniform([batchsz, 1, 1, 1])

    �# Automatically expand to the shape of x, [b, 1, 1, 1] => 

[b, h, w, c]

    t = tf.broadcast_to(t, batch_x.shape)

    �# Perform linear interpolation between true and false 

pictures

    interplate = t * batch_x + (1 - t) * fake_image

    �# Calculate the gradient of D to interpolated samples in a 

gradient environment

    with tf.GradientTape() as tape:

        �tape.watch([interplate]) # Add to the gradient 

watch list

        d_interplote_logits = discriminator(interplate)

    grads = tape.gradient(d_interplote_logits, interplate)

    �# Calculate the norm of the gradient of each sample:[b, h, 

w, c] => [b, -1]

    grads = tf.reshape(grads, [grads.shape[0], -1])

    gp = tf.norm(grads, axis=1) #[b]
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    # Calculate the gradient penalty

    gp = tf.reduce_mean( (gp-1.)**2 )

    return gp

The loss function calculation of WGAN discriminator is different 

from GAN. WGAN directly maximizes the output value of real samples 

and minimizes the output value of generated samples. There is no cross-

entropy calculation process. The code is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

    # Calculate loss function for D

    �fake_image = generator(batch_z, is_training) # 

Generated sample

    �d_fake_logits = discriminator(fake_image, is_training)  

# Output of generated sample

    �d_real_logits = discriminator(batch_x, is_training)  

# Output of real sample

    # Calculate gradient penalty term

    gp = gradient_penalty(discriminator, batch_x, fake_image)

    �# �WGAN-GP loss function of D. Here is not to calculate the 

cross entropy, but to directly maximize the output of the 

positive sample

    �# �Minimize the output of false samples and the gradient 

penalty term

    �loss = tf.reduce_mean(d_fake_logits) - tf.reduce_mean 

(d_real_logits) + 10. * gp

    return loss, gp

The loss function of the WGAN generator G only needs to maximize 

the output value of the generated sample in the discriminator D, and there 

is also no cross-entropy calculation step. The code is implemented as 

follows:
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def g_loss_fn(generator, discriminator, batch_z, is_training):

    # Generator loss function

    fake_image = generator(batch_z, is_training)

    d_fake_logits = discriminator(fake_image, is_training)

    �# WGAN-GP G loss function. Maximize the output value of 

false samples

    loss = - tf.reduce_mean(d_fake_logits)

    return loss

Comparing with the original GAN, the main training logic of WGAN is 

basically the same. The role of the discriminator D for WGAN is a measure 

of EM distance. Therefore, the more accurate the discriminator is, the 

more beneficial it is to the generator. The discriminator D can be trained 

multiple times for a step, and the generator G can be trained once to obtain 

a more accurate EM distance estimation.
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